WO2016010349A1 - Button-type lithium secondary battery - Google Patents

Button-type lithium secondary battery Download PDF

Info

Publication number
WO2016010349A1
WO2016010349A1 PCT/KR2015/007316 KR2015007316W WO2016010349A1 WO 2016010349 A1 WO2016010349 A1 WO 2016010349A1 KR 2015007316 W KR2015007316 W KR 2015007316W WO 2016010349 A1 WO2016010349 A1 WO 2016010349A1
Authority
WO
WIPO (PCT)
Prior art keywords
dimensional
button
lithium secondary
secondary battery
type lithium
Prior art date
Application number
PCT/KR2015/007316
Other languages
French (fr)
Korean (ko)
Inventor
홍영진
최경린
정민영
Original Assignee
(주)오렌지파워
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)오렌지파워 filed Critical (주)오렌지파워
Publication of WO2016010349A1 publication Critical patent/WO2016010349A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/183Sealing members
    • H01M50/186Sealing members characterised by the disposition of the sealing members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/80Porous plates, e.g. sintered carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/102Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure
    • H01M50/109Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure of button or coin shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/147Lids or covers
    • H01M50/148Lids or covers characterised by their shape
    • H01M50/153Lids or covers characterised by their shape for button or coin cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/183Sealing members
    • H01M50/184Sealing members characterised by their shape or structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/534Electrode connections inside a battery casing characterised by the material of the leads or tabs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/559Terminals adapted for cells having curved cross-section, e.g. round, elliptic or button cells
    • H01M50/56Cup shaped terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/387Tin or alloys based on tin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/663Selection of materials containing carbon or carbonaceous materials as conductive part, e.g. graphite, carbon fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a button-type lithium secondary battery, and more particularly to a button-type of a new structure including a positive electrode and a negative electrode having a three-dimensional structure, and having a separate double gasket that surrounds the positive and negative electrodes of the three-dimensional structure. It relates to a lithium secondary battery.
  • Lithium secondary batteries are compact, lightweight, have high energy density, and have excellent storage characteristics. Therefore, lithium secondary batteries have been widely used as main power and backup power sources for various electronic devices. Coin-shaped, cylindrical, etc. are used as a lithium secondary battery assembled in these apparatuses.
  • button-type and coin-type batteries have a very thin button shape, and are mainly used as a power source for miniaturized and slimmer products, such as an electronic calculator and a watch, among which electrical products, and can be miniaturized, lightened, and used for a long time. Should be.
  • FIG. 1 The structure of a typical button cell is shown in FIG. Referring to FIG. 1, in the button type and coin type batteries, the positive electrode active material pellets 2 are filled inside the can 1, and the negative electrode active material pellets 4 are filled inside the cup 3.
  • the cup 3 is installed in an inverted manner in a manner that seals the open inlet of the can 1.
  • the positive electrode active material pellets 2 and the negative electrode active material pellets 4 are separated from each other by the separator 5.
  • Designated by reference numeral 6 is a gasket, which is manufactured in a shape surrounding the distal end of the can 3 to insulate between the cup 3 and the can 1.
  • button-type batteries have been mainly applied to primary batteries.
  • button-type batteries have to be applied to secondary batteries that can be charged and discharged in accordance with demands of electronic clocks and memory backup power supplies that require a long life.
  • Lithium secondary batteries have attracted attention as batteries which are most suitable for demand.
  • Lithium secondary batteries are one of the most attracting attention because they can be rapidly charged due to the inflow reaction of lithium ions, the charging reaction of the negative electrode is relatively fast, not only can be used repeatedly for a long time, but also ensures safety as a high voltage battery.
  • the lithium secondary battery uses lithium cobalt oxide (LiCoO 2 ), lithium nickel oxide (LiNiO 2 ), lithium manganese oxide (LiMn 2 O 4 ), etc. as a positive electrode active material.
  • LiCoO 2 lithium cobalt oxide
  • LiNiO 2 lithium nickel oxide
  • LiMn 2 O 4 lithium manganese oxide
  • the alloy is used, the stability problem according to the number of charge and discharge has emerged, and carbon material is used as a substitute.
  • Conventional button-type lithium secondary batteries exhibit high capacity by manufacturing the cathode active material layer with a thickness of 200 ⁇ m or more, but in this case, the capacity rate per unit area is 30 mAh / cm 2 or more, which increases the capacity per unit area. (c-rate) has been shown to limit.
  • the conventional high capacity button-type lithium secondary battery has a maximum continuous discharge rate of 0.1 C or less and a standard charge / discharge rate of 0.01 C or less.
  • the present invention includes a three-dimensional positive electrode and a negative electrode to exhibit improved rate-rate characteristics while having a high capacity in order to improve the capacity characteristics of the conventional button-type battery as described above, and to increase the capacity by the application of the three-dimensional positive and negative electrodes as described above It is an object of the present invention to provide a button-type lithium secondary battery having a new structure having a separate and independent double gasket in order to improve the leakage problem when the internal pressure increases.
  • the present invention to solve the above problems,
  • a first outer can formed in a cylindrical shape having a bottom and serving as a first electrode terminal
  • Power generation unit comprising a
  • a second outer can which serves as a second electrode terminal and is formed in an inverted bottomed cylindrical shape and is accommodated inside the first outer can while covering the power generation unit;
  • the separator is formed to surround the three-dimensional anode or three-dimensional anode
  • the first gasket is between the separator and the three-dimensional anode or three-dimensional cathode wrapped by the separator Inserted into and extending to the first outer can.
  • the button-type lithium secondary battery according to the present invention is characterized in that it comprises a three-dimensional structure of the positive electrode, the power generation unit including the negative electrode, and two separate and independent gaskets formed between the first outer can and the second outer can.
  • FIG 2 shows the structure of (a) the button-type lithium secondary battery according to the conventional method, and (b) the button-type lithium secondary battery according to the present invention.
  • the button-type lithium secondary battery according to the present invention is formed in a cylindrical shape having a bottom and serves as a first outer can 110 that serves as a first electrode terminal, and is sequentially stacked and accommodated in the first outer can.
  • Power generation unit 120 including;
  • a second outer can 130 which serves as a second electrode terminal and is formed in an inverted bottomed cylindrical shape and covers the power generation unit accommodated in the first outer can and is received inside the first outer can;
  • a first gasket (140) extending from the inside of the second outer can to the first outer can to insulate the distal end of the second outer can and the first outer can;
  • the button-type lithium secondary battery according to the present invention extends from the inside of the second outer can 130 to the first outer can 110 so that the end portion of the second outer can and the A first gasket 140 that insulates between the first outer cans; And a second gasket 150 formed between the outside of the second outer can and the first outer can.
  • the separator 122 is formed to surround the three-dimensional positive electrode or the three-dimensional negative electrode
  • the first gasket 140 is a three-dimensional positive electrode wrapped by the separator and the separator.
  • the first outer can 110 and the second outer can 130 may be formed when the separator and the outer can are lifted by being formed between the three-dimensional cathodes and extending to the first outer can. Can be insulated reliably.
  • the three-dimensional positive electrode or the negative electrode means a positive electrode or a negative electrode having a three-dimensional conductive network structure. Since the electrical conduction is made three-dimensionally through the three-dimensional positive electrode or the negative electrode, not only the rate characteristic is improved, but also the volume change due to the occlusion and release of lithium during charging and discharging of the lithium secondary battery can be effectively coped with.
  • the three-dimensional anode is characterized in that the cathode active material is formed on the three-dimensional conductive support.
  • the three-dimensional conductive support is selected from the group consisting of carbon paper, carbon felt, carbon cloth, metal foam, metal paper, metal felt, metal cloth, metal mesh do.
  • the manufacturing method for forming the positive electrode active material on the three-dimensional conductive support is not particularly limited, dip coating (spin coating), spin coating (spray coating), spray coating (spray) coating), chemical vapor deposition (CVD), etc., to form a cathode active material on the conductive support.
  • the positive electrode active material is not particularly limited, elemental sulfur, sulfur compound, Li a A 1-b R b D 2 (0.90 ⁇ a ⁇ 1.8, 0 ⁇ b ⁇ 0.5); Li a A 2-b R b D 4 (0.90 ⁇ a ⁇ 1.8, 0 ⁇ b ⁇ 0.5, 0 ⁇ c ⁇ 0.05); EO 2 ; ES 2 ; LiES 2 ; V 2 O 5 ; LiV 2 O 5 ; LiGO 2 ; LiNiVO 4 ; Li (3-d) J 2 (PO 4 ) 3 (0 ⁇ d ⁇ 2); Li (3-d) Fe 2 (PO 4 ) 3 (0 ⁇ d ⁇ 2 ); And LiFePO 4 .
  • A is Ni, Co, Mn or a combination thereof
  • R is Al, Ni, Co, Mn, Cr, Fe, Mg, Sr, V, rare earth element or a combination thereof
  • D is O, F, S, P or a combination thereof
  • E is Ti, Mo, Mn or a combination thereof
  • G is Cr, V, Fe, Sc, Y or a combination thereof
  • J is V, Cr, Mn, Co , Ni, Cu, or a combination thereof
  • the three-dimensional negative electrode is characterized in that the negative electrode active material film is formed on the surface of a plurality of fibers forming a three-dimensional network structure.
  • the fiber is made of a metal, and the metal is Cu, SUS. Ti, Ni, Al, Sn, W, Ag, Cr, V, Mo, Zr, Y, Sb, and a combination thereof.
  • the fiber is characterized in that the carbon fiber.
  • Carbon fiber refers to a fiber having a carbon content of 90% or more that is produced by carbonizing and graphitizing a carbon precursor such as polyacrylonitrile (PAN), rayon or pitch at a high temperature of 1500 ° C. or higher.
  • PAN polyacrylonitrile
  • a method for forming a negative electrode active material film on a plurality of fiber surfaces forming the three-dimensional network structure is not particularly limited, but electrolytic plating, electroless plating, dip coating ), Spin coating, spray coating, chemical vapor deposition (CVD) and the like.
  • the three-dimensional negative electrode is characterized in that the negative electrode active material is formed on the three-dimensional conductive support.
  • the three-dimensional conductive support is characterized in that selected from the group consisting of carbon paper, carbon felt, carbon cloth, metal foam, metal paper, metal felt, metal cloth, metal mesh.
  • the negative electrode active material is selected from Si, Sn, SiO x (0 ⁇ x ⁇ 2), SnO x (0 ⁇ x ⁇ 2), and a combination thereof. .
  • the silicon-based or tin-based negative electrode active material there is an advantage in that a high capacity button type lithium secondary battery can be manufactured.
  • the negative electrode active material further comprises a carbon material.
  • the manufacturing method for forming the negative electrode active material on the three-dimensional conductive support is not particularly limited, dip coating (spin coating), spin coating (spray coating), spray coating (spray)
  • the active material may be formed on the conductive support through coating, chemical vapor deposition (CVD), or the like.
  • the thickness of the three-dimensional positive electrode or three-dimensional negative electrode is characterized in that more than 200 ⁇ m. Since the present invention includes the anode and the cathode constituting the three-dimensional conductive network structure, even if the thickness of the anode or cathode is 200 ⁇ m or more can exhibit excellent rate-rate characteristics.
  • a button-type lithium secondary battery comprising: an aluminum current collector bonded between the three-dimensional positive electrode and an outer can; And a copper current collector bonded between the three-dimensional negative electrode and the outer can.
  • the present invention has an effect of exhibiting excellent rate-rate characteristics while having a high capacity by including a button-type lithium secondary battery including a three-dimensional anode and a cathode in which electrical conduction is three-dimensional.
  • FIGS. 1 and 2 are schematic diagrams showing a conventional button-type lithium secondary battery.
  • FIG. 3 is a schematic view showing a button-type lithium secondary battery according to the present invention.
  • a positive electrode active material LiNi 0.4 Co 0.2 Mn 0.4 O 2 ) powder having an average particle diameter of 15 ⁇ m in NMP, 3% by weight of super-p as a conductive material and 7% by weight of polyvinylidene fluoride as a binder After mixing, the mixture was ball milled at 300 rpm for 12 hours to produce a dispersed positive slurry.
  • a plurality of metal fibers made of SUS were prepared.
  • the metal fiber used what was shape
  • the plurality of metal fibers formed a three-dimensional network structure having pores with a pore size and a porosity of 80% between 50 ⁇ m and 200 ⁇ m between adjacent metal fibers.
  • the prepared positive electrode slurry was applied onto a three-dimensional metal current collector and dried at 100 ° C. Thereafter, the resultant was calcined at 120 ° C. for 1 hour in a vacuum atmosphere to fill a cathode active material in pores formed by a plurality of metal fibers included in the cathode.
  • Example 1 Except for coating the slurry prepared in Example 1 on the carbon paper in the same manner as in Example 1 to prepare a three-dimensional positive electrode plate.
  • the plurality of carbon fibers formed a three-dimensional network structure having pores having a mean size of 50 ⁇ m to 100 ⁇ m and a porosity of 90% between adjacent carbon fibers.
  • a positive electrode plate was manufactured in the same manner as in Example 1 except that the slurry was coated on an aluminum current collector.
  • Electroplating was performed in a vacuum glove box filled with argon gas at 20 ° C. to prepare a three-dimensional cathode containing tin and copper on the surface and inside of the three-dimensional network structure formed by a plurality of metal fibers.
  • SUS Fiber (5mm x 5mm area) was used as the working electrode, SCE electrode was used as the reference electrode, and platinum mesh was used as the counter electrode.
  • the electrodes were immersed in electrolyte solution. 0.09 M tin pyrophosphate (Sn 2 P 2 O 7 ), 0.40 M potassium pyrophosphate (K 4 P 2 O 7 ), and 0.05 M tartaric acid were used as the electrolyte solution.
  • a slurry was prepared by mixing and dispersing graphite powder (average particle diameter: 10 mu m) and a binder in a weight ratio of 97: 3 in distilled water. The prepared slurry was applied on the cathode on which the tin-containing layer was formed and dried at room temperature. Then, the graphite was filled in the pores formed by the plurality of metal fibers included in the cathode by firing at 100 ° C. for 12 hours in a vacuum atmosphere, and the cathode 100 was formed on the surface and inside of the three-dimensional network structure formed by the plurality of metal fibers.
  • a negative electrode having a 2 ⁇ m thick tin-containing layer containing 10 parts by weight of tin was prepared with respect to parts by weight.
  • a three-dimensional cathode was prepared in the same manner as in Example 3 except that carbon paper (5 mm ⁇ 5 mm area) was used as a working electrode.
  • a negative electrode was prepared in the same manner as in Example 3 except that the slurry was coated on a copper current collector.
  • Example 5 button-type lithium secondary battery
  • the button-type lithium secondary battery was manufactured by using the three-dimensional positive electrode prepared in Example 1, the three-dimensional negative electrode prepared in Example 3, and a separator. At this time, 1 M LiPF 6 was dissolved in an ethylene carbonate and diethyl carbonate 1: 1 ratio as the electrolyte solution.
  • Example 6 button-type lithium secondary battery
  • a button-type lithium secondary battery was manufactured in the same manner as in Example 5, except that the three-dimensional anode prepared in Example 2 and the three-dimensional anode prepared in Example 4 were used.
  • a button-type lithium secondary battery was manufactured in the same manner as in Example 5, except that the positive electrode prepared in Comparative Example 1 and the negative electrode prepared in Comparative Example 2 were used.
  • the discharge capacity was measured while charging and discharging the button-type lithium secondary batteries prepared in Examples 5, 6 and Comparative Example 3 at a constant current of 0.01 C to 0.1 C rate in a voltage range of 3 to 4.2 V at room temperature. 1 is shown.
  • the button-type lithium secondary battery according to the present invention includes a three-dimensional anode, a separator, and a three-dimensional cathode including a three-dimensional positive electrode, a separator, and a three-dimensional negative electrode which are formed in a cylindrical shape with a bottom and are sequentially stacked in the first outer can. And a first gasket and a second gasket extending from the inside of the second outer can to the first outer can to insulate the distal end of the second outer can and the first outer can. It can be said that it is very useful in that the excellent rate-rate property is greatly improved.

Abstract

The present invention relates to a button-type lithium secondary battery, the button-type lithium secondary battery comprising a three-dimensional cathode, a three-dimensional anode, and two independently separated gaskets. The present invention has the effect of enabling the manufacturing of a button-type lithium secondary battery which exhibits high capacity and excellent rate-limiting properties by means of comprising a three-dimensional cathode and anode forming a three-dimensional conductive network structure, and which has enhanced safety by means of comprising dual gaskets.

Description

버튼형 리튬 2차 전지Button Lithium Secondary Battery
본 발명은 버튼형 리튬 2차 전지에 관한 것으로, 보다 상세하게는 3차원 구조의 양극 및 음극을 포함하고, 상기 3차원 구조의 양극 및 음극을 감싸는 상호 분리 독립된 2중 가스켓을 구비한 새로운 구조의 버튼형 리튬 2차 전지에 관한 것이다.The present invention relates to a button-type lithium secondary battery, and more particularly to a button-type of a new structure including a positive electrode and a negative electrode having a three-dimensional structure, and having a separate double gasket that surrounds the positive and negative electrodes of the three-dimensional structure. It relates to a lithium secondary battery.
리튬 2차 전지는 소형이고 또한 경량이고, 에너지 밀도가 높고, 또한 보존 특성이 우수하므로, 종래부터 각종 전자 기기의 주전원이나 백업용 전원으로서 널리 사용되고 있다. 이들 기기 중에 조립되는 리튬 2차 전지로서는 코인형이나 원통형 등이 이용되고 있다. Lithium secondary batteries are compact, lightweight, have high energy density, and have excellent storage characteristics. Therefore, lithium secondary batteries have been widely used as main power and backup power sources for various electronic devices. Coin-shaped, cylindrical, etc. are used as a lithium secondary battery assembled in these apparatuses.
통상적으로 버튼형 및, 코인형 전지는 매우 얇은 단추의 형상을 가지는 것으로서, 전기 제품들 중에서 전자계산기, 손목시계 등 소형화, 슬림화된 제품들의 전원으로 주로 이용되며, 이를 위해 소형화, 경량화되고 장시간 사용이 가능해야 한다. Typically, button-type and coin-type batteries have a very thin button shape, and are mainly used as a power source for miniaturized and slimmer products, such as an electronic calculator and a watch, among which electrical products, and can be miniaturized, lightened, and used for a long time. Should be.
일반적인 버튼형 전지의 구조를 도 1에 나타내었다. 도 1을 참조하면, 버튼형 및, 코인형 전지는 캔(1)의 내측에 양극 활물질 펠렛(2)이 충전되고, 컵(3)의 내측에 음극 활물질 펠렛(4)이 충전된다. 상기 컵(3)은 상기 캔(1)의 개방된 입구를 밀폐하는 방식으로 뒤집힌 상태에서 설치된다. 상기 양극 활물질 펠렛(2)과 음극 활물질 펠렛(4)은 세퍼레이터(5)에 의해서 상호 분리된다. 도면 번호 6 으로 표시된 것은 가스켓으로, 상기 컵(3)과 상기 캔(1) 사이를 절연시키기 위하여 상기 캔(3)의 말단부를 둘러싸는 형상으로 제조된다.The structure of a typical button cell is shown in FIG. Referring to FIG. 1, in the button type and coin type batteries, the positive electrode active material pellets 2 are filled inside the can 1, and the negative electrode active material pellets 4 are filled inside the cup 3. The cup 3 is installed in an inverted manner in a manner that seals the open inlet of the can 1. The positive electrode active material pellets 2 and the negative electrode active material pellets 4 are separated from each other by the separator 5. Designated by reference numeral 6 is a gasket, which is manufactured in a shape surrounding the distal end of the can 3 to insulate between the cup 3 and the can 1.
종래 버튼형 전지는 주로 1차 전지에 적용되어 왔으나, 최근 장시간의 수명을 필요로 하는 전자시계, 메모리 백업 전원 등의 요구에 따라 충방전이 가능한 2차 전지에도 버튼형 전지의 적용이 필요하게 되었으며, 이러한 요구에 가장 적합한 전지로서 리튬 2차 전지가 주목을 받고 있다.Conventionally, button-type batteries have been mainly applied to primary batteries. However, in recent years, button-type batteries have to be applied to secondary batteries that can be charged and discharged in accordance with demands of electronic clocks and memory backup power supplies that require a long life. Lithium secondary batteries have attracted attention as batteries which are most suitable for demand.
리튬 2차 전지는 음극의 충전반응이 비교적 빠르게 이루어지는 리튬 이온의 유입 반응으로 인하여 급속 충전이 가능하고, 장기간 반복 사용이 가능할 뿐만 아니라 고전압전지로서 안전성이 확보되어 있어 가장 주목받고 있는 전지중의 하나이다.Lithium secondary batteries are one of the most attracting attention because they can be rapidly charged due to the inflow reaction of lithium ions, the charging reaction of the negative electrode is relatively fast, not only can be used repeatedly for a long time, but also ensures safety as a high voltage battery.
일반적으로 상기 리튬 2차 전지는 양극 활물질로는 리튬코발트 산화물(LiCoO2), 리튬니켈 산화물(LiNiO2), 리튬망간 산화물(LiMn2O4) 등을 사용하고 있으며, 음극 활물질로는 리튬 금속이나 그 합금을 사용하였으나 충방전 횟수에 따른 안정성 문제가 대두되어 카본 재료가 그 대체물로서 사용되고 있다.In general, the lithium secondary battery uses lithium cobalt oxide (LiCoO 2 ), lithium nickel oxide (LiNiO 2 ), lithium manganese oxide (LiMn 2 O 4 ), etc. as a positive electrode active material. Although the alloy is used, the stability problem according to the number of charge and discharge has emerged, and carbon material is used as a substitute.
기존의 버튼형 리튬 2차 전지는 양극활물질 층의 두께를 200 ㎛ 이상으로 하여 제조함으로써 고용량을 나타내도록 하였으나, 이러한 경우 단위 면적당 용량이 30 mAh/cm2 이상으로 단위 면적당 용량이 증가하면서 사용 가능한 율속 특성(c-rate)의 한계를 보여왔다. 즉, 기존의 고용량 버튼형 리튬 2차 전지는 최고연속방전속도(Max. continuous discharge rate)를 0.1 C 이하로 하고, 표준 충방전 속도(standard charge/discharge rate)를 0.01 C 이하로 하여 사용하고 있다.Conventional button-type lithium secondary batteries exhibit high capacity by manufacturing the cathode active material layer with a thickness of 200 μm or more, but in this case, the capacity rate per unit area is 30 mAh / cm 2 or more, which increases the capacity per unit area. (c-rate) has been shown to limit. In other words, the conventional high capacity button-type lithium secondary battery has a maximum continuous discharge rate of 0.1 C or less and a standard charge / discharge rate of 0.01 C or less.
본 발명은 상기와 같은 종래 버튼형 전지의 용량 특성을 개선하기 위하여 고용량을 가지면서 향상된 율속 특성을 나타낼 수 있도록 3차원 양극 및 음극을 포함하고, 상기와 같은 3차원 양극 및 음극 적용에 의한 용량 증가에 따른 내압 증가시 누액 문제를 개선하기 위하여 분리 독립된 2중 가스켓을 구비하는 새로운 구조의 버튼형 리튬 2차 전지를 제공하는 것을 목적으로 한다.The present invention includes a three-dimensional positive electrode and a negative electrode to exhibit improved rate-rate characteristics while having a high capacity in order to improve the capacity characteristics of the conventional button-type battery as described above, and to increase the capacity by the application of the three-dimensional positive and negative electrodes as described above It is an object of the present invention to provide a button-type lithium secondary battery having a new structure having a separate and independent double gasket in order to improve the leakage problem when the internal pressure increases.
본 발명은 상기와 같은 과제를 해결하기 위하여,The present invention to solve the above problems,
바닥이 있는 원통형으로 형성되고 제 1 전극 단자를 겸하는 제 1 외장캔; A first outer can formed in a cylindrical shape having a bottom and serving as a first electrode terminal;
상기 제 1 외장캔 내에 순차적으로 적층되어 수용되는 Sequentially stacked and accommodated in the first outer can
3차원 양극; Three-dimensional anode;
세퍼레이터; 및Separator; And
3차원 음극; 을 포함하는 발전부; Three-dimensional cathode; Power generation unit comprising a;
제 2 전극 단자를 겸하고, 뒤집어진 바닥이 있는 원통형으로 형성되어 상기 발전부를 커버하면서 상기 제 1 외장캔의 내부에 수용되는 제 2 외장캔; A second outer can which serves as a second electrode terminal and is formed in an inverted bottomed cylindrical shape and is accommodated inside the first outer can while covering the power generation unit;
상기 제 2 외장캔의 내부로부터 상기 제 1 외장캔으로 연장 형성되어 상기 제 2 외장캔의 말단부와 상기 제 1 외장캔 사이를 절연시키는 제 1 가스켓 ; 및 A first gasket extending from the inside of the second outer can to the first outer can to insulate between the distal end of the second outer can and the first outer can; And
상기 제 2 외장캔의 외부와 상기 제 1 외장캔 사이에 형성되는 제 2 가스켓; 을 포함하는 버튼형 리튬 2차 전지를 제공한다.A second gasket formed between the outside of the second outer can and the first outer can; It provides a button-type lithium secondary battery comprising a.
본 발명에 의한 버튼형 리튬 2차 전지에 있어서, 상기 세퍼레이터는 상기 3차원 양극 또는 3차원 음극을 감싸는 형태로 형성되고, 상기 제 1 가스켓은 상기 세퍼레이터와 상기 세퍼레이터가 감싸는 3차원 양극 또는 3차원 음극 사이에 삽입되어 제 1 외장캔까지 연장 형성되는 것을 특징으로 한다.In the button-type lithium secondary battery according to the present invention, the separator is formed to surround the three-dimensional anode or three-dimensional anode, the first gasket is between the separator and the three-dimensional anode or three-dimensional cathode wrapped by the separator Inserted into and extending to the first outer can.
본 발명에 의한 버튼형 리튬 2차 전지는 3차원 구조의 양극, 음극을 포함하는 발전부 및 제 1 외장캔과 제 2 외장캔 사이에 형성되는 별도로 분리 독립된 2개의 가스켓을 포함하는 것을 특징으로 한다. The button-type lithium secondary battery according to the present invention is characterized in that it comprises a three-dimensional structure of the positive electrode, the power generation unit including the negative electrode, and two separate and independent gaskets formed between the first outer can and the second outer can.
도 2 에 (a)기존 방식에 의한 버튼형 리튬 2차 전지, 및 (b)본 발명에 의한 버튼형 리튬 2차 전지의 구조를 나타내었다. 2 shows the structure of (a) the button-type lithium secondary battery according to the conventional method, and (b) the button-type lithium secondary battery according to the present invention.
도 3에서 보는 바와 같이 본 발명에 의한 버튼형 리튬 2차 전지는 바닥이 있는 원통형으로 형성되고 제 1 전극 단자를 겸하는 제 1 외장캔(110), 상기 제 1 외장캔 내에 순차적으로 적층되어 수용되는 3차원 양극(121); 세퍼레이터(122); 및 3차원 음극(123); 을 포함하는 발전부(120); 제 2 전극 단자를 겸하고, 뒤집어진 바닥이 있는 원통형으로 형성되어 상기 제 1 외장캔에 수용되는 발전부를 커버하면서 상기 제 1 외장캔의 내부에 수용되는 제 2 외장캔(130); 상기 제 2 외장캔의 내부로부터 상기 제 1 외장캔으로 연장 형성되어 상기 제 2 외장캔의 말단부와 상기 제 1 외장캔 사이를 절연시키는 제 1 가스켓(140); 및 상기 제 2 외장캔의 외부와 상기 제 1 외장캔 사이에 형성되는 제 2 가스켓(150)을 포함한다.As shown in FIG. 3, the button-type lithium secondary battery according to the present invention is formed in a cylindrical shape having a bottom and serves as a first outer can 110 that serves as a first electrode terminal, and is sequentially stacked and accommodated in the first outer can. Dimensional anode 121; Separator 122; And a three-dimensional cathode 123; Power generation unit 120 including; A second outer can 130 which serves as a second electrode terminal and is formed in an inverted bottomed cylindrical shape and covers the power generation unit accommodated in the first outer can and is received inside the first outer can; A first gasket (140) extending from the inside of the second outer can to the first outer can to insulate the distal end of the second outer can and the first outer can; And a second gasket 150 formed between the outside of the second outer can and the first outer can.
도 2에 도시된 바와 같이, 기존처럼 1개의 가스켓을 이용하여 조립하게 되면, 3차원 발전부에서 전기 화학 반응이 진행되면서 엣지(edge) 부분에서 세퍼레이터가 들뜨는 현상이 발생하게 되고, 이에 따라 쇼트가 발생할 수 있게 되어 안정성이 취약하게 된다. As shown in FIG. 2, when the assembly is performed using one gasket as in the prior art, the separator is lifted at the edge portion while the electrochemical reaction proceeds in the three-dimensional power generation unit. This can cause the stability to be weak.
본 발명에 의한 버튼형 리튬 2차 전지는 도 3에 도시된 바와 같이, 상기 제 2 외장캔(130)의 내부로부터 상기 제 1 외장캔(110)으로 연장 형성되어 상기 제 2 외장캔의 말단부와 상기 제 1 외장캔 사이를 절연시키는 제 1 가스켓(140); 및 상기 제 2 외장캔의 외부와 상기 제 1 외장캔 사이에 형성되는 제 2 가스켓(150)를 포함한다. 또한, 본 발명에 의한 버튼형 리튬 2차 전지는 세퍼레이터(122)가 상기 3차원 양극 또는 3차원 음극을 감싸는 형태로 형성되고, 상기 제 1 가스켓(140)은 상기 세퍼레이터와 상기 세퍼레이터가 감싸는 3차원 양극 또는 3차원 음극 사이에 삽입되어 제 1 외장캔까지 연장 형성되는 구조로 형성됨으로써, 전기 화학 반응이 진행되어 세퍼레이터 및 외장캔이 들뜨는 경우에도 제 1 외장캔(110)과 제 2 외장캔(130)을 확실히 절연시킬 수 있게 된다.As shown in FIG. 3, the button-type lithium secondary battery according to the present invention extends from the inside of the second outer can 130 to the first outer can 110 so that the end portion of the second outer can and the A first gasket 140 that insulates between the first outer cans; And a second gasket 150 formed between the outside of the second outer can and the first outer can. In addition, in the button-type lithium secondary battery according to the present invention, the separator 122 is formed to surround the three-dimensional positive electrode or the three-dimensional negative electrode, and the first gasket 140 is a three-dimensional positive electrode wrapped by the separator and the separator. Alternatively, the first outer can 110 and the second outer can 130 may be formed when the separator and the outer can are lifted by being formed between the three-dimensional cathodes and extending to the first outer can. Can be insulated reliably.
본 발명에 의한 버튼형 리튬 2차 전지에 있어서, 3차원 양극 또는 음극은 3차원 전도성 네트워크 구조를 이루고 있는 양극 또는 음극을 의미한다. 상기 3차원 양극 또는 음극을 통해 전기 전도가 3차원적으로 이루어지므로 율속 특성이 향상될 뿐 아니라, 리튬 2차 전지의 충방전시 리튬의 흡장 방출에 따른 부피 변화에 대해 효과적으로 대응할 수 있다. In the button-type lithium secondary battery according to the present invention, the three-dimensional positive electrode or the negative electrode means a positive electrode or a negative electrode having a three-dimensional conductive network structure. Since the electrical conduction is made three-dimensionally through the three-dimensional positive electrode or the negative electrode, not only the rate characteristic is improved, but also the volume change due to the occlusion and release of lithium during charging and discharging of the lithium secondary battery can be effectively coped with.
본 발명에 의한 버튼형 리튬 2차 전지에 있어서, 상기 3차원 양극은 3차원 전도성 지지체 상에 양극활물질이 형성된 것을 특징으로 한다.In the button-type lithium secondary battery according to the present invention, the three-dimensional anode is characterized in that the cathode active material is formed on the three-dimensional conductive support.
본 발명에 의한 버튼형 리튬 2차 전지에 있어서, 상기 3차원 전도성 지지체는 카본페이퍼, 카본펠트, 카본클로스, 금속 폼, 금속 페이퍼, 금속 펠트, 금속 클로스, 금속 메쉬로 이루어진 그룹에서 선택되는 것을 특징으로 한다.In the button-type lithium secondary battery according to the present invention, the three-dimensional conductive support is selected from the group consisting of carbon paper, carbon felt, carbon cloth, metal foam, metal paper, metal felt, metal cloth, metal mesh do.
본 발명에 의한 버튼형 리튬 2차 전지에 있어서, 상기 3차원 전도성 지지체 상에 양극활물질을 형성하는 제조 방법은 특별히 한정되지 않으나, 딥 코팅(dip coating), 스핀 코팅(spin coating), 분무 코팅(spray coating), 화학증착법(CVD) 등을 통해 전도성 지지체 상에 양극활물질을 형성할 수 있다.In the button-type lithium secondary battery according to the present invention, the manufacturing method for forming the positive electrode active material on the three-dimensional conductive support is not particularly limited, dip coating (spin coating), spin coating (spray coating), spray coating (spray) coating), chemical vapor deposition (CVD), etc., to form a cathode active material on the conductive support.
본 발명에 의한 버튼형 리튬 2차 전지에 있어서, 상기 양극활물질은 특별히 제한되지는 않으며, 원소 황, 황 계 화합물, LiaA1-bRbD2(0.90≤a≤1.8, 0≤b≤0.5); LiaA2-bRbD4(0.90≤a≤1.8, 0≤b≤0.5, 0≤c≤0.05); EO2; ES2; LiES2; V2O5; LiV2O5; LiGO2; LiNiVO4; Li(3-d)J2(PO4)3(0≤d≤2); Li(3-d)Fe2(PO4)3(0≤d≤2); 및 LiFePO4 로 이루어진 그룹에서 선택되는 것을 특징으로 한다. (상기 화학식 중에서, A는 Ni, Co, Mn 또는 이들의 조합이고, R은 Al, Ni, Co, Mn, Cr, Fe, Mg, Sr, V, 희토류 원소 또는 이들의 조합이고, D는 O, F, S, P 또는 이들의 조합이고, E는 Ti, Mo, Mn 또는 이들의 조합이고, G는 Cr, V, Fe, Sc, Y 또는 이들의 조합이고; J는 V, Cr, Mn, Co, Ni, Cu 또는 이들의 조합임)In the button-type lithium secondary battery according to the present invention, the positive electrode active material is not particularly limited, elemental sulfur, sulfur compound, Li a A 1-b R b D 2 (0.90≤a≤1.8, 0≤b≤ 0.5); Li a A 2-b R b D 4 (0.90 ≦ a ≦ 1.8, 0 ≦ b ≦ 0.5, 0 ≦ c ≦ 0.05); EO 2 ; ES 2 ; LiES 2 ; V 2 O 5 ; LiV 2 O 5 ; LiGO 2 ; LiNiVO 4 ; Li (3-d) J 2 (PO 4 ) 3 (0 ≦ d ≦ 2); Li (3-d) Fe 2 (PO 4 ) 3 (0 ≦ d2 ); And LiFePO 4 . (In the above formula, A is Ni, Co, Mn or a combination thereof, R is Al, Ni, Co, Mn, Cr, Fe, Mg, Sr, V, rare earth element or a combination thereof, D is O, F, S, P or a combination thereof, E is Ti, Mo, Mn or a combination thereof, G is Cr, V, Fe, Sc, Y or a combination thereof; J is V, Cr, Mn, Co , Ni, Cu, or a combination thereof)
본 발명에 의한 버튼형 리튬 2차 전지에 있어서, 상기 3차원 음극은 3차원 망상 구조를 형성하는 복수개의 섬유 표면에 음극활물질 막이 형성된 것을 특징으로 한다.In the button-type lithium secondary battery according to the present invention, the three-dimensional negative electrode is characterized in that the negative electrode active material film is formed on the surface of a plurality of fibers forming a three-dimensional network structure.
본 발명에 의한 버튼형 리튬 2차 전지에 있어서, 상기 섬유는 금속으로 이루어지고, 상기 금속은 Cu, SUS. Ti, Ni, Al, Sn, W, Ag, Cr, V, Mo, Zr, Y, Sb 및 이들의 조합으로 이루어진 그룹에서 선택되는 것을 특징으로 한다.In the button-type lithium secondary battery according to the present invention, the fiber is made of a metal, and the metal is Cu, SUS. Ti, Ni, Al, Sn, W, Ag, Cr, V, Mo, Zr, Y, Sb, and a combination thereof.
본 발명에 의한 버튼형 리튬 2차 전지에 있어서, 상기 섬유는 탄소 섬유인 것을 특징으로 한다. 탄소 섬유란 PAN(polyacrylonitrile), 레이온 또는 피치(pitch) 등의 탄소 전구체를 1500℃ 이상의 고온에서 탄화와 흑연화 공정을 통하여 만들어지는 탄소 함유율이 90% 이상인 섬유를 의미한다.In the button-type lithium secondary battery according to the present invention, the fiber is characterized in that the carbon fiber. Carbon fiber refers to a fiber having a carbon content of 90% or more that is produced by carbonizing and graphitizing a carbon precursor such as polyacrylonitrile (PAN), rayon or pitch at a high temperature of 1500 ° C. or higher.
본 발명에 의한 버튼형 리튬 2차 전지에 있어서, 상기 3차원 망상 구조를 형성하는 복수개의 섬유 표면에 음극활물질 막을 형성하기 위한 방법은 특별히 한정되지 않으나, 전해 도금, 무전해 도금, 딥 코팅(dip coating), 스핀 코팅(spin coating), 분무 코팅(spray coating), 화학증착법(CVD) 등을 통해 제조할 수 있다.In the button-type lithium secondary battery according to the present invention, a method for forming a negative electrode active material film on a plurality of fiber surfaces forming the three-dimensional network structure is not particularly limited, but electrolytic plating, electroless plating, dip coating ), Spin coating, spray coating, chemical vapor deposition (CVD) and the like.
다른 실시예에 의한 본 발명에 의한 버튼형 리튬 2차 전지에 있어서, 상기 3차원 음극은 3차원 전도성 지지체 상에 음극활물질이 형성된 것을 특징으로 한다.In the button-type lithium secondary battery according to the present invention according to another embodiment, the three-dimensional negative electrode is characterized in that the negative electrode active material is formed on the three-dimensional conductive support.
본 발명에 있어서, 상기 3차원 전도성 지지체는 카본페이퍼, 카본펠트, 카본클로스, 금속 폼, 금속 페이퍼, 금속 펠트, 금속 클로스, 금속 메쉬로 이루어진 그룹에서 선택되는 것을 특징으로 한다.In the present invention, the three-dimensional conductive support is characterized in that selected from the group consisting of carbon paper, carbon felt, carbon cloth, metal foam, metal paper, metal felt, metal cloth, metal mesh.
본 발명에 의한 버튼형 리튬 2차 전지에 있어서, 상기 음극활물질은 Si, Sn, SiOx(0<x<2), SnOx(0<x<2) 및 이들의 조합에서 선택되는 것을 특징으로 한다. 상기 실리콘계 또는 주석계 음극활물질을 이용하는 경우 고용량의 버튼형 리튬 2차 전지의 제조가 가능한 이점이 있다.In the button-type lithium secondary battery according to the present invention, the negative electrode active material is selected from Si, Sn, SiO x (0 <x <2), SnO x (0 <x <2), and a combination thereof. . In the case of using the silicon-based or tin-based negative electrode active material, there is an advantage in that a high capacity button type lithium secondary battery can be manufactured.
본 발명에 의한 버튼형 리튬 2차 전지에 있어서, 상기 음극활물질은 탄소 재료를 더 포함하는 것을 특징으로 한다.In the button-type lithium secondary battery according to the present invention, the negative electrode active material further comprises a carbon material.
본 발명에 의한 버튼형 리튬 2차 전지에 있어서, 상기 3차원 전도성 지지체 상에 음극활물질을 형성하는 제조 방법은 특별히 한정되지 않으나, 딥 코팅(dip coating), 스핀 코팅(spin coating), 분무 코팅(spray coating), 화학증착법(CVD) 등을 통해 전도성 지지체 상에 음극활물질을 형성할 수 있다.In the button-type lithium secondary battery according to the present invention, the manufacturing method for forming the negative electrode active material on the three-dimensional conductive support is not particularly limited, dip coating (spin coating), spin coating (spray coating), spray coating (spray) The active material may be formed on the conductive support through coating, chemical vapor deposition (CVD), or the like.
본 발명에 의한 버튼형 리튬 2차 전지에 있어서, 상기 3차원 양극 또는 3차원 음극의 두께는 200 ㎛ 이상인 것을 특징으로 한다. 본 발명은 3차원 전도성 네트워크 구조를 이루고 있는 양극 및 음극을 포함하기 때문에, 양극 또는 음극의 두께가 200 ㎛ 이상이어도 우수한 율속 특성을 나타낼 수 있다. In the button-type lithium secondary battery according to the present invention, the thickness of the three-dimensional positive electrode or three-dimensional negative electrode is characterized in that more than 200 ㎛. Since the present invention includes the anode and the cathode constituting the three-dimensional conductive network structure, even if the thickness of the anode or cathode is 200 ㎛ or more can exhibit excellent rate-rate characteristics.
본 발명에 의한 버튼형 리튬 2차 전지에 있어서, 상기 3차원 양극과 외장캔 사이에 접합되는 알루미늄 집전체; 및 상기 3차원 음극과 외장캔 사이에 접합되는 구리 집전체를 더 포함하는 것을 특징으로 한다.A button-type lithium secondary battery according to the present invention, comprising: an aluminum current collector bonded between the three-dimensional positive electrode and an outer can; And a copper current collector bonded between the three-dimensional negative electrode and the outer can.
본 발명은 전기 전도가 3차원적으로 이루어지는 3차원 양극 및 음극을 포함하는 버튼형 리튬 2차 전지를 포함함으로써 고용량을 가지면서도 우수한 율속 특성을 나타내는 효과가 있다.The present invention has an effect of exhibiting excellent rate-rate characteristics while having a high capacity by including a button-type lithium secondary battery including a three-dimensional anode and a cathode in which electrical conduction is three-dimensional.
도 1 및 도 2는 종래의 버튼형 리튬 2차 전지를 나타내는 모식도이다.1 and 2 are schematic diagrams showing a conventional button-type lithium secondary battery.
도 3은 본 발명에 의한 버튼형 리튬 2차 전지를 나타내는 모식도이다.3 is a schematic view showing a button-type lithium secondary battery according to the present invention.
도 4는 SUS 부직포에 Sn이 도금된 SEM 사진이다. 4 is a SEM photograph of Sn plated on a SUS nonwoven fabric.
도 5는 Carbon paper에 Sn이 도금된 SEM 사진이다.5 is a SEM photograph of Sn plated on carbon paper.
이하에서는 본 발명을 실시예에 의하여 더욱 상세히 설명한다. 그러나 본 발명이 이하의 실시예에 의해 제한되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples. However, the present invention is not limited by the following examples.
<실시예 1> 3차원 양극 극판 제조Example 1 Manufacture of 3D anode plate
NMP에 평균 입경이 15 ㎛인 양극 활물질(LiNi0.4Co0.2Mn0.4O2) 분말을 90 중량%로 하고, 도전재로 super-p 3 중량% 및 바인더로 폴리비닐리덴플루오라이드를 7 중량%로 혼합한 후, 상기 혼합물을 12 시간동안 300 rpm으로 볼밀링하여 분산된 양극 슬러리를 제조하였다. 90% by weight of a positive electrode active material (LiNi 0.4 Co 0.2 Mn 0.4 O 2 ) powder having an average particle diameter of 15 μm in NMP, 3% by weight of super-p as a conductive material and 7% by weight of polyvinylidene fluoride as a binder After mixing, the mixture was ball milled at 300 rpm for 12 hours to produce a dispersed positive slurry.
SUS로 이루어진 복수의 금속 섬유(Shine 사 제조)를 준비하였다. 금속 섬유는, 평균 단면 지름(D)이 10 um이고, 평균 길이(L)가 1 mm인 시트 형상으로 성형된 것을 사용하였다. 상기 복수의 금속 섬유는 인접하는 금속 섬유들 사이에 50 ㎛ 내지 200 ㎛의 평균 크기의 기공 및 기공률 80%을 갖는 3차원 네트워크 구조를 형성하였다. 상기 준비된 양극 슬러리를 3차원 금속 집전체 상에 도포하고 100 ℃에서 건조하였다. 이후, 진공 분위기 하에 120 ℃에서 1 시간 동안 소성하여 상기 양극에 포함된 복수의 금속 섬유에 의해 형성된 기공 내에 양극 활물질을 채웠다.A plurality of metal fibers (manufactured by Shine Co., Ltd.) made of SUS were prepared. The metal fiber used what was shape | molded in the sheet shape whose average cross-sectional diameter (D) is 10 micrometers, and average length (L) is 1 mm. The plurality of metal fibers formed a three-dimensional network structure having pores with a pore size and a porosity of 80% between 50 μm and 200 μm between adjacent metal fibers. The prepared positive electrode slurry was applied onto a three-dimensional metal current collector and dried at 100 ° C. Thereafter, the resultant was calcined at 120 ° C. for 1 hour in a vacuum atmosphere to fill a cathode active material in pores formed by a plurality of metal fibers included in the cathode.
<실시예 2> 3차원 양극 극판 제조Example 2 3D anode plate production
상기 실시예 1에서 제조된 슬러리를 카본 페이퍼에 코팅한 것을 제외하고는 실시예 1과 동일하게 하여 3차원 양극 극판을 제조하였다. 상기 카본 페이퍼 복수의 탄소 섬유를 포함하며, 평균 단면 지름(D)이 6 um이고, 평균 길이(L)가 2 mm인 시트 형상으로 성형된 것을 사용하였다. 상기 복수의 탄소 섬유는 인접하는 탄소 섬유들 사이에 50 ㎛ 내지 100 ㎛의 평균 크기의 기공 및 기공률 90%을 갖는 3차원 네트워크 구조를 형성하였다.Except for coating the slurry prepared in Example 1 on the carbon paper in the same manner as in Example 1 to prepare a three-dimensional positive electrode plate. The carbon paper containing a plurality of carbon fibers, an average cross-sectional diameter (D) of 6 um, an average length (L) of 2 mm molded into a sheet shape was used. The plurality of carbon fibers formed a three-dimensional network structure having pores having a mean size of 50 μm to 100 μm and a porosity of 90% between adjacent carbon fibers.
<비교예 1>Comparative Example 1
상기 슬러리를 알루미늄 집전체에 코팅한 것을 제외하고는 실시예 1과 동일하게 하여 양극 극판을 제조하였다.A positive electrode plate was manufactured in the same manner as in Example 1 except that the slurry was coated on an aluminum current collector.
<실시예 3> 3차원 음극 제조Example 3 3D Cathode Preparation
20 ℃의 아르곤 가스가 충진된 진공 글로브 박스 내에서 전기 도금(electrodeposition)을 하여 복수의 금속 섬유에 의해 형성된 3차원 네트워크 구조의 표면 및 내부에 주석 및 구리가 함유된 3차원 음극을 제조하였다. Electroplating was performed in a vacuum glove box filled with argon gas at 20 ° C. to prepare a three-dimensional cathode containing tin and copper on the surface and inside of the three-dimensional network structure formed by a plurality of metal fibers.
작용 전극(working electrode)으로 SUS Fiber(5mm X 5mm 면적)를 사용하였고, 기준 전극(reference electrode)으로 SCE 전극을 사용하였고, 상대 전극(counter electrode)으로 백금 메쉬를 사용하였다. 상기 전극들을 전해질 용액에 담그었다. 상기 전해질 용액으로 0.09 M tin pyrophosphate (Sn2P2O7), 0.40 M potassium pyrophosphate (K4P2O7), 0.05 M tartaric acid를 사용하였다.SUS Fiber (5mm x 5mm area) was used as the working electrode, SCE electrode was used as the reference electrode, and platinum mesh was used as the counter electrode. The electrodes were immersed in electrolyte solution. 0.09 M tin pyrophosphate (Sn 2 P 2 O 7 ), 0.40 M potassium pyrophosphate (K 4 P 2 O 7 ), and 0.05 M tartaric acid were used as the electrolyte solution.
증류수에 그래파이트 분말(평균 입경: 10 ㎛)과 바인더를 97:3의 중량비로 혼합 및 분산시켜 슬러리를 준비하였다. 상기 준비된 슬러리를 상기 주석 함유층이 형성된 음극 상에 도포하고 상온에서 건조하였다. 이후, 진공 분위기 하에 100 ℃에서 12 시간 동안 소성하여 상기 음극에 포함된 복수의 금속 섬유에 의해 형성된 기공 내에 그래파이트를 채웠고, 상기 복수의 금속 섬유에 의해 형성된 3차원 네트워크 구조의 표면 및 내부에 음극 100 중량부에 대하여 10 중량부의 주석이 함유된 2 ㎛ 두께의 주석 함유층이 형성된 음극을 제조하였다.A slurry was prepared by mixing and dispersing graphite powder (average particle diameter: 10 mu m) and a binder in a weight ratio of 97: 3 in distilled water. The prepared slurry was applied on the cathode on which the tin-containing layer was formed and dried at room temperature. Then, the graphite was filled in the pores formed by the plurality of metal fibers included in the cathode by firing at 100 ° C. for 12 hours in a vacuum atmosphere, and the cathode 100 was formed on the surface and inside of the three-dimensional network structure formed by the plurality of metal fibers. A negative electrode having a 2 μm thick tin-containing layer containing 10 parts by weight of tin was prepared with respect to parts by weight.
<실시예 4> 3차원 음극 제조Example 4 3D Cathode Preparation
작용 전극(working electrode)으로 Carbon paper(5mm X 5mm 면적)를 사용한 것을 제외하고는 실시예 3과 동일하게 하여 3차원 음극을 제조하였다.A three-dimensional cathode was prepared in the same manner as in Example 3 except that carbon paper (5 mm × 5 mm area) was used as a working electrode.
<비교예 2>Comparative Example 2
상기 슬러리를 구리 집전체에 코팅한 것을 제외하고는 실시예 3와 동일하게 하여 음극을 제조하였다.A negative electrode was prepared in the same manner as in Example 3 except that the slurry was coated on a copper current collector.
<실시예 5> 버튼형 리튬 이차 전지 제조Example 5 button-type lithium secondary battery
상기 실시예 1에서 제조된 3차원 양극과 상기 실시예 3에서 제조된 3차원 음극, 및 세퍼레이터를 사용하여 버튼형 리튬 이차 전지를 제조하였다. 이 때 전해액으로는 1M LiPF6를 에틸렌 카보네이트, 디에틸카보네이트 1:1의 비율로 용해시켜 사용하였다.The button-type lithium secondary battery was manufactured by using the three-dimensional positive electrode prepared in Example 1, the three-dimensional negative electrode prepared in Example 3, and a separator. At this time, 1 M LiPF 6 was dissolved in an ethylene carbonate and diethyl carbonate 1: 1 ratio as the electrolyte solution.
<실시예 6> 버튼형 리튬 이차 전지 제조Example 6 button-type lithium secondary battery
상기 실시예 2에서 제조된 3차원 양극과 상기 실시예 4에서 제조된 3차원 음극을 이용한 것을 제외하고는 실시예 5와 동일하게 하여 버튼형 리튬 이차 전지를 제조하였다.A button-type lithium secondary battery was manufactured in the same manner as in Example 5, except that the three-dimensional anode prepared in Example 2 and the three-dimensional anode prepared in Example 4 were used.
<비교예 3>Comparative Example 3
상기 비교예 1에서 제조된 양극과 비교예 2에서 제조된 음극을 사용한 것을 제외하고는 실시예 5와 동일하게 하여 버튼형 리튬 이차 전지를 제조하였다.A button-type lithium secondary battery was manufactured in the same manner as in Example 5, except that the positive electrode prepared in Comparative Example 1 and the negative electrode prepared in Comparative Example 2 were used.
<실험예 1> 충방전 특성 평가Experimental Example 1 Evaluation of Charge and Discharge Characteristics
상기 실시예 5, 6 및 비교예 3에서 제조된 버튼형 리튬 이차 전지를 상온에서 3 내지 4.2 V의 전압 범위에서 0.01 C 내지 0.1 C rate의 정전류로 충방전시키면서 방전용량을 측정하여 그 결과를 하기 표 1에 나타내었다.The discharge capacity was measured while charging and discharging the button-type lithium secondary batteries prepared in Examples 5, 6 and Comparative Example 3 at a constant current of 0.01 C to 0.1 C rate in a voltage range of 3 to 4.2 V at room temperature. 1 is shown.
표 1
구분 0.01C rate 에서의 방전용량 (mAh) 0.05C rate 에서의 방전용량 (mAh) 0.1C rate 에서의 방전용량 (mAh)
실시예 5 20.21 19.13 18.84
실시예 6 20.35 20.22 19.65
비교예 3 20.08 17.37 11.95
Table 1
division Discharge capacity at 0.01C rate (mAh) Discharge capacity at 0.05C rate (mAh) Discharge Capacity at 0.1C Rate (mAh)
Example 5 20.21 19.13 18.84
Example 6 20.35 20.22 19.65
Comparative Example 3 20.08 17.37 11.95
상기 표 1에서 보는 바와 같이, 3차원 양극 및 음극을 포함하는 실시예 5 및 6의 경우 0.01 C에서의 방전 용량과 0.1 C에서도 방전 용량이 크게 달라지지 않는 반면, 비교예 3의 경우 0.1 C에서의 방전 용량이 크게 저하된 것을 알 수 있다.As shown in Table 1, in Examples 5 and 6 including a three-dimensional positive electrode and a negative electrode, the discharge capacity at 0.01 C and the discharge capacity at 0.1 C did not vary significantly, whereas at 0.1 C in Comparative Example 3 It can be seen that the discharge capacity of?
본 발명에 의한 버튼형 리튬 2차 전지는 바닥이 있는 원통형으로 형성되고 상기 제 1 외장캔 내에 순차적으로 적층되어 수용되는 3차원 양극,세퍼레이터, 및 3차원 음극을 포함하는 발전부 및 제 2외장캔을 형성하며, 또한 상기 제 2 외장캔의 내부로부터 상기 제 1 외장캔으로 연장 형성되어 상기 제 2 외장캔의 말단부와 상기 제 1 외장캔 사이를 절연시키는 제 1 가스켓 및 제 2 가스켓을 포함하여 고용량을 가지면서도 우수한 율속 특성이 크게 개선된다는 점에서 매우 유용하다고 할 수 있다. The button-type lithium secondary battery according to the present invention includes a three-dimensional anode, a separator, and a three-dimensional cathode including a three-dimensional positive electrode, a separator, and a three-dimensional negative electrode which are formed in a cylindrical shape with a bottom and are sequentially stacked in the first outer can. And a first gasket and a second gasket extending from the inside of the second outer can to the first outer can to insulate the distal end of the second outer can and the first outer can. It can be said that it is very useful in that the excellent rate-rate property is greatly improved.

Claims (14)

  1. 바닥이 있는 원통형으로 형성되고 제 1 전극 단자를 겸하는 제 1 외장캔; A first outer can formed in a cylindrical shape having a bottom and serving as a first electrode terminal;
    상기 제 1 외장캔 내에 순차적으로 적층되어 수용되는 Sequentially stacked and accommodated in the first outer can
    3차원 양극; Three-dimensional anode;
    세퍼레이터; 및Separator; And
    3차원 음극; 을 포함하는 발전부; Three-dimensional cathode; Power generation unit comprising a;
    제 2 전극 단자를 겸하고, 뒤집어진 바닥이 있는 원통형으로 형성되어 상기 발전부를 커버하면서 상기 제 1 외장캔의 내부에 수용되는 제 2 외장캔; A second outer can which serves as a second electrode terminal and is formed in an inverted bottomed cylindrical shape and is accommodated inside the first outer can while covering the power generation unit;
    상기 제 2 외장캔의 내부로부터 상기 제 1 외장캔으로 연장 형성되어 상기 제 2 외장캔의 말단부와 상기 제 1 외장캔 사이를 절연시키는 제 1 가스켓 ; 및 A first gasket extending from the inside of the second outer can to the first outer can to insulate between the distal end of the second outer can and the first outer can; And
    상기 제 2 외장캔의 외부와 상기 제 1 외장캔 사이에 형성되는 제 2 가스켓; 을 포함하는 버튼형 리튬 2차 전지.A second gasket formed between the outside of the second outer can and the first outer can; Button-type lithium secondary battery comprising a.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 세퍼레이터는 상기 3차원 양극 또는 3차원 음극을 감싸는 형태로 형성되고, The separator is formed to surround the three-dimensional anode or three-dimensional cathode,
    상기 제 1 가스켓은 상기 세퍼레이터와 상기 세퍼레이터가 감싸는 3차원 양극 또는 3차원 음극 사이에 삽입되어 제 1 외장캔까지 연장 형성되는 것인 버튼형 리튬 2차 전지.The first gasket is a button-type lithium secondary battery is inserted between the separator and the three-dimensional anode or three-dimensional negative electrode surrounding the separator is formed extending to the first outer can.
  3. 제 1 항에 있어서,The method of claim 1,
    상기 3차원 양극은 3차원 전도성 지지체 상에 형성되는 양극활물질을 포함하는 것인 버튼형 리튬 2차 전지.The three-dimensional anode is a button-type lithium secondary battery comprising a cathode active material formed on a three-dimensional conductive support.
  4. 제 3 항에 있어서The method of claim 3
    상기 3차원 전도성 지지체는 카본페이퍼, 카본펠트, 카본클로스, 금속 폼, 금속 페이퍼, 금속 펠트, 금속 클로스, 및 금속 메쉬로 이루어진 그룹에서 선택되는 것인 버튼형 리튬 2차 전지.The three-dimensional conductive support is a button-type lithium secondary battery is selected from the group consisting of carbon paper, carbon felt, carbon cloth, metal foam, metal paper, metal felt, metal cloth, and metal mesh.
  5. 제 3 항에 있어서,The method of claim 3, wherein
    상기 양극활물질은 원소 황, 황계 화합물, LiaA1-bRbD2(0.90≤a≤1.8, 0≤b≤0.5); LiaA2-bRbD4(0.90≤a≤1.8, 0≤b≤0.5, 0≤c≤0.05); EO2; ES2; LiES2; V2O5; LiV2O5; LiGO2; LiNiVO4; Li(3-d)J2(PO4)3(0≤d≤ 2); Li(3-d)Fe2(PO4)3(0≤d≤2); 및 LiFePO4 로 이루어진 그룹에서 선택되는 것인 버튼형 리튬 2차 전지.The positive electrode active material is an elemental sulfur, a sulfur compound, Li a A 1-b R b D 2 (0.90 ≦ a ≦ 1.8, 0 ≦ b ≦ 0.5); Li a A 2-b R b D 4 (0.90 ≦ a ≦ 1.8, 0 ≦ b ≦ 0.5, 0 ≦ c ≦ 0.05); EO 2 ; ES 2 ; LiES 2 ; V 2 O 5 ; LiV 2 O 5 ; LiGO 2 ; LiNiVO 4 ; Li (3-d) J 2 (PO 4 ) 3 (0 ≦ d ≦ 2); Li (3-d) Fe 2 (PO 4 ) 3 (0 ≦ d2 ); And a LiFePO 4 button type lithium secondary battery.
  6. 제 1 항에 있어서,The method of claim 1,
    상기 3차원 음극은 3차원 망상 구조를 형성하는 복수개의 섬유 표면에 음극활물질 막이 형성되는 것인 버튼형 리튬 2차 전지.The three-dimensional negative electrode is a button-type lithium secondary battery is a negative electrode active material film is formed on the surface of a plurality of fibers forming a three-dimensional network structure.
  7. 제 6 항에 있어서,The method of claim 6,
    상기 3차원 망상 구조를 형성하는 복수개의 섬유는 Cu, SUS. Ti, Ni, Al, Sn, W, Ag, Cr, V, Mo, Zr, Y, Sb 및 이들의 조합으로 이루어진 그룹에서 선택되는 금속인 것인 버튼형 리튬 2차 전지.The plurality of fibers forming the three-dimensional network structure is Cu, SUS. Button type lithium secondary battery which is a metal selected from the group consisting of Ti, Ni, Al, Sn, W, Ag, Cr, V, Mo, Zr, Y, Sb and combinations thereof.
  8. 제 6 항에 있어서,The method of claim 6,
    상기 3차원 망상 구조를 형성하는 복수개의 섬유는 탄소로 이루어진 것인 버튼형 리튬 2차 전지.The plurality of fibers forming the three-dimensional network structure is a button-type lithium secondary battery made of carbon.
  9. 제 1 항에 있어서,The method of claim 1,
    상기 3차원 음극은 3차원 구조의 전도성 지지체 상에 음극활물질이 형성된 것인 버튼형 리튬 2차 전지.The three-dimensional negative electrode is a button-type lithium secondary battery that the negative electrode active material is formed on the conductive support of the three-dimensional structure.
  10. 제 9 항에 있어서,The method of claim 9,
    상기 3차원 구조의 전도성 지지체는 카본페이퍼, 카본펠트, 카본클로스, 금속 폼, 금속 페이퍼, 금속 펠트, 금속 클로스, 금속 메쉬로 이루어진 그룹에서 선택되는 것인 버튼형 리튬 2차 전지.The conductive support of the three-dimensional structure is a button type lithium secondary battery is selected from the group consisting of carbon paper, carbon felt, carbon cloth, metal foam, metal paper, metal felt, metal cloth, metal mesh.
  11. 제 6 항 또는 제 9 항에 있어서,The method according to claim 6 or 9,
    상기 음극활물질은 Si, Sn, SiOx(0<x<2), SnOx(0<x<2) 및 이들의 조합에서 선택되는 것인 버튼형 리튬 2차 전지.The negative electrode active material is a button-type lithium secondary battery is selected from Si, Sn, SiO x (0 <x <2), SnO x (0 <x <2) and combinations thereof.
  12. 제 11 항에 있어서,The method of claim 11,
    상기 음극활물질은 탄소 재료를 더 포함하는 것인 버튼형 리튬 2차 전지.The negative electrode active material further comprises a carbon material button type lithium secondary battery.
  13. 제 1 항에 있어서,The method of claim 1,
    상기 3차원 양극 또는 3차원 음극의 두께는 200 ㎛ 이상인 것을 특징으로 하는 버튼형 리튬 2차 전지.The button-type lithium secondary battery, characterized in that the thickness of the three-dimensional positive electrode or three-dimensional negative electrode is 200 ㎛ or more.
  14. 제 1 항에 있어서,The method of claim 1,
    상기 3차원 양극과 외장캔 사이에 접합되는 알루미늄 집전체; 및 An aluminum current collector bonded between the three-dimensional anode and the outer can; And
    상기 3차원 음극과 외장캔 사이에 접합되는 구리 집전체를 더 포함하는 버튼형 리튬 2차 전지.The button-type lithium secondary battery further comprises a copper current collector bonded between the three-dimensional negative electrode and the outer can.
PCT/KR2015/007316 2014-07-14 2015-07-14 Button-type lithium secondary battery WO2016010349A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0088167 2014-07-14
KR1020140088167A KR20160008270A (en) 2014-07-14 2014-07-14 Coin type lithium rechargeable battery

Publications (1)

Publication Number Publication Date
WO2016010349A1 true WO2016010349A1 (en) 2016-01-21

Family

ID=55078767

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/007316 WO2016010349A1 (en) 2014-07-14 2015-07-14 Button-type lithium secondary battery

Country Status (2)

Country Link
KR (1) KR20160008270A (en)
WO (1) WO2016010349A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107946486A (en) * 2017-10-25 2018-04-20 深圳市能锐创新科技有限公司 New fastening lithium ionic cell housing

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180039364A (en) * 2016-10-10 2018-04-18 한국과학기술원 Manufacturing method of block copolymer patch particle and block copolymer patch particle the same
KR102410663B1 (en) * 2018-07-06 2022-06-17 주식회사 엘지에너지솔루션 Secondary cell and manufacturing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030051612A (en) * 2000-08-09 2003-06-25 마츠시타 덴끼 산교 가부시키가이샤 Coin-shaped battery
JP2005347104A (en) * 2004-06-03 2005-12-15 Hitachi Maxell Ltd Coin-shaped cell
KR20090112567A (en) * 2008-04-23 2009-10-28 소니 가부시끼 가이샤 Anode and secondary battery
KR20140048912A (en) * 2014-03-17 2014-04-24 경상대학교산학협력단 Electrode using 3-dimensional porous current collector, battery using thereof and fabrication of the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100484103B1 (en) 2002-09-03 2005-04-19 삼성에스디아이 주식회사 Button and coin type battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030051612A (en) * 2000-08-09 2003-06-25 마츠시타 덴끼 산교 가부시키가이샤 Coin-shaped battery
JP2005347104A (en) * 2004-06-03 2005-12-15 Hitachi Maxell Ltd Coin-shaped cell
KR20090112567A (en) * 2008-04-23 2009-10-28 소니 가부시끼 가이샤 Anode and secondary battery
KR20140048912A (en) * 2014-03-17 2014-04-24 경상대학교산학협력단 Electrode using 3-dimensional porous current collector, battery using thereof and fabrication of the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107946486A (en) * 2017-10-25 2018-04-20 深圳市能锐创新科技有限公司 New fastening lithium ionic cell housing

Also Published As

Publication number Publication date
KR20160008270A (en) 2016-01-22

Similar Documents

Publication Publication Date Title
CN108832060A (en) Composite diaphragm and its preparation method and application for lithium battery
WO2013055186A1 (en) Cable-type secondary battery
WO2010137862A2 (en) Lithium secondary battery with high energy density
WO2013055185A2 (en) Cable-type secondary battery
CN109768334A (en) Preparation method of bipolar solid-state lithium secondary battery
WO2012138152A2 (en) Negative electrode active material for a lithium secondary battery, and method for preparing same
WO2012036519A2 (en) Electrode for a magnesium rechargeable battery and a magnesium rechargeable battery comprising the same
KR102579828B1 (en) Electrochemical device
WO2019078544A1 (en) Negative electrode for lithium secondary battery, and lithium secondary battery comprising same
WO2018084675A1 (en) Reaction estimation method for secondary battery and secondary battery comprising battery cell used for same
CN110783529B (en) Lithium metal cathode for secondary battery and preparation and application thereof
WO2013058566A1 (en) Secondary battery
WO2020013667A1 (en) Lithium secondary battery comprising inorganic electrolyte solution
JP2006196247A (en) Negative electrode for lithium secondary battery and lithium secondary battery
WO2014077663A1 (en) Anode active material for sodium secondary battery and method for producing same
CN107665974A (en) A kind of lithium-sulfur cell negative pole and its preparation and application
WO2016010349A1 (en) Button-type lithium secondary battery
WO2018194345A1 (en) Anode for lithium secondary battery, lithium secondary battery comprising same, and manufacturing method therefor
WO2014081269A1 (en) Precursor of electrode active material coated with metal, and method for preparing same
WO2018131824A1 (en) Deposition of lithium fluoride on lithium metal surface and lithium secondary battery using same
WO2016056775A1 (en) Electrode comprising alternately arranged electrode mixture parts and irreversible parts, and secondary battery comprising same
JP2017147194A (en) Nonaqueous electrolyte secondary battery
US20070148547A1 (en) Modification of an anode material and a preperation method thereof
US11271210B2 (en) Cathode active material with silicon carbide additive
WO2021225414A1 (en) Lithium-free battery and manufacturing method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15822266

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15822266

Country of ref document: EP

Kind code of ref document: A1