WO2016011725A1 - 触控装置及其驱动方法 - Google Patents

触控装置及其驱动方法 Download PDF

Info

Publication number
WO2016011725A1
WO2016011725A1 PCT/CN2014/089910 CN2014089910W WO2016011725A1 WO 2016011725 A1 WO2016011725 A1 WO 2016011725A1 CN 2014089910 W CN2014089910 W CN 2014089910W WO 2016011725 A1 WO2016011725 A1 WO 2016011725A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
common electrode
touch
output
electrode
Prior art date
Application number
PCT/CN2014/089910
Other languages
English (en)
French (fr)
Inventor
赵卫杰
董学
王海生
刘英明
Original Assignee
京东方科技集团股份有限公司
北京京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US14/771,080 priority Critical patent/US10067591B2/en
Publication of WO2016011725A1 publication Critical patent/WO2016011725A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/13338Input devices, e.g. touch panels
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/13439Electrodes characterised by their electrical, optical, physical properties; materials therefor; method of making
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04166Details of scanning methods, e.g. sampling time, grouping of sub areas or time sharing with display driving
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/0418Control or interface arrangements specially adapted for digitisers for error correction or compensation, e.g. based on parallax, calibration or alignment
    • G06F3/04184Synchronisation with the driving of the display or the backlighting unit to avoid interferences generated internally
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
    • G02F2201/121Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode common or background
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
    • G02F2201/123Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode pixel

Definitions

  • the present disclosure relates to a touch device and a method of driving the same.
  • the Advanced Super Dimension Switch (ADS) touch device has been widely used due to its advantages of high resolution, high transmittance, low power consumption, wide viewing angle, and high aperture ratio.
  • the ADS touch device needs to be time-divisionally driven, that is, the display time period and the touch time period, respectively, because the normal display and the normal touch of the ADS touch device need to be ensured, that is, the interference between the two needs to be minimized. Drive.
  • the ADS touch device may include a touch screen and a detection circuit connected to the touch screen.
  • the operational amplifier in the detection circuit needs to load a reference signal, the reference signal is a positive voltage, and the common electrode in the touch screen needs to load a common electrode signal.
  • the common electrode signal is a negative voltage.
  • a direct current (DC) differential voltage is generated between the reference signal and the common electrode signal.
  • the horizontal electric field generated by the ADS touch device deflects the liquid crystal to achieve normal display.
  • the DC voltage difference generates an electric field in the vertical direction, which causes the liquid crystal to deflect in the vertical direction as well. That is to say, the DC voltage difference affects the normal deflection of the liquid crystal, thereby affecting the normal display of the touch device.
  • the present disclosure provides a touch device and a driving method thereof for avoiding the influence of normal display of the touch device.
  • At least one embodiment of the present disclosure provides a touch device including a touch screen, a detection circuit, and a driving circuit.
  • the touch screen includes a common electrode, a sensing electrode, and a pixel electrode, and the detecting circuit has a first input end. a second input end and an output end, wherein the first input end is connected to the sensing electrode;
  • the common electrode is configured to load a driving signal output by the driving circuit to couple a coupling signal between the common electrode and the sensing electrode and to touch the touch through the sensing electrode during a touch period
  • the control signal is output to the first input end
  • the detecting circuit is configured to generate a detection signal according to the touch signal and a reference signal output by the driving circuit loaded on the second input terminal to pass through the output end Output
  • the common electrode is configured to load a common electrode signal output by the driving circuit
  • the pixel electrode is configured to load a pixel electrode signal output by the driving circuit
  • the common electrode and the pixel electrode are used in a display period A display electric field is generated, the reference signal being the same as the common electrode signal.
  • the common electrode is further configured to load a DC signal output by the driving circuit during a touch period, where the DC signal and the reference signal are the same.
  • the common electrode signal is a positive voltage.
  • the pixel electrode signal has an upper limit value and a lower limit value
  • the common electrode signal is located between the upper limit value and the lower limit value, and the upper limit value and the lower limit value are both It is a positive voltage.
  • the common electrode comprises a plurality of strip electrodes arranged in parallel
  • the sensing electrodes comprise a plurality of strip electrodes arranged in parallel
  • the extending direction of the common electrodes and the extending direction of the sensing electrodes are perpendicular to each other.
  • the detecting circuit comprises a reference signal output device, an operational amplifier, a feedback capacitor and a feedback resistor, the operational amplifier having the first input terminal, the second input terminal and the output terminal, the reference signal output
  • the device is connected to the second input end, one end of the feedback capacitor is connected to the first end of the operational amplifier, and the other end of the feedback capacitor is connected to the output end of the operational amplifier, one end of the feedback resistor Connected to the first end of the operational amplifier, the other end of the feedback resistor is connected to the output of the operational amplifier;
  • the reference signal output device is configured to generate the reference signal and output the reference signal to the second input end;
  • the operational amplifier is configured to receive the touch signal through the first input end and receive the reference signal through the second input end and output the detection signal through the output end.
  • the touch screen includes a first substrate and a second substrate disposed opposite to each other, a liquid crystal is disposed between the first substrate and the second substrate, and the first substrate includes the common electrode and the The pixel electrode, the second substrate includes the sensing electrode.
  • a driving method for driving a touch device the driving method for driving the touch device, the touch device includes a touch screen, a driving circuit of the detecting circuit, and the touch screen includes a common electrode
  • the detecting circuit is provided with a first input end, a second input end and an output end, the first input end is connected to the sensing electrode, and the second input end is connected to the detecting circuit;
  • the driving method includes:
  • the common electrode loads a driving signal outputted by the driving circuit to generate a coupling between the common electrode and the sensing electrode to generate a touch signal and output the touch signal through the sensing electrode.
  • the detecting circuit Up to the first input end, the detecting circuit generates a detection signal according to the touch signal and a reference signal output by the driving circuit loaded on the second input end;
  • the common electrode loads a common electrode signal during a display period
  • the pixel electrode loads a pixel electrode signal output by the driving circuit
  • a display electric field is generated between the common electrode and the pixel electrode, and the reference signal and The common electrode signals are the same.
  • the common electrode further loads a DC signal output by the driving circuit, and the DC signal is the same as the reference.
  • the common electrode signal is a positive voltage.
  • the common electrode loads the common electrode signal in the display period, and the common electrode signal is the same as the reference signal loaded in the second input end of the detecting circuit, so There is no pressure difference between the electrode signal and the reference signal, so that the normal deflection of the liquid crystal is not affected, thereby avoiding the influence on the normal display of the touch device.
  • Figure 1 is a schematic illustration of a common electrode signal in accordance with the techniques known to the inventors;
  • FIG. 2 is a schematic structural diagram of a touch device according to an embodiment of the present disclosure
  • FIG. 3 is a perspective view of the common electrode and the sensing electrode of FIG. 2;
  • FIG. 4 is a schematic structural view of the detecting circuit of FIG. 2;
  • Figure 5 is a schematic diagram of a common electrode signal in an embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram of an equivalent circuit of the touch device of FIG. 2;
  • FIG. 7 is a schematic diagram of signal timing of the touch device of FIG.
  • FIG. 1 is a schematic illustration of a common electrode signal in accordance with the techniques known to the inventors.
  • the pixel electrode in the touch screen needs to load a pixel electrode signal (ie, a data voltage signal output by the Gamma circuit through the data line to be supplied to the pixel electrode), and the pixel electrode signal has an upper limit value AVDD and a lower limit.
  • the value -AVDD, AVDD is a positive voltage
  • -AVDD is a negative voltage
  • typically the common electrode signal is between AVDD and -AVDD. Since the coupling capacitance Cgs is formed between the gate and the pixel electrode in the A-Si process, in order to balance the display effect, the common electrode signal is set to a negative value instead of 0V.
  • FIG. 2 is a schematic structural diagram of a touch device according to an embodiment of the present disclosure.
  • the touch device includes a touch screen 1, a detecting circuit 2, and a driving circuit (not shown).
  • the touch screen 1 includes a common electrode 111, a sensing electrode 121, and a pixel electrode (not shown).
  • the detection circuit 2 is provided with a first input terminal, a second input terminal and an output terminal, and the first input terminal is connected to the sensing electrode 121.
  • the common electrode 111 is used to load the driving signal outputted by the driving circuit to couple the common electrode 111 and the sensing electrode 121 to generate a touch signal and output the touch signal to the first input through the sensing electrode 121.
  • the detecting circuit 2 is configured to generate a detection signal according to the touch signal and the reference signal loaded on the second input end to output through the output end, and the touch signal can be determined by the detection signal to realize the touch operation;
  • the common electrode 111 is used to load the common electrode signal output by the driving circuit
  • the pixel electrode is used to load the pixel electrode signal outputted by the driving circuit
  • the display electric field is generated between the common electrode 111 and the pixel electrode, and the reference signal and the common electrode signal are the same.
  • the display electric field is used to deflect the liquid crystal in the touch screen to realize the display screen.
  • the pixel electrode signal is a signal that the driving circuit outputs to the pixel electrode through the data line.
  • the pixel electrode signal may also be referred to as a data voltage signal.
  • the driving circuit is a Gamma circuit
  • the data voltage signal is a Gamma value having an upper limit value and a lower limit value, that is, the pixel electrode signal has an upper limit value and a lower limit value.
  • the common electrode loads the common electrode signal in the display period, and the common electrode signal is the same as the reference signal loaded in the second input end of the detection circuit, so the common electrode signal and the reference signal are There is no pressure difference between them, so that the normal deflection of the liquid crystal is not affected, thereby avoiding the influence of the normal display of the touch device.
  • the touch device is an ADS touch device.
  • the common electrode 111 includes a plurality of strip electrodes arranged in parallel
  • the sensing electrode 121 includes a plurality of strip electrodes arranged in parallel, an extending direction of the common electrode 111 and an extension of the sensing electrode 121.
  • the directions are perpendicular to each other.
  • the extending direction of the common electrode 111 is a longitudinal direction
  • the extending direction of the sensing electrode 121 is a lateral direction.
  • the touch screen 1 may include a first substrate 11 and a second substrate 12 disposed opposite to each other.
  • a liquid crystal 13 is disposed between the first substrate 11 and the second substrate 12.
  • the first substrate 11 includes a common electrode 111 and a pixel electrode, and the second The substrate 12 includes a sensing electrode 121.
  • the first substrate 11 may be an array substrate.
  • the first substrate 11 may include a first substrate substrate 112 and gate lines and data lines, gate lines and data formed over the first substrate substrate 112.
  • the line defines a pixel unit, the pixel unit includes a thin film transistor and a pixel electrode, wherein the gate line, the data line, the thin film transistor and the pixel electrode are not illustrated, the common electrode 111 may be located above the pixel electrode; the second substrate 12 may The second substrate 12 includes a second substrate substrate 122 and a black matrix pattern 123 and a color matrix pattern 124 formed under the second substrate substrate 122.
  • the black matrix pattern 123 is located on the second substrate substrate 122.
  • the sensing electrode 121 is located above the black matrix pattern 123, and the color matrix pattern 124 is located above the sensing electrode 121.
  • the color matrix pattern 124 may be a red matrix pattern, a green matrix pattern, or a blue matrix pattern.
  • the structures of the first substrate 11 and the second substrate 12 are only an example. In the practical application, the first substrate 11 and the second substrate 12 of other structures may be used, which are not enumerated here.
  • the projection of the common electrode 111 on the first base substrate 112 is disposed to intersect the projection of the sensing electrode 121 on the first base substrate 112.
  • the touch screen 1 may further include a first polarizing plate 14 and a second polarizing plate 15, the first polarizing plate 14 may be located on the light incident side of the first base substrate 112, and the second polarizing plate 15 may be located in the second The light exiting side of the base substrate 122.
  • the detecting circuit 2 includes a reference signal output device 21, an operational amplifier 22, a feedback capacitor Cf and a feedback resistor Rf.
  • the operational amplifier 22 has a first input terminal, a second input terminal and an output terminal, and a reference signal output device. 21 is connected to the second input terminal, one end of the feedback capacitor Cf is connected to the first input end of the operational amplifier 22, and the other end of the feedback capacitor Cf is connected to the output end of the operational amplifier 22, and one end of the feedback resistor Rf is opposite to the operational amplifier 22 An input is connected, and the other end of the feedback resistor Rf is connected to the output of the operational amplifier 22.
  • the first input terminal is an inverting input terminal of the operational amplifier 22, and the second input is The terminal is the non-inverting input of operational amplifier 22.
  • the reference signal output device 21 is configured to generate a reference signal and output the reference signal to the second input terminal, the operational amplifier 22 is configured to receive the touch signal through the first input terminal and receive the reference signal through the second input terminal and output the output through the output terminal. signal.
  • Fig. 5 is a schematic diagram of a common electrode signal in the embodiment.
  • the common electrode signal Vcom is a positive voltage. Since the pixel electrode signal has the upper limit value AVDD1 and the lower limit value AVDD2, and the common electrode signal Vcom is located between the upper limit value AVDD1 and the lower limit value AVDD2, for example, the upper limit value AVDD1 and the lower limit value AVDD2 are both set to The positive voltage is such that the common electrode signal Vcom is a positive voltage.
  • the reference signal needs to be a positive voltage, so the common electrode signal of the negative voltage cannot be directly used as the reference voltage, so the upper limit value AVDD1 of the common electrode signal needs to be first used.
  • the lower limit value AVDD2 is all raised to a positive voltage, so that the common electrode signal Vcom between the upper limit value AVDD1 and the lower limit value AVDD2 is also set to a positive voltage, so that the common electrode signal can be directly used as a reference signal, that is, Said to make the reference signal and the common electrode signal the same.
  • FIG. 6 is a schematic diagram of an equivalent circuit of the touch device of FIG. 2.
  • FIG. 6 the output end of the equivalent resistance Rtx of the common electrode 111 is connected to one end of the mutual capacitance Cm between the common electrode 111 and the sensing electrode 121, and the other end of the mutual capacitance Cm and the equivalent resistance Rrx of the sensing electrode 121 are connected.
  • the input end is connected, the output end of the equivalent resistor Rrx is connected to the first input end of the operational amplifier 22, one end of the equivalent capacitor Ctx is connected to the output end of the Rtx and one end of the mutual capacitance Cm, and the other end of the equivalent capacitor Ctx is grounded.
  • the input terminal of the equivalent resistance Rtx is for receiving an input signal, and when the common electrode 111 serves as a common electrode, the input signal is a common electrode signal; when the common electrode 111 serves as a transmitting electrode, the input signal is a driving signal.
  • FIG. 7 is a schematic diagram of signal timing of the touch device of FIG. 2.
  • the touch device in order to reduce the mutual interference between the touch and the display, the touch device can be driven by using a time-division driving method, so that the working time period of the touch device can be divided into display time segments. And touch time period.
  • the touch time period and the display time period are distinguished by a frame identification signal (V-Blanking). For example, as shown in FIG. 6 , when the frame recognition signal is a high level signal, the touch device is in the touch time period, when the frame is The touch device is in the display period when the identification signal is a low level signal.
  • the common electrode 111 serves as a common electrode, and the common electrode 111 is loaded on the common electrode
  • the common electrode signal Vcom is loaded with a pixel electrode signal on the pixel electrode, a display electric field is generated between the common electrode and the pixel electrode, and an electric field is displayed for screen display.
  • the reference signal output device 21 outputs a reference signal to the operational amplifier 22 during the display period, and since the reference signal is identical to the common electrode signal, there is no pressure difference between the reference signal and the common electrode signal.
  • the reference signal and the common electrode signal are both DC voltages.
  • the common electrode 111 serves as the transmitting electrode TX, and the sensing electrode 121 is RX.
  • TX1, TX2, TX3, and RX1, RX2, and RX3 are taken as an example for description, and the common electrode 111 is loaded with a driving signal to enable
  • the first electrode 11 and the second electrode 21 are coupled to generate a touch signal, and the driving signal is a pulse signal.
  • the touch signal changes, and the detecting circuit 2 can output according to the touch signal and the reference signal output device 21.
  • the reference signal to the second input end generates a detection signal Vout, by which the touch state and the touch coordinates can be determined, thereby implementing a touch operation.
  • the common electrode 111 is further used to load a DC signal output by the driving circuit, and the DC signal is the same as the reference signal.
  • the reference signal and the direct current signal are both DC voltages.
  • the DC signal is a constant voltage signal loaded on the common electrode 111 in the touch period, and the DC signal is the same as the reference signal, thereby avoiding a DC voltage difference between the reference signal and the DC signal.
  • the reference signal, the common electrode signal, and the DC signal are all the same.
  • the driving circuit may be a driving chip.
  • the driving circuit may include a driving signal generating module, a common electrode signal generating module, a pixel electrode signal generating module and a DC signal generating module, wherein the driving signal generating module is configured to generate a driving signal, and the common electrode signal generating module is configured to generate a common electrode a signal, the pixel electrode signal generating module is configured to generate a pixel electrode signal, and the DC signal generating module is configured to generate a DC signal.
  • the value of the driving signal can be increased, and the increase of the driving signal in this embodiment does not cause the thin film transistor to be turned on for the following reason:
  • the pixel electrode signal is AVDD2 when the frame is displayed, and the driving signal loaded on the common electrode 111 has a negative pulse voltage (-AC) when entering the touch period, and a fixed capacitor is formed between the common electrode 111 and the pixel electrode. Since the voltage across the fixed capacitor cannot be abruptly changed, how many pixel electrode signals change as the drive signal changes, and the voltage across the fixed capacitor is AVDD2-AC after the last two signals are superimposed.
  • AVDD2 is a positive voltage, so AVDD2-AC will not be lower than the turn-off voltage VGL of the thin film transistor gate, so AVDD2-AC will not cause the thin film transistor to be turned back on, so that the touch device will not display errors, so this implementation For example, the signal-to-noise ratio of the touch can be improved while ensuring correct display.
  • the common electrode loads the common electrode signal in the display period, and the common electrode signal is the same as the reference signal loaded in the second input end of the detection circuit, so the common electrode signal and the reference signal are There is no pressure difference between them, so that the normal deflection of the liquid crystal is not affected, thereby avoiding the influence of the normal display of the touch device.
  • the reference signal and the DC signal are the same, so there is no pressure difference between the reference signal and the DC signal, so that the normal deflection of the liquid crystal is not affected, and the contact due to the abnormal deflection of the liquid crystal is avoided.
  • the influence of the dielectric constant between the emitter electrode and the sensing electrode in the control panel avoids the influence on the mutual capacitance Cm, thereby avoiding the influence on the touch of the touch device.
  • An embodiment of the present disclosure provides a driving method of a touch device, where the driving method is used to drive the touch device, the touch device includes a touch screen, a detecting circuit, and a driving circuit, and the touch
  • the control panel includes a common electrode, a sensing electrode and a pixel electrode, and the detecting circuit has a first input end, a second input end and an output end, and the first input end is connected to the sensing electrode.
  • the driving method includes:
  • the common electrode loads a driving signal outputted by the driving circuit to generate a coupling between the common electrode and the sensing electrode to generate a touch signal and output the touch signal through the sensing electrode.
  • the detecting circuit Up to the first input end, the detecting circuit generates a detection signal according to the touch signal and a reference signal loaded on the second input end;
  • the common electrode loads a common electrode signal outputted by the driving circuit during a display period
  • the pixel electrode loads a pixel electrode signal output by the driving circuit
  • a display electric field is generated between the common electrode and the pixel electrode, the reference The signal is the same as the common electrode signal.
  • the common electrode also loads a DC signal output by the driving circuit, and the DC signal and the common electrode signal are the same.
  • the common electrode signal is a positive voltage.
  • the common electrode loads the common electrode signal during the display period, and the common electrode signal is the same as the reference signal loaded by the second input terminal in the detection circuit, so the common electrode signal and the reference There is no pressure difference between the signals, so that the normal deflection of the liquid crystal is not affected, thereby avoiding the influence of the normal display of the touch device.
  • the reference signal and the DC signal are the same, so there is no pressure difference between the reference signal and the DC signal, so that the normal deflection of the liquid crystal is not affected, and the contact due to the abnormal deflection of the liquid crystal is avoided.
  • the influence of the dielectric constant between the emitter electrode and the sensing electrode in the control panel avoids the influence on the mutual capacitance Cm, thereby avoiding the influence on the touch of the touch device.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Nonlinear Science (AREA)
  • Human Computer Interaction (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Mathematical Physics (AREA)
  • Computer Hardware Design (AREA)
  • Geometry (AREA)
  • Liquid Crystal (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

公开了一种触控装置及其驱动方法。该触控装置包括触控屏、检测电路和驱动电路,所述触控屏包括公共电极、感应电极和像素电极,所述检测电路具备第一输入端、第二输入端和输出端,所述第一输入端与所述感应电极连接;在显示时间段内,所述公共电极用于加载公共电极信号,所述像素电极用于加载所述驱动电路输出的像素电极信号,所述公共电极和所述像素电极之间产生显示电场,所述参考信号和所述公共电极信号相同。本公开中,公共电极信号和参考信号之间不会产生压差,从而避免了对触控装置正常显示的影响。

Description

触控装置及其驱动方法 技术领域
本公开涉及一种触控装置及其驱动方法。
背景技术
随着触控技术的发展,完全内嵌式触控(Full In-Cell Touch)装置的应用越来越广泛。其中,超高维场转换技术(Advanced Super Dimension Switch,简称:ADS)触控装置因具有高分辨率、高透过率、低功耗、宽视角、高开口率等优点而得到广泛应用。由于需要保证ADS触控装置的正常显示和正常触控,即需要最大程度地降低两者之间的干扰,因此ADS触控装置需要进行分时驱动,即对显示时间段和触控时间段分别进行驱动。
ADS触控装置可包括触控屏和与触控屏连接的检测电路,检测电路中的运算放大器需要加载一个参考信号,该参考信号为正电压,触控屏中的公共电极需要加载公共电极信号,该公共电极信号为负电压。
由于参考信号为正电压,公共电极信号为负电压,因此在参考信号和公共电极信号之间会产生一个直流(Direct Current,简称:DC)压差。在显示时间段,ADS触控装置产生的水平电场会使液晶发生偏转以实现正常显示,该DC压差会在垂直方向上产生一个电场,该电场会使液晶在垂直方向上也发生偏转,也就是说,该DC压差会影响液晶的正常偏转,从而影响触控装置的正常显示。
发明内容
本公开提供一种触控装置及其驱动方法,用于避免对触控装置正常显示的影响。
本公开的至少一个实施例提供了一种触控装置,包括触控屏、检测电路和驱动电路,所述触控屏包括公共电极、感应电极和像素电极,所述检测电路具备第一输入端、第二输入端和输出端,所述第一输入端与所述感应电极连接;
在触控时间段内,所述公共电极用于加载所述驱动电路输出的驱动信号以使所述公共电极和所述感应电极之间耦合产生触控信号并通过所述感应电极将所述触控信号输出至所述第一输入端,所述检测电路用于根据所述触控信号和所述第二输入端上加载的所述驱动电路输出的参考信号生成检测信号以经所述输出端输出;
在显示时间段内,所述公共电极用于加载所述驱动电路输出的公共电极信号,所述像素电极用于加载所述驱动电路输出的像素电极信号,所述公共电极和所述像素电极之间产生显示电场,所述参考信号和所述公共电极信号相同。
可选地,在触控时间段内,所述公共电极还用于加载所述驱动电路输出的直流信号,所述直流信号和所述参考信号相同。
可选地,所述公共电极信号为正电压。
可选地,所述像素电极信号具有上限值和下限值,所述公共电极信号位于所述上限值和所述下限值之间,所述上限值和所述下限值均为正电压。
可选地,所述公共电极包括多个平行设置的条状电极,所述感应电极包括多个平行设置的条状电极,所述公共电极的延伸方向和所述感应电极的延伸方向相互垂直。
可选地,所述检测电路包括参考信号输出装置、运算放大器、反馈电容和反馈电阻,所述运算放大器具有所述第一输入端、所述第二输入端和输出端,所述参考信号输出装置与所述第二输入端连接,所述反馈电容的一端与所述运算放大器的第一端连接,所述反馈电容的另一端与所述运算放大器的输出端连接,所述反馈电阻的一端与所述运算放大器的第一端连接,所述反馈电阻的另一端与所述运算放大器的输出端连接;
所述参考信号输出装置用于生成所述参考信号并将所述参考信号输出至所述第二输入端;
所述运算放大器用于通过所述第一输入端接收所述触控信号以及通过所述第二输入端接收所述参考信号并通过所述输出端输出所述检测信号。
可选地,所述触控屏包括相对设置的第一基板和第二基板,所述第一基板和所述第二基板之间设置有液晶,所述第一基板包括所述公共电极和所述像素电极,所述第二基板包括所述感应电极。本公开的至少一个实施例还提 供了一种触控装置的驱动方法,所述驱动方法用于对所述触控装置进行驱动,所述触控装置包括触控屏、检测电路的驱动电路,所述触控屏包括公共电极、感应电极和像素电极,所述检测电路具备第一输入端、第二输入端和输出端,所述第一输入端与所述感应电极连接,所述第二输入端与检测电路连接;
所述驱动方法包括:
在触控时间段内,所述公共电极加载驱动电路输出的驱动信号以使所述公共电极和所述感应电极之间产生耦合产生触控信号并通过所述感应电极将所述触控信号输出至所述第一输入端,所述检测电路根据所述触控信号和所述第二输入端上加载的所述驱动电路输出的参考信号生成检测信号;
在显示时间段内,所述公共电极加载公共电极信号,所述像素电极加载所述驱动电路输出的像素电极信号,所述公共电极和所述像素电极之间产生显示电场,所述参考信号和所述公共电极信号相同。
可选地,在触控时间段内,所述公共电极还加载所述驱动电路输出的直流信号,所述直流信号和所述参考相同。
可选地,所述公共电极信号为正电压。
本公开的实施例提供的触控装置及其驱动方法的技术方案,在显示时间段内公共电极加载公共电极信号,该公共电极信号和检测电路中第二输入端加载的参考信号相同,因此公共电极信号和参考信号之间不会产生压差,从而不会影响液晶的正常偏转,进而避免了对触控装置正常显示的影响。
附图说明
图1为据发明人已知的技术中的公共电极信号的示意图;
图2为本公开的实施例提供的一种触控装置的结构示意图;
图3为图2中公共电极和感应电极的立体示意图;
图4为图2中检测电路的结构示意图;
图5为本公开的实施例中的公共电极信号的示意图;
图6为图2中触控装置的等效电路示意图;
图7为图2中触控装置的信号时序示意图。
具体实施方式
为使本领域的技术人员更好地理解本公开的技术方案,下面结合附图对本公开提供的触控装置及其驱动方法进行详细描述。
图1为据发明人已知的技术中的公共电极信号的示意图。如图1所示,触控屏中的像素电极需要加载像素电极信号(即:Gamma电路通过数据线输出的数据电压信号,以提供给像素电极),像素电极信号具有上限值AVDD和下限值-AVDD,AVDD为正电压,-AVDD为负电压,而通常公共电极信号位于AVDD和-AVDD之间。由于A-Si工艺中栅极和像素电极之间形成有耦合电容Cgs,因此为了平衡显示效果,将公共电极信号设置为一负值,而并非0V。
图2为本公开的实施例提供的一种触控装置的结构示意图。如图2所示,该触控装置包括触控屏1、检测电路2和驱动电路(图中未示出),触控屏1包括公共电极111、感应电极121和像素电极(图中未示出),检测电路2具备第一输入端、第二输入端和输出端,第一输入端与感应电极121连接。在触控时间段内,公共电极111用于加载驱动电路输出的驱动信号以使公共电极111和感应电极121之间耦合产生触控信号并通过感应电极121将触控信号输出至第一输入端,检测电路2用于根据触控信号和第二输入端上加载的参考信号生成检测信号以经输出端输出,通过该检测信号可判断触控状态和触控坐标,实现触控操作;在显示时间段内,公共电极111用于加载驱动电路输出的公共电极信号,像素电极用于加载驱动电路输出的像素电极信号,公共电极111和像素电极之间产生显示电场,参考信号和公共电极信号相同。
其中,显示电场用于使触控屏中的液晶发生偏转,以实现显示画面。
其中,像素电极信号为驱动电路通过数据线输出至像素电极的信号,在实际应用中,像素电极信号还可以称为数据电压信号。例如,如果驱动电路为Gamma电路,则数据电压信号为Gamma值,该Gamma值具有上限值和下限值,即:像素电极信号具有上限值和下限值。
本实施例提供的触控装置的技术方案,在显示时间段内,公共电极加载公共电极信号,该公共电极信号和检测电路中第二输入端加载的参考信号相同,因此公共电极信号和参考信号之间不会产生压差,从而不会影响液晶的正常偏转,进而避免了对触控装置正常显示的影响。
在本实施例中,触控装置为ADS触控装置。
图3为图2中的公共电极和感应电极的立体示意图。如图3所示,在本实施例中,公共电极111包括多个平行设置的条状电极,感应电极121包括多个平行设置的条状电极,公共电极111的延伸方向和感应电极121的延伸方向相互垂直。例如,本实施例中,公共电极111的延伸方向为纵向,感应电极121的延伸方向为横向。
触控屏1可以包括相对地设置的第一基板11和第二基板12,第一基板11和第二基板12之间设置有液晶13,第一基板11包括公共电极111和像素电极,第二基板12包括感应电极121。在本实施例中,第一基板11可以为阵列基板,例如,第一基板11可以包括第一衬底基板112以及形成于第一衬底基板112上方的栅线和数据线,栅线和数据线限定出像素单元,该像素单元包括薄膜晶体管和像素电极,其中,栅线、数据线、薄膜晶体管和像素电极均未图示,该公共电极111可以位于像素电极的上方;第二基板12可以为彩膜基板,该第二基板12包括第二衬底基板122以及形成于第二衬底基板122下方的黑矩阵图形123和彩色矩阵图形124,黑矩阵图形123位于第二衬底基板122之上,感应电极121位于黑矩阵图形123之上,彩色矩阵图形124位于感应电极121之上,例如,彩色矩阵图形124可以为红色矩阵图形、绿色矩阵图形或者蓝色矩阵图形。上述第一基板11和第二基板12的结构仅为一种示例,在实际应用中还可以其它结构的第一基板11和第二基板12,此处不再一一列举。其中,公共电极111在第一衬底基板112上的投影与感应电极121在第一衬底基板112上的投影相交地设置。
进一步地,该触控屏1还可以包括第一偏振片14和第二偏振片15,第一偏振片14可以位于第一衬底基板112的入光侧,第二偏振片15可以位于第二衬底基板122的出光侧。
图4为图2中的检测电路的结构示意图。如图4所示,该检测电路2包括参考信号输出装置21、运算放大器22、反馈电容Cf和反馈电阻Rf,运算放大器22具有第一输入端、第二输入端和输出端,参考信号输出装置21与第二输入端连接,反馈电容Cf的一端与运算放大器22的第一输入端连接,反馈电容Cf的另一端与运算放大器22的输出端连接,反馈电阻Rf的一端与运算放大器22的第一输入端连接,反馈电阻Rf的另一端与运算放大器22的输出端连接。其中,第一输入端为运算放大器22的反相输入端,第二输入 端为运算放大器22的正相输入端。参考信号输出装置21用于生成参考信号并将参考信号输出至第二输入端,运算放大器22用于通过第一输入端接收触控信号以及通过第二输入端接收参考信号并且通过输出端输出检测信号。
图5为实施例中的公共电极信号的示意图。如图5所示,本实施例中,公共电极信号Vcom为正电压。由于像素电极信号具有上限值AVDD1和下限值AVDD2,而公共电极信号Vcom位于上限值AVDD1和下限值AVDD2之间,因此,例如,将上限值AVDD1和下限值AVDD2均设置为正电压,以使公共电极信号Vcom为正电压。由于通常传统的触控集成电路(Touch IC)没有负压制程,参考信号需要为正电压,因此无法将负电压的公共电极信号直接作为参考电压,所以需要先将公共电极信号的上限值AVDD1和下限值AVDD2全部升为正电压,这样位于上限值AVDD1和下限值AVDD2之间的公共电极信号Vcom也会被设置为正电压,从而能够直接利用公共电极信号作为参考信号,也就是说,使参考信号和公共电极信号相同。
图6为图2中的触控装置的等效电路的示意图。如图6所示,公共电极111的等效电阻Rtx的输出端与公共电极111和感应电极121之间的互容量Cm的一端连接,互容量Cm的另一端与感应电极121的等效电阻Rrx的输入端连接,等效电阻Rrx的输出端与运算放大器22的第一输入端连接,等效电容Ctx的一端与Rtx的输出端和互容量Cm的一端连接,等效电容Ctx的另一端接地,等效电容Crx的一端与等效电阻Rrx的输出端和运算放大器22的第一输入端连接,等效电容Crx的另一端接地。等效电阻Rtx的输入端用于接收输入信号,当公共电极111充当公共电极时该输入信号为公共电极信号;当公共电极111充当发射电极时该输入信号为驱动信号。
下面通过图6和图7对本实施例中的触控装置的工作原理进行详细描述。图7为图2中的触控装置的信号时序示意图。如图6和图7所示,为了降低触控与显示之间的相互干扰,可以采用分时驱动的方式对触控装置进行驱动,因此可以将触控装置的工作时间段分为显示时间段和触控时间段。触控时间段和显示时间段通过帧识别信号(V-Blanking)来区分,例如,如图6所示,当帧识别信号为高电平信号时出触控装置处于触控时间段,当帧识别信号为低电平信号时触控装置处于显示时间段。
在显示时间段内,公共电极111充当公共电极,公共电极111上加载公 共电极信号Vcom,像素电极上加载像素电极信号,公共电极和像素电极之间产生显示电场,显示电场用于进行画面显示。在显示时间段内参考信号输出装置21会向运算放大器22输出参考信号,由于参考信号与公共电极信号相同,因此参考信号与公共电极信号之间无压差。其中,参考信号和公共电极信号均为直流电压。由于参考信号与公共电极信号之间不会产生DC压差,因此不会在垂直方向上产生电场,这样能够避免液晶在垂直方向上的偏转,避免了对液晶正常偏转的影响,从而避免了对触控装置显示的影响。
在触控时间段内,公共电极111充当发射电极TX,感应电极121为RX,图7中以TX1、TX2、TX3和RX1、RX2、RX3为例进行描述,公共电极111上加载驱动信号以使第一电极11和第二电极21之间耦合产生触控信号,该驱动信号为脉冲信号,当触摸发生时触控信号发生改变,检测电路2可以根据该触控信号和参考信号输出装置21输出至第二输入端的参考信号生成检测信号Vout,通过该检测信号可以判断出触控状态和触控坐标,从而实现触控操作。进一步地,在触控时间段内,公共电极111还用于加载驱动电路输出的直流信号,该直流信号和参考信号相同。其中,参考信号和直流信号均为直流电压。直流信号为触控时间段内公共电极111上加载的恒定电压信号,该直流信号与参考信号相同,从而避免了参考信号与直流信号之间产生DC压差。由于参考信号与直流信号之间不会产生DC压差,因此不会在垂直方向上产生电场,这样能够避免液晶在垂直方向上的偏转,避免了对液晶正常偏转的影响,避免了由于液晶的不正常偏转而导致的对触控屏中的发射电极和感应电极之间的介电常数的影响,从而避免了对互容量Cm的影响,进而避免了对触控装置触控的影响。
综上所述,参考信号、公共电极信号和直流信号均相同。
在本实施例中,驱动电路可以为驱动芯片。该驱动电路中可包括驱动信号生成模块、公共电极信号生成模块、像素电极信号生成模块和直流信号生成模块,该驱动信号生成模块用于生成驱动信号,该公共电极信号生成模块用于生成公共电极信号,该像素电极信号生成模块用于生成像素电极信号,该直流信号生成模块用于生成直流信号。
如图6所示,由于直流电压为正电压,因此可以提高驱动信号的值,并且本实施例中驱动信号的增大不会导致薄膜晶体管开启,理由如下:假设在 一帧画面显示时像素电极信号为AVDD2,在进入触控时间段时公共电极111上加载的驱动信号会有负脉冲电压(-AC),此时公共电极111和像素电极之间为一固定电容,由于该固定电容两端的电压不能突变,所以驱动信号变化多少像素电极信号也跟着跳变多少,最后两个信号叠加在一起后固定电容两端的电压为AVDD2-AC,在本实施例中,由于AVDD2为正电压,因此AVDD2-AC不会低于薄膜晶体管栅极的关闭电压VGL,因此AVDD2-AC不会导致薄膜晶体管重新开启,从而使得触控装置不会出现显示错误的情况,因此本实施例能够在保证正确显示的前提下提高触控的信噪比。
本实施例提供的触控装置的技术方案中,在显示时间段内公共电极加载公共电极信号,该公共电极信号和检测电路中第二输入端加载的参考信号相同,因此公共电极信号和参考信号之间不会产生压差,从而不会影响液晶的正常偏转,进而避免了对触控装置正常显示的影响。在触控时间段内,参考信号和直流信号相同,因此参考信号和直流信号之间不会产生压差,从而不会影响液晶的正常偏转,避免了由于液晶的不正常偏转而导致的对触控屏中的发射电极和感应电极之间的介电常数的影响,避免了对互容量Cm的影响,进而避免了对触控装置触控的影响。
本公开的实施例提供了一种触控装置的驱动方法,所述驱动方法用于对所述触控装置进行驱动,所述触控装置包括触控屏、检测电路和驱动电路,所述触控屏包括公共电极、感应电极和像素电极,所述检测电路具备第一输入端、第二输入端和输出端,所述第一输入端与所述感应电极连接。
所述驱动方法包括:
在触控时间段内,所述公共电极加载驱动电路输出的驱动信号以使所述公共电极和所述感应电极之间产生耦合产生触控信号并通过所述感应电极将所述触控信号输出至所述第一输入端,所述检测电路根据所述触控信号和所述第二输入端上加载的参考信号生成检测信号;
在显示时间段内,所述公共电极加载驱动电路输出的公共电极信号,所述像素电极加载驱动电路输出的像素电极信号,所述公共电极和所述像素电极之间产生显示电场,所述参考信号和所述公共电极信号相同。
在本实施例中,在触控时间段内,所述公共电极还加载驱动电路输出的直流信号,所述直流信号和所述公共电极信号相同。
在本实施例中,所述公共电极信号为正电压。
在本实施例提供的触控装置的技术方案中,在显示时间段内公共电极加载公共电极信号,该公共电极信号和检测电路中第二输入端加载的参考信号相同,因此公共电极信号和参考信号之间不会产生压差,从而不会影响液晶的正常偏转,进而避免了对触控装置正常显示的影响。在触控时间段内,参考信号和直流信号相同,因此参考信号和直流信号之间不会产生压差,从而不会影响液晶的正常偏转,避免了由于液晶的不正常偏转而导致的对触控屏中发射电极和感应电极之间的介电常数的影响,避免了对互容量Cm的影响,进而避免了对触控装置触控的影响。
可以理解的是,以上实施方式仅仅是为了说明本公开的原理而采用的示例性实施方式,然而本公开并不局限于此。对于本领域内的普通技术人员而言,在不脱离本公开的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本公开的保护范围。
本申请要求于2014年7月25日递交的中国专利申请第201410360047.9号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。

Claims (10)

  1. 一种触控装置,其中,包括触控屏、检测电路和驱动电路,所述触控屏包括公共电极、感应电极和像素电极,所述检测电路具备第一输入端、第二输入端和输出端,所述第一输入端与所述感应电极连接;
    在触控时间段内,所述公共电极用于加载所述驱动电路输出的驱动信号以使所述公共电极和所述感应电极之间耦合产生触控信号并通过所述感应电极将所述触控信号输出至所述第一输入端,所述检测电路用于根据所述触控信号和所述第二输入端上加载的参考信号生成检测信号以经所述输出端输出;
    在显示时间段内,所述公共电极用于加载所述驱动电路输出的公共电极信号,所述像素电极用于加载所述驱动电路输出的像素电极信号,所述公共电极和所述像素电极之间产生显示电场,所述参考信号和所述公共电极信号相同。
  2. 根据权利要求1所述的触控装置,其中,在触控时间段内,所述公共电极还用于加载所述驱动电路输出的直流信号,所述直流信号和所述参考信号相同。
  3. 根据权利要求1或2所述的触控装置,其中,所述公共电极信号为正电压。
  4. 根据权利要求3所述的触控装置,其中,所述像素电极信号具有上限值和下限值,所述公共电极信号位于所述上限值和所述下限值之间,所述上限值和所述下限值均为正电压。
  5. 根据权利要求1至4中的任一项所述的触控装置,其中,所述公共电极包括多个平行设置的条状电极,所述感应电极包括多个平行设置的条状电极,所述公共电极的延伸方向和所述感应电极的延伸方向相互垂直。
  6. 根据权利要求1至5中的任一项所述的触控装置,其中,所述检测电路包括参考信号输出装置、运算放大器、反馈电容和反馈电阻,所述运算放大器具有所述第一输入端、所述第二输入端和输出端,所述参考信号输出装置与所述第二输入端连接,所述反馈电容的一端与所述运算放大器的第一端连接,所述反馈电容的另一端与所述运算放大器的输出端连接,所述反馈电 阻的一端与所述运算放大器的第一端连接,所述反馈电阻的另一端与所述运算放大器的输出端连接;
    所述参考信号输出装置用于生成所述参考信号并将所述参考信号输出至所述第二输入端;
    所述运算放大器用于通过所述第一输入端接收所述触控信号以及通过所述第二输入端接收所述参考信号并通过所述输出端输出所述检测信号。
  7. 根据权利要求1至6中的任一项所述的触控装置,其中,所述触控屏包括相对设置的第一基板和第二基板,所述第一基板和所述第二基板之间设置有液晶,所述第一基板包括所述公共电极和所述像素电极,所述第二基板包括所述感应电极。
  8. 一种触控装置的驱动方法,其中,所述驱动方法用于对所述触控装置进行驱动,所述触控装置包括触控屏、检测电路的驱动电路,所述触控屏包括公共电极、感应电极和像素电极,所述检测电路具备第一输入端、第二输入端和输出端,所述第一输入端与所述感应电极连接;
    所述驱动方法包括:
    在触控时间段内,所述公共电极加载驱动电路输出的驱动信号以使所述公共电极和所述感应电极之间产生耦合产生触控信号并通过所述感应电极将所述触控信号输出至所述第一输入端,所述检测电路根据所述触控信号和所述第二输入端上加载的参考信号生成检测信号;
    在显示时间段内,所述公共电极加载所述驱动电路输出的公共电极信号,所述像素电极加载所述驱动电路输出的像素电极信号,所述公共电极和所述像素电极之间产生显示电场,所述参考信号和所述公共电极信号相同。
  9. 根据权利要求8所述的触控装置的驱动方法,其中,在触控时间段内,所述公共电极还加载所述驱动电路输出的直流信号,所述直流信号和所述参考相同。
  10. 根据权利要求8或9所述的触控装置的驱动方法,其中,所述公共电极信号为正电压。
PCT/CN2014/089910 2014-07-25 2014-10-30 触控装置及其驱动方法 WO2016011725A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/771,080 US10067591B2 (en) 2014-07-25 2014-10-30 Touch device and driving method for touch control device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410360047.9A CN104156106B (zh) 2014-07-25 2014-07-25 触控装置及其驱动方法
CN201410360047.9 2014-07-25

Publications (1)

Publication Number Publication Date
WO2016011725A1 true WO2016011725A1 (zh) 2016-01-28

Family

ID=51881620

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/089910 WO2016011725A1 (zh) 2014-07-25 2014-10-30 触控装置及其驱动方法

Country Status (3)

Country Link
US (1) US10067591B2 (zh)
CN (1) CN104156106B (zh)
WO (1) WO2016011725A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104699311B (zh) * 2015-04-01 2017-12-26 上海天马微电子有限公司 显示面板以及显示装置
CN106601170B (zh) 2016-12-30 2019-05-03 武汉华星光电技术有限公司 一种触控显示面板的驱动方法、驱动装置以及触控显示器
US10503320B2 (en) * 2017-05-12 2019-12-10 Synaptics Incorporated Active feedforward interference cancellation techniques for sensor analog front-end
CN108958090B (zh) * 2017-05-22 2021-05-14 比亚迪半导体股份有限公司 复用端口的电路和控制方法、家用电器和消费电子装置
CN108089766B (zh) * 2018-01-23 2020-03-27 武汉华星光电半导体显示技术有限公司 触控驱动电路、触控组件、触控驱动方法及显示触控设备
KR102553544B1 (ko) * 2018-07-20 2023-07-10 엘지디스플레이 주식회사 터치 디스플레이 장치, 터치 회로 및 구동 방법
CN109189274B (zh) * 2018-11-20 2024-06-07 深圳芯邦科技股份有限公司 一种应用于触控技术的检测装置、指纹识别***
JP2021149198A (ja) * 2020-03-16 2021-09-27 株式会社ジャパンディスプレイ 入力検出システム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101739182A (zh) * 2008-11-11 2010-06-16 奇美电子股份有限公司 内嵌式触控式显示面板、内嵌式触控式显示装置及触碰控制方法
CN101866228A (zh) * 2009-04-17 2010-10-20 上海天马微电子有限公司 触摸屏、液晶显示装置及触摸屏的驱动方法
CN102637415A (zh) * 2011-07-22 2012-08-15 京东方科技集团股份有限公司 一种液晶显示装置及其驱动方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002055661A (ja) * 2000-08-11 2002-02-20 Nec Corp 液晶ディスプレイの駆動方法、その回路及び画像表示装置
CN108563366B (zh) * 2006-06-09 2022-01-25 苹果公司 触摸屏液晶显示器
CN102109690B (zh) * 2009-12-25 2012-12-19 上海天马微电子有限公司 内嵌触摸屏液晶显示装置及控制方法
JP5734805B2 (ja) * 2011-10-12 2015-06-17 株式会社ジャパンディスプレイ 表示装置、駆動回路、駆動方法、および電子機器
KR101356968B1 (ko) * 2012-06-14 2014-02-03 엘지디스플레이 주식회사 터치 스크린 일체형 표시장치
CN102914920B (zh) * 2012-09-11 2015-05-20 北京京东方光电科技有限公司 一种电容式内嵌触摸屏、其驱动方法及显示装置
KR101305924B1 (ko) * 2012-10-23 2013-09-09 엘지디스플레이 주식회사 표시장치 및 그 구동방법
US9285937B2 (en) * 2012-12-05 2016-03-15 Japan Display Inc. Display device with touch detection function, drive method thereof, and electronic apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101739182A (zh) * 2008-11-11 2010-06-16 奇美电子股份有限公司 内嵌式触控式显示面板、内嵌式触控式显示装置及触碰控制方法
CN101866228A (zh) * 2009-04-17 2010-10-20 上海天马微电子有限公司 触摸屏、液晶显示装置及触摸屏的驱动方法
CN102637415A (zh) * 2011-07-22 2012-08-15 京东方科技集团股份有限公司 一种液晶显示装置及其驱动方法

Also Published As

Publication number Publication date
CN104156106A (zh) 2014-11-19
US20160364061A1 (en) 2016-12-15
CN104156106B (zh) 2017-07-25
US10067591B2 (en) 2018-09-04

Similar Documents

Publication Publication Date Title
WO2016011725A1 (zh) 触控装置及其驱动方法
US10509510B2 (en) Touch display panel having pressure detecting function, display device and driving method
WO2017041480A1 (zh) 显示基板及其测试方法、显示装置
US9256309B2 (en) Display device including integrated touch panel
US10209803B2 (en) Touch sensor and liquid crystal display including the same
US9823788B2 (en) Capacitive in-cell touch panel, display device, and driving method
US9939938B2 (en) Display panel with touch detecting and display device
US10216344B2 (en) In-cell touch panel, method for driving the same, and display device
TW201423710A (zh) 以顯示結構提供觸控功能的驅動電路及觸控顯示器
TWI584186B (zh) 觸控顯示面板及其驅動方法
US10613671B2 (en) Display panel having touch electrodes and force sensors in periphery area and control method thereof
US10296124B2 (en) Touch screen and driving method thereof, and display apparatus
JP2014132445A (ja) タッチ検出機能付き表示装置、その駆動方法及び電子機器
US10268307B2 (en) Touch display panel, method for driving the same and touch display apparatus that is capable of providing a double-sided touch mode
US20190163321A1 (en) Display device
TWI626579B (zh) 顯示面板
US9600130B2 (en) Liquid crystal display device and method of driving the same
US10185423B2 (en) Plug-in touch display device and an electronic device
US20160334660A1 (en) In-cell touch panel
CN104777950A (zh) 触控屏幕与相关触控感测控制电路
US9146635B2 (en) Touch panel equipped display device and control method for same
JP2015007924A (ja) タッチパネル付液晶表示装置
JP2014016403A (ja) タッチパネル一体型液晶表示装置
CN105930005B (zh) 一种触控装置
TW201911276A (zh) 觸控顯示驅動電路

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14771080

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14897919

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 19/05/17)

122 Ep: pct application non-entry in european phase

Ref document number: 14897919

Country of ref document: EP

Kind code of ref document: A1