WO2016017166A1 - モータ - Google Patents

モータ Download PDF

Info

Publication number
WO2016017166A1
WO2016017166A1 PCT/JP2015/003811 JP2015003811W WO2016017166A1 WO 2016017166 A1 WO2016017166 A1 WO 2016017166A1 JP 2015003811 W JP2015003811 W JP 2015003811W WO 2016017166 A1 WO2016017166 A1 WO 2016017166A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
motor
rotor
magnet
circuit unit
Prior art date
Application number
PCT/JP2015/003811
Other languages
English (en)
French (fr)
Inventor
雄一郎 定永
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2016017166A1 publication Critical patent/WO2016017166A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/06Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices
    • H02K29/08Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices using magnetic effect devices, e.g. Hall-plates, magneto-resistors

Definitions

  • the present invention relates to a motor including a magnetic detection element for detecting the position of the rotor, and more particularly to a structure for detecting the rotor position of the motor.
  • ⁇ Brushless motors need to know the position of the rotor in order to smoothly control the rotation of the motor. For this reason, conventionally, a main magnet for field and a sensor magnet for rotor position detection are held on the motor output shaft, and a magnetic detection element as a magnetic detection means is arranged on the circuit board so that the rotor position is determined.
  • the structure to be detected is generally known.
  • FIG 4, 5 and 6 are cross-sectional views showing a configuration example of a conventional brushless motor having such a structure for detecting the rotor position.
  • the conventional brushless motor shown in FIG. 4 has a magnetic circuit unit 80 including a stator 84 and a rotor 85, and an electronic circuit unit 90 including an electronic circuit and components for storing the electronic circuit. And the electronic circuit unit 90 are provided with partition walls 73 that separate the respective spaces.
  • the sensor magnet 86 for detecting the position of the rotor 85 is opposed to the magnetic detection element 95 as magnetic detection means arranged on the circuit board 92 in the electronic circuit section 90 with the partition wall 73 interposed therebetween.
  • the rotor position detection structure is arranged as described above.
  • the conventional brushless motor shown in FIG. 5 is provided with a through hole 73h for passing the motor rotation shaft 85a in the partition wall 73, and for detecting the position of the rotor 85 at the tip of the rotation shaft 15a passing through the through hole 73h.
  • a sensor magnet 86 is held.
  • the brushless motor has a rotor position detection structure in which the sensor magnet 86 is arranged to face the magnetic detection element 95 as magnetic detection means arranged on the circuit board 92 in the electronic circuit unit 90. ing.
  • the brushless motor disclosed in Patent Document 1 shown in FIG. 6 is a brushless motor having a configuration in which the magnetic circuit unit 80 and the electronic circuit unit 90 exist in the same space, and a partition wall is eliminated.
  • the brushless motor one end face of the field magnet main magnet 85b of the rotor 85 and the magnetic detection element 95 as magnetic detection means arranged on the circuit board 92 are arranged to face each other. A rotor position detection structure is described.
  • the electronic component group in motors used in high temperature environments such as in-vehicle applications, it is indispensable to protect an electronic component group including a magnetic detection element mounted on a circuit board from the influence of heat.
  • the electronic component group in a motor used in the vicinity of a car engine room (environment with an ambient temperature of 90 ° C. or more), the electronic component group may be arranged to receive as little heat as possible from heat generated from a motor magnetic circuit unit such as a coil. It becomes important. That is, in the conventional brushless motor having the above-described structure, it is important to protect the electronic component group including the magnetic detection element 95 mounted on the circuit board 92 from the influence of heat generated in the magnetic circuit unit 80.
  • the magnetic detection element 95 disposed on the circuit board 92 detects the rotor magnetic field generated from the sensor magnet 86 and outputs a voltage corresponding to the strength, the relative position accuracy with the rotor magnetic pole is important. It becomes.
  • the partition wall thickness is increased in the case of the conventional brushless motor structure shown in FIG. Therefore, it is necessary to prevent heat conduction to the electronic circuit unit 90.
  • the sensor magnet 86 and the rotor 85 in the assembly process cannot be assembled at the same time. For this reason, the magnetizing process for magnetizing the main magnet 85b for the field of the rotor 85 and the sensor magnet 86 must be performed separately, and the magnetic pole position accuracy may be deteriorated.
  • the magnetic detection element 95 such as a Hall element has a large change in characteristics due to heat, and thus there is a concern that the position accuracy may be deteriorated, and the magnetic detection element 95 itself is damaged due to damage and causes malfunction due to malfunction. It was a factor.
  • a motor includes a magnetic circuit unit having a stator in which a coil is wound around a stator core, a rotor magnet disposed so as to face the stator core, and a rotor that holds a position detection sensor magnet around a rotation axis;
  • the electronic circuit part which has the circuit board which mounted the circuit component containing a detection element, and the partition which is arrange
  • the magnetic detection element disposed on the circuit board is disposed opposite to the sensor magnet with the partition wall interposed therebetween, and the auxiliary is made of a magnetic material disposed opposite to the sensor magnet with the partition wall and the magnetic detection element interposed therebetween. It has a sensor yoke.
  • the auxiliary sensor yoke is fixedly supported on a rotating shaft that penetrates the partition wall.
  • the bulkhead prevents the electronic circuit unit from receiving heat due to heat generated in the magnetic circuit unit, so that the electronic component group including the magnetic detection element mounted on the circuit board is not easily affected by heat, and the reliability of the electronic circuit unit Can be improved.
  • FIG. 1 is an external perspective view of a motor according to Embodiment 1 of the present invention.
  • FIG. 2 is a cross-sectional view of the motor according to the first embodiment of the present invention.
  • FIG. 3A is a cross-sectional enlarged view of a magnetic flux linkage part according to Embodiment 1 of the present invention.
  • FIG. 3B is a cross-sectional enlarged view of a motor magnetic flux linkage part of the first conventional example for comparison with FIG. 3A.
  • FIG. 4 is a cross-sectional view showing an example of a conventional brushless motor.
  • FIG. 5 is a sectional view showing another example of a conventional brushless motor.
  • FIG. 6 is a sectional view showing still another example of a conventional brushless motor.
  • a motor used in the vicinity of a car engine room is used, for example, in an electric oil pump that supplies hydraulic oil or lubricating oil to a hydraulic control device of an automatic transmission.
  • a brushless motor for an electric oil pump used in a vehicle will be described as an example of a motor.
  • FIG. 1 is a perspective view showing an appearance of a motor 100 according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing a side surface of motor 100 in the embodiment of the present invention.
  • the motor 100 which is a brushless motor includes a bracket 23, a motor frame 11 disposed on one side of the bracket 23, and a bottom plate 21 disposed on the other side of the bracket 23 as shown in FIGS.
  • the motor frame 11 houses a stator 14 having a coil and a rotor 15 having a permanent magnet and rotating around a rotation axis.
  • the magnetic circuit unit 10 is configured.
  • a rotating shaft 15 a protrudes from the top surface of the motor frame 11 as an output shaft through an oil seal 12.
  • the rotating shaft 15a rotates to function as a motor.
  • a circuit board 22 on which electronic components described below are mounted is accommodated in the bracket 23, and the electronic circuit unit 20 is configured by these electronic components and the like.
  • the bracket 23 has a connector portion 24 for supplying power and signals to the circuit board 22.
  • fever from an electronic component is arrange
  • the motor frame 11 is formed in a substantially cylindrical shape by processing an iron plate, having one side as a top surface, an opening that is an opening on the bottom side that is the other side, and a space inside. And the flange 11f which spreads from an opening part to an outer peripheral side is provided for the assembly
  • the motor frame 11 and the resin bracket 23 are fitted and fixed by means such as press fitting or screw tightening.
  • a bearing 13a and an oil seal 12 are held on the output shaft side of the motor frame 11 from which the rotating shaft 15a protrudes.
  • a stator 14 is press-fitted and fixed to the inner diameter portion of the motor frame 11, and a rotor 15 is rotatably included through a gap.
  • the stator 14 includes a stator core 14a, an insulator 14b, and a coil 14c.
  • the stator core 14a is formed by laminating a plurality of steel plates, for example, and has a plurality of salient poles projecting to the inner peripheral side.
  • a coil 14c is wound around each salient pole via an insulator 14b formed of an insulating resin or the like.
  • the coil 14c being wound is a three-phase winding, and various winding patterns exist depending on the number of poles of a rotor magnet 15b described later.
  • the rotor 15 includes a cylindrical rotor magnet 15b, a substantially cup-shaped rotor frame 15c, and a rotating shaft 15a penetrating the inner peripheral side of the rotor frame 15c.
  • the rotor magnet 15b is made of a permanent magnet, and is bonded and fixed to the rotor frame 15c.
  • the rotor magnet 15b has magnetic poles in which N poles and S poles are alternately arranged.
  • the rotor magnet 15b is magnetized to the number of poles such as 8 poles and 10 poles.
  • the rotor frame 15c is formed in a substantially cup shape by processing an iron plate, and is configured by arranging the two rotor frames 15c in opposite directions in the axial direction so as to face each other.
  • the rotor frame 15c is fixed by press-fitting the rotary shaft 15a into the inner diameter hole.
  • the rotor frame 15c also serves as a back yoke of the rotor magnet 15b and constitutes a part of the magnetic path.
  • the rotating shaft 15a is made of metal such as iron, and is rotatably supported by a bearing 13a on the output side and a bearing 13b on the opposite output side. And the rotating shaft 15a has a role which transmits the output which the motor 100 rotates to the other party apparatus, for example, an oil pump.
  • the output-side tip of the rotary shaft 15a is processed into a D-cut (processing to make a cylinder D-shaped) or a two-sided width (processing a cylinder into two parallel surfaces) for connection to a counterpart device. Yes.
  • a sensor magnet holder 17 made of a substantially disk-shaped metal is used for press-fitting or the like on the opposite output side of the rotary shaft 15 a in order to position and hold the sensor magnet 16. It is fixed using.
  • a sensor magnet 16 is bonded and fixed to the sensor magnet holder 17.
  • the sensor magnet 16 is a permanent magnet that is magnetized and magnetized so as to have the same magnetic pole pattern arrangement as that of the rotor magnet 15b.
  • the rotational position of the rotor 15 is detected by detecting the magnetism of the sensor magnet 16 using a magnetic detection element.
  • Such a sensor magnet holder 17 also rotates together with the rotor 15 about the rotation shaft 15a.
  • the rotor magnet 16 rotates so as to move in the circumferential direction while facing the surface of the bracket 23 on the magnetic circuit unit 10 side at a constant interval.
  • the rotor magnet may be used as a sensor magnet for detecting the position of the rotor 15, or the rotor magnet and the sensor magnet may be integrally formed.
  • the bottom plate 21 is made of aluminum die casting, and has continuous substantially triangular radiating fins for radiating heat generated by the electronic component 22a on the circuit board 22.
  • the bracket 23 is made of a thermoplastic resin having electrical insulation. More specifically, the resin bracket 23 is made of an electrically insulating thermoplastic resin made of polyphenylene sulfide resin (hereinafter referred to as PPS resin). And the bracket 23 of this Embodiment is formed by insert molding in order to enclose and integrate the various components mentioned later.
  • PPS resin polyphenylene sulfide resin
  • bracket 23 By creating the bracket 23 using PPS resin, thin wall molding is possible and the design freedom of the shape is improved. Furthermore, by using PPS resin, there is little sinking even if various parts are included, and dimensional stability can be ensured, and the moldability is excellent. In addition, high productivity due to short tact can be ensured, and the cost is excellent. Furthermore, it is excellent in heat resistance.
  • the shape of the bracket 23 is generally a structure like a box that is thin in the axial direction, with the top side closed, an opening on the bottom side, and a space inside.
  • the top side of the bracket 23 is closed by a flat plate portion 23a that spreads in a flat plate shape, and the magnetic circuit portion 10 side projects from the flat plate portion 23a to the magnetic circuit portion 10 side so as to protrude from the motor frame. 11, a motor frame receiving portion 23b for receiving the bearing 11 and a bearing receiving portion 23c for receiving the bearing 13b are formed.
  • the bottom plate 21 and the bracket 23 made of PPS resin are fixed by means such as screw tightening. And the circuit board 22 is accommodated in the space in the bracket 23 closed so that the bottom plate 21 may cover.
  • the circuit board 22 has a configuration in which general electronic parts such as chip parts such as ICs, microcomputers, resistors, and capacitors are mounted on the board 22b. These electronic components constitute a drive circuit for energizing and driving the coil 14 c of the stator 14. Further, as shown in FIG. 2, a Hall element 25 is mounted on the circuit board 22 as a magnetic detection means so as to face the sensor magnet 16 with the bracket 23 interposed therebetween. The Hall element 25 is arranged on the circuit board 22 in this way, and detects the magnetic poles of the sensor magnet 16 magnetized in correspondence with the magnetic poles of the rotor magnet 15b.
  • bracket 23 that houses the circuit board 22 and structurally separates the magnetic circuit unit 10 and the electronic circuit unit 20 will be described.
  • bracket 23 made of PPS resin formed in this way an inlay having a fitting shape for positioning is provided on the magnetic circuit portion 10 side in order to fit and fix the motor frame 11. The coaxial with the part 10 is ensured.
  • the bracket 23 has a metal bearing holder 18 integrated with the bearing receiving portion 23c on the magnetic circuit portion 10 side by insert molding in order to insert the bearing 13b.
  • the bracket 23 holds and fixes the bearing 13b by the bearing holder 18 formed in this way.
  • the bearing 13b and the bearing holder 18 are made of the same type of iron-based metal, there is no relative change in dimensions due to the difference in the coefficient of thermal expansion, so that the creep phenomenon can be prevented.
  • a wave washer 19 for preloading the rotor 15 is inserted between the bearing 13 b and the bearing holder 18.
  • the electronic circuit unit 20 side of the bracket 23 made of PPS resin also serves as a circuit holder for mechanically holding and fixing the circuit board 22, and the circuit board 22 is fixed by means such as welding or screw tightening.
  • a 3-phase bus bar for connecting a 3-phase lead wire from the coil 14c and connecting to the circuit board 22, a power supply terminal, and a signal terminal are made of PPS resin while maintaining electrical insulation. It is arranged on the bracket 23.
  • the bracket 23 of the present embodiment is insert-molded including these bus bars and power supply terminals.
  • nuts for mechanically connecting and fixing the motor frame 11 and the bottom plate 21 are also enclosed in a bracket 23 made of PPS resin and insert-molded.
  • a bracket 23 made of PPS resin and insert-molded By encapsulating these metal terminals and coupling members in a PPS resin bracket 23 and insert molding them, the number of parts and the number of assembly steps can be reduced.
  • the power supply terminal and the signal terminal are integrally formed with the connector portion 24 and the bracket 23 made of PPS resin so that electrical connection to the outside can be easily performed, thereby forming a direct connector.
  • a direct connector it is possible to prevent disconnection due to bending of the lead wire for connection to the outside and deterioration of the sealing performance inside the motor, and it is possible to provide a highly reliable connection portion.
  • the bracket 23 is formed of a resin having an electrically insulating characteristic, thereby preventing a short circuit between the magnetic circuit unit 10 and the electronic circuit unit 20. Moreover, since the magnetic circuit part 10 is provided with the coil 14c, the emitted-heat amount from these coils 14c is large. In the present embodiment, in order to protect the circuit components of the electronic circuit unit 20 from such heat of the magnetic circuit unit 10, the space between the magnetic circuit unit 10 and the electronic circuit unit 20 is isolated between each other. A bracket 23 is arranged. That is, in the present embodiment, by disposing the bracket 23 serving as a partition wall between the magnetic circuit unit 10 and the electronic circuit unit 20, heat is transferred from the coil 14 c of the stator 14 to the electronic component of the circuit board 22. Is suppressed.
  • an auxiliary sensor yoke 31 is further arranged on the electronic circuit unit 20 side of the bracket 23 as shown in FIG.
  • the auxiliary sensor yoke 31 is made of a magnetic material such as a substantially disk-shaped iron plate, for example.
  • the auxiliary sensor yoke 31 is disposed to face the sensor magnet 16 with the bracket 23 and the hall element 25 mounted on the circuit board 22 interposed therebetween. That is, in order to arrange such an auxiliary sensor yoke 31, the rotating shaft 15a extends through the bracket 23 and the through hole formed in the circuit board 22 and extends to the electronic circuit unit 20 side.
  • the auxiliary sensor yoke 31 is fixed to the tip of the rotating shaft 15a on the side opposite to the output shaft of the electronic circuit unit 20 by using a fixing means such as a push nut 32.
  • FIG. 3A is an enlarged cross-sectional view of the magnetic flux interlinkage according to the embodiment of the present invention, and shows a cross-sectional state in which the Hall element 25 is sandwiched between the sensor magnet 16 and the auxiliary sensor yoke 31.
  • FIG. 3B is an enlarged cross-sectional view of the magnetic flux linkage portion of the conventional motor for comparison with FIG. 3A, and shows a cross-sectional state when the auxiliary sensor yoke 31 is not disposed.
  • the magnetic flux 30 generated from the sensor magnet 16 does not sufficiently interlink with the Hall element 25 as the Hall element 25 moves away from the sensor magnet 16.
  • the magnetic flux 30 generated from the sensor magnet 16 closes the magnetic path via the auxiliary sensor yoke 31. It will be. That is, the magnetic flux 30 that connects the sensor magnet 16 and the auxiliary sensor yoke 31 is generated. For this reason, with the configuration shown in FIG. 3A, even if the Hall element 25 moves away from the sensor magnet 16, the magnetic flux 30 generated from the sensor magnet 16 is sufficiently linked to the Hall element 25. The detection accuracy can be maintained. Further, since such a magnetic path by the auxiliary sensor yoke 31 is not affected by the magnetic pole position of the rotor magnet 15b, it is possible to ensure good magnetic pole accuracy and thereby the rotational position accuracy of the motor.
  • the bracket 23 serving as a partition wall is used to prevent heat generated in the magnetic circuit unit 10 from being conducted to the electronic circuit unit 20. It is necessary to increase the thickness dimension.
  • the present embodiment is configured to include the auxiliary sensor yoke 31 as described above. For this reason, since the magnetic flux 30 generated from the sensor magnet 16 closes the magnetic path via the auxiliary sensor yoke 31 as described above, the magnetic flux 30 can be sufficiently linked to the Hall element 25 as the magnetic detection means. Become.
  • the rotor position detection structure of the motor according to the present invention can improve the detection accuracy, it can be applied not only to an in-vehicle motor but also to an industrial motor, a home appliance motor, and the like. . In particular, it is useful in the motor field where high reliability is required in a high temperature environment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Brushless Motors (AREA)

Abstract

本発明のモータは、ステータコアにコイルを巻回したステータと、ステータコアに対向して配置されたロータマグネットおよび位置検出用のセンサマグネットを回転軸を中心に保持したロータとを有する磁気回路部を備える。さらに、本モータは、磁気検出素子を含む回路部品を実装した回路基板を有する電子回路部と、磁気回路部と電子回路部との間に配置されて各々の空間を隔てる隔壁とを備える。本モータは、隔壁および磁気検出素子を挟んでセンサマグネットに対向して配置する補助センサヨークを有し、補助センサヨークが、モータの回転軸に固定支持されている。

Description

モータ
 本発明は、ロータの位置を検出するための磁気検出素子を備えたモータに関し、特に、そのモータのロータ位置検出の構造に関する。
 近年、車の電動化が進んで来ており、車両に搭載される電動モータの数が年々増加傾向にある。また、それに伴って各モータに求められる制御機能も高度化してきており、車載用ブラシレスモータの用途が急速に拡大している。
 ブラシレスモータは、モータの回転を滑らかに制御するためにロータの位置を知る必要が有る。このため、従来、モータ出力軸上に界磁用のメインマグネットと、ロータ位置検出用のセンサマグネットとを保持し、磁気検出手段である磁気検出素子を回路基板上に配置して、ロータ位置を検出する構造が一般的に知られている。
 図4、図5および図6は、このようなロータ位置を検出する構造を備えた従来のブラシレスモータの構成例を示す断面図である。
 まず、図4に示す従来のブラシレスモータは、ステータ84とロータ85とを含む磁気回路部80と、電子回路やその電子回路を格納する部品を含む電子回路部90とを持ち、磁気回路部80と電子回路部90との間に各々の空間を隔てる隔壁73を設けている。そして、このブラシレスモータは、ロータ85の位置検出用のセンサマグネット86が、隔壁73を挟んで、電子回路部90内の回路基板92上に配置された磁気検出手段である磁気検出素子95と対向して配置されるようなロータ位置検出の構造となっている。
 また、図5に示す従来のブラシレスモータは、隔壁73にモータの回転軸85aを通すための貫通穴73hを設け、この貫通穴73hを貫通した回転軸15aの先端にロータ85の位置検出用のセンサマグネット86を保持している。そして、このブラシレスモータは、センサマグネット86が電子回路部90内の回路基板92上に配置された磁気検出手段である磁気検出素子95と対向して配置されるようなロータ位置検出の構造となっている。
 また、図6に示す特許文献1に開示されたブラシレスモータは、磁気回路部80と電子回路部90とが同一の空間に存在し、隔壁を廃した構成のブラシレスモータとなっている。そして、このブラシレスモータは、ロータ85の界磁用のメインマグネット85bの一方の端面と、回路基板92上に配置された磁気検出手段である磁気検出素子95とが対向して配置されるようなロータ位置検出の構造が記載されている。
 ところで、車載用途など高温環境下で使用されるモータでは、回路基板に実装されている磁気検出素子を含む電子部品群を熱の影響から保護することが必須となっている。特に車のエンジンルーム周辺(周辺温度90℃以上の環境)で使用されるモータでは、コイルなどのモータ磁気回路部から発熱する熱に対し、該電子部品群がなるべく受熱しない様に配置することが重要となる。すなわち、上述した構造の従来のブラシレスモータでは、磁気回路部80で発熱する熱の影響から、回路基板92に実装されている磁気検出素子95を含む電子部品群を保護することが重要である。
 そして、回路基板92上に配置した磁気検出素子95は、センサマグネット86から発生する回転子磁界を検出し、その強さに応じた電圧を出力するため、回転子磁極との相対位置精度が重要となる。
 上述のような高温環境下において、さらに、磁気回路部80で発熱した熱から電子部品群を保護するためには、図4に示す従来のブラシレスモータの構造の場合、隔壁の厚み寸法を厚くして電子回路部90への熱伝導を防ぐ必要が有る。ところが一方で、センサマグネット86から発生する磁束が、磁気検出素子95へと届かずに鎖交しなくなるというおそれが出てきた。このため、強力な磁力が必要となりコストが増加する要因となっていた。
 また、図5に示す従来のブラシレスモータの構造の場合、組立工程上のセンサマグネット86とロータ85とを同時に組立てることができない。このため、ロータ85の界磁用のメインマグネット85bとセンサマグネット86とを磁化する着磁工程を別々にせざるを得ず、磁極位置精度が悪化するおそれがあった。
 さらに、図6に示す特許文献1のブラシレスモータの構造の場合、断熱効果のある隔壁がないため、磁気回路部80から直接に電子部品群が熱の影響を受け、電子回路部90の信頼性を低下させるおそれがあった。特に、ホール素子などの磁気検出素子95は、熱による特性の変化が大きいため、位置精度の悪化懸念があるだけでなく、磁気検出素子95自身がダメージを受けて破壊され機能不良による誤動作を招く要因となっていた。
特開2007-221976号公報
 本発明のモータは、ステータコアにコイルを巻回したステータとステータコアに対向して配置されたロータマグネットおよび位置検出用のセンサマグネットを回転軸を中心に保持したロータとを有する磁気回路部と、磁気検出素子を含む回路部品を実装した回路基板を有する電子回路部と、磁気回路部と電子回路部との間に配置されて各々の空間を隔てる隔壁とを備える。本モータは、回路基板上に配置された磁気検出素子が、隔壁を挟んでセンサマグネットに対向して配置され、隔壁および磁気検出素子を挟んでセンサマグネットに対向して配置する磁性体からなる補助センサヨークを有している。そして、補助センサヨークが、隔壁を貫通した回転軸に固定支持されている構成である。
 このような構成により、センサマグネットから発生する磁束が、補助センサヨークを介して磁路を閉じるため、磁気検出素子に磁束を十分鎖交させることが可能となる。そのため、強力な磁力を有する高価なマグネットが不要となり、安価なマグネットを使用することで、コストの増加を抑制することができる。また、補助センサヨークによるこれらの効果は、メインマグネットの磁極位置に影響を受けることが無いため、磁極精度を確保することが可能となり、磁極位置精度が良好な機器を提供できる。さらに、隔壁が磁気回路部で発生する熱による電子回路部の受熱を防ぐため、回路基板に実装されている磁気検出素子を含む電子部品群が熱による影響を受け難く、電子回路部の信頼性を向上させることができる。
図1は、本発明の実施の形態1のモータ斜視外観図である。 図2は、本発明の実施の形態1のモータ断面図である。 図3Aは、本発明の実施の形態1の磁束鎖交部断面拡大図である。 図3Bは、図3Aと比較のための従来例その1のモータ磁束鎖交部断面拡大図である。 図4は、従来のブラシレスモータの一例を示す断面図である。 図5は、従来のブラシレスモータの他の例を示す断面図である。 図6は、従来のブラシレスモータのさらに他の例を示す断面図である。
 以下、本発明の実施の形態について、図面を参照して説明する。
 車のエンジンルーム周辺で使用されるモータは、例えば、自動変速機の油圧制御装置等に作動油や潤滑油を供給する電動オイルポンプに用いられる。以下の実施の形態では、モータの一例として車両で使用される電動オイルポンプ用のブラシレスモータを用いて説明する。
 (実施の形態)
 図1は、本発明の実施の形態におけるモータ100の外観を示す斜視図である。図2は、本発明の実施の形態におけるモータ100の側面を示す断面図である。
 ブラシレスモータであるモータ100は、図1、図2に示すようにブラケット23、ブラケット23の一方側に配置したモータフレーム11、ブラケット23の他方側に配置したボトムプレート21を含み構成されている。詳細については以下で説明するが、モータフレーム11内には、コイルを有したステータ14と永久磁石を有して回転軸を中心に回転するロータ15とが収納されており、これら磁気部品等によって磁気回路部10を構成している。図1に示すように、モータフレーム11の天面からは、オイルシール12を介して回転軸15aが出力軸として突出している。この回転軸15aが回転することによりモータとして機能する。また、ブラケット23内には、以下で説明する電子部品を実装した回路基板22が収納されており、これら電子部品等によって電子回路部20を構成している。ブラケット23は、回路基板22に対して電源や信号を供給するためのコネクタ部24を有している。そして、ブラケット23の底部には、電子部品からの熱を放熱するための放熱フィンを備えたボトムプレート21が配置されている。
 最初に、モータフレーム11とブラケット23の間に内包される磁気回路部10について説明する。モータフレーム11は、鉄板を加工して、一方側を天面とし、他方側である底面側に開口である開口部を有し、内部に空間を設けた略円筒形状をしている。そして、樹脂性のブラケット23との組み付け用に、開口部から外周側に広がるフランジ11fを設けている。モータフレーム11と樹脂製のブラケット23とは、圧入やネジ締め等の手段によって勘合固定されている。また、磁気回路部10において、回転軸15aが突出するモータフレーム11の出力軸側には、ベアリング13a、およびオイルシール12が保持されている。そして、モータフレーム11の内径部には、ステータ14が圧入固定されており、ギャップを介してロータ15が回転自在に内包されている。
 ステータ14は、ステータコア14a、インシュレータ14b、コイル14cを備えている。ステータコア14aは、例えば複数枚の鋼板を積層して形成されており、内周側に突出した複数の突極を有している。そして、それぞれの突極には、コイル14cが、絶縁樹脂等で形成されたインシュレータ14bを介して巻回されている。巻回されているコイル14cは3相巻線であり、後述するロータマグネット15bの極数により、様々な巻線パターンが存在する。
 また、ロータ15は、円筒形状のロータマグネット15b、略カップ形状のロータフレーム15c、ロータフレーム15cの内周側を貫通する回転軸15aを備えている。ロータマグネット15bは永久磁石から成り、ロータフレーム15cに接着固定され、N極とS極とが交互に配置された磁極を持っており、例えば8極や10極などの極数に着磁されている。ロータフレーム15cは、鉄板を加工して略カップ形状で形成されており、2個のロータフレーム15cを各々が対向するように、軸方向で逆向きに配置して構成している。そして、ロータフレーム15cは、その内径穴に、回転軸15aを圧入して固定している。また、ロータフレーム15cは、ロータマグネット15bのバックヨークを兼ねており、磁路の一部を構成している。回転軸15aは、鉄等の金属製であり出力側をベアリング13a、反出力側をベアリング13bで回転自在に支持されている。そして、回転軸15aは、モータ100の回転する出力を相手側機器、例えばオイルポンプに伝える役割を持っている。
 回転軸15aの出力側先端は、相手機器との接続のためにDカット(円柱をDの字状にする加工)や二面幅(円柱を互いに平行な二面に加工)に加工がなされている。
 さらに、ブラケット23の磁気回路部10側において、回転軸15aの反出力側には、センサマグネット16を位置決めおよび保持するために、略円盤状の金属からなるセンサマグネットホルダ17が圧入等の手段を用いて固定されている。そのセンサマグネットホルダ17には、センサマグネット16が接着固定されている。このセンサマグネット16は、ロータマグネット15bと同じ磁極パターン配置となるように着磁し磁化されている永久磁石である。そして、詳細については以下で説明するが、磁気検出素子を用いてセンサマグネット16の磁気を検出することにより、ロータ15の回転位置を検出している。このようなセンサマグネットホルダ17も、回転軸15aを中心としてロータ15とともに回転する。また、このとき、センサマグネット16がブラケット23の磁気回路部10側の表面と一定間隔で対向しながら周方向に移動するように回転する。なお、モータ構造により、ロータ15の位置検出のためにロータマグネットをセンサマグネットとして用いたり、ロータマグネットとセンサマグネットを一体に形成したりしてもよい。
 次に、ボトムプレート21とブラケット23との間に回路基板22を内包する電子回路部20について説明する。
 ボトムプレート21は、アルミダイカストで作成され、回路基板22上の電子部品22aで発生した熱を放熱するために、連続した略三角形の放熱フィンを備えている。
 また、ブラケット23は、電気絶縁性を有する熱可塑性樹脂を材料として形成されている。より詳細には、樹脂製のブラケット23は、ポリフェニレンサルファイド樹脂(以下PPS樹脂と呼ぶ)からなる電気絶縁性を有する熱可塑性樹脂を材料としている。そして、本実施の形態のブラケット23は、後述する各種部品を内包し一体化するためにインサート成形によって形成されている。
 PPS樹脂を用いてブラケット23を作成する事で、薄肉成形が可能で形状の設計自由度が向上する。さらに、PPS樹脂とすることで、各種部品を内包してもヒケが少なく寸法安定性を確保することができ、成形性に優れる。また、短いタクトによる高い生産性を確保することができ、コストに優れる。さらに、耐熱性にも優れる。
 ブラケット23の形状としては、概略、天部側を閉じ、底部側に開口を有し、内部に空間を設けて、軸方向に薄い箱のような構造としている。また、ブラケット23の天部側は、平坦な板状に広がる平板部23aで閉じられているとともに、その磁気回路部10側には、平板部23aから磁気回路部10側へと突出してモータフレーム11を受けるためのモータフレーム受け部23bやベアリング13bを受けるためのベアリング受け部23cが形成されている。また、ブラケット23の底部側において、ボトムプレート21とPPS樹脂製のブラケット23は、ネジ締め等の手段を持って固定されている。そして、ボトムプレート21で蓋をするように閉じられたブラケット23内の空間に、回路基板22が収納されている。
 回路基板22は、基板22b上にICまたはマイコンや抵抗、コンデンサなどのチップ部品といった一般的な電子部品を実装した構成となっている。そして、これら電子部品によって、ステータ14のコイル14cを通電駆動するための駆動回路が構成されている。また、図2に示すように、回路基板22上には、ブラケット23を挟んでセンサマグネット16と対面するように、磁気検出手段としてホール素子25が実装されている。ホール素子25は、このように回路基板22上に配置され、ロータマグネット15bの各磁極に対応づけて磁化されたセンサマグネット16の磁極を検出する。
 次に、回路基板22を収納するとともに、磁気回路部10と電子回路部20とを構造的に分離するブラケット23の詳細について説明する。
 このように形成されるPPS樹脂製のブラケット23において、その磁気回路部10側には、モータフレーム11を勘合固定するために、位置出し用のはめ込み形状であるインローが設けられており、磁気回路部10との同軸を確保している。
 また、ブラケット23は、ベアリング13bを挿入するために、金属製のベアリングホルダ18を、その磁気回路部10側のベアリング受け部23cにインサート成形で一体化している。ブラケット23は、このように形成されたベアリングホルダ18により、ベアリング13bを保持固定している。ここで、ベアリング13bとベアリングホルダ18とは鉄系の同種金属からなるため、熱膨張率の差異による寸法の相対変化が無いため、クリープ現象を防止することができる。ベアリング13bとベアリングホルダ18との間には、ロータ15を予圧する波形ワッシャ19が挿入されている。
 また、PPS樹脂製のブラケット23の電子回路部20側は、回路基板22を機械的に保持固定する回路ホルダを兼ねており、回路基板22が溶着またはネジ締めなどの手段で固定されている。また、電気的な接続部品として、コイル14cからの3相引き出し線を結線し回路基板22と接続する3相分のバスバーや、給電端子、信号端子が電気的な絶縁を保ってPPS樹脂製のブラケット23に配置されている。本実施の形態のブラケット23は、これらバスバーや給電端子なども内包してインサート成形されている。
 また、モータフレーム11や、ボトムプレート21と機械的に接続固定するためのナットもPPS樹脂製のブラケット23に内包してインサート成形されている。これら金属製の端子類や結合部材をPPS樹脂製のブラケット23に内包してインサート成形することで、部品点数や組立工数を削減することができる。また、外部への電気的な接続が容易に行えるように、給電端子と信号端子がコネクタ部24にPPS樹脂製のブラケット23と一体成形され、ダイレクトコネクタとなっている。ダイレクトコネクタとする事で、外部への接続用リード線の曲げによる断線や、モータ内部へのシール性低下を防止することができ、信頼性の高い接続部とする事が可能である。
 本実施の形態では、上述のようにブラケット23を電気的な絶縁特性の樹脂で形成しており、これによって、磁気回路部10と電子回路部20との間の短絡を防止している。また、磁気回路部10はコイル14cを備えているため、これらコイル14cからの発熱量が多い。本実施の形態では、このような磁気回路部10の熱から電子回路部20の回路部品を保護するため、磁気回路部10と電子回路部20との空間を隔離するように、それぞれの間にブラケット23を配置している。すなわち、本実施の形態では、磁気回路部10と電子回路部20との間に、隔壁となるブラケット23を配置することによって、ステータ14のコイル14cから回路基板22の電子部品への熱の伝わりを抑制している。
 また、ブラケット23の厚みを厚くすることによっても、熱伝導を抑制できる。ところが、その一方で、背景技術でも説明したように、回路基板上に磁気検出素子を搭載してロータ位置や速度を検出するような構成の場合には、厚みの増加によって磁気検出精度が悪化するおそれがある。すなわち、本実施の形態のようにホール素子25がブラケット23を挟んでセンサマグネット16と対面するような構成の場合、両者の間隔が広くなるにしたがって、ホール素子25が受ける磁力が弱まり、位置検出精度の悪化を招くことになる。
 このため、本実施の形態では、ブラケット23の電子回路部20側において、図2に示すように、補助センサヨーク31をさらに配置している。補助センサヨーク31は、例えば、略円盤状の鉄板などの磁性体で作成されている。補助センサヨーク31は、ブラケット23と回路基板22上に実装されているホール素子25とを挟んで、センサマグネット16と対向して配置されている。すなわち、このような補助センサヨーク31を配置するため、回転軸15aが、ブラケット23および回路基板22に形成した貫通孔を通り抜けて、電子回路部20側まで延伸している。そして、補助センサヨーク31は、電子回路部20側での回転軸15aの反出力軸側先端に、プッシュナット32等の固定手段を用いて固定されている。
 図3Aは、本発明の実施の形態の磁束鎖交部の断面拡大図であり、ホール素子25がセンサマグネット16と補助センサヨーク31とによって挟まれた断面の状態を示している。また、図3Bは、図3Aと比較のための従来のモータの磁束鎖交部の断面拡大図であり、補助センサヨーク31を配置しない場合の断面の状態を示している。
 図3Bから分かるように、センサマグネット16のみの場合、ホール素子25がセンサマグネット16から遠ざかるにしたがって、センサマグネット16から発生する磁束30がホール素子25に十分に鎖交しなくなる。
 これに対し、図3Aに示すように、センサマグネット16と対面するように補助センサヨーク31を配置することにより、センサマグネット16から発生する磁束30が、補助センサヨーク31を介して磁路を閉じることになる。すなわち、センサマグネット16と補助センサヨーク31とを結ぶような磁束30が発生する。このため、図3Aに示すような構成とすることにより、ホール素子25がセンサマグネット16から遠ざかったとしても、センサマグネット16から発生する磁束30はホール素子25に十分鎖交することになり、位置検出精度も維持できる。また、補助センサヨーク31によるこのような磁路は、ロータマグネット15bの磁極位置に影響を受けることが無いため、良好な磁極精度およびそれによるモータの回転位置精度を確保することが可能となる。
 特に車のエンジンルーム周辺(周辺温度90℃以上の環境)で使用されるモータでは、磁気回路部10で発生した熱が電子回路部20へ熱伝導することを防ぐため、隔壁となるブラケット23の厚み寸法を厚くする必要がある。このような要望に対し、本実施の形態では、上述のような補助センサヨーク31を備えた構成としている。このため、上述のようにセンサマグネット16から発生する磁束30が、補助センサヨーク31を介して磁路を閉じるため、磁気検出手段としてのホール素子25に磁束30を十分鎖交させることが可能となる。
 よって、上記の実施の形態を用いることにより、磁極位置精度が良好且つ電子部品の信頼性を確保してコスト増加を抑制したモータを実現できる。
 以上のように、本発明にかかるモータのロータ位置検出構造は、検出精度を向上することが可能となるので、車載用モータのみならず、産業用モータや家電用モータ等の用途にも適用できる。特に、高温環境下で高い信頼性が要求されるモータ分野に有用である。
 10,80  磁気回路部
 11  モータフレーム
 12  オイルシール
 13a,13b  ベアリング
 14,84  ステータ
 14a  ステータコア
 14b  インシュレータ
 14c  コイル
 15,85  ロータ
 15a,85a  回転軸
 15b,85b  ロータマグネット(メインマグネット)
 15c  ロータフレーム
 16,86  センサマグネット
 17  センサマグネットホルダ
 18  ベアリングホルダ
 19  波形ワッシャ
 20,90  電子回路部
 21  ボトムプレート
 22,92  回路基板
 23  ブラケット
 24  コネクタ部
 25,95  ホール素子(磁気検出素子)
 30  磁束
 31  補助センサヨーク
 32  プッシュナット

Claims (2)

  1. ステータコアにコイルを巻回したステータと、前記ステータコアに対向して配置されたロータマグネットと位置検出用のセンサマグネットとを回転軸を中心に保持したロータとを有する磁気回路部と、
    磁気検出素子を含む回路部品を実装した回路基板を有する電子回路部と、
    前記磁気回路部と前記電子回路部との間に配置されて各々の空間を隔てる隔壁とを備えたモータであって、
    前記回路基板上に配置された前記磁気検出素子が、前記隔壁を挟んで前記センサマグネットに対向して配置され、
    前記隔壁および前記磁気検出素子を挟んで前記センサマグネットに対向して配置する磁性体からなる補助センサヨークを有し、
    前記補助センサヨークが、前記隔壁を貫通した前記回転軸に固定支持されていることを特徴とするモータ。
  2. 前記センサマグネットと前記ロータマグネットとを一体化したことを特徴とする請求項1に記載のモータ。
PCT/JP2015/003811 2014-08-01 2015-07-29 モータ WO2016017166A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-157525 2014-08-01
JP2014157525 2014-08-01

Publications (1)

Publication Number Publication Date
WO2016017166A1 true WO2016017166A1 (ja) 2016-02-04

Family

ID=55217077

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/003811 WO2016017166A1 (ja) 2014-08-01 2015-07-29 モータ

Country Status (1)

Country Link
WO (1) WO2016017166A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06303752A (ja) * 1993-04-12 1994-10-28 Seiko Epson Corp ブラシレスモータの位置検出用磁気回路
JP2002252958A (ja) * 2001-02-23 2002-09-06 Mitsubishi Electric Corp ブラシレスdcモータ
WO2003016829A1 (fr) * 2001-08-07 2003-02-27 Namiki Seimitsu Houseki Kabushiki Kaisha Micro-codeur et micro-moteur magnetiques
JP2003111324A (ja) * 2001-09-27 2003-04-11 Mitsubishi Electric Corp 直流ブラシレスモータの回転子及び送風機及び空気調和機
JP2012170265A (ja) * 2011-02-15 2012-09-06 Shinano Kenshi Co Ltd ファンモータ
WO2013035349A1 (ja) * 2011-09-08 2013-03-14 三菱電機株式会社 モータならびにそれを搭載したポンプ、空気調和機、給湯器、および熱源機

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06303752A (ja) * 1993-04-12 1994-10-28 Seiko Epson Corp ブラシレスモータの位置検出用磁気回路
JP2002252958A (ja) * 2001-02-23 2002-09-06 Mitsubishi Electric Corp ブラシレスdcモータ
WO2003016829A1 (fr) * 2001-08-07 2003-02-27 Namiki Seimitsu Houseki Kabushiki Kaisha Micro-codeur et micro-moteur magnetiques
JP2003111324A (ja) * 2001-09-27 2003-04-11 Mitsubishi Electric Corp 直流ブラシレスモータの回転子及び送風機及び空気調和機
JP2012170265A (ja) * 2011-02-15 2012-09-06 Shinano Kenshi Co Ltd ファンモータ
WO2013035349A1 (ja) * 2011-09-08 2013-03-14 三菱電機株式会社 モータならびにそれを搭載したポンプ、空気調和機、給湯器、および熱源機

Similar Documents

Publication Publication Date Title
JP5957713B2 (ja) モータ
US10673309B2 (en) Inverter-integrated motor
US9496762B2 (en) Motor
KR101206158B1 (ko) 전동식 파워 스티어링 장치
US20090251030A1 (en) Motor for controller integrated electric power steering apparatus and electric power steering apparatus
WO2017033917A1 (ja) モータ
US10439467B2 (en) Motor
WO2016051905A1 (ja) モータ
US9252638B2 (en) Rotary electric machine
JP2015106970A (ja) 駆動装置
US20190305650A1 (en) Motor
WO2016017164A1 (ja) 電子機器の断熱構造、その断熱構造を備えたモータ、および電子機器の断熱部材の形成方法
US9960653B2 (en) Driving device having sealing member with first and second annular protrusions
US20140021833A1 (en) Motor unit
JP6771848B2 (ja) 電動駆動装置
JP2011083064A (ja) 駆動制御装置、およびモータユニット
US9413209B2 (en) Rotating electric machine
WO2016017166A1 (ja) モータ
US10958140B2 (en) Motor
KR102488442B1 (ko) 모터 장치
JP2013258818A (ja) 電動機、電動機の製造方法
JP2011083065A (ja) 駆動制御装置、およびモータユニット
WO2019167233A1 (ja) 駆動回路搭載電動機
JP2014007927A (ja) モータ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15826901

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15826901

Country of ref document: EP

Kind code of ref document: A1