WO2016011816A1 - 一种无热吸附空气干燥机的控制方法及装置 - Google Patents

一种无热吸附空气干燥机的控制方法及装置 Download PDF

Info

Publication number
WO2016011816A1
WO2016011816A1 PCT/CN2015/074436 CN2015074436W WO2016011816A1 WO 2016011816 A1 WO2016011816 A1 WO 2016011816A1 CN 2015074436 W CN2015074436 W CN 2015074436W WO 2016011816 A1 WO2016011816 A1 WO 2016011816A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
valve
dew point
adsorption
plc controller
Prior art date
Application number
PCT/CN2015/074436
Other languages
English (en)
French (fr)
Inventor
谢成昆
周湘浩
周剑
周定军
刘波
Original Assignee
株洲高新技术产业开发区壹星科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株洲高新技术产业开发区壹星科技有限公司 filed Critical 株洲高新技术产业开发区壹星科技有限公司
Priority to DE112015003425.0T priority Critical patent/DE112015003425T5/de
Publication of WO2016011816A1 publication Critical patent/WO2016011816A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/261Drying gases or vapours by adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0454Controlling adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/45Gas separation or purification devices adapted for specific applications
    • B01D2259/4566Gas separation or purification devices adapted for specific applications for use in transportation means

Definitions

  • the invention relates to a humid air drying control method and device for a locomotive air compressor, in particular to a locomotive air compressor non-thermal adsorption drying control method and device; mainly used for performing humid air discharged from a locomotive air compressor Drying treatment.
  • the basic working principle of the non-thermal adsorption air dryer is the “pressure swing adsorption” method.
  • the adsorbent adsorbs moisture.
  • the moisture of the adsorbent is “desorbed” and heavy.
  • the adsorbent is thus dehydrated & "regenerated”.
  • the regenerated desorbed air comes from a portion of the dry gas output from the unit.
  • the main body of the non-thermal adsorption air dryer currently used is composed of two adsorption towers, an intake valve, an exhaust valve, a sewage valve, an air outlet check valve, an electric controller, an electric control valve, and a connecting body.
  • the domestic air dryer controller basically has a simple timing control function and a single function. Most of the air dryer controllers do not detect and display the dry gas quality of the dryer; the detection means is backward and cannot accurately reflect the quality index of the dryer product gas. Moreover, there is no detection and automatic switching function for the long discharge failure of the dryer, which is very easy to cause a machine to break the accident. The desiccant regeneration time of the dryer controller cannot be adjusted, and it is difficult to achieve an optimum drying effect.
  • the dryer controller has no control function on the intake air temperature. When the temperature is lower than 0°, it is easy to freeze and the outlet valve is blocked.
  • the electric controller receives a power-on signal.
  • the A-line enters the regenerative state
  • the B-tower enters the adsorption state, from the air compressor.
  • the humid air enters the B tower from the intake valve port, is adsorbed by the adsorbent, and is supplied to the wind device through the check valve, while another small portion of the dry air is regenerated by the A tower, and the humid air is discharged through the exhaust valve and the muffler. Therefore, the adsorption of the B column and the regeneration of the A column are simultaneously performed.
  • the electric controller stops supplying power. In this way, the two electric control valves are de-energized, and the two exhaust valves are in the closed state, so the B tower continues to adsorb and the A tower stops regenerative and enters the inflated state. When the pressure of the two towers reaches the equalizing pressure, the electric controller sends the switching electric power. The signal enters another cycle.
  • This kind of traditional technology allocates the above working time and timing, which is set by the timing controller of the CPU. It can't change the time in the working process. It can't be based on the weight of the air load or the temperature of the dew point. “Smart” adjusts the working status of the dryer. The consequences are caused by a large amount of waste of the finished gas, or the quality of the finished product is not up to standard.
  • the timing controller has a large number of electronic components, a loose structure, and a high failure rate, and failure of one small component causes the entire control to fail.
  • This timing controller has no pressure display and dew point display.
  • the extended functions such as the display of fault alarms can not meet the automation requirements for the rapid development of modern railway locomotives, subways and urban rails. Therefore, the traditional two-tower railway air dryer has too many unsolvable problems, and it has become increasingly unable to meet the needs of modern locomotive high-precision braking systems, pneumatic doors, locomotive gas control accessories and gas-supporting components.
  • Patent No. CN201180072105.2 entitled “Control Method of Adsorption Heat Pump, Information Processing System and Control Device", which discloses a control method, information processing system and control device for an adsorption heat pump, Even if the temperature of the heat source for supplying heat for regenerating the adsorbent varies greatly, the adsorption heat pump can be operated efficiently.
  • the flow rate adjustment units 43a to 43c are provided to independently adjust the flow rates of the heat mediums supplied to the electronic devices 41a to 41c, and the temperature sensors 45a to 45c can independently detect the heat medium discharged from the electronic devices 41a to 41c.
  • Temperature; control unit 30 controls the flow rate adjustment units 43a to 43c so that the temperatures of the heat medium discharged from the electronic devices 41a to 41c become the same based on the outputs of the temperature sensors 45a to 45c.
  • the patent number is CN200820123078.2, which is entitled "A kind of electric controller for controlling the double tower air dryer of diesel locomotive”.
  • the patent discloses a method for controlling the electric power of the double tower air dryer of diesel locomotive.
  • the controller is characterized in that: the movement part thereof comprises a power module, a PLC controller, a first contactor and a second contactor; a DC voltage and a control signal are respectively input to the power module, and an output of the power module is used as the PLC An input of the controller; an output of the PLC controller is coupled to the first contactor and the second contactor, respectively, and outputs of the first contactor and the second contactor are respectively connected to the electropneumatic valve controlled by the same.
  • the patent number is CN201010266323.7, the invention patent entitled “Drying process control switching time control method based on dew point control”, the patent discloses a drying device flow switching time control method based on dew point control, in an adsorption tower
  • the actual dew point temperature value is compared with the customer's required set value. If the actual value is equal to or higher than the set value, the system continues to switch by time control. If the actual value is lower than the set value, let the adsorption tower continue to work, and another adsorption tower to be switched. At this time, the actual value of the dew point temperature collected is always compared with the set value requested by the customer.
  • the two tower workflows are switched as soon as the actual value is equal to or higher than the set value requested by the customer, or when the time reaches the set dew point control time value.
  • the object of the present invention is to provide a non-thermal adsorption drying control method and device for an existing locomotive air compressor, and there is a quality index that does not reflect the product gas of the dryer, and there is no detection and automatic switching function for the long discharge failure of the dryer, the dryer
  • the controller adsorption regeneration time can not be adjusted, the dryer controller has no control function on the intake air temperature, and a quality index that can accurately reflect the dry product gas is proposed, and the long discharge failure of the dryer can be detected and automatically switched. Function, the dryer controller adsorption regeneration time can be adjusted, and the dryer controller can control the intake air temperature without the heat adsorption drying control method and device.
  • the technical solution adopted by the present invention is: a non-thermal adsorption drying control method for a locomotive air compressor, using a PLC as a control core, and setting a dew point temperature sensor and a pressure dew point sensor on the air outlet end, through a dew point temperature sensor And the pressure dew point sensor monitors the dew point temperature of the air outlet end and the dew point of the air outlet port; at the same time, a temperature sensor is arranged at the air inlet port to monitor the air inlet temperature sensor; a pressure sensor is arranged at the air control combination valve silencer, and the collection is not The normal pressure signal; the data values obtained by all the sensors are fed back to the P L C controller, and the operation of the non-thermal adsorption dryer is controlled by the P L C controller according to the collected data information of each sensor.
  • the P L C controller controls the operation of the non-thermal adsorption dryer according to the collected data information of each sensor, and the LC controller controls the adsorption and regeneration time of the dryer according to the dew point temperature of the outlet end.
  • the P L C controller controls the air inlet temperature sensor to accurately control the air inlet temperature and feed back to the P L C controller display to control the temperature state of the inlet.
  • the pressure sensor at the air control combination valve silencer detects an abnormal pressure signal (when the locomotive is malfunctioning due to a mechanical valve or a circuit failure, a seal failure, a long discharge failure occurs)
  • the P L C controller is After the command is given, the normally open electromagnetic valve entering the intake pipe of the dryer is closed and the other normally closed valve on the bypass pipe (throwing the faulty dryer) is opened to open the compressed air directly.
  • Equipment to achieve emergency use, to eliminate the purpose of the locomotive machine to break the accident.
  • an alarm signal is sent to remind the locomotive flight attendant to return to the section for maintenance.
  • the P L C controller adopts a programmable logic control technology, adopts a module integrated method, is matched with a touch screen, and all control electronic components are integrated into one, and adopts a package form, which can effectively prevent earthquake and ensure reliability of the controller.
  • the P L C controller determines whether to start tracking according to the external temperature fed back by the sensing probe.
  • the electric signal will be output by the P L C controller, and the tracking heater will be activated to heat the heater to ensure that the exhaust valve port and the filter drain valve port are not blocked by ice.
  • the dryer system can still work normally in low temperature environments.
  • the P L C controller After receiving the signal from the compressor regulator, the P L C controller outputs an electric signal for controlling the electropneumatic valve, and operates the electric control valve through the electric control device of the electric control valve; in the compressor regulator Under the control of the dryer, the working process of the dryer is as follows; when the compressor is started, the P L C controller receives the "power on” signal at the same time. The controller makes one end of the electric control valve in the state of “electrical supply”, and the other end of the electric control valve is in the state of “de-energized exhaust”.
  • the spool moves to the left, and the exhaust passage of the group B adsorption tower module is opened, and the group A adsorption tower module The exhaust passage is closed, and at this time, the group B tower enters a regenerative state.
  • the group A tower enters the adsorption state, and the saturated humid air enters from the air inlet duct through the modular five-in-one air filter, and most of the water, oil and dust carried in the compressed air are filtered out.
  • the humid air After entering the intake valve seat through the air duct, the humid air enters the left drying tower through the opened intake valve, along the flow direction of the arrow, after the air passage of the lower cover, enters the front row A group tower and is adsorbed to reach the upper cover flow.
  • the dried dry air After passing through the air outlet on the upper cover, the dried dry air is opened by pressure to open the air outlet check valve on the upper cover, and the air supply device is supplied through the air outlet.
  • the other dry wind passes through the regeneration hole air passage on the air outlet of the upper cover plate, and enters the rear row B group tower, and provides regenerative wind to desorb the adsorption materials of the group B tower, and take out the humid air in the group B tower.
  • the P L C controller outputs an electric signal
  • the electric controller stops supplying power to the left side of the electric air threshold.
  • the electric air valve is in a power loss state, and the two exhaust valves are also in a closed state. Therefore, Group A towers continue to adsorb and Group B towers stop regeneration.
  • the dry air of the group A tower is still filled into the group B tower.
  • the pressure of the group B tower is gradually increased due to the non-discharge of the group B tower.
  • the tower group B is in the "inflated state” during this period, and then the electric controller starts to supply power to the right side.
  • the group B tower regeneration adsorption is converted to each other to complete the conversion cycle.
  • the drying and regeneration of the left and right drying towers are changed every conversion cycle.
  • the left and right drying towers are repeatedly dried and regenerated.
  • the "inflated state” makes the pressure difference between the two towers very low, and the intake air flow rate is slow, which greatly reduces the impact of the intake air flow on the desiccant, so it is called “flexible conversion". Flexible conversion greatly reduces the source of the powder produced by the adsorbent material.
  • the P L C controller determines whether to activate the tracking heater according to the ambient temperature fed back by the sensing probe, and when the outside air temperature is lower than the set temperature, an electric signal is output by the P L C controller to start the tracking heater.
  • the heater is energized and heated to ensure that the exhaust valve port and the filter drain valve port are not blocked by ice, so that the dryer system can work normally in a low temperature environment.
  • a non-thermal adsorption drying control device for realizing the above-mentioned locomotive air compressor non-thermal adsorption drying control method, comprising a P L C controller, and a dew point temperature sensor and a pressure dew point sensor are disposed at an outlet end of the adsorption dryer, through a dew point temperature
  • the sensor and the pressure dew point sensor monitor the dew point temperature of the air outlet end and the dew point of the air outlet port; at the same time, a temperature sensor is arranged at the air inlet port to monitor the air inlet temperature sensor; a pressure sensor is arranged at the air control combination valve silencer to collect Abnormal pressure signal; all sensors are electrically connected to the P L C controller through wires, and the obtained data values are fed back to the P L C controller, and the P L C controller is based on the collected data information of each sensor. The operation of the thermal adsorption dryer is controlled.
  • the P L C controller is a programmable logic control technology, adopts a module integrated method, is matched with a touch screen, and all control electronic components are integrated into one, and is packaged.
  • the P L C controller is provided with an alarm signal output interface, and when the P L C controller receives the pressure sensor at the air control combination valve silencer and finds an abnormal pressure signal, the P L C controller According to the instruction, the normally open electromagnetic valve entering the intake pipe of the dryer is closed and the other normally closed valve on the bypass pipe is opened at the same time, so that the compressed air is directly supplied to the wind equipment to achieve emergency use and eliminate
  • the purpose of the locomotive machine to break the accident is to send an alarm signal to remind the locomotive flight attendant to return to the section for maintenance;
  • the P L C controller is provided with a display output interface, and the P L C controller uploads all received signals to the touch display screen in real time, and displays the working environment and effects through the display screen.
  • the invention has the beneficial effects that the invention adopts the programmable logic P L C controller to reduce the consumption of the finished product gas and improve the finished product by switching the adsorption-regeneration time of the dryer to the dew point temperature control (advance or delay) of the outlet end.
  • the quality of the gas extends the life of the equipment.
  • the collected electrical signals can be transmitted to the display or an alarm signal. It can also be remotely controlled.
  • the P L C controller controls the inlet temperature sensor to accurately control the inlet temperature and feed back to the P L C controller display so that we can control the temperature of the inlet.
  • the P L C controller is equipped with a pressure sensor at the air control combination valve silencer, and the abnormal pressure signal is collected and fed back to the P L C controller.
  • FIG. 1 is a schematic structural diagram of a system control method according to the present invention.
  • FIG. 2 is a schematic block diagram of a specific example of control of a P L C controller according to the present invention
  • FIG. 3 is a schematic diagram of a switching principle program according to the present invention.
  • the present invention is a non-thermal adsorption drying control device for a non-thermal adsorption drying control method for a locomotive air compressor, including a P L C controller 2, and a dew point is set at the outlet end 6 of the adsorption dryer.
  • the temperature sensor and the pressure dew point sensor 7 monitor the dew point temperature and the outlet port dew point of the outlet end through the dew point temperature sensor and the pressure dew point sensor 7; and simultaneously set the temperature sensor 4 at the inlet port 3 to monitor the inlet port temperature sensor
  • Pressure sensor 8 is provided at the air control combination valve silencer 5 to collect abnormal pressure signals; all sensors are electrically connected to the P L C controller through wires, and the obtained data values are fed back to the P L C controller.
  • the P L C controller controls the operation of the non-thermal adsorption dryer based on the collected data information of each sensor.
  • the P L C controller is a programmable logic control technology, adopts a module integrated method, is matched with a touch screen, and all control electronic components are integrated into one, and is packaged.
  • the P L C controller is provided with an alarm signal output interface.
  • the P L C controller receives an abnormal pressure signal from the pressure sensor at the air control combination valve silencer, it will be given by the P L C controller.
  • the normally open electromagnetic valve entering the intake pipe of the dryer is closed and the other normally closed valve on the bypass pipe is opened at the same time, so that the compressed air is directly supplied to the wind equipment to achieve emergency use and eliminate the broken locomotive machine.
  • the purpose of the accident is to issue an alarm signal at the same time to remind the locomotive flight attendant to return to the section for maintenance;
  • the P L C controller is provided with a display output interface, and the P L C controller uploads all received signals to the touch display screen in real time, and displays the working environment and effects through the display screen.
  • the non-thermal adsorption drying control method of the locomotive air compressor using the above-mentioned non-thermal adsorption drying control device adopts PLC as the control core, and sets a dew point temperature sensor and a pressure dew point sensor at the air outlet end, and outputs air through the dew point temperature sensor and the pressure dew point sensor.
  • the dew point temperature of the end and the dew point of the air outlet pressure are monitored; at the same time, a temperature sensor is arranged at the air inlet to monitor the air inlet temperature sensor; a pressure sensor is arranged at the air control combined valve silencer to collect an abnormal pressure signal; The data values obtained by the sensor are fed back to the P L C controller, and the P L C controller controls the operation of the non-thermal adsorption dryer based on the collected data information of each sensor.
  • the P L C controller controls the operation of the non-thermal adsorption dryer according to the collected data information of each sensor.
  • the LC controller controls the adsorption and regeneration time of the dryer according to the dew point temperature of the outlet end.
  • the P L C controller controls the air inlet temperature sensor to accurately control the air inlet temperature and feed back to the P L C controller display to control the temperature state of the inlet.
  • the P L C controller When the pressure sensor at the air-control combination valve silencer detects an abnormal pressure signal (when the locomotive is faulty due to mechanical valve failure or circuit failure, seal failure, long-row failure occurs), the P L C controller will follow the instructions. After closing the normally open electromagnetic valve of the intake pipe of the dryer and simultaneously opening the other normally closed valve on the bypass pipe (throwing the faulty dryer), the compressed air is directly supplied to the wind equipment to reach Emergency use, to eliminate the purpose of the locomotive machine to break the accident. At the same time, an alarm signal is sent to remind the locomotive flight attendant to return to the section for maintenance.
  • the P L C controller adopts a programmable logic control technology, adopts a module integrated method, is matched with a touch screen, and all control electronic components are integrated into one, and adopts a package form, which can effectively prevent earthquake and ensure the reliability of the controller.
  • the P L C controller determines whether to activate the tracking heater according to the ambient temperature fed back by the sensing probe. When the outside air temperature is lower than the set temperature, the P L C controller outputs an electrical signal to activate the tracking heater to enable the heater. Electric heating to ensure that the exhaust valve port and the filter drain valve port are not blocked by ice, so that the dryer system can work normally in low temperature environment.
  • the method for controlling the adsorption and regeneration time of the dryer according to the dew point temperature of the outlet end is as shown in FIG. 3, and the steps are as follows:
  • the P L C controller After receiving the signal from the compressor regulator, the P L C controller outputs an electric signal for controlling the electropneumatic valve, and operates the electric control valve through the electric control device of the electric control valve.
  • the dryer operation Under the control of the compressor regulator, the dryer operation is as follows; when the compressor is started, the P L C controller 14 simultaneously receives a "energization" signal. The controller makes one end of the electric control valve 1 in the state of “power supply”, and the other end of the electric control valve is in the state of “de-energized exhaust”. In this way, the spool 15 is operated.
  • the spool 15 When the right side of the electropneumatic valve 1 is in a de-energized state and the left side of the electropneumatic valve is in a powered state, the spool 15 is moved to the left, the exhaust passage of the group B adsorption tower module is opened, and the exhaust passage of the group A adsorption tower module is closed. At this time, the group B tower enters a regenerative state. The group A tower enters the adsorption state, and the saturated humid air enters from the air inlet duct through the modular five-in-one air filter, and most of the water, oil and dust carried in the compressed air are filtered out.
  • the humid air After entering the intake valve seat through the air duct, the humid air enters the left drying tower through the opened intake valve, along the flow direction of the arrow, after the air passage of the lower cover 2, enters the front row A group tower and is adsorbed to reach the upper cover plate.
  • the dried dry air After flowing through the air outlet on the upper cover, the dried dry air is opened by pressure to open the air outlet check valve on the upper cover 10, and the air supply device is supplied through the air outlet.
  • the other dry wind passes through the regenerative air duct on the air outlet of the upper cover 10, enters the rear row B tower, provides regenerative wind to desorb the adsorption material of the group B tower, and takes the humid air in the group B tower.
  • the air duct on the lower cover 2 and the exhaust valve outlet of the air control combination valve 1 are discharged into the atmosphere through the muffler port.
  • the P L C controller When the group B regeneration state reaches the set time, the P L C controller outputs an electric signal, and the electric controller stops the electric space. The left side of the threshold is powered. At this time, the electric air valve is in a de-energized state, and the two exhaust valves are also in a closed state. Therefore, Group A towers continue to adsorb and Group B towers stop regeneration. The dry air of the group A tower is still filled into the group B tower. The pressure of the group B tower is gradually increased due to the non-discharge of the group B tower. The tower group B is in the "inflated state" during this period, and then the electric controller starts to supply power to the right side. The group B tower regeneration adsorption is converted to each other to complete the conversion cycle.
  • the P L C controller 14 not only performs automatic control of the above-described operating conditions, but also performs automatic control of the entire system of the intelligent module integrated air dryer.
  • the intelligent P L C controller adopts programmable logic control technology to reduce the consumption of the finished product gas and improve the quality of the finished gas by controlling the dew point temperature of the outlet end (advance or delay) switching of the adsorption-regeneration time of the dryer. The service life of the equipment. At the same time, the collected electrical signals can be transmitted to the display or an alarm signal. It can also be remotely controlled.
  • the P L C controller controls the inlet temperature sensor to accurately control the inlet temperature and feed back to the P L C controller display so that we can control the temperature of the inlet.
  • the P L C controller 14 is provided with a pressure sensor at the air control combination valve 1 silencer 12, and the abnormal pressure signal is collected and fed back to the P L C controller 14 (when the locomotive is broken due to mechanical valve failure or circuit failure, sealing
  • the normally open solenoid valve in the intake line of the dryer is closed after the command is given and the other normally closed valve on the bypass line (throwing the malfunctioning dryer) is opened.
  • the compressed air is directly supplied to the wind equipment to achieve emergency use and eliminate the purpose of the locomotive machine breaking accident.
  • an alarm signal is sent to remind the locomotive flight attendant to return to the section for maintenance.
  • the P L C controller 14 also monitors the air outlet pressure dew point of the dryer, and displays the pressure dew point and "smart" the operation state of the dryer according to the dew point temperature to control the intake adsorption time or regeneration time. In order to improve the quality of the finished gas and save the product gas, extend the service life of the equipment.
  • the P L C controller further determines whether to activate the tracking heater according to the ambient temperature fed back by the sensing probe. When the outside air temperature is lower than the set temperature, the P L C controller outputs an electrical signal to activate the tracking heater to heat the The device is energized and heated to ensure that the exhaust valve port and the filter drain valve port are not blocked by ice, so that the dryer system can work normally in a low temperature environment.
  • the present invention can be summarized as a non-thermal adsorption air drying method for a locomotive air compressor, and adopts a modular integrated method to make each adsorption tower of the locomotive air compressor non-thermal adsorption air drying system.
  • the cover plate serves as an intake or outlet passage of the adsorption tower module; a modular group is formed by combining the adsorption tower module with the upper cover and the lower cover.
  • the combined locomotive air compressor has no thermal adsorption air drying system, and the locomotive heatless adsorption air drying system formed by the modular combination performs the non-thermal adsorption air drying of the compressed air discharged from the air compressor.
  • the non-thermal adsorption air drying is to divide the adsorption tower module into two groups, and the two adsorption tower modules alternately perform adsorption or regeneration operations; when one group is performing adsorption, the other group is subjected to regeneration treatment; compressed air; One set of adsorption tower modules input into the two groups is subjected to adsorption treatment, and the other set of adsorption tower modules are simultaneously subjected to regeneration treatment; after adsorption adsorption of the adsorption adsorption tower module is switched, the adsorption is changed to the regeneration treatment. The other group will also switch, from regeneration to adsorption.
  • the switching is performed by placing an electric control valve on the upper cover or the lower cover to change the intake or outlet passage of the adsorption tower module, so that the adsorption tower module performs the adsorption or regeneration alternate operation, and the electric control valve is adopted.
  • Automatic control allows the adsorption tower module to perform adsorption or regeneration alternate operations.
  • the automatic control is to set an electric control device on the electric control valve, and the electric control valve is controlled by the electric control device to perform the conversion operation; the electric control device performs timing control through a P L C controller as needed, P L C
  • the controller uses programmable logic control technology to control the adsorption or regeneration time of the adsorption tower module by controlling the dew point temperature of the outlet end.
  • the P L C controller controls the air inlet temperature sensor to accurately control the air inlet temperature condition, and feeds back to the P L C controller display to control the temperature state of the inlet; P L The C controller also monitors the outlet dew pressure of the dryer to display the pressure dew point, and automatically switches the working state of the adsorption tower module according to the dew point temperature to control the intake adsorption time or regeneration time to improve the product gas. Quality and saving product gas, extending the life of the equipment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Drying Of Gases (AREA)

Abstract

一种无热吸附空气干燥机的控制方法及装置,采用PLC为控制核心,在出气端设置露点温度传感器和压力露点传感器,通过露点温度传感器和压力露点传感器对出气端的露点温度和出气口压力露点进行监控;同时在进气口处设置温度传感器,对进气口温度传感器进行监控;在气控组合阀消音器处设压力传感器,采集不正常压力信号;将所有传感器所取得的数据值反馈给PLC控制器,由PLC控制器依据所收集的各传感器的数据信息对无热吸附式干燥机的作业进行控制。本发明采用可编程逻辑PLC控制器,通过对出气端的露点温度的控制(提前或延迟)干燥机的吸附-再生时间的切换,达到减少成品气的消耗、提高成品气的质量,延长设备的使用寿命。同时还能将采集到的电信号传给显示屏或发出报警信号。还可以对其实现远程控制。

Description

一种无热吸附空气干燥机的控制方法及装置 技术领域
本发明涉及一种机车空气压缩机的湿空气干燥控制方法及装置,特别是一种机车空气压缩机无热吸附式干燥控制方法及装置;主要用于对机车空气压缩机送排出的湿空气进行干燥处理。
背景技术
无热吸附式空气干燥机的基本工作原理为“变压吸附”的方式,当含水的压缩空气在高压时通过吸附床时吸附剂吸附水分,在低压时吸附剂的水分被“解吸“并重返气相,吸附剂因此脱水“再生”。而再生解吸的空气来自于本机输出的一部分干燥气。目前使用的无热吸附式空气干燥机主体由两个吸附塔.进气阀,排气阀,排污阀,出气止回阀,电控器,电控阀,连接体等主要部件组成。目前,国内空气干燥器控制器基本上都只是具备简单地时序控制功能,功能单一。空气干燥器控制器大多没有对干燥器的干燥气体质量进行检测、显示;检测手段落后,不能准确反映干燥器成品气的质量指标。而且对于干燥器出现长排故障没有检测和自动切换功能,极易造成机破事故。干燥器控制器吸附再生时间无法调节,难以达到最优的干燥效果。干燥器控制器对进气温度无控制功能,气温低于0°时容易结冰造成出气阀堵塞。
由于目前普遍使用的无热吸附式干燥机均为双塔结构,当机车压缩机起动时,电控器得到通电信号,此时,A塔进入再生状态,B塔进入吸附状态,来自空气压缩机的湿空气由进气阀口进入B塔,经吸附剂吸附后经止回阀供用风设备,而另一小部分干燥风供A塔再生,并把湿空气经排气阀及消音器排出。所以,B塔的吸附与A塔的再生是同时进行的。
当A塔再生到设定的时间时,电控器停止供电。这样两电控阀均失电,两排气阀处于关闭状态,故B塔继续吸附而A塔却停止了再生而进入充气状态,当两塔压力达到均压,这时电控器发出转换电信号进入另一次循环。
这种传统技术对上述工作时间及时序分配,是由CPU的时序控制器已经设定,就不能在工作过程中对时间再作改动了,无法根据用气负载的轻重或露点温度的高低情况来“智能”调整干燥机的工作状态。其造成的后果是造成成品气的大量浪费,或成品气质量不达标的情况。而这种时序控制器由于电子元件多,松散结构,故障率极高,一个小元件出故障会造成整个控制失效。这种时序控制器更不具备压力显示,露点显 示,故障报警等等扩展功能,根本无法满足现代铁路机车、地铁、城轨高速发展的自动化要求。因此传统的双塔铁路用空气干燥机,存在太多无法解决的问题,已经越来越无法适应现代机车高精度刹车***、气动门、机车气控配件及气支元件的需求了。
通过国内专利文献检索发现有一些相关的文献报道,与本发明有关的主要有以下一些:
1、专利号为CN201180072105.2,名称为“吸附式热泵的控制方法、信息处理***及控制装置”的发明专利,该专利公开了一种吸附式热泵的控制方法、信息处理***及控制装置,即使用于供给再生吸附剂时使用的热量的热源的温度变化很大,也能够使吸附式热泵高效运行。设置有:流量调整部43a~43c,能够分别独立地调整向电子设备41a~41c供给的热介质的流量;温度传感器45a~45c,能够分别独立地检测从电子设备41a~41c排放出的热介质的温度;控制部30。控制部30基于温度传感器45a~45c的输出,以使从电子设备41a~41c排放出的热介质的温度变得相同的方式控制流量调整部43a~43c。
2、专利号为CN200820123078.2,名称为“一种控制内燃机车双塔式空气干燥器的电控器”的实用新型专利,该专利公开了一种控制内燃机车双塔式空气干燥器的电控器,其特征在于:它的机芯部分包括电源模块、PLC控制器、第一接触器、第二接触器;直流电压和控制信号分别输入所述电源模块,电源模块的输出作为所述PLC控制器的输入;PLC控制器的输出分别连接所述第一接触器和所述第二接触器,第一接触器和第二接触器的输出分别连接受其控制的电空阀。
3、专利号为CN201010266323.7,名称为“基于露点控制的干燥器流程切换时间控制方法”的发明专利,该专利公开了一种基于露点控制的干燥器流程切换时间控制方法,在一个吸附塔工作结束,两塔工作流程未切换前,将采集到的露点温度实际值与客户要求的设定值相比较。如果实际值等于或高于设定值,***继续按时间控制进行切换。如果实际值低于设定值,则让此吸附塔继续工作,另外一个吸附塔待切换。这时将采集到的露点温度实际值与客户要求的设定值一直进行比较。一直到实际值等于或高于客户要求的设定值,或时间达到设定的露点控制时间值时,两塔工作流程马上切换。
上述这些专利虽然涉及到了空气干燥器的控制,其中在第2个专利中也提出了采用PLC控制器,可仔细分析可以看出,这些专利都没有解决准确反映干燥器成品气的质量指标的问题,而且对于干燥器出现长排故障没有检测和自动切换功能,干燥器控制器吸附再生时间也无法调节,干燥器控制器对进气温度无控制功能,气温低于0°时容易 结冰造成出气阀堵塞,极易造成机破事故,难以达到最优的干燥效果。因此很有必要对此加以改进。
发明内容
本发明的目的在于针对现有机车空气压缩机无热吸附式干燥控制方法及装置,存在不能反映干燥器成品气的质量指标,而且对于干燥器出现长排故障没有检测和自动切换功能,干燥器控制器吸附再生时间也无法调节,干燥器控制器对进气温度无控制功能的问题,提出一种可准确反映干燥器成品气的质量指标,而且对于干燥器出现长排故障可检测和自动切换功能,干燥器控制器吸附再生时间可调节,干燥器控制器对进气温度可控制的方无热吸附式干燥控制方法及装置。
为了实现上述目的,本发明所采取的技术方案是:一种机车空气压缩机无热吸附式干燥控制方法,采用PLC为控制核心,在出气端设置露点温度传感器和压力露点传感器,通过露点温度传感器和压力露点传感器对出气端的露点温度和出气口压力露点进行监控;同时在进气口处设置温度传感器,对进气口温度传感器进行监控;在气控组合阀消音器处设压力传感器,采集不正常压力信号;将所有传感器所取得的数据值反馈给P L C控制器,由P L C控制器依据所收集的各传感器的数据信息对无热吸附式干燥机的作业进行控制。
进一步地,所述的P L C控制器依据所收集的各传感器的数据信息对无热吸附式干燥机的作业进行控制是P LC控制器依据出气端的露点温度的控制干燥机的吸附与再生时间的切换;同时由P L C控制器通过对进气口温度传感器进行控制,以确切掌控进气口温度情况,并反馈给P L C控制器显示器,以便掌控进口的温度状态。
进一步地,所述的气控组合阀消音器处的压力传感器发现不正常压力信号时(当机车因机械阀门故障或电路故障、密封失效,出现长排故障时),将由P L C控制器按照给出指令后关闭进入干燥机的进气管道的常开电磁阀门并同时打开旁通管路(抛掉故障干燥机)上的另一常闭阀门为开的状态,使压缩空气直接供给用风设备,达到应急使用,消除机车机破事故的目的。同时发出报警信号以提醒机车乘务员,返段后作维修处理。
进一步地,所述的P L C控制器采用可编程逻辑控制技术,采用模块集成式方法,搭配触摸屏,所有控制电子元件合成一体,采用封装形式,能有效防震,保证控制器的可靠性。
进一步地,所述的P L C控制器根据传感探头反馈的外界温度判断是否启动跟踪 加热器,当外界气温低于设定温度时,将由P L C控制器输出电信号,启动跟踪加热器使加热器通电加热,以保证排气阀门口及过滤器排水阀门口不结冰堵塞,从而在低温环境中干燥机***还能正常工作。
进一步地,所述的P LC控制器依据出气端的露点温度的控制干燥机的吸附与再生时间的切换方法如下:
P L C控制器在接受压缩机调压器的信号后,转而输出控制电空阀的电信号,并通过电控阀的电动控制装置来操纵电控阀的动作;在压缩机调压器的控制下,干燥机工作流程如下;压缩机起动时,P L C控制器同时得到“通电”信号。控制器使电控阀一端处于“得电供气”状态,电控阀另一端处于“失电排气”状态。并以此操纵阀芯动作,当电空阀右边处于失电状态而电空阀左边处于得电状态时,阀芯左移,B组吸附塔模块的排气通道开启,而A组吸附塔模块的排气通道关闭,此时,B组塔进入再生状态。A组塔进入吸附状态,饱和湿空气由空压机进入从进气管道经过模块式五合一空气过滤器后,压缩空气中所携带的大部份水份、油份及灰尘被过滤掉,经风道进入进气阀座,湿空气经打开的进气阀进入左边干燥塔,沿着箭头的流向,下盖板的风道后,进入前排A组塔经吸附后到达上盖板流经上盖板上的出风道后,经干燥后的干燥空气借助压力打开上盖板上出气止回阀,经出气口供给用风设备。而另一路干燥风经上盖板上的出风道口上的再生孔风道,进入后排B组塔后,提供再生风给B组塔吸附材料解吸、把B组塔内的湿空气带出,经下盖板2上的风道及气控组合阀的排气阀门出口,穿过消音器口排入大气;当B组塔再生状态到设定时间时,P L C控制器输出电信号,电控器停止对电空阈左边供电,这时电空阀均处于失电状态,两排气阀亦处于关闭状态。故A组塔继续吸附而B组塔却停止再生。A组塔的干燥空气仍源源充入B组塔,因B组塔无排出使压力逐渐上升,B组塔在这段时间处于“充气状态”,然后电控器开始向右边供电,A组塔、B组塔再生吸附相互转换,完成转换周期。如此每转换周期改变左右干燥塔的干燥与再生。这样,左右干燥塔反复进行干燥和再生。“充气状态”使两塔压差很低,进气流速缓慢,大大地减少了进气气流对干燥剂的冲击,故称为“柔性转换”。柔性转换极大地减少了吸附材料产生粉末的根源。
进一步地,所述的P L C控制器根据传感探头反馈的外界温度判断是否启动跟踪加热器,当外界气温低于设定温度时,将由P L C控制器输出电信号,启动跟踪加热器使加热器通电加热,以保证排气阀门口及过滤器排水阀门口不结冰堵塞,从而在低温环境中干燥机***还能正常工作。
一种实现上述机车空气压缩机无热吸附式干燥控制方法的无热吸附式干燥控制装置,包括P L C控制器,在吸附式干燥机出气端设置露点温度传感器和压力露点传感器,通过露点温度传感器和压力露点传感器对出气端的露点温度和出气口压力露点进行监控;同时在进气口处设置温度传感器,对进气口温度传感器进行监控;在气控组合阀消音器处设压力传感器,采集不正常压力信号;所有传感器通过电线与P L C控制器电连接,并将所取得的数据值反馈给P L C控制器,由P L C控制器依据所收集的各传感器的数据信息对无热吸附式干燥机的作业进行控制。
进一步地,所述的P L C控制器为可编程逻辑控制技术,采用模块集成式方法,搭配触摸屏,所有控制电子元件合成一体,采用封装形式。
进一步地,所述的P L C控制器上设有报警信号输出接口,当P L C控制器收到气控组合阀消音器处的压力传感器发现不正常压力信号时,将由P L C控制器按照给出指令后关闭进入干燥机的进气管道的常开电磁阀门并同时打开旁通管路上的另一常闭阀门为开的状态,使压缩空气直接供给用风设备,达到应急使用,消除机车机破事故的目的,同时发出报警信号以提醒机车乘务员,返段后作维修处理;
进一步地,所述的P L C控制器上设有显示屏输出接口,P L C控制器将所有接收的信号实时上传到触摸显示屏,通过显示屏显示出作业环境和效果。
本发明的有益效果:本发明采用可编程逻辑P L C控制器,通过对出气端的露点温度的控制(提前或延迟)干燥机的吸附-再生时间的切换,达到减少成品气的消耗、提高成品气的质量,延长设备的使用寿命。同时还能将采集到的电信号传给显示屏或发出报警信号。还可以对其实现远程控制。P L C控制器通过对进气口温度传感器进行控制,以确切掌控进气口温度情况,并返馈给P L C控制器显示器,以便我们掌控进口的温度状态。P L C控制器在气控组合阀消音器处设压力传感器,采集到的不正常压力信号后反馈到P L C控制器、(当机车因机械阀门故障或电路故障、密封失效,出现长排故障时)给出指令后关闭进入干燥机的进气管道的常开电磁阀门并同时打开旁通管路(抛掉故障干燥机)上的另一常闭阀门为开的状态,使压缩空气直接供给用风设备,达到应急使用,消除机车机破事故的目的。同时发出报警信号以提醒机车乘务员,返段后作维修处理。P L C控制器还对干燥机的出气口压力露点进行监控,并显示压力露点及根据露点温度的高低情况来“智能”切换吸干机的工作状态来控制进气吸附时间或再生时间,以提高成品气的质量和节约成品气,延长设备的使用寿命。
附图说明
图1为本发明***控制方法的结构示意图;
图2为本发明P L C控制器控制一个具体实例的示意框图;
图3为本发明切换原理程序示意图。
具体实施方式
下面将结合附图和实施例对本发明做进一步的描述。
实施例一
通过附图1-3可以看出本发明为机车空气压缩机无热吸附式干燥控制方法的无热吸附式干燥控制装置,包括P L C控制器2,在吸附式干燥机出气端6设置露点温度传感器和压力露点传感器7,通过露点温度传感器和压力露点传感器7对出气端的露点温度和出气口压力露点进行监控;同时在进气口3处设置温度传感器4,对进气口温度传感器进行监控;在气控组合阀消音器5处设压力传感器8,采集不正常压力信号;所有传感器通过电线与P L C控制器电连接,并将所取得的数据值反馈给P L C控制器,由P L C控制器依据所收集的各传感器的数据信息对无热吸附式干燥机的作业进行控制。
所述的P L C控制器为可编程逻辑控制技术,采用模块集成式方法,搭配触摸屏,所有控制电子元件合成一体,采用封装形式。
所述的P L C控制器上设有报警信号输出接口,当P L C控制器收到气控组合阀消音器处的压力传感器发现不正常压力信号时,将由P L C控制器按照给出指令后关闭进入干燥机的进气管道的常开电磁阀门并同时打开旁通管路上的另一常闭阀门为开的状态,使压缩空气直接供给用风设备,达到应急使用,消除机车机破事故的目的,同时发出报警信号以提醒机车乘务员,返段后作维修处理;
所述的P L C控制器上设有显示屏输出接口,P L C控制器将所有接收的信号实时上传到触摸显示屏,通过显示屏显示出作业环境和效果。
利用上述无热吸附式干燥控制装置的机车空气压缩机无热吸附式干燥控制方法,采用PLC为控制核心,在出气端设置露点温度传感器和压力露点传感器,通过露点温度传感器和压力露点传感器对出气端的露点温度和出气口压力露点进行监控;同时在进气口处设置温度传感器,对进气口温度传感器进行监控;在气控组合阀消音器处设压力传感器,采集不正常压力信号;将所有传感器所取得的数据值反馈给P L C控制器,由P L C控制器依据所收集的各传感器的数据信息对无热吸附式干燥机的作业进行控制。
所述的P L C控制器依据所收集的各传感器的数据信息对无热吸附式干燥机的作业进行控制是P LC控制器依据出气端的露点温度的控制干燥机的吸附与再生时间的切 换;同时由P L C控制器通过对进气口温度传感器进行控制,以确切掌控进气口温度情况,并反馈给P L C控制器显示器,以便掌控进口的温度状态。
所述的气控组合阀消音器处的压力传感器发现不正常压力信号时(当机车因机械阀门故障或电路故障、密封失效,出现长排故障时),将由P L C控制器按照给出指令后关闭进入干燥机的进气管道的常开电磁阀门并同时打开旁通管路(抛掉故障干燥机)上的另一常闭阀门为开的状态,使压缩空气直接供给用风设备,达到应急使用,消除机车机破事故的目的。同时发出报警信号以提醒机车乘务员,返段后作维修处理。
所述的P L C控制器采用可编程逻辑控制技术,采用模块集成式方法,搭配触摸屏,所有控制电子元件合成一体,采用封装形式,能有效防震,保证控制器的可靠性。
所述的P L C控制器根据传感探头反馈的外界温度判断是否启动跟踪加热器,当外界气温低于设定温度时,将由P L C控制器输出电信号,启动跟踪加热器使加热器通电加热,以保证排气阀门口及过滤器排水阀门口不结冰堵塞,从而在低温环境中干燥机***还能正常工作。
所述的P LC控制器依据出气端的露点温度的控制干燥机的吸附与再生时间的切换方法如附图3所示,步骤如下:
P L C控制器在接受压缩机调压器的信号后,转而输出控制电空阀的电信号,并通过电控阀的电动控制装置来操纵电控阀的动作。在压缩机调压器的控制下,干燥机工作流程如下;压缩机起动时,P L C控制器14同时得到“通电”信号。控制器使电控阀1一端处于“得电供气”状态,电控阀另一端处于“失电排气”状态。并以此操纵阀芯15动作。当电空阀1右边处于失电状态而电空阀左边处于得电状态时,阀芯15左移,B组吸附塔模块的排气通道开启,而A组吸附塔模块的排气通道关闭,此时,B组塔进入再生状态。A组塔进入吸附状态,饱和湿空气由空压机进入从进气管道经过模块式五合一空气过滤器后,压缩空气中所携带的大部份水份、油份及灰尘被过滤掉,经风道进入进气阀座,湿空气经打开的进气阀进入左边干燥塔,沿着箭头的流向,下盖板2的风道后,进入前排A组塔经吸附后到达上盖板10流经上盖板上的出风道后,经干燥后的干燥空气借助压力打开上盖板10上出气止回阀,经出气口供给用风设备。而另一路干燥风经上盖板10上的出风道口上的再生孔风道,进入后排B组塔后,提供再生风给B组塔吸附材料解吸、把B组塔内的湿空气带出,经下盖板2上的风道及气控组合阀1的排气阀门出口,穿过消音器口排入大气。
当B组塔再生状态到设定时间时,P L C控制器输出电信号,电控器停止对电空 阈左边供电,这时电空阀均处于失电状态,两排气阀亦处于关闭状态。故A组塔继续吸附而B组塔却停止再生。A组塔的干燥空气仍源源充入B组塔,因B组塔无排出使压力逐渐上升,B组塔在这段时间处于“充气状态”,然后电控器开始向右边供电,A组塔、B组塔再生吸附相互转换,完成转换周期。如此每转换周期改变左右干燥塔的干燥与再生。这样,左右干燥塔反复进行干燥和再生。“充气状态”使两塔压差很低,进气流速缓慢,大大地减少了进气气流对干燥剂的冲击,故称为“柔性转换”。柔性转换极大地减少了吸附材料产生粉末的根源。
P L C控制器14不仅对上述工况实行自动控制,还能对智能模块集成式空气干燥机的整个***实行自动控制。智能P L C控制器采用可编程逻辑控制技术,通过对出气端的露点温度的控制(提前或延迟)干燥机的吸附-再生时间的切换,达到减少成品气的消耗、提高成品气的质量,延长设备的使用寿命。同时还能将采集到的电信号传给显示屏或发出报警信号。还可以对其实现远程控制。P L C控制器通过对进气口温度传感器进行控制,以确切掌控进气口温度情况,并返馈给P L C控制器显示器,以便我们掌控进口的温度状态。P L C控制器14在气控组合阀1消音器12处设一压力传感器,采集到的不正常压力信号后反馈到P L C控制器14、(当机车因机械阀门故障或电路故障、密封失效,出现长排故障时)给出指令后关闭进入干燥机的进气管道的常开电磁阀门并同时打开旁通管路(抛掉故障干燥机)上的另一常闭阀门为开的状态,使压缩空气直接供给用风设备,达到应急使用,消除机车机破事故的目的。同时发出报警信号以提醒机车乘务员,返段后作维修处理。P L C控制器14还对干燥机的出气口压力露点进行监控,并显示压力露点及根据露点温度的高低情况来“智能”切换吸干机的工作状态来控制进气吸附时间或再生时间,以提高成品气的质量和节约成品气,延长设备的使用寿命。所述的P L C控制器还根据传感探头反馈的外界温度判断是否启动跟踪加热器,当外界气温低于设定温度时,将由P L C控制器输出电信号,启动跟踪加热器使加热器通电加热,以保证排气阀门口及过滤器排水阀门口不结冰堵塞,从而在低温环境中干燥机***还能正常工作。
通过上述实施例可以看出,本发明可以归纳为一种机车空气压缩机无热吸附空气干燥方法,采用模块集成式方法,将机车空气压缩机无热吸附空气干燥***中的每一个吸附塔做成一个吸附塔模块,并将与吸附塔相配的过滤器集成到吸附塔模块内,再将这些吸附塔模块统一安装到一个上盖板和一个下盖板之间,并利用上盖板和下盖板作为吸附塔模块的进气或出气通道;通过吸附塔模块与上盖板和下盖板组合形成一个模块化组 合的机车空气压缩机无热吸附空气干燥***,并以此模块化组合所形成的机车无热吸附空气干燥***对空气压缩机所排出的压缩空气进行无热吸附空气干燥。
进一步地,所述的无热吸附空气干燥是将吸附塔模块分成两组,两组吸附塔模块交替进行吸附或再生作业;当一组在进行吸附时,另一组则进行再生处理;压缩空气输入到两组中的一组吸附塔模块进行吸附处理,而另一组吸附塔模块则同时进行再生处理;在进行吸附的吸附塔模块吸附饱和后将进行切换,由吸附改为进行再生处理,而另一组将也进行切换,由再生处理改为吸附。
进一步地,所述的切换是在上盖板上或下盖板下设有改变吸附塔模块进气或出气通道,使得吸附塔模块进行吸附或再生交替作业的电控阀,通过电控阀的自动控制使得吸附塔模块进行吸附或再生交替作业。
进一步地,所述的自动控制是在电控阀上设置电动控制装置,通过电动控制装置控制电控阀进行转换作业;电动控制装置通过一个P L C控制器按照需要进行时序控制,P L C控制器采用可编程逻辑控制技术,通过对出气端的露点温度的控制吸附塔模块的吸附或再生时间的切换。
进一步地,所述的P L C控制器通过对进气口温度传感器进行控制,以确切掌控进气口温度情况,并返馈给P L C控制器显示器,进而掌控进口的温度状态;P L C控制器还对干燥机的出气口压力露点进行监控,显示压力露点,并根据露点温度的高低情况来自动切换吸附塔模块的工作状态来控制进气吸附时间或再生时间,以提高成品气的质量和节约成品气,延长设备的使用寿命。
很显然,上述实施例只是本发明所列举的几个实例,理解这些实施方式仅用于说明本发明而不用于限制本发明范围,在阅读本发明后,本领域技术人员对本发明的各种等价形式的修改均落于本发明所要求的保护范围之内。

Claims (10)

  1. 一种机车空气压缩机无热吸附式干燥控制方法,其特征在于,采用PLC为控制核心,在出气端设置露点温度传感器和压力露点传感器,通过露点温度传感器和压力露点传感器对出气端的露点温度和出气口压力露点进行监控;同时在进气口处设置温度传感器,对进气口温度传感器进行监控;在气控组合阀消音器处设压力传感器,采集不正常压力信号;将所有传感器所取得的数据值反馈给PLC控制器,由PLC控制器依据所收集的各传感器的数据信息对无热吸附式干燥机的作业进行控制。
  2. 如权利要求1所述的机车空气压缩机无热吸附式干燥控制方法,其特征在于,所述的PLC控制器依据所收集的各传感器的数据信息对无热吸附式干燥机的作业进行控制是PLC控制器依据出气端的露点温度的控制干燥机的吸附与再生时间的切换;同时由PLC控制器通过对进气口温度传感器进行控制,以确切掌控进气口温度情况,并反馈给PLC控制器显示器,以便掌控进口的温度状态。
  3. 如权利要求1所述的机车空气压缩机无热吸附式干燥控制方法,其特征在于,所述的气控组合阀消音器处的压力传感器发现不正常压力信号时,将由PLC控制器按照给出指令后关闭进入干燥机的进气管道的常开电磁阀门并同时打开旁通管路上的另一常闭阀门为开的状态,使压缩空气直接供给用风设备,达到应急使用,消除机车机破事故的目的;同时发出报警信号以提醒机车乘务员,返段后作维修处理。
  4. 如权利要求1所述的机车空气压缩机无热吸附式干燥控制方法,其特征在于,所述的PLC控制器采用可编程逻辑控制技术,采用模块集成式方法,搭配触摸屏,所有控制电子元件合成一体,采用封装形式,能有效防震,保证控制器的可靠性。
  5. 如权利要求4所述的机车空气压缩机无热吸附式干燥控制方法,其特征在于,所述的PLC控制器根据传感探头反馈的外界温度判断是否启动跟踪加热器,当外界气温低于设定温度时,将由PLC控制器输出电信号,启动跟踪加热器使加热器通电加热,以保证排气阀门口及过滤器排水阀门口不结冰堵塞,从而在低温环境中干燥机***还能正常工作。
  6. 如权利要求1所述的机车空气压缩机无热吸附式干燥控制方法,其特征在于,所述的PLC控制器依据出气端的露点温度的控制干燥机的吸附与再生时间的切换方法如下:
    PLC控制器在接受压缩机调压器的信号后,转而输出控制电空阀的电信号,并通过电控阀的电动控制装置来操纵电控阀的动作;在压缩机调压器的控制下,干燥机工作流程如下;压缩机起动时,PLC控制器同时得到“通电”信号;控制器使电控阀一端处于“得电供气”状态,电控阀另一端处于“失电排气”状态;并以此操纵阀芯动作,当电空阀右边处于失电状态而电空阀左边处于得电状态时,阀芯左移,B组吸附塔模块的排气通道开启,而A组吸 附塔模块的排气通道关闭,此时,B组塔进入再生状态;A组塔进入吸附状态,饱和湿空气由空压机进入从进气管道经过模块式五合一空气过滤器后,压缩空气中所携带的大部份水份、油份及灰尘被过滤掉,经风道进入进气阀座,湿空气经打开的进气阀进入左边干燥塔,沿着箭头的流向,下盖板的风道后,进入前排A组塔经吸附后到达上盖板流经上盖板上的出风道后,经干燥后的干燥空气借助压力打开上盖板上出气止回阀,经出气口供给用风设备;而另一路干燥风经上盖板上的出风道口上的再生孔风道,进入后排B组塔后,提供再生风给B组塔吸附材料解吸、把B组塔内的湿空气带出,经下盖板2上的风道及气控组合阀的排气阀门出口,穿过消音器口排入大气;当B组塔再生状态到设定时间时,PLC控制器输出电信号,电控器停止对电空阈左边供电,这时电空阀均处于失电状态,两排气阀亦处于关闭状态;故A组塔继续吸附而B组塔却停止再生;A组塔的干燥空气仍源源充入B组塔,因B组塔无排出使压力逐渐上升,B组塔在这段时间处于“充气状态”,然后电控器开始向右边供电,A组塔、B组塔再生吸附相互转换,完成转换周期;如此每转换周期改变左右干燥塔的干燥与再生。
  7. 如权利要求1所述的机车空气压缩机无热吸附式干燥控制方法,其特征在于,所述的PLC控制器根据传感探头反馈的外界温度判断是否启动跟踪加热器,当外界气温低于设定温度时,将由PLC控制器输出电信号,启动跟踪加热器使加热器通电加热,以保证排气阀门口及过滤器排水阀门口不结冰堵塞,从而在低温环境中干燥机***还能正常工作。
  8. 一种利用权利要求1所述的机车空气压缩机无热吸附式干燥控制方法的无热吸附式干燥控制装置,包括PLC控制器,其特征在于,在吸附式干燥机出气端设置露点温度传感器和压力露点传感器,通过露点温度传感器和压力露点传感器对出气端的露点温度和出气口压力露点进行监控;同时在进气口处设置温度传感器,对进气口温度传感器进行监控;在气控组合阀消音器处设压力传感器,采集不正常压力信号;所有传感器通过电线与PLC控制器电连接,并将所取得的数据值反馈给PLC控制器,由PLC控制器依据所收集的各传感器的数据信息对无热吸附式干燥机的作业进行控制。
  9. 如权利要求8所述的无热吸附式干燥控制装置,其特征在于,所述的PLC控制器为可编程逻辑控制技术,采用模块集成式方法,搭配触摸屏,所有控制电子元件合成一体,采用封装形式。
  10. 如权利要求9所述的机车空气压缩机无热吸附式干燥控制方法,其特征在于,所述的PLC控制器上设有报警信号输出接口,当PLC控制器收到气控组合阀消音器处的压力传感器发现不正常压力信号时,将由PLC控制器按照给出指令后关闭进入干燥机的进气管道的 常开电磁阀门并同时打开旁通管路上的另一常闭阀门为开的状态,使压缩空气直接供给用风设备,达到应急使用,消除机车机破事故的目的,同时发出报警信号以提醒机车乘务员,返段后作维修处理;所述的PLC控制器上设有显示屏输出接口,PLC控制器将所有接收的信号实时上传到触摸显示屏,通过显示屏显示出作业环境和效果。
PCT/CN2015/074436 2014-07-25 2015-03-18 一种无热吸附空气干燥机的控制方法及装置 WO2016011816A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112015003425.0T DE112015003425T5 (de) 2014-07-25 2015-03-18 Hitzelose Adsorptionstrockenmethode und Vorrichtung für Lokomotive- Luftverdichter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410356289.0A CN104122834B (zh) 2014-07-25 2014-07-25 一种无热吸附空气干燥机的控制方法及装置
CN201410356289.0 2014-07-25

Publications (1)

Publication Number Publication Date
WO2016011816A1 true WO2016011816A1 (zh) 2016-01-28

Family

ID=51768289

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/074436 WO2016011816A1 (zh) 2014-07-25 2015-03-18 一种无热吸附空气干燥机的控制方法及装置

Country Status (3)

Country Link
CN (1) CN104122834B (zh)
DE (2) DE112015003425T5 (zh)
WO (1) WO2016011816A1 (zh)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107051131A (zh) * 2016-12-27 2017-08-18 高玉秀 电控干燥器
CN107627509A (zh) * 2016-07-19 2018-01-26 上海长园电子材料有限公司 一种吹干装置及控制***
CN107856659A (zh) * 2017-10-25 2018-03-30 南京金龙客车制造有限公司 一种干燥器***及其控制方法
CN109058763A (zh) * 2018-08-14 2018-12-21 东风商用车有限公司 一种车用智能化嵌入式可变储气容积能量回收装置
CN109406736A (zh) * 2018-12-19 2019-03-01 中广核达胜加速器技术有限公司 一种加速器用绝缘气体水分监控***及方法
CN111054190A (zh) * 2019-12-28 2020-04-24 宁波杭州湾新区祥源动力供应有限公司 压缩空气露点温度总管联动控制***及控制方法
CN111173490A (zh) * 2019-12-30 2020-05-19 中核内蒙古矿业有限公司 一种地浸采铀抽注液闭路循环***控制装置及方法
CN111729466A (zh) * 2020-06-15 2020-10-02 四川省宜宾环球集团有限公司 烤花炉VOCs处理***
CN112728873A (zh) * 2020-11-20 2021-04-30 浙江工业大学 一种基于自动化技术的发电机组除潮装置及其操作方法
CN112748147A (zh) * 2020-12-30 2021-05-04 中国人民解放军陆军勤务学院 一种柴油冷滤点自动测定***和测定的方法
CN114653162A (zh) * 2022-01-14 2022-06-24 广东省第二人民医院(广东省卫生应急医院) 制氧设备产氧工艺的交互式程序中继控制方法
CN115779644A (zh) * 2023-02-03 2023-03-14 杭州嘉隆气体设备有限公司 一种鼓风再生干燥器及其控制方法
CN115920605A (zh) * 2023-02-01 2023-04-07 杭州嘉隆气体设备有限公司 一种压缩热再生干燥器及控制方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104083996B (zh) * 2014-07-25 2016-03-30 株洲壹星科技股份有限公司 一种空气干燥机故障自动处理装置和处理方法
CN104122834B (zh) * 2014-07-25 2018-06-19 株洲壹星科技股份有限公司 一种无热吸附空气干燥机的控制方法及装置
CN104656618B (zh) * 2015-01-19 2017-05-31 河南心连心化肥有限公司 变压吸附剂再生控制装置及其控制方法
CN106870342B (zh) * 2017-01-23 2018-12-21 钛柯电子科技(上海)有限公司 一种带有自检***的智能空压机及其干燥***
KR102496707B1 (ko) * 2018-03-22 2023-02-06 현대자동차주식회사 압축공기를 활용한 에어 드라이어 제어 방법 및 히터리스 에어 드라이어
CN109268248A (zh) * 2018-09-04 2019-01-25 钛柯电子科技(上海)有限公司 便携式空压机测试装置和方法
CN109611335B (zh) * 2019-02-18 2024-06-21 广州广涡压缩机有限公司 一种防乳化***
CN112099427B (zh) * 2020-09-01 2023-07-25 贝克欧净化科技南通有限公司 一种带有避峰就谷功能的吸附式干燥机
CN113663468A (zh) * 2021-07-21 2021-11-19 首钢京唐钢铁联合有限责任公司 一种干燥器均压控制方法、装置、介质及计算机设备
CN114526597A (zh) * 2022-01-24 2022-05-24 南京农业大学 一种粮食干燥机的智能烘干控制***

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6085443A (en) * 1999-09-03 2000-07-11 Pioneer Hi-Bred International, Inc. Apparatus and method for drying relatively small lots of products
CN201108797Y (zh) * 2007-11-16 2008-09-03 徐伟 可编程热再生空气干燥控制器
CN201308808Y (zh) * 2008-10-22 2009-09-16 北京二七轨道交通装备有限责任公司 一种控制内燃机车双塔式空气干燥器的电控器
CN102163044A (zh) * 2010-12-22 2011-08-24 浙江工业大学 空压机-冷干机***的变频控制装置
CN104122834A (zh) * 2014-07-25 2014-10-29 株洲高新技术产业开发区壹星科技有限公司 一种无热吸附空气干燥机的控制方法及装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001004573A (ja) * 1999-06-23 2001-01-12 Orion Mach Co Ltd 露点の測定方法とその装置及び気体の除湿方法とその装置
CN201350388Y (zh) * 2008-12-15 2009-11-25 广州市汉粤净化科技有限公司 吸附式干燥机
CN202212094U (zh) * 2011-05-26 2012-05-09 杭州山立净化设备有限公司 一种吸附式干燥器消音排气***
CN202237735U (zh) * 2011-07-21 2012-05-30 瑞立集团瑞安汽车零部件有限公司 一种多功能空气干燥器、车辆气压制动***及车辆
CN102580482A (zh) * 2012-03-14 2012-07-18 杭州汉克净化设备有限公司 无热吸附式压缩空气干燥机的智能化零压差切换装置
CN202962236U (zh) * 2012-12-17 2013-06-05 珠海华信净化设备有限公司 一种露控型微热干燥装置
CN203291689U (zh) * 2013-05-28 2013-11-20 杭州天跃气体设备制造有限公司 节能型微热再生吸附式干燥器控制***

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6085443A (en) * 1999-09-03 2000-07-11 Pioneer Hi-Bred International, Inc. Apparatus and method for drying relatively small lots of products
CN201108797Y (zh) * 2007-11-16 2008-09-03 徐伟 可编程热再生空气干燥控制器
CN201308808Y (zh) * 2008-10-22 2009-09-16 北京二七轨道交通装备有限责任公司 一种控制内燃机车双塔式空气干燥器的电控器
CN102163044A (zh) * 2010-12-22 2011-08-24 浙江工业大学 空压机-冷干机***的变频控制装置
CN104122834A (zh) * 2014-07-25 2014-10-29 株洲高新技术产业开发区壹星科技有限公司 一种无热吸附空气干燥机的控制方法及装置

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107627509A (zh) * 2016-07-19 2018-01-26 上海长园电子材料有限公司 一种吹干装置及控制***
CN107051131A (zh) * 2016-12-27 2017-08-18 高玉秀 电控干燥器
CN107856659A (zh) * 2017-10-25 2018-03-30 南京金龙客车制造有限公司 一种干燥器***及其控制方法
CN109058763B (zh) * 2018-08-14 2024-01-02 东风商用车有限公司 一种车用智能化嵌入式可变储气容积能量回收装置
CN109058763A (zh) * 2018-08-14 2018-12-21 东风商用车有限公司 一种车用智能化嵌入式可变储气容积能量回收装置
CN109406736A (zh) * 2018-12-19 2019-03-01 中广核达胜加速器技术有限公司 一种加速器用绝缘气体水分监控***及方法
CN111054190A (zh) * 2019-12-28 2020-04-24 宁波杭州湾新区祥源动力供应有限公司 压缩空气露点温度总管联动控制***及控制方法
CN111173490A (zh) * 2019-12-30 2020-05-19 中核内蒙古矿业有限公司 一种地浸采铀抽注液闭路循环***控制装置及方法
CN111729466A (zh) * 2020-06-15 2020-10-02 四川省宜宾环球集团有限公司 烤花炉VOCs处理***
CN112728873A (zh) * 2020-11-20 2021-04-30 浙江工业大学 一种基于自动化技术的发电机组除潮装置及其操作方法
CN112748147B (zh) * 2020-12-30 2023-12-22 中国人民解放军陆军勤务学院 一种柴油冷滤点自动测定***和测定的方法
CN112748147A (zh) * 2020-12-30 2021-05-04 中国人民解放军陆军勤务学院 一种柴油冷滤点自动测定***和测定的方法
CN114653162A (zh) * 2022-01-14 2022-06-24 广东省第二人民医院(广东省卫生应急医院) 制氧设备产氧工艺的交互式程序中继控制方法
CN114653162B (zh) * 2022-01-14 2023-12-22 广东省第二人民医院(广东省卫生应急医院) 制氧设备产氧工艺的交互式程序中继控制方法
CN115920605A (zh) * 2023-02-01 2023-04-07 杭州嘉隆气体设备有限公司 一种压缩热再生干燥器及控制方法
CN115779644A (zh) * 2023-02-03 2023-03-14 杭州嘉隆气体设备有限公司 一种鼓风再生干燥器及其控制方法
CN115779644B (zh) * 2023-02-03 2023-04-28 杭州嘉隆气体设备有限公司 一种鼓风再生干燥器及其控制方法

Also Published As

Publication number Publication date
CN104122834A (zh) 2014-10-29
DE112015003425T5 (de) 2017-06-01
DE202015009491U1 (de) 2017-12-14
CN104122834B (zh) 2018-06-19

Similar Documents

Publication Publication Date Title
WO2016011816A1 (zh) 一种无热吸附空气干燥机的控制方法及装置
WO2016011818A1 (zh) 一种湿空气干燥方法及模块化空气干燥机
CN102869554B (zh) 压缩空气准备装置、带有压缩空气准备装置的压缩空气供应***和为此的准备模块以及用于运行压缩空气准备装置的方法、控制模块和带有压缩空气准备装置的车辆
WO2016011815A1 (zh) 用于模块化空气干燥机的气动组合控制阀及其控制方法
CN109383554B (zh) 控制车集中制动控制***、方法及动车组制动控制***
WO2016011817A1 (zh) 一种空气干燥机故障自动处理方法及装置
WO2018000866A1 (zh) 一种空气压缩机应急能源***及其供应方法
CN204170595U (zh) 一种模块化空气干燥机
WO2020134180A1 (zh) 一种动车组回送救援用指令转换装置
CN110090533A (zh) 一种轨道交通用无热再生双塔干燥器
CN205683813U (zh) 一种车载压缩空气净化干燥装置
CN111706496A (zh) 一种轨道车辆风源***控制装置及方法
CN106882176B (zh) 机车风源***及其风源净化装置的控制组件和控制方法
CN103100285B (zh) 模块式集成化压缩空气净化装置
CN202876596U (zh) 模块式集成化压缩空气净化装置
CN205478242U (zh) 一种空气压缩机自动控制及监控***
CN105582789A (zh) 一种带湿度调节装置的车用空气干燥器
CN202971433U (zh) 新型集成式空气处理单元
CN205164449U (zh) 微热再生吸附式干燥机
CN215692961U (zh) 一种压缩空气干燥器与轨道车辆
CN203342631U (zh) 压缩空气微热再生干燥器
CN203971704U (zh) 一种空气干燥机故障自动处理装置
CN203441708U (zh) 一种燃气轮机压缩空气模块装置
CN105797538B (zh) 一种用于压缩空气干燥机的故障自动处理装置及处理方法
CN205164448U (zh) 无热再生吸附式干燥机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15824749

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112015003425

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15824749

Country of ref document: EP

Kind code of ref document: A1