WO2016015492A1 - 一种油田废弃物处理方法以及*** - Google Patents

一种油田废弃物处理方法以及*** Download PDF

Info

Publication number
WO2016015492A1
WO2016015492A1 PCT/CN2015/076939 CN2015076939W WO2016015492A1 WO 2016015492 A1 WO2016015492 A1 WO 2016015492A1 CN 2015076939 W CN2015076939 W CN 2015076939W WO 2016015492 A1 WO2016015492 A1 WO 2016015492A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
water
heating chamber
flue gas
treatment
Prior art date
Application number
PCT/CN2015/076939
Other languages
English (en)
French (fr)
Inventor
叶登胜
胡天勇
梁仁刚
何茂金
闫亚丽
林慧丽
麻军峰
曲忠臣
陈开军
Original Assignee
杰瑞能源服务有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杰瑞能源服务有限公司 filed Critical 杰瑞能源服务有限公司
Publication of WO2016015492A1 publication Critical patent/WO2016015492A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/10Treatment of sludge; Devices therefor by pyrolysis
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B53/00Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form

Definitions

  • the invention relates to the field of oilfield environmental protection technology, and more particularly to an oil field waste treatment method and system.
  • the prior art discloses a method for separating petrochemical waste, comprising: adding petrochemical waste and water into a processor, heating and heating; adding a cracking agent to the processor, and fully stirring to form oil and water. Two impurities, static precipitation will completely separate its oil, water and impurities.
  • this treatment method it is necessary to dispose different cracking agents for the waste oil-based mud in different regions.
  • a first object of the present invention is to provide an oil field waste treatment method for achieving the purpose of improving the versatility of an oil field waste treatment process; and a second object of the present invention is to provide an oil field waste treatment Device.
  • the present invention provides the following technical solutions:
  • An oil field waste treatment method comprising the steps of:
  • the mixed steam is subjected to condensation separation treatment to obtain oil, water and non-condensable gas, and the oil and the non-condensable gas are used for combustion to obtain the high-temperature flue gas;
  • the solid phase residue is discharged from the heating chamber.
  • the solid phase residue is further subjected to rewet treatment and solidification treatment.
  • the condensation separation treatment comprises:
  • the mixed steam is condensed and settled to obtain a condensate and a non-condensable gas
  • the condensate is subjected to separation treatment to obtain oil, water and sludge.
  • the non-condensable gas is used for combustion to obtain the high-temperature flue gas, and further includes purifying the non-condensable gas.
  • part of the water is used for condensation sedimentation of the mixed steam, and the remaining water and the sludge are subjected to sedimentation filtration treatment to obtain clean water and mud cake, and the remaining Clean water is used for the rewet treatment of the solid residue.
  • the oil field waste treatment method in the embodiment of the present invention includes conveying the initial material into the heating chamber; heating the heating chamber with the high temperature flue gas to obtain the mixed steam. And the solid phase residue; the mixed steam is subjected to condensation separation treatment to obtain oil, water and non-condensable gas, and the oil and the non-condensable gas are assisted combustion to obtain the high temperature flue gas; the solid phase residue is discharged from the heating Cavity.
  • the above method utilizes high temperature flue gas to indirectly heat the heating chamber, so that the initial material is heated and then thermally decomposed, and the mixed steam generated after the thermal decomposition is subjected to a series of treatments to obtain an oil-free solid phase residue, non-condensable gas and oil.
  • Auxiliary combustion produces high-temperature flue gas.
  • the method of the present invention does not require the addition of a cracking agent for decomposition, and can directly perform thermal decomposition for oil field waste in different regions, and therefore, the versatility is better.
  • an oil field waste treatment system comprising:
  • a feeding device for conveying the initial material
  • thermo decomposition device corresponding to a discharge port of the feeding device, a heating chamber for holding the initial material, and the heating chamber and the thermal decomposition Internal isolation of the device;
  • a flue gas generating device for generating high temperature flue gas, the flue gas generating device being disposed inside or outside the thermal decomposition device;
  • the inlet of the condensing separation device is in communication with an exhaust port of the thermal decomposition device, an oil outlet of the condensation separation device and a non-condensable gas outlet of the condensation separation device and the smoke
  • the fuel inlet of the gas generating device is connected;
  • the thermal decomposition device comprises a tower body, a conveying device and a heating chamber, wherein the conveying device is disposed in the heating chamber, and the feeding end of the conveying device is
  • the feed port of the tower body corresponds to a discharge end of the conveying device corresponding to the discharge port of the tower body, and the exhaust port of the heating chamber is connected to the air inlet of the condensation separation device
  • the flue gas generating device is disposed on the tower body, the flue gas generating device includes a burner and a combustion chamber, the burner is disposed in the tower body, and the tower body is provided with a burner portion
  • the combustion chamber has a heat shield between the combustion chamber and the heating chamber.
  • the thermal decomposition device comprises a tower body, a conveying device and a heating chamber, wherein the conveying device is disposed in the heating chamber, and the conveying device is advanced a material end corresponding to the feed port of the tower body, a discharge end of the conveying device corresponding to the discharge port of the tower body, an exhaust port of the heating chamber and the condensing separation device a gas passage is connected;
  • the flue gas generating device is independent of the tower body, and includes a hot blast stove and a burner disposed on the hot blast stove, the inside of the hot blast stove forms a combustion chamber, and the combustion chamber is The interior of the tower is connected.
  • the condensing separation device comprises a spray tower, a non-condensable gas treatment device, an oil-water separation device, and a sludge and water treatment device, wherein the condensate outlet of the spray tower and The inlet port of the oil-water separation device is in communication, the non-condensable gas outlet of the spray tower is in communication with the inlet of the non-condensable gas treatment device; the sludge discharge port of the oil-water separation device passes through the sludge pump Communicating with the inlet port of the sludge and the water treatment device, the oil outlet of the oil-water separation device is connected to the smoke generating device through an oil pump; the gas outlet of the non-condensable gas treatment device and the smoke gas The device is connected.
  • the discharge device is provided with a shower
  • the condensation separation device further includes an air cooler
  • the condensation separation device further includes an air cooler
  • the oil water separation device The water outlet is in communication with the air cooler via a water pump, and the water inlet of the air cooler is in communication with the spray tower, and the water outlet of the sludge and water treatment device is in communication with the shower.
  • a water storage tank is further disposed between the air cooler and the oil-water separation device, and the water storage tank is connected to the air cooler through the water pump;
  • An oil storage tank is further disposed between the oil-water separation device and the smoke generating device, and the oil storage tank is in communication with the smoke generating device through the oil pump.
  • FIG. 1 is a schematic flow chart of an oil field waste disposal method according to an embodiment of the present invention.
  • FIG. 2 is a schematic flow chart of a condensation process according to an embodiment of the present invention.
  • FIG. 3 is a schematic flow chart of another condensation process according to an embodiment of the present invention.
  • FIG. 4 is a structural block diagram of an oil field waste disposal system according to an embodiment of the present invention.
  • FIG. 5 is a structural block diagram of another oil field waste disposal system according to an embodiment of the present invention.
  • FIG. 6 is a structural block diagram of a third oilfield waste disposal system according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of an oilfield waste disposal system according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural view of a second oilfield waste disposal system according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural view of a third oilfield waste disposal system according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural view of a fourth oilfield waste disposal system according to an embodiment of the present invention.
  • 1 is a feeding device
  • 2 is a thermal decomposition device
  • 3 is a condensation separation device
  • 4 is a discharge device
  • 11 is a feed hopper
  • 12 is a material sealing machine
  • 13 is an air lock
  • 14 is a feed screw
  • 15 is a belt scale
  • 16 is a vibrating screen
  • 17 is a feed screw
  • 18 is a cloth bucket
  • 21 is a flue gas generating device
  • 22 is a tower body
  • 23 is a conveying device
  • 24 is a heating chamber
  • 25 is a burner
  • 26 is a combustion chamber
  • 27 is a hot air furnace
  • 31 is a spray tower, 32 is a water-water separation device, 33 is a sludge and water treatment device, 34 is an air cooler, 35 is a non-condensable gas treatment device, 36 is a buffer tank, 37 is a water pump, 38 is a sludge pump, 39 is an oil storage tank, and 391 is an oil pump;
  • 41 is a shower
  • 42 is an air lock
  • 43 is a discharge screw.
  • the first core of the invention is to disclose an oil field waste treatment method to achieve an increase in oil field waste.
  • the purpose of the versatility of the waste disposal process; the second core of the present invention is to disclose an oilfield waste treatment system.
  • an oilfield waste treatment method includes:
  • Step S100 conveying the initial material into the heating chamber; wherein, in this step, the initial material is oil field waste, and a plurality of methods for conveying the initial material to the heating chamber are realized, for example, conveying through a conveyor belt or the like.
  • the initial material before being sent to the heating chamber may be subjected to preliminary treatment, such as preheating treatment.
  • the initial material sent to the heating chamber needs to be thoroughly stirred, so that the initial material can be uniformly heated.
  • Step S200 heating the heating chamber with high temperature flue gas to obtain mixed steam and solid phase residue; in this step, the heating chamber is not directly heated, but is indirectly heated by high temperature flue gas, thereby avoiding direct heating of the heating chamber due to the flame.
  • the high-temperature flue gas is provided by the flue gas generating device, and the flue gas generating device can be integrated with the heating chamber in one component, or can be separately provided, wherein when integrated in one component, the heating chamber and the flue gas generating device are burned
  • the cavity is located in the same space by insulating the flame to insulate the direct heating of the heating chamber.
  • the combustion chamber is externally disposed, and the high-temperature flue gas in the combustion chamber is sent to the heating chamber through the corresponding pipeline, so that the high-temperature flue gas in the heating chamber is convectively exchanged with the initial material, thereby causing thermal decomposition.
  • the moisture and oil in the initial material heated by high temperature evaporate to form a mixed vapor of water vapor, oil and dust. After a certain period of thermal decomposition, the initial material becomes a solid residue that does not contain oil and moisture.
  • an inert gas is introduced into the heating chamber in order to reduce the content of the internal oxygen, wherein the inert gas may be nitrogen or the like.
  • Step S300 the mixed steam is subjected to condensation separation treatment to obtain oil, water and non-condensable gas, and the oil and the non-condensable gas are used for combustion to obtain high-temperature flue gas; the mixed steam is extracted, and the extracted mixed steam is subjected to condensation separation treatment to obtain oil, Water, sludge and non-condensable gases, wherein oil and non-condensable gases can be used as fuel for combustion to generate high-temperature flue gas, and water can be recycled.
  • the condensation separation processing in the step specifically includes:
  • Step S201 The mixed steam is condensed and settled to obtain a condensate and a non-condensable gas.
  • Step S202 the condensate is subjected to separation treatment to obtain oil, water and sludge. Among them, part of the water is used for the condensation and sedimentation of the mixed steam, and the remaining water and sludge are subjected to sedimentation filtration and pressure filtration to obtain clean water and mud cake.
  • the separation treatment here can be a usual separation treatment means.
  • step S203 performs a purification process on the non-condensable gas.
  • the non-condensable gas after purification treatment is more suitable for combustion.
  • step S204 the oil and the non-condensable gas are used for combustion to obtain high temperature flue gas.
  • part of the water is used for condensation deposition of the mixed steam, and the remaining water and sludge are subjected to sedimentation filtration treatment to obtain clean water and mud cake.
  • Step S400 the solid phase residue is discharged from the heating chamber. Since the temperature of the solid phase residue discharged from the heating chamber is high, in order to prevent burns to the operator, the solid residue after the discharge can be cooled by air cooling, or re-wet, and the rewetting treatment can not only lower the temperature of the solid residue, It can also reduce the occurrence of dust. Among them, the water subjected to the rewet treatment can be supplied from the above clean water.
  • the solid residue after the rewet treatment needs to be solidified to facilitate storage and transportation, and at the same time, the solid residue after the curing treatment can reduce the occurrence of dusting to a certain extent.
  • the heating chamber is indirectly heated by the high-temperature flue gas, so that the initial material is heated and then thermally decomposed, and the mixed steam generated after the thermal decomposition is subjected to a series of treatments to obtain an oil-free solid phase residue, non-condensable gas and oil.
  • Auxiliary combustion produces high-temperature flue gas.
  • the method of the present invention does not require the addition of a cracking agent for decomposition, and can directly perform thermal decomposition for oil field waste in different regions, and therefore, the versatility is better.
  • the invention also discloses an oil field waste disposal system, as shown in FIG. 4 to FIG. 10, comprising:
  • thermal decomposition device 2 corresponding to the discharge end of the feeding device 1 and a heating chamber 24 for holding the initial material, and the heating chamber 24 is isolated from the interior of the thermal decomposition device 2 ;
  • a flue gas generating device 21 that generates high-temperature flue gas, and the flue gas generating device 21 is disposed inside or outside the thermal decomposition device 2;
  • the condensing and separating device 3 the inlet of the condensing and separating device 3 communicates with the exhaust port of the thermal decomposition device 2, the oil outlet of the condensing and separating device 3, and the non-condensable gas outlet of the condensing and separating device 3 and the flue gas generating device 21 Fuel inlets connected;
  • the discharge device 4 whose feed end corresponds to the discharge port of the thermal decomposition device 2.
  • the feeding device 1 includes a feeding hopper 11 and a material sealing machine 12 whose feeding end is opposite to the discharge opening of the feeding hopper 11, and a discharge end of the material sealing machine 12.
  • the discharge end as the feeding device 1 corresponds to the feed port of the thermal decomposition device 2.
  • the feeding device 1 includes a feed hopper 11 and an air lock 13 whose feed end is opposite to the discharge opening of the feed hopper 11, and the discharge end of the air lock 13 is used as The discharge end of the feeding device 1 corresponds to the feed port of the thermal decomposition device 2.
  • a feed screw 14 is further disposed at the feed port of the feed hopper 11, and the discharge port of the feed screw 14 is opposite to the feed port of the feed hopper 11. .
  • a distributor is further disposed between the feed hopper 11 and the air lock 13, and the distributor includes a belt weigher 15 disposed under the discharge port of the feed hopper 11, and a vibrating screen disposed under the belt scale 15. 16 and a feed screw 17 disposed below the vibrating screen 16 and a feed hopper 18 whose feed port is disposed below the discharge port of the feed screw 17, and the discharge port of the cloth hopper 18 communicates with the air lock 13.
  • the feeding device 1 is provided with three air locks 13, each of which corresponds to a feed port of the thermal decomposition device 2, and each of the feed ports is provided with a transfer device 23, each of which is provided
  • the initial material can be arranged on the 23, so the setting can improve the processing efficiency.
  • the thermal decomposition device 2 includes a tower body 22, a conveying device 23, and a heating chamber 24, wherein the conveying device 23 is disposed inside the heating chamber 24, and the feeding of the conveying device 23
  • the end corresponds to the feed port of the tower body 22, the discharge end of the conveying device 23 corresponds to the discharge port of the tower body 22, and the exhaust port of the heating chamber 24 communicates with the air inlet of the condensing and separating device 3;
  • the generating device 21 is disposed on the tower body 22.
  • the flue gas generating device 21 includes a burner 25 and a combustion chamber 26.
  • the burner 25 is disposed in the tower body 22.
  • the portion of the tower body 22 where the burner 25 is disposed forms a combustion chamber 26, and the combustion chamber There is a heat insulation board between the 26 and the heating chamber 24, and the flame is isolated by providing a heat insulation board.
  • the flue gas generating device 21 is disposed inside the tower body 22, the tower body 22 is provided with a burner 25, and combustion is formed inside the tower body 22 corresponding to the burner 25.
  • the chamber 26, wherein the flame of the combustion chamber 26 is isolated by the heat shield below the heating chamber 24.
  • the thermal decomposition apparatus 2 includes a tower body 22, a conveyor 23 and a heating chamber 24, wherein the conveyor 23 is disposed inside the heating chamber 24, and the feed of the conveyor 23
  • the end corresponds to the feed port of the tower body 22
  • the discharge end of the conveying device 23 corresponds to the discharge port of the tower body 22
  • the exhaust port of the heating chamber 24 communicates with the air inlet of the condensing and separating device 3;
  • the generating device 21 is independent of the tower body 22 and includes a hot blast stove 27 and a burner 25 disposed on the hot blast stove 27.
  • the inside of the hot blast stove 27 forms a combustion chamber 26, and the combustion chamber 26 communicates with the interior of the tower body 22.
  • the condensing separation device 3 includes a spray tower 31, a water-oil separation device 32, and a sludge and water treatment device 33, wherein the condensate outlet of the spray tower 31 communicates with the inlet of the oil-water separation device 32, and the oil-water separation device 32
  • the sludge discharge port communicates with the sludge inlet of the sludge and water treatment device 33 through the sludge pump, and the oil discharge port of the oil-water separation device 32 communicates with the smoke generation device 21 through the oil pump.
  • the spray tower 31 can also be replaced by a tubular condenser, and the connection relationship between the tubular condenser and other equipment can be referred to the spray tower 31.
  • the condensing separation device 3 further includes a non-condensable gas treatment device 35, and the non-condensable gas outlet of the spray tower 31 communicates with the intake port of the non-condensable gas treatment device 35.
  • the purified non-condensable gas is introduced into the flue gas generating device 21 for combustion, and the gas outlet of the non-condensable gas treating device 35 is in communication with the combustion chamber 26 of the flue gas generating device 21.
  • the condensing separation device 3 further includes an air cooler 34, and the water outlet of the oil-water separation device 32.
  • the water pump communicates with the air cooler 34, and the water inlet of the air cooler 34 communicates with the spray tower 31, and the water outlet of the sludge and water treatment device 33 communicates with the shower 41.
  • a water storage tank 36 is further disposed between the oil water separator 32 and the air cooler 34, and the water pump 37 is in communication with the air cooler 34.
  • An oil storage tank 39 is further disposed between the oil discharge port of the oil-water separation device 32 and the oil pump 391.
  • the separated water of the oil-water separation device 32 is sent to the air cooling device 34 through the water pump 37, and the water after the heat exchange by the air is sent to
  • the spray tower 31 is used for cooling the spray tower 31; and the sludge and part of the water are sent to the sludge and water treatment device 33 through the sludge pump 38 for sedimentation and filtration treatment to obtain mud cake and clean water, and a part of the clean water is cleaned.
  • Water can be supplied to the shower 41 for the shower 41 to be used with water.
  • the oil separated by the oil-water separation device 32 is stored by the oil storage tank 39 or is supplied to the combustion chamber 26 by an oil pump 391 provided at the rear of the oil storage tank 39.
  • the discharge device 4 in the embodiment of the present invention may specifically be a discharge screw, and the shower 41 is disposed on the upper part of the casing of the discharge screw, and is also provided at the discharge port of the heating chamber 22 for insulating air. Air lock 42.
  • each discharge port is provided with an air lock 42, a plurality of air locks 13 and a discharge device 4
  • a discharge screw 43 is also provided to sufficiently agitate the solid phase residue and uniformly convey it to the discharge screw.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Materials Engineering (AREA)
  • Treatment Of Sludge (AREA)

Abstract

一种油田废弃物处理方法以及***,所述油田废弃物处理方法包括将初始物料输送至加热腔(24)中;利用高温烟气加热所述加热腔(24)得到混合蒸汽和固相残渣;所述混合蒸汽经冷凝分离处理后得到油、水和不凝气体,所述油和所述不凝气体用于燃烧得到所述高温烟气;所述固相残渣排出所述加热腔。上述方法利用高温烟气间接对加热腔(24)进行加热,使得加热腔(24)内的初始物料进行热分解,且经热分解后产生的混合蒸汽经过一系列处理后得到不含油的固相残渣、不凝气体和油继续用于燃烧产生高温烟气,与现有技术相比采用本申请的方法不需要添加破解剂进行分解,可以针对不同区域的油田废弃物直接进行热分解,因此,通用性更好。

Description

一种油田废弃物处理方法以及***
本申请要求于2014年08月01日提交中国专利局、申请号为201410376955.7、发明名称为“一种油田废弃物处理方法以及***”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及油田环保技术领域,更具体地说,涉及一种油田废弃物处理方法以及***。
背景技术
随着国家对页岩气等非常规能源开发力度的加大,废弃油基泥浆和含油钻屑不断大量产生和累积,钻井阶段单井产生的含油钻屑约300-500吨,其中油类物质占25-30%。
在油气勘探开发生产中,废弃油基泥浆和含油钻屑处置不当将造成水资源、土壤等的严重污染,并制约开发进度,因此油基泥浆和含油钻屑的无害化处理普遍受到重视。世界各国对油田废弃物的毒性分析、环境影响评价以及处理技术等方面做了大量工作。每种处理技术都有其适用范围,应根据油气田的地理环境、水文、土壤、钻井液的组成及经济性来选择。
例如,现有技术中公开了一种石油化工废弃物分离处理方法,包括:向处理器内加入石油化工废弃物和水,加热升温;向处理器内加入破解剂,充分搅拌,形成油、水、杂质二项,静置沉淀将其油、水、杂质彻底分离。但是,采用该处理方法针对不同的地区的废弃油基泥浆,需要配置不同的破解剂。
综上所述,如何提高油田废弃物处理工艺的通用性,成为本领域技术人员亟待解决的技术问题。
发明内容
有鉴于此,本发明的第一个目的在于提供一种油田废弃物处理方法,以实现提高油田废弃物处理工艺的通用性的目的;本发明的第二个目的在于提供一种油田废弃物处理装置。
为实现上述第一个目的,本发明提供如下技术方案:
一种油田废弃物处理方法,该方法包括步骤:
将初始物料输送至加热腔中;
利用高温烟气加热所述加热腔得到混合蒸汽和固相残渣;
所述混合蒸汽经冷凝分离处理后得到油、水和不凝气体,所述油和所述不凝气体用于燃烧得到所述高温烟气;
所述固相残渣排出所述加热腔。
优选地,上述油田废弃物处理方法中,所述再湿处理之后还包括对所述固相残渣进行再湿处理和固化处理。
优选地,上述油田废弃物处理方法中,所述冷凝分离处理包括:
所述混合蒸汽经冷凝沉降得到冷凝液和不凝气体;
所述冷凝液经分离处理后得到油、水及污泥。
优选地,上述油田废弃物处理方法中,所述不凝气体用于燃烧得到所述高温烟气之前还包括对所述不凝气体进行净化处理。
优选地,上述油田废弃物处理方法中,部分所述水用于所述混合蒸汽的冷凝沉降,剩余的所述水和所述污泥经沉降过滤处理后得到洁净水和泥饼,部分所述洁净水用于所述固相残渣的再湿处理。
从上述技术方案中可以看出,本发明实施例中的所述油田废弃物处理方法包括将初始物料输送至加热腔中;利用高温烟气加热所述加热腔得到混合蒸汽 和固相残渣;所述混合蒸汽经冷凝分离处理后得到油、水和不凝气体,所述油和所述不凝气体辅助燃烧得到所述高温烟气;所述固相残渣排出所述加热腔。上述方法利用高温烟气对加热腔进行间接加热,使得初始物料升温后进行热分解,且经热分解后产生的混合蒸汽经过一系列处理后得到不含油的固相残渣、不凝气体和油继续辅助燃烧产生高温烟气,与现有技术相比采用本发明的方法不需要添加破解剂进行分解,可以针对不同区域的油田废弃物直接进行热分解,因此,通用性更好。
为了实现上述第二目的,本发明还提供了一种油田废弃物处理***,包括:
进料装置,所述进料装置用于输送初始物料;
其进料口与所述进料装置的出料端对应的热分解装置,所述热分解装置的内部设置有用于盛放所述初始物料的加热腔,且所述加热腔与所述热分解装置的内部隔离;
产生高温烟气的烟气发生装置,所述烟气发生装置设置在热分解装置的内部或者外部;
冷凝分离装置,所述冷凝分离装置的进气口与所述热分解装置的排气口相连通,所述冷凝分离装置的出油口和所述冷凝分离装置的不凝气体出口与所述烟气发生装置的燃料进口连通;以及
其进料端与所述热分解装置的出料口相对应的出料装置。
优选地,上述油田废弃物处理***中,所述热分解装置包括塔体、传送装置和加热腔,其中,所述传送装置设置在所述加热腔中,且所述传送装置的进料端与所述塔体的进料口相对应,所述传送装置的出料端与所述塔体的出料口相对应,所述加热腔的排气口与所述冷凝分离装置的进气口连通;所述烟气发生装置设置在所述塔体上,所述烟气发生装置包括燃烧器和燃烧腔,所述燃烧器设置在所述塔体,所述塔体设置有燃烧器的部位形成所述燃烧腔,所述燃烧腔与所述加热腔之间具有隔热板。
优选地,上述油田废弃物处理***中,所述热分解装置包括塔体、传送装置和加热腔,其中,所述传送装置设置在所述加热腔中,且所述传送装置的进 料端与所述塔体的进料口相对应,所述传送装置的出料端与所述塔体的出料口相对应,所述加热腔的排气口与所述冷凝分离装置的进气口连通;所述烟气发生装置与所述塔体独立,包括热风炉和设置在所述热风炉上的燃烧器,所述热风炉的内部形成燃烧腔,且所述燃烧腔与所述塔体的内部相连通。
优选地,上述油田废弃物处理***中,所述冷凝分离装置包括喷淋塔、不凝气体处理装置、油水分离装置和污泥及水处理装置,其中,所述喷淋塔的冷凝液出口与所述油水分离装置的进液口相连通,所述喷淋塔的不凝气体出口与所述不凝气体处理装置的进气口连通;所述油水分离装置的污泥排出口通过污泥泵与所述污泥及水处理装置的进液口连通,所述油水分离装置的出油口通过油泵与所述烟气发生装置连通;所述不凝气体处理装置的出气口与所述烟气发生装置连通。
优选地,上述油田废弃物处理***中,所述出料装置上设置有喷淋器,所述冷凝分离装置还包括空气冷却器,所述冷凝分离装置还包括空气冷却器,所述油水分离装置的出水口通过水泵与所述空气冷却器连通,所述空气冷却器的进水口与所述喷淋塔连通,所述污泥及水处理装置的出水口与所述喷淋器连通。
优选地,上述油田废弃物处理***中,所述空气冷却器与所述油水分离装置之间还设置有储水罐,所述储水罐通过所述水泵与所述空气冷却器连通;
所述油水分离装置与所述烟气发生装置之间还设置有储油罐,所述储油罐通过所述油泵与所述烟气发生装置连通。
由于上述方法具有上述效果,应用上述方法的***也具有相应的效果。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例所提供的一种油田废弃物处理方法的流程示意图;
图2为本发明实施例所提供的一种冷凝处理的流程示意图;
图3为本发明实施例所提供的另一种冷凝处理的流程示意图;
图4为本发明实施例所提供的一种油田废弃物处理***的结构框图;
图5为本发明实施例所提供的另一种油田废弃物处理***的结构框图;
图6为本发明实施例所提供的第三种油田废弃物处理***的结构框图;
图7为本发明实施例所提供的一种油田废弃物处理***的结构示意图;
图8为本发明实施例所提供的第二种油田废弃物处理***的结构示意图;
图9为本发明实施例所提供的第三种油田废弃物处理***的结构示意图;
图10为本发明实施例所提供的第四种油田废弃物处理***的结构示意图;
图1至图10中:
1为进料装置、2为热分解装置、3为冷凝分离装置、4为出料装置;
11为进料斗、12为料封机、13为气锁、14为进料螺旋器、15为皮带秤、16为振动筛、17为进料螺旋器、18为布料斗;
21为烟气发生装置、22为塔体、23为传送装置、24为加热腔、25为燃烧器、26为燃烧腔、27为热风炉;
31为喷淋塔、32为油水分离装置、33为污泥及水处理装置、34为空气冷却器、35为不凝气体处理装置、36为缓冲罐、37为水泵、38为污泥泵、39为储油罐、391为油泵;
41为喷淋器、42为气锁、43为出料螺旋器。
具体实施方式
本发明的第一个核心是公开一种油田废弃物处理方法,以实现提高油田废 弃物处理工艺的通用性的目的;本发明的第二个核心是公开一种油田废弃物处理***。以下,参照附图对实施例进行说明。此外,下面所示的实施例不对权利要求所记载的发明内容起任何限定作用。另外,下面实施例所表示的构成的全部内容不限于作为权利要求所记载的发明的解决方案所必需的。
如图1所示,油田废弃物处理方法,该方法包括:
步骤S100:将初始物料输送至加热腔中;其中,在该步骤中,初始物料即为油田废弃物,实现将初始物料输送至加热腔的办法很多,例如通过传送带等输送。为了提高后续处理效率,可对输送至加热腔之前的初始物料进行初步处理,例如预加热处理。
为了提高处理效率,需对输送至加热腔内的初始物料进行充分搅拌,使得初始物料能够均匀受热。
步骤S200:利用高温烟气加热加热腔得到混合蒸汽和固相残渣;在该步骤中,加热腔内不直接进行加热,而是利用高温烟气间接加热,从而可以避免由于火焰直接加热加热腔造成局部温度过高的技术缺陷。其中,高温烟气由烟气发生装置提供,烟气发生装置可以与加热腔集成在一个部件中,还可以单独设置,其中,当集成在一个部件中时,加热腔与烟气发生装置的燃烧腔位于同一空间内通过采用隔热板来隔绝火焰对于加热腔的直接加热。或者,燃烧腔外置,通过相应的管线将燃烧腔内的高温烟气送入至加热腔中,使得加热腔中的高温烟气与初始物料进行对流换热,从而发生热分解。经过高温加热后的初始物料中的水分、油发生蒸发形成水蒸气、油和粉尘的混合蒸汽。经过一定时间热分解后初始物料变成不含有油和水分的固相残渣。
另外,当加热腔内氧气含量较高时,为了降低内部氧气的含量向加热腔中通入惰性气体,其中,该惰性气体可以氮气等。
步骤S300:混合蒸汽经冷凝分离处理后得到油、水和不凝气体,油和不凝气体用于燃烧得到高温烟气;上述混合蒸汽抽出,抽出后的混合蒸汽经冷凝分离处理后得到油、水、污泥和不凝气体,其中,油和不凝气体可以作为燃料用于燃烧生成高温烟气,而水可以循环使用。
其中,如图2所示,在该步骤中冷凝分离处理具体包括:
步骤S201:混合蒸汽经冷凝沉降得到冷凝液和不凝气体。
步骤S202:冷凝液经分离处理后得到油、水及污泥。其中,部分水用于混合蒸汽的冷凝沉降,剩余的水和污泥经沉降过滤及压滤处理后得到洁净水和泥饼。此处的分离处理可以为通常的分离处理手段。
如图3所示,步骤S203对不凝气体进行净化处理。其中,经过净化处理后的不凝气体更适合燃烧。
步骤S204,油和不凝气体用于燃烧得到高温烟气。
而针对上述冷凝分离处理后的产生的水,部分水用于混合蒸汽的冷凝沉降,剩余的水和污泥经沉降过滤处理后得到洁净水和泥饼。
步骤S400:固相残渣排出加热腔。由于从加热腔排出的固相残渣温度较高,为了防止烫伤操作人员,排出后的固相残渣可以通过风冷进行降温,或者再湿处理,而再湿处理不仅可以降低固相残渣的温度,还可以减少扬尘现象的发生。其中,进行再湿处理的水可以由上述洁净水提供。
进一步的方案中,经过再湿处理后的固相残渣还需要进行固化处理,以方便储运,同时,经固化处理后的固相残渣也可以从一定程度上减少扬尘现象的发生。
上述方法用高温烟气对加热腔进行间接加热,使得初始物料升温后进行热分解,且经热分解后产生的混合蒸汽经过一系列处理后得到不含油的固相残渣、不凝气体和油继续辅助燃烧产生高温烟气,与现有技术相比采用本发明的方法不需要添加破解剂进行分解,可以针对不同区域的油田废弃物直接进行热分解,因此,通用性更好。
本发明还公开了一种油田废弃物处理***,如图4至图10所示,包括:
进料装置1,进料装置1用于输送初始物料;
其进料口与进料装置1的出料端对应的热分解装置2,热分解装置2的内部设置有用于盛放初始物料的加热腔24,且加热腔24与热分解装置2的内部隔离;
产生高温烟气的烟气发生装置21,烟气发生装置21设置在热分解装置2的内部或者外部;
冷凝分离装置3,冷凝分离装置3的进气口与热分解装置2的排气口相连通,冷凝分离装置3的出油口和冷凝分离装置3的不凝气体出口与烟气发生装置21的燃料进口连通;以及
其进料端与热分解装置2的出料口相对应的出料装置4。
在一个实施例中,如图4所示,进料装置1包括进料斗11和其进料端与进料斗11的出料口相对的料封机12,料封机12的出料端作为进料装置1的出料端与热分解装置2的进料口相对应。
在另外一个实施例中,如图10所示,进料装置1包括进料斗11和其进料端与进料斗11的出料口相对的气锁13,气锁13的出料端作为进料装置1的出料端与热分解装置2的进料口相对应。
在又一实施例中,如图8所示,进料斗11的进料口处还设置有进料螺旋器14,进料螺旋器14的出料口与进料斗11的进料口相对。
如图9所示,进料斗11与气锁13之间还设置有布料器,布料器包括设置在进料斗11的出料口下方的皮带秤15、设置在皮带秤15下方的振动筛16和设置在振动筛16下方的进料螺旋器17以及其进料口设置在进料螺旋器17的出料口下方的布料斗18,布料斗18的出料口与气锁13连通。
在本实施例中,进料装置1设置有三个气锁13,每个气锁13对应热分解装置2的一个进料口,每个进料口处设置有一个传送装置23,每个传送装置23上均可以布置初始物料,如此设置能够提高处理效率。
虽然本实施例中附图中给出了设置一个和三个传送装置23的内容,但是本发明并不仅仅局限于保护设置一个和三个传送装置23的内容,还保护其他数量的内容。
上述***中,如图7至图10所示,热分解装置2包括塔体22、传送装置23和加热腔24,其中,传送装置23设置在加热腔24的内部,且传送装置23的进料端与塔体22的进料口相对应,传送装置23的出料端与塔体22的出料口相对应,加热腔24的排气口与冷凝分离装置3的进气口连通;烟气发生装置21设置在塔体22上,烟气发生装置21包括燃烧器25和燃烧腔26,燃烧器25设置在塔体22,塔体22设置有燃烧器25的部位形成燃烧腔26,燃烧腔26与加热腔24之间具有隔热板,通过设置隔热板隔离火焰。
其中,如图7、图8和图9所示,烟气发生装置21设置在塔体22的内部,塔体22上设置有燃烧器25,并在塔体22对应燃烧器25的内部形成燃烧腔26,其中,加热腔24下方通过隔热板进行隔离燃烧腔26的火焰。
在另一实施例中,如图10所示,热分解装置2包括塔体22、传送装置23和加热腔24,其中,传送装置23设置在加热腔24的内部,且传送装置23的进料端与塔体22的进料口相对应,传送装置23的出料端与塔体22的出料口相对应,加热腔24的排气口与冷凝分离装置3的进气口连通;烟气发生装置21与塔体22独立,包括热风炉27和设置在热风炉27上的燃烧器25,热风炉27的内部形成燃烧腔26,且燃烧腔26与塔体22的内部相连通。
冷凝分离装置3包括喷淋塔31、油水分离装置32和污泥及水处理装置33,其中,喷淋塔31的冷凝液出口与油水分离装置32的进液口相连通,油水分离装置32的污泥排出口通过污泥泵与污泥及水处理装置33的进液口连通,油水分离装置32的出油口通过油泵与烟气发生装置21连通。上述喷淋塔31还可以由列管式冷凝器替代,列管式冷凝器与其他设备的连接关系可以参照喷淋塔31。
为了净化不凝气体,冷凝分离装置3还包括不凝气体处理装置35,喷淋塔31的不凝气体出口与不凝气体处理装置35的进气口连通。
其中,经净化后的不凝气体通入至烟气发生装置21中用于燃烧,不凝气体处理装置35的出气口与烟气发生装置21的燃烧腔26连通。
除了产生不凝气体外,还产生了水,其中一部分水可以用于喷淋塔31的冷却,具体的,冷凝分离装置3还包括空气冷却器34,油水分离装置32的出水口 通过水泵与空气冷却器34连通,空气冷却器34的进水口与喷淋塔31连通,污泥及水处理装置33的出水口与喷淋器41连通。
在油水分离装置32与空气冷却器34之间还设置有储水罐36,水泵37与空气冷却器34连通。
油水分离装置32的出油口与油泵391之间还设置有储油罐39。
当使用沉降分离罐时,如图7、图8和图10所示,油水分离装置32的分离出的水经过水泵37被输送至空气冷却装置34内,经过空气换热后的水被输送至喷淋塔31,用于喷淋塔31的降温;而污泥和部分水通过污泥泵38被输送到污泥及水处理装置33内进行沉降过滤处理得到泥饼和洁净水,其中一部分洁净水可以输送给喷淋器41,以供喷淋器41用水。
经油水分离装置32分离出的油被储油罐39储存,或者通过设置在储油罐39后边的油泵391输送给燃烧腔26。
本发明实施例中的出料装置4具体可以为出料螺旋器,而喷淋器41设置在出料螺旋器的壳体上部,为了隔绝空气还可在加热腔22的出料口处设置有气锁42。当热分解装置2设置有多个加热腔24以及多个出料口时,如图9所示,每个出料口均设置有一个气锁42,多个气锁13与出料装置4之间还设置有出料螺旋器43,以充分搅拌固相残渣,并统一输送至出料螺旋器上。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (11)

  1. 一种油田废弃物处理方法,其特征在于,该方法包括步骤:
    将初始物料输送至加热腔中;
    利用高温烟气加热所述加热腔得到混合蒸汽和固相残渣;
    所述混合蒸汽经冷凝分离处理后得到油、水和不凝气体,所述油和所述不凝气体用于燃烧得到所述高温烟气;
    所述固相残渣排出所述加热腔。
  2. 如权利要求1所述的油田废弃物处理方法,其特征在于,所述固相残渣排出所述加热腔之后还包括对所述固相残渣进行再湿处理和固化处理。
  3. 如权利要求2所述的油田废弃物处理方法,其特征在于,所述冷凝分离处理包括:
    所述混合蒸汽经冷凝沉降得到冷凝液和不凝气体;
    所述冷凝液经分离处理后得到油、水及污泥。
  4. 如权利要求3所述的油田废弃物处理方法,其特征在于,所述不凝气体用于燃烧得到所述高温烟气之前还包括对所述不凝气体进行净化处理。
  5. 如权利要求4所述的油田废弃物处理方法,其特征在于,部分所述水用于所述混合蒸汽的冷凝沉降,剩余的所述水和所述污泥经沉降过滤处理后得到洁净水和泥饼,部分所述洁净水用于所述固相残渣的再湿处理。
  6. 一种油田废弃物处理***,其特征在于,包括:
    进料装置,所述进料装置用于输送初始物料;
    其进料口与所述进料装置的出料端对应的热分解装置,所述热分解装置内部设置有用于盛放所述初始物料的加热腔,且所述加热腔与所述热分解装置的内部隔离;
    产生高温烟气的烟气发生装置,所述烟气发生装置设置在热分解装置的内部或者外部;
    冷凝分离装置,所述冷凝分离装置的进气口与所述热分解装置的排气口相连通,所述冷凝分离装置的出油口和所述冷凝分离装置的不凝气体出口与所述烟气发生装置的燃料进口连通;以及
    其进料端与所述热分解装置的出料口相对应的出料装置。
  7. 如权利要求6所述的油田废弃物处理***,其特征在于,所述热分解装置包括塔体、传送装置和加热腔,其中,所述传送装置设置在所述加热腔中,且所述传送装置的进料端与所述塔体的进料口相对应,所述传送装置的出料端与所述塔体的出料口相对应,所述加热腔的排气口与所述冷凝分离装置的进气口连通;所述烟气发生装置设置在所述塔体上,所述烟气发生装置包括燃烧器和燃烧腔,所述燃烧器设置在所述塔体上,所述塔体设置有燃烧器的部位形成所述燃烧腔,所述燃烧腔与所述加热腔之间具有隔热板。
  8. 如权利要求6所述的油田废弃物处理***,其特征在于,所述热分解装置包括塔体、传送装置和加热腔,其中,所述传送装置设置在所述加热腔中,且所述传送装置的进料端与所述塔体的进料口相对应,所述传送装置的出料端 与所述塔体的出料口相对应,所述加热腔的排气口与所述冷凝分离装置的进气口连通;所述烟气发生装置与所述塔体独立设置,包括热风炉和设置在所述热风炉上的燃烧器,所述热风炉的内部形成燃烧腔,且所述燃烧腔与所述塔体的内部相连通。
  9. 如权利要求7或8所述的油田废弃物处理***,其特征在于,所述冷凝分离装置包括喷淋塔、不凝气体处理装置、油水分离装置和污泥及水处理装置,其中,所述喷淋塔的冷凝液出口与所述油水分离装置的进液口相连通,所述喷淋塔的不凝气体出口与所述不凝气体处理装置的进气口连通;所述油水分离装置的污泥排出口通过污泥泵与所述污泥及水处理装置的进液口连通,所述油水分离装置的出油口通过油泵与所述烟气发生装置连通;所述不凝气体处理装置的出气口与所述烟气发生装置连通。
  10. 如权利要求9所述的油田废弃物处理***,其特征在于,所述出料装置上设置有喷淋器,所述冷凝分离装置还包括空气冷却器,所述油水分离装置的出水口通过水泵与所述空气冷却器连通,所述空气冷却器的进水口与所述喷淋塔连通,所述污泥及水处理装置的出水口与所述喷淋器连通。
  11. 如权利要求10所述的油田废弃物处理***,其特征在于,所述空气冷却器与所述油水分离装置之间还设置有储水罐,所述储水罐通过所述水泵与所述空气冷却器连通;
    所述油水分离装置与所述烟气发生装置之间还设置有储油罐,所述储油罐通过所述油泵与所述烟气发生装置连通。
PCT/CN2015/076939 2014-08-01 2015-04-20 一种油田废弃物处理方法以及*** WO2016015492A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410376955.7A CN104150728B (zh) 2014-08-01 2014-08-01 一种油田废弃物处理方法以及***
CN201410376955.7 2014-08-01

Publications (1)

Publication Number Publication Date
WO2016015492A1 true WO2016015492A1 (zh) 2016-02-04

Family

ID=51876397

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/076939 WO2016015492A1 (zh) 2014-08-01 2015-04-20 一种油田废弃物处理方法以及***

Country Status (2)

Country Link
CN (1) CN104150728B (zh)
WO (1) WO2016015492A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108707467A (zh) * 2018-04-11 2018-10-26 杭州电子科技大学 固废热裂解***
CN108787694A (zh) * 2018-04-11 2018-11-13 方明环保科技(漳州)有限公司 高效节能含油物料处理设备
CN109513730A (zh) * 2018-12-29 2019-03-26 广东蓝新氢能源科技有限公司 一种固体有机废弃物真空热解***与方法
CN110040931A (zh) * 2019-05-10 2019-07-23 马平 含油污泥热解处理装置
CN114032113A (zh) * 2021-10-13 2022-02-11 南方环境有限公司 一种工业废弃物处置与资源化利用装备
CN114593627A (zh) * 2022-04-06 2022-06-07 天津商业大学 相变蓄冷装置

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104402178A (zh) * 2014-11-25 2015-03-11 杰瑞能源服务有限公司 一种进料装置以及油田废弃物处理***
CN106007284B (zh) * 2016-05-04 2019-01-22 杰瑞环保科技有限公司 含油废弃物深度处理方法及***
CN106675589A (zh) * 2016-12-30 2017-05-17 浙江天禄环境科技有限公司 一种污泥还原气化制生物炭的废气及余热回收工艺
CN106830146A (zh) * 2017-02-15 2017-06-13 晨光生物科技集团股份有限公司 辣椒精生产废液的处理方法和处理***
US11624326B2 (en) 2017-05-21 2023-04-11 Bj Energy Solutions, Llc Methods and systems for supplying fuel to gas turbine engines
US11560845B2 (en) 2019-05-15 2023-01-24 Bj Energy Solutions, Llc Mobile gas turbine inlet air conditioning system and associated methods
US10895202B1 (en) 2019-09-13 2021-01-19 Bj Energy Solutions, Llc Direct drive unit removal system and associated methods
US11015594B2 (en) 2019-09-13 2021-05-25 Bj Energy Solutions, Llc Systems and method for use of single mass flywheel alongside torsional vibration damper assembly for single acting reciprocating pump
US11015536B2 (en) 2019-09-13 2021-05-25 Bj Energy Solutions, Llc Methods and systems for supplying fuel to gas turbine engines
US11002189B2 (en) 2019-09-13 2021-05-11 Bj Energy Solutions, Llc Mobile gas turbine inlet air conditioning system and associated methods
CA3092829C (en) 2019-09-13 2023-08-15 Bj Energy Solutions, Llc Methods and systems for supplying fuel to gas turbine engines
US10989180B2 (en) 2019-09-13 2021-04-27 Bj Energy Solutions, Llc Power sources and transmission networks for auxiliary equipment onboard hydraulic fracturing units and associated methods
US10815764B1 (en) 2019-09-13 2020-10-27 Bj Energy Solutions, Llc Methods and systems for operating a fleet of pumps
CA3092859A1 (en) 2019-09-13 2021-03-13 Bj Energy Solutions, Llc Fuel, communications, and power connection systems and related methods
US11555756B2 (en) 2019-09-13 2023-01-17 Bj Energy Solutions, Llc Fuel, communications, and power connection systems and related methods
CA3092865C (en) 2019-09-13 2023-07-04 Bj Energy Solutions, Llc Power sources and transmission networks for auxiliary equipment onboard hydraulic fracturing units and associated methods
US11708829B2 (en) 2020-05-12 2023-07-25 Bj Energy Solutions, Llc Cover for fluid systems and related methods
US10968837B1 (en) 2020-05-14 2021-04-06 Bj Energy Solutions, Llc Systems and methods utilizing turbine compressor discharge for hydrostatic manifold purge
US11428165B2 (en) 2020-05-15 2022-08-30 Bj Energy Solutions, Llc Onboard heater of auxiliary systems using exhaust gases and associated methods
US11208880B2 (en) 2020-05-28 2021-12-28 Bj Energy Solutions, Llc Bi-fuel reciprocating engine to power direct drive turbine fracturing pumps onboard auxiliary systems and related methods
US11208953B1 (en) 2020-06-05 2021-12-28 Bj Energy Solutions, Llc Systems and methods to enhance intake air flow to a gas turbine engine of a hydraulic fracturing unit
US10961908B1 (en) 2020-06-05 2021-03-30 Bj Energy Solutions, Llc Systems and methods to enhance intake air flow to a gas turbine engine of a hydraulic fracturing unit
US11109508B1 (en) 2020-06-05 2021-08-31 Bj Energy Solutions, Llc Enclosure assembly for enhanced cooling of direct drive unit and related methods
CN111577176A (zh) * 2020-06-08 2020-08-25 浙江铂沣环保科技有限公司 一种海上石油天然气平台油基钻井液钻屑随钻处理***
US11022526B1 (en) 2020-06-09 2021-06-01 Bj Energy Solutions, Llc Systems and methods for monitoring a condition of a fracturing component section of a hydraulic fracturing unit
US10954770B1 (en) 2020-06-09 2021-03-23 Bj Energy Solutions, Llc Systems and methods for exchanging fracturing components of a hydraulic fracturing unit
US11066915B1 (en) 2020-06-09 2021-07-20 Bj Energy Solutions, Llc Methods for detection and mitigation of well screen out
US11939853B2 (en) 2020-06-22 2024-03-26 Bj Energy Solutions, Llc Systems and methods providing a configurable staged rate increase function to operate hydraulic fracturing units
US11125066B1 (en) 2020-06-22 2021-09-21 Bj Energy Solutions, Llc Systems and methods to operate a dual-shaft gas turbine engine for hydraulic fracturing
US11933153B2 (en) 2020-06-22 2024-03-19 Bj Energy Solutions, Llc Systems and methods to operate hydraulic fracturing units using automatic flow rate and/or pressure control
US11028677B1 (en) 2020-06-22 2021-06-08 Bj Energy Solutions, Llc Stage profiles for operations of hydraulic systems and associated methods
US11473413B2 (en) 2020-06-23 2022-10-18 Bj Energy Solutions, Llc Systems and methods to autonomously operate hydraulic fracturing units
US11466680B2 (en) 2020-06-23 2022-10-11 Bj Energy Solutions, Llc Systems and methods of utilization of a hydraulic fracturing unit profile to operate hydraulic fracturing units
US11220895B1 (en) 2020-06-24 2022-01-11 Bj Energy Solutions, Llc Automated diagnostics of electronic instrumentation in a system for fracturing a well and associated methods
US11149533B1 (en) 2020-06-24 2021-10-19 Bj Energy Solutions, Llc Systems to monitor, detect, and/or intervene relative to cavitation and pulsation events during a hydraulic fracturing operation
US11193361B1 (en) 2020-07-17 2021-12-07 Bj Energy Solutions, Llc Methods, systems, and devices to enhance fracturing fluid delivery to subsurface formations during high-pressure fracturing operations
US11639654B2 (en) 2021-05-24 2023-05-02 Bj Energy Solutions, Llc Hydraulic fracturing pumps to enhance flow of fracturing fluid into wellheads and related methods

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001104512A (ja) * 1999-10-05 2001-04-17 Yamada Sangyo Kk ハロゲン化合物の分解処理方法
CN101767920A (zh) * 2008-12-30 2010-07-07 新疆华易石油工程技术有限公司 一种油田污油泥处理方法
CN102872614A (zh) * 2012-09-19 2013-01-16 驻马店市源益能源有限公司 一种石油化工废弃物分离处理方法
CN103923670A (zh) * 2014-04-17 2014-07-16 杰瑞能源服务有限公司 油田废弃物的工业处理方法及其装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100457657C (zh) * 2006-04-25 2009-02-04 大庆油田创业集团有限公司 一种含油污泥砂处理工艺
KR100937212B1 (ko) * 2009-04-29 2010-01-20 주식회사 에이쓰 오일 샌드 원유 추출장치
CN201981164U (zh) * 2011-02-22 2011-09-21 唐山南光实业有限公司 裂解蒸发式油砂油污泥处理装置
CN102503055B (zh) * 2011-11-04 2014-05-14 青海大地环境工程技术有限公司 含油污泥的处理方法和处理设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001104512A (ja) * 1999-10-05 2001-04-17 Yamada Sangyo Kk ハロゲン化合物の分解処理方法
CN101767920A (zh) * 2008-12-30 2010-07-07 新疆华易石油工程技术有限公司 一种油田污油泥处理方法
CN102872614A (zh) * 2012-09-19 2013-01-16 驻马店市源益能源有限公司 一种石油化工废弃物分离处理方法
CN103923670A (zh) * 2014-04-17 2014-07-16 杰瑞能源服务有限公司 油田废弃物的工业处理方法及其装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108707467A (zh) * 2018-04-11 2018-10-26 杭州电子科技大学 固废热裂解***
CN108787694A (zh) * 2018-04-11 2018-11-13 方明环保科技(漳州)有限公司 高效节能含油物料处理设备
CN108787694B (zh) * 2018-04-11 2024-02-09 方明环保科技(漳州)有限公司 高效节能含油物料处理设备
CN109513730A (zh) * 2018-12-29 2019-03-26 广东蓝新氢能源科技有限公司 一种固体有机废弃物真空热解***与方法
CN109513730B (zh) * 2018-12-29 2023-09-26 广东蓝新氢能源科技有限公司 一种固体有机废弃物真空热解***与方法
CN110040931A (zh) * 2019-05-10 2019-07-23 马平 含油污泥热解处理装置
CN110040931B (zh) * 2019-05-10 2024-06-18 马平 含油污泥热解处理装置
CN114032113A (zh) * 2021-10-13 2022-02-11 南方环境有限公司 一种工业废弃物处置与资源化利用装备
CN114593627A (zh) * 2022-04-06 2022-06-07 天津商业大学 相变蓄冷装置

Also Published As

Publication number Publication date
CN104150728A (zh) 2014-11-19
CN104150728B (zh) 2016-01-20

Similar Documents

Publication Publication Date Title
WO2016015492A1 (zh) 一种油田废弃物处理方法以及***
CN105817472B (zh) 流化床热脱附设备
CN109351754A (zh) 一种固体废弃物处理的方法及固体废弃物处理***
WO2015158016A1 (zh) 油田废弃物的工业处理方法及其装置
CN105883736B (zh) 一种高效低污染的泥磷回收方法
CN207918771U (zh) 一种热解炉与等离子气化协调处理固体废物***
CN105546548B (zh) 一种多功能处理固废物的装置及其固废物处理方法
CN207143067U (zh) 一种炼油厂含油污泥处置***
KR20140059944A (ko) 유화장치용 열분해 장치
WO2018137388A1 (zh) 一种污泥热解脱附装置
CN104876421A (zh) 一种油田废弃物的处理方法及其装置
CN107500501A (zh) 一种炼油厂含油污泥处置***和方法
CN104860508A (zh) 一种油田废弃物的处理方法及其装置
KR101979905B1 (ko) 토양 정화시스템
WO2018107805A1 (zh) 一种有机物自供能热解燃烧分时反应装置及方法
CN104438297A (zh) 一种处理有机垃圾的方法和装置
CN104909539A (zh) 一种油田废弃物的处理方法及其装置
CN109179940A (zh) 油泥热处理装置及其处理方法
CN108298796A (zh) 一种油泥焚烧处理工艺
CN111471477A (zh) 一种油基钻屑和氧化钙混合处理的工艺
CN108452548B (zh) 回收易燃易爆高粘度聚合物废料中有机溶剂的装置及方法
CN208604069U (zh) 一种废有机质综合利用处理***
CN204897695U (zh) 一种油田废弃物的处理装置
TWI516315B (zh) Treatment and Treatment System of Oil Desiccation and Contaminated Soil Thermal Desorption
CN211394371U (zh) 一种油田含油废弃物的高温碳化干燥设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15827236

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15827236

Country of ref document: EP

Kind code of ref document: A1