CN112011079A - 一种钢筋混凝土结构的柔性透明电极及其制备方法 - Google Patents

一种钢筋混凝土结构的柔性透明电极及其制备方法 Download PDF

Info

Publication number
CN112011079A
CN112011079A CN201910473810.1A CN201910473810A CN112011079A CN 112011079 A CN112011079 A CN 112011079A CN 201910473810 A CN201910473810 A CN 201910473810A CN 112011079 A CN112011079 A CN 112011079A
Authority
CN
China
Prior art keywords
transparent electrode
poly
film
solution
ethylenedioxythiophene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910473810.1A
Other languages
English (en)
Inventor
耿文铭
王涛
耿宏章
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Carbon Star Technology Tianjin Co ltd
Original Assignee
Carbon Star Technology Tianjin Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carbon Star Technology Tianjin Co ltd filed Critical Carbon Star Technology Tianjin Co ltd
Priority to CN201910473810.1A priority Critical patent/CN112011079A/zh
Publication of CN112011079A publication Critical patent/CN112011079A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • C08J7/14Chemical modification with acids, their salts or anhydrides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2365/00Characterised by the use of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/042Graphene or derivatives, e.g. graphene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/08Ingredients agglomerated by treatment with a binding agent

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Manufacturing Of Electric Cables (AREA)

Abstract

本发明公开了一种“钢筋混凝土”结构的柔性透明电极及其制备方法,主要步骤在于采用仿生物粘附蛋白的多巴胺通过原位聚合“一步法”实现对氧化石墨烯(GO)的还原和功能化,并且可作为导电粘合剂增加薄膜导电能力以及涂层和基底之间的黏附力;采用喷涂法将聚多巴胺功能化石墨烯(PFG)、碳纳米管(CNT)和聚3,4‑乙烯二氧噻吩(PEDOT)溶液逐层涂布在聚对苯二甲酸乙二醇酯(PET)薄膜基底上制备出具有“钢筋混凝土”结构的透明电极,进而使用有机溶剂和无机酸协同处理方法对导电涂层进行处理,得到黏附力好、粗糙度低、导电性高的透明电极。该工艺简单、周期短。

Description

一种钢筋混凝土结构的柔性透明电极及其制备方法
技术领域
本发明属于基于石墨烯、碳纳米管、导电聚合物的柔性透明电极制备技术领域,尤其涉及一种提高薄膜导电性和对基底黏附力的制备工艺。
背景技术
在过去几年中,光电器件包括有机发光二极管(OLED)、有机太阳能电池(OSC)和场效应晶体管(FET)得到了充分的发展,对透明导电薄膜(TCFs)的需求变得越来越迫切。目前光电器件中透明导电薄膜材料主要是铟锡氧化物(ITO)。然而由于铟元素的短缺,使得铟价格逐年上涨,同时由于其制备工艺条件的限制,使得ITO造价比较昂贵,特别是其脆性的特点更是限制了其在柔性电子器件方面的应用。纳米导电材料碳纳米管(CNT)由于其优异的力学、光学、电学和热学等性能,被认为是未来柔性电子器件中透明导电薄膜最理想的ITO替代材料。但是许多问题必须克服,比如CNT薄膜对基板的界面粘附力较弱,以及薄膜中碳纳米管之间的相互搭接使得薄膜粗糙度较大不利于器件性能的提高。仿生物粘附蛋白的多巴胺可在聚合的过程中实现对氧化石墨烯的还原和修饰,于是我们将聚多巴胺功能化的石墨烯引入CNT薄膜作为“导电粘合剂”提高薄膜的黏附力,聚3,4-乙烯二氧噻吩:聚苯乙烯磺酸钠(PEDOT:PSS)具有优异导电性、透光率和良好的成膜性可用于降低薄膜的粗糙度。我们得到了一种简单、便捷的工艺制备高性能透明导电薄膜,采用简单喷涂法制得具有“钢筋混凝土”结构的聚多巴胺功能化石墨烯/碳纳米管/聚3,4-乙烯二氧噻吩(PFG/CNT/PEDOT)柔性透明电极。
发明内容
本发明的目的在于提出一种“钢筋混凝土”结构的聚多巴胺功能化石墨烯/碳纳米管/聚3,4-乙烯二氧噻吩(PFG/CNT/PEDOT)柔性透明电极的制备方法,使得的透明电极具有优异的光电性能、超强的黏附力、极低的粗糙度以及稳定结构,在光电器件、显示器、触摸屏等领域有广泛的应用。
本发明的技术方案如下:主要步骤在于首先用乙醇超声清洗聚对苯二甲酸乙二醇酯(PET)基底然后烘干。采用简单喷涂法将聚多巴胺功能化石墨烯、碳纳米管、聚3,4-乙烯二氧噻吩溶液逐层涂布在PET基底上,得到具有“钢筋混凝土”结构的聚多巴胺功能化石墨烯/碳纳米管/聚3,4-乙烯二氧噻吩(PFG/CNT/PEDOT)柔性透明电极。仿生物粘附蛋白的多巴胺在聚合的过程中可以实现对氧化石墨烯的还原和功能化,不仅能提高薄膜的电导率而且可以作为导电粘合剂提高涂层对基底的黏附力;PEDOT层采用有机溶剂和无机酸进行后处理可以极大的提高薄膜的导电性并且能降低薄膜的粗糙度。该制备工艺方法简单、周期短、薄膜性能优异,在透光率为75%~90%时,面电阻为25~200 Ω/sq.,表面粗糙度< 10 nm。扫描电子显微镜表征结果表明发现透明电极中的聚多巴胺功能化石墨烯、碳纳米管和聚3,4-乙烯二氧噻吩并不是简单地堆叠,而是通Π-Π作用相互交叉形成了稳定的“钢筋混凝土”结构,使得薄膜有更加优异的光电性能和稳定性。
本发明的主要创新点如下:
1、多巴胺的原位聚合“一步法”实现氧化石墨烯的还原和功能化,并且该功能化的石墨烯可以作为导电粘合剂增加薄膜导电能力的同时提高涂层对基底的黏附力;
2、聚多巴胺功能化石墨烯、碳纳米管、聚3,4-乙烯二氧噻吩之间存在很强的Π-Π作用,这种强的Π-Π作用可以提高薄膜的导电性且三者形成的“钢筋混凝土”结构有利于提高薄膜的稳定性;
3、有机溶剂(DMSO-EG)和无机酸(H2SO4)协同处理方法可以极大提高透明电极的导电性。
本发明方法中制备聚多巴胺功能化石墨烯的方法如下:首先,称取一定量的GO加入到一定量的三羟甲基氨基甲烷Tri缓冲溶液中,搅拌超声分散一定时间,得到均匀的GO分散液,调节缓冲溶液的pH值到8.5~9。再将一定量的多巴胺加入到上述溶液中并不断剧烈搅拌,60℃恒温搅拌12h~24h,期间保持氧气通入,搅拌完成后,多次离心溶液得到浓度为0.5-2 mg/ml的PFG分散液。制备碳纳米管分散液的方法如下:以纯度>95 wt.%,外径1~2 nm,长度为5~30 μm的单壁碳纳米管为原料,十二烷基苯磺酸钠作为分散剂,蒸馏水为溶剂。以单壁碳纳米管与十二烷基苯磺酸钠的为1:5~1:10的比例进行称量,然后加入相应体积的蒸馏水,首先水浴超声30-80 min,然后使用超声波细胞粉碎机超声35 min,再用离心机以8000r/min的速率离心15 min,提取上清液,得到浓度为0.1~1 mg/ml的碳纳米管分散液。采用喷涂法将配好的不同量的聚多巴胺功能化石墨烯(PFG)、碳纳米管(CNT)和聚3,4-乙烯二氧噻吩(PEDOT)溶液逐层涂布在PET薄膜基底上。将制得的透明电极浸泡入EG溶液中20~40 min,薄膜用去离子水洗净吹干后再次浸泡入10M~12M H2SO4中,干燥得到黏附力好、粗糙度低、导电性高的透明电极。
本发明所用的试剂和材料:多巴胺、三羟甲基氨基甲烷Tri缓冲溶液、氧化石墨烯(GO)、单壁碳纳米管(CNT)、聚3,4-乙烯二氧噻吩(PEDOT:PSS)、聚对苯二甲酸乙二醇酯(PET)、十二烷基苯磺酸钠、硫酸(H2SO4)、二甲基亚砜(DMSO)、蒸馏水、乙醇等。
本发明中采用了吉时利2700和紫外分光光度仪分别来测量透明导电薄膜的面电阻和透光率。扫描电子显微镜(SEM)来表征所制备的碳纳米管/聚3,4-乙烯二氧噻吩/碳纳米管(CNT/PEDOT/CNT)薄膜的形貌。
附图说明
图1为聚多巴胺功能化石墨烯/碳纳米管/聚3,4-乙烯二氧噻吩(PFG/CNT/PEDOT)透明导电薄膜的示意图。
图2为聚多巴胺功能化石墨烯/碳纳米管/聚3,4-乙烯二氧噻吩(PFG/CNT/PEDOT)透明导电薄膜的面电阻和透光率。
图3为聚多巴胺功能化石墨烯/碳纳米管/聚3,4-乙烯二氧噻吩(PFG/CNT/PEDOT)透明导电薄膜暴露在空气中电阻的变化。
图4为聚多巴胺功能化石墨烯/碳纳米管/聚3,4-乙烯二氧噻吩(PFG/CNT/PEDOT)透明导电薄膜做透明电极点亮灯泡的示意图。
具体实施方式
下面结合具体实例对本发明作详细说明。
实例1:
1、将200 mg的GO加入到400 mL三羟甲基氨基甲烷Tri缓冲溶液中,搅拌超声分散30min,得到均匀的GO分散液,并调节缓冲溶液的pH值到8.5。然后将100 mg多巴胺加入到分散有GO的三羟甲基氨基甲烷Tri缓冲溶液中并不断剧烈搅拌,60℃恒温搅拌24h,期间保持氧气通入,搅拌完成后,多次离心溶液得到浓度为0.5 mg/mL的PFG分散液;
2、以20 mg单壁碳纳米管原料,200 mg 十二烷基苯磺酸钠作为分散剂,加入20 ml的蒸馏水,然后先水浴超声30 min,再采用超声波细胞粉碎机进行超声70 min,最后再用离心机以8000 r/min的速率离心15 min,提取上清液,得到浓度大约1 mg/ml的碳纳米管分散液;
3、将固含量为1 wt.%的聚3,4-乙烯二氧噻吩溶液稀释5倍然后加入5 wt.%二甲基亚砜,搅拌20 min以上;
4、将清洗好的PET薄膜放置在加热板上,加热板上的温度控制在105 ℃,依次喷涂聚多巴胺功能化石墨烯、碳纳米管和聚3,4-乙烯二氧噻吩溶液,通过不同的喷涂量,得到了不同透光度的聚多巴胺功能化石墨烯/碳纳米管/聚3,4-乙烯二氧噻吩(PFG/CNT/PEDOT)透明电极。将制得的透明电极浸泡入EG溶液中40 min,薄膜用去离子水洗净吹干后再次浸泡入12MH2SO4中最后得到透光率为75%~90%时,面电阻为25~80 Ω/sq.,表面粗糙度< 5 nm的透明电极。
实例2:
1、将400 mg的GO加入到400 mL三羟甲基氨基甲烷Tri缓冲溶液中,搅拌超声分散30min,得到均匀的GO分散液,并用调节缓冲溶液的pH值到9。然后将200 mg多巴胺加入到分散有GO的三羟甲基氨基甲烷Tri缓冲溶液中并不断剧烈搅拌,60℃恒温搅拌10h,期间保持氧气通入,搅拌完成后,多次离心溶液得到浓度为1 mg/mL的PFG分散液;
2、以10 mg单壁碳纳米管原料,100 mg 十二烷基苯磺酸钠作为分散剂,加入20 ml的蒸馏水,然后先水浴超声30 min,再采用超声波细胞粉碎机进行超声70 min,最后再用离心机以8000 r/min的速率离心15 min,提取上清液,得到浓度大约0.5 mg/ml的碳纳米管分散液;
3、将固含量为1.3 wt.%的聚3,4-乙烯二氧噻吩溶液稀释10倍然后加入5 wt.%二甲基亚砜,搅拌20 min以上;
4、将清洗好的PET薄膜放置在加热板上,加热板上的温度控制在105 ℃,依次喷涂聚多巴胺功能化石墨烯、碳纳米管和聚3,4-乙烯二氧噻吩溶液,通过不同的喷涂量,得到了不同透光度的聚多巴胺功能化石墨烯/碳纳米管/聚3,4-乙烯二氧噻吩(PFG/CNT/PEDOT)透明电极。将制得的透明电极浸泡入EG溶液中20 min,薄膜用去离子水洗净吹干后再次浸泡入10MH2SO4中最后得到透光率为75%~90%时,面电阻为25~200 Ω/sq.,表面粗糙度< 10 nm的透明电极。

Claims (10)

1.一种“钢筋混凝土”结构的柔性透明电极及其制备方法,主要步骤在于采用仿生物粘附蛋白的多巴胺通过原位聚合“一步法”实现对氧化石墨烯(GO)的还原和功能化,并且可作为导电粘合剂增加薄膜导电能力以及涂层和基底之间的黏附力;将聚对苯二甲酸乙二醇酯(PET)基底薄膜用蒸馏水和乙醇超声清洗然后烘干;
采用喷涂法将配好的聚多巴胺功能化石墨烯(PFG)、碳纳米管(CNT)和聚3,4-乙烯二氧噻吩(PEDOT)溶液逐层涂布在PET薄膜基底上,其中PEDOT溶液稀释后加入二甲基亚砜(DMSO)使其更容易进行喷涂,在PET基底上逐层涂布的PFG、CNT和PEDOT制备出具有“钢筋混凝土”结构的透明电极,进而使用有机溶剂和无机酸协同处理方法对导电涂层进行处理,得到黏附力好、粗糙度低、导电性高的透明电极;该透明电极的制备工艺简单、周期短,其“钢筋混凝土”结构使得薄膜的结构稳定、黏附力强、粗糙度低,经过高效的后处理电极的导电性有了极大的提高,在透光率为75%~90%时,面电阻为25~200 Ω/sq.,表面粗糙度< 10 nm;
该高性能透明电极可广泛应用于有机发光器件、显示器、触摸屏、薄膜晶体管以及光伏器件等方面。
2. 根据权利要求1所述的方法,其特征在于所采用的原料为氧化石墨烯粉末;单壁碳纳米管,其纯度>95 wt.%,外径1~2 nm,长度为5~30 μm;聚3,4-乙烯二氧噻吩溶液为PH1000,固含量为1~1.3 %。
3.根据权利要求1所述的方法,制得的聚多巴胺功能化石墨烯(PFG)溶液浓度为0.1-2mg/ml。
4. 根据权利要求1所述的方法,其特征在于采用超声波细胞粉碎机制备碳纳米管分散液的条件:功率100-200 W,时间30-80 min,分散剂为十二烷基苯磺酸钠,制得的碳纳米管溶液浓度为0.1~1 mg/ml。
5.根据权利要求1所述的方法,聚3,4-乙烯二氧噻吩溶液稀释5~20倍然后加入5 wt.%二甲基亚砜,搅拌20 min以上。
6.根据权利要求1所述的方法,其特征在于采用喷涂法将配好的不同量的聚多巴胺功能化石墨烯(PFG)、碳纳米管(CNT)和聚3,4-乙烯二氧噻吩(PEDOT)溶液逐层涂布在PET薄膜基底上。
7. 根据权利要求1所述的方法,所采用的有机溶剂为二甲基亚砜(DMSO)和乙二醇(EG),无机酸为硫酸(H2SO4),将制得的透明电极浸泡入EG溶液中20~40 min,薄膜用去离子水洗净吹干后再次浸泡入10M~12M H2SO4中,干燥得到黏附力好、粗糙度低、导电性高的透明电极。
8.根据权利要求1所述的方法,其特征在于透明电极的“钢筋混凝土”结构为碳纳米管层夹在聚多巴胺功能化石墨烯层与聚3,4-乙烯二氧噻吩层在中间,该电极结构具有极好的稳定性和附着力。
9.根据权利要求1所述的方法,其特征在于得到透明导电薄膜的透光度为 75 %以上,面电阻可以达到200 Ω/sq.以下,表面粗糙度在10 nm以下。
10.根据权利要求1所述的方法,该高性能透明电极可广泛应用于有机发光器件、显示器、触摸屏、薄膜晶体管以及光伏器件等方面。
CN201910473810.1A 2019-06-01 2019-06-01 一种钢筋混凝土结构的柔性透明电极及其制备方法 Pending CN112011079A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910473810.1A CN112011079A (zh) 2019-06-01 2019-06-01 一种钢筋混凝土结构的柔性透明电极及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910473810.1A CN112011079A (zh) 2019-06-01 2019-06-01 一种钢筋混凝土结构的柔性透明电极及其制备方法

Publications (1)

Publication Number Publication Date
CN112011079A true CN112011079A (zh) 2020-12-01

Family

ID=73506445

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910473810.1A Pending CN112011079A (zh) 2019-06-01 2019-06-01 一种钢筋混凝土结构的柔性透明电极及其制备方法

Country Status (1)

Country Link
CN (1) CN112011079A (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013223569A1 (de) * 2013-11-19 2015-05-21 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Herstellung einer homogenen leitfähigen Kohlenstoffnanoröhrchen haltigen Beschichtung auf einem Substrat und Substrat mit homogener leitfähiger Kohlenstoffnanoröhrchen haltiger Beschichtung
CN105321592A (zh) * 2014-08-01 2016-02-10 广东阿格蕾雅光电材料有限公司 碳纳米管-高分子层状复合透明柔性电极及其制备方法
CN108470598A (zh) * 2018-04-06 2018-08-31 天津工业大学 柔性透明导电薄膜及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013223569A1 (de) * 2013-11-19 2015-05-21 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Herstellung einer homogenen leitfähigen Kohlenstoffnanoröhrchen haltigen Beschichtung auf einem Substrat und Substrat mit homogener leitfähiger Kohlenstoffnanoröhrchen haltiger Beschichtung
CN105321592A (zh) * 2014-08-01 2016-02-10 广东阿格蕾雅光电材料有限公司 碳纳米管-高分子层状复合透明柔性电极及其制备方法
CN108470598A (zh) * 2018-04-06 2018-08-31 天津工业大学 柔性透明导电薄膜及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
杨桢林等: "柔性有机发光二极管柔性电极薄膜的研究进展" *

Similar Documents

Publication Publication Date Title
Su et al. Designed biomass materials for “green” electronics: A review of materials, fabrications, devices, and perspectives
Wang et al. Fabrication of architectural structured polydopamine-functionalized reduced graphene oxide/carbon nanotube/PEDOT: PSS nanocomposites as flexible transparent electrodes for OLEDs
Olson et al. Effect of ZnO processing on the photovoltage of ZnO/poly (3-hexylthiophene) solar cells
Wang et al. Tannic acid modified graphene/CNT three-dimensional conductive network for preparing high-performance transparent flexible heaters
Chen et al. Solution-processed copper nanowire flexible transparent electrodes with PEDOT: PSS as binder, protector and oxide-layer scavenger for polymer solar cells
Cho et al. Mechanical flexibility of transparent PEDOT: PSS electrodes prepared by gravure printing for flexible organic solar cells
WO2017012162A1 (zh) 富勒烯/pedot:pss混合溶液的制备方法及具有富勒烯/pedot:pss复合透明导电膜的基板的制备方法
Gu et al. Highly conductive sandwich-structured CNT/PEDOT: PSS/CNT transparent conductive films for OLED electrodes
Meng et al. Roll-to-roll printing of meter-scale composite transparent electrodes with optimized mechanical and optical properties for photoelectronics
Zhao et al. Large-area, flexible polymer solar cell based on silver nanowires as transparent electrode by roll-to-roll printing
Wang et al. Highly transparent, thermally stable, and mechanically robust hybrid cellulose-nanofiber/polymer substrates for the electrodes of flexible solar cells
Tan et al. Electrodepostied polyaniline films decorated with nano-islands: Characterization and application as anode buffer layers in solar cells
CN104465993A (zh) 一种碳基复合透明电极及制备方法
Liu et al. Transparent, smooth, and sustainable cellulose-derived conductive film applied for the flexible electronic device
CN102263203A (zh) 一种有机太阳能电池及其制作方法
KR20160084387A (ko) 고분산 탄소나노튜브 복합 전도성 잉크
CN107946467A (zh) 一种基于多重陷光结构的聚合物太阳能电池及其制备方法
Zhao et al. An eco-friendly water-assisted polyol method to enhance the aspect ratio of silver nanowires
Cogal et al. RF plasma-enhanced graphene–polymer composites as hole transport materials for perovskite solar cells
CN102931354B (zh) 复合透明电极、聚合物太阳能电池及它们的制备方法
Wang et al. Large-scale ultra-adhesive and mechanically flexible silver grids transparent electrodes by solution process
CN105336865B (zh) 一种高导电的聚合物复合电极及其制备方法
Charekhah et al. Bulk heterojunction solar cells based on polyaniline/multi wall carbon nanotube: from morphology control to cell efficiency
Woo et al. Conducting polymer/in-situ generated platinum nanoparticle nanocomposite electrodes for low-cost dye-sensitized solar cells
CN112509729A (zh) 一种双层结构的聚3,4-乙烯二氧噻吩/氧化石墨烯-碳纳米管柔性透明导电薄膜及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20201201