WO2016013475A1 - 表示装置およびその駆動方法 - Google Patents

表示装置およびその駆動方法 Download PDF

Info

Publication number
WO2016013475A1
WO2016013475A1 PCT/JP2015/070357 JP2015070357W WO2016013475A1 WO 2016013475 A1 WO2016013475 A1 WO 2016013475A1 JP 2015070357 W JP2015070357 W JP 2015070357W WO 2016013475 A1 WO2016013475 A1 WO 2016013475A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel
light emission
correction
current
current efficiency
Prior art date
Application number
PCT/JP2015/070357
Other languages
English (en)
French (fr)
Inventor
成継 山中
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to CN201580037723.1A priority Critical patent/CN106537488B/zh
Priority to US15/327,584 priority patent/US10141020B2/en
Priority to JP2016535900A priority patent/JP6333382B2/ja
Priority to KR1020177001584A priority patent/KR101920169B1/ko
Publication of WO2016013475A1 publication Critical patent/WO2016013475A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/18Error detection or correction; Testing, e.g. of drop-outs
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3233Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/02Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators characterised by the way in which colour is displayed
    • G09G5/024Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators characterised by the way in which colour is displayed using colour registers, e.g. to control background, foreground, surface filling
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/02Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators characterised by the way in which colour is displayed
    • G09G5/026Control of mixing and/or overlay of colours in general
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0233Improving the luminance or brightness uniformity across the screen
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/029Improving the quality of display appearance by monitoring one or more pixels in the display panel, e.g. by monitoring a fixed reference pixel
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/029Improving the quality of display appearance by monitoring one or more pixels in the display panel, e.g. by monitoring a fixed reference pixel
    • G09G2320/0295Improving the quality of display appearance by monitoring one or more pixels in the display panel, e.g. by monitoring a fixed reference pixel by monitoring each display pixel
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/04Maintaining the quality of display appearance
    • G09G2320/041Temperature compensation
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/04Maintaining the quality of display appearance
    • G09G2320/043Preventing or counteracting the effects of ageing
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0693Calibration of display systems

Definitions

  • the present invention relates to a display device, and more particularly, to a current-driven display device and a driving method thereof.
  • organic EL (Electro Luminescence) display devices have attracted attention as display devices that are thin, lightweight, and capable of high-speed response.
  • the organic EL display device includes a plurality of pixels arranged two-dimensionally.
  • a pixel of an organic EL display device typically includes one organic EL element and one driving TFT (Thin Film Transistor).
  • the organic EL element emits light with a luminance corresponding to the amount of current passing therethrough.
  • the driving TFT is provided in series with the organic EL element, and controls the amount of current flowing through the organic EL element.
  • the characteristics of the elements in the pixel vary during manufacturing.
  • the characteristics of the elements in the pixel vary with time.
  • the characteristics of the driving TFT deteriorate individually depending on the light emission luminance and the light emission time.
  • the characteristics of the organic EL element are the same as this. For this reason, even if the same voltage is applied to the gate terminal of the driving TFT, the light emission luminance of the organic EL element varies. Therefore, in order to perform high-quality display in an organic EL display device, a method of correcting a video signal so as to compensate for variations and fluctuations in characteristics of organic EL elements and driving TFTs is known.
  • Patent Document 1 discloses an organic EL display in which a drive current is read out via a power supply line, a correction gain and a correction offset are updated based on the measured amount of drive current, and a video signal is corrected using these. An apparatus is described.
  • Patent Document 2 describes a display device that obtains a deterioration characteristic of light emission luminance of a pixel based on a video signal and corrects the video signal so that the light emission luminance gradually changes near the boundary of the deterioration characteristic.
  • Patent Document 3 discloses a self-luminous display device that sets a target chromaticity in which the deterioration characteristics of each color of the organic EL are equal, and corrects an input image signal so that the chromaticity of a burn-in prevention target portion approaches the target chromaticity. Is described.
  • Patent Document 4 the difference between the deterioration amount of the correction target pixel and the deterioration amount of the reference pixel is cumulatively added, and whether or not the input signal is corrected according to whether the cumulative amount increases or decreases due to the current addition. A method for correcting the burn-in phenomenon to be switched is described.
  • the current flowing through the driving TFT and the organic EL element is measured periodically, and the current flowing through the organic EL element is determined according to the video signal based on the current measurement result.
  • a method of correcting the video signal so as to be equal to the amount) is conceivable. If this method is used, a desired amount of current can be passed through the organic EL element even if the characteristics of the driving TFT and the organic EL element vary or fluctuate.
  • the luminance of the organic EL element depends not only on the amount of current that passes through, but also on the luminous current efficiency.
  • the light emission current efficiency of the organic EL element deteriorates individually according to the light emission luminance and the light emission time. For this reason, even if a desired amount of current is passed through the organic EL element using the above method, the organic EL element does not necessarily emit light with a desired luminance (luminance corresponding to the video signal).
  • the current stress that the organic EL element receives varies greatly from pixel area to pixel area.
  • the degree of degradation of the light emission current efficiency of the organic EL element is greatly different for each pixel region. For this reason, even if the above method is used, a luminance difference occurs at the boundary of the pixel region, and the image quality of the display image is degraded.
  • an object of the present invention is to provide a display device that can reduce a luminance difference at the boundary of a pixel region.
  • a first aspect of the present invention is a current-driven display device, A plurality of pixels arranged in a two-dimensional manner, including a display element and a drive element that is provided in series with the display element and controls the amount of current flowing through the display element; A current measurement circuit that measures the current that has passed through the drive element and that has not passed through the display element and is output to the outside of the pixel; and Based on the current measurement result by the current measurement circuit, a correction calculation unit for correcting the video signal, A drive circuit for writing a voltage corresponding to the corrected video signal to the pixel, The correction calculation unit is Based on the current measurement result, a light emission current efficiency calculation unit for obtaining the light emission current efficiency of the display element for each pixel; A first correction unit that performs correction in consideration of characteristics of individual pixels for each pixel on the video signal based on the current measurement result and the light emission current efficiency; A second correction unit that obtains a correction term for each pixel based on the two-dimensional distribution of the light emission current efficiency in consideration of a difference in light emission
  • the second correction unit is characterized in that, for each pixel, an average value of a change rate of light emission current efficiency between the pixel and a neighboring pixel is obtained, and the correction term is obtained based on the average value.
  • the second correction unit obtains the correction term by multiplying a value obtained by subtracting the average value from 1 for each pixel by a coefficient.
  • the second correction unit uses ⁇ ij as the light emission current efficiency of the pixel P ij in the i-th row and j-th column, and ⁇ as a coefficient for obtaining the increase / decrease amount of the gradation voltage based on the increase / decrease amount of the change rate of the light emission current efficiency.
  • the correction term shown in the following equation (a) is obtained with a pixel within the range of ⁇ p pixels in the horizontal direction and ⁇ q pixels in the vertical direction centered on the pixel Pij .
  • the first correction unit has a gradation voltage corresponding to a video signal before correction as Vg0, a threshold voltage of a drive element in the ideal pixel as Vth0, a current coefficient of the drive element in the ideal pixel as ⁇ 0, and a display in the ideal pixel.
  • the light emitting current efficiency of the element is ⁇ 0
  • the threshold voltage of the driving element in the pixel P ij is Vth ij
  • the current coefficient of the driving element in the pixel P ij is ⁇ ij
  • the current that passes through the driving element and does not pass through the display element Based on the measurement result, when the coefficient for obtaining the current when the driving element and the display element are connected in series is ⁇ , and the gradation voltage offset is Vofs, the calculation shown in the following equation (b) is performed.
  • the correction calculation unit obtains the corrected video signal by adding the correction term obtained by the second correction unit to the video signal corrected by the first correction unit.
  • the correction calculation unit further includes a light emission current efficiency storage unit that stores the light emission current efficiency obtained by the light emission current efficiency calculation unit for each pixel, The second correction unit obtains the correction term based on the light emission current efficiency stored in the light emission current efficiency storage unit.
  • the correction calculation unit is An initial current ratio calculation unit that obtains an initial current ratio that is a ratio to an initial state current for each pixel based on the current measurement result; A table storing a relationship between the initial current ratio and the light emission current efficiency; The light emission current efficiency calculation unit obtains the light emission current efficiency by referring to the table using the initial current ratio obtained by the initial current ratio calculation unit.
  • the table stores the relationship between the temperature, the initial current ratio, and the light emission current efficiency
  • the light emission current efficiency calculation unit obtains the light emission current efficiency by referring to the table using the measured operating temperature and the initial current ratio obtained by the initial current ratio calculation unit.
  • the correction calculation unit further includes an adder that adds the correction term obtained by the second correction unit to the video signal corrected by the first correction unit.
  • a tenth aspect of the present invention includes a display element and a plurality of pixels arranged in two dimensions, including a display element and a drive element that is provided in series with the display element and that controls the amount of current flowing through the display element.
  • a driving method of a current-driven display device having Measuring the current that has passed through the drive element and that has been output to the outside of the pixel without passing through the display element; Obtaining a light emission current efficiency of the display element for each pixel based on a current measurement result;
  • a first correction step for performing a correction in consideration of the characteristics of each pixel for each pixel on the video signal based on the current measurement result and the light emission current efficiency;
  • a second correction step for obtaining a correction term for each pixel based on the two-dimensional distribution of the light emission current efficiency in consideration of a difference in light emission current efficiency between neighboring pixels; Obtaining a corrected video signal based on the video signal corrected in the first correction step and the correction term obtained in the second correction step; Writing a
  • a correction term considering the difference in light emission current efficiency with neighboring pixels is obtained, and the obtained correction term is used.
  • the difference in the light emission current efficiency between the pixel regions is obtained by obtaining the correction term based on the average value of the change rate of the light emission current efficiency between the pixel and the neighboring pixel.
  • a correction term to be compensated can be obtained.
  • the corrected video signal can be obtained according to equations (a) and (b).
  • the correction term based on the two-dimensional distribution of the light emission current efficiency can be easily obtained using the light emission current efficiency storage unit that stores the light emission current efficiency for each pixel.
  • the light emitting current efficiency can be easily obtained based on the initial current ratio using a table storing the relationship between the initial current ratio and the light emitting current efficiency.
  • the table storing the relationship between the operating temperature, the initial current ratio, and the light emission current efficiency is used.
  • the light emission current efficiency according to the operating temperature can be obtained.
  • the corrected video signal obtained by adding the correction term obtained by the second correction unit to the video signal corrected by the first correction unit can be obtained using the adder.
  • FIG. 2 is a diagram showing voltage-current characteristics of the pixel shown in FIG.
  • FIG. 2 is a diagram showing voltage-luminance characteristics of the pixel shown in FIG.
  • FIG. 7 is a circuit diagram of a pixel included in the display device shown in FIG. 6. It is a timing chart of the pixel shown in FIG.
  • FIG. 10A It is a block diagram which shows the detail of the correction
  • FIG. 1 is an equivalent circuit diagram at the time of light emission of a pixel including an organic EL element.
  • the circuit shown in FIG. 1 includes an organic EL element L1 and a driving TFT: Q1.
  • the organic EL element L1 is a self-luminous display element that emits light with a luminance corresponding to the amount of current passing therethrough.
  • the driving TFT: Q1 is a driving element that is connected in series with the organic EL element L1 and controls the amount of current flowing through the organic EL element L1.
  • Driving TFT Q1 is an N-channel transistor.
  • a high level power supply voltage Van is applied to the drain terminal of the driving TFT Q1.
  • the source terminal of the driving TFT: Q1 is connected to the anode terminal of the organic EL element L1.
  • a low level power supply voltage Vca is applied to the cathode terminal of the organic EL element L1.
  • a gate voltage Vg is applied to the gate terminal of the driving TFT Q1.
  • the anode voltage (driving TFT: equal to the source voltage of Q1) of the organic EL element L1 is Voled
  • the threshold voltage of the driving TFT: Q1 is Vth
  • the emission threshold voltage of the organic EL element L1 is Vtho.
  • the current flowing through the driving TFT Q1 when the organic EL element L1 emits light is Ids
  • the current flowing through the organic EL element L1 is Ioled.
  • Ids Ioled.
  • the current that flows during light emission is referred to as a pixel current.
  • FIG. 2 there are two pixels Pb and Pw equivalent to the circuit shown in FIG. 1 at the time of light emission, and the pixel Pb has a predetermined time (hereinafter referred to as time T) since the initial state. Assume that black is displayed and the pixel Pw displays white.
  • FIG. 3 is a diagram showing voltage-current characteristics of the pixels Pb and Pw after the initial state and time T has elapsed.
  • the horizontal axis represents the gate voltage Vg
  • the organic EL display device sets the gate voltage Vg so that the pixel current Ids after the elapse of time T matches the pixel current in the initial state.
  • the gate voltage Vg at which the pixel current Ids is 1.0 is 6.7 V for the pixel Pb after the elapse of time T and 7.4 V for the pixel Pw after the elapse of time T.
  • the gate voltage Vg after the elapse of time T is set to 6.7 V for the pixel Pb and 7.4 V for the pixel Pw.
  • FIG. 4 is a diagram showing the voltage-luminance characteristics of the pixels Pb and Pw after the initial state and the time T has elapsed.
  • the horizontal axis represents the gate voltage Vg
  • the vertical axis represents the luminance L of the pixel.
  • the reason for the difference in luminance between the pixels Pb and Pw after the elapse of time T is that a larger amount of current flows in the organic EL element L1 than in the pixel Pb in the pixel Pw, and the light emission current efficiency of the organic EL element L1 is greatly deteriorated. is there.
  • the observer can hardly recognize the luminance difference between two adjacent pixels, so that the image quality of the display image is reduced. It doesn't matter.
  • the pixel area Ab that displays black and the pixel area Aw that displays white are adjacent to each other, the light emission current efficiency of the organic EL element L1 in the pixel is significantly deteriorated in the pixel area Aw than in the pixel area Ab.
  • An observer may recognize a luminance difference at the boundary between the pixel areas Ab and Aw.
  • the observer can detect the boundary between the pixel areas Ab and Aw. To recognize the brightness difference.
  • the luminance difference is likely to occur when, for example, an image such as a checker pattern or web content is displayed for a long time.
  • the gate voltage Vg is 6.7 V for the pixels in the pixel region Ab, and the gate voltage for the pixels in the pixel region Aw.
  • Vg is set to 7.4 V
  • a luminance difference of 10% occurs at the boundary between the pixel areas Ab and Aw.
  • the gate voltage Vg is set to 7.7 V in the pixels in the pixel area Aw
  • the luminance difference at the boundary between the pixel areas Ab and Aw becomes almost zero.
  • FIG. 5 is a diagram showing the relationship between the initial current ratio K and the light emission current efficiency ⁇ for the pixel shown in FIG.
  • the light emission current efficiency ⁇ is a value obtained by dividing the luminance of the organic EL element by the density of the current flowing through the organic EL element.
  • the initial current ratio K is a value obtained by dividing the pixel current when a predetermined voltage is applied to the gate terminal of the driving TFT by the pixel current when the same voltage is applied to the gate terminal of the driving TFT in the initial state.
  • the driving TFT the current (hereinafter referred to as the driving TFT) that has passed through the driving TFT: Q1 and has not passed through the organic EL element: L1 is output outside the pixel. (Referred to as the drain current of Q1) to determine the initial current ratio K, and the light emission current efficiency ⁇ is determined based on the determined initial current ratio K.
  • the video signal can be obtained without measuring the current flowing through the organic EL element by obtaining the light emission current efficiency ⁇ based on the change rate of the drain current with reference to a lookup table. It can be corrected. Further, in order to reduce the luminance difference at the boundary of the pixel region, the present invention corrects the video signal based on the two-dimensional distribution of the light emission current efficiency ⁇ . Therefore, according to the present invention, it is possible to reduce the luminance difference at the boundary of the pixel region and perform high-quality display.
  • FIG. 6 is a block diagram showing a configuration of the display device according to the embodiment of the present invention.
  • 6 includes a display unit 11, a display control circuit 12, a scanning line drive circuit 13, a data line drive / current measurement circuit 14, an A / D converter 15, a temperature sensor 16, and a correction calculation unit 17.
  • I a current drive type organic EL display device.
  • m and n are integers of 2 or more, i is an integer of 1 to m, and j is an integer of 1 to n.
  • the display unit 11 includes 2m scanning lines GA1 to GAm, GB1 to GBm, n data lines S1 to Sn, and (m ⁇ n) pixels 18.
  • the scanning lines GA1 to GAm and GB1 to GBm are arranged in parallel to each other.
  • the data lines S1 to Sn are arranged in parallel to each other and orthogonal to the scanning lines GA1 to GAm and GB1 to GBm.
  • the scanning lines GA1 to GAm and the data lines S1 to Sn intersect at (m ⁇ n) locations.
  • the (m ⁇ n) pixels 18 are two-dimensionally arranged corresponding to the intersections of the scanning lines GA1 to GAm and the data lines S1 to Sn.
  • the pixel 18 is supplied with a high-level power supply voltage Van and a low-level power supply voltage Vca using an electrode (not shown).
  • the display control circuit 12 is a control circuit for the display device 10.
  • the display control circuit 12 outputs a control signal C1 to the scanning line drive circuit 13, outputs a control signal C2 to the data line drive / current measurement circuit 14, and outputs a video signal D1 to the correction calculation unit 17. Output.
  • the scanning line driving circuit 13 drives the scanning lines GA1 to GAm and GB1 to GBm according to the control signal C1. More specifically, the scanning line driving circuit 13 controls the voltage of the scanning line GAi to a high level (selection level) and the voltages of other scanning lines to a low level (non-selection level) in the i-th line period.
  • the scanning line driving circuit 13 selects a pair of scanning lines GAi and GBi from the scanning lines GA1 to GAm and GB1 to GBm in the vertical blanking period, and sequentially selects the voltages of the selected scanning lines GAi and GBi one by one for a predetermined time. The voltage is controlled to a high level, and the voltages of other scanning lines are controlled to a low level.
  • the scanning lines GAi and GBi selected in the vertical blanking period are switched every two frame periods.
  • the data line drive / current measurement circuit 14 is supplied with the control signal C2 and the corrected video signal D2 output from the correction calculation unit 17.
  • the data line drive / current measurement circuit 14 has a function of driving the data lines S1 to Sn and a function of measuring currents output from the pixels 18 (n pixels 18) for one row to the data lines S1 to Sn.
  • the data line drive / current measurement circuit 14 applies n data voltages corresponding to the video signal D2 to the data lines S1 to Sn in accordance with the control signal C2 during the video signal period.
  • the data line drive / current measurement circuit 14 applies n measurement voltages to the data lines S1 to Sn in accordance with the control signal C2 during the vertical blanking period, and at that time, the data line S1 from the pixels 18 for one row.
  • the n currents output to Sn are converted into voltages and output.
  • the data line drive / current measurement circuit 14 functions as a drive circuit that writes a voltage corresponding to the corrected video signal to the pixel, and also functions as a current measurement circuit that measures the current that has passed through the drive element.
  • the A / D converter 15 converts the output voltage of the data line drive / current measurement circuit 14 into digital current measurement data E1.
  • the temperature sensor 16 measures the operating temperature Temp of the display device 10.
  • the correction calculator 17 outputs data necessary for correcting the video signal D1 based on the current measurement data E1 output from the A / D converter 15 and the operating temperature Temp detected by the temperature sensor 16 ( Hereinafter, the correction data is obtained.
  • the correction calculation unit 17 refers to the correction data obtained in the vertical blanking period, corrects the video signal D1 output from the display control circuit 12, and outputs the corrected video signal D2. .
  • FIG. 7 is a circuit diagram of the pixel Pij .
  • the pixel P ij includes an organic EL element L1, a driving TFT: Q1, a writing TFT: Q2, a reading TFT: Q3, and a capacitor C1, and includes scanning lines GAi, GBi and data lines. Connected to Sj.
  • Three TFTs: Q1 to Q3 are N-channel transistors.
  • a high level power supply voltage Van is applied to the drain terminal of the driving TFT Q1.
  • the source terminal of the driving TFT: Q1 is connected to the anode terminal of the organic EL element L1.
  • a low level power supply voltage Vca is applied to the cathode terminal of the organic EL element L1.
  • One conduction terminal (the left terminal in FIG. 7) of the writing TFT: Q2 and the reading TFT: Q3 is connected to the data line Sj.
  • the other conducting terminal of the writing TFT: Q2 is connected to the gate terminal of the driving TFT: Q1, and the other conducting terminal of the reading TFT: Q3 is the source terminal of the driving TFT: Q1 and the anode terminal of the organic EL element L1.
  • the gate terminal of the writing TFT: Q2 is connected to the scanning line GAi
  • the gate terminal of the reading TFT: Q3 is connected to the scanning line GBi.
  • the capacitor C1 is provided between the gate terminal and the drain terminal of the driving TFT: Q1.
  • FIG. 8 is a timing chart of the pixel Pij .
  • the voltage of the scanning line GAi is at a high level
  • the voltage of the scanning line GBi is at a low level
  • the data voltage VD is applied to the data line Sj. ij is applied.
  • the writing TFT: Q2 is turned on
  • the reading TFT: Q3 is turned off
  • the driving TFT: gate voltage Vg of Q1 is equal to the data voltage VD ij.
  • the voltage of the scanning line GAi changes to a low level, and accordingly, the writing TFT: Q2 is turned off.
  • the gate voltage Vg of the driving TFT: Q1 is held by the action of the capacitor C1. Further, a pixel current Ids corresponding to the gate-source voltage Vgs of the driving TFT: Q1 flows through the driving TFT: Q1 and the organic EL element L1, and the organic EL element L1 has a gate voltage of the driving TFT: Q1. Light is emitted at a luminance corresponding to Vg.
  • the vertical blanking period in which the scanning lines GAi and GBi are selected two periods Ta and Tb shown in FIG. 8 are set.
  • the voltage of the scanning line GAi becomes high level
  • the voltage of the scanning line GBi becomes low level
  • the measurement voltage VM ij is applied to the data line Sj.
  • the writing TFT: Q2 is turned on
  • the reading TFT: Q3 is turned off
  • the gate voltage Vg of the driving TFT: Q1 becomes equal to the measurement voltage VM ij .
  • the voltage of the scanning line GAi is at a low level
  • the voltage of the scanning line GBi is at a high level.
  • the driving TFT: Q1 and the reading TFT: Q3 are turned on, and the writing TFT: Q2 is turned off.
  • the current that has passed through the driving TFT: Q1 flows to the data line Sj via the reading TFT: Q3.
  • the data line drive / current measurement circuit 14 converts the current output to the data line Sj in the period Tb into a voltage and outputs the voltage.
  • the data line drive / current measurement circuit 14 uses the drain current of the drive TFT Q ⁇ b> 1 when the measurement voltage VM is written to the (m ⁇ n) pixels 18 included in the display unit 11. taking measurement.
  • the A / D converter 15 converts the measured current into a digital value.
  • the correction calculation unit 17 obtains an initial current ratio K for (m ⁇ n) pixels 18 based on the digital value obtained by the A / D converter 15, and obtains the light emission current efficiency ⁇ based on the initial current ratio K. Further, the correction calculation unit 17 corrects the video signal D1 based on the two-dimensional distribution of the light emission current efficiency ⁇ .
  • each pixel 18 is measured by measuring the drain current of the driving TFT Q1 while sequentially switching the voltage written to the pixel 18.
  • Driving TFT An initial gradation value Z at which the drain current of Q1 becomes a predetermined value I0 is obtained.
  • the (m ⁇ n) initial gradation values Z are stored inside the correction calculation unit 17.
  • the data line drive / current measurement circuit 14 has a drain current of the drive TFT Q1 when the first measurement voltage VM1 is written for each pixel 18 in the vertical blanking period during the operation of the display device 10, and the first 2 Measure the driving TFT: Q1 drain current when the measurement voltage VM2 is written.
  • the correction calculation unit 17 obtains the amount of drain current of the driving TFT: Q1 when a voltage corresponding to the initial gradation value Z is written for each pixel 18 by interpolation calculation or the like based on two current measurement results. Then, the initial current ratio K of the pixel 18 is obtained by dividing the obtained amount of drain current by the value I0.
  • the drain current of the driving TFT Q1 when a predetermined initial voltage is written to the pixel 18 is measured.
  • the initial current value Y is obtained for each pixel 18.
  • the (m ⁇ n) initial current values Y are stored inside the correction calculation unit 17.
  • the data line drive / current measurement circuit 14 obtains two current measurement results for each pixel 18 in the same manner as described above.
  • the correction calculation unit 17 calculates the amount of drain current of the driving TFT: Q1 when the initial voltage is written for each pixel 18 by interpolation calculation based on the two current measurement results, and calculates the amount of drain current thus calculated. Is divided by the initial current value Y to obtain the initial current ratio K of the pixel 18.
  • the correction calculation unit 17 includes a lookup table (LookLUp Table: hereinafter referred to as LUT) in which the light emission current efficiency ⁇ is stored in association with the initial current ratio K for a plurality of operating temperatures Temp.
  • LUT LookLUp Table
  • the correction calculation unit 17 obtains the light emission current efficiency ⁇ of the pixel 18 by referring to the LUT using the initial current ratio K and the operating temperature Temp measured by the temperature sensor 16 for each pixel 18.
  • the (m ⁇ n) light emission current efficiencies ⁇ are stored inside the correction calculation unit 17.
  • the data line drive / current measurement circuit 14 for each pixel 18 has a drive TFT when the first measurement voltage VM1 is written: the drain current of the Q1 and the drive TFT when the second measurement voltage VM2 is written. : Measure the drain current of Q1.
  • the correction calculation unit 17 obtains a threshold voltage Vth and a current coefficient (gain) ⁇ of the driving TFT: Q1 based on two current measurement results for each pixel 18.
  • the correction calculation unit 17 may obtain the threshold voltage Vth and the current coefficient ⁇ by solving simultaneous equations that include two current measurement results and have the threshold voltage Vth and the current coefficient ⁇ as unknowns.
  • the correction calculation unit 17 may obtain the threshold voltage Vth and the current coefficient ⁇ by repeatedly performing a process of increasing or decreasing the threshold voltage Vth and the current coefficient ⁇ by a predetermined amount according to the current measurement result.
  • the correction calculation unit 17 corrects the data regarding the pixel 18 included in the video signal D1 by using the threshold voltage Vth and the current coefficient ⁇ obtained for each pixel 18. Further, the correction calculation unit 17 obtains an average value of the rate of change of the light emission current efficiency ⁇ between the pixel 18 and the neighboring pixels for the pixel 18 and the plurality of neighboring pixels, and includes the video signal D1 based on the obtained average value. The correction term of the data regarding the pixel 18 to be obtained is obtained. The correction calculation unit 17 obtains data regarding the pixel 18 included in the corrected video signal D2 by adding a correction term to the data corrected using the threshold voltage Vth and the current coefficient ⁇ .
  • a virtual pixel having ideal characteristics is referred to as an ideal pixel P0
  • a threshold voltage of the driving TFT: Q1 in the pixel P ij is Vth ij
  • a current coefficient is ⁇ ij .
  • the threshold voltage of the driving TFT: Q1 is different between the ideal pixel P0 and the pixel Pij . Further, the current voltage stress received by the driving TFT Q1 varies depending on the level of the threshold voltage. Therefore, when given the same current stress to the ideal pixel P0 and a pixel P ij, ideal pixel P0 and a pixel P ij in driving TFT: amount of change in the threshold voltage of Q1 is different.
  • the threshold voltage of the driving TFT: Q1 in the ideal pixel P0 changes from Vth0 to Vth0 ′
  • the current coefficient changes from ⁇ 0 to ⁇ 0 ′
  • the driving TFT: Q1 It is assumed that the pixel current when the gate voltage is set to Vg0 changes from I0 to I0 ′.
  • the following expressions (3a) and (3b) are established.
  • Equation (4) represents the amount of fluctuation of the threshold voltage of the driving TFT: Q1 in the ideal pixel P0 when subjected to current voltage stress.
  • ⁇ Vth0 a0 ⁇ 1- ⁇ (A0 / B0) ⁇ (4)
  • the driving TFT in the pixel P ij Q1 threshold voltage of 'changes
  • the current coefficient beta ij from beta ij' Vth ij from Vth ij changes to
  • the variation ⁇ Vth ij of the threshold voltage of the driving TFT: Q1 in the pixel P ij is given by the following equation (5), as described above.
  • Equation (5) a ij ⁇ 1- ⁇ (A ij / B ij ) ⁇ (5)
  • a ij , A ij and B ij included in Equation (5) are given by the following equations.
  • a ij Vg ij -Vth ij + Vofs
  • a ij I ij '/ I ij
  • B ij ⁇ ij '/ ⁇ ij
  • A0 B0 [1- (a ij / a0) ⁇ ⁇ 1- ⁇ (A ij / B ij ) ⁇ ] 2 (6a)
  • A0 ⁇ 1 ⁇ (a ij / a0) ⁇ (1 ⁇ A ij ) ⁇ 2 (6b)
  • the correction calculation unit 17 corrects the video signal D1 according to the following equation (7).
  • Vg f1 (P0, Pij , [eta]) + f2 ([eta], i, j) (7)
  • the first term of the equation (7) is a gradation voltage correction term based on the difference between the characteristics (threshold voltage and current coefficient) of the driving TFT Q1 between the ideal pixel P0 and the pixel Pij and the light emission current efficiency ⁇ . Is given by the following equation (8).
  • the second term of the equation (7) is a gradation voltage correction term based on the two-dimensional distribution of the light emission current efficiency ⁇ and is given by the following equation (9).
  • the first term in the equation (7) is a correction term considering the characteristics of each pixel
  • the second term in the equation (7) is a correction considering the difference in the light emission current efficiency ⁇ from the neighboring pixels.
  • ⁇ included in the equation (8) is based on the drain current of the driving TFT: Q1 when the driving TFT: Q1 exists alone, and the driving TFT: Q1 and the organic EL element L1 are connected in series.
  • Driving TFT in this case: a coefficient for obtaining the drain current of Q1.
  • is a coefficient for obtaining the current when the drive element and the display element are connected in series based on the measurement result of the current that passes through the drive element and does not pass through the display element.
  • P and q included in Formula (9) are integers of 1 or more.
  • ⁇ included in Equation (9) is a coefficient for obtaining the increase / decrease amount of the gradation voltage based on the increase / decrease amount of the change rate of the light emission current efficiency ⁇ .
  • the coefficient ⁇ may change according to the operating temperature Temp.
  • FIG. 9 is a block diagram showing details of the correction calculation unit 17.
  • the correction calculation unit 17 includes an initial value storage unit 21, an LUT 22, a TFT characteristic calculation unit 23, a TFT characteristic storage unit 24, an initial current ratio calculation unit 25, a light emission current efficiency calculation unit 26, and a light emission current efficiency.
  • a storage unit 27, a first correction unit 31, a second correction unit 32, and an adder 33 are included.
  • the correction calculation unit 17 receives the video signal D1 output from the display control circuit 12, the current measurement data E1 output from the A / D converter 15, and the operating temperature Temp detected by the temperature sensor 16. .
  • the correction calculation unit 17 outputs the corrected video signal D2 based on these data.
  • the initial value storage unit 21 stores (m ⁇ n) initial gradation values Z or (m ⁇ n) initial current values Y.
  • the initial value stored in the initial value storage unit 21 is set when the display device 10 operates for the first time (or before the display device 10 is shipped from the factory).
  • the LUT 22 stores the light emission current efficiency ⁇ in association with the initial current ratio K for a plurality of operating temperatures Temp.
  • the LUT 22 stores, for example, the light emission current efficiency ⁇ in association with the initial current ratio K for the operation temperature Temp in 1 ° C. increments between the minimum operation temperature and the maximum operation temperature.
  • the contents of the LUT 22 are fixedly set in advance before the display device 10 is shipped from the factory.
  • the TFT characteristic calculation unit 23 obtains the threshold voltage Vth ij and the current coefficient ⁇ ij of the driving TFT: Q1 in the pixel P ij based on the two current measurement results.
  • the TFT characteristic calculation unit 23 obtains (m ⁇ n) threshold voltages Vth and (m ⁇ n) current coefficients ⁇ by performing the above processing on (m ⁇ n) pixels 18.
  • the TFT characteristic storage unit 24 stores (m ⁇ n) threshold voltages Vth and (m ⁇ n) current coefficients ⁇ obtained by the TFT characteristic calculation unit 23.
  • the initial current ratio calculation unit 25 is based on the two current measurement results and the initial value (initial gradation value Z ij or initial current value Y ij ) stored in the initial value storage unit 21, and the initial current of the pixel P ij The ratio K ij is obtained.
  • the initial current ratio calculation unit 25 calculates a voltage corresponding to the initial gradation value Z ij by interpolation based on two current measurement results.
  • Driving TFT at the time of writing The amount of drain current of Q1 is obtained, and the obtained amount of drain current is divided by the amount of drain current when the initial gradation value is obtained, whereby the initial current ratio K of the pixel P ij is obtained.
  • the initial current ratio calculation unit 25 performs initial interpolation (when the initial current value Y ij is obtained by interpolation calculation based on two current measurement results. driving TFT of the voltage) when written: Q1 determine the amount of the drain current of, by dividing the amount of the drain current obtained in the initial current value Y ij, we obtain the initial current ratio K ij of the pixel P ij.
  • the light emission current efficiency calculation unit 26 obtains the light emission current efficiency ⁇ ij of the pixel P ij by referring to the LUT 22 using the initial current ratio K ij of the pixel P ij and the operating temperature Temp detected by the temperature sensor 16.
  • the initial current ratio calculation unit 25 and the light emission current efficiency calculation unit 26 obtain (m ⁇ n) light emission current efficiencies ⁇ by performing the above-described processing on (m ⁇ n) pixels 18.
  • the light emission current efficiency storage unit 27 stores (m ⁇ n) light emission current efficiencies ⁇ obtained by the light emission current efficiency calculation unit 26.
  • the first correction unit 31 includes the threshold voltage Vth ij and current coefficient ⁇ ij of the driving TFT: Q 1 in the pixel P ij stored in the TFT characteristic storage unit 24 and the light emission stored in the light emission current efficiency storage unit 27. Based on the current efficiency ⁇ ij , the calculation shown in Expression (8) is performed on the data related to the pixel P ij included in the video signal D1.
  • the second correction unit 32 obtains a correction term for data related to the pixel P ij included in the video signal D1 according to the equation (9) based on the light emission current efficiency ⁇ stored in the light emission current efficiency storage unit 27.
  • the adder 33 adds the correction term obtained by the second correction unit 32 to the output of the first correction unit 31. Thereby, the correction calculation shown in Expression (7) is performed on the video signal D1.
  • the output of the adder 33 is output to the data line drive / current measurement circuit 14 as the corrected video signal D2.
  • the data line drive / current measurement circuit 14 applies a data voltage corresponding to the corrected video signal D2 to the data lines S1 to Sn in the video signal period.
  • the organic EL element L1 in the pixel 18 emits light with a luminance corresponding to the corrected video signal D2.
  • FIG. 10B Focus on pixels arranged in a certain row (hereinafter referred to as row R) in the pixel areas A1 and A2.
  • the variation shown in FIG. 10B occurs in the threshold voltage Vth of the driving TFT: Q1 in the pixel in the row R.
  • the variation shown in FIG. 10C occurs in the light emission current efficiency ⁇ of the organic EL elements L1 in the pixels in the row R. 10B to 10E, the horizontal axis represents the horizontal position in the row R.
  • FIG. 10D is a diagram illustrating the luminance L0 of the pixels in the row R in the display device according to the comparative example.
  • the video signal D1 is corrected using only the first term of Expression (7).
  • the difference between the estimated value of the light emission current efficiency based on the current measurement result and the actual light emission current efficiency is larger in the pixel region A2 than in the pixel region A1.
  • a luminance difference occurs at the boundary between the pixel areas A1 and A2. Note that the small undulations that occur at positions away from the boundary are based on correction errors due to the resolution of the gradation voltage.
  • FIG. 10E is a diagram showing the luminance L of the pixels in the row R in the display device 10 according to the present embodiment.
  • the video signal D1 is corrected according to the equation (7) including the second term of the equation (7).
  • the luminance L of the pixel changes smoothly near the boundary between the pixel areas A1 and A2. Therefore, according to the display device 10 according to the present embodiment, the luminance difference at the boundary between the pixel regions A1 and A2 can be reduced.
  • the display device 10 includes a display element (organic EL element L1) and a drive element (driving TFT) that is provided in series with the display element and controls the amount of current flowing through the display element. : Q1), and a plurality of pixels 18 arranged in a two-dimensional manner, and a current measuring circuit that measures the current output to the outside of the pixels 18 without passing through the driving elements and passing through the display elements ( Data line driving / current measuring circuit 14), a correction calculation unit 17 for correcting the video signal D1 based on the current measurement result by the current measuring circuit, and a voltage corresponding to the corrected video signal D2 are written to the pixel 18. And a drive circuit (data line drive / current measurement circuit 14).
  • the correction calculation unit 17 calculates the light emission current efficiency ⁇ of the display element for each pixel based on the current measurement result (current measurement data E1), and the video signal D1 based on the current measurement result. For each pixel 18, between the first correction unit 31 that performs correction in consideration of the characteristics of each pixel (correction of the first term of Expression (7)) and neighboring pixels based on the two-dimensional distribution of light emission current efficiency. And a second correction unit 32 that obtains a correction term (second term of equation (7)) that takes into account the difference in light emission current efficiency of each pixel 18, and the video signal corrected by the first correction unit 31 and the second correction Based on the correction term obtained by the unit 32, the corrected video signal D2 is obtained.
  • a correction term (second term in the equation (7)) in consideration of the light emission current efficiency ⁇ between neighboring pixels is obtained based on the two-dimensional distribution of the light emission current efficiency ⁇ .
  • the second correction unit 32 calculates, for each pixel 18, an average value of the rate of change in light emission current efficiency between the pixel and neighboring pixels, and determines a correction term based on the calculated average value.
  • the second correction unit 32 obtains a correction term for each pixel 18 by multiplying a value obtained by subtracting the average value obtained from 1 by a coefficient ⁇ . In this way, by obtaining the correction term based on the average value of the change rate of the light emission current efficiency ⁇ between the pixel 18 and the neighboring pixels, a correction term that compensates for the difference in the light emission current efficiency between the pixel regions can be obtained. .
  • the correction calculation unit 17 further includes a light emission current efficiency storage unit 27 that stores the light emission current efficiency ⁇ obtained by the light emission current efficiency calculation unit 26 for each pixel 18, and the second correction unit 32 includes a light emission current efficiency storage unit.
  • a correction term is obtained based on the light emission current efficiency ⁇ stored in 27. Therefore, the correction term based on the two-dimensional distribution of the light emission current efficiency ⁇ can be easily obtained using the light emission current efficiency storage unit 27.
  • the correction calculation unit 17 also includes an initial current ratio calculation unit 25 that obtains an initial current ratio K that is a ratio to an initial state current for each pixel 18 based on the current measurement result, an initial current ratio K, and a light emission current efficiency ⁇ . And a table (LUT 22) that stores the relationship of The light emission current efficiency calculation unit 26 obtains the light emission current efficiency ⁇ by referring to the table using the initial current ratio K obtained by the initial current ratio calculation unit 25. Therefore, the light emission current efficiency ⁇ can be easily obtained based on the initial current ratio K using a table.
  • the table stores the relationship between the temperature, the initial current ratio, and the light emission current efficiency
  • the light emission current efficiency calculation unit 26 calculates the initial current ratio K determined by the measured operating temperature and the initial current ratio calculation unit 25.
  • the light emission current efficiency ⁇ is obtained by referring to the table using Therefore, even when the relationship between the initial current ratio K and the light emission current efficiency ⁇ changes according to the temperature, the light emission current efficiency ⁇ according to the operating temperature can be obtained using the table.
  • the correction calculation unit 17 includes an adder 33 that adds the correction term obtained by the second correction unit 32 to the video signal corrected by the first correction unit 31. Therefore, the corrected video signal D2 obtained by adding the correction term obtained by the second correction unit 32 to the video signal corrected by the first correction unit 31 can be obtained by using an adder.
  • the display device 10 described above is an example of a display device to which the present invention is applied.
  • the present invention can be applied to a display device configured to be able to read out current from a pixel through a driving element.
  • the current that has passed through the drive element may be read out via a data line or may be read out via a monitor line for current measurement.
  • the present invention replaces the pixel P ij shown in FIG. 7 and is equivalent to the circuit shown in FIG. 1 at the time of light emission, and is provided with an arbitrary pixel configured to be able to read the current that has passed through the driving TFT. It can also be applied to.
  • the present invention can also be applied to a display device that operates at a timing other than the timing shown in FIG.
  • the display device of the present invention has a feature that the luminance difference at the boundary of the pixel region can be reduced, it can be used for various display devices including pixels including a display element and a drive element, such as an organic EL display device. it can.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Signal Processing (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Control Of El Displays (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

 初期電流比算出部25は、データ線駆動/電流測定回路14による電流測定結果に基づき画素ごとに、初期電流に対する比である初期電流比を求める。発光電流効率算出部26は、測定された動作温度と初期電流比とに基づきLUT22を参照して、発光電流効率を画素ごとに求める。第1補正部31は、電流測定結果と発光電流効率とに基づき、映像信号D1に対して画素ごとに、個々の画素の特性を考慮した補正を行う。第2補正部32は、発光電流効率の2次元分布に基づき、近傍画素との間の発光電流効率の差異を考慮した補正項を画素ごとに求める。第1補正部31で補正した映像信号に第2補正部32で求めた補正項を加算して、補正後の映像信号D2を求める。これにより、画素領域の境界における輝度差を低減する。

Description

表示装置およびその駆動方法
 本発明は、表示装置に関し、特に電流駆動型の表示装置およびその駆動方法に関する。
 近年、薄型、軽量、高速応答可能な表示装置として、有機EL(Electro Luminescence)表示装置が注目されている。有機EL表示装置は、2次元状に配置された複数の画素を備えている。有機EL表示装置の画素は、典型的には、1個の有機EL素子と1個の駆動用TFT(Thin Film Transistor)を含んでいる。有機EL素子は、通過する電流の量に応じた輝度で発光する。駆動用TFTは、有機EL素子と直列に設けられ、有機EL素子に流れる電流の量を制御する。
 画素内の素子の特性には、製造時にばらつきが発生する。また、画素内の素子の特性は、時間の経過と共に変動する。例えば、駆動用TFTの特性は、発光輝度や発光時間に応じて個別に劣化する。有機EL素子の特性もこれと同様である。このため、駆動用TFTのゲート端子に同じ電圧を印加しても、有機EL素子の発光輝度にはばらつきが発生する。そこで、有機EL表示装置において高画質表示を行うために、有機EL素子や駆動用TFTの特性のばらつきや変動を補償するように映像信号を補正する方法が知られている。例えば、特許文献1には、駆動電流を電源線経由で外部に読み出し、測定した駆動電流の量に基づき補正用ゲインと補正用オフセットを更新し、これらを用いて映像信号を補正する有機EL表示装置が記載されている。
 また、有機EL表示装置に同じ画像を長時間に亙って表示した場合、画素内の素子の特性が表示画像のパターンに従って変動し、その影響が表示画面に現れることがある。この現象は、焼き付きと呼ばれる。焼き付きを防止する有機EL表示装置については、従来から以下の技術が知られている。特許文献2には、映像信号などに基づき画素の発光輝度の劣化特性を求め、劣化特性の境界付近で発光輝度が緩やかに変化するように映像信号を補正する表示装置が記載されている。特許文献3には、有機ELの各色の劣化特性が同等となる目標色度を設定し、焼き付き防止対象部の色度が目標色度に近づくように入力画像信号を補正する自発光型表示装置が記載されている。特許文献4には、補正対象画素の劣化量と基準画素の劣化量の差を累積加算し、今回の加算によって累積量が増加するか減少するかに応じて入力信号を補正するか否かを切り替える焼き付き現象補正方法が記載されている。
日本国特開2005-284172号公報 日本国特開2010-20078号公報 日本国特開2010-286783号公報 日本国特開2006-201630号公報
 有機EL表示装置において高画質表示を行う方法として、駆動用TFTや有機EL素子を流れる電流を定期的に測定し、電流測定結果に基づき、有機EL素子を流れる電流が所望量(映像信号に応じた量)になるように映像信号を補正する方法が考えられる。この方法を用いれば、駆動用TFTや有機EL素子の特性にばらつきや変動が生じても、有機EL素子に所望量の電流を流すことができる。
 しかしながら、有機EL素子の輝度は、通過する電流の量だけではなく、発光電流効率にも依存する。有機EL素子の発光電流効率は、発光輝度や発光時間に応じて個別に劣化する。このため、上記の方法を用いて有機EL素子に所望量の電流を流しても、有機EL素子は必ずしも所望の輝度(映像信号に応じた輝度)で発光する訳ではない。
 また、チェッカーパターンやウェブコンテンツなどの画像を長時間に亙って表示した場合、有機EL素子が受ける電流ストレスは画素領域ごとに大きく異なる。この場合、有機EL素子の発光電流効率の劣化程度は、画素領域ごとに大きく異なる。このため、上記の方法を用いても、画素領域の境界で輝度差が発生し、表示画像の画質が低下する。
 それ故に、本発明は、画素領域の境界における輝度差を低減できる表示装置を提供することを目的とする。
 本発明の第1の局面は、電流駆動型の表示装置であって、
 表示素子と、前記表示素子と直列に設けられ、前記表示素子に流れる電流の量を制御する駆動素子とを含み、2次元状に配置された複数の画素と、
 前記駆動素子を通過し、前記表示素子を通過せずに前記画素の外部に出力された電流を測定する電流測定回路と、
 前記電流測定回路による電流測定結果に基づき、映像信号を補正する補正演算部と、
 前記画素に対して補正後の映像信号に応じた電圧を書き込む駆動回路とを備え、
 前記補正演算部は、
  前記電流測定結果に基づき、前記表示素子の発光電流効率を画素ごとに求める発光電流効率算出部と、
  前記電流測定結果と前記発光電流効率とに基づき、前記映像信号に対して画素ごとに、個々の画素の特性を考慮した補正を行う第1補正部と、
  前記発光電流効率の2次元分布に基づき、近傍画素との間の発光電流効率の差異を考慮した補正項を画素ごとに求める第2補正部とを含み、
  前記第1補正部で補正した映像信号と前記第2補正部で求めた補正項とに基づき、前記補正後の映像信号を求めることを特徴とする。
 本発明の第2の局面は、本発明の第1の局面において、
 前記第2補正部は、画素ごとに、当該画素と近傍画素との間の発光電流効率の変化率の平均値を求め、前記平均値に基づき前記補正項を求めることを特徴とする。
 本発明の第3の局面は、本発明の第2の局面において、
 前記第2補正部は、画素ごとに、1から前記平均値を減算した値に係数を乗算することにより、前記補正項を求めることを特徴とする。
 本発明の第4の局面は、本発明の第3の局面において、
 前記第2補正部は、i行j列目の画素Pijの発光電流効率をηij、発光電流効率の変化率の増減量に基づき階調電圧の増減量を求めるための係数をδとしたとき、画素Pijを中心として水平方向に±p画素、垂直方向に±q画素の範囲内にある画素を近傍画素として、次式(a)に示す補正項を求めることを特徴とする。
Figure JPOXMLDOC01-appb-M000003
 本発明の第5の局面は、本発明の第4の局面において、
 前記第1補正部は、補正前の映像信号に応じた階調電圧をVg0、理想画素内の駆動素子の閾値電圧をVth0、理想画素内の駆動素子の電流係数をβ0、理想画素内の表示素子の発光電流効率をη0、画素Pij内の駆動素子の閾値電圧をVthij、画素Pij内の駆動素子の電流係数をβij、前記駆動素子を通過し、前記表示素子を通過しない電流の測定結果に基づき、前記駆動素子と前記表示素子を直列に接続した場合の電流を求めるための係数をα、階調電圧のオフセットをVofsとしたとき、次式(b)に示す演算を行い、
 前記補正演算部は、前記第1補正部で補正した映像信号に前記第2補正部で求めた補正項を加算することにより、前記補正後の映像信号を求めることを特徴とする。
Figure JPOXMLDOC01-appb-M000004
 本発明の第6の局面は、本発明の第1の局面において、
 前記補正演算部は、前記発光電流効率算出部で求めた発光電流効率を画素ごとに記憶する発光電流効率記憶部をさらに含み、
 前記第2補正部は、前記発光電流効率記憶部に記憶された発光電流効率に基づき、前記補正項を求めることを特徴とする。
 本発明の第7の局面は、本発明の第1の局面において、
 前記補正演算部は、
  前記電流測定結果に基づき画素ごとに、初期状態の電流に対する比である初期電流比を求める初期電流比算出部と、
  初期電流比と発光電流効率との関係を記憶したテーブルとをさらに含み、
 前記発光電流効率算出部は、前記初期電流比算出部で求めた初期電流比を用いて前記テーブルを参照することにより、前記発光電流効率を求めることを特徴とする。
 本発明の第8の局面は、本発明の第7の局面において、
 前記テーブルは、温度と初期電流比と発光電流効率との関係を記憶しており、
 前記発光電流効率算出部は、測定された動作温度と前記初期電流比算出部で求めた初期電流比とを用いて前記テーブルを参照することにより、前記発光電流効率を求めることを特徴とする。
 本発明の第9の局面は、本発明の第1の局面において、
 前記補正演算部は、前記第1補正部で補正した映像信号に前記第2補正部で求めた補正項を加算する加算器をさらに含むことを特徴とする。
 本発明の第10の局面は、表示素子と、前記表示素子と直列に設けられ、前記表示素子に流れる電流の量を制御する駆動素子とを含み、2次元状に配置された複数の画素を有する電流駆動型の表示装置の駆動方法であって、
 前記駆動素子を通過し、前記表示素子を通過せずに前記画素の外部に出力された電流を測定するステップと、
 電流測定結果に基づき、前記表示素子の発光電流効率を画素ごとに求めるステップと、
 前記電流測定結果と前記発光電流効率とに基づき、映像信号に対して画素ごとに、個々の画素の特性を考慮した補正を行う第1補正ステップと、
 前記発光電流効率の2次元分布に基づき、近傍画素との間の発光電流効率の差異を考慮した補正項を画素ごとに求める第2補正ステップと、
 前記第1補正ステップで補正した映像信号と前記第2補正ステップで求めた補正項とに基づき、補正後の映像信号を求めるステップと、
 前記画素に対して前記補正後の映像信号に応じた電圧を書き込むステップとを備える。
 本発明の第1または第10の局面によれば、発光電流効率の2次元分布に基づき、近傍画素との間の発光電流効率の差異を考慮した補正項を求め、求めた補正項を用いて映像信号を補正することにより、画素領域間で発光電流効率に差異がある場合でも、その差異を補償し、画素領域の境界における輝度差を低減することができる。
 本発明の第2または第3の局面によれば、画素と近傍画素との間の発光電流効率の変化率の平均値に基づき補正項を求めることにより、画素領域間の発光電流効率の差異を補償する補正項を求めることができる。
 本発明の第4の局面によれば、式(a)に従い、画素領域間の発光電流効率の差異を補償する補正項を求めることができる。
 本発明の第5の局面によれば、式(a)および(b)に従い、補正後の映像信号を求めることができる。
 本発明の第6の局面によれば、発光電流効率を画素ごとに記憶する発光電流効率記憶部を用いて、発光電流効率の2次元分布に基づく補正項を容易に求めることができる。
 本発明の第7の局面によれば、初期電流比と発光電流効率との関係を記憶したテーブルを用いて、初期電流比に基づき発光電流効率を容易に求めることができる。
 本発明の第8の局面によれば、初期電流比と発光電流効率との関係が温度に応じて変化する場合でも、動作温度と初期電流比と発光電流効率との関係を記憶したテーブルを用いて、動作温度に応じた発光電流効率を求めることができる。
 本発明の第9の局面によれば、加算器を用いて、第1補正部で補正した映像信号に第2補正部で求めた補正項を加算した補正後の映像信号を求めることができる。
有機EL素子を含む画素の発光時の等価回路図である。 黒を表示する画素と白を表示する画素を示す図である。 図1に示す画素の電圧-電流特性を示す図である。 図1に示す画素の電圧-輝度特性を示す図である。 図1に示す画素について初期電流比と発光電流効率の関係を示す図である。 本発明の実施形態に係る表示装置の構成を示すブロック図である。 図6に示す表示装置に含まれる画素の回路図である。 図7に示す画素のタイミングチャートである。 図6に示す表示装置の補正演算部の詳細を示すブロック図である。 隣接する2個の画素領域を示す図である。 図10Aに示す画素領域に含まれる特定行の画素内の駆動用TFTの閾値電圧を示す図である。 図10Aに示す画素領域に含まれる特定行の画素内の有機EL素子の発光電流効率を示す図である。 比較例に係る表示装置について、図10Aに示す画素領域に含まれる特定行の画素の輝度を示す図である。 本発明の実施形態に係る表示装置について、図10Aに示す画素領域に含まれる特定行の画素の輝度を示す図である。
 本発明の実施形態に係る表示装置を説明する前に、図1~図5を参照して、本発明を導くための基礎検討について説明する。図1は、有機EL素子を含む画素の発光時の等価回路図である。図1に示す回路は、有機EL素子L1と駆動用TFT:Q1を含んでいる。有機EL素子L1は、通過する電流の量に応じた輝度で発光する自発光型の表示素子である。駆動用TFT:Q1は、有機EL素子L1と直列に接続され、有機EL素子L1に流れる電流の量を制御する駆動素子である。
 駆動用TFT:Q1は、Nチャネル型トランジスタである。駆動用TFT:Q1のドレイン端子には、ハイレベル電源電圧Vanが印加される。駆動用TFT:Q1のソース端子は、有機EL素子L1のアノード端子に接続される。有機EL素子L1のカソード端子には、ローレベル電源電圧Vcaが印加される。駆動用TFT:Q1のゲート端子には、ゲート電圧Vgが印加される。
 有機EL素子L1のアノード電圧(駆動用TFT:Q1のソース電圧に等しい)をVoled、駆動用TFT:Q1の閾値電圧をVth、有機EL素子L1の発光閾値電圧をVthoとする。また、有機EL素子L1の発光時に駆動用TFT:Q1を流れる電流をIds、有機EL素子L1を流れる電流をIoledとする。図1に示す回路では、駆動用TFT:Q1を流れる電流のほぼすべてが有機EL素子L1を流れるので、Ids=Ioledと考えてよい。以下、このように発光時に流れる電流を画素電流という。画素電流Idsは、駆動用TFT:Q1のゲート-ソース間電圧Vgs(=Vg-Voled)に応じて変化する。
 図2に示すように、発光時に等価的に図1に示す回路になる2個の画素Pb、Pwがあり、初期状態から所定時間(以下、時間Tという)経過するまでの間、画素Pbは黒を表示し、画素Pwは白を表示したとする。図3は、画素Pb、Pwについて初期状態および時間T経過後の電圧-電流特性を示す図である。図3において、横軸はゲート電圧Vgを表し、縦軸は画素電流Idsを表す。なお、画素電流Idsは、初期状態でVg=6.0Vのときのレベルを1.0として正規化されている。
 図3に示す例では、初期状態の画素Pb、Pwでは、Vth=2.0V、Vtho=3.0Vである。時間T経過後の画素Pbでは、Vth=2.5V、Vtho=3.2Vである。時間T経過後の画素Pwでは、Vth=3.0V、Vtho=3.4Vである。なお、これらの値は、図3から直接読み取れるものではない。駆動用TFT:Q1の閾値電圧Vthと有機EL素子L1の発光閾値電圧Vthoは、黒を表示した画素Pbよりも白を表示した画素Pwにおいて大きく変化する。
 有機EL表示装置は、時間T経過後の画素電流Idsが初期状態の画素電流と一致するようにゲート電圧Vgを設定する。図3に示す例では、画素電流Idsが1.0となるゲート電圧Vgは、時間T経過後の画素Pbでは6.7V、時間T経過後の画素Pwでは7.4Vである。このため、時間T経過後のゲート電圧Vgは、画素Pbでは6.7Vに、画素Pwでは7.4Vに設定される。
 図4は、画素Pb、Pwについて初期状態および時間T経過後の電圧-輝度特性を示す図である。図4において、横軸はゲート電圧Vgを表し、縦軸は画素の輝度Lを表す。上記の方法でゲート電圧Vgを設定した場合、時間T経過後の画素Pbの輝度は、初期状態と同じく1.0になる。一方、時間T経過後の画素Pwの輝度は0.9になり、画素Pbの輝度よりも10%低くなる。時間T経過後の画素Pb、Pwの輝度に差異が生じる理由は、画素Pwでは画素Pbよりも有機EL素子L1に多くの電流が流れ、有機EL素子L1の発光電流効率が大きく劣化したからである。
 有機EL表示装置の表示画面において画素の輝度に10%程度以下のばらつきがランダムに発生しても、観測者は隣接する2個の画素の輝度差をほとんど認識できないので、表示画像の画質低下は問題にならない。しかしながら、黒を表示する画素領域Abと白を表示する画素領域Awが隣接している場合、画素領域Awでは画素領域Abよりも画素内の有機EL素子L1の発光電流効率が大きく劣化するので、観測者は画素領域Ab、Awの境界で輝度差を認識することがある。画素領域Ab、Awがある程度以上の大きさを有し、画素領域Abの平均輝度と画素領域Awの平均輝度の間に2%以上の差異がある場合、観測者は画素領域Ab、Awの境界で輝度差を認識する。輝度差は、例えば、チェッカーパターンやウェブコンテンツなどの画像を長時間に亙って表示した場合に発生しやすい。
 図3および図4に示す特性を有する画素を備えた有機EL表示装置において、時間T経過後に、画素領域Ab内の画素ではゲート電圧Vgを6.7Vに、画素領域Aw内の画素ではゲート電圧Vgを7.4Vに設定した場合、画素領域Ab、Awの境界において10%の輝度差が発生する。この場合、画素領域Aw内の画素ではゲート電圧Vgを7.7Vに設定すれば、画素領域Ab、Awの境界における輝度差はほぼゼロになる。
 一般に有機EL表示装置では、発光時間が長く、発光輝度が高い画素ほど、有機EL素子の特性と駆動用TFTの特性は大きく劣化する。また、有機EL表示装置の画素では、初期電流比Kと発光電流効率ηの間に一定の関係がある。図5は、図1に示す画素について初期電流比Kと発光電流効率ηの関係を示す図である。ここで、発光電流効率ηとは、有機EL素子の輝度を有機EL素子を流れる電流の密度で割った値をいう。初期電流比Kとは、駆動用TFTのゲート端子に所定の電圧を印加したときの画素電流を、初期状態で駆動用TFTのゲート端子に同じ電圧を印加したときの画素電流で割った値をいう。例えば、図1に示す画素については、初期状態で画素電流I0を流すために必要なゲート電圧をVg0、時間T経過後にゲート電圧をVg0に設定したときの画素電流をI1としたとき、K=I1/I0で与えられる。
 有機EL表示装置において高画質表示を行うためには、有機EL素子の発光電流効率ηの変動を補償する必要がある。上述したように、初期電流比Kと発光電流効率ηの間には一定の関係がある。そこで本発明では、画素18に測定用電圧を書き込んだときに、駆動用TFT:Q1を通過し、有機EL素子:L1を通過せずに画素の外部に出力された電流(以下、駆動用TFT:Q1のドレイン電流という)を測定して初期電流比Kを求め、求めた初期電流比Kに基づき発光電流効率ηを求める。したがって、本発明によれば、後述するように、ルックアップテーブルを参照してドレイン電流の変化率に基づき発光電流効率ηを求めることにより、有機EL素子を流れる電流を測定せずに映像信号を補正することができる。また、画素領域の境界における輝度差を低減するために、本発明では発光電流効率ηの2次元分布に基づき映像信号を補正する。したがって、本発明によれば、画素領域の境界における輝度差を低減し、高画質表示を行うことができる。
 以下、図6~図9を参照して、本発明の実施形態に係る表示装置について説明する。図6は、本発明の実施形態に係る表示装置の構成を示すブロック図である。図6に示す表示装置10は、表示部11、表示制御回路12、走査線駆動回路13、データ線駆動/電流測定回路14、A/D変換器15、温度センサ16、および、補正演算部17を備えた電流駆動型の有機EL表示装置である。以下、mおよびnは2以上の整数、iは1以上m以下の整数、jは1以上n以下の整数であるとする。
 表示部11は、2m本の走査線GA1~GAm、GB1~GBm、n本のデータ線S1~Sn、および、(m×n)個の画素18を含んでいる。走査線GA1~GAm、GB1~GBmは、互いに平行に配置される。データ線S1~Snは、互いに平行に、かつ、走査線GA1~GAm、GB1~GBmと直交するように配置される。走査線GA1~GAmとデータ線S1~Snは、(m×n)箇所で交差する。(m×n)個の画素18は、走査線GA1~GAmとデータ線S1~Snの交点に対応して2次元状に配置される。画素18には、図示しない電極を用いてハイレベル電源電圧Vanとローレベル電源電圧Vcaが供給される。
 表示装置10では、1フレーム期間は、m個のライン期間を含む映像信号期間と垂直帰線期間とに分割される。表示制御回路12は、表示装置10の制御回路である。表示制御回路12は、走査線駆動回路13に対して制御信号C1を出力し、データ線駆動/電流測定回路14に対して制御信号C2を出力し、補正演算部17に対して映像信号D1を出力する。
 走査線駆動回路13は、制御信号C1に従い、走査線GA1~GAm、GB1~GBmを駆動する。より詳細には、走査線駆動回路13は、i番目のライン期間では走査線GAiの電圧をハイレベル(選択レベル)に、他の走査線の電圧をローレベル(非選択レベル)に制御する。走査線駆動回路13は、垂直帰線期間では走査線GA1~GAm、GB1~GBmの中から1対の走査線GAi、GBiを選択し、選択した走査線GAi、GBiの電圧を所定時間ずつ順にハイレベルに制御し、他の走査線の電圧をローレベルに制御する。垂直帰線期間で選択される走査線GAi、GBiは、2フレーム期間ごとに切り替えられる。
 データ線駆動/電流測定回路14には、制御信号C2と、補正演算部17から出力された補正後の映像信号D2とが供給される。データ線駆動/電流測定回路14は、データ線S1~Snを駆動する機能と、1行分の画素18(n個の画素18)からデータ線S1~Snに出力された電流を測定する機能とを有する。より詳細には、データ線駆動/電流測定回路14は、映像信号期間では制御信号C2に従い、映像信号D2に応じたn個のデータ電圧をデータ線S1~Snにそれぞれ印加する。データ線駆動/電流測定回路14は、垂直帰線期間では制御信号C2に従い、n個の測定用電圧をデータ線S1~Snにそれぞれ印加し、そのときに1行分の画素18からデータ線S1~Snに出力されたn個の電流をそれぞれ電圧に変換して出力する。データ線駆動/電流測定回路14は、画素に対して補正後の映像信号に応じた電圧を書き込む駆動回路として機能すると共に、駆動素子を通過した電流を測定する電流測定回路としても機能する。
 A/D変換器15は、データ線駆動/電流測定回路14の出力電圧をデジタルの電流測定データE1に変換する。温度センサ16は、表示装置10の動作温度Tempを測定する。補正演算部17は、垂直帰線期間では、A/D変換器15から出力され電流測定データE1と温度センサ16で検知された動作温度Tempとに基づき、映像信号D1の補正に必要なデータ(以下、補正用データという)を求める。補正演算部17は、映像信号期間では、垂直帰線期間で求めた補正用データを参照して、表示制御回路12から出力された映像信号D1を補正し、補正後の映像信号D2を出力する。
 以下、i行j列目の画素18をPijという。図7は、画素Pijの回路図である。図7に示すように、画素Pijは、有機EL素子L1、駆動用TFT:Q1、書き込み用TFT:Q2、読み出し用TFT:Q3、および、コンデンサC1を含み、走査線GAi、GBiとデータ線Sjに接続される。
 3個のTFT:Q1~Q3は、Nチャネル型トランジスタである。駆動用TFT:Q1のドレイン端子には、ハイレベル電源電圧Vanが印加される。駆動用TFT:Q1のソース端子は、有機EL素子L1のアノード端子に接続される。有機EL素子L1のカソード端子には、ローレベル電源電圧Vcaが印加される。書き込み用TFT:Q2と読み出し用TFT:Q3の一方の導通端子(図7では左側の端子)は、データ線Sjに接続される。書き込み用TFT:Q2の他方の導通端子は駆動用TFT:Q1のゲート端子に接続され、読み出し用TFT:Q3の他方の導通端子は駆動用TFT:Q1のソース端子と有機EL素子L1のアノード端子に接続される。書き込み用TFT:Q2のゲート端子は走査線GAiに接続され、読み出し用TFT:Q3のゲート端子は走査線GBiに接続される。コンデンサC1は、駆動用TFT:Q1のゲート端子とドレイン端子の間に設けられる。
 図8は、画素Pijのタイミングチャートである。図8に示すように、映像信号期間内のi番目のライン期間Tiでは、走査線GAiの電圧はハイレベルになり、走査線GBiの電圧はローレベルになり、データ線Sjにはデータ電圧VDijが印加される。ライン期間Tiでは、書き込み用TFT:Q2はオンし、読み出し用TFT:Q3はオフし、駆動用TFT:Q1のゲート電圧Vgはデータ電圧VDijに等しくなる。ライン期間Tiの終了時に走査線GAiの電圧はローレベルに変化し、これに伴い書き込み用TFT:Q2はオフする。これ以降、駆動用TFT:Q1のゲート電圧Vgは、コンデンサC1の作用によって保持される。また、駆動用TFT:Q1と有機EL素子L1には駆動用TFT:Q1のゲート-ソース間電圧Vgsに応じた量の画素電流Idsが流れ、有機EL素子L1は駆動用TFT:Q1のゲート電圧Vgに応じた輝度で発光する。
 走査線GAi、GBiが選択された垂直帰線期間には、図8に示す2個の期間Ta、Tbが設定される。期間Taでは、走査線GAiの電圧はハイレベルになり、走査線GBiの電圧はローレベルになり、データ線Sjには測定用電圧VMijが印加される。期間Taでは、書き込み用TFT:Q2はオンし、読み出し用TFT:Q3はオフし、駆動用TFT:Q1のゲート電圧Vgは測定用電圧VMijに等しくなる。期間Tbでは、走査線GAiの電圧はローレベルになり、走査線GBiの電圧はハイレベルになる。期間Tbでは、駆動用TFT:Q1と読み出し用TFT:Q3はオンし、書き込み用TFT:Q2はオフする。このとき駆動用TFT:Q1を通過した電流は、読み出し用TFT:Q3を経由してデータ線Sjに流れる。データ線駆動/電流測定回路14は、期間Tbにおいてデータ線Sjに出力された電流を電圧に変換して出力する。
 以下、表示装置10における映像信号D1の補正について説明する。表示装置10では、データ線駆動/電流測定回路14は、表示部11に含まれる(m×n)個の画素18について、測定用電圧VMを書き込んだときの駆動用TFT:Q1のドレイン電流を測定する。A/D変換器15は、測定された電流をデジタル値に変換する。補正演算部17は、A/D変換器15で求めたデジタル値に基づき、(m×n)個の画素18について初期電流比Kを求め、初期電流比Kに基づき発光電流効率ηを求める。また、補正演算部17は、発光電流効率ηの2次元分布に基づき、映像信号D1を補正する。
 まず、初期電流比Kを求める方法を説明する。表示装置10が最初に動作するときに(あるいは、表示装置10の工場出荷前に)、画素18に書き込む電圧を順に切り替えながら駆動用TFT:Q1のドレイン電流を測定することにより、各画素18について、駆動用TFT:Q1のドレイン電流が所定値I0になる初期階調値Zを求める。(m×n)個の初期階調値Zは、補正演算部17の内部に記憶される。データ線駆動/電流測定回路14は、表示装置10の動作中に垂直帰線期間において、各画素18について、第1測定用電圧VM1を書き込んだときの駆動用TFT:Q1のドレイン電流と、第2測定用電圧VM2を書き込んだときの駆動用TFT:Q1のドレイン電流とを測定する。補正演算部17は、各画素18について、2個の電流測定結果に基づき補間演算などによって、初期階調値Zに応じた電圧を書き込んだときの駆動用TFT:Q1のドレイン電流の量を求め、求めたドレイン電流の量を値I0で割ることにより、画素18の初期電流比Kを求める。
 あるいは、表示装置10が最初に動作するときに(あるいは、表示装置10の工場出荷前に)、画素18に所定の初期電圧を書き込んだときの駆動用TFT:Q1のドレイン電流を測定することにより、各画素18について初期電流値Yを求める。(m×n)個の初期電流値Yは、補正演算部17の内部に記憶される。データ線駆動/電流測定回路14は、上記と同様の方法で、各画素18について2個の電流測定結果を求める。補正演算部17は、各画素18について、2個の電流測定結果に基づき補間演算などによって、初期電圧を書き込んだときの駆動用TFT:Q1のドレイン電流の量を求め、求めたドレイン電流の量を初期電流値Yで割ることにより、画素18の初期電流比Kを求める。
 次に、発光電流効率ηを求める方法を説明する。上述したように、初期電流比Kと発光電流効率ηの間には、例えば図5に示す関係がある。また、初期電流比Kと発光電流効率ηの間の関係は、温度に応じて変化する。そこで補正演算部17は、複数の動作温度Tempについて、初期電流比Kに対応づけて発光電流効率ηを記憶したルックアップテーブル(Look Up Table :以下、LUTという)を含んでいる。補正演算部17は、各画素18について、初期電流比Kと温度センサ16で測定した動作温度Tempとを用いてLUTを参照することにより、画素18の発光電流効率ηを求める。(m×n)個の発光電流効率ηは、補正演算部17の内部に記憶される。
 次に、映像信号D1の補正について説明する。データ線駆動/電流測定回路14は、各画素18について、第1測定用電圧VM1を書き込んだときの駆動用TFT:Q1のドレイン電流と、第2測定用電圧VM2を書き込んだときの駆動用TFT:Q1のドレイン電流とを測定する。補正演算部17は、各画素18について、2個の電流測定結果に基づき、駆動用TFT:Q1の閾値電圧Vthと電流係数(ゲイン)βを求める。補正演算部17は、2個の電流測定結果を含み、閾値電圧Vthと電流係数βを未知数とする連立方程式を解くことにより、閾値電圧Vthと電流係数βを求めてもよい。あるいは、補正演算部17は、電流測定結果に応じて閾値電圧Vthと電流係数βを所定量だけ増加または減少させる処理を繰り返し行うことにより、閾値電圧Vthと電流係数βを求めてもよい。
 補正演算部17は、各画素18について求めた閾値電圧Vthと電流係数βを用いて、映像信号D1に含まれる画素18に関するデータを補正する。また、補正演算部17は、画素18と複数の近傍画素について、画素18と近傍画素の間の発光電流効率ηの変化率の平均値を求め、求めた平均値に基づき、映像信号D1に含まれる画素18に関するデータの補正項を求める。補正演算部17は、閾値電圧Vthと電流係数βを用いて補正されたデータに対して補正項を加算することにより、補正後の映像信号D2に含まれる画素18に関するデータを求める。
 以下、補正演算部17における処理をより詳細に説明する。以下の説明では、理想の特性を有する仮想的な画素を理想画素P0といい、画素Pij内の駆動用TFT:Q1の閾値電圧をVthij、電流係数をβijとする。補正演算部17は、画素Pijを流れる画素電流が理想画素P0を流れる画素電流I0に等しくなるように、画素Pij内の駆動用TFT:Q1のゲート電圧Vgijを決定する。このとき、次式(1)が成立する。
  I0=(βij/2)(Vgij-Vthij2   …(1)
 式(1)をVgijについて解き、オフセットVofsを考慮すると、次式(2)が導かれる。
  Vgij=√(2I0/βij)+Vthij-Vofs …(2)
 理想画素P0と画素Pijでは、駆動用TFT:Q1の閾値電圧は異なる。また、駆動用TFT:Q1が受ける電流電圧ストレスは、閾値電圧のレベルに応じて異なる。このため、理想画素P0と画素Pijに同じ電流ストレスを与えた場合、理想画素P0と画素Pijでは駆動用TFT:Q1の閾値電圧の変動量は異なる。
 初期状態から時間Tだけ経過したときに、理想画素P0内の駆動用TFT:Q1の閾値電圧はVth0からVth0’に変化し、電流係数はβ0からβ0’に変化し、駆動用TFT:Q1のゲート電圧をVg0に設定したときの画素電流はI0からI0’に変化したとする。このとき、次式(3a)、(3b)が成立する。
  I0 =(β0/2)
       ×(Vg0-Vth0+Vofs)2   …(3a)
  I0’=(β0’/2)
       ×(Vg0-Vth0’+Vofs)2   …(3b)
 ΔVth0=Vth0’-Vth0とおくと、式(3a)、(3b)から次式(4)が導かれる。式(4)は、電流電圧ストレスを受けたときの理想画素P0内の駆動用TFT:Q1の閾値電圧の変動量を表す。
  ΔVth0=a0{1-√(A0/B0)} …(4)
 ただし、式(4)に含まれるa0、A0およびB0は、以下の式で与えられる。
  a0=Vg0-Vth0+Vofs
  A0=I0’/I0
  B0=β0’/β0
 また、初期状態から時間Tだけ経過したときに、画素Pij内の駆動用TFT:Q1の閾値電圧はVthijからVthij’に変化し、電流係数はβijからβij’に変化し、駆動用TFT:Q1のゲート電圧をVg0に設定したときの画素電流はIijからIij’に変化したとする。画素Pij内の駆動用TFT:Q1の閾値電圧の変動量ΔVthijは、上記と同様に、次式(5)で与えられる。
  ΔVthij=aij{1-√(Aij/Bij)} …(5)
 ただし、式(5)に含まれるaij、AijおよびBijは、以下の式で与えられる。
  aij=Vgij-Vthij+Vofs
  Aij=Iij’/Iij
  Bij=βij’/βij
 理想画素P0内の駆動用TFT:Q1の閾値電圧の変動量ΔVth0と、画素Pij内の駆動用TFT:Q1の閾値電圧の変動量ΔVthijは、同じ電流が流れた有機EL素子L1の発光電流効率ηに対応する。そこで、ΔVth0=ΔVthijとして、A0について解くと、次式(6a)が導かれる。
  A0=B0[1-(aij/a0)
           ×{1-√(Aij/Bij)}]2  …(6a)
 また、電流係数βの変動を無視してもよい場合には、式(6a)においてB0=Bij=1とおくと、次式(6b)が導かれる。
  A0={1-(aij/a0)×(1-√Aij)}2  …(6b)
 式(6a)または(6b)で求めた値A0を用いて、初期電流比Kの値に対応づけて発光電流効率ηを記憶したLUTを参照することにより、画素Pijの発光電流効率ηijを求めることができる。
 補正演算部17は、次式(7)に従い映像信号D1を補正する。
  Vg=f1(P0,Pij,η)+f2(η,i,j) …(7)
 式(7)の第1項は、理想画素P0と画素Pij間の駆動用TFT:Q1の特性(閾値電圧と電流係数)および発光電流効率ηの差異に基づく階調電圧の補正項であり、次式(8)で与えられる。式(7)の第2項は、発光電流効率ηの2次元分布に基づく階調電圧の補正項であり、次式(9)で与えられる。このように式(7)の第1項は個々の画素の特性を考慮した補正項であり、式(7)の第2項は近傍画素との間の発光電流効率ηの差異を考慮した補正項である。
Figure JPOXMLDOC01-appb-M000005
 なお、式(8)に含まれるαは、駆動用TFT:Q1が単独で存在する場合の駆動用TFT:Q1のドレイン電流に基づき、駆動用TFT:Q1と有機EL素子L1を直列に接続した場合の駆動用TFT:Q1のドレイン電流を求めるための係数である。言い換えると、αは、駆動素子を通過し、表示素子を通過しない電流の測定結果に基づき、駆動素子と表示素子を直列に接続した場合の電流を求めるための係数である。式(9)に含まれるpおよびqは、1以上の整数である。式(9)に含まれるδは、発光電流効率ηの変化率の増減量に基づき、階調電圧の増減量を求めるための係数である。係数δは、動作温度Tempに応じて変化してもよい。
 式(9)では、画素Pijを中心として水平方向に±p画素、垂直方向に±q画素の範囲内にある{(2p+1)×(2q+1)}個の近傍画素について、画素Pijと近傍画素の間の発光電流効率ηの変化率の平均値を求め、1から平均値を引いて係数δを乗算することにより、階調電圧の補正項を求める。式(9)に示す補正項を用いることにより、隣接する画素領域間で画素内の素子の特性に差異がある場合に、有機EL素子L1の発光電流効率ηに差異があると判断して、補正後輝度の差異が小さくなるように映像信号D1を補正することができる。
 図9は、補正演算部17の詳細を示すブロック図である。図9に示すように、補正演算部17は、初期値記憶部21、LUT22、TFT特性算出部23、TFT特性記憶部24、初期電流比算出部25、発光電流効率算出部26、発光電流効率記憶部27、第1補正部31、第2補正部32、および、加算器33を含んでいる。補正演算部17には、表示制御回路12から出力された映像信号D1、A/D変換器15から出力された電流測定データE1、および、温度センサ16で検知された動作温度Tempが入力される。補正演算部17は、これらのデータに基づき、補正後の映像信号D2を出力する。
 初期値記憶部21は、(m×n)個の初期階調値Z、または、(m×n)個の初期電流値Yを記憶する。初期値記憶部21に記憶される初期値は、表示装置10が最初に動作するときに(あるいは、表示装置10の工場出荷前に)設定される。LUT22は、複数の動作温度Tempについて、初期電流比Kに対応づけて発光電流効率ηを記憶する。LUT22は、例えば、最低動作温度と最高動作温度の間の1℃刻みの動作温度Tempについて、初期電流比Kに対応づけて発光電流効率ηを記憶する。LUT22の内容は、表示装置10の工場出荷前に予め固定的に設定される。
 電流測定データE1は、画素Pijに関するデータとして、画素Pijに第1測定用電圧VM1を書き込んだときの駆動用TFT:Q1のドレイン電流と、画素Pijに第2測定用電圧VM2を書き込んだときの駆動用TFT:Q1のドレイン電流とを含んでいる。TFT特性算出部23は、2個の電流測定結果に基づき、画素Pij内の駆動用TFT:Q1の閾値電圧Vthijと電流係数βijを求める。TFT特性算出部23は、(m×n)個の画素18について上記の処理を行うことにより、(m×n)個の閾値電圧Vthと(m×n)個の電流係数βを求める。TFT特性記憶部24は、TFT特性算出部23で求めた(m×n)個の閾値電圧Vthと(m×n)個の電流係数βを記憶する。
 初期電流比算出部25は、2個の電流測定結果と初期値記憶部21に記憶された初期値(初期階調値Zijまたは初期電流値Yij)とに基づき、画素Pijの初期電流比Kijを求める。初期値記憶部21に初期階調値Zijが記憶されている場合、初期電流比算出部25は、2個の電流測定結果に基づき補間演算によって、初期階調値Zijに応じた電圧を書き込んだときの駆動用TFT:Q1のドレイン電流の量を求め、求めたドレイン電流の量を初期階調値を求めたときのドレイン電流の量で割ることにより、画素Pijの初期電流比Kijを求める。初期値記憶部21に初期電流値Yijが記憶されている場合、初期電流比算出部25は、2個の電流測定結果に基づき補間演算によって、初期電圧(初期電流値Yijを求めたときの電圧)を書き込んだときの駆動用TFT:Q1のドレイン電流の量を求め、求めたドレイン電流の量を初期電流値Yijで割ることにより、画素Pijの初期電流比Kijを求める。
 発光電流効率算出部26は、画素Pijの初期電流比Kijと温度センサ16で検知した動作温度Tempとを用いてLUT22を参照することにより、画素Pijの発光電流効率ηijを求める。初期電流比算出部25と発光電流効率算出部26は、(m×n)個の画素18について上記の処理を行うことにより、(m×n)個の発光電流効率ηを求める。発光電流効率記憶部27は、発光電流効率算出部26で求めた(m×n)個の発光電流効率ηを記憶する。
 第1補正部31は、TFT特性記憶部24に記憶された画素Pij内の駆動用TFT:Q1の閾値電圧Vthijと電流係数βij、および、発光電流効率記憶部27に記憶された発光電流効率ηijに基づき、映像信号D1に含まれる画素Pijに関するデータに対して式(8)に示す演算を行う。第2補正部32は、発光電流効率記憶部27に記憶された発光電流効率ηに基づき式(9)に従い、映像信号D1に含まれる画素Pijに関するデータの補正項を求める。加算器33は、第1補正部31の出力に対して、第2補正部32で求めた補正項を加算する。これにより、映像信号D1に対して、式(7)に示す補正演算が行われる。
 加算器33の出力は、補正後の映像信号D2として、データ線駆動/電流測定回路14に出力される。データ線駆動/電流測定回路14は、映像信号期間では、データ線S1~Snに対して補正後の映像信号D2に応じたデータ電圧を印加する。画素18内の有機EL素子L1は、補正後の映像信号D2に応じた輝度で発光する。
 以下、図10A~図10Eを参照して、本実施形態に係る表示装置10の効果を説明する。ここでは比較例に係る表示装置として、式(7)の第1項だけを用いて映像信号D1を補正する表示装置を考える。図10Aに示すように、2個の画素領域A1、A2が隣接する場合について検討する。画素領域A1に含まれる画素18内の駆動用TFT:Q1の閾値電圧の平均値はVth1であり、画素領域A2に含まれる画素18内の駆動用TFT:Q1の閾値電圧の平均値はVth2(ただし、Vth1<Vth2)であるとする。
 画素領域A1、A2内のある行(以下、行Rという)に配置された画素に着目する。行Rの画素内の駆動用TFT:Q1の閾値電圧Vthには、図10Bに示すばらつきが発生する。また、行Rの画素内の有機EL素子L1の発光電流効率ηには、図10Cに示すばらつきが発生する。なお、図10B~図10Eにおいて、横軸は行R内の水平方向の位置を表す。
 図10Dは、比較例に係る表示装置における、行Rの画素の輝度L0を示す図である。比較例に係る表示装置では、映像信号D1は式(7)の第1項だけを用いて補正される。この場合、画素領域A2では画素領域A1よりも、電流測定結果に基づく発光電流効率の推定値と実際の発光電流効率との差異が大きくなる。このため、画素領域A1、A2の境界において輝度差が発生する。なお、境界から離れた位置に発生する小さな起伏は、階調電圧の分解能による補正誤差に基づく。
 図10Eは、本実施形態に係る表示装置10における、行Rの画素の輝度Lを示す図である。本実施形態に係る表示装置10では、映像信号D1は式(7)に従い、式(7)の第2項も含めて補正される。この場合、画素の輝度Lは画素領域A1、A2の境界付近で滑らかに変化する。したがって、本実施形態に係る表示装置10によれば、画素領域A1、A2の境界における輝度差を低減することができる。
 以上に示すように、本実施形態に係る表示装置10は、表示素子(有機EL素子L1)と、表示素子と直列に設けられ、表示素子に流れる電流の量を制御する駆動素子(駆動用TFT:Q1)とを含み、2次元状に配置された複数の画素18と、駆動素子を通過し、表示素子を通過せずに、画素18の外部に出力された電流を測定する電流測定回路(データ線駆動/電流測定回路14)と、電流測定回路による電流測定結果に基づき、映像信号D1を補正する補正演算部17と、画素18に対して補正後の映像信号D2に応じた電圧を書き込む駆動回路(データ線駆動/電流測定回路14)とを備えている。補正演算部17は、電流測定結果(電流測定データE1)に基づき、表示素子の発光電流効率ηを画素ごとに求める発光電流効率算出部26と、電流測定結果に基づき、映像信号D1に対して画素18ごとに、個々の画素の特性を考慮した補正(式(7)の第1項の補正)を行う第1補正部31と、発光電流効率の2次元分布に基づき、近傍画素との間の発光電流効率の差異を考慮した補正項(式(7)の第2項)を画素18ごとに求める第2補正部32とを含み、第1補正部31で補正した映像信号と第2補正部32で求めた補正項とに基づき、補正後の映像信号D2を求める。
 本実施形態に係る表示装置10によれば、発光電流効率ηの2次元分布に基づき、近傍画素との間の発光電流効率ηの考慮した補正項(式(7)の第2項)を求め、この補正項を用いて映像信号D1を補正することにより、画素領域間に発光電流効率ηに差異がある場合でも、その差異を補償し、画素領域の境界における輝度差を低減することができる。
 また、第2補正部32は、画素18ごとに、当該画素と近傍画素との間の発光電流効率の変化率の平均値を求め、求めた平均値に基づき補正項を求める。特に、第2補正部32は、画素18ごとに、1から求めた平均値を減算した値に係数δを乗算することにより、補正項を求める。このように画素18と近傍画素との間の発光電流効率ηの変化率の平均値に基づき補正項を求めることにより、画素領域間の発光電流効率の差異を補償する補正項を求めることができる。
 また、補正演算部17は、発光電流効率算出部26で求めた発光電流効率ηを画素18ごとに記憶する発光電流効率記憶部27をさらに含み、第2補正部32は、発光電流効率記憶部27に記憶された発光電流効率ηに基づき、補正項を求める。したがって、発光電流効率記憶部27を用いて、発光電流効率ηの2次元分布に基づく補正項を容易に求めることができる。
 また、補正演算部17は、電流測定結果に基づき画素18ごとに、初期状態の電流に対する比である初期電流比Kを求める初期電流比算出部25と、初期電流比Kと発光電流効率ηとの関係を記憶したテーブル(LUT22)とを含んでいる。発光電流効率算出部26は、初期電流比算出部25で求めた初期電流比Kを用いてテーブルを参照することにより、発光電流効率ηを求める。したがって、テーブルを用いて、初期電流比Kに基づき発光電流効率ηを容易に求めることができる。
 また、テーブルは、温度と初期電流比と発光電流効率との関係を記憶しており、発光電流効率算出部26は、測定された動作温度と初期電流比算出部25で求めた初期電流比Kとを用いてテーブルを参照することにより、発光電流効率ηを求める。したがって、初期電流比Kと発光電流効率ηとの関係が温度に応じて変化する場合でも、テーブルを用いて、動作温度に応じた発光電流効率ηを求めることができる。
 また、補正演算部17は、第1補正部31で補正した映像信号に第2補正部32で求めた補正項を加算する加算器33を含んでいる。したがって、加算器を用いて、第1補正部31で補正した映像信号に第2補正部32で求めた補正項を加算した補正後の映像信号D2を求めることができる。
 なお、以上に述べた表示装置10は、本発明を適用した表示装置の一例である。本発明は、駆動素子を通過した電流を画素から読み出し可能に構成された表示装置に適用できる。駆動素子を通過した電流は、データ線経由で読み出してもよく、電流測定用のモニタ線経由で読み出してもよい。本発明は、図7に示す画素Pijに代えて、発光時に等価的に図1に示す回路になり、駆動用TFTを通過した電流を読み出し可能に構成された任意の画素を備えた表示装置にも適用できる。本発明は、図8に示すタイミング以外のタイミングで動作する表示装置にも適用できる。
 本発明の表示装置は、画素領域の境界における輝度差を低減できるという特徴を有するので、有機EL表示装置など、表示素子と駆動素子とを含む画素を備えた各種の表示装置に利用することができる。
 10…表示装置
 11…表示部
 12…表示制御回路
 13…走査線駆動回路
 14…データ線駆動/電流測定回路
 15…A/D変換器
 16…温度センサ
 17…補正演算部
 18…画素
 21…初期値記憶部
 22…LUT
 23…TFT特性算出部
 24…TFT特性記憶部
 25…初期電流比算出部
 26…発光電流効率算出部
 27…発光電流効率記憶部
 31…第1補正部
 32…第2補正部
 33…加算器
 L1…有機EL素子(表示素子)
 Q1…駆動用TFT(駆動素子)

Claims (10)

  1.  電流駆動型の表示装置であって、
     表示素子と、前記表示素子と直列に設けられ、前記表示素子に流れる電流の量を制御する駆動素子とを含み、2次元状に配置された複数の画素と、
     前記駆動素子を通過し、前記表示素子を通過せずに前記画素の外部に出力された電流を測定する電流測定回路と、
     前記電流測定回路による電流測定結果に基づき、映像信号を補正する補正演算部と、
     前記画素に対して補正後の映像信号に応じた電圧を書き込む駆動回路とを備え、
     前記補正演算部は、
      前記電流測定結果に基づき、前記表示素子の発光電流効率を画素ごとに求める発光電流効率算出部と、
      前記電流測定結果と前記発光電流効率とに基づき、前記映像信号に対して画素ごとに、個々の画素の特性を考慮した補正を行う第1補正部と、
      前記発光電流効率の2次元分布に基づき、近傍画素との間の発光電流効率の差異を考慮した補正項を画素ごとに求める第2補正部とを含み、
      前記第1補正部で補正した映像信号と前記第2補正部で求めた補正項とに基づき、前記補正後の映像信号を求めることを特徴とする、表示装置。
  2.  前記第2補正部は、画素ごとに、当該画素と近傍画素との間の発光電流効率の変化率の平均値を求め、前記平均値に基づき前記補正項を求めることを特徴とする、請求項1に記載の表示装置。
  3.  前記第2補正部は、画素ごとに、1から前記平均値を減算した値に係数を乗算することにより、前記補正項を求めることを特徴とする、請求項2に記載の表示装置。
  4.  前記第2補正部は、i行j列目の画素Pijの発光電流効率をηij、発光電流効率の変化率の増減量に基づき階調電圧の増減量を求めるための係数をδとしたとき、画素Pijを中心として水平方向に±p画素、垂直方向に±q画素の範囲内にある画素を近傍画素として、次式(a)に示す補正項を求めることを特徴とする、請求項3に記載の表示装置。
    Figure JPOXMLDOC01-appb-M000001
  5.  前記第1補正部は、補正前の映像信号に応じた階調電圧をVg0、理想画素内の駆動素子の閾値電圧をVth0、理想画素内の駆動素子の電流係数をβ0、理想画素内の表示素子の発光電流効率をη0、画素Pij内の駆動素子の閾値電圧をVthij、画素Pij内の駆動素子の電流係数をβij、前記駆動素子を通過し、前記表示素子を通過しない電流の測定結果に基づき、前記駆動素子と前記表示素子を直列に接続した場合の電流を求めるための係数をα、階調電圧のオフセットをVofsとしたとき、次式(b)に示す演算を行い、
     前記補正演算部は、前記第1補正部で補正した映像信号に前記第2補正部で求めた補正項を加算することにより、前記補正後の映像信号を求めることを特徴とする、請求項4に記載の表示装置。
    Figure JPOXMLDOC01-appb-M000002
  6.  前記補正演算部は、前記発光電流効率算出部で求めた発光電流効率を画素ごとに記憶する発光電流効率記憶部をさらに含み、
     前記第2補正部は、前記発光電流効率記憶部に記憶された発光電流効率に基づき、前記補正項を求めることを特徴とする。請求項1に記載の表示装置。
  7.  前記補正演算部は、
      前記電流測定結果に基づき画素ごとに、初期状態の電流に対する比である初期電流比を求める初期電流比算出部と、
      初期電流比と発光電流効率との関係を記憶したテーブルとをさらに含み、
     前記発光電流効率算出部は、前記初期電流比算出部で求めた初期電流比を用いて前記テーブルを参照することにより、前記発光電流効率を求めることを特徴とする、請求項1に記載の表示装置。
  8.  前記テーブルは、温度と初期電流比と発光電流効率との関係を記憶しており、
     前記発光電流効率算出部は、測定された動作温度と前記初期電流比算出部で求めた初期電流比とを用いて前記テーブルを参照することにより、前記発光電流効率を求めることを特徴とする、請求項7に記載の表示装置。
  9.  前記補正演算部は、前記第1補正部で補正した映像信号に前記第2補正部で求めた補正項を加算する加算器をさらに含むことを特徴とする、請求項1に記載の表示装置。
  10.  表示素子と、前記表示素子と直列に設けられ、前記表示素子に流れる電流の量を制御する駆動素子とを含み、2次元状に配置された複数の画素を有する電流駆動型の表示装置の駆動方法であって、
     前記駆動素子を通過し、前記表示素子を通過せずに前記画素の外部に出力された電流を測定するステップと、
     電流測定結果に基づき、前記表示素子の発光電流効率を画素ごとに求めるステップと、
     前記電流測定結果と前記発光電流効率とに基づき、映像信号に対して画素ごとに、個々の画素の特性を考慮した補正を行う第1補正ステップと、
     前記発光電流効率の2次元分布に基づき、近傍画素との間の発光電流効率の差異を考慮した補正項を画素ごとに求める第2補正ステップと、
     前記第1補正ステップで補正した映像信号と前記第2補正ステップで求めた補正項とに基づき、補正後の映像信号を求めるステップと、
     前記画素に対して前記補正後の映像信号に応じた電圧を書き込むステップとを備えた、表示装置の駆動方法。
PCT/JP2015/070357 2014-07-23 2015-07-16 表示装置およびその駆動方法 WO2016013475A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201580037723.1A CN106537488B (zh) 2014-07-23 2015-07-16 显示装置及其驱动方法
US15/327,584 US10141020B2 (en) 2014-07-23 2015-07-16 Display device and drive method for same
JP2016535900A JP6333382B2 (ja) 2014-07-23 2015-07-16 表示装置およびその駆動方法
KR1020177001584A KR101920169B1 (ko) 2014-07-23 2015-07-16 표시 장치 및 그 구동 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014150198 2014-07-23
JP2014-150198 2014-07-23

Publications (1)

Publication Number Publication Date
WO2016013475A1 true WO2016013475A1 (ja) 2016-01-28

Family

ID=55163001

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/070357 WO2016013475A1 (ja) 2014-07-23 2015-07-16 表示装置およびその駆動方法

Country Status (5)

Country Link
US (1) US10141020B2 (ja)
JP (1) JP6333382B2 (ja)
KR (1) KR101920169B1 (ja)
CN (1) CN106537488B (ja)
WO (1) WO2016013475A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021222090A1 (en) * 2020-04-30 2021-11-04 Siemens Healthcare Diagnostics Inc. Apparatus, method for calibrating an apparatus and device therefor
US12022584B2 (en) 2021-04-26 2024-06-25 Siemens Healthcare Diagnostics Inc. Apparatus, method for calibrating an apparatus and device therefor

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101637247B1 (ko) 2009-12-04 2016-07-07 선오비온 파마슈티컬스 인코포레이티드 다환형 화합물 및 이의 사용 방법
AU2018220509B2 (en) 2017-02-16 2022-04-28 Sunovion Pharmaceuticials Inc. Methods of treating schizophrenia
WO2019118627A1 (en) * 2017-12-12 2019-06-20 Google Llc Display calibration to minimize image retention effect
JP7453148B2 (ja) 2018-02-16 2024-03-19 サノビオン ファーマシューティカルズ インク 塩、結晶形態、およびその製造方法
EP4135690A1 (en) 2020-04-14 2023-02-22 Sunovion Pharmaceuticals Inc. (s)-(4,5-dihydro-7h-thieno[2,3-c]pyran-7-yl)-n-methylmethanamine for treating neurological and psychiatric disorders
KR20220026661A (ko) 2020-08-25 2022-03-07 삼성디스플레이 주식회사 표시 장치 및 이의 구동 방법
JP7443201B2 (ja) * 2020-09-03 2024-03-05 JDI Design and Development 合同会社 表示装置及び表示装置の駆動方法
JP2022045649A (ja) * 2020-09-09 2022-03-22 株式会社Joled 表示装置及び表示装置の駆動方法
KR102434205B1 (ko) 2021-03-04 2022-08-18 김병길 이탈 방지부를 갖는 방충망

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011203510A (ja) * 2010-03-25 2011-10-13 Panasonic Corp 有機el表示装置及びその製造方法
JP2012078435A (ja) * 2010-09-30 2012-04-19 Casio Comput Co Ltd 発光装置及びその駆動制御方法並びに電子機器
JP2012141332A (ja) * 2010-12-28 2012-07-26 Sony Corp 信号処理装置、信号処理方法、表示装置及び電子機器
JP2012519881A (ja) * 2009-03-04 2012-08-30 グローバル・オーエルイーディー・テクノロジー・リミテッド・ライアビリティ・カンパニー エレクトロルミネッセントディスプレイ補償済み駆動信号

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4855648B2 (ja) 2004-03-30 2012-01-18 グローバル・オーエルイーディー・テクノロジー・リミテッド・ライアビリティ・カンパニー 有機el表示装置
US20060007249A1 (en) * 2004-06-29 2006-01-12 Damoder Reddy Method for operating and individually controlling the luminance of each pixel in an emissive active-matrix display device
JP2006201630A (ja) 2005-01-21 2006-08-03 Sony Corp 焼き付き現象補正方法、自発光装置、焼き付き現象補正装置及びプログラム
JP5240538B2 (ja) * 2006-11-15 2013-07-17 カシオ計算機株式会社 表示駆動装置及びその駆動方法、並びに、表示装置及びその駆動方法
JP2008129083A (ja) * 2006-11-16 2008-06-05 Hitachi Ltd 画像表示装置
US8077123B2 (en) * 2007-03-20 2011-12-13 Leadis Technology, Inc. Emission control in aged active matrix OLED display using voltage ratio or current ratio with temperature compensation
JP5240544B2 (ja) * 2007-03-30 2013-07-17 カシオ計算機株式会社 表示装置及びその駆動方法、並びに、表示駆動装置及びその駆動方法
JP5407138B2 (ja) * 2007-11-28 2014-02-05 ソニー株式会社 表示装置とその製造方法および製造装置
US8026873B2 (en) * 2007-12-21 2011-09-27 Global Oled Technology Llc Electroluminescent display compensated analog transistor drive signal
US7696773B2 (en) * 2008-05-29 2010-04-13 Global Oled Technology Llc Compensation scheme for multi-color electroluminescent display
US8217867B2 (en) * 2008-05-29 2012-07-10 Global Oled Technology Llc Compensation scheme for multi-color electroluminescent display
JP5213554B2 (ja) 2008-07-10 2013-06-19 キヤノン株式会社 表示装置及びその駆動方法
JP2010243938A (ja) * 2009-04-09 2010-10-28 Sony Corp 表示装置およびその駆動方法
JP2010286783A (ja) 2009-06-15 2010-12-24 Panasonic Corp 自発光表示装置及び自発光表示方法
US20110007102A1 (en) * 2009-07-10 2011-01-13 Casio Computer Co., Ltd. Pixel drive apparatus, light-emitting apparatus and drive control method for light-emitting apparatus
JP2011112723A (ja) * 2009-11-24 2011-06-09 Sony Corp 表示装置およびその駆動方法ならびに電子機器
JP2011112724A (ja) * 2009-11-24 2011-06-09 Sony Corp 表示装置およびその駆動方法ならびに電子機器
JP5146521B2 (ja) * 2009-12-28 2013-02-20 カシオ計算機株式会社 画素駆動装置、発光装置及びその駆動制御方法、並びに、電子機器
JP5240581B2 (ja) * 2009-12-28 2013-07-17 カシオ計算機株式会社 画素駆動装置、発光装置及びその駆動制御方法、並びに、電子機器
KR101322322B1 (ko) * 2010-09-22 2013-10-28 가시오게산키 가부시키가이샤 발광장치 및 그 구동제어방법 그리고 전자기기
US9466240B2 (en) * 2011-05-26 2016-10-11 Ignis Innovation Inc. Adaptive feedback system for compensating for aging pixel areas with enhanced estimation speed
JP2014048485A (ja) * 2012-08-31 2014-03-17 Sony Corp 表示装置及び電子機器
TWI600000B (zh) * 2013-05-23 2017-09-21 Joled Inc Image signal processing circuit, image signal processing method and display device
JP5790811B2 (ja) * 2014-02-27 2015-10-07 ウシオ電機株式会社 光源装置およびプロジェクタ
JP2015225150A (ja) * 2014-05-27 2015-12-14 ソニー株式会社 表示装置及び電子機器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012519881A (ja) * 2009-03-04 2012-08-30 グローバル・オーエルイーディー・テクノロジー・リミテッド・ライアビリティ・カンパニー エレクトロルミネッセントディスプレイ補償済み駆動信号
JP2011203510A (ja) * 2010-03-25 2011-10-13 Panasonic Corp 有機el表示装置及びその製造方法
JP2012078435A (ja) * 2010-09-30 2012-04-19 Casio Comput Co Ltd 発光装置及びその駆動制御方法並びに電子機器
JP2012141332A (ja) * 2010-12-28 2012-07-26 Sony Corp 信号処理装置、信号処理方法、表示装置及び電子機器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021222090A1 (en) * 2020-04-30 2021-11-04 Siemens Healthcare Diagnostics Inc. Apparatus, method for calibrating an apparatus and device therefor
US12022584B2 (en) 2021-04-26 2024-06-25 Siemens Healthcare Diagnostics Inc. Apparatus, method for calibrating an apparatus and device therefor

Also Published As

Publication number Publication date
US10141020B2 (en) 2018-11-27
US20170162226A1 (en) 2017-06-08
JP6333382B2 (ja) 2018-05-30
KR101920169B1 (ko) 2018-11-19
CN106537488B (zh) 2019-06-07
KR20170020885A (ko) 2017-02-24
JPWO2016013475A1 (ja) 2017-04-27
CN106537488A (zh) 2017-03-22

Similar Documents

Publication Publication Date Title
JP6333382B2 (ja) 表示装置およびその駆動方法
JP6656265B2 (ja) 表示装置およびその駆動方法
JP5343073B2 (ja) 表示装置、表示装置の製造方法および制御方法
US10460639B2 (en) Luminance compensation system and luminance compensation method thereof
JP5552117B2 (ja) 有機el表示装置の表示方法および有機el表示装置
JP5443504B2 (ja) 駆動トランジスタに駆動トランジスタ制御信号を与える方法
US8427513B2 (en) Display device, display device drive method, and computer program
US8830148B2 (en) Organic electroluminescence display device and organic electroluminescence display device manufacturing method
WO2014069324A1 (ja) 表示装置用のデータ処理装置、それを備える表示装置、および表示装置用のデータ処理方法
US10276099B2 (en) Organic light emitting diode display and method for driving the same
US9269295B2 (en) Display device and driving method thereof
US9361823B2 (en) Display device
JP2012519881A (ja) エレクトロルミネッセントディスプレイ補償済み駆動信号
US20190362671A1 (en) Organic el display device and method for estimating deterioration amount of organic el element
US9747836B2 (en) Signal processing method, display device, and electronic apparatus
JP2010134169A (ja) アクティブマトリクス型表示装置及びそのような表示装置の検査方法並びに製造方法
JP2013222057A (ja) 表示装置の製造方法及び表示装置
JP2015106096A (ja) 表示装置及びその補償データ算出方法及びその駆動方法
KR102217170B1 (ko) 유기 발광 다이오드 표시 장치
KR102387346B1 (ko) 표시장치와 이의 구동방법
KR102281008B1 (ko) 유기 발광 다이오드 표시 장치
KR102245999B1 (ko) 유기 발광 다이오드 표시 장치 및 그의 센싱 방법
KR102293366B1 (ko) Oled 표시 장치 및 그 구동 방법
KR102567325B1 (ko) 표시장치의 휘도 보상 시스템 및 그 휘도 보상 방법
JP2019039942A (ja) 表示装置の補正方法及び表示装置の補正装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15824767

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016535900

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177001584

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15327584

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15824767

Country of ref document: EP

Kind code of ref document: A1