WO2016012691A1 - Procédé et équipement de refroidissement - Google Patents

Procédé et équipement de refroidissement Download PDF

Info

Publication number
WO2016012691A1
WO2016012691A1 PCT/FR2015/051915 FR2015051915W WO2016012691A1 WO 2016012691 A1 WO2016012691 A1 WO 2016012691A1 FR 2015051915 W FR2015051915 W FR 2015051915W WO 2016012691 A1 WO2016012691 A1 WO 2016012691A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate
cooling
thermal
tray
spraying
Prior art date
Application number
PCT/FR2015/051915
Other languages
English (en)
Inventor
Vincent Duhoux
Bruno Magnin
Daniel BELLOT
José ROCHE
Pierre AUCOUTURIER
Original Assignee
Constellium Neuf-Brisach
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=51610169&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2016012691(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to KR1020177002831A priority Critical patent/KR102336948B1/ko
Priority to EP15753101.3A priority patent/EP3171996B1/fr
Priority to DE15753101.3T priority patent/DE15753101T1/de
Priority to MX2017000483A priority patent/MX2017000483A/es
Priority to EP18159076.1A priority patent/EP3398696B1/fr
Priority to CN201580040948.2A priority patent/CN106661648B/zh
Priority to JP2017503588A priority patent/JP6585155B2/ja
Application filed by Constellium Neuf-Brisach filed Critical Constellium Neuf-Brisach
Priority to RU2017105464A priority patent/RU2676272C2/ru
Priority to BR112017000205-1A priority patent/BR112017000205B1/pt
Priority to US15/326,753 priority patent/US10130980B2/en
Priority to CA2954711A priority patent/CA2954711C/fr
Publication of WO2016012691A1 publication Critical patent/WO2016012691A1/fr
Priority to SA517380746A priority patent/SA517380746B1/ar
Priority to US15/962,657 priority patent/US20180236514A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/74Temperature control, e.g. by cooling or heating the rolls or the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0203Cooling
    • B21B45/0209Cooling devices, e.g. using gaseous coolants
    • B21B45/0215Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes
    • B21B45/0218Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes for strips, sheets, or plates
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/667Quenching devices for spray quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D11/00Process control or regulation for heat treatments
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D11/00Process control or regulation for heat treatments
    • C21D11/005Process control or regulation for heat treatments for cooling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/002Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working by rapid cooling or quenching; cooling agents used therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • B21B2001/225Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length by hot-rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • B21B2003/001Aluminium or its alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0203Cooling
    • B21B45/0209Cooling devices, e.g. using gaseous coolants
    • B21B2045/0212Cooling devices, e.g. using gaseous coolants using gaseous coolants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2261/00Product parameters
    • B21B2261/02Transverse dimensions
    • B21B2261/04Thickness, gauge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2261/00Product parameters
    • B21B2261/02Transverse dimensions
    • B21B2261/06Width
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2261/00Product parameters
    • B21B2261/12Length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2261/00Product parameters
    • B21B2261/20Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/004Heating the product

Definitions

  • the invention relates to the field of rolling plates or trays made of aluminum alloys.
  • the invention relates to a particularly rapid, homogeneous and reproducible cooling process of the plate between the homogenization and hot rolling operations.
  • the invention also relates to the installation or equipment for implementing said method.
  • State of the art
  • the transformation of the aluminum alloy rolling trays resulting from the casting requires, before hot rolling, a metallurgical homogenization heat treatment.
  • This heat treatment is operated at a temperature close to the solvus of the alloy, higher than the hot rolling temperature.
  • the difference between the homogenization temperature and the hot rolling temperature is between 30 and 150 ° C, depending on the alloys.
  • the plate must therefore be cooled between its exit from the homogenization furnace and its hot rolling. For reasons of productivity or of metallurgical structure, in particular to avoid certain surface defects on the finished sheet, it is very desirable to be able to carry out the cooling of the plate between its exit from the homogenization furnace and the hot rolling mill in a fast manner. .
  • This desired plate cooling rate is between 150 and 500 ° C / h.
  • the air cooling rate of a 600 mm plate of air thickness is included between 40 ° C / h in calm air or under natural convection, and 100 ° C / h in ventilated air or forced convection.
  • the cooling by means of a liquid or a mist is much faster because the value of the exchange coefficient, known to those skilled in the art as the HTC (Heat Transfer Coefficient), between a liquid or a mist and the hot surface of the metal plate is well above the value of the same coefficient between the air and the plate.
  • HTC Heat Transfer Coefficient
  • the liquid chosen alone or in the mist is for example water and, in this case, ideally deionized water.
  • the coefficient HTC is between 2000 and 20000 W / (m 2 .K) between water and the hot plate while it is between 10 and 30 W / (m 2 .K) between air and the hot tray.
  • the cooling by means of a liquid or fog usually generates in a natural way strong thermal gradients in the plateau:
  • Biot illustrates the thermal homogeneity of the cooling. It corresponds to the ratio of the internal thermal resistance of a body (internal heat transfer by conduction) to its surface thermal resistance (heat transfer by convection and radiation).
  • HTC being the exchange coefficient between the fluid and the plate
  • D the characteristic dimension of the system, here the half-thickness of the plate, ⁇ , the thermal conductivity of the metal, for example, for an aluminum alloy, 160 W / (m 2 .K).
  • the number of Biot is: Between 0.02 and 0.06 for cooling in calm or ventilated air. The number of Biot is small in front of 1, the plate is cooled isothermally.
  • Thermal heterogeneity is a major handicap for cooling with a liquid or mist. It poses a problem not only for the following process, ie hot rolling, but it is also potentially harmful for the final quality of the product, namely the aluminum alloy sold in the form of coils or sheets at high temperatures. mechanical characteristics.
  • Rapid cooling at a speed of at least 150 ° C / h, and therefore, from 30 to 150 ° C of cooling from a temperature of the order of 450 to 600 ° C
  • a homogeneous and controlled thermal field in the whole plateau Ensuring perfect reproducibility from one thick plate to another.
  • the subject of the invention is a method of cooling an aluminum alloy rolling plate of typical dimensions of 250 to 800 mm in thickness, 1000 to 2000 mm in width and 2000 to 8000 mm in length, after the heat treatment.
  • metallurgical homogenization of said platen at a temperature typically between 450 to 600 ° C depending on the alloys and before its hot rolling, characterized in that the cooling, a value of 30 to 150 ° C, is carried out at a speed of from 150 to 500 ° C / h, with a thermal difference of less than 40 ° C over the entire cooled plate from its homogenization temperature.
  • thermal difference is meant the maximum difference between temperatures recorded over the entire volume of the tray, or DTmax.
  • the cooling is carried out in at least two phases:
  • this time is about 30 minutes for a total cooling of the order of 150 ° C from substantially 500 ° C, and a few minutes for a cooling of the order of 30 ° C.
  • the phases of spraying and thermal uniformization are repeated, in the case of very thick trays and for overall average cooling greater than 80 ° C.
  • the coolant including in a mist, is water, and preferably deionized water.
  • the head and foot of the tray typically 300 to 600 mm at the ends, are less cooled than the rest of the tray, so as to maintain a head and a warm foot, a configuration favorable to the plate engagement during reversible hot rolling.
  • the cooling of the head and the foot can be modulated either by starting or extinguishing the nozzle or spray nozzles or by the presence of screens preventing or reducing the spray by said nozzles or nozzles.
  • the sprinkling phases, and not thermal uniformization can be repeated, and the head and the foot of the tray, is typically 300 to 600 mm at the ends, cooled differently than the rest of the tray at least in a spraying cells.
  • the first spraying pass is made with a zero heel, or continuous watering of the plate as in Figure 14, followed, without first phase of thermal uniformization, a second pass spraying with a heel of a pair of ramps as in Figure 12, thereby significantly reducing the duration of the final phase of uniformization necessary for the thermal balancing of the plate.
  • the longitudinal thermal uniformity of the plate is improved by a relative movement of the plate with respect to the spraying system: deflected or back and forth from the plate facing a fixed spraying system or vice versa, displacement of the nozzles or nozzles relative to the plate.
  • the tray scrolls horizontally in the spray cell and its running speed is greater than or equal to 20 mm / s, ie 1.2 m / min.
  • the transverse thermal uniformity of the plate is ensured by modulation of the spray in the width of the plate by ignition / extinction of nozzles or nozzles, or screening of said spray.
  • the invention also relates to an installation for implementing the method as above, comprising a spraying cell provided with nozzle manifolds or nozzles for liquid spraying or mist cooling under pressure arranged in the upper parts and base of said cell, so as to sprinkle the two large faces, upper and lower of said plate, A uniform air tunnel at the exit of the spray cell, in a tunnel with interior walls and roof in an internally reflective material, allowing a thermal uniformization of the plate by diffusion of heat in said plate, the heart by warming the surfaces.
  • Liquid nozzles or cooling mist generate sprays or jets with a solid cone whose angle is between 45 and 60 °
  • the axes of the lower nozzles are oriented normally to the lower surface.
  • the upper nozzle manifolds are matched in the direction of travel of the tray.
  • the upper ramps are inclined so that:
  • the jets have a normal border on the upper surface of the board
  • the overlap of the two jets is between 1/3 and 2/3 of the width of each jet, and preferably substantially half
  • the pairs of upper and lower nozzle ramps are placed substantially facing each other, so that the upper and lower spray lengths are substantially equal and in facing relation.
  • the spray length is controlled so as to promote the lateral evacuation of the liquid or mist sprayed on the upper face, by guiding it towards the banks of the plateau where it evacuated in the form of a cascade without touching the small faces of the plate thus allowing a very homogeneous cooling temperature in the longitudinal and transverse directions of the plate.
  • the liquid alone or contained in the cooling mist it can be recovered, typically in a container located under the facility, recycled and thermally controlled.
  • the entire installation, spray cell and uniformization tunnel is controlled by a thermal model coded on PLC, the thermal model determining the settings of the installation according to the temperature estimated by thermal measurement at the beginning of the spray cell and in depending on the target output temperature, usually the hot rolling start temperature.
  • the implementation of the installation comprises the following steps:
  • Figure 1 shows a block diagram of the method according to the invention in one pass.
  • the plate is removed from the homogenization furnace 1 at its homogenization temperature. It is transferred to the cooling machine, laterally centered and its surface temperature is measured (2) by surface thermocouple, by contact or with an infrared pyrometer but which will be less precise.
  • the thermal model determines the setting of the spraying cell 3 (number of activated ramp pairs and plateau speed). Then the tray is treated in the spray cell. At its exit, it is dry and transferred (4) to a uniformization tunnel 5 for a duration determined by thermal model or according to the amplitude of the cooling undergone. At the end, it is transferred to the hot rolling mill 6.
  • Figure 2 shows a block diagram of the method according to the invention in two or more passes.
  • the target cooling amplitude is greater than 100 ° C, a single passage in the cooling machine may be insufficient.
  • the plate is cooled a first time in the first spraying cell 3.
  • the plate is transferred into the second cooling machine composed of the elements 6, 7 and 8, where it undergoes a complete cycle: spraying cell then obligatorily tunnel of uniformization 8.
  • the duration of the last phase of uniformization depends on the thermal diffusivity of the material, therefore of the alloy, of the amplitude cooling target, and the severity of target thermal uniformity before hot rolling 9.
  • the multi-pass cooling can also be achieved with a single machine, by successive passages.
  • Figure 3 is a schematic plan of the sprinkler machine, seen in profile, the tray scrolling from left to right. It illustrates the disposition of the jets of liquid or mist sprayed on the plate, seen in profile, in the upper face and in the lower face.
  • the upper and lower irrigation booms are paired and in pairs, to ensure a good uniformity of cooling in the thickness of the tray.
  • the paired upper ramps are oriented in opposition, which ensures an evacuation of liquid or mist sprayed transversely to the plate.
  • the axes of the lower nozzles are oriented normally to the lower surface of the tray, the liquid flows by gravity. Ramps of compressed air (1 to 4) surround the ends of the spray cell to prevent residual runoff of liquid on the tray outside said cell.
  • Figure 4 illustrates the impact of the upper liquid or mist jets, in top view of the plate.
  • concentration of the surface flow of liquid or fog at the intersection of the jets in opposition This watering scheme is favorable to the evacuation of the liquid along this transverse line with a high surface flow rate.
  • FIG. 5 represents the thermal kinetics of a 600 mm plate, calculated in the case of a mean cooling of 40 ° C., in one pass in the spraying machine, for an alloy of the AA3104 type according to the designations defined by "Aluminum Association” in the "Registration Record Series” that it publishes regularly. There are the evolutions of the minimum temperatures Tmin, maximum Tmax and average Tmoy in the plateau, as well as the maximum temperature difference in the whole volume of the plateau, over time (DTmax).
  • Tmin minimum temperatures
  • maximum Tmax maximum temperature difference in the whole volume of the plateau
  • FIGS. 7 to 9 illustrate three modes or strategies of watering in the direction of the spraying machine, with representation of the position of the nozzles on the spray bars, the spray machine being seen from the front in all cases :
  • Figure 9 Thermal profile with hot banks, created by a lack of irrigation on the banks of the plateau.
  • Figure 10 shows two modes or strategies of watering width of the same aluminum alloy plate 600 mm thick and 1700 mm wide, on the left a thermal profile in the transverse direction with cold edges with 11 nozzles in action, right a thermal profile with hot banks with 9 nozzles in action.
  • FIG. 11 is the consequence on the thermal profile (temperature in ° C. as a function of the position in the cross direction, from the axis of the plate, in m) of these two modes of spraying.
  • Figures 12 to 14 illustrate three examples of modes or strategies for triggering watering.
  • Figure 12 corresponds to a management of the thermal profile in the long direction with hot ends, Figure 13 with warm ends and Figure 14 with cold ends (with a run-off in 1).
  • Figure 15 illustrates the longitudinal thermal profiles (temperature in ° C as a function of the position in the length L of the plate in m) for the three thermal management strategies of the above-mentioned ends of the plate.
  • the plate is alloy type AA6016, thickness 600 mm, its average cooling is 100 ° C in two passes, and the thermal uniformization box time is 10 min.
  • FIGS. 16 to 18 illustrate the thermal field, in 3D visualization, of the same example, at the hot rolling input, for the three thermal management strategies of the aforementioned ends of the plate, FIG. 16 with hot ends, FIG. lukewarm and Figure 18 with cold extremities.
  • Figure 19 illustrates the thermal field of a 600 mm thick AA6016 type alloy tray cooled by approximately 50 ° C in one pass in the set sprayer with a watering heel of only ramp at the ends of the plate, according to Figure 13. This setting leads to a very uniform thermal field with slightly warmer ends, which is favorable to rolling.
  • the invention essentially consists in a method of cooling with a cooling liquid or mist of a plate or a rolling plate of aluminum alloy, from 30 to 150 ° C in a few minutes, that is to say at an average cooling rate of between 150 and 500 ° C / hour.
  • a second phase of thermal uniformization of the plateau During the first spraying phase, the plate is cooled in an enclosure comprising nozzles or spray nozzles for liquid or mist cooling under pressure, typically water and preferably deionized.
  • the nozzles or nozzles are distributed in the upper and lower parts of said cell, so as to spray the two large faces, upper and lower, of the tray.
  • the option of a parade method limits the risk of hot spots related to the contacts between the plate and its support, usually consisting of cylindrical or conical rollers.
  • the average cooling of the plateau is controlled by the duration of spray seen by each section of the plateau.
  • the plateau is thermally very heterogeneous in its thickness, due to a high value of the Biot number.
  • the homogeneity of cooling in the width of the plate is controlled by: a) The control of the width of irrigation in the cross direction of the plate, by the number of activated nozzles or the use of screens
  • the homogeneity of cooling in the length of the plate is controlled by: c) The control of the beginning and the end of the sprinkling by triggering of the spray bars at the desired position on the plateau or, again, by the use of screens. Thus the head and the foot of the tray may not be sprayed. We then obtain a plate with a head and a hot foot, which is favorable to its engagement during hot reversing rolling.
  • the tray After spraying, the tray is held for a few minutes in a configuration of low heat exchange with its environment. These thermal conditions allow the thermal uniformization of the plate, in a few minutes for cooling of less than 30 ° C and in about 30 minutes maximum for cooling of 150 ° C. This phase is essential to achieving the required thermal uniformity specifications. It makes it possible to reach a thermal difference DTmax of less than 40 ° C on a large plate.
  • the invention can also be adapted to absolute values of high cooling.
  • the average cooling of the desired plateau is typically greater than 80 ° C., it is possible to cycle the all the "spray” and “uniformization” phases several times, reducing each "spraying-uniformization” cycle. average temperature of a very thick plate.
  • the method thus described ensures rapid and controlled cooling of a thick plate, in particular a rolling plate, made of aluminum alloy. It is also robust and avoids the known risks of local overcooling.
  • the machine, or cooling system itself consists of at least one spraying cell, typically horizontal to the parade, on the one hand and, on the other hand, at least one thermal uniformization tunnel.
  • the spraying cell allows the implementation of phase 1 of the method described above.
  • the tray processing steps in this machine or installation are as follows:
  • the spraying cell consists of ramps provided with nozzles or nozzles for dispensing under pressure the liquid or cooling mist.
  • the latter is water, it is ideally deionized or at least very clean and not very mineralized, to avoid clogging of the nozzles and to ensure the stability of the heat transfer between the water and the plateau.
  • the spraying machine can advantageously, for reasons of economy in particular, operate in a closed cycle, with for example a recovery tank placed under the spray machine.
  • the selected coolant or coolant nozzles generate full cone sprays or jets with an angle between 45 and 60 ° (in the example: LECHLER brand 60 ° angled solid cone nozzles) .
  • the axes of the nozzles of the lower ramps are oriented normally to the lower surface.
  • the upper ramps are paired. In the same pair of upper ramps, the ramps are inclined so that:
  • the jets of the two ramps are oriented in opposition to each other
  • the jets have a normal border on the upper surface of the plate - the overlap of the two jets is between 1/3 and 2/3 of the width of the jet, and preferably substantially half
  • the envelope of the two jets thus formed thus constitutes a profile in M
  • the pairs of upper and lower nozzle ramps are placed substantially facing each other, so that the upper and lower spray lengths are substantially equal and in facing relation.
  • the speed of travel of the tray is greater than or equal to 20 mm / s, ie 1.2 m / min.
  • the plate On leaving the spraying cell, the plate is transferred, for example by means of automatic trolleys, into one or more tunnel (s) of uniformity.
  • the aim of the tunnel is to minimize the heat transfer between the plateau and the air, which is favorable to a better thermal uniformity of the plateau. This thermal uniformization takes place by diffusion of heat in the tray, the heart warming the surfaces of the tray.
  • the uniformization tunnel consists of vertical walls and a roof in an ideally reflective material on the inside of the tunnel.
  • the machine or cooling system composed of the spraying cell and the uniformization tunnel is controlled by a thermal model coded on the automaton of the machine.
  • the thermal model determines the settings of the machine according to the temperature at the start of the spray cell, or inlet temperature, and depending on the target output temperature, usually the rolling temperature.
  • Example 1 Uniform cooling of 40 ° C of an alloy plate AA3104 type.
  • Figure 5 illustrates the cooling of 40 ° C of an AA3104 alloy plate according to the designations defined by "Aluminum Association” in the “Registration Record Series” it publishes regularly.
  • the thickness of the board is 600 mm, its width 1850 mm and its length 4100 mm.
  • the tray leaves the homogenizing oven at 600 ° C.
  • the plate cooling process is the one-pass process described in Figure 1.
  • the tray is transferred to the cooling machine in 180 s.
  • This transfer time includes:
  • each point of the plate off ends is watered for 46 seconds.
  • the surface flow rate of spray is 500 l / (min.m 2 ) on the two large faces of the tray.
  • the watering heel is set at a ramp torque, as described in FIG. 12.
  • the plate is dry and transferred in 30 s to a uniformization tunnel for a duration determined by the thermal model coded in the automaton, here of 300 s, is 5 minutes.
  • the tray is transferred to the hot rolling mill, with thermal uniformity better than 40 ° C on the complete tray.
  • the plateau surface temperature drops to about 320 ° C, while the core of the plateau remains almost isothermal during the spraying phase. Then, by diffusion of heat between the heart and the surface, the heart gives up heat to the surface, the plate becomes thermally uniform.
  • the thermal gap in the plateau (DTmax) is maximum at the end of the spraying phase, its value is 280 ° C for this configuration. It reduces rapidly when the sprinkling stops: in 6 minutes of waiting (transfer and then uniformization in the tunnel), the thermal deviation DTmax is reduced to less than 40 ° C.
  • Example 2 135 ° C uniform cooling of an alloy plate AA6016 type.
  • Figure 6 illustrates the 135 ° C cooling of an alloy plate of the AA6016 type.
  • the thickness of the plate is 600 mm, its width 1850 mm and its length 4100 mm.
  • the tray leaves the homogenization oven at 530 ° C.
  • the plate cooling process is the two-pass process described in Figure 2.
  • the tray is transferred to the cooling machine in 100 s.
  • This transfer time includes:
  • each point of the plate off ends (head and foot) is watered for 51 seconds.
  • the surface flow rate of spraying is 800 l / (min.m 2 ) on the two large faces of the plate.
  • the watering heel is set to a ramp, as described in FIG. 13.
  • the plate is transferred in 60 s to the second spraying cell without passing, in this example, through the optional intermediate standardization tunnel.
  • the plateau then undergoes a second watering, identical to the first one: each point of the plateau out ends undergoes a watering of 51 seconds, at the surface flow rate of 800 l / (min.m 2 ).
  • the plate On leaving the second spraying cell, the plate is transferred to the uniformization tunnel in 30 seconds. The board waits several minutes in the standardization tunnel. At the end, the tray is transferred to the hot rolling mill, with thermal uniformity better than 40 ° C on the complete tray.
  • the surface temperature of the tray drops to about 60 ° C.
  • the core of the plate remains almost isothermal during the first phase of spraying and then cools during the second phase of spraying. Then, by diffusion of heat between the heart and the surface, the heart gives up heat to the surface, the plate becomes thermally uniform.
  • the thermal gap in the plateau (DTmax) is maximum at the end of each of the sprinkling phases, its value is 470 ° C for this configuration. It is reduced rapidly when the sprinkling of the plateau ceases: the temperature difference DTmax plateau is 55 ° C after 13 minutes waiting in the tunnel and becomes less than 40 ° C after 23 minutes spent in the tunnel.
  • Example 3 Uniform cooling of 125 ° C of an alloy plate of the AA6016 type.
  • the thickness of the plate is 600 mm, its width 1850 mm and its length 4100 mm.
  • the tray leaves the homogenization oven at 530 ° C.
  • the plate cooling process is the two-pass process described in Figure 2.
  • the tray is transferred to the cooling machine in 100 s.
  • This transfer time includes:
  • each point of the tray is watered for 51 seconds.
  • the surface flow rate of spray is 500 l / (min.m 2 ) on the two large faces of the tray.
  • the watering heel is zero, as described in Figure 14.
  • the plate is thus watered completely identically, which generates a longitudinal thermal profile cold ends.
  • the plate is transferred in 60 s to the second spraying cell without passing, in this example, through the optional intermediate uniformization tunnel.
  • the plateau then undergoes a second watering, different from the first.
  • the plateau but this time out of the ends, undergoes a second watering of 51 seconds, at the surface flow rate of 500 l / (min.m 2 ).
  • the watering heel is of a pair of ramps, as described in FIG. 12. This adjustment tends to straighten the cold-end thermal profile, thus generating an almost flat longitudinal thermal profile at the outlet of the second spray cell.
  • the plate is transferred to the standardization tunnel in 30 seconds. The plateau is waiting only 10 minutes in the tunnel of standardization.
  • the tray is transferred to the hot rolling mill, with thermal uniformity better than 40 ° C on the complete tray.
  • Example 3 shows that the judicious choice of watering heels makes it possible to significantly reduce the uniformization time after spraying.
  • the choice of heels may be different from one pass to another.
  • the heel chosen in the first pass wins to be opposite to the heel chosen in the second pass.
  • a first pass with a zero heel (continuous watering of the plate) followed by a second pass with a heel of a pair of ramps can significantly reduce the uniformization time required for the thermal balancing of the plate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Metal Rolling (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)
  • Fertilizers (AREA)
  • Heat Treatment Of Articles (AREA)
  • Continuous Casting (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

Abrégé L'invention a pour objet un procédé de refroidissement d'un plateau de laminage en alliage d'aluminium, après le traitement thermique d'homogénéisation métallurgique dudit plateau et avant son laminage à chaud, caractérisé en ce que le refroidissement d'une valeur de 30 à 150°C est effectué à une vitesse 150 à 500°C/h, avec une homogénéité de moins de 40°C sur toute la partie traitée du plateau. L'invention a également pour objet l'installation permettant la mise en œuvre dudit procédé ainsi que ladite mise en œuvre.

Description

Procédé et équipement de refroidissement Domaine de l'invention
L'invention concerne le domaine du laminage des plaques ou plateaux en alliages d'aluminium.
Plus précisément, l'invention concerne un procédé de refroidissement particulièrement rapide, homogène et reproductible du plateau entre les opérations d'homogénéisation et de laminage à chaud.
L'invention concerne également l'installation ou équipement permettant la mise en œuvre dudit procédé. Etat de la technique
La transformation des plateaux de laminage en alliage d'aluminium issus de la coulée exige, avant laminage à chaud, un traitement thermique d'homogénéisation métallurgique. Ce traitement thermique est opéré à une température proche du solvus de l'alliage, plus élevée que la température de laminage à chaud. L'écart entre la température d'homogénéisation et la température de laminage à chaud est compris entre 30 et 150°C, selon les alliages. Le plateau doit donc être refroidi entre sa sortie du four d'homogénéisation et son laminage à chaud. Pour des raisons soit de productivité, soit de structure métallurgique, notamment éviter certains défauts de surface sur la tôle finie, il est très souhaitable de pouvoir réaliser le refroidissement du plateau entre sa sortie du four d'homogénéisation et le laminoir à chaud de manière rapide.
Cette vitesse de refroidissement du plateau souhaitée est comprise entre 150 et 500°C/h.
Compte tenu de la forte épaisseur des plateaux de laminage en alliage d'aluminium, soit entre 250 et 800 mm, le refroidissement à l'air est particulièrement lent : la vitesse de refroidissement à l'air d'un plateau de 600 mm d'épaisseur est comprise entre 40°C/h à l'air calme ou sous convection naturelle, et 100°C/h sous air ventilé ou convection forcée.
Le refroidissement à l'air ne permet donc pas d'atteindre les vitesses de refroidissement souhaitées.
Le refroidissement au moyen d'un liquide ou d'un brouillard (mélange d'air et de liquide) est nettement plus rapide car la valeur du coefficient d'échange, connu de l'homme du métier sous l'appellation HTC (Heat Transfer Coefficient), entre un liquide ou un brouillard et la surface chaude du plateau métallique est nettement supérieure à la valeur de ce même coefficient entre l'air et le plateau.
Le liquide choisi seul ou dans le brouillard est par exemple de l'eau et, dans ce cas, idéalement de l'eau désionisée. Ainsi, le coefficient HTC est compris entre 2000 et 20000 W/(m2.K) entre de l'eau et le plateau chaud tandis qu'il est compris entre 10 et 30 W/(m2.K) entre de l'air et le plateau chaud. En revanche, le refroidissement au moyen d'un liquide ou brouillard génère habituellement de manière naturelle de forts gradients thermiques dans le plateau :
Le nombre adimensionnel de Biot illustre l'homogénéité thermique du refroidissement. Il correspond au rapport de la résistance thermique interne d'un corps (transfert de chaleur interne par conduction) à sa résistance thermique de surface (transfert de chaleur par convection et rayonnement).
„. HTC · D
Bi =
A
HTC étant le coefficient d'échange entre le fluide et le plateau,
D, la dimension caractéristique du système, ici la demi-épaisseur du plateau, λ, la conductivité thermique du métal, par exemple, pour un alliage d'aluminium, 160 W/(m2.K).
Si Bi « 1, le système est pratiquement isotherme, le refroidissement est uniforme. Si Bi » 1, le système est thermiquement très hétérogène et le plateau est le siège de forts gradients thermiques.
Pour un plateau d'épaisseur 600 mm, le nombre de Biot vaut : Entre 0.02 et 0.06 pour un refroidissement à l'air calme ou ventilé. Le nombre de Biot est faible devant 1, le plateau est refroidi de manière isotherme.
Entre 4 et 40 pour un refroidissement à l'eau. Le nombre de Biot est fort devant 1, le plateau est refroidi de manière très hétérogène dans son épaisseur.
Cette hétérogénéité se traduit également dans la largeur du plateau, en raison des effets de bords et d'arêtes, naturellement plus refroidies que les grandes faces du plateau.
Elle se traduit aussi dans la longueur du plateau, par effet de coin, naturellement refroidi suivant les trois faces le constituant.
L'hétérogénéité thermique est un handicap majeur du refroidissement à l'aide d'un liquide ou brouillard. Elle pose problème non seulement pour le procédé suivant, c'est à dire le laminage à chaud mais elle est aussi potentiellement néfaste pour la qualité finale du produit, à savoir l'alliage d'aluminium vendu sous forme de bobines ou de tôles à hautes caractéristiques mécaniques.
Les dispositifs connus de l'art antérieur ne cherchent pas à limiter cette hétérogénéité du refroidissement.
Les procédés de refroidissement à l'aide d'un liquide de refroidissement connus de l'art antérieur, notamment pour les tôles fortes, opèrent soit par immersion dans un bac, soit par passage dans un caisson d'aspersion mais sans attention particulière portée à la maîtrise de l'équilibre thermique du produit.
Ainsi, ces procédés ne permettent :
Ni d'obtenir un champ thermique uniforme dans le plateau refroidi
- Ni de garantir la reproductibilité du refroidissement d'un plateau à l'autre.
Problème posé
L'invention a pour objectif de corriger l'ensemble des défauts majeurs liés aux procédés de refroidissement de plateaux épais de l'art antérieur et d'assurer :
Un refroidissement rapide, à une vitesse d'au moins 150°C/h, et conséquent, soit de 30 à 150°C de refroidissement à partir d'une température de l'ordre de 450 à 600°C Un champ thermique homogène et maîtrisé dans l'ensemble du plateau L'assurance d'une parfaite reproductibilité d'un plateau épais à l'autre.
Objet de l'invention
L'invention a pour objet un procédé de refroidissement d'un plateau de laminage en alliage d'aluminium de dimensions typiques de 250 à 800 mm en épaisseur, 1000 à 2000 mm en largeur et 2000 à 8000 mm en longueur, après le traitement thermique d'homogénéisation métallurgique dudit plateau à une température typiquement comprise entre 450 à 600°C selon les alliages et avant son laminage à chaud, caractérisé en ce que le refroidissement, d'une valeur de 30 à 150°C, est effectué à une vitesse de 150 à 500°C/h, avec un écart thermique de moins de 40°C sur l'ensemble du plateau refroidi à partir de sa température d'homogénéisation.
On entend par écart thermique l'écart maximum entre températures relevées sur l'ensemble du volume du plateau, ou encore DTmax.
Avantageusement, le refroidissement est effectué en au moins deux phases :
Une première phase d'aspersion au cours de laquelle le plateau est refroidi dans une enceinte comportant des rampes de buses ou tuyères d'aspersion de liquide ou brouillard de refroidissement sous pression, réparties en parties haute et basse de ladite cellule, de façon à asperger les deux grandes faces, supérieure et inférieure dudit plateau,
Une phase complémentaire d'uniformisation thermique à l'air calme, dans un tunnel aux parois intérieures réflectives, d'une durée de 2 à 30 minutes selon le format du plateau et la valeur du refroidissement.
Typiquement, cette durée est d'environ 30 min pour un refroidissement total de l'ordre de 150°C à partir de sensiblement 500°C, et de quelques minutes pour un refroidissement de l'ordre de 30°C.
Selon une variante de l'invention, les phases d'aspersion et uniformisation thermique sont répétées, dans le cas de plateaux très épais et pour un refroidissement moyen global supérieur à 80°C.
Le plus couramment, le liquide de refroidissement, y compris dans un brouillard, est de l'eau, et de préférence de l'eau désionisée. Selon un mode de réalisation particulière, la tête et le pied du plateau, soit typiquement les 300 à 600 mm aux extrémités, sont moins refroidis que le reste du plateau, de façon à maintenir une tête et un pied chaud, configuration favorable à l'engagement du plateau lors d'un laminage à chaud réversible.
A cette fin, le refroidissement de la tête et du pied peut être modulé soit par la mise en route ou l'extinction des rampes de buses ou tuyères d'aspersion, soit par la présence d'écrans empêchant ou réduisant l'aspersion par lesdites buses ou tuyères. Par ailleurs, les phases d'aspersion, et pas d'uniformisation thermique, peuvent être répétées, et la tête et le pied du plateau, soit typiquement les 300 à 600 mm aux extrémités, refroidis différemment que le reste du plateau au moins dans une des cellules d'aspersion.
Selon une version conforme à cette dernière option, la première passe d'aspersion est effectuée avec un talon nul, soit un arrosage continu du plateau tel qu'en figure 14, suivie, sans première phase d'uniformisation thermique, d'une seconde passe d'aspersion avec un talon d'un couple de rampes tel qu'en figure 12, permettant ainsi de réduire notablement la durée de la phase finale d'uniformisation nécessaire à l'équilibrage thermique du plateau.
Selon une variante préférée de l'invention, l'uniformité thermique longitudinale du plateau est améliorée par un mouvement relatif du plateau par rapport au système d'aspersion : défilé ou va et vient du plateau face à un système d'aspersion fixe ou inversement, déplacement des buses ou tuyères par rapport au plateau.
Typiquement, le plateau défile horizontalement dans la cellule d'aspersion et sa vitesse de défilement est supérieure ou égale à 20 mm/s, soit 1.2 m/min.
Préférentiellement encore, l'uniformité thermique transversale du plateau est assurée par modulation de l'aspersion dans la largeur du plateau par allumage/extinction de buses ou tuyères, ou écrantage de ladite aspersion.
L'invention a également pour objet une installation pour mise en œuvre du procédé tel que ci-dessus, comportant une cellule d'aspersion munie de rampes de buses ou tuyères d'aspersion de liquide ou brouillard de refroidissement sous pression disposées en parties haute et basse de ladite cellule, de façon à asperger les deux grandes faces, supérieure et inférieure dudit plateau, Un tunnel d'uniformisation à l'air calme au sortir de la cellule d'aspersion, dans un tunnel aux parois intérieures et au toit en une matière intérieurement réflective, autorisant une uniformisation thermique du plateau par diffusion de la chaleur dans ledit plateau, le cœur en réchauffant les surfaces.
Selon un mode de réalisation préférentielle :
Les buses de liquide ou brouillard de refroidissement génèrent des sprays ou jets à cône plein dont l'angle est compris entre 45 et 60°
Les axes des buses inférieures sont orientés normalement à la surface inférieure De préférence, les rampes de buses supérieures sont appariées dans le sens de défilement du plateau. Dans une même paire, les rampes supérieures sont inclinées de telle sorte que :
- Les jets des deux rampes de buses supérieures appariées soient orientés en opposition l'un de l'autre.
- Les jets présentent une bordure normale à la surface supérieure du plateau
- Le recouvrement des deux jets soit compris entre le 1/3 et les 2/3 de la largeur de chaque jet, et préférentiellement sensiblement de la moitié
- L'enveloppe des deux jets ainsi formée constitue un profil en M.
Les paires de rampes de buses supérieures et inférieures sont placées sensiblement en vis-à-vis, de façon à ce que les longueurs d'aspersion supérieures et inférieures soient sensiblement égales et en vis-à-vis.
Du fait de l'appariement des buses supérieures en opposition et du profil en M des jets, la longueur d'aspersion est contrôlée de façon à favoriser l'évacuation latérale du liquide ou brouillard aspergé en face supérieure, en le guidant vers les rives du plateau où il s'évacue sous forme d'une cascade sans toucher les petites faces du plateau autorisant ainsi un refroidissement très homogène en température dans les sens longitudinal et transversal du plateau.
Quant au liquide seul ou contenu dans le brouillard de refroidissement, il peut être récupéré, typiquement dans un conteneur situé sous l'installation, recyclé et thermiquement contrôlé.
Selon un mode de mise en œuvre perfectionnée, l'ensemble de l'installation, cellule d'aspersion et tunnel d'uniformisation, est piloté par un modèle thermique codé sur automate, le modèle thermique déterminant les réglages de l'installation en fonction de la température estimée par mesure thermique en début de cellule d'aspersion et en fonction de la température cible de sortie, en général la température de début de laminage à chaud.
Selon un mode de réalisation avantageux, la mise en œuvre de l'installation, comporte les étapes suivantes :
- Centrage du plateau, à l'entrée de l'installation
- Mesure de la température de surface supérieure du plateau
- Calcul par l'automate, à l'aide du modèle thermique, des réglages de la cellule d'aspersion en fonction de la température cible d'entrée et de la température cible de sortie, c'est dire du refroidissement cible du plateau, incluant la détermination du nombre de rampes activées, du nombre de buses ouvertes en rives, de la vitesse de défilement du plateau dans la cellule d'aspersion, des démarrages et arrêts des rampes d'aspersion, et du temps de maintien dans le tunnel d'uniformisation
- Défilement du plateau dans la cellule d'aspersion, arrosage supérieur et inférieur suivant les calculs de l'automate
- Transfert du plateau de la cellule d'aspersion vers le tunnel d'uniformisation
- Maintien du plateau dans le tunnel d'uniformisation pendant une durée déterminée par l'automate.
Description des figures
La figure 1 représente un schéma de principe du procédé selon l'invention en une passe. Le plateau est défourné du four d'homogénéisation 1 à sa température d'homogénéisation. Il est transféré vers la machine de refroidissement, centré latéralement puis sa température de surface est mesurée (2) par thermocouple de surface, par contact ou à l'aide d'un pyromètre infrarouge mais qui sera moins précis. Le modèle thermique détermine le réglage de la cellule d'aspersion 3 (nombre de couples de rampes activées et vitesse de défilement du plateau). Puis le plateau est traité dans la cellule d'aspersion. A sa sortie, il est sec et transféré (4) vers un tunnel d'uniformisation 5 pour une durée déterminée par modèle thermique ou selon l'amplitude du refroidissement subi. A l'issue, il est transféré vers le laminoir à chaud 6.
La figure 2 représente un schéma de principe du procédé selon l'invention en deux passes ou plus. Lorsque l'amplitude cible de refroidissement est supérieure à 100°C, un seul passage dans la machine de refroidissement peut être insuffisant. Dans ce cas, le plateau est refroidi une première fois dans la première cellule d'aspersion 3. Puis, avec ou sans passage dans le tunnel d'uniformisation intermédiaire 5, le plateau est transféré dans la seconde machine de refroidissement composée des éléments 6, 7 et 8, où il subit un cycle complet : cellule d'aspersion puis obligatoirement tunnel d'uniformisation 8. La durée de la dernière phase d'uniformisation dépend de la diffusivité thermique du matériau, donc de l'alliage, de l'amplitude cible de refroidissement, et de la sévérité de l'uniformité thermique cible avant laminage à chaud 9.
Le refroidissement multi passes peut également être réalisé avec une seule machine, par passages successifs.
La figure 3 est un plan schématique de la machine d'aspersion, vue de profil, le plateau défilant de gauche à droite. Elle illustre la disposition des jets de liquide ou brouillard aspergé sur le plateau, vue de profil, en face supérieure et en face inférieure. Les rampes d'arrosage supérieures et inférieures sont appariées et en vis à vis par paire, pour garantir une bonne uniformité de refroidissement dans l'épaisseur du plateau. Les rampes supérieures appariées sont orientées en opposition, ce qui garantit une évacuation du liquide ou brouillard aspergé transversalement au plateau. Les axes des buses inférieures sont orientés normalement à la surface inférieure du plateau, le liquide s'écoule par gravité. Des rampes d'air comprimé (1 à 4) encadrent les extrémités de la cellule d'aspersion pour éviter tout ruissellement résiduel de liquide sur le plateau en dehors de ladite cellule.
La figure 4 illustre l'impact des jets de liquide ou brouillard supérieurs, en vue de dessus du plateau. On note la concentration du débit surfacique de liquide ou brouillard à l'intersection des jets en opposition. Ce schéma d'arrosage est favorable à l'évacuation du liquide le long de cette ligne transverse à fort débit surfacique.
La figure 5 représente la cinétique thermique d'un plateau de 600 mm, calculée dans le cas d'un refroidissement moyen de 40°C, en une passe dans la machine d'aspersion, pour un alliage du type AA3104 selon les désignations définies par « Aluminum Association » dans les « Registration Record Séries » qu'elle publie régulièrement. Y figurent les évolutions des températures minimum Tmin, maximum Tmax et moyenne Tmoy dans le plateau, ainsi que de l'écart maximum de température dans tout le volume du plateau, au cours du temps (DTmax). La figure 6 représente la cinétique thermique d'un plateau de 600 mm, calculée dans le cas d'un refroidissement moyen de 130°C, en deux passes dans la machine d'aspersion, pour un alliage du type AA6016 selon les désignations définies par « Aluminum Association » dans les « Registration Record Séries » qu'elle publie régulièrement. Y figurent de la même façon les évolutions des températures minimum Tmin, maximum Tmax et moyenne Tmoy dans le plateau, ainsi que de l'écart maximum de température dans tout le volume du plateau, au cours du temps (DTmax). Les figures 7 à 9 illustrent trois modes ou stratégies d'arrosage en sens travers de la machine d'aspersion, avec représentation de la position des buses sur les rampes d'aspersion, la machine d'aspersion étant vue de face dans tous les cas :
Figure 7 : Profil thermique uniforme dans la largeur du plateau
Figure 8 : Profil thermique à rives froides, créé par un surplus d'arrosage sur les rives du plateau
Figure 9 : Profil thermique à rives chaudes, créé par un déficit d'arrosage sur les rives du plateau.
La figure 10 présente deux modes ou stratégies de largeur d'arrosage d'un même plateau en alliage d'aluminium de 600 mm d'épaisseur et de 1700 mm de largeur, à gauche un profil thermique dans le sens travers à rives froides avec 11 buses en action, à droite un profil thermique à rives chaudes avec 9 buses en action.
La figure 11 est la conséquence sur le profil thermique (température en °C en fonction de la position dans le sens travers, à partir de l'axe du plateau, en m) de ces deux modes d'aspersion.
Les Figures 12 à 14 illustrent trois exemples de modes ou stratégies de déclenchement de l'arrosage.
En effet, le profil thermique dans le sens long du plateau est maîtrisé par :
L'absence ou le très faible ruissellement dans le sens long du plateau, grâce au montage des rampes supérieures en opposition,
Le déclenchement et l'arrêt de l'arrosage de chaque couple de rampes à une position précise du plateau : c'est la notion de talon d'arrosage. La figure 12 correspond à une gestion du profil thermique dans le sens long à extrémités chaudes, la figure 13 à extrémités tièdes et la figure 14 à extrémités froides (avec un ruissellement en 1).
La Figure 15 illustre les profils thermiques longitudinaux (température en °C en fonction de la position dans la longueur L du plateau en m) pour les trois stratégies de gestion thermique des extrémités du plateau précitées. Dans cet exemple, le plateau est en alliage du type AA6016, d'épaisseur 600 mm, son refroidissement moyen est de 100°C en deux passes, et le temps en caisson d'uniformisation thermique est de 10 min.
Les Figures 16 à 18 illustrent le champ thermique, en visualisation 3D, du même exemple, en entrée de laminage à chaud, pour les trois stratégies de gestion thermique des extrémités du plateau précitées, la figure 16 à extrémités chaudes, la figure 17 à extrémités tièdes et la figure 18 à extrémités froides.
On voit que la stratégie de déclenchement de l'arrosage permet clairement de maîtriser le profil thermique longitudinal du plateau.
La Figure 19 illustre le champ thermique d'un plateau en alliage du type AA6016, de 600 mm d'épaisseur, refroidi d'environ 50°C en une passe dans la machine d'aspersion réglée avec un talon d'arrosage d'une seule rampe aux extrémités du plateau, conformément à la figure 13. Ce réglage conduit à un champ thermique très uniforme avec des extrémités légèrement plus chaudes, ce qui est favorable au laminage.
Description de l'invention L'invention consiste essentiellement dans un procédé de refroidissement à l'aide d'un liquide ou brouillard de refroidissement d'une plaque ou d'un plateau de laminage d'alliage d'aluminium, de 30 à 150°C en quelques minutes, c'est-à-dire à une vitesse de refroidissement moyenne comprise entre 150 et 500°C/heure.
Il est constitué principalement de deux phases :
Une première phase d'aspersion du plateau à l'aide d'un liquide ou brouillard de refroidissement, typiquement au défilé
Une deuxième phase d'uniformisation thermique du plateau. Pendant la première phase d'aspersion, le plateau est refroidi dans une enceinte comportant des buses ou tuyères d'aspersion de liquide ou brouillard refroidissant sous pression, typiquement de l'eau et de préférence désionisée.
Les buses ou tuyères sont réparties en parties haute et basse de ladite cellule, de façon à asperger les deux grandes faces, supérieure et inférieure, du plateau.
L'option d'un procédé au défilé permet de limiter les risques de points chauds liés aux contacts entre le plateau et son support, en général constitué de rouleaux cylindriques ou coniques.
Le refroidissement moyen du plateau (ATmoy plateau) est contrôlé par la durée d'aspersion vue par chaque section du plateau.
Durant cette phase, le plateau est thermiquement très hétérogène dans son épaisseur, du fait d'une valeur du nombre de Biot élevée.
L'homogénéité de refroidissement dans la largeur du plateau est maîtrisée par : a) Le contrôle de la largeur d'arrosage dans le sens travers du plateau, par le nombre de buses activées ou l'utilisation d'écrans
b) Une méthode d'aspersion favorisant l'évacuation latérale de l'eau aspergée en face supérieure. En effet, le liquide de refroidissement est guidé vers les rives du plateau et s'évacue sous forme d'une cascade sans toucher les petites faces dudit plateau. Le refroidissement du plateau est de ce fait très homogène. Cette méthode consiste en fait à apparier deux rampes de buses, placées en opposition, comme le montrent notamment les figures 3 et 4.
L'homogénéité de refroidissement dans la longueur du plateau est maîtrisée par : c) Le contrôle du début et de la fin de l'aspersion par déclenchement des rampes d'aspersion à la position souhaitée sur le plateau ou, à nouveau, par l'utilisation d'écrans. Ainsi la tête et le pied du plateau peuvent ne pas être aspergés. On obtient alors un plateau avec une tête et un pied chaud, ce qui est favorable à son engagement lors du laminage réversible à chaud
d) La forte réduction du ruissellement dans le sens long du plateau. Ce très faible ruissellement est obtenu grâce à la caractéristique b) ci-dessus de l'invention, favorisant l'évacuation latérale du liquide de refroidissement aspergé en face supérieure du plateau. La phase d'aspersion est donc conçue pour limiter les hétérogénéités thermiques dans les trois directions du plateau. L'invention permet tout particulièrement de maîtriser les profils thermiques dans le sens travers et dans le sens long du plateau, ce qui est très appréciable puisque des éventuels gradients thermiques le long de ces deux grandes dimensions seraient difficiles à résorber dans un court délai.
Suit la phase d'uniformisation thermique du plateau :
Après aspersion, le plateau est maintenu quelques minutes dans une configuration de faible échange de chaleur avec son environnement. Ces conditions thermiques permettent l'uniformisation thermique du plateau, en quelques minutes pour les refroidissements de moins de 30°C et en environ 30 minutes maximum pour des refroidissements de 150°C. Cette phase est essentielle à l'atteinte des spécifications d'uniformité thermique demandées. Elle permet d'atteindre un écart thermique DTmax de moins de 40°C sur un plateau de grandes dimensions.
L'invention peut également être adaptée à des valeurs absolues de refroidissements élevées. Ainsi, lorsque le refroidissement moyen du plateau souhaité est supérieur à typiquement 80°C, il est possible de cycler plusieurs fois l'ensemble des phases « aspersion » et « uniformisation », en réduisant à chaque cycle d' « aspersion- uniformisation » la température moyenne d'un plateau très épais.
Le procédé ainsi décrit assure un refroidissement rapide et maîtrisé d'une plaque épaisse, notamment un plateau de laminage, en alliage d'aluminium. Il est par ailleurs robuste et évite les risques connus de sur-refroidissements locaux.
La machine, ou installation de refroidissement, elle-même est constituée d'au moins une cellule d'aspersion, typiquement horizontale au défilé, d'une part et, d'autre part, d'au moins un tunnel d'uniformisation thermique.
La cellule d'aspersion permet la mise en œuvre de la phase 1 du procédé décrit plus haut. Les étapes de traitement du plateau dans cette machine ou installation sont les suivantes :
1) Centrage du plateau, à l'entrée de la machine
2) Mesure de la température de surface supérieure du plateau
3) Calcul par l'automate, à l'aide du modèle thermique, des réglages de la cellule d'aspersion en fonction de la température d'entrée et de la température cible de sortie, c'est à dire du refroidissement cible du plateau, incluant la détermination du nombre de rampes de buses activées, du nombre de buses ouvertes en rives, de la vitesse de défilement du plateau dans la cellule d'aspersion, des démarrages et arrêts des rampes d'aspersion, du temps de maintien dans le tunnel d'uniformisation
4) Défilement du plateau dans la cellule d'aspersion, arrosage supérieur et inférieur suivant les calculs de l'automate.
La cellule d'aspersion est constituée de rampes munies de buses ou tuyères de distribution sous pression du liquide ou brouillard de refroidissement.
Dans le cas où ce dernier est de l'eau, celle-ci est idéalement desionisée ou du moins très propre et très peu minéralisée, afin d'éviter l'encrassement des buses et pour assurer la stabilité du transfert de chaleur entre l'eau et le plateau. La machine d'aspersion peut avantageusement, pour des raisons d'économie notamment, fonctionner en cycle fermé, avec par exemple un bassin récupérateur placé sous la machine d'aspersion.
Les buses de liquide ou brouillard de refroidissement choisies génèrent des sprays ou jets à cône plein, dont l'angle est compris entre 45 et 60° (dans l'exemple : buses à cône plein à 60° d'angle, de marque LECHLER). Les axes des buses des rampes inférieures sont orientés normalement à la surface inférieure. Les rampes supérieures sont appariées. Dans une même paire de rampes supérieures, les rampes sont inclinées de telle sorte que :
Les jets des deux rampes soient orientés en opposition l'un de l'autre
Les jets présentent une bordure normale à la surface supérieure du plateau - Le recouvrement des deux jets soit compris entre le 1/3 et les 2/3 de la largeur du jet, et préférentiellement sensiblement de la moitié
L'enveloppe des deux jets ainsi formée constitue donc un profil en M Les paires de rampes de buses supérieures et inférieures sont placées sensiblement en vis-à-vis, de façon à ce que les longueurs d'aspersion supérieures et inférieures soient sensiblement égales et en vis-à-vis.
Dans le cas d'un traitement au défilé, la vitesse de défilement du plateau est supérieure ou égale à 20 mm/s, soit 1.2 m/min.
Au sortir de la cellule d'aspersion, le plateau est transféré, par exemple à l'aide de chariots automatiques, dans un ou plusieurs tunnel(s) d'uniformisation. L'objectif du tunnel est de réduire au maximum les transferts thermiques entre le plateau et l'air, ce qui est favorable à une meilleure uniformisation thermique du plateau. Cette uniformisation thermique a lieu par diffusion de la chaleur dans le plateau, le cœur réchauffant les surfaces du plateau.
Le tunnel d'uniformisation est constitué de parois verticales et d'un toit dans une matière idéalement réflective côté intérieur du tunnel.
II évite les courants d'air autour du plateau, assurant l'absence de transfert de chaleur par convection forcée. Par ailleurs, il réduit les transferts de chaleur par convection naturelle et limite les transferts radiatifs si les parois sont réflectives.
Enfin, la machine ou installation de refroidissement composée de la cellule d'aspersion et du tunnel d'uniformisation, est pilotée par un modèle thermique codé sur l'automate de la machine. Le modèle thermique détermine les réglages de la machine en fonction de la température en début de cellule d'aspersion, ou température d'entrée, et en fonction de la température cible de sortie, en général la température de laminage.
Exemples
Exemple 1 : Refroidissement uniforme de 40°C d'un plateau en alliage du type AA3104.
La figure 5 illustre le refroidissement de 40°C d'un plateau en alliage du type AA3104 selon les désignations définies par « Aluminum Association » dans les « Registration Record Séries » qu'elle publie régulièrement. L'épaisseur du plateau est de 600 mm, sa largeur de 1850 mm et sa longueur de 4100 mm. Le plateau sort du four d'homogénéisation à 600°C.
Le procédé de refroidissement du plateau est le procédé à une passe, décrit en figure 1.
Le plateau est transféré vers la machine de refroidissement en 180 s. Ce temps de transfert comprend :
- le déplacement du plateau entre la sortie du four et l'entrée de la machine de refroidissement
- le centrage latéral du plateau
- la mesure de la température de surface supérieure du plateau
- le temps de calcul par l'automate des réglages de la machine de refroidissement (cellule d'aspersion et tunnel).
Puis le plateau défile dans la cellule d'aspersion, chaque point du plateau hors extrémités (tête et pied) subit un arrosage durant 46 secondes. Le débit surfacique d'aspersion est de 500 l/(min.m2) sur les deux grandes faces du plateau. Le talon d'arrosage est réglé à un couple de rampe, comme décrit en figure 12. A sa sortie de la cellule d'aspersion, le plateau est sec et transféré en 30 s vers un tunnel d'uniformisation pour une durée déterminée par le modèle thermique codé dans l'automate, ici de 300 s, soit 5 minutes. A l'issue, le plateau est transféré vers le laminoir à chaud, avec une uniformité thermique meilleure que 40°C sur le plateau complet.
La température de surface du plateau descend à environ 320°C, tandis que le cœur du plateau reste quasiment isotherme durant la phase d'aspersion. Puis, par diffusion de la chaleur entre le cœur et la surface, le cœur cède de la chaleur à la surface, le plateau s'uniformise thermiquement.
L'écart thermique dans le plateau (DTmax) est maximal à la fin de la phase d'aspersion, sa valeur est de 280°C environ pour cette configuration. Il se réduit rapidement dès lors que l'aspersion du plateau cesse : en 6 minutes d'attente (transfert puis uniformisation dans le tunnel), l'écart thermique DTmax est réduit à moins de 40°C. Exemple 2 : Refroidissement uniforme de 135°C d'un plateau en alliage du type AA6016.
La figure 6 illustre le refroidissement de 135°C d'un plateau en alliage du type AA6016. L'épaisseur du plateau est de 600 mm, sa largeur de 1850 mm et sa longueur de 4100 mm. Le plateau sort du four d'homogénéisation à 530°C.
Le procédé de refroidissement du plateau est le procédé à deux passes, décrit en figure 2.
Le plateau est transféré vers la machine de refroidissement en 100 s. Ce temps de transfert comprend :
- le déplacement du plateau entre la sortie du four et l'entrée de la machine de refroidissement
- le centrage latéral du plateau
- la mesure de la température de surface supérieure du plateau
- le temps de calcul par l'automate des réglages des machines de refroidissement.
Puis le plateau défile dans la cellule d'aspersion, chaque point du plateau hors extrémités (tête et pied) subit un arrosage durant 51 secondes. Le débit surfacique d'aspersion est de 800 l/(min.m2) sur les deux grandes faces du plateau. Le talon d'arrosage est réglé à une rampe, comme décrit en figure 13. A sa sortie de la cellule d'aspersion, le plateau est transféré en 60 s vers la seconde cellule d'aspersion sans passer, dans cet exemple, par le tunnel d'uniformisation intermédiaire optionnel. Le plateau subit alors un second arrosage, identique au premier : chaque point du plateau hors extrémités subit un arrosage de 51 secondes, au débit surfacique de 800 l/(min.m2). A sa sortie de la seconde cellule d'aspersion, le plateau est transféré vers le tunnel d'uniformisation en 30 secondes. Le plateau attend plusieurs minutes dans le tunnel d'uniformisation. A l'issue, le plateau est transféré vers le laminoir à chaud, avec une uniformité thermique meilleure que 40°C sur le plateau complet.
La température de surface du plateau descend à environ 60°C. Le cœur du plateau reste quasiment isotherme durant la première phase d'aspersion puis refroidit au cours de la seconde phase d'aspersion. Puis, par diffusion de la chaleur entre le cœur et la surface, le cœur cède de la chaleur à la surface, le plateau s'uniformise thermiquement. L'écart thermique dans le plateau (DTmax) est maximal à la fin de chacune des phases d'aspersion, sa valeur est de 470°C environ pour cette configuration. Il se réduit rapidement dès lors que l'aspersion du plateau cesse : l'écart thermique DTmax du plateau est de 55°C après 13 minutes d'attente dans le tunnel et devient inférieur à 40°C après 23 minutes passées dans le tunnel.
Exemple 3 : Refroidissement uniforme de 125°C d'un plateau en alliage du type AA6016. L'épaisseur du plateau est de 600 mm, sa largeur de 1850 mm et sa longueur de 4100 mm. Le plateau sort du four d'homogénéisation à 530°C.
Le procédé de refroidissement du plateau est le procédé à deux passes, décrit en figure 2.
Le plateau est transféré vers la machine de refroidissement en 100 s. Ce temps de transfert comprend :
- le déplacement du plateau entre la sortie du four et l'entrée de la machine de refroidissement
- le centrage latéral du plateau
- la mesure de la température de surface supérieure du plateau
- le temps de calcul par l'automate des réglages des machines de refroidissement.
Puis le plateau défile dans la cellule d'aspersion, chaque point du plateau subit un arrosage durant 51 secondes. Le débit surfacique d'aspersion est de 500 l/(min.m2) sur les deux grandes faces du plateau. Le talon d'arrosage est nul, comme décrit en figure 14. Le plateau est donc arrosé entièrement de manière identique, ce qui génère un profil thermique longitudinal à extrémités froides. A sa sortie de la cellule d'aspersion, le plateau est transféré en 60 s vers la seconde cellule d'aspersion sans passer, dans cet exemple, par le tunnel d'uniformisation intermédiaire optionnel. Le plateau subit alors un second arrosage, différent du premier. Le plateau, mais cette fois-ci hors extrémités, subit un second arrosage de 51 secondes, au débit surfacique de 500 l/(min.m2). Le talon d'arrosage est d'un couple de rampes, tel que décrit figure 12. Ce réglage tend à redresser le profil thermique à extrémités froides, générant ainsi un profil thermique longitudinal presque plat au sortir de la seconde cellule d'aspersion. A sa sortie de la seconde cellule d'aspersion, le plateau est transféré vers le tunnel d'uniformisation en 30 secondes. Le plateau n'attend que 10 minutes dans le tunnel d'uniformisation. A l'issue, le plateau est transféré vers le laminoir à chaud, avec une uniformité thermique meilleure que 40°C sur le plateau complet.
L'exemple 3 montre que le choix judicieux des talons d'arrosage permet de réduire notablement la durée d'uniformisation après aspersion. Pour un procédé de refroidissement à plusieurs passes, le choix des talons peut être différent d'une passe à l'autre. Pour un procédé de refroidissement en 2 passes, le talon choisi en première passe gagne à être contraire au talon choisi en seconde passe. De manière optimisée et pour un refroidissement à 2 passes, une première passe avec un talon nul (arrosage continu du plateau) suivie d'une seconde passe avec un talon d'un couple de rampes permet de réduire notablement la durée d'uniformisation nécessaire à l'équilibrage thermique du plateau.

Claims

Revendications
Procédé de refroidissement d'un plateau de laminage en alliage d'aluminium de dimensions typiques de 250 à 800 mm en épaisseur, 1000 à 2000 mm en largeur et 2000 à 8000 mm en longueur, après le traitement thermique d'homogénéisation métallurgique dudit plateau à une température typiquement comprise entre 450 à 600°C selon les alliages et avant son laminage à chaud, caractérisé en ce que le refroidissement, d'une valeur de 30 à 150°C, est effectué à une vitesse de 150 à 500°C/h, avec un écart thermique de moins de 40°C sur l'ensemble du plateau refroidi à partir de sa température d'homogénéisation.
Procédé selon la revendication 1 caractérisé en ce que le refroidissement est effectué en au moins deux phases :
Une première phase d'aspersion au cours de laquelle le plateau est refroidi dans une enceinte comportant des rampes de buses ou tuyères d'aspersion de liquide ou brouillard de refroidissement sous pression, réparties en parties haute et basse de ladite cellule, de façon à asperger les deux grandes faces, supérieure et inférieure dudit plateau,
Une phase complémentaire d'uniformisation thermique à l'air calme, dans un tunnel aux parois intérieures réflectives, d'une durée de 2 à 30 minutes selon le format du plateau et la valeur du refroidissement.
Procédé selon la revendication 2, caractérisé en ce que les phases d'aspersion et uniformisation thermique sont répétées, dans le cas de plateaux très épais et pour un refroidissement moyen global supérieur à 80°C.
Procédé selon l'une des revendications 2 ou 3, caractérisé en ce que le liquide, y compris dans un brouillard, de refroidissement est de l'eau, et de préférence de l'eau désionisée.
Procédé selon l'une des revendications 1 à 4, caractérisé en ce que la tête et le pied du plateau, soit typiquement les 300 à 600 mm aux extrémités, sont moins refroidis que le reste du plateau de façon à maintenir une tête et un pied chaud, configuration favorable à l'engagement du plateau lors d'un laminage à chaud réversible. 6. Procédé selon l'une des revendications 2 à 5, caractérisé en ce que le refroidissement de la tête et du pied est modulé par la mise en route ou l'extinction des rampes de buses ou tuyères d'aspersion.
7. Procédé selon l'une des revendications 2 à 5, caractérisé en ce que le refroidissement de la tête et du pied est modulé par la présence d'écrans.
8. Procédé selon l'une des revendications 2 à 7, caractérisé en ce que les phases d'aspersion, et pas d'uniformisation thermique, sont répétées, et en ce que la tête et le pied du plateau, soit typiquement les 300 à 600 mm aux extrémités, sont refroidis différemment que le reste du plateau au moins dans une des cellules d'aspersion.
9. Procédé selon la revendication 8, caractérisé en ce que la première passe d'aspersion est effectuée avec un talon nul, soit un arrosage continu du plateau, suivie, sans première phase d'uniformisation thermique, d'une seconde passe d'aspersion avec un talon d'un couple de rampes tel qu'en figure 12, permettant ainsi de réduire notablement la durée de la phase finale d'uniformisation nécessaire à l'équilibrage thermique du plateau. 10. Procédé selon l'une des revendications 2 à 9, caractérisé en ce que l'uniformité thermique longitudinale du plateau est améliorée par un mouvement relatif du plateau par rapport au système d'aspersion : défilé ou va et vient du plateau face à un système d'aspersion fixe ou inversement. 11. Procédé selon la revendication 10, caractérisé en ce que le plateau défile horizontalement dans la cellule d'aspersion et sa vitesse de défilement est supérieure ou égale à 20 mm/s, soit 1.2 m/min.
12. Procédé selon l'une des revendications 2 à 11, caractérisé en ce que l'uniformité thermique transversale du plateau est assurée par modulation de l'aspersion dans la largeur du plateau par allumage/extinction de buses ou tuyères, ou écrantage de ladite aspersion.
13. Installation pour mise en œuvre du procédé selon l'une des revendications 1 à 12, caractérisée en ce qu'elle comporte :
Une cellule d'aspersion munie de rampes de buses ou tuyères d'aspersion de liquide ou brouillard de refroidissement sous pression disposées en parties haute et basse de ladite cellule, de façon à asperger les deux grandes faces, supérieure et inférieure dudit plateau,
Un tunnel d'uniformisation à l'air calme au sortir de la cellule d'aspersion, dans un tunnel aux parois intérieures et au toit en une matière intérieurement réflective, autorisant une uniformisation thermique du plateau par diffusion de la chaleur dans ledit plateau, le cœur en réchauffant les surfaces.
14. Installation selon la revendication 13, caractérisée en ce que :
Les buses de liquide ou brouillard de refroidissement de la cellule d'aspersion génèrent des jets à cône plein dont l'angle est compris entre 45 et 60°
Les axes des buses inférieures sont orientés normalement à la surface inférieure
Les rampes de buses supérieures sont appariées dans le sens de défilement du plateau. Dans une même paire, les rampes supérieures sont inclinées de telle sorte que :
- Les jets des deux rampes de buses appariées soient orientés en opposition l'un de l'autre.
- Les jets présentent une bordure normale à la surface supérieure du plateau
- Le recouvrement des jets des deux rampes appariées soit compris entre le 1/3 et les 2/3 de la largeur de chaque jet, et préférentiellement sensiblement de la moitié.
- L'enveloppe des deux jets ainsi formée constitue un profil en M.
Les paires de rampes de buses supérieures et inférieures sont placées sensiblement en vis-à-vis, de façon à ce que les longueurs d'aspersion supérieures et inférieures soient sensiblement égales et en vis-à-vis.
15. Installation selon l'une des revendications 13 ou 14, caractérisée en ce que le liquide de refroidissement est récupéré après aspersion, typiquement dans un conteneur situé sous l'installation, recyclé et thermiquement contrôlé. 16. Mise en œuvre de l'installation selon l'une des revendications 13 à 15, caractérisée en ce que l'ensemble de l'installation, cellule d'aspersion et tunnel d'uniformisation, est piloté par un modèle thermique codé sur automate, le modèle thermique déterminant les réglages de l'installation en fonction de la température estimée par mesure thermique en début de cellule d'aspersion et en fonction de la température cible de sortie, en général la température de début de laminage à chaud.
17. Mise en œuvre de l'installation selon la revendication 16, caractérisée en ce qu'elle comporte les étapes suivantes :
- Centrage du plateau, à l'entrée de l'installation
- Mesure de la température de surface supérieure du plateau
- Calcul par l'automate, à l'aide du modèle thermique, des réglages de la cellule d'aspersion en fonction de la température d'entrée et de la température cible de sortie, c'est à dire du refroidissement cible du plateau, incluant la détermination du nombre de rampes activées, du nombre de buses activées en rives, de la vitesse de défilement du plateau dans la cellule d'aspersion, des démarrages et arrêts des rampes d'aspersion, et du temps de maintien dans le tunnel d'uniformisation
- Défilement du plateau dans la cellule d'aspersion, arrosage supérieur et inférieur suivant les calculs de l'automate
- Transfert du plateau de la cellule d'aspersion vers le tunnel d'uniformisation
- Maintien du plateau dans le tunnel d'uniformisation pendant une durée déterminée par l'automate.
PCT/FR2015/051915 2014-07-23 2015-07-10 Procédé et équipement de refroidissement WO2016012691A1 (fr)

Priority Applications (13)

Application Number Priority Date Filing Date Title
CA2954711A CA2954711C (fr) 2014-07-23 2015-07-10 Procede et equipement de refroidissement
JP2017503588A JP6585155B2 (ja) 2014-07-23 2015-07-10 冷却方法および冷却施設
DE15753101.3T DE15753101T1 (de) 2014-07-23 2015-07-10 Kühleinrichtung und -verfahren
MX2017000483A MX2017000483A (es) 2014-07-23 2015-07-10 Proceso y equipo de enfriamiento.
EP18159076.1A EP3398696B1 (fr) 2014-07-23 2015-07-10 Procédé et équipement de refroidissement
CN201580040948.2A CN106661648B (zh) 2014-07-23 2015-07-10 冷却方法和装置
RU2017105464A RU2676272C2 (ru) 2014-07-23 2015-07-10 Способ и устройство охлаждения
KR1020177002831A KR102336948B1 (ko) 2014-07-23 2015-07-10 냉각 설비 및 냉각 방법
EP15753101.3A EP3171996B1 (fr) 2014-07-23 2015-07-10 Procédé et équipement de refroidissement
BR112017000205-1A BR112017000205B1 (pt) 2014-07-23 2015-07-10 Processo de resfriamento de um lingote de laminação, instalação para a aplicação do processo e utilização da instalação
US15/326,753 US10130980B2 (en) 2014-07-23 2015-07-10 Cooling facility and method
SA517380746A SA517380746B1 (ar) 2014-07-23 2017-01-19 وسيلة وطريقة تبريد
US15/962,657 US20180236514A1 (en) 2014-07-23 2018-04-25 Cooling facility and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1401679 2014-07-23
FR1401679A FR3024058B1 (fr) 2014-07-23 2014-07-23 Procede et equipement de refroidissement

Related Child Applications (3)

Application Number Title Priority Date Filing Date
EP18159076.1A Previously-Filed-Application EP3398696B1 (fr) 2014-07-23 2015-07-10 Procédé et équipement de refroidissement
US15/326,753 A-371-Of-International US10130980B2 (en) 2014-07-23 2015-07-10 Cooling facility and method
US15/962,657 Continuation US20180236514A1 (en) 2014-07-23 2018-04-25 Cooling facility and method

Publications (1)

Publication Number Publication Date
WO2016012691A1 true WO2016012691A1 (fr) 2016-01-28

Family

ID=51610169

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2015/051915 WO2016012691A1 (fr) 2014-07-23 2015-07-10 Procédé et équipement de refroidissement

Country Status (14)

Country Link
US (2) US10130980B2 (fr)
EP (2) EP3171996B1 (fr)
JP (1) JP6585155B2 (fr)
KR (1) KR102336948B1 (fr)
CN (1) CN106661648B (fr)
BR (1) BR112017000205B1 (fr)
CA (1) CA2954711C (fr)
DE (1) DE15753101T1 (fr)
FR (1) FR3024058B1 (fr)
MX (1) MX2017000483A (fr)
RU (1) RU2676272C2 (fr)
SA (1) SA517380746B1 (fr)
TW (1) TWI593476B (fr)
WO (1) WO2016012691A1 (fr)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018011245A1 (fr) 2016-07-14 2018-01-18 Constellium Neuf-Brisach Procédé de fabrication de tôles d'aluminium 6xxx
CN108237182A (zh) * 2016-12-27 2018-07-03 天津市升发科技股份有限公司 一种铝型材冷却装置
WO2019141693A1 (fr) 2018-01-16 2019-07-25 Constellium Neuf-Brisach Procédé de fabrication de tôles d'aluminium 6xxx présentant une haute qualité de surface
EP3666915A1 (fr) 2018-12-11 2020-06-17 Constellium Neuf Brisach Methode de fabrication de toles en alliages 6000 avec une qualite de surface elevee
WO2021245355A1 (fr) 2020-06-04 2021-12-09 Constellium Neuf-Brisach Procede et equipement de refroidissement sur un laminoir reversible a chaud
FR3112297A1 (fr) 2020-07-07 2022-01-14 Constellium Neuf-Brisach Procédé et équipement de refroidissement sur un Laminoir réversible à chaud
WO2022263782A1 (fr) 2021-06-17 2022-12-22 Constellium Neuf-Brisach Bande en alliage 6xxx et procede de fabrication
FR3129408A1 (fr) 2021-11-25 2023-05-26 Constellium Muscle Shoals Llc Bande en alliage 6xxx et procédé de fabrication
WO2023187301A1 (fr) 2022-04-02 2023-10-05 Constellium Neuf-Brisach Tôle en alliage 6xxx de recyclage et procédé de fabrication
WO2024141728A1 (fr) 2022-12-31 2024-07-04 Constellium Neuf-Brisach Procede de fabrication d'une tole en alliage 6xxx avec une excellente qualite de surface

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102205154B1 (ko) 2016-10-19 2021-01-20 닛폰세이테츠 가부시키가이샤 열연 강판의 냉각 방법 및 냉각 장치
DE102017127470A1 (de) * 2017-11-21 2019-05-23 Sms Group Gmbh Kühlbalken und Kühlprozess mit variabler Abkühlrate für Stahlbleche
CN108225031A (zh) * 2017-12-30 2018-06-29 苏州博能炉窑科技有限公司 一种大型均热炉的汽化冷却设备
KR20230042406A (ko) 2018-05-15 2023-03-28 노벨리스 인크. F* 및 w 조질 알루미늄 합금 제품 및 이를 제조하는 방법
RU2766914C1 (ru) * 2018-06-13 2022-03-16 Новелис Инк. Система для закалки катаной металлической полосы (варианты) и способ закалки катаной металлической полосы
EP3825019B1 (fr) * 2018-09-19 2023-06-14 Nippon Steel Corporation Dispositif de refroidissement de tôle d'acier laminée à chaud et procédé de refroidissement de tôle d'acier laminée à chaud
EP3808466A1 (fr) * 2019-10-16 2021-04-21 Primetals Technologies Germany GmbH Dispositif de refroidissement à rayonnement de refroidissement pourvu de section transversale creuse
ES2929001T3 (es) 2019-12-23 2022-11-24 Novelis Koblenz Gmbh Procedimiento de fabricación de un producto laminado de aleación de aluminio
CN113432439B (zh) * 2021-07-29 2022-09-06 东北大学 一种铝电解槽停止运作后的冷却方法
CN116042969A (zh) * 2022-12-29 2023-05-02 东北轻合金有限责任公司 一种用于铝合金铸锭的冷却装置及其使用方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60243226A (ja) * 1984-05-15 1985-12-03 Kawasaki Steel Corp 熱間圧延材の材質制御方法および装置
DE19823790A1 (de) * 1998-05-28 1999-12-02 Vaw Ver Aluminium Werke Ag Lithoband, Druckplattenträger und Verfahren zur Herstellung eines Lithobandes, eines Druckplattenträgers oder einer Offset-Druckplatte
EP2656932A1 (fr) * 2012-04-26 2013-10-30 Siemens Aktiengesellschaft Laminage thermomécanique d'une plaque d'aluminium

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53142954A (en) * 1977-05-19 1978-12-13 Kobe Steel Ltd Hot rolling method for slab of aluminum alloy
JPH0787928B2 (ja) * 1987-07-03 1995-09-27 古河電気工業株式会社 アルミニウム箔地の製造方法
ZA908728B (en) * 1989-11-23 1991-08-28 Alusuisse Lonza Services Ag Cooling of cast billets
US6159312A (en) * 1997-12-19 2000-12-12 Exxonmobil Upstream Research Company Ultra-high strength triple phase steels with excellent cryogenic temperature toughness
EP1375691A4 (fr) * 2001-03-28 2004-07-21 Sumitomo Light Metal Ind Feuille en alliage aluminium a aptitude au formage et durcissabilite excellentes au cours de la cuisson de revetement, et procede de production
JP4200082B2 (ja) * 2003-11-18 2008-12-24 古河スカイ株式会社 成形加工用アルミニウム合金板およびその製造方法
CN100437076C (zh) 2005-08-24 2008-11-26 东北大学 一种在金属板带试样热处理试验中消除温度梯度的方法
FI20070622L (fi) 2007-08-17 2009-04-15 Outokumpu Oy Menetelmä ja laitteisto tasaisuuden kontrolloimiseksi ruostumatonta terästä olevan nauhan jäähdytyksessä
EP2028290A1 (fr) * 2007-08-21 2009-02-25 ArcelorMittal France Procédé et équipement de décalaminage secondaire des bandes métalliques par projection d'eau à basse pression hydraulique
CN202786334U (zh) * 2012-09-10 2013-03-13 苏州明特威机械设备有限公司 淬火冷却装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60243226A (ja) * 1984-05-15 1985-12-03 Kawasaki Steel Corp 熱間圧延材の材質制御方法および装置
DE19823790A1 (de) * 1998-05-28 1999-12-02 Vaw Ver Aluminium Werke Ag Lithoband, Druckplattenträger und Verfahren zur Herstellung eines Lithobandes, eines Druckplattenträgers oder einer Offset-Druckplatte
EP2656932A1 (fr) * 2012-04-26 2013-10-30 Siemens Aktiengesellschaft Laminage thermomécanique d'une plaque d'aluminium

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109477194B (zh) * 2016-07-14 2021-12-21 新布里萨什肯联铝业 制备6xxx铝板的方法
CN109477194A (zh) * 2016-07-14 2019-03-15 新布里萨什肯联铝业 制备6xxx铝板的方法
KR20190028732A (ko) * 2016-07-14 2019-03-19 콩스텔리움 뇌프-브리작 6xxx 알루미늄 시트의 제조 방법
WO2018011245A1 (fr) 2016-07-14 2018-01-18 Constellium Neuf-Brisach Procédé de fabrication de tôles d'aluminium 6xxx
KR102498463B1 (ko) * 2016-07-14 2023-02-09 콩스텔리움 뇌프-브리작 6xxx 알루미늄 시트의 제조 방법
US11535919B2 (en) 2016-07-14 2022-12-27 Constellium Neuf-Brisach Method of making 6XXX aluminium sheets
CN108237182A (zh) * 2016-12-27 2018-07-03 天津市升发科技股份有限公司 一种铝型材冷却装置
WO2019141693A1 (fr) 2018-01-16 2019-07-25 Constellium Neuf-Brisach Procédé de fabrication de tôles d'aluminium 6xxx présentant une haute qualité de surface
US20200340091A1 (en) * 2018-01-16 2020-10-29 Constellium Neuf-Brisach Method of making 6xxx aluminium sheets with high surface quality
EP3666915A1 (fr) 2018-12-11 2020-06-17 Constellium Neuf Brisach Methode de fabrication de toles en alliages 6000 avec une qualite de surface elevee
WO2020120267A1 (fr) 2018-12-11 2020-06-18 Constellium Neuf-Brisach Procédé de fabrication de tôles d'aluminium 6xxx présentant une haute qualité de surface
WO2021245355A1 (fr) 2020-06-04 2021-12-09 Constellium Neuf-Brisach Procede et equipement de refroidissement sur un laminoir reversible a chaud
FR3112297A1 (fr) 2020-07-07 2022-01-14 Constellium Neuf-Brisach Procédé et équipement de refroidissement sur un Laminoir réversible à chaud
FR3112296A1 (fr) 2020-07-07 2022-01-14 Constellium Neuf-Brisach Procédé et équipement de refroidissement sur un Laminoir réversible à chaud
WO2022263782A1 (fr) 2021-06-17 2022-12-22 Constellium Neuf-Brisach Bande en alliage 6xxx et procede de fabrication
FR3124196A1 (fr) 2021-06-17 2022-12-23 Constellium Neuf-Brisach Bande en alliage 6xxx et procédé de fabrication
FR3129408A1 (fr) 2021-11-25 2023-05-26 Constellium Muscle Shoals Llc Bande en alliage 6xxx et procédé de fabrication
WO2023094773A1 (fr) 2021-11-25 2023-06-01 Constellium Muscle Shoals Llc Bande en alliage 6xxx et procédé de fabrication
WO2023187301A1 (fr) 2022-04-02 2023-10-05 Constellium Neuf-Brisach Tôle en alliage 6xxx de recyclage et procédé de fabrication
FR3134119A1 (fr) 2022-04-02 2023-10-06 Constellium Neuf-Brisach Tôle en alliage 6xxx de recyclage et procédé de fabrication
WO2024141728A1 (fr) 2022-12-31 2024-07-04 Constellium Neuf-Brisach Procede de fabrication d'une tole en alliage 6xxx avec une excellente qualite de surface
FR3144624A1 (fr) 2022-12-31 2024-07-05 Constellium Neuf-Brisach Procédé de fabrication d’une tôle en alliage 6xxx avec une excellente qualité de surface.

Also Published As

Publication number Publication date
TW201622843A (zh) 2016-07-01
JP6585155B2 (ja) 2019-10-02
JP2017521260A (ja) 2017-08-03
CA2954711A1 (fr) 2016-01-28
KR102336948B1 (ko) 2021-12-09
RU2676272C2 (ru) 2018-12-27
EP3171996A1 (fr) 2017-05-31
RU2017105464A3 (fr) 2018-11-29
FR3024058B1 (fr) 2016-07-15
US10130980B2 (en) 2018-11-20
CN106661648A (zh) 2017-05-10
US20180236514A1 (en) 2018-08-23
SA517380746B1 (ar) 2021-04-15
CN106661648B (zh) 2020-01-07
BR112017000205A2 (pt) 2017-10-31
EP3171996B1 (fr) 2018-04-11
KR20170039166A (ko) 2017-04-10
DE15753101T1 (de) 2017-07-27
CA2954711C (fr) 2023-04-04
MX2017000483A (es) 2017-07-28
US20170189949A1 (en) 2017-07-06
BR112017000205B1 (pt) 2023-03-14
FR3024058A1 (fr) 2016-01-29
EP3398696A1 (fr) 2018-11-07
TWI593476B (zh) 2017-08-01
EP3398696B1 (fr) 2021-05-12
RU2017105464A (ru) 2018-08-27

Similar Documents

Publication Publication Date Title
EP3398696B1 (fr) Procédé et équipement de refroidissement
WO2014083292A1 (fr) Procédé de fusion de poudre avec chauffage de la zone adjacente au bain
EP0170542B1 (fr) Procédé de protection d'un métal solide contre l'oxydation - application au laminage
FR2985443A1 (fr) Dispositif de refroidissement a double jet pour moule de coulee semi-continue verticale
FR2461741A1 (fr) Procede d'extinction d'une matiere en vrac chauffee, notamment de coke, et appareil pour sa mise en oeuvre
CA2013855A1 (fr) Procede et installation de coulee de produits metalliques minces a reduction d'epaisseur sous la lingotiere
CA2907632C (fr) Systeme de pre-refroidissement avec reglage interne pilote
EP1687455B1 (fr) Procede et dispositif de refroidissement d'une bande d'acier
FR2833871A1 (fr) Procede et installation de fabrication de bandes metalliques a partir de bandes coulees directement a partir de metal liquide
EP1133666B1 (fr) Dispositif pour le traitement thermique a haute temperature d'une matiere ligneuse
FR2500849A1 (fr) Dispositif de refroidissement rapide de tubes metalliques
EP1062065B1 (fr) Procede et dispositif de controle du profil d'epaisseur d'une bande metallique mince obtenue par coulee continue entre moules mobiles
EP0393005A2 (fr) Procédé et dispositif de refroidissement d'un produit métallique coulé en continu
EP0407323A1 (fr) Procédé et dispositif de coulée continue entre cylindres de produits métalliques minces aptes au laminage à froid direct
BE738234A (fr)
LU87677A1 (fr) Dispositif pour solidifier du laitier metallurgique en fusion
BE850801A (fr) Procede et dispositif de refroidissement d'elements continus
BE1016113A3 (fr) Procede pour le refroidissement secondaire d'une brame coulee en continu et dispositif pour sa mise en oeuvre.
FR2956600A1 (fr) Procede de decapage ecologique d'un support de cuisson
EP0914929A1 (fr) Dispositif d'évacuation pour une purge d'une extrudeuse ou d'une tête d'extrusion
FR2821774A1 (fr) Procede de rechauffage de brames et installation de mise en oeuvre
FR2547518A1 (fr) Procede et installation de fabrication de toles d'acier par coulee continue

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15753101

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2954711

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: MX/A/2017/000483

Country of ref document: MX

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017000205

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 15326753

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2017503588

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177002831

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015753101

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015753101

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017105464

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112017000205

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20170105