JP2006196247A - Negative electrode for lithium secondary battery and lithium secondary battery - Google Patents

Negative electrode for lithium secondary battery and lithium secondary battery Download PDF

Info

Publication number
JP2006196247A
JP2006196247A JP2005004783A JP2005004783A JP2006196247A JP 2006196247 A JP2006196247 A JP 2006196247A JP 2005004783 A JP2005004783 A JP 2005004783A JP 2005004783 A JP2005004783 A JP 2005004783A JP 2006196247 A JP2006196247 A JP 2006196247A
Authority
JP
Japan
Prior art keywords
layer
negative electrode
secondary battery
active material
lithium secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005004783A
Other languages
Japanese (ja)
Inventor
Toshihiro Inoue
利弘 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005004783A priority Critical patent/JP2006196247A/en
Publication of JP2006196247A publication Critical patent/JP2006196247A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lithium secondary battery holding a conductive network in accordance with the volume change of an active material while conductivity is provided to a negative active material layer, and having high capacity and long life. <P>SOLUTION: A negative electrode for the lithium secondary battery uses material electrochemically storing/releasing lithium as an active material, and comprises: a first layer 2 mainly comprising the active material formed on a current collector 1; a second layer 3 mainly comprising a conductive material formed on the first layer; and a third layer 4 mainly comprising the active material formed on the second layer. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明はリチウム二次電池用電極とそれを用いたリチウム二次電池に関するものである。   The present invention relates to an electrode for a lithium secondary battery and a lithium secondary battery using the same.

リチウム二次電池は、そのエネルギー密度の高さゆえ各種電子機器の電源として用いられているが、小型軽量化に伴うさらなる高容量化のために、負極の改良が強く求められている。現在、負極材料として広く用いられている黒鉛の理論容量は372mAh/gであるが、実際のリチウム二次電池では黒鉛の理論容量の80%程度を活用する設計としている。その理由として、充電時に黒鉛に挿入されたリチウムイオンの一部が不活性化することにより、放電に寄与しない不可逆容量が蓄積し、寿命特性が低下することが挙げられる。そこでこの現象を見越して、黒鉛の理論容量のすべてを反映させないという電池設計を採るのが現状であった。この課題を解消して高容量化を達成するためには、黒鉛の不可逆容量を抑制するか、あるいは黒鉛とは異なる高容量材料の開発が必要となる。   Lithium secondary batteries are used as power sources for various electronic devices because of their high energy density, but there is a strong demand for improvement of the negative electrode in order to further increase the capacity associated with the reduction in size and weight. At present, the theoretical capacity of graphite widely used as a negative electrode material is 372 mAh / g, but an actual lithium secondary battery is designed to utilize about 80% of the theoretical capacity of graphite. The reason is that some of the lithium ions inserted into the graphite at the time of charging are inactivated, accumulating irreversible capacity that does not contribute to discharge, and lowering the life characteristics. Therefore, in anticipation of this phenomenon, the current situation is to adopt a battery design that does not reflect all of the theoretical capacity of graphite. In order to solve this problem and achieve a high capacity, it is necessary to suppress the irreversible capacity of graphite or to develop a high-capacity material different from graphite.

黒鉛の不可逆容量を抑制するために、負極表面に炭素材料、金属粉末又は導電性セラミックからなる導電剤層を設ける技術(例えば、特許文献1)を展開することが考えられる。   In order to suppress the irreversible capacity of graphite, it is conceivable to develop a technique (for example, Patent Document 1) in which a conductive agent layer made of a carbon material, metal powder, or conductive ceramic is provided on the negative electrode surface.

また黒鉛より高容量な材料を用いる例として、アルミニウム、シリコン、錫などを負極活物質として用いる例(例えば、特許文献2)や、アルカリ土類金属と合金化しない元素との組み合わせによって非平衡状態で形成された固溶体金属からなる活物質(例えば、特許文献3)が開示されている。   In addition, as an example of using a material having a higher capacity than graphite, an example of using aluminum, silicon, tin, or the like as a negative electrode active material (for example, Patent Document 2) or a non-equilibrium state in combination with an element that does not alloy with an alkaline earth metal The active material (for example, patent document 3) which consists of a solid solution metal formed by 1 is disclosed.

さらには上述した2つの技術思想の組み合わせとして、高結晶性炭素粒子の表面に金属元素を含む膜を被覆させ、さらにその上に炭素を被覆させる炭素複合体電極材料(例えば、特許文献4)、黒鉛の表面に珪素微粒子を付着させることによって、充放電容量や充放電サイクル特性向上を図る例(例えば、特許文献5)、さらには結晶質珪素からなるSi微粒子の周りに導電性炭素を配置する例(例えば、特許文献6)が開示されている。
特開2000−331686号公報 特開平10−255768号公報 特開2002−075350号公報 特開平5−299073号公報 特開2001−102047号公報 特開2002−255529号公報
Furthermore, as a combination of the above-mentioned two technical ideas, a carbon composite electrode material (for example, Patent Document 4) in which a film containing a metal element is coated on the surface of highly crystalline carbon particles and carbon is further coated thereon. An example of improving charge / discharge capacity and charge / discharge cycle characteristics by attaching silicon fine particles to the surface of graphite (for example, Patent Document 5), and further arranging conductive carbon around Si fine particles made of crystalline silicon. An example (for example, Patent Document 6) is disclosed.
JP 2000-331686 A Japanese Patent Laid-Open No. 10-255768 Japanese Patent Laid-Open No. 2002-0775350 JP-A-5-299073 Japanese Patent Laid-Open No. 2001-102047 JP 2002-255529 A

しかしながら特許文献1の技術を用いても、活物質からなる合剤層内部の導電性は向上しないので、課題の根本的解決には至らない。また特許文献2および3の負極活物質は、充放電におけるリチウムを吸蔵・放出の繰り返しにより負極活物質の体積が膨張・収縮し、これが上記活物質の微細化を促進するので、集電体から活物質が剥離しやすい。集電体から剥離した活物質は導電ネットワークから外れるため、その後の充放電に寄与できず、これが不可逆容量の根源となり、寿命特性を低下させる原因となる。このような課題を有する材料に対し、単に特許文献4〜6の技術を展開して導電性を付与しても、微細化を伴う活物質のダイナミックな体積変化に追従できないため、結局は寿命特性の大幅な改善には至らない。   However, even if the technique of Patent Document 1 is used, the conductivity inside the mixture layer made of the active material is not improved, and thus the fundamental problem cannot be solved. Further, in the negative electrode active materials of Patent Documents 2 and 3, the volume of the negative electrode active material expands and contracts due to repeated insertion and extraction of lithium in charge and discharge, which promotes the miniaturization of the active material. Active material is easy to peel off. Since the active material peeled from the current collector is removed from the conductive network, it cannot contribute to the subsequent charge / discharge, which becomes the source of irreversible capacity and causes a decrease in life characteristics. Even if the material having such problems is simply developed by applying the techniques of Patent Documents 4 to 6 and cannot be followed by the dynamic volume change of the active material accompanied by miniaturization, the life characteristics are eventually obtained. It does not lead to a significant improvement.

本発明は上記課題を鑑みてなされたものであり、負極合剤層に導電性を付与しつつ、活物質の体積変化に追従してこの導電ネットワークを保持しうる、高容量で長寿命なリチウム二次電池を提供することを目的とする。   The present invention has been made in view of the above problems, and is a high-capacity and long-life lithium that can maintain the conductive network following the volume change of the active material while imparting conductivity to the negative electrode mixture layer. An object is to provide a secondary battery.

上記課題を解決するために、本発明のリチウム二次電池用負極は、電気化学的にリチウムを吸蔵・放出可能な材料を活物質とし、この活物質を主剤として集電体上に形成された第1の層と、導電剤を主剤として第1の層上に形成された第2の層と、活物質を主剤として第2の層上に形成された第3の層とからなることを特徴とする。   In order to solve the above problems, the negative electrode for a lithium secondary battery of the present invention is formed on a current collector using a material capable of electrochemically occluding and releasing lithium as an active material and using this active material as a main component. It comprises a first layer, a second layer formed on the first layer using a conductive agent as a main agent, and a third layer formed on the second layer using an active material as a main agent. And

導電剤を単に負極表面に形成する場合や、負極活物質表面に配置する場合と異なり、負極活物質からなる合剤層の中間に導電層(第2の層)として配置することにより、合剤層の導電性が大幅に向上して活物質理論容量を最大限活用することが可能となる。また体積変化の大きい高容量負極材料を用いた場合、この第2の層が緩衝材として機能するため、活物質の脱落を抑止しつつ導電ネットワークを確保する役目を果たすため、寿命特性が大幅に向上する。   Unlike the case where the conductive agent is simply formed on the negative electrode surface or the case where the conductive agent is arranged on the surface of the negative electrode active material, the mixture is arranged as a conductive layer (second layer) in the middle of the mixture layer made of the negative electrode active material. The conductivity of the layer is greatly improved, and the active material theoretical capacity can be fully utilized. In addition, when a high-capacity negative electrode material having a large volume change is used, the second layer functions as a buffer material, and thus plays a role of securing a conductive network while suppressing the falling off of the active material. improves.

本発明によれば、負極活物質を理論容量どおり活用でき、さらには高容量負極材料を用いた場合には導電ネットワークも確保できるため、高容量で長寿命なリチウム二次電池を提供することができる。   According to the present invention, the negative electrode active material can be utilized according to the theoretical capacity, and further, when a high capacity negative electrode material is used, a conductive network can be secured, so that a high capacity and long life lithium secondary battery can be provided. it can.

以下、本発明を実施するための最良の形態について、図を用いて説明する。   The best mode for carrying out the present invention will be described below with reference to the drawings.

図1は本発明の負極を表す概略断面図である。集電体1の上に活物質を主剤とした第1の層2が形成されており、その上に導電剤を主剤とした第2の層3が、さらにその上に活物質を主剤とした第3の層4が形成され、本発明のリチウム二次電池用負極が構成されている。   FIG. 1 is a schematic sectional view showing a negative electrode of the present invention. A first layer 2 mainly composed of an active material is formed on a current collector 1, and a second layer 3 mainly composed of a conductive agent is formed thereon, and further an active material is mainly disposed thereon. The third layer 4 is formed, and the negative electrode for a lithium secondary battery of the present invention is configured.

ここで第1の層2の主剤である活物質としては、リチウムイオンを吸蔵、放出させることが可能な粒子であれば良く、黒鉛類、非晶質炭素類、熱分解炭素類、コークス類、炭素繊維、金属リチウム、リチウム合金(Li−Al,Li−Pb、等)、無機化合物(炭化物、酸化物、窒化物、ホウ化物、ハロゲン化物、金属間化合物等)、アルミや錫等の金属粒子化合物が使用可能である。これら活物質のうち、非金属材料の場合は平均粒径0.01〜30μmが好ましく、特に10〜20μmが好ましい。粒径が過小であると皮膜の影響で放電容量が低下し、過大であると粒子内のリチウム拡散が遅くなるので、高率充放電が困難になる。このうち黒鉛の場合、菱面体結晶の割合が20重量%以下の場合が好ましく、特に5〜15重量%の範囲が好ましい。また活物質が金属材料である場合、非金属材料と同様の理由により、平均粒径0.1 〜100μmが好ましく、特に1〜10μmが好ましい。金属材料の場合、合剤層自身の導電性を高めるという副次効果を付与することもできる。   Here, the active material that is the main component of the first layer 2 may be any particles that can occlude and release lithium ions, such as graphites, amorphous carbons, pyrolytic carbons, cokes, Carbon fiber, metallic lithium, lithium alloy (Li-Al, Li-Pb, etc.), inorganic compound (carbide, oxide, nitride, boride, halide, intermetallic compound, etc.), metal particles such as aluminum and tin Compounds can be used. Among these active materials, in the case of a non-metallic material, an average particle size of 0.01 to 30 μm is preferable, and 10 to 20 μm is particularly preferable. If the particle size is too small, the discharge capacity decreases due to the effect of the film, and if it is too large, the diffusion of lithium in the particles becomes slow, making it difficult to charge and discharge at a high rate. Of these, in the case of graphite, the proportion of rhombohedral crystals is preferably 20% by weight or less, and particularly preferably in the range of 5 to 15% by weight. Moreover, when an active material is a metal material, for the same reason as a nonmetallic material, an average particle diameter of 0.1-100 micrometers is preferable, and 1-10 micrometers is especially preferable. In the case of a metal material, the secondary effect of increasing the conductivity of the mixture layer itself can be imparted.

また第1の層2は、集電体1の上に塗工するだけでなく、スパッタリングなどのドライプロセスなどにより薄膜状に活物質を形成させてもよい。ここで活物質として珪素を主成分とし、その表面の一部に炭素が付着させることにより、後述する第2の層3における導電剤の割合を少なくすることが可能となる。この場合、粉体表面へのカーボンの付着はメカニカルミリング法などの物理的な方法やCVD法などの化学的な方法を用いてもよい。この結果負極活物質合剤層の充填密度を高めることが可能となり、リチウム二次電池用電
極としての高容量化をはかることが可能となる。
In addition, the first layer 2 may be formed not only on the current collector 1 but also in the form of a thin film by a dry process such as sputtering. Here, it is possible to reduce the proportion of the conductive agent in the second layer 3 to be described later by making silicon as a main component as an active material and attaching carbon to a part of the surface thereof. In this case, carbon may be adhered to the powder surface by using a physical method such as a mechanical milling method or a chemical method such as a CVD method. As a result, it is possible to increase the packing density of the negative electrode active material mixture layer, and to increase the capacity as an electrode for a lithium secondary battery.

第1の層2を塗工により形成する場合、結着剤を用いることができる。結着剤としては対リチウムの電位が0〜2Vの範囲で安定な樹脂であればよく、その添加量は活物質に対して2〜20重量%の範囲が好ましい。   When the first layer 2 is formed by coating, a binder can be used. The binder may be any resin that is stable when the potential of lithium is in the range of 0 to 2 V, and the addition amount is preferably in the range of 2 to 20% by weight based on the active material.

第2の層3は導電剤を主剤とした層で、活物質からなる合剤層(第1の層2および第3の層4)の導電性を高めつつ、活物質の体積変化を緩和する役目を果たす。この第2の層3は、第1の層2の上に塗工するだけでなく、めっき、あるいはスパッタリングなどのドライプロセスにより薄膜状に形成させてもよい。また第2の層3を塗工により形成する場合、第1の層2と同様の結着剤を用いることができる。さらに第2の層3を構成する元素としては、ニッケル、コバルトあるいは炭素が好ましいが、これらにシリコンあるいは錫を添加すると、リチウムとの合金化が可能となり、高容量化が図れるのでより好ましい。   The second layer 3 is a layer containing a conductive agent as a main agent, and reduces the volume change of the active material while increasing the conductivity of the mixture layer (the first layer 2 and the third layer 4) made of the active material. Play a role. The second layer 3 may be formed not only on the first layer 2 but also in a thin film by a dry process such as plating or sputtering. Moreover, when forming the 2nd layer 3 by coating, the binder similar to the 1st layer 2 can be used. Furthermore, nickel, cobalt, or carbon is preferable as an element constituting the second layer 3, but it is more preferable to add silicon or tin to these because alloying with lithium is possible and high capacity can be achieved.

ここで第2の層3をめっき法で形成する場合、この層をポーラスにするために、例えばニッケル無電解めっきであれば、あらかじめ炭素表面に還元力の強い第一錫イオン又は鉛イオンを吸着させて、錫または鉛の金属薄膜を得た後に、無電解メッキにより還元力の小さいニッケルで前記錫または鉛の一部を置換する方法を採るのが好ましい。なおニッケル以外にも、銅、パラジウムまたは銀で置き換えても同様な効果が得られる。ここで錫等による置換を省略するために、合金めっき法を用いることもできる。特にホウ素または燐を含むめっき層は、アモルファス化によってよりポーラスな性状となる。本発明によるめっき層は活物質である炭素の表面が直接電解液と接触し、副反応を起こすことを回避するためのものである。ここでめっき層はホウ素または燐以外にも、リチウムと合金化可能なAl、Si、Ga、Ge、In、Sb、 Bi、As、Zn、Cd等の遷移金属、リチウム以外の1族又は2族の金属、あるいはO、N、F、S等の非金属元素を少量含んでもよい。   Here, when the second layer 3 is formed by a plating method, in order to make this layer porous, for example, in the case of nickel electroless plating, stannous ions or lead ions having strong reducing power are adsorbed on the carbon surface in advance. Then, after obtaining a tin or lead metal thin film, it is preferable to adopt a method in which a part of the tin or lead is replaced with nickel having a small reducing power by electroless plating. In addition to nickel, the same effect can be obtained by replacing with copper, palladium or silver. Here, in order to omit the substitution with tin or the like, an alloy plating method can also be used. In particular, a plating layer containing boron or phosphorus becomes more porous due to amorphization. The plating layer according to the present invention is for avoiding a side reaction caused by direct contact of the surface of carbon as an active material with the electrolytic solution. Here, in addition to boron or phosphorus, the plating layer can be alloyed with lithium, such as Al, Si, Ga, Ge, In, Sb, Bi, As, Zn, Cd, etc., Group 1 or 2 other than lithium Or a small amount of non-metallic elements such as O, N, F, and S.

第3の層4は、第1の層2と同様の組成を選択し、第1の層2と同様の方法で形成することができる。ここで第1の層2と第3の層4とは同一組成であってもよいが、必要に応じて異なる組成を選択してもよい。また形成方法も、第1の層2と第3の層4とで同じでもよく、異なっていてもよい。   The third layer 4 can be formed by selecting the same composition as the first layer 2 and by the same method as the first layer 2. Here, the first layer 2 and the third layer 4 may have the same composition, but different compositions may be selected as necessary. Also, the formation method may be the same or different between the first layer 2 and the third layer 4.

また図2のように、第3の層4の上に、第2の層3と同様の第4の層5を設けることにより、極板と電解液界面での皮膜形成が抑制されるため、より好ましい。   Further, as shown in FIG. 2, by providing a fourth layer 5 similar to the second layer 3 on the third layer 4, film formation at the interface between the electrode plate and the electrolyte is suppressed. More preferred.

本実施形態のリチウム二次電池における各要素の構成例を挙げる。   The structural example of each element in the lithium secondary battery of this embodiment is given.

電解液は、電解質としてLiPF6、LiBF4、LiClO4、LiCF3SO4、LiAsF6等のリチウム塩をエチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジメトキシエタン、テトラヒドロフラン等又はこれらの混合液に溶かしたものが用いられる。あるいは固体電解質として上記リチウム塩とポリアクリルニトリル等の複合体に可塑剤として上記有機溶媒を加えたものを用いてもよい。 The electrolyte is obtained by dissolving a lithium salt such as LiPF 6 , LiBF 4 , LiClO 4 , LiCF 3 SO 4 , LiAsF 6 as an electrolyte in ethylene carbonate, propylene carbonate, dimethyl carbonate, dimethoxyethane, tetrahydrofuran or the like or a mixture thereof. Is used. Or what added the said organic solvent as a plasticizer to the composite_body | complex of the said lithium salt and polyacrylonitrile as a solid electrolyte may be used.

正極については特に制限はないが、遷移金属系酸化物、金属カルコゲン結合物、金属ハライド等が挙げられる。遷移金属としては、コバルト、ニッケル、マンガン、鉄、クロム、チタン、バナジウム、モリブデンが好ましく、化合物としてはLiCoO2、LiMnO2、LiNiO2、LiNi1-xCox2、LiNi1-x-yCoxy2(Mは3価金属又は遷移金属)などが好ましい。 Although there is no restriction | limiting in particular about a positive electrode, A transition metal type oxide, a metal chalcogen bond, a metal halide, etc. are mentioned. The transition metal is preferably cobalt, nickel, manganese, iron, chromium, titanium, vanadium, or molybdenum, and the compounds are LiCoO 2 , LiMnO 2 , LiNiO 2 , LiNi 1-x Co x O 2 , LiNi 1-xy Co x. MyO 2 (M is a trivalent metal or a transition metal) is preferred.

セパレータとしては、ポリプロピレン,ポリエチレンやポリオレフィン系の多孔質樹脂
膜を用いることができる。
As the separator, a polypropylene, polyethylene, or polyolefin-based porous resin film can be used.

以下に、本発明に関する実施例を示す。   Examples relating to the present invention will be described below.

(実施例1)
(i)正極の作製
出発原料として、Li2CO3およびCoCO3を用いて、Li:Coの原子比が1:1となるように秤量して乳鉢で混合し、これをプレスし加圧成形した後、空気中において800℃で24時間焼成し、LiCoO2の焼成体を得た。これを乳鉢で平均粒子径20μmとなるまで粉砕した。得られたLiCoO2粉末が100重量部、導電剤としてのアセチレンブラックが10重量部、結着剤としてのポリテトラフルオロエチレンが10重量部となるように混合し、ペースト状合剤を得た。この合剤を厚さ20μmのアルミ箔からなる正極集電体に塗工後、乾燥および圧延を行い、正極を得た。この正極に正極リードをスポット溶接して取り付けた後、110℃にて3時間の真空乾燥を行った。
Example 1
(I) Production of positive electrode Using Li 2 CO 3 and CoCO 3 as starting materials, weigh them so that the atomic ratio of Li: Co is 1: 1, mix them in a mortar, press this, and press-mold After that, it was baked in the air at 800 ° C. for 24 hours to obtain a LiCoO 2 fired body. This was pulverized with a mortar until the average particle size became 20 μm. The resulting LiCoO 2 powder was mixed so that it was 100 parts by weight, acetylene black as a conductive agent was 10 parts by weight, and polytetrafluoroethylene as a binder was 10 parts by weight to obtain a paste mixture. This mixture was applied to a positive electrode current collector made of an aluminum foil having a thickness of 20 μm, and then dried and rolled to obtain a positive electrode. After the positive electrode lead was spot welded to the positive electrode, vacuum drying was performed at 110 ° C. for 3 hours.

(ii)負極の作製
集電体1として電解銅箔(厚み14μm)を用いた。活物質は平均粒径がおよそ20μmの人造黒鉛を用い、前記黒鉛が100重量部、導電剤としてアセチレンブラックが30重量部および結着剤としてポリフッ化ビニリデン(PVdF)のN−メチル−2−ピロリドン(NMP)溶液をPVdF重量に換算して4重量部加えて練合し、ペースト状負極合剤を得た。この負極合剤を前記集電体に塗工厚み100μmで塗着したのち60℃で8時間乾燥し、第1の層2とした。
(Ii) Production of Negative Electrode An electrolytic copper foil (thickness: 14 μm) was used as the current collector 1. The active material is artificial graphite having an average particle diameter of about 20 μm, 100 parts by weight of the graphite, 30 parts by weight of acetylene black as a conductive agent, and N-methyl-2-pyrrolidone of polyvinylidene fluoride (PVdF) as a binder. 4 parts by weight of the (NMP) solution was converted into PVdF weight and kneaded to obtain a paste-like negative electrode mixture. This negative electrode mixture was applied to the current collector with a coating thickness of 100 μm, and then dried at 60 ° C. for 8 hours to form the first layer 2.

続いて、アセチレンブラックが10重量部および結着剤としてカルボキシメチルセルロース(以下、CMCと略記)の水溶液をCMC重量に換算して4重量部加えて練合し、ペースト状負極合剤を得た。この負極合剤を前記第1の層2の上に塗工厚み10μmで塗着したのち60℃で8時間乾燥し、第2の層3とした。   Subsequently, 10 parts by weight of acetylene black and 4 parts by weight of an aqueous solution of carboxymethyl cellulose (hereinafter abbreviated as CMC) as a binder were added and kneaded to obtain a paste-like negative electrode mixture. The negative electrode mixture was applied on the first layer 2 with a coating thickness of 10 μm, and then dried at 60 ° C. for 8 hours to form a second layer 3.

さらに、前記第1の層2と同様の活物質層を第2の層3の上に塗工厚み80μmで塗工し、第3の層4とした。この塗工物を60℃で8時間乾燥した後に圧延し、負極リードをスポット溶接して、110℃にて3時間の真空乾燥を行った。これらの手順により、集電体1の表面に活物質層である第1の層2を有し、その上に導電層である第2の層3、さらにその上に活物質層である第3の層4を有する負極を形成した。   Further, an active material layer similar to that of the first layer 2 was applied on the second layer 3 with a coating thickness of 80 μm to form a third layer 4. The coated material was dried at 60 ° C. for 8 hours and then rolled, the negative electrode lead was spot welded, and vacuum dried at 110 ° C. for 3 hours. By these procedures, the first layer 2 which is an active material layer is provided on the surface of the current collector 1, the second layer 3 which is a conductive layer thereon, and the third layer which is an active material layer thereon. A negative electrode having the layer 4 was formed.

(iii)電池の作製
得られた正極と負極とを厚さ25μmのポリエチレン製セパレータを介して長円状に捲回し、電極群を作製した。この電極群をアルミニウム製の電池ケースに挿入し、エチレンカーボネートとジエチルカーボネートとの等体積混合溶媒に、LiPFを1モル/リットル溶解してなる電解液を注入した。これにより、幅5.2mm、長さ34mm、総高36mmの角形リチウム二次電池を作製した。これを実施例1の電池とする。
(Iii) Production of Battery The obtained positive electrode and negative electrode were wound in an oval shape through a 25 μm thick polyethylene separator to produce an electrode group. This electrode group was inserted into an aluminum battery case, and an electrolytic solution in which 1 mol / liter of LiPF 6 was dissolved in an equal volume mixed solvent of ethylene carbonate and diethyl carbonate was injected. Thus, a prismatic lithium secondary battery having a width of 5.2 mm, a length of 34 mm, and a total height of 36 mm was produced. This is referred to as the battery of Example 1.

(実施例2)
実施例1の電池に対して、負極における第1の層2の活物質を、シリコン粒子の表面にCVD法(詳細はJournal of The Electrochemical Socoety,Vol.149,A1598(2002)参照)にて炭素を付着させた表面改質シリコンとし、その塗工厚みを60μmとした以外は、実施例1と同様の角形リチウム二次電池を作製した。これを実施例2の電池とする。
(Example 2)
For the battery of Example 1, the active material of the first layer 2 in the negative electrode is carbonized on the surface of silicon particles by CVD (for details, see Journal of The Electrochemical Society, Vol. 149, A1598 (2002)). A prismatic lithium secondary battery similar to that of Example 1 was fabricated except that the surface-modified silicon was deposited with a coating thickness of 60 μm. This is referred to as the battery of Example 2.

(実施例3)
実施例2の電池に対して、負極における第3の層4の活物質を、第1の層2と同様の表面改質シリコンとし、その塗工厚みを60μmとした以外は、実施例2と同様の角形リチウム二次電池を作製した。これを実施例3の電池とする。
(Example 3)
For the battery of Example 2, the active material of the third layer 4 in the negative electrode was changed to the same surface-modified silicon as that of the first layer 2 and the coating thickness was set to 60 μm. A similar prismatic lithium secondary battery was produced. This is referred to as the battery of Example 3.

(実施例4)
実施例3の電池に対して、負極における第2の層3を、以下に示すニッケルめっきにて形成した以外は、実施例3と同様の角形リチウム二次電池を作製した。このニッケルめっきは、硫酸ニッケル170g/L、塩化ニッケル40g/L、ホウ酸30g/Lのワット浴をベースとしてpHを4.5とし、浴温40℃にて1A/dmにて2秒間電解し、表面改質シリコンからなる第1の層2の表面にニッケル薄膜層(およそ5μm)を形成したものである。これを実施例4の電池とする。
Example 4
A prismatic lithium secondary battery similar to that of Example 3 was produced, except that the second layer 3 of the negative electrode was formed by nickel plating as described below with respect to the battery of Example 3. This nickel plating is based on a Watt bath of 170 g / L nickel sulfate, 40 g / L nickel chloride, and 30 g / L boric acid, with a pH of 4.5, and electrolysis for 2 seconds at 1 A / dm 2 at a bath temperature of 40 ° C. In addition, a nickel thin film layer (approximately 5 μm) is formed on the surface of the first layer 2 made of surface-modified silicon. This is the battery of Example 4.

(実施例5)
実施例3の電池に対して、負極における第2の層3を、以下に示すコバルトめっきにて形成した以外は、実施例3と同様の角形リチウム二次電池を作製した。このコバルトめっきは、硫酸コバルト0.08M、次亜リン酸ナトリウム0.2M、クエン酸ナトリウム0.2M、ホウ酸0.5Mの電解浴をベースとしてpHを7とし、浴温80℃にて10分間無電解めっきし、表面改質シリコンからなる第1の層2の表面にコバルト薄膜層(およそ1μm)を形成したものである。これを実施例5の電池とする。
(Example 5)
A prismatic lithium secondary battery similar to that of Example 3 was produced, except that the second layer 3 in the negative electrode was formed by cobalt plating shown below with respect to the battery of Example 3. This cobalt plating is based on an electrolytic bath of cobalt sulfate 0.08M, sodium hypophosphite 0.2M, sodium citrate 0.2M, and boric acid 0.5M, with a pH of 7, and 10 at a bath temperature of 80 ° C. Electroless plating is performed for 1 minute, and a cobalt thin film layer (approximately 1 μm) is formed on the surface of the first layer 2 made of surface-modified silicon. This is the battery of Example 5.

(実施例6)
実施例3の電池に対して、負極における第4の層5を、第2の層3と同一の組成・厚みにて、第3の層4の上に形成した以外は、実施例3と同様の角形リチウム二次電池を作製した。これを実施例6の電池とする。
(Example 6)
For the battery of Example 3, the same as Example 3 except that the fourth layer 5 in the negative electrode was formed on the third layer 4 with the same composition and thickness as the second layer 3. A square lithium secondary battery was prepared. This is the battery of Example 6.

(実施例7)
実施例4の電池に対して、負極における第4の層5を、第2の層3と同一の製法・厚みにて、第3の層4の上に形成した以外は、実施例4と同様の角形リチウム二次電池を作製した。これを実施例7の電池とする。
(Example 7)
For the battery of Example 4, the same as Example 4 except that the fourth layer 5 in the negative electrode was formed on the third layer 4 with the same manufacturing method and thickness as the second layer 3. A square lithium secondary battery was prepared. This is the battery of Example 7.

(実施例8)
実施例4の電池に対して、負極における第2の層3を形成する際に、平均粒径1μmのシリコン粒子(原材料は実施例2と同様でかつ実施例2のようにCVD処理を行わなかったもの)を共存させ、その量をニッケル100重量部に対し15重量部とした以外は、実施例4と同様の角形リチウム二次電池を作製した。これを実施例8の電池とする。
(Example 8)
When forming the second layer 3 in the negative electrode for the battery of Example 4, silicon particles having an average particle diameter of 1 μm (the raw material is the same as that of Example 2 and the CVD process is not performed as in Example 2). A prismatic lithium secondary battery similar to that of Example 4 was produced except that the amount thereof was 15 parts by weight with respect to 100 parts by weight of nickel. This is the battery of Example 8.

(実施例9)
実施例8の電池に対して、負極における第2の層3に共存させる粒子を、平均粒径1μmの錫とした以外は、実施例8と同様の角形リチウム二次電池を作製した。これを実施例9の電池とする。
Example 9
A prismatic lithium secondary battery similar to that in Example 8 was produced, except that the particles coexisting in the second layer 3 in the negative electrode were tin having an average particle diameter of 1 μm with respect to the battery of Example 8. This is the battery of Example 9.

(比較例1)
実施例1の電池に対して、負極における第2の層3および第3の層4を設けず、塗工厚み180μmの第1の層2のみとした以外は、実施例1と同様の角形リチウム二次電池を作製した。これを比較例1の電池とする。
(Comparative Example 1)
For the battery of Example 1, square lithium similar to Example 1 except that the second layer 3 and the third layer 4 in the negative electrode are not provided, and only the first layer 2 having a coating thickness of 180 μm is used. A secondary battery was produced. This is referred to as the battery of Comparative Example 1.

(比較例2)
実施例3の電池に対して、負極における第2の層3および第3の層4を設けず、塗工厚み120μmの第1の層2のみとした以外は、実施例3と同様の角形リチウム二次電池を作製した。これを比較例2の電池とする。
(Comparative Example 2)
For the battery of Example 3, the rectangular lithium similar to Example 3 except that the second layer 3 and the third layer 4 in the negative electrode are not provided and only the first layer 2 having a coating thickness of 120 μm is used. A secondary battery was produced. This is referred to as the battery of Comparative Example 2.

(比較例3)
比較例1の電池に対して、負極における第1の層2の上に、実施例1と同一の第2の層3のみを設けた以外は、比較例1と同様の角形リチウム二次電池を作製した。これを比較例3の電池とする。
(Comparative Example 3)
A prismatic lithium secondary battery similar to that of Comparative Example 1 except that only the second layer 3 identical to that of Example 1 was provided on the first layer 2 of the negative electrode with respect to the battery of Comparative Example 1. Produced. This is referred to as the battery of Comparative Example 3.

(比較例4)
比較例2の電池に対して、負極における第1の層2の上に、実施例3と同一の第2の層3のみを設けた以外は、比較例2と同様の角形リチウム二次電池を作製した。これを比較例4の電池とする。
(Comparative Example 4)
A prismatic lithium secondary battery similar to that of Comparative Example 2 except that only the second layer 3 identical to that of Example 3 was provided on the first layer 2 of the negative electrode with respect to the battery of Comparative Example 2. Produced. This is referred to as the battery of Comparative Example 4.

上述した各電池に対し、以下に示す評価を行った。結果を(表1)に示す。   Each battery described above was evaluated as follows. The results are shown in (Table 1).

(設計容量)
上述した各電池の負極理論容量に応じて正負極およびセパレータの長さを調整し、電池ケースの断面積に占める電極群の断面積の比率を92%、負極の設計利用率を93%に統一して各電池の電極群を構成した。このときの正極理論容量を設計容量として、(表1)に示す。
(Design capacity)
Adjust the length of positive and negative electrodes and separator according to the negative electrode theoretical capacity of each battery, and unify the ratio of the cross-sectional area of the electrode group in the cross-sectional area of the battery case to 92% and the design utilization rate of the negative electrode to 93%. Thus, an electrode group of each battery was configured. The positive electrode theoretical capacity at this time is shown in Table 1 as the design capacity.

(寿命特性)
上述した各電池に対し、20℃において4.2Vに達するまで2.5時間率(各電池の設計容量に応じる)で定電流充電を行い、その後10時間率に達するまで4.2V一定下で定電圧充電を行った。20分間休止の後、3.0Vに達するまで1時間率で定電流放電を行った。これを1サイクルとして充放電サイクルを繰り返したときの、200サイクル目の放電容量を(表1)に示す。
(Life characteristics)
Each battery described above is charged at a constant current rate of 2.5 hours (depending on the design capacity of each battery) at 20 ° C. until 4.2 V is reached, and then at a constant 4.2 V until it reaches 10 hours. A constant voltage charge was performed. After resting for 20 minutes, constant current discharge was performed at a rate of 1 hour until 3.0V was reached. The discharge capacity at the 200th cycle when the charge / discharge cycle is repeated as one cycle is shown in (Table 1).

負極の設計利用率を93%まで増した場合、負極活物質として黒鉛を用いた負極であっても、充電末期におけるリチウム析出の影響が顕著化するので、比較例1に示すように200サイクル目の放電容量は低い。ここで負極活物質として表面改質シリコンを用いた場合、充放電の繰返しにより活物質の微細化が促進されるので、200サイクル目の放電容量はさらに低くなる。またこのような負極の表面のみに導電層を形成させた比較例3および4の場合も、これら比較例1および2の課題を根本的に解決できない。 When the design utilization of the negative electrode is increased to 93%, even if the negative electrode uses graphite as the negative electrode active material, the influence of lithium deposition at the end of charging becomes significant. The discharge capacity of is low. Here, when surface-modified silicon is used as the negative electrode active material, miniaturization of the active material is promoted by repeated charge and discharge, so that the discharge capacity at the 200th cycle is further reduced. Further, in Comparative Examples 3 and 4 in which the conductive layer is formed only on the surface of such a negative electrode, the problems of Comparative Examples 1 and 2 cannot be fundamentally solved.

これら比較例に対し、第2の層3として合剤層の間に導電層を設けた実施例1〜5は、何れも良好な寿命特性を示した。中でも表面改質シリコンを用いた実施例2〜5の寿命特性が良好な理由として、第2の層3が単なる導電層として機能するにとどまらず、充放電に伴う表面改質シリコンの体積変化の緩衝層としても機能したことが挙げられる。   In contrast to these comparative examples, Examples 1 to 5 in which a conductive layer was provided between the mixture layers as the second layer 3 exhibited good life characteristics. Among them, the reason why the life characteristics of Examples 2 to 5 using the surface-modified silicon are good is that the second layer 3 not only functions as a mere conductive layer, but also the volume change of the surface-modified silicon accompanying charge / discharge. It can be mentioned that it also functions as a buffer layer.

実施例3および4に対してさらに第4の層5を設けた実施例6および7は、導電性のさらなる向上に基づくと見られる長寿命化の傾向が得られた。また実施例4に対して第2の層3の中にリチウムと合金化可能な材料を共存させた実施例8および9は、わずかではあるが設計容量の向上と長寿命化の傾向が得られた。   In Examples 6 and 7, in which the fourth layer 5 was further provided with respect to Examples 3 and 4, there was a tendency to prolong the lifetime, which seems to be based on further improvement in conductivity. Further, in Examples 8 and 9 in which a material capable of being alloyed with lithium is coexisted in the second layer 3 as compared with Example 4, there is a slight tendency to improve the design capacity and extend the life. It was.

本発明によれば、負極活物質の理論容量を最大限活用すること、および理論容量の大きい新規材料を問題なく活用することが可能となるので、高容量でサイクル寿命特性に優れたリチウム二次電池を提供することができるなど、本発明の利用可能性は大きい。   According to the present invention, it is possible to make maximum use of the theoretical capacity of the negative electrode active material and to use a new material having a large theoretical capacity without any problem, so that the lithium secondary having high capacity and excellent cycle life characteristics can be used. The applicability of the present invention is great because a battery can be provided.

本発明の請求項1の負極を表す概略断面図Schematic sectional view showing the negative electrode of claim 1 of the present invention 本発明の請求項3の負極を表す概略断面図Schematic sectional view showing the negative electrode of claim 3 of the present invention

符号の説明Explanation of symbols

1 集電体
2 第1の層
3 第2の層
4 第3の層
5 第4の層

DESCRIPTION OF SYMBOLS 1 Current collector 2 1st layer 3 2nd layer 4 3rd layer 5 4th layer

Claims (6)

電気化学的にリチウムを吸蔵・放出可能な材料を活物質とするリチウム二次電池用負極であって、
前記活物質を主剤とし、集電体上に形成された第1の層と、
導電剤を主剤とし、前記第1の層上に形成された第2の層と、
前記活物質を主剤とし、前記第2の層上に形成された第3の層とからなることを特徴とする、リチウム二次電池用負極。
An anode for a lithium secondary battery using an electrochemically active material capable of inserting and extracting lithium,
A first layer formed mainly on the active material and formed on the current collector;
A second layer formed on the first layer with a conductive agent as a main agent;
A negative electrode for a lithium secondary battery comprising the active material as a main ingredient and a third layer formed on the second layer.
前記第2の層が、ニッケル、コバルト、シリコン、錫および炭素から選ばれる少なくとも1種を含むことを特徴とする、請求項1記載のリチウム二次電池用負極。 2. The negative electrode for a lithium secondary battery according to claim 1, wherein the second layer contains at least one selected from nickel, cobalt, silicon, tin, and carbon. 前記第3の層上に、前記導電剤を主剤とする第4層が設けられたことを特徴とする、請求項1記載のリチウム二次電池用負極。 2. The negative electrode for a lithium secondary battery according to claim 1, wherein a fourth layer mainly comprising the conductive agent is provided on the third layer. 前記第2および第4の層が、ニッケル、コバルト、シリコン、錫および炭素から選ばれる少なくとも1種を含むことを特徴とする、請求項3記載のリチウム二次電池用負極。 The negative electrode for a lithium secondary battery according to claim 3, wherein the second and fourth layers contain at least one selected from nickel, cobalt, silicon, tin and carbon. 前記活物質が珪素を主成分とし、その表面の一部には炭素が付着していることを特徴する、請求項1〜4のいずれか1項に記載のリチウム二次電池用負極。 5. The negative electrode for a lithium secondary battery according to claim 1, wherein the active material contains silicon as a main component, and carbon is attached to a part of the surface thereof. 請求項1〜5のいずれか1項に記載の電極からなる負極と、正極と、非水電解質とを備えることを特徴とする、リチウム二次電池。

A lithium secondary battery comprising a negative electrode comprising the electrode according to any one of claims 1 to 5, a positive electrode, and a nonaqueous electrolyte.

JP2005004783A 2005-01-12 2005-01-12 Negative electrode for lithium secondary battery and lithium secondary battery Pending JP2006196247A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005004783A JP2006196247A (en) 2005-01-12 2005-01-12 Negative electrode for lithium secondary battery and lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005004783A JP2006196247A (en) 2005-01-12 2005-01-12 Negative electrode for lithium secondary battery and lithium secondary battery

Publications (1)

Publication Number Publication Date
JP2006196247A true JP2006196247A (en) 2006-07-27

Family

ID=36802155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005004783A Pending JP2006196247A (en) 2005-01-12 2005-01-12 Negative electrode for lithium secondary battery and lithium secondary battery

Country Status (1)

Country Link
JP (1) JP2006196247A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013114858A (en) * 2011-11-28 2013-06-10 Kyocera Corp Secondary battery
KR20160062025A (en) 2013-09-26 2016-06-01 도판 인사츠 가부시키가이샤 Negative electrode for nonaqueous electrolyte secondary batteries, nonaqueous electrolyte secondary battery, and method for producing negative electrode for nonaqueous electrolyte secondary batteries
JP2016173913A (en) * 2015-03-17 2016-09-29 古河機械金属株式会社 Negative electrode material, negative electrode for lithium ion battery, and lithium ion battery
CN109950471A (en) * 2017-12-21 2019-06-28 通用汽车环球科技运作有限责任公司 The method for the thick silicon electrode that generation time performance improves
JP2019192653A (en) * 2019-08-07 2019-10-31 古河機械金属株式会社 Negative electrode material, negative electrode for lithium ion battery, and lithium ion battery
CN110741493A (en) * 2017-11-24 2020-01-31 株式会社Lg化学 Negative electrode for lithium secondary battery and lithium secondary battery comprising same
EP3654423A4 (en) * 2017-08-18 2020-07-15 LG Chem, Ltd. Negative electrode for lithium secondary battery and lithium secondary battery comprising same
CN112290079A (en) * 2020-10-19 2021-01-29 江苏智泰新能源科技有限公司 Quick-charging lithium ion battery
CN114122320A (en) * 2021-11-25 2022-03-01 珠海冠宇电池股份有限公司 Electrode sheet and electrochemical device
WO2022055142A1 (en) * 2020-09-11 2022-03-17 주식회사 엘지에너지솔루션 Electrode assembly comprising separator having conductive layer formed thereon, and battery cell comprising same
CN114402459A (en) * 2019-11-15 2022-04-26 日本汽车能源株式会社 Positive electrode for lithium ion secondary battery and lithium ion secondary battery

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013114858A (en) * 2011-11-28 2013-06-10 Kyocera Corp Secondary battery
KR20160062025A (en) 2013-09-26 2016-06-01 도판 인사츠 가부시키가이샤 Negative electrode for nonaqueous electrolyte secondary batteries, nonaqueous electrolyte secondary battery, and method for producing negative electrode for nonaqueous electrolyte secondary batteries
JP2016173913A (en) * 2015-03-17 2016-09-29 古河機械金属株式会社 Negative electrode material, negative electrode for lithium ion battery, and lithium ion battery
US11283062B2 (en) 2017-08-18 2022-03-22 Lg Energy Solution, Ltd. Negative electrode for lithium secondary battery and lithium secondary battery comprising same
EP3654423A4 (en) * 2017-08-18 2020-07-15 LG Chem, Ltd. Negative electrode for lithium secondary battery and lithium secondary battery comprising same
CN110741493A (en) * 2017-11-24 2020-01-31 株式会社Lg化学 Negative electrode for lithium secondary battery and lithium secondary battery comprising same
EP3675242A4 (en) * 2017-11-24 2020-12-02 LG Chem, Ltd. Anode for lithium secondary battery and lithium secondary battery comprising same
US11502283B2 (en) 2017-11-24 2022-11-15 Lg Energy Solution, Ltd. Negative electrode for lithium secondary battery and lithium secondary battery including the same
CN109950471A (en) * 2017-12-21 2019-06-28 通用汽车环球科技运作有限责任公司 The method for the thick silicon electrode that generation time performance improves
JP2019192653A (en) * 2019-08-07 2019-10-31 古河機械金属株式会社 Negative electrode material, negative electrode for lithium ion battery, and lithium ion battery
CN114402459A (en) * 2019-11-15 2022-04-26 日本汽车能源株式会社 Positive electrode for lithium ion secondary battery and lithium ion secondary battery
WO2022055142A1 (en) * 2020-09-11 2022-03-17 주식회사 엘지에너지솔루션 Electrode assembly comprising separator having conductive layer formed thereon, and battery cell comprising same
KR20220034409A (en) * 2020-09-11 2022-03-18 주식회사 엘지에너지솔루션 Electrode Assembly Comprising Separator Having Conductive Layer and Battery Cell Comprising the Same
KR102630852B1 (en) * 2020-09-11 2024-01-30 주식회사 엘지에너지솔루션 Electrode Assembly Comprising Separator Having Conductive Layer and Battery Cell Comprising the Same
CN112290079A (en) * 2020-10-19 2021-01-29 江苏智泰新能源科技有限公司 Quick-charging lithium ion battery
CN114122320A (en) * 2021-11-25 2022-03-01 珠海冠宇电池股份有限公司 Electrode sheet and electrochemical device
CN114122320B (en) * 2021-11-25 2023-06-27 珠海冠宇电池股份有限公司 Electrode sheet and electrochemical device

Similar Documents

Publication Publication Date Title
JP2006196247A (en) Negative electrode for lithium secondary battery and lithium secondary battery
EP2587574A1 (en) Electrolytic copper foil, electrolytic copper foil for lithium ion secondary battery, electrode for lithium ion secondary battery using the electrolytic copper foil, and lithium ion secondary battery using the electrode
JP5744313B2 (en) Negative electrode active material for lithium secondary battery and method for producing the same
WO2019146292A1 (en) Positive electrode material and battery using same
JP2008210618A (en) Nonaqueous electrolyte secondary battery
US10074855B2 (en) Electrode for lithium secondary battery and lithium secondary battery comprising the same
KR102270871B1 (en) Negative electrode for lithium secondary battery, lithium secondary battery comprising the same, and preparing method thereof
JP2008186704A (en) Positive electrode plate for non-aqueous secondary battery and non-aqueous secondary battery
JP4497899B2 (en) Lithium secondary battery
JP2008059765A (en) Nonaqueous secondary battery
JP2015053152A (en) Nonaqueous electrolytic secondary battery
JP2009238663A (en) Nonaqueous secondary battery
KR20140024079A (en) Eletrolyte for high voltage lithium rechargeable battery and lithium rechargeable battery comprising the same
JP2014146473A (en) Nonaqueous electrolyte secondary battery and positive electrode active material for nonaqueous electrolyte secondary battery
JP2015201388A (en) Cathode active material for non-aqueous secondary battery and manufacturing method for the same
WO2015083262A1 (en) Negative electrode material for lithium ion secondary batteries, method for producing same, negative electrode for lithium ion secondary batteries, method for producing negative electrode for lithium ion secondary batteries, and lithium ion secondary battery
CN113994512B (en) Lithium secondary battery and method for manufacturing the same
CN110783529A (en) Lithium metal cathode for secondary battery and preparation and application thereof
JP2023513029A (en) Positive electrode active material precursor for secondary battery, positive electrode active material, and lithium secondary battery containing the same
KR20140058928A (en) The non-aqueous and high-capacity lithium secondary battery
KR102270864B1 (en) Negative electrode for lithium secondary battery, lithium secondary battery comprising the same, and preparing method thereof
JP6753069B2 (en) Non-aqueous electrolyte secondary battery
JP4747514B2 (en) Method for producing negative electrode for lithium ion secondary battery
JP3824111B2 (en) Non-aqueous electrolyte battery
KR20120022461A (en) Method of preparing positive active material for rechargeable lithium battery using iron(iii) oxide, positive active material for rechargeable lithium battery prepared by using the method, and rechargeable lithium battery including the same