JP6174220B1 - Planar heating element, planar heating device, planar heating element electrode, and manufacturing method of planar heating element - Google Patents

Planar heating element, planar heating device, planar heating element electrode, and manufacturing method of planar heating element Download PDF

Info

Publication number
JP6174220B1
JP6174220B1 JP2016199430A JP2016199430A JP6174220B1 JP 6174220 B1 JP6174220 B1 JP 6174220B1 JP 2016199430 A JP2016199430 A JP 2016199430A JP 2016199430 A JP2016199430 A JP 2016199430A JP 6174220 B1 JP6174220 B1 JP 6174220B1
Authority
JP
Japan
Prior art keywords
heating element
electrode
planar heating
heat generating
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2016199430A
Other languages
Japanese (ja)
Other versions
JP2018060760A (en
Inventor
四郎 高橋
四郎 高橋
重男 木村
重男 木村
達夫 清水
達夫 清水
啓司 土屋
啓司 土屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishii Corp
Original Assignee
Ishii Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishii Corp filed Critical Ishii Corp
Priority to JP2016199430A priority Critical patent/JP6174220B1/en
Application granted granted Critical
Publication of JP6174220B1 publication Critical patent/JP6174220B1/en
Priority to PCT/JP2017/036553 priority patent/WO2018066708A1/en
Publication of JP2018060760A publication Critical patent/JP2018060760A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/20Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads
    • D03D15/283Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads synthetic polymer-based, e.g. polyamide or polyester fibres
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D1/00Woven fabrics designed to make specified articles
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/20Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads
    • D03D15/242Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads inorganic, e.g. basalt
    • D03D15/275Carbon fibres
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/60Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the warp or weft elements other than yarns or threads
    • D03D15/67Metal wires
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/02Details
    • H05B3/03Electrodes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/34Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater flexible, e.g. heating nets or webs

Abstract

【課題】発熱部における発熱の均一性及び発熱効率が高く、かつ発熱特性が安定した面状発熱体、面状発熱装置、面状発熱体用電極、及び面状発熱体の製造方法を提供すること。【解決手段】導電性繊維を含む繊維構造体で形成された発熱部と、前記発熱部の導電性繊維に電流を供給するための電極部と、を備える面状発熱体であって、前記電極部は、金属からなり、電流が供給される第1電極部と、金属からなり、前記第1電極部を覆うように設けられた第2電極部と、導電材料を含有し、少なくとも一部が前記発熱部の繊維構造体と前記第2電極部との間に充填されるように設けられる導電性接着剤と、を備える。【選択図】図1The present invention provides a planar heating element, a planar heating device, an electrode for a planar heating element, and a method for manufacturing the planar heating element, which have high uniformity of heating in the heating section and high heating efficiency and stable heating characteristics. thing. A planar heating element comprising: a heat generating part formed of a fiber structure including conductive fibers; and an electrode part for supplying a current to the conductive fibers of the heat generating part. The portion is made of a metal and includes a first electrode portion to which a current is supplied, a second electrode portion made of metal and provided to cover the first electrode portion, and a conductive material, at least a part of which A conductive adhesive provided so as to be filled between the fiber structure of the heat generating portion and the second electrode portion. [Selection] Figure 1

Description

本発明は、面状発熱体、面状発熱装置、面状発熱体用電極、及び面状発熱体の製造方法に関する。   The present invention relates to a planar heating element, a planar heating device, an electrode for a planar heating element, and a method for manufacturing the planar heating element.

面状発熱体は、シート状の発熱面から全体的に熱を放射するものであり、例えば、凍結防止、除霜、防湿、保温、加温などの各種用途において利用されている。特に、繊維構造体を発熱部として有する面状発熱体は、柔軟性や耐屈曲性に優れるだけでなく、軽量で厚さを薄くすることが可能であるため、ファブリックヒーターとして利用することが可能である。   The planar heating element radiates heat entirely from the sheet-like heating surface, and is used in various applications such as anti-freezing, defrosting, moisture prevention, heat retention, and warming. In particular, a planar heating element having a fiber structure as a heating part is not only excellent in flexibility and bending resistance, but also can be used as a fabric heater because it is lightweight and can be reduced in thickness. It is.

このような面状発熱体として、例えば特許文献1には、導電性繊維を含む編織物で形成された発熱部と、この発熱部を通電するための電極部とで構成された面状発熱体であって、導電性繊維が、有機繊維と、この有機繊維の表面を被覆するカーボンナノチューブとを含む面状発熱体が開示されている。また、特許文献2には、導電性繊維を含む繊維構造体で形成された発熱部と、この発熱部に通電するための電極部とで形成された面状発熱体であって、電極部が導電剤及びバインダー成分を含む面状発熱体が開示されている。また、特許文献3には、導電性繊維を発熱糸として含む織編物で構成された発熱部と、この発熱部を通電するための少なくとも一対の電極部とで構成された面状発熱体であって、導電性繊維が、導電剤を含有及び/又は担持している有機繊維であり、電極部が、織編物の所望の位置に縫われた第1の金属繊維で構成された第1の電極部と、第1の金属繊維を覆い、第1の金属繊維と通電可能な第2の金属繊維で構成された第2の電極部とで構成されている面状発熱体が開示されている。   As such a planar heating element, for example, in Patent Document 1, a planar heating element composed of a heating part formed of a knitted fabric containing conductive fibers and an electrode part for energizing the heating part is disclosed. Then, a planar heating element is disclosed in which the conductive fiber includes an organic fiber and a carbon nanotube covering the surface of the organic fiber. Patent Document 2 discloses a sheet heating element formed of a heat generating portion formed of a fiber structure including conductive fibers and an electrode portion for energizing the heat generating portion. A planar heating element including a conductive agent and a binder component is disclosed. Patent Document 3 discloses a sheet heating element composed of a heat generating portion made of a woven or knitted fabric containing conductive fibers as heat generating yarns and at least a pair of electrode portions for energizing the heat generating portion. The conductive fiber is an organic fiber containing and / or carrying a conductive agent, and the electrode portion is formed of a first metal fiber sewn at a desired position of the woven or knitted fabric. A planar heating element is disclosed that includes a first electrode and a second electrode that covers the first metal fiber and includes the first metal fiber and the second metal fiber that can be energized.

特開2010−192218号公報JP 2010-192218 A 特開2013−191551号公報JP2013-191551A 特開2015−156343号公報JP2015-156343A

しかしながら、特許文献2に開示される面状発熱体では、電極部の抵抗が比較的高くなってしまうため、電極部の長手方向で電圧降下を生じてしまい、発熱部における発熱が不均一になり、かつ供給した電力が熱に変換される効率(発熱効率)が低下するという問題がある。また、特許文献3に開示される面状発熱体では、導電性繊維と第1電極との接続は接触により行われているため、接触面積を十分大きくできず、接触抵抗が比較的高くなる。また、発熱部に掛かる外圧、時間経過、外部環境の影響等によって接触面積が変動するため、接触抵抗も変動する。そのため、安定した導電性繊維と電極の接触抵抗が得られ難く、面状発熱体の発熱特性も安定しないという問題がある。   However, in the planar heating element disclosed in Patent Document 2, since the resistance of the electrode part becomes relatively high, a voltage drop occurs in the longitudinal direction of the electrode part, and the heat generation in the heating part becomes uneven. In addition, there is a problem that the efficiency (heat generation efficiency) in which the supplied power is converted into heat is reduced. Further, in the planar heating element disclosed in Patent Document 3, since the conductive fiber and the first electrode are connected by contact, the contact area cannot be sufficiently increased, and the contact resistance becomes relatively high. Further, since the contact area varies due to the external pressure applied to the heat generating portion, the passage of time, the influence of the external environment, etc., the contact resistance also varies. Therefore, there is a problem that it is difficult to obtain a stable contact resistance between the conductive fiber and the electrode, and the heat generation characteristics of the planar heating element are not stable.

本発明は、上記に鑑みてなされたものであって、発熱部における発熱の均一性及び発熱効率が高く、かつ発熱特性が安定した面状発熱体、面状発熱装置、面状発熱体用電極、及び面状発熱体の製造方法を提供することを目的とする。   The present invention has been made in view of the above, and is a sheet heating element, a sheet heating device, and a sheet heating element electrode having high heat generation uniformity and heat generation efficiency and stable heat generation characteristics. And it aims at providing the manufacturing method of a planar heating element.

上述した課題を解決し、目的を達成するために、本発明の一態様に係る面状発熱体は、導電性繊維を含む繊維構造体で形成された発熱部と、前記発熱部の導電性繊維に電流を供給するための電極部と、を備える面状発熱体であって、前記電極部は、金属からなり、電流が供給される第1電極部と、金属からなり、前記第1電極部を覆うように設けられた第2電極部と、導電材料を含有し、少なくとも一部が前記発熱部の繊維構造体と前記第2電極部との間に充填されるように設けられる導電性接着剤と、を備えることを特徴とする。   In order to solve the above-described problems and achieve the object, a planar heating element according to an aspect of the present invention includes a heating part formed of a fiber structure including conductive fibers, and conductive fibers of the heating part. An electrode portion for supplying a current to the electrode, wherein the electrode portion is made of metal, the first electrode portion to which current is supplied, and the first electrode portion A second electrode part provided so as to cover the conductive material, and a conductive adhesive containing a conductive material and provided so that at least a part is filled between the fiber structure of the heat generating part and the second electrode part And an agent.

本発明の一態様に係る面状発熱装置は、本発明の一態様に係る面状発熱体と、前記面状発熱体の前記電極部に電流を供給する電源部と、を備えることを特徴とする。   A planar heating device according to an aspect of the present invention includes the planar heating element according to an aspect of the present invention, and a power supply unit that supplies current to the electrode unit of the planar heating element. To do.

本発明の一態様に係る面状発熱体用電極は、導電性繊維を含む繊維構造体で形成された発熱部を備える面状発熱体の前記導電性繊維に電流を供給するための面状発熱体用電極であって、電流が供給される第1電極部と、前記第1電極部を覆う第2電極部と、導電材料を含有し、少なくとも一部が前記発熱部の繊維構造体と前記第2電極部との間に充填されるように設けられる導電性接着剤と、を備えることを特徴とする。   An electrode for a planar heating element according to an aspect of the present invention is a planar heating element for supplying a current to the conductive fibers of a planar heating element including a heating unit formed of a fiber structure including conductive fibers. A body electrode comprising a first electrode part to which a current is supplied, a second electrode part covering the first electrode part, a conductive material, and at least a part of the fibrous structure of the heating part and the And a conductive adhesive provided to be filled between the second electrode portion.

本発明の一態様に係る面状発熱体の製造方法は、第1電極部を第2電極部で覆う工程と、導電材料を含有する導電性接着剤のペーストを、前記第2電極部及び導電性繊維を含む繊維構造体で形成された発熱部の少なくとも一方に塗布する工程と、前記塗布した導電性接着剤のペーストを介して前記第2電極部と前記発熱部とを接触させる工程と、を含むことを特徴とする。   In the method for manufacturing a planar heating element according to one aspect of the present invention, a step of covering the first electrode portion with the second electrode portion, and a paste of a conductive adhesive containing a conductive material are used. Applying to at least one of the heat generating parts formed of a fiber structure containing a conductive fiber, contacting the second electrode part and the heat generating part through the paste of the applied conductive adhesive, It is characterized by including.

本発明によれば、発熱部における発熱の均一性及び発熱効率が高く、かつ発熱特性が安定した面状発熱体を実現できるという効果を奏する。   According to the present invention, there is an effect that it is possible to realize a planar heating element having high uniformity of heat generation and heat generation efficiency in the heat generating portion and stable heat generation characteristics.

図1は、実施形態1に係る面状発熱装置の模式図である。FIG. 1 is a schematic diagram of a planar heating device according to the first embodiment. 図2は、図1に示す面状発熱体の製造方法を説明する模式図である。FIG. 2 is a schematic diagram for explaining a method of manufacturing the planar heating element shown in FIG. 図3は、実施形態2に係る面状発熱体の模式図である。FIG. 3 is a schematic diagram of a planar heating element according to the second embodiment. 図4は、電圧−電流特性を示す図である。FIG. 4 is a diagram showing voltage-current characteristics. 図5は、電圧−抵抗特性を示す図である。FIG. 5 is a diagram showing voltage-resistance characteristics. 図6は、サーモグラフィにより測定した発熱状態を示す図である。FIG. 6 is a diagram showing a heat generation state measured by thermography. 図7は、サーモグラフィにより測定した発熱状態を示す図である。FIG. 7 is a diagram showing a heat generation state measured by thermography.

以下に、図面を参照して本発明の実施形態を詳細に説明する。なお、この実施形態によりこの発明が限定されるものではない。また、各図面において、同一又は対応する要素には適宜同一の符号を付している。   Embodiments of the present invention will be described below in detail with reference to the drawings. In addition, this invention is not limited by this embodiment. Moreover, in each drawing, the same code | symbol is attached | subjected suitably to the same or corresponding element.

(実施形態1)
図1は、実施形態1に係る面状発熱装置の模式図である。図1(a)は平面図、図1(b)は図1(a)のA−A線断面図である。図1に示すように、面状発熱装置100は、面状発熱体10と、電源部101と、コントローラ102と、を備える。
(Embodiment 1)
FIG. 1 is a schematic diagram of a planar heating device according to the first embodiment. FIG. 1A is a plan view, and FIG. 1B is a cross-sectional view taken along the line AA in FIG. As shown in FIG. 1, the sheet heating device 100 includes a sheet heating element 10, a power supply unit 101, and a controller 102.

面状発熱体10は、発熱部1と、第1電極部2と、第2電極部3と、導電性接着剤4と、を備えている。   The planar heating element 10 includes a heating part 1, a first electrode part 2, a second electrode part 3, and a conductive adhesive 4.

発熱部1は、導電性繊維を含む繊維構造体で形成されており、本実施形態では、図面上横方向に延びている経糸1a及び図面上縦方向に延びている緯糸1bで構成された織物である。経糸1aは導電性繊維からなる糸であり、緯糸1bは非導電性繊維からなる糸である。なお、経糸1aとして所定の割合で非導電性繊維からなる糸を含めてもよい。   The heat generating portion 1 is formed of a fiber structure including conductive fibers. In the present embodiment, the woven fabric is composed of warp yarns 1a extending in the horizontal direction in the drawing and weft yarns 1b extending in the vertical direction in the drawing. It is. The warp 1a is a thread made of conductive fibers, and the weft 1b is a thread made of non-conductive fibers. In addition, you may include the thread | yarn which consists of a nonelectroconductive fiber in a predetermined ratio as the warp 1a.

導電性繊維は、炭素系導電材料を含むものであり、例えば非導電性繊維の表面に炭素系導電材料を担持させたものである。炭素系導電材料としては、カーボンナノチューブを用いることができる。   The conductive fiber includes a carbon-based conductive material, for example, a carbon-based conductive material supported on the surface of a non-conductive fiber. Carbon nanotubes can be used as the carbon-based conductive material.

第1電極部2、第2電極部3、及び導電性接着剤4は、発熱部1の導電性繊維からなる糸に電流を供給するための電極部(面状発熱体用電極)を構成している。電極部は、本実施形態では2つ有り、長方形状の発熱部1の各短辺側に、互いに離間し、かつ互いに平行に延伸するように設けられている。すなわち、電極部は、経糸1aと交差(本実施形態では直交)する方向に延伸している。   The first electrode part 2, the second electrode part 3, and the conductive adhesive 4 constitute an electrode part (surface heating element electrode) for supplying a current to the yarn made of the conductive fiber of the heating part 1. ing. There are two electrode portions in the present embodiment, and are provided on each short side of the rectangular heat generating portion 1 so as to be separated from each other and to extend in parallel to each other. In other words, the electrode portion extends in a direction intersecting with the warp 1a (orthogonal in the present embodiment).

金属からなる各第1電極部2は、電源部101に接続されており、コントローラ102で調整された値の電流が供給される。各第1電極部2は、金属線や、金属繊維からなる糸等で構成されており、緯糸1bに沿って延伸している。本実施形態では、各第1電極部2は、本実施形態では発熱部1の織物に縫われているが、発熱部1の織物の表面に接触するように渡されていてもよい。   Each first electrode part 2 made of metal is connected to the power supply part 101 and supplied with a current having a value adjusted by the controller 102. Each first electrode portion 2 is composed of a metal wire, a thread made of metal fiber, or the like, and extends along the weft thread 1b. In the present embodiment, each first electrode portion 2 is sewn on the fabric of the heat generating portion 1 in the present embodiment, but may be passed so as to contact the surface of the fabric of the heat generating portion 1.

金属からなる各第2電極部3は、各第1電極部2を覆うように設けられている。各第2電極部3は、本実施形態では金属網線で構成されているが、金属板や金属シートで構成されていてもよい。また、本実施形態では、各第2電極部3は発熱部1の片面側から各第1電極部2を覆っているが、発熱部1の両面側から各第1電極部2を覆うようにしてもよい。   Each 2nd electrode part 3 which consists of metals is provided so that each 1st electrode part 2 may be covered. Each second electrode portion 3 is configured by a metal mesh wire in the present embodiment, but may be configured by a metal plate or a metal sheet. In the present embodiment, each second electrode unit 3 covers each first electrode unit 2 from one side of the heat generating unit 1, but covers each first electrode unit 2 from both sides of the heat generating unit 1. May be.

各導電性接着剤4は、導電材料を含有し、少なくとも一部が、発熱部1の繊維構造体と各第2電極部3との間に充填されるように設けられている。   Each conductive adhesive 4 contains a conductive material, and is provided so that at least a part is filled between the fiber structure of the heat generating portion 1 and each second electrode portion 3.

つぎに、面状発熱装置100の動作について説明する。電源部101によって2つの電極部の間に電圧を印加し、一方の第1電極部2にコントローラ102で値を調整された電流を供給すると、電流は第1電極部2、第2電極部3、導電性接着剤4を介して、発熱部1の導電性繊維からなる経糸1aを流れ、他方の導電性接着剤4、第2電極部3、第1電極部2を介して電源部101に戻る。このとき、経糸1aは所定の抵抗値を有するので、電流が流れると抵抗発熱体として機能する。その結果、発熱部1が全体的に発熱する。   Next, the operation of the sheet heating device 100 will be described. When a voltage is applied between the two electrode units by the power supply unit 101 and a current whose value is adjusted by the controller 102 is supplied to one first electrode unit 2, the current is supplied to the first electrode unit 2 and the second electrode unit 3. The warp 1a made of conductive fibers of the heat generating portion 1 flows through the conductive adhesive 4, and the power supply portion 101 passes through the other conductive adhesive 4, the second electrode portion 3, and the first electrode portion 2. Return. At this time, since the warp 1a has a predetermined resistance value, it functions as a resistance heating element when a current flows. As a result, the heat generating portion 1 generates heat as a whole.

ここで、上述したように、各第1電極部2、各第2電極部3は金属からなるので、電極部の長手方向での電圧降下が小さい。具体的には、各第1電極部2に電流供給される下端側から上端側までの電圧降下が小さいので、発熱部1における発熱の均一性及び発熱効率が高くなる。   Here, as described above, since each first electrode portion 2 and each second electrode portion 3 are made of metal, a voltage drop in the longitudinal direction of the electrode portion is small. Specifically, since the voltage drop from the lower end side to the upper end side where current is supplied to each first electrode portion 2 is small, the uniformity of heat generation and the heat generation efficiency in the heat generating portion 1 are increased.

さらに、上述したように、各導電性接着剤4の少なくとも一部が、発熱部1の繊維構造体と各第2電極部3との間に充填されているため、発熱部1の経糸1aと各第2電極部3との間の隙間が導電性材料で充填されることとなり、接触抵抗が小さくなる。そのため、発熱効率が高くなる。さらには、発熱部1の経糸1aと各第2電極部3とは各導電性接着剤4により固着されるので、発熱部1に掛かる外圧や、時間経過や、外部環境の影響等による接触面積の変化はきわめて小さい又は変化しないので、接触抵抗が安定する。そのため、面状発熱体10の発熱特性も安定する。   Furthermore, as described above, since at least a part of each conductive adhesive 4 is filled between the fiber structure of the heat generating portion 1 and each second electrode portion 3, the warp 1a of the heat generating portion 1 and The gap between each second electrode portion 3 is filled with the conductive material, and the contact resistance is reduced. Therefore, the heat generation efficiency is increased. Further, since the warp 1a of the heat generating portion 1 and each second electrode portion 3 are fixed by the respective conductive adhesives 4, the contact area due to the external pressure applied to the heat generating portion 1, the passage of time, the influence of the external environment, etc. Since the change of is very small or does not change, the contact resistance is stabilized. Therefore, the heat generation characteristics of the sheet heating element 10 are also stabilized.

また、各導電性接着剤4の一部が発熱部1の繊維構造体(図1(b)に示す部分1c)に含浸していることが好ましい。これにより、発熱部1の経糸1aと各第2電極部3とがより一層強固に固着されるので、接触抵抗及び面状発熱体10の発熱特性がより一層安定する。   Moreover, it is preferable that a part of each conductive adhesive 4 is impregnated in the fiber structure of the heat generating portion 1 (portion 1c shown in FIG. 1B). Thereby, since the warp 1a of each heat generating part 1 and each second electrode part 3 are more firmly fixed, the contact resistance and the heat generating characteristics of the sheet heating element 10 are further stabilized.

さらには、導電性接着剤4の一部が各第1電極部2とこれを覆う各第2電極部3との間に充填されていることがより好ましい。これにより、各第1電極部2と各第2電極部3との間の隙間が導電性材料で充填されることとなり、接触抵抗が小さくなるので、発熱効率がさらに高くなるとともに、面状発熱体10の発熱特性もさらに安定する。   Furthermore, it is more preferable that a part of the conductive adhesive 4 is filled between each first electrode portion 2 and each second electrode portion 3 covering the first electrode portion 2. As a result, the gaps between the first electrode portions 2 and the second electrode portions 3 are filled with the conductive material, and the contact resistance is reduced, so that the heat generation efficiency is further increased and the surface heat generation is performed. The heat generation characteristics of the body 10 are further stabilized.

つぎに、導電性接着剤4の好ましい構成について説明する。
(導電材料)
導電性接着剤4に含有される導電材料としては、例えば、炭素類(例えば、ファーネスブラック、アセチレンブラック、ケッチェンブラックなどのカーボンブラック、人造黒鉛、膨張黒鉛、天然黒鉛、カーボンナノチューブ、グラフェン、フラーレンなど)、金属単体又は合金(例えば、銀、金、銅、クロム、ニッケル、鉄、マグネシウム、アルミニウム、白金、亜鉛、マンガン、タングステン、ステンレスなど)、金属化合物又はセラミックス類(例えば、硫化銅、フェライト、トルマリン、珪藻土など)などが挙げられる。これらの導電材料は、単独で又は二種以上組み合わせて使用でき、例えば、炭素系導電材料と金属系導電材料とを組み合わせてもよい。また、複合体であってもよく、例えば、上述した金属単体をメッキ又は蒸着した有機又は無機化合物(銀コート銅など)や、カーボンブラックやグラファイトを担持したセラミックスなどであってもよい。さらに、複合体は、非導電材料との複合体であってもよい。
Next, a preferable configuration of the conductive adhesive 4 will be described.
(Conductive material)
Examples of the conductive material contained in the conductive adhesive 4 include carbons (for example, carbon black such as furnace black, acetylene black, ketjen black, artificial graphite, expanded graphite, natural graphite, carbon nanotube, graphene, fullerene) Etc.), simple metals or alloys (eg, silver, gold, copper, chromium, nickel, iron, magnesium, aluminum, platinum, zinc, manganese, tungsten, stainless steel, etc.), metal compounds or ceramics (eg, copper sulfide, ferrite) , Tourmaline, diatomaceous earth, etc.). These conductive materials can be used alone or in combination of two or more. For example, a carbon-based conductive material and a metal-based conductive material may be combined. Moreover, a composite may be sufficient, for example, the organic or inorganic compound (silver coat copper etc.) which plated or vapor-deposited the metal simple substance mentioned above, and the ceramic etc. which carry | supported carbon black and graphite. Furthermore, the composite may be a composite with a non-conductive material.

これらの導電材料のうち、導電性の点から、銀、金、銅、アルミニウムなどの金属を含む金属系導電材料、カーボンブラックやカーボンナノチューブ、グラフェンなどの炭素系導電材料が汎用される。さらに、導電性の点から、金属系導電材料(特に金属粒子)を含むのが好ましく、銀系導電材料(例えば、銀単体、銀コート又はメッキ銅など)が特に好ましい。また、耐久性や耐腐食性に優れる点から、炭素系導電材料を含むのが好ましく、カーボンブラックやカーボンナノチューブ、グラフェンなどの炭素系粒子が特に好ましい。   Among these conductive materials, metal-based conductive materials containing metals such as silver, gold, copper, and aluminum, and carbon-based conductive materials such as carbon black, carbon nanotubes, and graphene are widely used from the viewpoint of conductivity. Further, from the viewpoint of conductivity, it is preferable to include a metal-based conductive material (particularly metal particles), and a silver-based conductive material (for example, silver alone, silver coat or plated copper) is particularly preferable. Moreover, from the point which is excellent in durability and corrosion resistance, it is preferable to contain a carbon-type electrically-conductive material, and carbon-type particles, such as carbon black, a carbon nanotube, and a graphene, are especially preferable.

導電材料の形状としては、例えば、粒子状(粉末状)、板状(又は鱗片状)、繊維状、不定形状などが挙げられる。これらの形状のうち、略球状や多角体状などの粒子状、繊維状などが汎用されるが、発熱部1を構成する繊維構造体の繊維間空隙に入り込み、導電性繊維と電極部との接触性を向上できる点から、粒子状が好ましい。   Examples of the shape of the conductive material include particles (powder), plates (or scales), fibers, and irregular shapes. Of these shapes, a particle shape such as a substantially spherical shape or a polygonal shape, a fiber shape, or the like is generally used, but it enters the inter-fiber gap of the fiber structure constituting the heat generating portion 1, and the conductive fiber and the electrode portion From the viewpoint of improving contactability, a particulate form is preferable.

導電材料の平均粒径(カーボンナノチューブなどの異方形状の場合、長径と短径との平均径)は、10nm〜100μm程度の範囲から適宜選択でき、電極部の機械的特性や導電性などの点から、例えば、0.3〜80μm、好ましくは0.5〜50μm、さらに好ましくは1〜40μm(特に3〜50μm)程度であり、また複数の粒径(特に1〜10μmと30〜50μm)を組み合わせてもよい。炭素系導電材料(炭素系粒子)の場合、例えば、10〜500nm、好ましくは20〜300nm、さらに好ましくは30〜100nm(特に40〜80nm)程度である。   The average particle diameter of the conductive material (in the case of an anisotropic shape such as a carbon nanotube, the average diameter of the major axis and the minor axis) can be appropriately selected from the range of about 10 nm to 100 μm, and the mechanical properties and conductivity of the electrode part From the viewpoint, for example, 0.3 to 80 μm, preferably 0.5 to 50 μm, more preferably about 1 to 40 μm (particularly 3 to 50 μm), and a plurality of particle sizes (particularly 1 to 10 μm and 30 to 50 μm). May be combined. In the case of a carbon-based conductive material (carbon-based particles), for example, the thickness is about 10 to 500 nm, preferably about 20 to 300 nm, and more preferably about 30 to 100 nm (particularly 40 to 80 nm).

(接着剤成分)
導電性接着剤4の接着剤成分は、金属線や金属箔と異なり、繊維構造体の繊維間(例えば、織物において、隣接する糸間や、経糸と緯糸との交点の隙間、経糸や緯糸がマルチフィラメント糸である場合、単繊維間など)および第1電極部2と第2電極部3との間にも侵入可能である(特に硬化していない状態において)。そのため、発熱部1を構成する繊維構造体に含まれる導電性繊維と電極部との接触状態を向上できる。また、繊維構造体が非導電性繊維を含んでいても、非導電性繊維の形状に追従して接着剤成分が充填され、又は非導電性繊維がマルチフィラメント糸である場合は単繊維間の隙間に接着剤成分が侵入するため、第1、第2電極と導電性繊維との接触状態を向上でき、かつ均一に両者を接触できる。
(Adhesive component)
The adhesive component of the conductive adhesive 4 is different from the metal wire or metal foil in that the fibers of the fiber structure (for example, in the woven fabric, between adjacent yarns, the gap at the intersection of warp and weft, warp and weft) In the case of a multifilament yarn, it is possible to enter between the first and second electrode portions 2 and 3 (in particular, in a state where the yarn is not hardened). Therefore, the contact state between the conductive fiber and the electrode part included in the fiber structure constituting the heat generating part 1 can be improved. In addition, even if the fiber structure includes non-conductive fibers, the adhesive component is filled following the shape of the non-conductive fibers, or when the non-conductive fibers are multifilament yarns, between the single fibers Since the adhesive component penetrates into the gap, the contact state between the first and second electrodes and the conductive fiber can be improved, and both can be contacted uniformly.

接着剤成分としては、慣用の接着剤や粘着剤が利用できるが、導電材料を発熱部1の繊維構造体に強固に固定できる点から、接着剤が好ましい。接着剤には、慣用の接着剤、熱可塑性樹脂(ポリオレフィン系樹脂、アクリル系樹脂、酢酸ビニル系樹脂、スチレン系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、熱可塑性ポリウレタン系樹脂、ポリフッ化ビニリデン樹脂など)、硬化性樹脂(硬化性アクリル系樹脂、硬化性ポリエステル系樹脂、ビニルエステル樹脂、エポキシ樹脂、メラミン系樹脂、尿素樹脂、フェノール系樹脂、シリコーン系樹脂、ポリイミド系樹脂、ウレタン系樹脂など)、ゴム又は熱可塑性エラストマーなどが挙げられる。これらの接着剤は、単独で又は二種以上組み合わせて使用できる。   As the adhesive component, a conventional adhesive or pressure-sensitive adhesive can be used, but an adhesive is preferable because the conductive material can be firmly fixed to the fiber structure of the heat generating portion 1. Adhesives include conventional adhesives, thermoplastic resins (polyolefin resins, acrylic resins, vinyl acetate resins, styrene resins, polyester resins, polyamide resins, thermoplastic polyurethane resins, polyvinylidene fluoride resins, etc. ), Curable resins (curable acrylic resins, curable polyester resins, vinyl ester resins, epoxy resins, melamine resins, urea resins, phenolic resins, silicone resins, polyimide resins, urethane resins, etc.), Examples thereof include rubber and thermoplastic elastomer. These adhesives can be used individually or in combination of 2 or more types.

これらの接着剤のうち、発熱部1の繊維構造体に対して強固に接着し、一体化できる点から、硬化性アクリル系樹脂、硬化性ポリエステル系樹脂、ウレタン系樹脂などの硬化性樹脂を熱や光で硬化した硬化樹脂(特に熱硬化性樹脂を硬化した硬化樹脂)が好ましく、繊維構造体との組み合わせにおいて接着性と柔軟性と耐屈曲性とを両立できる点から、硬化性ポリエステル系樹脂が特に好ましい。   Among these adhesives, curable resins such as curable acrylic resins, curable polyester resins, and urethane resins are heated from the viewpoint that they can be firmly bonded to and integrated with the fiber structure of the heat generating portion 1. Cured resin cured with light or light (especially cured resin obtained by curing thermosetting resin) is preferable, and in combination with the fiber structure, it is possible to achieve both adhesiveness, flexibility and bending resistance. Is particularly preferred.

硬化性ポリエステル系樹脂には、不飽和ポリエステル、共重合ポリエステルが含まれる。不飽和ポリエステルは、柔軟性及び耐屈曲性に優れる点から、ジカルボン酸成分として、重合性ジカルボン酸成分(無水マレイン酸、マレイン酸、フマル酸など)に加えて、アジピン酸やセバシン酸などのC6−16脂肪族ジカルボン酸を含む不飽和ポリエステル;ジオール成分として、長鎖アルカンジオール(ブタンジオールなどのC4−10アルカンジオールなど)やポリアルキレングリコール(ジエチレングリコール、ジプロピレングリコール、ポリテトラメチレングリコールなど)などの長鎖ジオール成分を含む不飽和ポリエステル;脂肪族ジカルボン酸成分及び長鎖ジオール成分を含む不飽和ポリエステルなどでもよい。共重合ポリエステルも、エチレンテレフタレートやブチレンテレフタレートなどのC2−4アルキレンC6−14アリレート単位に加えて、脂肪族ジカルボン酸成分、長鎖ジオール成分の単位を含んでいてもよく、さらに硬化剤に対する反応性基(例えば、ヒドロキシル基、カルボキシル基、アミノ基など)を有する単量体の単位を含んでいてもよい。硬化剤は、例えば、イソシアネート系硬化剤、アミン系硬化剤、酸無水物系硬化剤、イミダゾール系硬化剤(特にポリイソシアネートなどのイソシアネート系硬化剤)などでもよい。 The curable polyester resin includes unsaturated polyester and copolymer polyester. Unsaturated polyesters are excellent in flexibility and flex resistance, and as a dicarboxylic acid component, in addition to polymerizable dicarboxylic acid components (maleic anhydride, maleic acid, fumaric acid, etc.), C such as adipic acid or sebacic acid is used. Unsaturated polyester containing 6-16 aliphatic dicarboxylic acid; long chain alkanediol (such as C 4-10 alkanediol such as butanediol) or polyalkylene glycol (diethylene glycol, dipropylene glycol, polytetramethylene glycol, etc.) as the diol component An unsaturated polyester containing a long-chain diol component such as an unsaturated polyester containing an aliphatic dicarboxylic acid component and a long-chain diol component may be used. The copolymer polyester may also contain units of an aliphatic dicarboxylic acid component and a long-chain diol component in addition to C 2-4 alkylene C 6-14 arylate units such as ethylene terephthalate and butylene terephthalate, and further to the curing agent. It may contain a monomer unit having a reactive group (for example, a hydroxyl group, a carboxyl group, an amino group, etc.). The curing agent may be, for example, an isocyanate curing agent, an amine curing agent, an acid anhydride curing agent, an imidazole curing agent (particularly an isocyanate curing agent such as polyisocyanate), and the like.

接着剤成分の割合は、導電材料100質量部に対して1〜100質量部程度の範囲から選択でき、例えば、3〜80質量部、好ましくは5〜60質量部、さらに好ましくは10〜50質量部(特に10〜40質量部)程度である。接着剤成分の割合が多すぎると、導電性が低下し、逆に少なすぎると接着性が低下する。導電材料は、このような割合(濃度)で接着剤成分中に均一に分散しているのが好ましい。   The ratio of the adhesive component can be selected from the range of about 1 to 100 parts by mass with respect to 100 parts by mass of the conductive material, for example, 3 to 80 parts by mass, preferably 5 to 60 parts by mass, and more preferably 10 to 50 parts by mass. Part (particularly 10 to 40 parts by mass). If the proportion of the adhesive component is too large, the conductivity is lowered, and conversely if too small, the adhesiveness is lowered. The conductive material is preferably uniformly dispersed in the adhesive component at such a ratio (concentration).

(製造方法)
つぎに、図1に示す面状発熱体10の製造方法を、図2を参照して説明する。なお、図2(a)、(b)はそれぞれ図1(a)、(b)に対応する図である。はじめに、2本の第1電極部2を発熱部1の両短辺側に縫い付ける。
(Production method)
Next, a method for manufacturing the planar heating element 10 shown in FIG. 1 will be described with reference to FIG. 2A and 2B correspond to FIGS. 1A and 1B, respectively. First, the two first electrode portions 2 are sewn to both short sides of the heat generating portion 1.

つづいて、第1電極部2を第2電極部3で覆う。つづいて、導電材料を含有する導電性接着剤のペーストを、第2電極部3及び発熱部1の少なくとも一方に塗布する。つづいて、塗布した導電性接着剤4のペースト(以下、導電性ペーストと記載する場合がある)を介して第2電極部3と発熱部1とを接触させる。つづいて、導電性接着剤が硬化性樹脂を含む場合は導電性接着剤を硬化させ、硬化性樹脂を含まない場合には例えば圧着し、第2電極部3と発熱部1との接着を強固にする。これにより、面状発熱体10が完成する。   Subsequently, the first electrode portion 2 is covered with the second electrode portion 3. Subsequently, a conductive adhesive paste containing a conductive material is applied to at least one of the second electrode portion 3 and the heat generating portion 1. Subsequently, the second electrode part 3 and the heat generating part 1 are brought into contact with each other via a paste of the applied conductive adhesive 4 (hereinafter sometimes referred to as a conductive paste). Subsequently, when the conductive adhesive contains a curable resin, the conductive adhesive is cured. When the conductive adhesive does not contain a curable resin, for example, pressure bonding is performed to firmly bond the second electrode portion 3 and the heat generating portion 1. To. Thereby, the planar heating element 10 is completed.

硬化工程は、硬化性樹脂の種類に応じて、紫外線などの光照射や加熱処理を行う。簡便性などの点から、熱硬化性樹脂を含む導電性接着剤を用いて、硬化工程として加熱処理を行うことが好ましい。   In the curing step, light irradiation such as ultraviolet rays or heat treatment is performed according to the type of the curable resin. From the viewpoint of simplicity, it is preferable to perform a heat treatment as a curing step using a conductive adhesive containing a thermosetting resin.

導電性ペーストは、導電性接着剤4を構成する導電材料及び接着剤成分を含んでいればよいが、塗工性を向上させ、繊維構造体の繊維間に導電性接着剤を十分に侵入させる点から、溶媒に溶解又は分散された状態のものが好ましい。   The conductive paste only needs to contain a conductive material and an adhesive component constituting the conductive adhesive 4, but it improves the coating property and allows the conductive adhesive to sufficiently penetrate between the fibers of the fiber structure. From the point of view, those dissolved or dispersed in a solvent are preferred.

溶媒は、接着剤成分の種類に応じて選択でき、例えば、アルコール類(エタノール、イソプロパノールなど)、ケトン類(アセトン、メチルエチルケトンなど)、エーテル類(テトラヒドロフランなど)、脂肪族炭化水素類(ヘキサンなど)、脂環式炭化水素類(シクロヘキサンなど)、芳香族炭化水素類(トルエン、キシレンなど)、ハロゲン化炭素類(ジクロロメタンなど)、エステル類(酢酸メチルなど)、水、セロソルブ類(メチルセロソルブ、エチルセロソルブなど)、セロソルブアセテート類(ブチルセロソルブアセテートなど)、スルホキシド類(ジメチルスルホキシドなど)、アミド類(ジメチルホルムアミドなど)、N−メチル−2−ピロリドン(NMP)などが例示できる。これらの溶媒は、単独で又は二種以上組み合わせて使用できる。   Solvents can be selected according to the type of adhesive component. For example, alcohols (ethanol, isopropanol, etc.), ketones (acetone, methyl ethyl ketone, etc.), ethers (tetrahydrofuran, etc.), aliphatic hydrocarbons (hexane, etc.) , Alicyclic hydrocarbons (such as cyclohexane), aromatic hydrocarbons (such as toluene, xylene), halogenated carbons (such as dichloromethane), esters (such as methyl acetate), water, cellosolves (methyl cellosolve, ethyl) Cellosolve etc.), cellosolve acetates (butyl cellosolve acetate etc.), sulfoxides (dimethyl sulfoxide etc.), amides (dimethylformamide etc.), N-methyl-2-pyrrolidone (NMP) etc. can be illustrated. These solvents can be used alone or in combination of two or more.

溶媒の割合は、導電材料100質量部に対して0〜200質量部程度の範囲から選択でき、例えば、5〜100質量部、好ましくは10〜80質量部、さらに好ましくは20〜60質量部程度である。ペーストの固形分濃度は、例えば、20〜90質量%、好ましくは30〜80質量%、さらに好ましくは40〜75質量%(特に45〜70質量%)程度である。溶媒の割合が多すぎると、導電性の高い導電性接着剤の作製が困難となり、少なすぎると、発熱部の繊維構造体の繊維の隙間に十分な量の導電材料及び接着剤成分を侵入させるのが困難となる。すなわち、固形分濃度が高すぎるとペーストの粘度が高すぎるために、導電材料及び接着剤成分が繊維構造体内部(特に、マルチフィラメント糸の繊維間)に侵入し難くなり、低すぎると繊維構造体に対する導電材料及び接着剤成分の担持量の確保が困難となる。   The ratio of the solvent can be selected from the range of about 0 to 200 parts by mass with respect to 100 parts by mass of the conductive material, for example, 5 to 100 parts by mass, preferably 10 to 80 parts by mass, and more preferably about 20 to 60 parts by mass. It is. The solid content concentration of the paste is, for example, about 20 to 90% by mass, preferably about 30 to 80% by mass, and more preferably about 40 to 75% by mass (particularly about 45 to 70% by mass). When the proportion of the solvent is too large, it becomes difficult to produce a conductive adhesive with high conductivity, and when the proportion is too small, a sufficient amount of the conductive material and the adhesive component are allowed to penetrate into the gaps in the fiber structure of the heat generating portion. It becomes difficult. That is, if the solid content concentration is too high, the viscosity of the paste is too high, so that it is difficult for the conductive material and the adhesive component to enter the inside of the fiber structure (particularly between the fibers of the multifilament yarn). It is difficult to ensure the carrying amount of the conductive material and the adhesive component on the body.

導電性ペーストの塗布方法としては、例えば、スクリーン印刷法、ディスペンス塗布法、グラビア印刷法、グラビアオフセット印刷法、オフセット印刷法、インクジェット印刷法などが利用できる。これらの方法のうち、導電性ペーストを繊維構造体内部に侵入させるための厚肉の塗膜に対して適度な圧力を付与できる点から、スクリーン印刷法が好ましい。   As a method for applying the conductive paste, for example, a screen printing method, a dispense coating method, a gravure printing method, a gravure offset printing method, an offset printing method, an ink jet printing method, or the like can be used. Among these methods, the screen printing method is preferable because an appropriate pressure can be applied to the thick coating film for allowing the conductive paste to enter the fiber structure.

導電性ペーストの塗布量は、面状発熱体の厚みなどに応じて選択できるが、例えば、5〜100mg/cm、好ましくは10〜50mg/cm、さらに好ましくは20〜40mg/cm(特に25〜35mg/cm)程度である。塗布量が少なすぎると、十分な発熱特性の安定性が得られない。塗布量が多すぎると、発熱部の屈曲性が低下するとともに、製造コストが高くなる。 The coating amount of the conductive paste can be selected depending on the thickness of the planar heating element, for example, 5 to 100 mg / cm 2, preferably 10 to 50 mg / cm 2, more preferably 20-40 mg / cm 2 ( Particularly, it is about 25 to 35 mg / cm 2 ). If the coating amount is too small, sufficient stability of heat generation characteristics cannot be obtained. When the coating amount is too large, the flexibility of the heat generating portion is lowered and the manufacturing cost is increased.

(実施形態2)
図3は、実施形態2に係る面状発熱体の模式図である。図3(a)は平面図、図3(b)は図3(a)のB−B線断面図である。面状発熱体20は、図1に示す面状発熱体10の電極部における導電性接着剤4を、銀ペーストを用いた導電性接着剤5に置き換えたものである。この面状発熱体20も、面状発熱体10と同様に面状発熱装置として使用することができ、発熱部1における発熱の均一性及び発熱効率が高く、かつ発熱特性が安定したものとなる。
(Embodiment 2)
FIG. 3 is a schematic diagram of a planar heating element according to the second embodiment. 3A is a plan view, and FIG. 3B is a cross-sectional view taken along the line BB in FIG. 3A. The planar heating element 20 is obtained by replacing the conductive adhesive 4 in the electrode portion of the planar heating element 10 shown in FIG. 1 with a conductive adhesive 5 using a silver paste. This planar heating element 20 can also be used as a planar heating device in the same manner as the planar heating element 10, has high uniformity of heat generation and heat generation efficiency in the heating unit 1, and stable heat generation characteristics. .

以下、実施例により、本発明をさらに具体的に説明するが、本発明はこれらの実施例に何ら限定されるものではない。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples.

実施例1、2として、実施形態1にしたがって面状発熱体(試料番号#1、#2)をそれぞれ複数作製した。具体的には、導電性繊維であるカーボンナノチューブ含有ポリエステル系導電繊維(茶久染色製 Qnac、1.2kΩ/cm)からなる糸を経糸とし、非導電性繊維であるポリエステル系導電繊維からなる糸を緯糸として、織物にして発熱部を作製した。つぎに、第1電極部としてステンレス金属糸(日本精線製)、第2電極部として、幅5mmの平編スズめっき銅線(田中電線製)を、それぞれ発熱部に縫い付け、中間製品を製作した。さらに、中間製品の製作日の5日後に、導電性接着剤として、導電性カーボンペースト(導電性材料である東海カーボン製カーボンブラック(#4300)と、接着剤成分であるPVDF(ポリフッ化ビニリデン)と、溶剤であるNMPを混合したもの)を電極部に塗布し、面状発熱体とした。   As Examples 1 and 2, a plurality of planar heating elements (sample numbers # 1 and # 2) were produced according to the first embodiment. Specifically, a yarn made of a polyester-based conductive fiber that is a non-conductive fiber is a warp yarn made of a carbon-based polyester-based conductive fiber (Qnac, 1.2 kΩ / cm manufactured by Chaku dyeing) that is a conductive fiber. A weft was used to fabricate the heat generating part. Next, a stainless metal thread (manufactured by Nippon Seisen) is used as the first electrode part, and a flat knitted tin-plated copper wire (manufactured by Tanaka Electric Wire Co., Ltd.) having a width of 5 mm is sewn to the heat generating part as the second electrode part. Produced. Furthermore, five days after the production date of the intermediate product, conductive carbon paste (carbon black made by Tokai Carbon (# 4300) which is a conductive material and PVDF (polyvinylidene fluoride) which is an adhesive component) is used as a conductive adhesive. And a mixture of NMP as a solvent) was applied to the electrode portion to form a planar heating element.

なお、発熱部は長方形とし、そのサイズは、導電性繊維と平行の方向(経糸の延びる方向):200mm、導電性繊維と直角の方向(緯糸の延びる方向):100mmとした。また、第1電極部、第2電極の長さ:100mm、2つの電極部の間の距離:180mmとした。また、導電性カーボンペーストは、各電極部に幅10mmで塗布した。   The heat generating portion was rectangular, and the size was 200 mm in the direction parallel to the conductive fiber (direction in which the warp extends): 100 mm, and the direction perpendicular to the conductive fiber (in the direction in which the weft extends): 100 mm. Further, the length of the first electrode part and the second electrode: 100 mm, and the distance between the two electrode parts: 180 mm. Further, the conductive carbon paste was applied to each electrode portion with a width of 10 mm.

また、実施例3として、実施形態2にしたがって面状発熱体(試料番号#4)を複数作製した。具体的には、実施例1、2の面状発熱体の製造方法において、導電性カーボンペーストの代わりに銀ペースト(藤倉化成製ドータイト)を用いた。なお、銀ペーストの塗布は、中間製品の製作日の29日後に行った。   As Example 3, a plurality of planar heating elements (sample number # 4) were produced according to the second embodiment. Specifically, in the method for manufacturing the planar heating element of Examples 1 and 2, silver paste (Dotite manufactured by Fujikura Kasei) was used instead of the conductive carbon paste. The silver paste was applied 29 days after the production date of the intermediate product.

比較例1、2として、実施例1、2と同様な製造方法であるが、導電性カーボンペーストを塗布しない、未処理の面状発熱体(試料番号#3、#5)をそれぞれ複数作製した。   As Comparative Examples 1 and 2, the same manufacturing method as in Examples 1 and 2 was used, but a plurality of untreated planar heating elements (sample numbers # 3 and # 5) were prepared without applying the conductive carbon paste. .

それぞれ複数作製した試料番号#1〜#5の面状発熱体からそれぞれ1つを選択し、2つの電極部の間に、12Vの電圧を印加して電流を供給するとともに、汎用の電流計を用いて電流値を測定して面状発熱体の抵抗値を算出した。なお、測定は、面状発熱体の製作日と、製作日から5日後及び29日後の一方または両方で行った。   One is selected from each of the plurality of planar heating elements of sample numbers # 1 to # 5, a current of 12V is applied between the two electrode portions by supplying a current, and a general-purpose ammeter is installed. The resistance value of the sheet heating element was calculated by measuring the current value. In addition, the measurement was performed on the production date of the planar heating element and on one or both of 5 days and 29 days after the production date.

その結果、表1に示すように、作製日の導電性接着剤を塗布していない状態では、抵抗値は240Ω〜280Ωの間であった。しかし、5日後に導電性接着剤を塗布した実施例1、2(試料番号#1、#2)の抵抗値は、85Ωまで低下し、29日後でも88Ωまたは87Ωの安定した低い値を示していた。また、実施例3(試料番号#4)の抵抗値も、29日後に導電性接着剤を塗布前は360Ωであったが、塗布した後は88Ωの低い値となった。   As a result, as shown in Table 1, the resistance value was between 240Ω and 280Ω in a state where the conductive adhesive on the production date was not applied. However, the resistance values of Examples 1 and 2 (Sample Nos. # 1 and # 2) to which the conductive adhesive was applied after 5 days decreased to 85Ω and showed a stable low value of 88Ω or 87Ω even after 29 days. It was. Further, the resistance value of Example 3 (Sample No. # 4) was 360Ω before application of the conductive adhesive after 29 days, but became a low value of 88Ω after application.

一方、比較例1(試料番号#3)の抵抗値は、5日後も260Ωと高いままであり、29日後には460Ωとさらに高くなり、不安定であった。同様に、比較例2(試料番号#5)の抵抗値は、29日後には330Ωと高くなり、不安定であった。   On the other hand, the resistance value of Comparative Example 1 (Sample No. # 3) remained high at 260Ω even after 5 days, and further increased to 460Ω after 29 days, and was unstable. Similarly, the resistance value of Comparative Example 2 (Sample No. # 5) was as unstable as 330Ω after 29 days and was unstable.

このように、実施例の面状発熱体の抵抗値は、比較例の約1/4以下であり、発熱効率がきわめて高いことが期待される。   Thus, the resistance value of the sheet heating element of the example is about 1/4 or less that of the comparative example, and it is expected that the heating efficiency is extremely high.

つぎに、試料番号#1、♯4、#5の面状発熱体からそれぞれ別の1つを選択し、2つの電極部の間に、7V〜19Vの電圧を印加して電流を供給するとともに、汎用の電流計を用いて電流値を測定して面状発熱体の抵抗値を算出した。なお、測定は、面状発熱体の製作日から5日後に行った。さらにサーモグラフィ(フリアーシステムズ社製「FLIR i5」)を用いて、発熱状態を確認した。   Next, another one is selected from the planar heating elements of sample numbers # 1, # 4, and # 5, and a voltage of 7 to 19 V is applied between the two electrode portions to supply current. The resistance value of the planar heating element was calculated by measuring the current value using a general-purpose ammeter. The measurement was performed 5 days after the production date of the planar heating element. Furthermore, the heat generation state was confirmed using thermography ("FLIR i5" manufactured by FLIR Systems).

その結果、図4に電圧−電流特性を、図5に電圧−抵抗特性を示すように、実施例1、3である試料番号#1、#4の面状発熱体では、測定した電圧の範囲にて約90Ωの安定した均一な抵抗値が得られた。一方、比較例2である試料番号#5の面状発熱体では、測定した電圧の範囲にて抵抗値が約145Ω〜約120Ωと高く、かつ、変化した。なお、試料番号#5の抵抗値が図4、5と表1とで大きく異なるのは、比較例の構成では、導電性繊維からなる経糸と第1電極部との接触部の接触状態が安定せず、この接触部に流れる電流の大きさや外部からの応力(接触圧の大小)、温度によって抵抗値が変化するからであると考えられる。   As a result, as shown in FIG. 4 for the voltage-current characteristics and in FIG. 5 for the voltage-resistance characteristics, in the sheet heating elements of sample numbers # 1 and # 4 of Examples 1 and 3, the measured voltage range A stable and uniform resistance value of about 90Ω was obtained. On the other hand, in the planar heating element of Sample No. # 5 which is Comparative Example 2, the resistance value was high and changed from about 145Ω to about 120Ω within the measured voltage range. The resistance value of sample number # 5 is greatly different between FIGS. 4 and 5 and Table 1. In the configuration of the comparative example, the contact state of the contact portion between the warp made of conductive fibers and the first electrode portion is stable. This is probably because the resistance value varies depending on the magnitude of the current flowing through the contact portion, external stress (contact pressure level), and temperature.

また、図6、7は、面状発熱体をサーモグラフィにより測定した面状発熱体の発熱状態を示す図である。なお、印加電圧は12Vの直流電圧である。図6は試料番号♯1、♯5からそれぞれ選んだサンプル(♯1、♯5)を測定したものである。また、図中の24.5℃とは、マーカで示した測定ポイントの温度であり、ほぼ室温を示している。図6に示すように、サンプル♯5では電極部の位置では高温で発熱しているが、その他の位置ではそれよりも低温で発熱しているのに対して、サンプル♯1ではほぼ全面が均一に高温で発熱していることが確認された。   6 and 7 are diagrams showing the heat generation state of the planar heating element as measured by thermography. The applied voltage is a DC voltage of 12V. FIG. 6 shows the measurement of samples (# 1, # 5) selected from the sample numbers # 1, # 5, respectively. Moreover, 24.5 degreeC in a figure is the temperature of the measurement point shown with the marker, and has shown substantially room temperature. As shown in FIG. 6, in sample # 5, heat is generated at a high temperature at the electrode portion, but heat is generated at a lower temperature in other positions, whereas in sample # 1, almost the entire surface is uniform. It was confirmed that heat was generated at a high temperature.

また、図7(a)はサンプル#5の電極部を測定した図であるが、電極部の温度が一番高く、28.3℃であった。一方、図7(b)はサンプル#1の発熱部の中央付近を測定した図であるが、サンプル#1では発熱部の中央部において29.0℃となっていることが確認された。   FIG. 7A shows the measurement of the electrode part of sample # 5. The temperature of the electrode part was the highest, 28.3 ° C. On the other hand, FIG. 7B is a diagram in which the vicinity of the center of the heat generating portion of sample # 1 is measured. In sample # 1, it was confirmed that the temperature was 29.0 ° C. at the center of the heat generating portion.

なお、上記実施形態では、導電性繊維は経糸に含まれているが、導電性繊維は経糸及び緯糸の少なくともいずれか一方に含まれていればよい。また、上記実施形態では、2つの電極部は長方形状の発熱部の各短辺側に設けられているが、各長辺側に設けられていてもよい。また、発熱部の形状も長方形状に限られず、任意の形状としてもよい。また、第1電極部、第2電極部は、発熱部の繊維構造体に対して、縫い付けられていることにより機械的に固定されていてもよいし、ホチキスなどの固定部材で留められることにより機械的に固定されていてもよい。   In the above embodiment, the conductive fiber is included in the warp, but the conductive fiber may be included in at least one of the warp and the weft. Moreover, in the said embodiment, although two electrode parts are provided in each short side of a rectangular-shaped heat generating part, you may provide in each long side. Further, the shape of the heat generating portion is not limited to a rectangular shape, and may be an arbitrary shape. Further, the first electrode portion and the second electrode portion may be mechanically fixed by being sewn to the fiber structure of the heat generating portion, or may be fastened with a fixing member such as a staple. May be fixed mechanically.

また、上記実施形態では、面状発熱体は2つの電極部を備えているが、3以上の複数の電極部を備えていてもよい。また、複数の電極部は、平行に延伸している少なくとも2つの電極部を含んでいてもよいし、互いに非平行に延伸している少なくとも2つの電極部を含んでいてもよい。互いに非平行に延伸している少なくとも2つの電極部を含んでいる場合、2つの電極部の間において、温度分布が所望のパターンになるように発熱部を発熱させることができる。すなわち、2つの電極部間の距離を短くすることでその場所での発熱量を多くでき、距離を長くすることでその場所での発熱量を小さくできる。したがって、2つの電極部間の距離を場所毎に変えることによって、温度分布のパターンを設定することができる。   Moreover, in the said embodiment, although the planar heating element is provided with two electrode parts, you may be provided with the 3 or more some electrode part. Further, the plurality of electrode portions may include at least two electrode portions extending in parallel, or may include at least two electrode portions extending in parallel to each other. When including at least two electrode portions extending non-parallel to each other, the heat generating portion can generate heat so that the temperature distribution becomes a desired pattern between the two electrode portions. That is, shortening the distance between the two electrode portions can increase the amount of heat generated at that location, and increasing the distance can decrease the amount of heat generated at that location. Therefore, the temperature distribution pattern can be set by changing the distance between the two electrode portions for each location.

本発明の面状発熱体および面状発熱装置は、各種の分野、例えば、道路などの屋外設備のための用途(例えば、ロードヒーティング、融雪装置、凍結防止装置など)、農業用途(例えば、園芸用マットなど)、建造物の構成要素としての用途(例えば、結露防止や防曇装置、床暖房、壁暖房など)、内部構成要素としての用途(例えば、電車、自動車などの車輌、航空機などの座席シートなど)、防寒のための身飾品のための用途(例えば、ジャケット、ベスト、ひざ掛けなどの衣料、寝具、靴、カイロ、ホットカーペットなど)、家具や日用品としての用途(例えば、いす、足温器など)などに利用可能である。   The planar heating element and planar heating device of the present invention are used in various fields, for example, outdoor equipment such as roads (for example, road heating, snow melting devices, anti-freezing devices, etc.), agricultural applications (for example, Horticultural mats, etc.), uses as building components (eg, anti-condensation and anti-fogging devices, floor heating, wall heating, etc.), uses as internal components (eg, trains, automobiles, vehicles, airplanes, etc.) Seats, etc.), clothing for cold protection (eg jackets, vests, rugs), bedding, shoes, warmers, hot carpets, etc., furniture and daily use (eg chairs, It can be used for foot warmers.

また、上記実施形態により本発明が限定されるものではない。上述した各構成要素を適宜組み合わせて構成したものも本発明に含まれる。また、さらなる効果や変形例は、当業者によって容易に導き出すことができる。よって、本発明のより広範な態様は、上記の実施形態に限定されるものではなく、様々な変更が可能である。   Further, the present invention is not limited by the above embodiment. What was comprised combining each component mentioned above suitably is also contained in this invention. Further effects and modifications can be easily derived by those skilled in the art. Therefore, the broader aspect of the present invention is not limited to the above-described embodiment, and various modifications can be made.

1 発熱部
1a 経糸
1b 緯糸
1c 部分
2 第1電極部
3 第2電極部
4、5 導電性接着剤
10、20 面状発熱体
100 面状発熱装置
101 電源部
102 コントローラ
DESCRIPTION OF SYMBOLS 1 Heat generating part 1a Warp 1b Weft 1c Part 2 1st electrode part 3 2nd electrode part 4, 5 Conductive adhesive 10, 20 Planar heating element 100 Planar heating apparatus 101 Power supply part 102 Controller

Claims (20)

導電性繊維を含む繊維構造体で形成された発熱部と、前記発熱部の導電性繊維に電流を供給するための電極部と、を備える面状発熱体であって、
前記電極部は、
線状の金属からなり、前記発熱部に縫われ又は該発熱部の表面に接触するように渡され、電流が供給される第1電極部と、
金属からなり、前記第1電極部よりも幅が広く、前記発熱部の表面で長さ方向に延伸し、かつ前記発熱部において前記第1電極部を覆うように設けられた第2電極部と、
導電材料を含有し、前記発熱部において前記第2電極部と略同じ長さで設けられるとともに、少なくとも一部が前記発熱部の繊維構造体と前記第2電極部との間に充填されるように設けられる導電性接着剤と、
を備えることを特徴とする面状発熱体。
A planar heating element comprising: a heating part formed of a fiber structure containing conductive fibers; and an electrode part for supplying current to the conductive fibers of the heating part,
The electrode part is
A first electrode portion made of a linear metal , stitched to the heat generating portion or passed so as to contact the surface of the heat generating portion, and supplied with current;
A second electrode portion made of metal, wider than the first electrode portion , extending in the longitudinal direction on the surface of the heat generating portion, and provided to cover the first electrode portion in the heat generating portion; ,
It contains a conductive material and is provided in the heat generating portion with substantially the same length as the second electrode portion, and at least a portion is filled between the fiber structure of the heat generating portion and the second electrode portion. A conductive adhesive provided on
A planar heating element comprising:
前記導電性接着剤の一部が前記発熱部の繊維構造体に含浸していることを特徴とする請求項1に記載の面状発熱体。   The planar heating element according to claim 1, wherein a part of the conductive adhesive is impregnated in the fiber structure of the heating part. 前記導電性接着剤の一部が前記第1電極部と前記第2電極部との間に充填されていることを特徴とする請求項1又は2に記載の面状発熱体。   The planar heating element according to claim 1 or 2, wherein a part of the conductive adhesive is filled between the first electrode portion and the second electrode portion. 前記繊維構造体は織物であることを特徴とする請求項1〜3のいずれか一つに記載の面状発熱体。   The planar heating element according to any one of claims 1 to 3, wherein the fiber structure is a woven fabric. 前記繊維構造体は、非導電性繊維を含み、前記導電性繊維は経糸及び緯糸の少なくともいずれか一方に含まれていることを特徴とする請求項1〜4のいずれか一つに記載の面状発熱体。   The surface according to any one of claims 1 to 4, wherein the fiber structure includes non-conductive fibers, and the conductive fibers are included in at least one of warp and weft. Heating element. 複数の前記電極部を備え、前記複数の電極部は、前記繊維構造体に含まれる導電性繊維と交差する方向に延伸していることを特徴とする請求項1〜5のいずれか一つに記載の面状発熱体。   A plurality of the electrode portions are provided, and the plurality of electrode portions extend in a direction intersecting with the conductive fibers included in the fiber structure. The planar heating element as described. 前記複数の電極部は互いに平行に延伸している少なくとも2つの電極部を含むことを特徴とする請求項6に記載の面状発熱体。   The planar heating element according to claim 6, wherein the plurality of electrode parts include at least two electrode parts extending in parallel with each other. 前記複数の電極部は互いに非平行に延伸している少なくとも2つの電極部を含むことを特徴とする請求項6に記載の面状発熱体。   The planar heating element according to claim 6, wherein the plurality of electrode portions include at least two electrode portions extending non-parallel to each other. 前記導電性接着剤は熱可塑性樹脂又は硬化性樹脂を含むことを特徴とする請求項1〜8のいずれか一つに記載の面状発熱体。   The planar heating element according to claim 1, wherein the conductive adhesive contains a thermoplastic resin or a curable resin. 前記硬化性樹脂はポリエステル系樹脂であることを特徴とする請求項9に記載の面状発熱体。   The planar heating element according to claim 9, wherein the curable resin is a polyester resin. 前記導電材料は金属粒子を含むことを特徴とする請求項1〜10のいずれか一つに記載の面状発熱体。   The planar heating element according to any one of claims 1 to 10, wherein the conductive material includes metal particles. 前記導電材料は炭素系材料からなる粒子を含むことを特徴とする請求項1〜11のいずれか一つに記載の面状発熱体。   The planar heating element according to any one of claims 1 to 11, wherein the conductive material includes particles made of a carbon-based material. 前記第2電極部が前記繊維構造体に機械的に固定されていることを特徴とする請求項1〜12のいずれか一つに記載の面状発熱体。   The planar heating element according to any one of claims 1 to 12, wherein the second electrode portion is mechanically fixed to the fiber structure. 前記導電性繊維は炭素系導電材料を含むことを特徴とする請求項1〜13のいずれか一つに記載の面状発熱体。   The planar heating element according to claim 1, wherein the conductive fiber includes a carbon-based conductive material. 前記炭素系導電材料がカーボンナノチューブであることを特徴とする請求項14に記載の面状発熱体。   The planar heating element according to claim 14, wherein the carbon-based conductive material is a carbon nanotube. 請求項1〜15のいずれか一つに記載の面状発熱体と、
前記面状発熱体の前記電極部に電流を供給する電源部と、
を備えることを特徴とする面状発熱装置。
A planar heating element according to any one of claims 1 to 15,
A power supply unit for supplying current to the electrode unit of the planar heating element;
A sheet heating device comprising:
導電性繊維を含む繊維構造体で形成された発熱部を備える面状発熱体の前記導電性繊維に電流を供給するための面状発熱体用電極であって、
線状の金属からなり、前記発熱部に縫われ又は該発熱部の表面に接触するように渡され、電流が供給される第1電極部と、
金属からなり、前記第1電極部よりも幅が広く、前記発熱部の表面で長さ方向に延伸し、かつ前記発熱部において前記第1電極部を覆う第2電極部と、
導電材料を含有し、前記発熱部において前記第2電極部と略同じ長さで設けられるとともに、少なくとも一部が前記発熱部の繊維構造体と前記第2電極部との間に充填されるように設けられる導電性接着剤と、
を備えることを特徴とする面状発熱体用電極。
An electrode for a planar heating element for supplying an electric current to the conductive fiber of a planar heating element comprising a heating part formed of a fiber structure containing conductive fibers,
A first electrode portion made of a linear metal , stitched to the heat generating portion or passed so as to contact the surface of the heat generating portion, and supplied with current;
A second electrode part made of metal, wider than the first electrode part , extending in the longitudinal direction on the surface of the heat generating part, and covering the first electrode part in the heat generating part ;
It contains a conductive material and is provided in the heat generating portion with substantially the same length as the second electrode portion, and at least a portion is filled between the fiber structure of the heat generating portion and the second electrode portion. A conductive adhesive provided on
An electrode for a planar heating element, comprising:
面状発熱体の製造方法であって、
導電性繊維を含む繊維構造体で形成された発熱部に縫い付けた又は該発熱部の表面に接触するように渡した線状の金属からなる第1電極部を、前記発熱部において、金属からなり、前記第1電極部よりも幅が広く、所定の長さを有する第2電極部で覆う工程と、
導電材料を含有する導電性接着剤のペーストを、前記第2電極部及び前記発熱部の少なくとも一方に、前記第2電極部と略同じ長さで塗布する工程と、
前記塗布した導電性接着剤のペーストを介して前記第2電極部と前記発熱部とを接触させる工程と、
を含むことを特徴とする面状発熱体の製造方法。
A method of manufacturing a planar heating element,
A first electrode portion made of a linear metal that is sewed to a heat generating portion formed of a fiber structure including conductive fibers or is brought into contact with the surface of the heat generating portion is formed from a metal in the heat generating portion. And a step of covering with a second electrode part having a predetermined width that is wider than the first electrode part ,
A paste of electrically conductive adhesive containing a conductive material, at least one of the second electrode portion and the heat generating portion, and the step of applying substantially the same length as the second electrode portion,
Contacting the second electrode part and the heat generating part through the applied conductive adhesive paste;
The manufacturing method of the planar heating element characterized by including.
前記塗布した導電性接着剤のペーストを硬化する工程をさらに含むことを特徴とする請
求項18に記載の面状発熱体の製造方法。
The method of manufacturing a planar heating element according to claim 18, further comprising a step of curing the applied conductive adhesive paste.
前記塗布する工程において、スクリーン印刷で前記導電性接着剤のペーストを塗布することを特徴とする請求項18又は19に記載の面状発熱体の製造方法。   The method for manufacturing a planar heating element according to claim 18 or 19, wherein in the applying step, the conductive adhesive paste is applied by screen printing.
JP2016199430A 2016-10-07 2016-10-07 Planar heating element, planar heating device, planar heating element electrode, and manufacturing method of planar heating element Expired - Fee Related JP6174220B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016199430A JP6174220B1 (en) 2016-10-07 2016-10-07 Planar heating element, planar heating device, planar heating element electrode, and manufacturing method of planar heating element
PCT/JP2017/036553 WO2018066708A1 (en) 2016-10-07 2017-10-06 Sheet-like heating element, sheet-like heating device, electrode for sheet-like heating elements, and method for producing sheet-like heating element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016199430A JP6174220B1 (en) 2016-10-07 2016-10-07 Planar heating element, planar heating device, planar heating element electrode, and manufacturing method of planar heating element

Publications (2)

Publication Number Publication Date
JP6174220B1 true JP6174220B1 (en) 2017-08-02
JP2018060760A JP2018060760A (en) 2018-04-12

Family

ID=59505267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016199430A Expired - Fee Related JP6174220B1 (en) 2016-10-07 2016-10-07 Planar heating element, planar heating device, planar heating element electrode, and manufacturing method of planar heating element

Country Status (2)

Country Link
JP (1) JP6174220B1 (en)
WO (1) WO2018066708A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190088319A (en) * 2018-01-18 2019-07-26 한국과학기술연구원 Carbon fiber facric and manufacturing method thereof
CN111601945A (en) * 2018-01-22 2020-08-28 法国圣戈班玻璃厂 Insulating glazing, window and method of manufacture

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111372335A (en) * 2018-12-26 2020-07-03 弈禔股份有限公司 Conductive heat-generating material and module using the same
CN116250375A (en) * 2020-09-29 2023-06-09 琳得科株式会社 Conductive structure, method for producing conductive structure, article comprising conductive structure, and method for producing article comprising conductive structure
CN115305614A (en) * 2021-05-07 2022-11-08 浙江南烯科技有限公司 Heating fabric and preparation process and application thereof

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5038832A (en) * 1973-08-11 1975-04-10
JPS5540994B2 (en) * 1976-07-13 1980-10-21
JPS604396Y2 (en) * 1977-02-23 1985-02-07 日東電工株式会社 hot plate
JPS60175486U (en) * 1984-04-28 1985-11-20 三菱樹脂株式会社 Plastic sheet heating element
JPH0294385A (en) * 1988-09-30 1990-04-05 Idemitsu Kosan Co Ltd Planar heat emitting substance
JPH074680A (en) * 1993-06-15 1995-01-10 Kiyoteru Yachimoto Heating tatami mat
JPH0795467B2 (en) * 1986-11-28 1995-10-11 日本電熱株式会社 Method for manufacturing sheet heating element
JP2000283482A (en) * 1999-03-31 2000-10-13 Figla Co Ltd Laminate having heating function and structure for taking out electrode part
JP2000346385A (en) * 1999-06-10 2000-12-15 Nippon Mitsubishi Oil Corp Lead wire connecting structure of planar heater for floor heating
JP2001525104A (en) * 1996-08-29 2001-12-04 グレヴィック,アーサー Heating element and its manufacturing method
JP2007134083A (en) * 2005-11-08 2007-05-31 Swcc Showa Device Technology Co Ltd Heater device and its manufacturing method
JP2010020989A (en) * 2008-07-10 2010-01-28 Panasonic Corp Polymer heating element
JP2014203612A (en) * 2013-04-03 2014-10-27 ミツマ技研株式会社 Thin-film heater and manufacturing method thereof
JP2015156343A (en) * 2014-02-21 2015-08-27 株式会社クラレ planar heating element
WO2016017765A1 (en) * 2014-07-31 2016-02-04 バンドー化学株式会社 Elastomer heater

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002015838A (en) * 2000-06-30 2002-01-18 K-Tech Devices Corp Resistance-heating element and its manufacturing method
WO2008117645A1 (en) * 2007-03-13 2008-10-02 Jsr Corporation Sheet-like probe and method for manufacturing the same
JP5512983B2 (en) * 2009-02-17 2014-06-04 国立大学法人北海道大学 Planar heating element
US9204496B2 (en) * 2010-11-08 2015-12-01 Panasonic Intellectual Property Management Co., Ltd. Planar heating element and manufacturing method for same
JP2013191551A (en) * 2012-02-14 2013-09-26 Kuraray Living Kk Planar heating element, manufacturing method therefor, and electrode for planar heating element

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5038832A (en) * 1973-08-11 1975-04-10
JPS5540994B2 (en) * 1976-07-13 1980-10-21
JPS604396Y2 (en) * 1977-02-23 1985-02-07 日東電工株式会社 hot plate
JPS60175486U (en) * 1984-04-28 1985-11-20 三菱樹脂株式会社 Plastic sheet heating element
JPH0795467B2 (en) * 1986-11-28 1995-10-11 日本電熱株式会社 Method for manufacturing sheet heating element
JPH0294385A (en) * 1988-09-30 1990-04-05 Idemitsu Kosan Co Ltd Planar heat emitting substance
JPH074680A (en) * 1993-06-15 1995-01-10 Kiyoteru Yachimoto Heating tatami mat
JP2001525104A (en) * 1996-08-29 2001-12-04 グレヴィック,アーサー Heating element and its manufacturing method
JP2000283482A (en) * 1999-03-31 2000-10-13 Figla Co Ltd Laminate having heating function and structure for taking out electrode part
JP2000346385A (en) * 1999-06-10 2000-12-15 Nippon Mitsubishi Oil Corp Lead wire connecting structure of planar heater for floor heating
JP2007134083A (en) * 2005-11-08 2007-05-31 Swcc Showa Device Technology Co Ltd Heater device and its manufacturing method
JP2010020989A (en) * 2008-07-10 2010-01-28 Panasonic Corp Polymer heating element
JP2014203612A (en) * 2013-04-03 2014-10-27 ミツマ技研株式会社 Thin-film heater and manufacturing method thereof
JP2015156343A (en) * 2014-02-21 2015-08-27 株式会社クラレ planar heating element
WO2016017765A1 (en) * 2014-07-31 2016-02-04 バンドー化学株式会社 Elastomer heater

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190088319A (en) * 2018-01-18 2019-07-26 한국과학기술연구원 Carbon fiber facric and manufacturing method thereof
KR102029179B1 (en) 2018-01-18 2019-11-08 한국과학기술연구원 Carbon fiber facric and manufacturing method thereof
CN111601945A (en) * 2018-01-22 2020-08-28 法国圣戈班玻璃厂 Insulating glazing, window and method of manufacture
JP2021510785A (en) * 2018-01-22 2021-04-30 サン−ゴバン グラス フランス Insulation glazing, windows, and manufacturing methods
US11346149B2 (en) 2018-01-22 2022-05-31 Saint-Gobain Glass France Insulating glazing, window and production method
JP7085005B2 (en) 2018-01-22 2022-06-15 サン-ゴバン グラス フランス Insulation glazing, windows, and manufacturing methods

Also Published As

Publication number Publication date
JP2018060760A (en) 2018-04-12
WO2018066708A1 (en) 2018-04-12

Similar Documents

Publication Publication Date Title
JP6174220B1 (en) Planar heating element, planar heating device, planar heating element electrode, and manufacturing method of planar heating element
JP2013191551A (en) Planar heating element, manufacturing method therefor, and electrode for planar heating element
US9237606B2 (en) Carbon nanotube sheet heater
US20100206863A1 (en) Electrically conductive, flexible web material
DE202011102425U1 (en) Electrical line
JP5752821B1 (en) Planar heating element
DE102011114949A1 (en) Electrical conductor
KR20050010948A (en) Flexible ptc heating element and method of manufacturing the heating element
DE4447407C2 (en) Flexible surface heating element and method for producing a flexible surface heating element
DE102011086448A1 (en) Method for producing a heating element
JP6723034B2 (en) Heating unit
DE102013226911A1 (en) Electrically heated surface element
US20130264332A1 (en) Conductive elastomeric heater with expandable core
JP5887451B1 (en) Planar heating element
KR20130122327A (en) Manufacturing method of calorific pad and thereby heating seat
KR102044197B1 (en) Heating element for seat
KR20110121670A (en) Carbon nano tube heating element
JP2007224207A (en) Electroconductive composition, electroconductive coating material, electroconductive fiber material, method for producing electroconductive fiber material, and flat heater
JP2019079714A (en) Planar heat generating cloth and manufacturing method thereof
JP2022085740A (en) Planar heating element
KR20190002113U (en) Electrode structure of metal nanowire coated fabric heater
JP2015026422A (en) Conductive cloth
JP2014096240A (en) Cloth for planar heating element, planar heating element and manufacturing method thereof
DE202011106363U1 (en) Electrical conductor
DE202016106014U1 (en) Flat structures, in particular textile fabrics

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170321

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170502

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20170511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170705

R150 Certificate of patent or registration of utility model

Ref document number: 6174220

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees