WO2016009962A1 - Zirconium oxide, zirconium oxide dispersion liquid, zirconium oxide-containing composition, coating film and display device - Google Patents

Zirconium oxide, zirconium oxide dispersion liquid, zirconium oxide-containing composition, coating film and display device Download PDF

Info

Publication number
WO2016009962A1
WO2016009962A1 PCT/JP2015/069914 JP2015069914W WO2016009962A1 WO 2016009962 A1 WO2016009962 A1 WO 2016009962A1 JP 2015069914 W JP2015069914 W JP 2015069914W WO 2016009962 A1 WO2016009962 A1 WO 2016009962A1
Authority
WO
WIPO (PCT)
Prior art keywords
zirconium oxide
coating film
dispersion
zirconium
content
Prior art date
Application number
PCT/JP2015/069914
Other languages
French (fr)
Japanese (ja)
Inventor
哲朗 板垣
有紀 釘本
Original Assignee
住友大阪セメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=55078456&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2016009962(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 住友大阪セメント株式会社 filed Critical 住友大阪セメント株式会社
Priority to KR1020177001446A priority Critical patent/KR20170030533A/en
Priority to JP2016534408A priority patent/JP6547749B2/en
Priority to CN201580038130.7A priority patent/CN106573793A/en
Publication of WO2016009962A1 publication Critical patent/WO2016009962A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • C01G25/02Oxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D17/00Pigment pastes, e.g. for mixing in paints
    • C09D17/004Pigment pastes, e.g. for mixing in paints containing an inorganic pigment
    • C09D17/007Metal oxide
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity

Definitions

  • the present invention relates to zirconium oxide, zirconium oxide dispersion, zirconium oxide-containing composition, coating film, and display device.
  • Nanoparticles are used dispersed in paints, films, substrates and the like for the purpose of adjusting the refractive index, controlling scattering, imparting functionality such as hard coat properties, and improving mechanical strength.
  • a functional film of a plastic substrate used in a display device such as a liquid crystal display (LCD), a plasma display (PDP), or an electroluminescence display (EL) requires transparency, refractive index, mechanical properties, and the like.
  • a functional film is formed by applying a composition obtained by mixing a resin with inorganic oxide particles such as zirconia having a high refractive index and a resin to a plastic substrate (see, for example, Patent Document 1). .
  • zirconium oxide when zirconium oxide is aggregated in the matrix, functions such as transparency and smoothness are reduced in the functional film. Therefore, zirconium oxide is used in the form of a zirconium oxide dispersion previously dispersed in a solvent and mixed in a paint or a resin monomer.
  • the zirconium oxide contains a solvent, a desired coating, and a coating. In addition, it is required to exhibit excellent dispersibility even when contained in a substrate or the like.
  • zirconium oxide has a high refractive index (refractive index of 2.05 to 2.4), optical properties (transparency, etc.) of paints, coatings, and substrates after blending are likely to change due to scattering of visible light. Therefore, when used in optical applications, the zirconium oxide dispersion is required to have high dispersibility and stability.
  • a method for producing zirconium oxide for example, a method including a step of relaxing aggregation of secondary particles is known.
  • sulfuric acid or sulfate is dissolved in an aqueous solution of zirconium salt and heated to form an insoluble basic zirconium sulfate precipitate. After the basic zirconium sulfate is recovered, calcined and oxidized.
  • fine zirconium powder is obtained (see, for example, Patent Document 2).
  • an aqueous solution of a zirconium salt is used in which the hydrogen ion concentration is in the range of 0 to 2.5, the zirconium concentration is in the range of 0.1 mol / L to 2.0 mol / L, sulfuric acid
  • the ratio of root to zirconium (sulfate radical / zirconium) is in the range of 0.1 to 1.0, an insoluble zirconium salt precipitate containing sulfate radicals is produced from this aqueous solution.
  • a method is known in which the precipitate is reacted with an alkaline substance to produce a hydroxide, and the hydroxide is dried and roasted to obtain zirconium oxide (see, for example, Patent Document 3). ).
  • a method for producing zirconium oxide for example, a step of dissolving a water-soluble zirconium compound in water, adding ammonium sulfate to the solution to prepare an aqueous solution, and heating the aqueous solution to precipitate basic zirconium sulfate slurry Then, after the obtained slurry is treated with an alkaline substance, the obtained zirconium hydroxide is separated, and the zirconium oxide production method includes a step of calcining the zirconium hydroxide.
  • the zirconium concentration in the aqueous solution was 40 g / L to 70 g / L as ZrO 2
  • the ammonium sulfate concentration in the aqueous solution was 40 g / L to 70 g / L as SO 4
  • the ammonium sulfate concentration in the aqueous solution was SO 4 to 0.45 per mole of zirconia. Obtained by heating the aqueous solution, and a step of preparing the solution to a molar amount of 0.55 mol.
  • the slurry is rapidly neutralized with ammonia, filtered, washed, and then treated with aqueous ammonia to completely remove sulfate radicals from basic zirconium sulfate and change to zirconium hydroxide.
  • aqueous ammonia for example, at least one selected from aqueous ammonia, sodium hydroxide and potassium hydroxide is added to basic zirconium sulfate, and then the obtained product is heated to 500 ° C. or higher.
  • a method for obtaining sulfuric acid-supported zirconium oxide by firing with for example, see Patent Document 5).
  • Patent Documents 1 to 4 to obtain zirconium oxide by neutralizing basic zirconium sulfate is a method suitable for the production of zirconium oxide having a fine particle size excellent in dispersibility.
  • zirconium oxide is required to have not only dispersibility in a solvent but also high transparency when dispersed in a solvent.
  • coarse particles of zirconium oxide are present in the dispersion, there is a problem that the haze value (degree of cloudiness) of the dispersion increases. If the haze value of the dispersion liquid is high, the haze value of a paint or a coating film prepared using the dispersion liquid deteriorates. Therefore, a dispersion liquid with higher transparency and no haze is required particularly for optical applications. .
  • the present invention has been made in view of the above circumstances, and zirconium oxide, zirconium oxide dispersion, zirconium oxide-containing composition, coating film, which can obtain a dispersion having high transparency and excellent stability over time,
  • An object is to provide a display device.
  • the present inventors have found that the sodium content has a great influence on the dispersibility of zirconium oxide in the solvent, and have completed the present invention. .
  • the present invention includes sulfate ions and sodium, and is the ratio of the sulfate ion content to the sodium content (sulfate ion content (mg / kg)) / (sodium content (mg Zirconium oxide characterized in that / kg)) is 6 or less.
  • the present invention provides a zirconium oxide dispersion characterized in that the zirconium oxide of the present invention is dispersed in a dispersion medium.
  • the present invention also provides a zirconium oxide-containing composition comprising the zirconium oxide dispersion of the present invention and a binder component.
  • the present invention also provides a coating film characterized by being formed using the zirconium oxide-containing composition of the present invention.
  • the present invention provides a display device comprising the coating film of the present invention.
  • zirconium oxide of the present invention a zirconium oxide dispersion having a low liquid haze value and high transparency can be obtained.
  • the zirconium oxide dispersion of the present invention has a low liquid haze value, high transparency, excellent dispersion stability of zirconium oxide, and excellent stability of the dispersion for long-term storage.
  • the zirconium oxide-containing composition of the present invention contains the zirconium oxide dispersion of the present invention that has high transparency and excellent dispersion stability of zirconium oxide. For this reason, it has high transparency, excellent dispersion stability of zirconium oxide, and excellent stability of the composition for long-term storage.
  • the coating film of the present invention is excellent in transparency because it is formed using the zirconium oxide-containing composition of the present invention.
  • the display device of the present invention has excellent transparency because it includes the coating film of the present invention which is excellent in transparency.
  • zirconium oxide zirconium oxide dispersion, zirconium oxide-containing composition, coating film, and display device of the present invention. Note that this embodiment is specifically described in order to better understand the gist of the invention, and does not limit the present invention unless otherwise specified.
  • Zirconium oxide (ZrO 2 ) of this embodiment contains sulfate ions (SO 4 2 ⁇ ) and sodium, and is a ratio of the sulfate ion content to the sodium content (sulfate ion content (mg / Kg)) / (sodium content (mg / kg)) is 6 or less.
  • sodium may be contained in the state of ions (Na + ).
  • the zirconium oxide of the present embodiment preferably has (sulfate ion content (mg / kg)) / (sodium content (mg / kg)) of 5 or less, preferably 0.1 or more and 3 or less. It is more preferable.
  • the content of sulfate ions is preferably 1 ppm or more and 250 ppm or less, and more preferably 50 ppm or more and 150 ppm or less. If the content of sulfate ions is 250 ppm or less, when zirconium oxide is dispersed in the resin, the concentration of sulfate ions in the resin is appropriate, and there is no fear that the resin will be colored. Further, when the content of sulfate ions in zirconium oxide is 1 ppm or more, zirconium oxide having a fine particle diameter excellent in dispersibility is obtained.
  • the content of sodium is preferably 300 ppm or less, more preferably 100 ppm or less, and further preferably 25 ppm or less. Since the isoelectric point of zirconium oxide is pH 7-9, when producing a dispersion of zirconium oxide using a zeta potential, it is suitable to disperse zirconium oxide under acidic conditions. If the sodium content exceeds 300 ppm, it may be difficult to obtain an aqueous dispersion due to sodium ions eluted when zirconium oxide is suspended in water.
  • the average primary particle diameter of zirconium oxide is preferably 5 nm or more and 20 nm or less, and more preferably 10 nm or more and 15 nm or less. If the average primary particle diameter of zirconium oxide is 5 nm or more, zirconium oxide has appropriate crystallinity, and a desired refractive index can be easily obtained. Further, when zirconium oxide is dispersed in a solvent, the zirconium oxide hardly aggregates, and a more transparent dispersion can be obtained. On the other hand, if the average primary particle size is 20 nm or less, an appropriate dispersed particle size can be obtained when zirconium oxide is dispersed in a solvent, and a more transparent dispersion can be obtained.
  • the “average primary particle size” means the particle size of each individual particle.
  • the major axis of each zirconium oxide for example, the major axis of each of 100 or more zirconium oxides, preferably using a scanning electron microscope (SEM), a transmission electron microscope (TEM), etc.
  • SEM scanning electron microscope
  • TEM transmission electron microscope
  • the specific surface area of the zirconium oxide is not particularly limited, is preferably not more than 75 m 2 / g or more and 95 m 2 / g, more preferably not more than 80 m 2 / g or more and 95m 2 / g, 87m 2 / More preferably, it is at least g and at most 92 m 2 / g. If the specific surface area of zirconium oxide is 75 m 2 / g or more, an appropriate primary particle diameter of zirconium oxide can be obtained, and a more transparent dispersion can be obtained.
  • the specific surface area of zirconium oxide is 95 m 2 / g or less, it is possible to reduce the amount of a surface treatment agent such as a dispersant or a silane coupling agent, which is necessary for producing a dispersion.
  • a surface treatment agent such as a dispersant or a silane coupling agent
  • the method for producing zirconium oxide of the present embodiment is not particularly limited as long as it is a method for obtaining zirconium oxide by neutralizing basic zirconium sulfate.
  • a known method for producing zirconium oxide as described in Patent Documents 1 to 4 is used.
  • the method of obtaining zirconium oxide by neutralizing basic zirconium sulfate is obtained by obtaining zirconium oxide via fine particles of insoluble zirconium salt having a uniform particle diameter such as basic zirconium sulfate. Suitable for the production of zirconium oxide with a small diameter.
  • zirconium oxide In the case of producing zirconium oxide by the above method, it is necessary to convert the basic zirconium sulfate into a hydroxide with an alkali component, and then dry and calcinate. Although it does not specifically limit as an alkali component, For example, ammonia, sodium hydroxide, potassium hydroxide etc. are used. Of these, sodium hydroxide is preferably used from the viewpoints of wastewater treatment and cost.
  • zirconium oxide of the present embodiment it is considered that sulfate ions and sodium incorporated as impurities suppress the growth and necking of zirconium oxide particles and suppress the coarsening of zirconium oxide particles.
  • the zirconium oxide dispersion of this embodiment is a dispersion obtained by dispersing the zirconium oxide of this embodiment in a dispersion medium.
  • the dispersion medium in the present embodiment is not particularly limited as long as it can disperse the zirconium oxide of the present embodiment.
  • water, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, octanol and other alcohols ethyl acetate, butyl acetate, ethyl lactate, propylene glycol monomethyl ether acetate, propylene glycol monoethyl Esters such as ether acetate and ⁇ -butyrolactone, diethyl ether, ethylene glycol monomethyl ether (methyl cellosolve), ethylene glycol monoethyl ether (ethyl cellosolve), ethylene glycol monobutyl ether (butyl cellosolve), diethylene glycol monomethyl ether, and diethylene glycol monoethyl ether Ethers such as ether, acetone, methyl ethyl ether Ethers such as
  • the content of zirconium oxide in the zirconium oxide dispersion of the present embodiment is preferably 1% by mass or more and 60% by mass or less, and more preferably 20% by mass or more and based on the entire zirconium oxide dispersion of the present embodiment. More preferably, it is 50 mass% or less, More preferably, it is 30 mass% or more and 40 mass% or less. If the zirconium oxide content in the zirconium oxide dispersion is 1% by mass or more, when the zirconium oxide dispersion is blended with a paint or the like and used, the amount of the solvent in the paint becomes appropriate, and the cost of the solvent and the paint The cost at the time of removing a solvent from the coating film formed using can be suppressed.
  • zirconium oxide if the content of zirconium oxide is 60% by mass or less, the amount of zirconium oxide is appropriate, and the fluidity of the zirconium oxide dispersion does not decrease. Further, zirconium oxides hardly aggregate with each other, and good aging stability of the zirconium oxide dispersion can be maintained.
  • the liquid haze value is preferably 50% or less and 40% or less when the zirconium oxide content is 30% by mass and the optical path length is 2 mm. More preferred. Further, in the zirconium oxide dispersion of the present embodiment, the liquid haze value is preferably 25% or less and 20% or less when the content of zirconium oxide is 10% by mass and the optical path length is 2 mm. More preferably, it is more preferably 15% or less.
  • the “haze value” is the ratio (%) of diffuse transmitted light to the total light transmitted light
  • the “liquid haze value” is a haze meter (trade name: HAZE METER using a 2 mm cuvette). It is a haze value of a zirconium oxide dispersion measured by TC-H3DP (manufactured by Tokyo Denshoku).
  • zirconium oxide dispersion of the present embodiment may contain other components such as a dispersant and a water-soluble binder as long as the characteristics are not impaired.
  • the zirconium oxide dispersion liquid of this embodiment is a dispersion liquid in which zirconium oxide is dispersed using a zeta potential by adding an acid or alkali component, the dispersion in which zirconium oxide is dispersed using a dispersant. It may be a liquid.
  • anionic surfactants cationic surfactants, amphoteric surfactants, nonionic surfactants, silane coupling agents such as organoalkoxysilanes and organochlorosilanes, and the like are preferably used.
  • These dispersants are appropriately selected according to the particle diameter of zirconium oxide and the type of the dispersion medium. One of these dispersants may be used alone, or two or more thereof may be mixed and used.
  • a zirconium oxide dispersion is blended with a resin or the like to form a coating material, it is more preferable to use a dispersant having the same or similar structure as the substituent or structure of the resin from the viewpoint of compatibility with the resin.
  • a dispersant capable of binding to the resin such as a double bond dispersant.
  • a zirconium oxide dispersion is blended in an acrylic resin, it is preferable to treat the zirconium oxide with this dispersant using 3-acryloxypropyltrimethoxysilane as a dispersant.
  • polyvinyl alcohol PVA
  • polyvinyl pyrrolidone hydroxycellulose
  • polyacrylic acid polyacrylic acid
  • the zirconium oxide dispersion of this embodiment has a polymerization initiator, an antistatic agent, a refractive index regulator, an antioxidant, an ultraviolet absorber, a light stabilizer, a leveling agent, an extinguishing agent as long as the characteristics are not impaired.
  • General additives such as foaming agents, inorganic fillers, coupling agents, preservatives, plasticizers, flow regulators, thickeners, and pH adjusters may be appropriately contained.
  • a method for producing zirconium oxide dispersion As a manufacturing method of the zirconium oxide dispersion liquid of the present embodiment, a method of mechanically mixing the above-described materials as components of the zirconium oxide dispersion liquid and dispersing the zirconium oxide in the dispersion medium can be mentioned.
  • the dispersing device for example, a bead mill using zirconia beads, a ball mill, or the like is preferably used.
  • the time required for the dispersion treatment is not particularly limited, but may be sufficient as long as the zirconium oxide is uniformly dispersed in the dispersion medium.
  • the use of the zirconium oxide of this embodiment provides high transparency, excellent dispersion stability of zirconium oxide, and excellent stability of the dispersion for long-term storage.
  • the zirconium oxide-containing composition of this embodiment contains the zirconium oxide dispersion of this embodiment and a binder component.
  • Binder component Although a binder component is not specifically limited, for example, a resin monomer, a resin oligomer, a resin polymer, an organosilicon compound, its polymer, etc. can be used conveniently.
  • the binder component for use in a display device or the like is not particularly limited as long as it is a monomer, oligomer or polymer of a curable resin used for a general hard coat film.
  • Photocurable resin monomers, oligomers and polymers may be used, and thermosetting resin monomers, oligomers and polymers may be used.
  • Examples of the monomer of the photocurable resin include radical polymerization monomers such as monofunctional acrylates, bifunctional acrylates, trifunctional acrylates, and 4-6 functional acrylates, alicyclic epoxy resins, glycidyl ether epoxy resins, and urethane vinyl ethers, And cationic polymerization monomers such as polyester vinyl ether.
  • oligomer or polymer of the photocurable resin examples include radical polymerization oligomers or polymers such as epoxy acrylate, urethane acrylate, polyester acrylate, copolymer acrylate, polybutadiene acrylate, silicon acrylate, and amino resin acrylate, and alicyclic epoxy.
  • examples thereof include cationic polymerization oligomers or polymers such as resin, glycidyl ether epoxy resin, urethane vinyl ether, and polyester vinyl ether.
  • radically polymerizable monomers, oligomers, and polymers that can be easily blended with a plurality of components and can suppress curing failure by using a photoinitiator, a light stabilizer, and the like are preferably used.
  • a radical polymerization polyfunctional monomer such as dipentaristol hexaacrylate is preferably used.
  • a radical polymerization oligomer or polymer such as urethane acrylate is preferably used.
  • the monomers, oligomers and polymers of these photopolymerizable resins can be used alone, or two or more kinds can be mixed and used in accordance with the required function.
  • Examples of the functional group other than the acryloyl group and methacryloyl group of the polyfunctional monomer include a vinyl group, an allyl group, an allyl ether group, a styryl group, and a hydroxyl group.
  • polyfunctional acrylate examples include, for example, (meth) trimethylolpropane triacrylate, (meth) ditrimethylolpropane tetraacrylate, (meth) pentaerythritol triacrylate, (meth) pentaerythritol tetraacrylate, and (meth) di Examples include polyol polyacrylates such as pentaerythritol hexaacrylate, epoxy (meth) acrylates, polyester (meth) acrylates, urethane acrylates, and polysiloxane acrylates. These polyfunctional acrylates may be used alone or in combination of two or more.
  • the zirconium oxide-containing composition of the present embodiment has one or two functional groups as long as the effects of the invention are not hindered, and is not included in the above-mentioned monomers.
  • dispersant examples include anionic surfactants such as sulfate esters, carboxylic acids, and polycarboxylic acids, cationic surfactants such as quaternary salts of higher aliphatic amines, and higher fatty acid polyethylene glycol esters. And nonionic surfactants such as silicon surfactants, fluorine surfactants, and polymer surfactants having an amide ester bond.
  • the polymerization initiator is appropriately selected according to the type of monomer used.
  • a photopolymerization initiator is used.
  • the kind and amount of the photopolymerization initiator are appropriately selected according to the monomer of the photocurable resin to be used.
  • the photopolymerization initiator include benzophenone, diketone, acetophenone, benzoin, thioxanthone, quinone, benzyldimethyl ketal, alkylphenone, acylphosphine oxide, and phenylphosphine oxide.
  • a well-known photoinitiator is mentioned.
  • the viscosity is 0.2 mPa ⁇ s or more and 500 mPa ⁇ s or less in order to facilitate coating. Preferably, it is 0.5 mPa ⁇ s or more and 200 mPa ⁇ s or less. If the viscosity of the zirconium oxide-containing composition is 0.2 mPa ⁇ s or more, it is preferable because the film thickness when formed into a coating film does not become too thin and the film thickness can be easily controlled.
  • the viscosity of the zirconium oxide-containing composition is 500 mPa ⁇ s or less, it is preferable because the viscosity is not too high and handling of the zirconium oxide-containing composition at the time of coating becomes easy.
  • the viscosity of the zirconium oxide-containing composition is preferably adjusted to the above range by appropriately adding an organic solvent to the zirconium oxide-containing composition.
  • the organic solvent is not particularly limited as long as it is compatible with the above zirconium oxide-containing composition.
  • aliphatic hydrocarbons such as hexane, heptane and cyclohexane, aromatic hydrocarbons such as toluene and xylene, alcohols such as methanol, ethanol and propanol, halogenated hydrocarbons such as methylene chloride and ethylene chloride
  • Ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, 2-pentanone and isophorone
  • esters such as ethyl acetate and butyl acetate
  • cellosolves such as ethyl cellosolve
  • propylene glycol monomethyl ether and propylene glycol monoethyl ether
  • ethers such as amide solvents and ether ester solvents.
  • the zirconium oxide-containing composition of the present embodiment contains the zirconium oxide dispersion of the present invention that is highly transparent and excellent in dispersion stability of zirconium oxide. For this reason, transparency is high, the dispersion stability of zirconium oxide is excellent, and the stability of the composition for long-term storage is also excellent.
  • the method of mechanically mixing each material mentioned above as a component of a zirconium oxide containing composition is mentioned.
  • the mixing device include a stirrer, a self-revolving mixer, a homogenizer, and an ultrasonic homogenizer.
  • the coating film of this embodiment is formed using the zirconium oxide containing composition of this embodiment.
  • the film thickness of this coating film is appropriately adjusted depending on the application, but is usually preferably 0.01 ⁇ m or more and 20 ⁇ m or less, more preferably 0.5 ⁇ m or more and 10 ⁇ m or less, and more preferably 0.5 ⁇ m or more. And it is more preferable that it is 2 micrometers or less.
  • the manufacturing method of the coating film of this embodiment has the process of forming a coating film by apply
  • the coating method for forming a coating film include a bar coating method, a flow coating method, a dip coating method, a spin coating method, a roll coating method, a spray coating method, a meniscus coating method, a gravure coating method, a suction coating method, Ordinary wet coating methods such as brushing are used.
  • a method of appropriately selecting according to the kind of the binder component and performing thermal curing or photocuring is used.
  • the energy ray used for photocuring is not particularly limited as long as the coating is cured.
  • energy rays such as ultraviolet rays, far infrared rays, near ultraviolet rays, infrared rays, X-rays, ⁇ rays, electron beams, proton rays, and neutron rays are used.
  • ultraviolet rays such as ultraviolet rays, far infrared rays, near ultraviolet rays, infrared rays, X-rays, ⁇ rays, electron beams, proton rays, and neutron rays are used.
  • ultraviolet rays it is preferable to use ultraviolet rays because the curing speed is fast and the device is easily available and handled.
  • ultraviolet rays are emitted at an energy of 100 to 3,000 mJ / cm 2 using a high-pressure mercury lamp, metal halide lamp, xenon lamp, chemical lamp or the like that generates ultraviolet rays in a wavelength band of 200 nm to 500 nm. And the like.
  • zirconium oxide having a sharp particle size distribution in the present embodiment in other words, in the zirconium oxide-containing composition, the size of zirconium oxide is almost uniform, so that the oxidized film is oxidized in the coating film. Zirconium is easily filled uniformly without gaps. Therefore, the film-forming property of the coating film is excellent, and the performance at all locations in the film surface is uniform. Therefore, for example, since the refractive index in the film surface becomes almost uniform, the occurrence of uneven color in the coating film is suppressed, and the visibility can be improved when applied to a display device or the like.
  • zirconium oxide having a sharp particle size distribution since zirconium oxide having a sharp particle size distribution is used, zirconium oxide is uniformly filled in the film, and there are few voids in the film. Therefore, for example, when it is desired to improve the refractive index using zirconium oxide having a refractive index of 1.9 or more, it is possible to reduce the amount of zirconium oxide required to improve the refractive index as compared with the prior art. Therefore, even in a thin film of 10 nm to 200 nm, the entire coating film is uniformly filled with zirconium oxide, and the voids in the film can be reduced uniformly, so that the refractive index of the coating film can be improved. it can.
  • the coating film of this embodiment since the performance in all the places in a film surface becomes uniform, generation
  • the silicon compound has a functional group having a polymerizable unsaturated group
  • the metal oxide particles are bonded to the resin at the time of curing, so that they aggregate in the film at the time of curing or the particle distribution differs between the surface and the inside of the film.
  • a thick film of 1 ⁇ m or more is particularly preferable. That is, the coating film of this embodiment may be a thin film for adjusting the refractive index, or may be a thick film that can adjust the refractive index and also has a hard coat property, depending on the application. Can be used.
  • the coating film of the present embodiment is formed using the zirconium oxide-containing composition of the present embodiment, a coating film having excellent transparency and film forming property can be obtained.
  • the plastic substrate with a coating film of this embodiment has a base body (plastic base material) formed using a resin material and a coating film of this embodiment provided on at least one surface of the base body.
  • the plastic substrate with a coating film is obtained by coating the zirconium oxide-containing composition of the present embodiment on the substrate body using a known coating method, and then curing the coating film. It is done.
  • the substrate body is not particularly limited as long as it is a plastic substrate.
  • plastic substrate those formed from plastics such as polyethylene terephthalate, triacetyl cellulose, acrylic, acrylic-styryl copolymer, acrylonitrile-butadiene-styrene copolymer, polystyrene, polyethylene, polypropylene, polycarbonate, and vinyl chloride are used.
  • plastic substrate having optical transparency as the substrate body.
  • the substrate body may be in the form of a sheet or film, but is preferably in the form of a film.
  • the plastic substrate with a coating film of the present embodiment has a haze value of preferably 1.4% or less, more preferably 1.0% or less, when measured on the basis of air.
  • the “haze value” is a ratio (%) of diffuse transmitted light to total light transmitted light, and a haze meter NDH-2000 (manufactured by Nippon Denshoku Co., Ltd.) is used on the basis of air. It means a value measured based on the standard JIS-K-7136.
  • the plastic substrate with a coating film of this embodiment may be provided with a hard coat film between the plastic substrate and the coating film. Furthermore, the coating film may be further laminated with films having different performance such as refractive index.
  • the plastic substrate with a coating film of the present invention has the coating film of the present embodiment, it is excellent in transparency and film formability.
  • the display device of this embodiment includes one or both of the coating film of this embodiment and the plastic substrate with a coating film of this embodiment.
  • the display device is not particularly limited, but in this embodiment, a liquid crystal display device for a touch panel will be described.
  • the difference in the refractive index between the transparent substrate and the ITO electrode can be obtained by providing the coating film of this embodiment in which the zirconium oxide having a refractive index of 1.9 or more is selected as a layer between the transparent substrate and the ITO electrode.
  • the bone appearance phenomenon can be suppressed by relaxing.
  • the method of providing either one or both of the coating film of this embodiment and the plastic substrate with a coating film of this embodiment on the touch panel is not particularly limited, and may be implemented by a known method. For example, the structure etc. which patterned the ITO electrode on the coating-film surface of the plastic base material with a coating film of this embodiment, and laminated
  • the display device of this embodiment includes either one or both of the coating film of this embodiment and the plastic substrate with a coating film of this embodiment, which are excellent in transparency and film forming property. For this reason, since there is almost no dispersion
  • the aqueous zirconium oxychloride solution became cloudy, confirming the formation of basic zirconium sulfate insoluble in water.
  • a 1N aqueous sodium hydroxide solution was added to the mixed solution to adjust the pH of the mixed solution to 9-10.
  • the mixed solution was subjected to solid-liquid separation to recover a solid content.
  • the solid content was added again to a 1N aqueous sodium hydroxide solution to remove sulfate ions from the solid content.
  • the BET specific surface area of the obtained zirconium oxide was measured by a BET multipoint method using a nitrogen adsorption method using a specific surface area meter (Belsorb II, manufactured by Nippon Bell Co., Ltd.). The results are shown in Table 1.
  • the content of sulfate ion (SO 4 2 ⁇ ) and the content of sodium (Na) in zirconium oxide were measured by combustion ion chromatography. Specifically, zirconium oxide was suspended in pure water and held at 100 ° C. for 30 minutes, and then the supernatant of the suspension was evaluated by combustion ion chromatography.
  • Zerorconium oxide dispersion 30% by mass of the obtained zirconium oxide, 4.5% by mass of 3-methacryloxypropyltrimethoxysilane, 0.4% by mass of an amine dispersant, and 65.1% by mass of methyl isobutyl ketone (MIBK) were mixed. Then, the dispersion process was performed using the bead mill and the zirconium oxide dispersion liquid of Example 1 was obtained.
  • MIBK methyl isobutyl ketone
  • Example 2 The same procedure as in Example 1 was repeated except that the solid-liquid separation treatment and the sulfate ion removal treatment were repeated 5 sets, and the treatment of washing the solid content recovered from the mixed solution with pure water was repeated twice to obtain zirconium hydroxide.
  • zirconium oxide of Example 2 was obtained.
  • the BET specific surface area, the sulfate ion content, the sodium content, and the ratio of the sulfate ion content to the sodium content of the obtained zirconium oxide were measured in the same manner as in Example 1. The results are shown in Table 1.
  • a zirconium oxide dispersion of Example 2 was obtained in the same manner as Example 1.
  • the liquid haze value of the obtained zirconium oxide dispersion was measured in the same manner as in Example 1.
  • the results are shown in Table 1.
  • Example 3 In the same manner as in Example 1, except that solid-liquid separation and sulfate ion removal treatment were repeated three sets, and the treatment of washing the solid content recovered from the mixed solution with pure water was repeated three times to obtain zirconium hydroxide.
  • the zirconium oxide of Example 3 was obtained.
  • the BET specific surface area, the sulfate ion content, the sodium content, and the ratio of the sulfate ion content to the sodium content of the obtained zirconium oxide were measured in the same manner as in Example 1. The results are shown in Table 1.
  • a zirconium oxide dispersion of Example 3 was obtained.
  • the liquid haze value of the obtained zirconium oxide dispersion was measured in the same manner as in Example 1. The results are shown in Table 1.
  • Example 4 The same procedure as in Example 1 was repeated except that solid-liquid separation and sulfate ion removal treatment were repeated 4 sets, and the solid content recovered from the mixed solution was washed 3 times with pure water to obtain zirconium hydroxide.
  • the zirconium oxide of Example 4 was obtained.
  • the BET specific surface area, the sulfate ion content, the sodium content, and the ratio of the sulfate ion content to the sodium content of the obtained zirconium oxide were measured in the same manner as in Example 1. The results are shown in Table 1.
  • the zirconium oxide dispersion of Example 4 was obtained.
  • the liquid haze value of the obtained zirconium oxide dispersion was measured in the same manner as in Example 1. The results are shown in Table 1.
  • Example 1 In Example 1, after one set of solid-liquid separation processing and sulfate ion removal processing with sodium hydroxide was performed, pure water cleaning processing was performed once, whereas pure water cleaning processing was performed twice. Was obtained in the same manner as in Example 1 to obtain zirconium oxide of Comparative Example 1. The BET specific surface area, the sulfate ion content, the sodium content, and the ratio of the sulfate ion content to the sodium content of the obtained zirconium oxide were measured in the same manner as in Example 1. The results are shown in Table 1. Further, a zirconium oxide dispersion of Comparative Example 1 was obtained in the same manner as Example 1. The liquid haze value of the obtained zirconium oxide dispersion was measured in the same manner as in Example 1. The results are shown in Table 1.
  • Example 2 In Example 1, one set of solid-liquid separation treatment and sulfate ion removal treatment with sodium hydroxide was performed and then pure water washing treatment was performed once, whereas solid-liquid separation treatment and sodium hydroxide Zirconium oxide of Comparative Example 2 was obtained in the same manner as in Example 1 except that two sets of sulfate ion removal treatment were performed and then pure water washing treatment was performed three times.
  • the BET specific surface area, the sulfate ion content, the sodium content, and the ratio of the sulfate ion content to the sodium content of the obtained zirconium oxide were measured in the same manner as in Example 1. The results are shown in Table 1. Further, in the same manner as in Example 1, a zirconium oxide dispersion of Comparative Example 2 was obtained. The liquid haze value of the obtained zirconium oxide dispersion was measured in the same manner as in Example 1. The results are shown in Table 1.
  • the zirconium oxide of Examples 1 to 4 is the ratio of the sulfate ion content to the sodium content ( Since the sulfate ion content (mg / kg) / (sodium content (mg / kg)) was 4.6 or less, the liquid haze value was low, the transparency was high, and the dispersion stability was excellent. It was found that a zirconium dispersion was obtained.
  • the liquid haze value was measured and found to be almost the same as the value before storage, and the zirconium oxides of Examples 1 to 4 It was confirmed that the dispersion was excellent in long-term storage stability.
  • Example 5 "Zirconium oxide-containing composition" 82.7% by mass of the zirconium oxide dispersion of Example 1, 10.6% by mass of urethane acrylate (weight average molecular weight (MW) 20,000 to 40,000), 0.6% by mass of polymerization initiator, polymerization
  • the zirconium oxide-containing composition of Example 5 was obtained by mixing 0.1% by mass of the accelerator and 6% by mass of isopropyl alcohol. This composition had components other than the solvent, that is, a solid content of 40% by mass, and the content of zirconium oxide in the solid content of 100% by mass was 62% by mass.
  • the resulting zirconium oxide-containing composition was applied to a 50 ⁇ m thick polyethylene terephthalate film by a bar coating method so that the dry film thickness was 1 ⁇ m, and dried by heating at 90 ° C. for 1 minute to form a coating film. .
  • a high pressure mercury lamp 120 W / cm
  • the coating film was exposed to ultraviolet light with an energy of 250 mJ / cm 2 , and the coating film was cured to obtain a plastic substrate with a coating film of Example 5.
  • Total light transmittance, haze value The total light transmittance and haze value of the plastic substrate with a coating film were measured based on Japanese Industrial Standard JIS-K-7136 using a haze meter NDH-2000 (manufactured by Nippon Denshoku Co., Ltd.) on the basis of air. .
  • a test piece of 100 mm ⁇ 100 mm was produced from the produced plastic substrate with a coating film, and the test piece was used. As a result, the total light transmittance was 89.3%, and the haze value was 0.73%.
  • Example 6 "Zirconium oxide dispersion" After mixing 40% by mass of zirconium oxide of Example 1, 6% by mass of 3-methacryloxypropyltrimethoxysilane, 0.4% by mass of an amine dispersant, and 53.6% by mass of methyl isobutyl ketone (MIBK). Then, a dispersion treatment was performed using a bead mill to obtain a zirconium oxide dispersion of Example 5. The liquid haze value of the obtained zirconium oxide dispersion was measured in the same manner as in Example 1. As a result, it was 18.6%.
  • MIBK methyl isobutyl ketone
  • zirconium oxide-containing composition The zirconium oxide dispersion of Example 6 was 71.3 mass%, dipentaerythritol hexaacrylate was 16.2 mass%, the polymerization initiator was 0.6 mass%, the polymerization accelerator was 0.1 mass%, and isopropyl alcohol.
  • a zirconium oxide-containing composition of Example 6 was obtained by mixing 5% by mass and 6.8% by mass of methyl isobutyl ketone. This composition had components other than the solvent, that is, a solid content of 50% by mass, and the content of zirconium oxide in the solid content of 100% by mass was 57% by mass.
  • Plastic substrate with coating film A plastic substrate with a coating film of Example 6 was obtained in the same manner as in Example 5 except that the zirconium oxide-containing composition of Example 6 was used instead of the zirconium oxide-containing composition of Example 5.
  • the total light transmittance and haze value of the plastic substrate with a coating film were evaluated. As a result, the total light transmittance was 89.5%, and the haze value was 0.85%.
  • the scratch resistance of the plastic substrate with a coating film of Example 6 was evaluated. As a result, when the number of scratches was counted visually, it was 10 or less.
  • the zirconium oxide of the present invention can be applied to all industrial uses in which a zirconium oxide dispersion is conventionally used. For example, it can be applied to optical film uses, house exterior uses, heat ray shielding uses, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Inorganic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Paints Or Removers (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Abstract

Provided are: a zirconium oxide which is capable of providing a dispersion liquid that has high transparency and excellent long-term stability; a zirconium oxide dispersion liquid; a zirconium oxide-containing composition; a coating film; and a display device. The present invention provides a zirconium oxide which is characterized by containing sulfate ions and sodium and having a ratio of the sulfate ion content to the sodium content, namely a (sulfate ion content (mg/kg))/(sodium content (mg/kg)) ratio of 6 or less.

Description

酸化ジルコニウム、酸化ジルコニウム分散液、酸化ジルコニウム含有組成物、塗膜、および表示装置Zirconium oxide, zirconium oxide dispersion, zirconium oxide-containing composition, coating film, and display device
 本発明は、酸化ジルコニウム、酸化ジルコニウム分散液、酸化ジルコニウム含有組成物、塗膜、および表示装置に関する。 The present invention relates to zirconium oxide, zirconium oxide dispersion, zirconium oxide-containing composition, coating film, and display device.
 ナノ粒子は、屈折率の調整、散乱制御、ハードコート性等の機能性の付与、機械的強度の向上等を目的として、塗料、膜、基材中等に分散して用いられる。
 例えば、液晶ディスプレイ(LCD)、プラズマディスプレイ(PDP)、エレクトロルミネッセンスディスプレイ(EL)等の表示装置で用いられるプラスチック基材の機能性膜には、透明性、屈折率、機械的特性等が求められる。そこで、プラスチック基材に、屈折率が高いジルコニア等の無機酸化物粒子と樹脂とを混合した組成物を塗布して、機能性膜を設けることが行われている(例えば、特許文献1参照)。
 また、発光ダイオード(LED)を覆う封止樹脂に、屈折率が高いジルコニウムを加えて、封止樹脂の屈折率を制御ことによって、発光した光をより効率的に取り出すことが可能となり、LEDの輝度が向上することが知られている。
Nanoparticles are used dispersed in paints, films, substrates and the like for the purpose of adjusting the refractive index, controlling scattering, imparting functionality such as hard coat properties, and improving mechanical strength.
For example, a functional film of a plastic substrate used in a display device such as a liquid crystal display (LCD), a plasma display (PDP), or an electroluminescence display (EL) requires transparency, refractive index, mechanical properties, and the like. . Therefore, a functional film is formed by applying a composition obtained by mixing a resin with inorganic oxide particles such as zirconia having a high refractive index and a resin to a plastic substrate (see, for example, Patent Document 1). .
In addition, by adding zirconium having a high refractive index to the sealing resin that covers the light emitting diode (LED) and controlling the refractive index of the sealing resin, it becomes possible to extract emitted light more efficiently. It is known that the brightness is improved.
 上記の用途において、マトリックス中で酸化ジルコニウムが凝集していると、機能性膜において、透明性や平滑性等の機能が低下する。そのため、酸化ジルコニウムは、予め溶媒に分散した酸化ジルコニウム分散液の状態で、塗料や樹脂モノマー中等に混合して用いられる。
 また、酸化ジルコニウム分散液と樹脂とを混合する工程、塗膜の乾燥工程、溶剤を除去する工程等において酸化ジルコニウムが凝集することを防ぐために、酸化ジルコニウムは、溶媒、目的とする塗料、塗膜、基材等に含まれた場合にも優れた分散性を示すことが求められる。特に、酸化ジルコニウムは屈折率が高い(屈折率2.05~2.4)ので、可視光の散乱によって配合後の塗料、塗膜、基材等の光学特性(透明性等)が変化しやすいため、光学用途で使用する場合、酸化ジルコニウム分散液には、高い分散性、安定性が求められる。
In the above application, when zirconium oxide is aggregated in the matrix, functions such as transparency and smoothness are reduced in the functional film. Therefore, zirconium oxide is used in the form of a zirconium oxide dispersion previously dispersed in a solvent and mixed in a paint or a resin monomer.
In order to prevent zirconium oxide from agglomerating in the step of mixing the zirconium oxide dispersion and the resin, the step of drying the coating, the step of removing the solvent, etc., the zirconium oxide contains a solvent, a desired coating, and a coating. In addition, it is required to exhibit excellent dispersibility even when contained in a substrate or the like. In particular, since zirconium oxide has a high refractive index (refractive index of 2.05 to 2.4), optical properties (transparency, etc.) of paints, coatings, and substrates after blending are likely to change due to scattering of visible light. Therefore, when used in optical applications, the zirconium oxide dispersion is required to have high dispersibility and stability.
 酸化ジルコニウムの製造方法としては、例えば、2次粒子が凝集するのを緩和する工程を含む方法が知られている。この方法は、ジルコニウム塩の水溶液に硫酸または硫酸塩を溶解して加熱することにより、不溶性の塩基性硫酸ジルコニウムの沈殿を生成し、その塩基性硫酸ジルコニウムを回収した後、仮焼して、酸化ジルコニウムの微粉を得る方法である(例えば、特許文献2参照)。 As a method for producing zirconium oxide, for example, a method including a step of relaxing aggregation of secondary particles is known. In this method, sulfuric acid or sulfate is dissolved in an aqueous solution of zirconium salt and heated to form an insoluble basic zirconium sulfate precipitate. After the basic zirconium sulfate is recovered, calcined and oxidized. In this method, fine zirconium powder is obtained (see, for example, Patent Document 2).
 また、酸化ジルコニウムの製造方法としては、例えば、ジルコニウム塩の水溶液を、水素イオン濃度がpHで0~2.5の範囲、ジルコニウム濃度が0.1mol/L~2.0mol/Lの範囲、硫酸根とジルコニウムとの比(硫酸根/ジルコニウム)が0.1~1.0の範囲となるように調整することによって、この水溶液から硫酸根を含む不溶性のジルコニウム塩の沈殿を生成する。ついで、その沈殿と、アルカリ性物質とを反応させて水酸化物を生成し、その水酸化物を乾燥し、焙焼して、酸化ジルコニウムを得る方法が知られている(例えば、特許文献3参照)。 As a method for producing zirconium oxide, for example, an aqueous solution of a zirconium salt is used in which the hydrogen ion concentration is in the range of 0 to 2.5, the zirconium concentration is in the range of 0.1 mol / L to 2.0 mol / L, sulfuric acid By adjusting the ratio of root to zirconium (sulfate radical / zirconium) to be in the range of 0.1 to 1.0, an insoluble zirconium salt precipitate containing sulfate radicals is produced from this aqueous solution. Next, a method is known in which the precipitate is reacted with an alkaline substance to produce a hydroxide, and the hydroxide is dried and roasted to obtain zirconium oxide (see, for example, Patent Document 3). ).
 また、酸化ジルコニウムの製造方法としては、例えば、水溶性ジルコニウム化合物を水に溶解し、その溶液に硫酸アンモニウムを添加して水溶液を調製する工程と、その水溶液を加熱して塩基性硫酸ジルコニウムの沈殿スラリーを得て、ついで得られたスラリーをアルカリ性物質で処理した後、得られた水酸化ジルコニウムを分離する工程と、その水酸化ジルコニウムを仮焼する工程とを有する酸化ジルコニウムの製造方法において、水溶液中のジルコニウムの濃度がZrOとして40g/L~70g/L、水溶液中の硫酸アンモニウムの濃度がSOとして40g/L~70g/L、水溶液中の硫酸アンモニウム濃度がSOとしてジルコニア1モル当り0.45モル~0.55モルとなるように調製する工程と、水溶液を加熱して得られたスラリーをアンモニアによって急速に中和し、ろ過、洗浄した後、アンモニア水で処理して、塩基性硫酸ジルコニウムから硫酸根を完全に脱離し、水酸化ジルコニウムに変化させる工程とを有する方法が知られている(例えば、特許文献4参照)。
 また、酸化ジルコニウムの製造方法としては、例えば、塩基性硫酸ジルコニウムに、アンモニア水、水酸化ナトリウムおよび水酸化カリウムから選択される少なくとも1種を添加し、次いで、得られた生成物を500℃以上で焼成して、硫酸担持酸化ジルコニウムを得る方法が知られている(例えば、特許文献5参照)。
In addition, as a method for producing zirconium oxide, for example, a step of dissolving a water-soluble zirconium compound in water, adding ammonium sulfate to the solution to prepare an aqueous solution, and heating the aqueous solution to precipitate basic zirconium sulfate slurry Then, after the obtained slurry is treated with an alkaline substance, the obtained zirconium hydroxide is separated, and the zirconium oxide production method includes a step of calcining the zirconium hydroxide. The zirconium concentration in the aqueous solution was 40 g / L to 70 g / L as ZrO 2 , the ammonium sulfate concentration in the aqueous solution was 40 g / L to 70 g / L as SO 4 , and the ammonium sulfate concentration in the aqueous solution was SO 4 to 0.45 per mole of zirconia. Obtained by heating the aqueous solution, and a step of preparing the solution to a molar amount of 0.55 mol. The slurry is rapidly neutralized with ammonia, filtered, washed, and then treated with aqueous ammonia to completely remove sulfate radicals from basic zirconium sulfate and change to zirconium hydroxide. It is known (see, for example, Patent Document 4).
As a method for producing zirconium oxide, for example, at least one selected from aqueous ammonia, sodium hydroxide and potassium hydroxide is added to basic zirconium sulfate, and then the obtained product is heated to 500 ° C. or higher. There is known a method for obtaining sulfuric acid-supported zirconium oxide by firing with (for example, see Patent Document 5).
特許第5515828号公報Japanese Patent No. 5515828 米国特許第2564522号明細書US Pat. No. 2,564,522 特公平2-8967号公報Japanese Patent Publication No. 2-8967 特開平1-270515号公報JP-A-1-270515 特開平11-263621号公報Japanese Patent Laid-Open No. 11-263621
 特許文献1~4に記載されている、塩基性硫酸ジルコニウムを中和して酸化ジルコニウムを得る方法は、分散性に優れた微小粒径の酸化ジルコニウムの製造に適した方法である。しかしながら、技術の進歩に伴い、特に光学関連用途では、酸化ジルコニウムには、溶媒に対する分散性だけでなく、溶媒に分散したときの透明性が高いことが求められている。
 また、分散液中に酸化ジルコニウムの粗大粒子が存在すると、分散液のヘーズ値(曇りの度合)が高くなるという課題がある。分散液のヘーズ値が高いと、分散液を用いて作製した塗料や塗膜のヘーズ値が悪化するため、特に光学関連用途では、より透明性が高く、曇りのない分散液が求められている。
The method described in Patent Documents 1 to 4 to obtain zirconium oxide by neutralizing basic zirconium sulfate is a method suitable for the production of zirconium oxide having a fine particle size excellent in dispersibility. However, with the advancement of technology, especially in optical-related applications, zirconium oxide is required to have not only dispersibility in a solvent but also high transparency when dispersed in a solvent.
In addition, when coarse particles of zirconium oxide are present in the dispersion, there is a problem that the haze value (degree of cloudiness) of the dispersion increases. If the haze value of the dispersion liquid is high, the haze value of a paint or a coating film prepared using the dispersion liquid deteriorates. Therefore, a dispersion liquid with higher transparency and no haze is required particularly for optical applications. .
 本発明は、上記事情に鑑みてなされたものであって、透明性が高く、経時安定性に優れる分散液を得ることができる酸化ジルコニウム、酸化ジルコニウム分散液、酸化ジルコニウム含有組成物、塗膜、表示装置を提供することを目的とする。 The present invention has been made in view of the above circumstances, and zirconium oxide, zirconium oxide dispersion, zirconium oxide-containing composition, coating film, which can obtain a dispersion having high transparency and excellent stability over time, An object is to provide a display device.
 本発明者等は、上記課題を解決するために鋭意検討を重ねた結果、ナトリウムの含有量が、溶媒に対する酸化ジルコニウムの分散性に大きな影響を及ぼすことを見出し、本発明を完成するに至った。 As a result of intensive studies to solve the above problems, the present inventors have found that the sodium content has a great influence on the dispersibility of zirconium oxide in the solvent, and have completed the present invention. .
 すなわち、本発明は、硫酸イオンとナトリウムとを含み、硫酸イオンの含有量と、ナトリウムの含有量との比である(硫酸イオンの含有量(mg/kg))/(ナトリウムの含有量(mg/kg))が6以下であることを特徴とする酸化ジルコニウムを提供する。 That is, the present invention includes sulfate ions and sodium, and is the ratio of the sulfate ion content to the sodium content (sulfate ion content (mg / kg)) / (sodium content (mg Zirconium oxide characterized in that / kg)) is 6 or less.
 また、本発明は、本発明の酸化ジルコニウムが、分散媒に分散されてなることを特徴とする酸化ジルコニウム分散液を提供する。 Further, the present invention provides a zirconium oxide dispersion characterized in that the zirconium oxide of the present invention is dispersed in a dispersion medium.
 また、本発明は、本発明の酸化ジルコニウム分散液と、バインダー成分とを含有してなることを特徴とする酸化ジルコニウム含有組成物を提供する。 The present invention also provides a zirconium oxide-containing composition comprising the zirconium oxide dispersion of the present invention and a binder component.
 また、本発明は、本発明の酸化ジルコニウム含有組成物を用いて形成されたことを特徴とする塗膜を提供する。 The present invention also provides a coating film characterized by being formed using the zirconium oxide-containing composition of the present invention.
 さらに、本発明は、本発明の塗膜を備えたことを特徴とする表示装置を提供する。 Furthermore, the present invention provides a display device comprising the coating film of the present invention.
 本発明の酸化ジルコニウムによれば、液ヘーズ値が低く、透明性が高い酸化ジルコニウム分散液を得ることができる。 According to the zirconium oxide of the present invention, a zirconium oxide dispersion having a low liquid haze value and high transparency can be obtained.
 本発明の酸化ジルコニウム分散液は、液ヘーズ値が低く、透明性が高く、酸化ジルコニウムの分散安定性に優れ、分散液の長期保管の安定性に優れる。 The zirconium oxide dispersion of the present invention has a low liquid haze value, high transparency, excellent dispersion stability of zirconium oxide, and excellent stability of the dispersion for long-term storage.
 本発明の酸化ジルコニウム含有組成物は、透明性が高く、酸化ジルコニウムの分散安定性に優れる、本発明の酸化ジルコニウム分散液を含有する。このため、透明性が高く、酸化ジルコニウムの分散安定性に優れ、組成物の長期保管の安定性に優れる。 The zirconium oxide-containing composition of the present invention contains the zirconium oxide dispersion of the present invention that has high transparency and excellent dispersion stability of zirconium oxide. For this reason, it has high transparency, excellent dispersion stability of zirconium oxide, and excellent stability of the composition for long-term storage.
 本発明の塗膜は、本発明の酸化ジルコニウム含有組成物を用いて形成されているため、透明性に優れている。 The coating film of the present invention is excellent in transparency because it is formed using the zirconium oxide-containing composition of the present invention.
 本発明の表示装置は、透明性に優れる、本発明の塗膜を備えているので、視認性に優れている。 The display device of the present invention has excellent transparency because it includes the coating film of the present invention which is excellent in transparency.
 本発明の酸化ジルコニウム、酸化ジルコニウム分散液、酸化ジルコニウム含有組成物、塗膜、および表示装置の形態について説明する。
 なお、本実施の形態は、発明の趣旨をより良く理解させるために具体的に説明するものであり、特に指定のない限り、本発明を限定するものではない。
The forms of the zirconium oxide, zirconium oxide dispersion, zirconium oxide-containing composition, coating film, and display device of the present invention will be described.
Note that this embodiment is specifically described in order to better understand the gist of the invention, and does not limit the present invention unless otherwise specified.
[酸化ジルコニウム]
 本実施形態の酸化ジルコニウム(ZrO)は、硫酸イオン(SO 2-)とナトリウムとを含み、硫酸イオンの含有量と、ナトリウムの含有量との比である(硫酸イオンの含有量(mg/kg))/(ナトリウムの含有量(mg/kg))が6以下である。なお、ナトリウムは、イオン(Na)の状態で含まれていてもよい。
[Zirconium oxide]
Zirconium oxide (ZrO 2 ) of this embodiment contains sulfate ions (SO 4 2− ) and sodium, and is a ratio of the sulfate ion content to the sodium content (sulfate ion content (mg / Kg)) / (sodium content (mg / kg)) is 6 or less. In addition, sodium may be contained in the state of ions (Na + ).
 本実施形態の酸化ジルコニウムは、(硫酸イオンの含有量(mg/kg))/(ナトリウムの含有量(mg/kg))が5以下であることが好ましく、0.1以上かつ3以下であることがより好ましい。 The zirconium oxide of the present embodiment preferably has (sulfate ion content (mg / kg)) / (sodium content (mg / kg)) of 5 or less, preferably 0.1 or more and 3 or less. It is more preferable.
 本実施形態の酸化ジルコニウムにおいて、硫酸イオンの含有量は、1ppm以上かつ250ppm以下であることが好ましく、50ppm以上かつ150ppm以下であることがより好ましい。
 硫酸イオンの含有量が、250ppm以下であれば、酸化ジルコニウムを樹脂中に分散したとき、樹脂中の硫酸イオン濃度が適度であり、樹脂が着色するおそれがない。また、酸化ジルコニウム中の硫酸イオンの含有量を1ppm以上であれば、分散性に優れた微小粒径の酸化ジルコニウムとなる。
In the zirconium oxide of this embodiment, the content of sulfate ions is preferably 1 ppm or more and 250 ppm or less, and more preferably 50 ppm or more and 150 ppm or less.
If the content of sulfate ions is 250 ppm or less, when zirconium oxide is dispersed in the resin, the concentration of sulfate ions in the resin is appropriate, and there is no fear that the resin will be colored. Further, when the content of sulfate ions in zirconium oxide is 1 ppm or more, zirconium oxide having a fine particle diameter excellent in dispersibility is obtained.
 本実施形態の酸化ジルコニウムにおいて、ナトリウムの含有量は、300ppm以下であることが好ましく、100ppm以下であることがより好ましく、25ppm以下であることがさらに好ましい。
 酸化ジルコニウムの等電点はpH7~9であるため、ゼータ電位を用いて酸化ジルコニウムの分散液を作製する場合、酸性条件下で、酸化ジルコニウムを分散することが適している。ナトリウムの含有量が300ppmを超えると、水に酸化ジルコニウムを懸濁させた場合に溶出したナトリウムイオンによって、水系分散液を得ることが困難となるおそれがある。
In the zirconium oxide of the present embodiment, the content of sodium is preferably 300 ppm or less, more preferably 100 ppm or less, and further preferably 25 ppm or less.
Since the isoelectric point of zirconium oxide is pH 7-9, when producing a dispersion of zirconium oxide using a zeta potential, it is suitable to disperse zirconium oxide under acidic conditions. If the sodium content exceeds 300 ppm, it may be difficult to obtain an aqueous dispersion due to sodium ions eluted when zirconium oxide is suspended in water.
 酸化ジルコニウムの平均一次粒子径は、5nm以上かつ20nm以下であることが好ましく、10nm以上かつ15nm以下であることがより好ましい。
 酸化ジルコニウムの平均一次粒子径が5nm以上であれば、酸化ジルコニウムが適度な結晶性を有し、目的とする屈折率が容易に得られる。また、溶媒に酸化ジルコニウムを分散したときに、酸化ジルコニウムが凝集し難く、より透明性の高い分散液が得られる。一方、平均一次粒子径が20nm以下であれば、溶媒に酸化ジルコニウムを分散したとき適度な分散粒径が得られ、より透明性の高い分散液が得られる。
The average primary particle diameter of zirconium oxide is preferably 5 nm or more and 20 nm or less, and more preferably 10 nm or more and 15 nm or less.
If the average primary particle diameter of zirconium oxide is 5 nm or more, zirconium oxide has appropriate crystallinity, and a desired refractive index can be easily obtained. Further, when zirconium oxide is dispersed in a solvent, the zirconium oxide hardly aggregates, and a more transparent dispersion can be obtained. On the other hand, if the average primary particle size is 20 nm or less, an appropriate dispersed particle size can be obtained when zirconium oxide is dispersed in a solvent, and a more transparent dispersion can be obtained.
 本実施形態において、「平均一次粒子径」とは、個々の粒子そのものの粒子径を意味する。平均一次粒子径の測定方法としては、走査型電子顕微鏡(SEM)や透過型電子顕微鏡(TEM)等を用いて、酸化ジルコニウムそれぞれの長径、例えば、100個以上の酸化ジルコニウムそれぞれの長径、好ましくは500個の酸化ジルコニウムそれぞれの長径を測定し、その算術平均値を算出する方法が挙げられる。 In the present embodiment, the “average primary particle size” means the particle size of each individual particle. As a method for measuring the average primary particle diameter, the major axis of each zirconium oxide, for example, the major axis of each of 100 or more zirconium oxides, preferably using a scanning electron microscope (SEM), a transmission electron microscope (TEM), etc. There is a method of measuring the major axis of each of 500 zirconium oxides and calculating the arithmetic average value thereof.
 酸化ジルコニウムの比表面積は、特に限定されないが、75m/g以上かつ95m/g以下であることが好ましく、80m/g以上かつ95m/g以下であることがより好ましく、87m/g以上かつ92m/g以下であることがさらに好ましい。
 酸化ジルコニウムの比表面積が75m/g以上であれば、適度な酸化ジルコニウムの一次粒子径が得られ、より透明な分散液を得ることができる。一方、酸化ジルコニウムの比表面積が95m/g以下であれば、分散液を作製する場合に必要となる、分散剤やシランカップリング剤等の表面処理剤の量を少なくすることができる。得られた分散液を樹脂中に分散した場合、樹脂の物性値を低下させるおそれがなく、その分散液を用いて作製した塗膜等が容易に所望の屈折率を得ることができる。
The specific surface area of the zirconium oxide is not particularly limited, is preferably not more than 75 m 2 / g or more and 95 m 2 / g, more preferably not more than 80 m 2 / g or more and 95m 2 / g, 87m 2 / More preferably, it is at least g and at most 92 m 2 / g.
If the specific surface area of zirconium oxide is 75 m 2 / g or more, an appropriate primary particle diameter of zirconium oxide can be obtained, and a more transparent dispersion can be obtained. On the other hand, when the specific surface area of zirconium oxide is 95 m 2 / g or less, it is possible to reduce the amount of a surface treatment agent such as a dispersant or a silane coupling agent, which is necessary for producing a dispersion. When the obtained dispersion is dispersed in the resin, there is no risk of lowering the physical properties of the resin, and a coating film or the like produced using the dispersion can easily obtain a desired refractive index.
[酸化ジルコニウムの製造方法]
 本実施形態の酸化ジルコニウムの製造方法としては、塩基性硫酸ジルコニウムを中和して酸化ジルコニウムを得る方法であれば、特に限定されない。例えば、上記の特許文献1~4に記載されているような公知の酸化ジルコニウムの製造方法が用いられる。
 塩基性硫酸ジルコニウムを中和して酸化ジルコニウムを得る方法は、塩基性硫酸ジルコニウムのように粒子径の均一な不溶性ジルコニウム塩の微粒子を経由して、酸化ジルコニウムを得るため、分散性に優れた粒子径が小さい酸化ジルコニウムの製造に適している。
[Method for producing zirconium oxide]
The method for producing zirconium oxide of the present embodiment is not particularly limited as long as it is a method for obtaining zirconium oxide by neutralizing basic zirconium sulfate. For example, a known method for producing zirconium oxide as described in Patent Documents 1 to 4 is used.
The method of obtaining zirconium oxide by neutralizing basic zirconium sulfate is obtained by obtaining zirconium oxide via fine particles of insoluble zirconium salt having a uniform particle diameter such as basic zirconium sulfate. Suitable for the production of zirconium oxide with a small diameter.
 上記の方法により、酸化ジルコニウムを製造する場合、塩基性硫酸ジルコニウムをアルカリ成分で水酸化物に変換した後、乾燥・焼成する必要がある。
 アルカリ成分としては、特に限定されないが、例えば、アンモニア、水酸化ナトリウム、水酸化カリウム等が用いられる。なかでも排水処理やコスト等の観点から、水酸化ナトリウムが好適に用いられる。
In the case of producing zirconium oxide by the above method, it is necessary to convert the basic zirconium sulfate into a hydroxide with an alkali component, and then dry and calcinate.
Although it does not specifically limit as an alkali component, For example, ammonia, sodium hydroxide, potassium hydroxide etc. are used. Of these, sodium hydroxide is preferably used from the viewpoints of wastewater treatment and cost.
 塩基性硫酸ジルコニウムをアルカリ成分で水酸化物に変換する場合、酸化ジルコニウムの材料を溶解または分散した溶液に含まれる、余剰の硫酸イオンを除去して、その溶液における(硫酸イオンの含有量(mg/kg))/(ナトリウムの含有量(mg/kg))を低くする必要がある。
 塩基性硫酸ジルコニウムを水酸化物に変換した後の洗浄の程度によって、最終的に得られる酸化ジルコニウムにおける、硫酸イオンの含有量とナトリウムの含有量が変化するが、(硫酸イオンの含有量(mg/kg))/(ナトリウムの含有量(mg/kg))を6以下にすればよい。
When converting basic zirconium sulfate into a hydroxide with an alkali component, excess sulfate ions contained in a solution in which the zirconium oxide material is dissolved or dispersed are removed, and the content of sulfate ions (mg / Kg)) / (Sodium content (mg / kg)) should be lowered.
Depending on the degree of washing after converting basic zirconium sulfate to hydroxide, the content of sulfate ion and the content of sodium in the finally obtained zirconium oxide change, but the content of sulfate ion (mg / Kg)) / (sodium content (mg / kg)) may be 6 or less.
 本実施形態の酸化ジルコニウムにおいて、不純物として取り込まれた硫酸イオンやナトリウムは、酸化ジルコニウムの粒子の成長やネッキングを抑制し、酸化ジルコニウムの粒子が粗大化するのを抑制しているものと考えられる。 In the zirconium oxide of the present embodiment, it is considered that sulfate ions and sodium incorporated as impurities suppress the growth and necking of zirconium oxide particles and suppress the coarsening of zirconium oxide particles.
 本実施形態の酸化ジルコニウムによれば、硫酸イオンの含有量と、ナトリウムの含有量との比である(硫酸イオンの含有量(mg/kg))/(ナトリウムの含有量(mg/kg))が6以下であるので、液ヘーズ値が低く、透明性が高い酸化ジルコニウム分散液を得ることができる。 According to the zirconium oxide of the present embodiment, the ratio of the sulfate ion content to the sodium content (sulfate ion content (mg / kg)) / (sodium content (mg / kg)). Is 6 or less, a zirconium oxide dispersion having a low liquid haze value and high transparency can be obtained.
[酸化ジルコニウム分散液]
 本実施形態の酸化ジルコニウム分散液は、本実施形態の酸化ジルコニウムが、分散媒に分散されてなる分散液である。
[Zirconium oxide dispersion]
The zirconium oxide dispersion of this embodiment is a dispersion obtained by dispersing the zirconium oxide of this embodiment in a dispersion medium.
「分散媒」
 本実施形態における分散媒としては、本実施形態の酸化ジルコニウムを分散させることができるものであれば、特に限定されない。例えば、水、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、およびオクタノール等のアルコール類、酢酸エチル、酢酸ブチル、乳酸エチル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、およびγ-ブチロラクトン等のエステル類、ジエチルエーテル、エチレングリコールモノメチルエーテル(メチルセロソルブ)、エチレングリコールモノエチルエーテル(エチルセロソルブ)、エチレングリコールモノブチルエーテル(ブチルセロソルブ)、ジエチレングリコールモノメチルエーテル、およびジエチレングリコールモノエチルエーテル等のエーテル類、アセトン、メチルエチルケトン、メチルイソブチルケトン、アセチルアセトン、およびシクロヘキサノン等のケトン類、ベンゼン、トルエン、キシレン、およびエチルベンゼン等の芳香族炭化水素、シクロヘキサン等の環状炭化水素、ジメチルホルムアミド、N,N-ジメチルアセトアセトアミド、およびN-メチルピロリドン等のアミド類等が好適に用いられる。これらの中でも、ゼータ電位を利用して容易に分散液が得られる点からは、水がより好ましい。塗膜等を作製する際の塗工性の観点からは、メチルイソブチルケトン、メチルエチルケトン、およびプロピレングリコールモノエチルエーテルアセテートがより好ましい。これらの溶媒は、1種を単独で用いてよく、2種以上を混合して用いてもよい。
"Dispersion medium"
The dispersion medium in the present embodiment is not particularly limited as long as it can disperse the zirconium oxide of the present embodiment. For example, water, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, octanol and other alcohols, ethyl acetate, butyl acetate, ethyl lactate, propylene glycol monomethyl ether acetate, propylene glycol monoethyl Esters such as ether acetate and γ-butyrolactone, diethyl ether, ethylene glycol monomethyl ether (methyl cellosolve), ethylene glycol monoethyl ether (ethyl cellosolve), ethylene glycol monobutyl ether (butyl cellosolve), diethylene glycol monomethyl ether, and diethylene glycol monoethyl ether Ethers such as ether, acetone, methyl ethyl ketone, methyl isobutyl ketone, Ketones such as luacetone and cyclohexanone, aromatic hydrocarbons such as benzene, toluene, xylene, and ethylbenzene, cyclic hydrocarbons such as cyclohexane, amides such as dimethylformamide, N, N-dimethylacetoacetamide, and N-methylpyrrolidone Etc. are preferably used. Among these, water is more preferable from the viewpoint of easily obtaining a dispersion using a zeta potential. Methyl isobutyl ketone, methyl ethyl ketone, and propylene glycol monoethyl ether acetate are more preferable from the viewpoint of coatability when producing a coating film or the like. These solvents may be used alone or in combination of two or more.
 本実施形態の酸化ジルコニウム分散液中の酸化ジルコニウムの含有量は、本実施形態の酸化ジルコニウム分散液全体に対して、1質量%以上かつ60質量%以下であることが好ましく、20質量%以上かつ50質量%以下であることがより好ましく、30質量%以上かつ40質量%以下であることがさらに好ましい。
 酸化ジルコニウム分散液中の酸化ジルコニウムの含有量が1質量%以上であれば、塗料等に酸化ジルコニウム分散液を配合して用いる際、適度な塗料中の溶媒量となり、溶媒のコストや、その塗料を用いて形成した塗膜から溶媒を除去する際のコストを抑えることができる。一方、酸化ジルコニウムの含有量が60質量%以下であれば、酸化ジルコニウムの量が適度であるため、酸化ジルコニウム分散液の流動性が低下することがない。また、酸化ジルコニウム同士が凝集し難く、酸化ジルコニウム分散液の良好な経時安定性を維持できる。
The content of zirconium oxide in the zirconium oxide dispersion of the present embodiment is preferably 1% by mass or more and 60% by mass or less, and more preferably 20% by mass or more and based on the entire zirconium oxide dispersion of the present embodiment. More preferably, it is 50 mass% or less, More preferably, it is 30 mass% or more and 40 mass% or less.
If the zirconium oxide content in the zirconium oxide dispersion is 1% by mass or more, when the zirconium oxide dispersion is blended with a paint or the like and used, the amount of the solvent in the paint becomes appropriate, and the cost of the solvent and the paint The cost at the time of removing a solvent from the coating film formed using can be suppressed. On the other hand, if the content of zirconium oxide is 60% by mass or less, the amount of zirconium oxide is appropriate, and the fluidity of the zirconium oxide dispersion does not decrease. Further, zirconium oxides hardly aggregate with each other, and good aging stability of the zirconium oxide dispersion can be maintained.
 本実施形態の酸化ジルコニウム分散液は、酸化ジルコニウムの含有率を30質量%とし、かつ光路長を2mmとしたときの液ヘーズ値が50%以下であることが好ましく、40%以下であることがより好ましい。
 また、本実施形態の酸化ジルコニウム分散液は、酸化ジルコニウムの含有率を10質量%とし、かつ光路長を2mmとしたときの液ヘーズ値が25%以下であることが好ましく、20%以下であることがより好ましく、15%以下であることがさらに好ましい。
 上記の場合における酸化ジルコニウム分散液の液ヘーズ値が50%以下であれば、塗料や塗膜に、酸化ジルコニウム分散液を配合したとき、フェーズ(曇り度)が悪化せず、透明性が高い塗料や塗膜が得られる。
In the zirconium oxide dispersion liquid of the present embodiment, the liquid haze value is preferably 50% or less and 40% or less when the zirconium oxide content is 30% by mass and the optical path length is 2 mm. More preferred.
Further, in the zirconium oxide dispersion of the present embodiment, the liquid haze value is preferably 25% or less and 20% or less when the content of zirconium oxide is 10% by mass and the optical path length is 2 mm. More preferably, it is more preferably 15% or less.
When the liquid haze value of the zirconium oxide dispersion in the above case is 50% or less, the phase (cloudiness) does not deteriorate when the zirconium oxide dispersion is blended with the paint or coating film, and the paint has high transparency. And a coating film is obtained.
 ここで、「ヘーズ値」とは、全光線透過光に対する拡散透過光の割合(%)のことであり、「液ヘーズ値」とは、2mmキュベットを用いて、ヘーズメーター(商品名:HAZE METER TC-H3DP、東京電色社製)で測定した、酸化ジルコニウム分散液のヘーズ値である。 Here, the “haze value” is the ratio (%) of diffuse transmitted light to the total light transmitted light, and the “liquid haze value” is a haze meter (trade name: HAZE METER using a 2 mm cuvette). It is a haze value of a zirconium oxide dispersion measured by TC-H3DP (manufactured by Tokyo Denshoku).
 また、本実施形態の酸化ジルコニウム分散液は、その特性を損なわない範囲において、分散剤、水溶性バインダー等の他の成分を含有していてもよい。 Further, the zirconium oxide dispersion of the present embodiment may contain other components such as a dispersant and a water-soluble binder as long as the characteristics are not impaired.
 本実施形態の酸化ジルコニウム分散液は、酸またはアルカリ成分を添加することにより、ゼータ電位を用いて酸化ジルコニウムを分散させた分散液であっても、分散剤を用いて酸化ジルコニウムを分散させた分散液であってもよい。 Even if the zirconium oxide dispersion liquid of this embodiment is a dispersion liquid in which zirconium oxide is dispersed using a zeta potential by adding an acid or alkali component, the dispersion in which zirconium oxide is dispersed using a dispersant. It may be a liquid.
 分散剤としては、陰イオン界面活性剤、陽イオン界面活性剤、両性界面活性剤、非イオン界面活性剤、オルガノアルコキシシランやオルガノクロロシラン等のシランカップリング剤等が好適に用いられる。これらの分散剤は、酸化ジルコニウムの粒子径や、分散媒の種類に応じて、適宜選択される。これらの分散剤は、1種を単独で用いてよく、2種以上を混合して用いてもよい。特に、樹脂等に酸化ジルコニウム分散液を配合して塗料とする場合、樹脂との相溶性の観点では、樹脂の置換基や構造と同一または類似の構造を有する分散剤を用いることがより好ましい。また、樹脂との反応性の観点では、二重結合性の分散剤等、樹脂と結合できる分散剤用いることがより好ましい。例えば、アクリル樹脂に酸化ジルコニウム分散液を配合する場合、分散剤として3-アクリロキシプロピルトリメトキシシランを用いて、この分散剤で酸化ジルコニウムを表面処理することが好ましい。 As the dispersing agent, anionic surfactants, cationic surfactants, amphoteric surfactants, nonionic surfactants, silane coupling agents such as organoalkoxysilanes and organochlorosilanes, and the like are preferably used. These dispersants are appropriately selected according to the particle diameter of zirconium oxide and the type of the dispersion medium. One of these dispersants may be used alone, or two or more thereof may be mixed and used. In particular, when a zirconium oxide dispersion is blended with a resin or the like to form a coating material, it is more preferable to use a dispersant having the same or similar structure as the substituent or structure of the resin from the viewpoint of compatibility with the resin. Further, from the viewpoint of reactivity with the resin, it is more preferable to use a dispersant capable of binding to the resin such as a double bond dispersant. For example, when a zirconium oxide dispersion is blended in an acrylic resin, it is preferable to treat the zirconium oxide with this dispersant using 3-acryloxypropyltrimethoxysilane as a dispersant.
 水溶性バインダーとしては、ポリビニルアルコール(PVA)、ポリビニルピロリドン、ヒドロキシセルロース、ポリアクリル酸等が用いられる。 As the water-soluble binder, polyvinyl alcohol (PVA), polyvinyl pyrrolidone, hydroxycellulose, polyacrylic acid or the like is used.
 また、本実施形態の酸化ジルコニウム分散液は、その特性を損なわない範囲において、重合開始剤、帯電防止剤、屈折率調節剤、酸化防止剤、紫外線吸収剤、光安定化剤、レベリング剤、消泡剤、無機充填剤、カップリング剤、防腐剤、可塑剤、流動調整剤、増粘剤、pH調整剤等の一般的な添加剤を適宜含有していてもよい。 In addition, the zirconium oxide dispersion of this embodiment has a polymerization initiator, an antistatic agent, a refractive index regulator, an antioxidant, an ultraviolet absorber, a light stabilizer, a leveling agent, an extinguishing agent as long as the characteristics are not impaired. General additives such as foaming agents, inorganic fillers, coupling agents, preservatives, plasticizers, flow regulators, thickeners, and pH adjusters may be appropriately contained.
[酸化ジルコニウム分散液の製造方法]
 本実施形態の酸化ジルコニウム分散液の製造方法としては、酸化ジルコニウム分散液の構成要素として、上述した各材料を、機械的に混合し、酸化ジルコニウムを分散媒中に分散させる方法が挙げられる。
 分散装置としては、例えば、ジルコニアビーズを用いたビーズミル、ボールミル等が好適に用いられる。
 分散処理に要する時間は、特に限定されないが、分散媒中に酸化ジルコニウムが均一に分散されるために十分な時間であればよい。
[Method for producing zirconium oxide dispersion]
As a manufacturing method of the zirconium oxide dispersion liquid of the present embodiment, a method of mechanically mixing the above-described materials as components of the zirconium oxide dispersion liquid and dispersing the zirconium oxide in the dispersion medium can be mentioned.
As the dispersing device, for example, a bead mill using zirconia beads, a ball mill, or the like is preferably used.
The time required for the dispersion treatment is not particularly limited, but may be sufficient as long as the zirconium oxide is uniformly dispersed in the dispersion medium.
 本実施形態の酸化ジルコニウム分散液によれば、本実施形態の酸化ジルコニウムを用いることにより、透明性が高く、酸化ジルコニウムの分散安定性に優れ、分散液の長期保管の安定性に優れる。 According to the zirconium oxide dispersion of this embodiment, the use of the zirconium oxide of this embodiment provides high transparency, excellent dispersion stability of zirconium oxide, and excellent stability of the dispersion for long-term storage.
[酸化ジルコニウム含有組成物]
 本実施形態の酸化ジルコニウム含有組成物は、本実施形態の酸化ジルコニウム分散液と、バインダー成分とを含有する。
[Zirconium oxide-containing composition]
The zirconium oxide-containing composition of this embodiment contains the zirconium oxide dispersion of this embodiment and a binder component.
「バインダー成分」
 バインダー成分は、特に限定されないが、例えば、樹脂モノマー、樹脂オリゴマー、樹脂ポリマー、有機ケイ素化合物またはその重合体等を好適に用いることができる。
"Binder component"
Although a binder component is not specifically limited, For example, a resin monomer, a resin oligomer, a resin polymer, an organosilicon compound, its polymer, etc. can be used conveniently.
 表示装置等の用途でのバインダー成分としては、一般的なハードコート膜に使用される硬化性樹脂のモノマー、オリゴマーや、ポリマーであれば、特に限定されない。光硬化性樹脂のモノマー、オリゴマーやポリマーを用いてもよく、熱硬化性樹脂のモノマー、オリゴマーやポリマーを用いてもよい。 The binder component for use in a display device or the like is not particularly limited as long as it is a monomer, oligomer or polymer of a curable resin used for a general hard coat film. Photocurable resin monomers, oligomers and polymers may be used, and thermosetting resin monomers, oligomers and polymers may be used.
 光硬化性樹脂のモノマーとしては、例えば、1官能アクリレート、2官能アクリレート、3官能アクリレート、4-6官能アクリレート等のラジカル重合系モノマー、脂環式エポキシ樹脂、グリシジルエーテルエポキシ樹脂、およびウレタンビニルエーテル、およびポリエステルビニルエーテル等のカチオン重合系モノマーが挙げられる。 Examples of the monomer of the photocurable resin include radical polymerization monomers such as monofunctional acrylates, bifunctional acrylates, trifunctional acrylates, and 4-6 functional acrylates, alicyclic epoxy resins, glycidyl ether epoxy resins, and urethane vinyl ethers, And cationic polymerization monomers such as polyester vinyl ether.
 光硬化性樹脂のオリゴマーまたはポリマーとしては、例えば、エポキシアクリレート、ウレタンアクリレート、ポリエステルアクリレート、共重合系アクリレート、ポリブタジエンアクリレート、シリコンアクリレート、およびアミノ樹脂アクリレート等のラジカル重合系オリゴマーまたはポリマー、脂環式エポキシ樹脂、グリシジルエーテルエポキシ樹脂、ウレタンビニルエーテル、およびポリエステルビニルエーテル等のカチオン重合系オリゴマーまたはポリマーが挙げられる。
 これらの中でも、複数成分を配合しやすく、光開始剤と光安定化剤等とを用いることで硬化障害を抑制できるラジカル重合性のモノマー、オリゴマー、ポリマーが好適に用いられる。
 耐擦傷性、耐摩耗性が必要とされる用途には、ジペンタリストルヘキサアクリレート等のラジカル重合系多官能モノマーが好適に用いられる。
Examples of the oligomer or polymer of the photocurable resin include radical polymerization oligomers or polymers such as epoxy acrylate, urethane acrylate, polyester acrylate, copolymer acrylate, polybutadiene acrylate, silicon acrylate, and amino resin acrylate, and alicyclic epoxy. Examples thereof include cationic polymerization oligomers or polymers such as resin, glycidyl ether epoxy resin, urethane vinyl ether, and polyester vinyl ether.
Among these, radically polymerizable monomers, oligomers, and polymers that can be easily blended with a plurality of components and can suppress curing failure by using a photoinitiator, a light stabilizer, and the like are preferably used.
For applications that require scratch resistance and abrasion resistance, a radical polymerization polyfunctional monomer such as dipentaristol hexaacrylate is preferably used.
 密着性、柔軟性、低収縮性が必要とされる用途には、ウレタンアクリレート等のラジカル重合系オリゴマーまたはポリマーが好適に用いられる。
 これらの光重合性樹脂のモノマー、オリゴマー、ポリマーは単独で用いることもでき、必要とされる機能に併せて2種以上を混合して用いることもできる。
 多官能モノマーのアクリロイル基、メタクリロイル基以外の官能基としては、例えば、ビニル基、アリル基、アリルエーテル基、スチリル基、および水酸基等が挙げられる。
For applications that require adhesion, flexibility, and low shrinkage, a radical polymerization oligomer or polymer such as urethane acrylate is preferably used.
The monomers, oligomers and polymers of these photopolymerizable resins can be used alone, or two or more kinds can be mixed and used in accordance with the required function.
Examples of the functional group other than the acryloyl group and methacryloyl group of the polyfunctional monomer include a vinyl group, an allyl group, an allyl ether group, a styryl group, and a hydroxyl group.
 多官能アクリレートの具体例としては、例えば、(メタ)トリメチロールプロパントリアクリレート、(メタ)ジトリメチロールプロパンテトラアクリレート、(メタ)ペンタエリスリトールトリアクリレート、(メタ)ペンタエリスリトールテトラアクリレート、および(メタ)ジペンタエリスリトールヘキサアクリレート等のポリオールポリアクリレート、エポキシ(メタ)アクリレート、ポリエステル(メタ)アクリレート、ウレタンアクリレート、およびポリシロキサンアクリレート等が挙げられる。これらの多官能アクリレートは、1種単独で用いてもよく、2種以上を混合して用いてもよい。 Specific examples of the polyfunctional acrylate include, for example, (meth) trimethylolpropane triacrylate, (meth) ditrimethylolpropane tetraacrylate, (meth) pentaerythritol triacrylate, (meth) pentaerythritol tetraacrylate, and (meth) di Examples include polyol polyacrylates such as pentaerythritol hexaacrylate, epoxy (meth) acrylates, polyester (meth) acrylates, urethane acrylates, and polysiloxane acrylates. These polyfunctional acrylates may be used alone or in combination of two or more.
 本実施形態の酸化ジルコニウム含有組成物中には、発明の効果を阻害しない範囲で、官能基が1個または2個であり、上述のモノマーには含まれないモノマーやオリゴマー、分散剤、重合開始剤、帯電防止剤、屈折率調節剤、酸化防止剤、紫外線吸収剤、光安定化剤、レベリング剤、消泡剤、無機充填剤、カップリング剤、防腐剤、可塑剤、流動調整剤、増粘剤、pH調整剤、重合開始剤等の一般的な各種添加剤が適宜含有されていてもよい。 The zirconium oxide-containing composition of the present embodiment has one or two functional groups as long as the effects of the invention are not hindered, and is not included in the above-mentioned monomers. Agent, antistatic agent, refractive index modifier, antioxidant, ultraviolet absorber, light stabilizer, leveling agent, antifoaming agent, inorganic filler, coupling agent, preservative, plasticizer, flow regulator, increase Various general additives such as a viscosity agent, a pH adjuster, and a polymerization initiator may be appropriately contained.
 分散剤としては、例えば、硫酸エステル系、カルボン酸系、およびポリカルボン酸系等のアニオン型界面活性剤、高級脂肪族アミンの4級塩等のカチオン型界面活性剤、高級脂肪酸ポリエチレングリコールエステル系等のノニオン型界面活性剤、シリコン系界面活性剤、フッ素系界面活性剤、およびアマイドエステル結合を有する高分子系界面活性剤等が挙げられる。 Examples of the dispersant include anionic surfactants such as sulfate esters, carboxylic acids, and polycarboxylic acids, cationic surfactants such as quaternary salts of higher aliphatic amines, and higher fatty acid polyethylene glycol esters. And nonionic surfactants such as silicon surfactants, fluorine surfactants, and polymer surfactants having an amide ester bond.
 重合開始剤は、用いるモノマーの種類に応じて、適宜選択される。光硬化性樹脂のモノマーを用いる場合には、光重合開始剤が用いられる。光重合開始剤の種類や量は、使用する光硬化性樹脂のモノマーに応じて適宜選択される。光重合開始剤としては、例えば、ベンゾフェノン系、ジケトン系、アセトフェノン系、ベンゾイン系、チオキサントン系、キノン系、ベンジルジメチルケタール系、アルキルフェノン系、アシルフォスフィンオキサイド系、およびフェニルフォスフィンオキサイド系等の公知の光重合開始剤が挙げられる。 The polymerization initiator is appropriately selected according to the type of monomer used. When using a monomer of a photocurable resin, a photopolymerization initiator is used. The kind and amount of the photopolymerization initiator are appropriately selected according to the monomer of the photocurable resin to be used. Examples of the photopolymerization initiator include benzophenone, diketone, acetophenone, benzoin, thioxanthone, quinone, benzyldimethyl ketal, alkylphenone, acylphosphine oxide, and phenylphosphine oxide. A well-known photoinitiator is mentioned.
 本実施形態の酸化ジルコニウム含有組成物は、基材に塗布して塗膜を形成するものであることから、塗工を容易にするために、粘度が0.2mPa・s以上かつ500mPa・s以下であることが好ましく、0.5mPa・s以上かつ200mPa・s以下であることがより好ましい。
 酸化ジルコニウム含有組成物の粘度が0.2mPa・s以上であれば、塗膜にした時の膜厚が薄くなりすぎず、膜厚の制御が容易であるため好ましい。一方、酸化ジルコニウム含有組成物の粘度が500mPa・s以下であれば、粘度が高すぎず塗工時における酸化ジルコニウム含有組成物の取扱いが容易となるため好ましい。
Since the zirconium oxide-containing composition of this embodiment is applied to a substrate to form a coating film, the viscosity is 0.2 mPa · s or more and 500 mPa · s or less in order to facilitate coating. Preferably, it is 0.5 mPa · s or more and 200 mPa · s or less.
If the viscosity of the zirconium oxide-containing composition is 0.2 mPa · s or more, it is preferable because the film thickness when formed into a coating film does not become too thin and the film thickness can be easily controlled. On the other hand, if the viscosity of the zirconium oxide-containing composition is 500 mPa · s or less, it is preferable because the viscosity is not too high and handling of the zirconium oxide-containing composition at the time of coating becomes easy.
 酸化ジルコニウム含有組成物の粘度は、酸化ジルコニウム含有組成物に適宜、有機溶媒を添加して、上記の範囲に調整することが好ましい。
 有機溶媒としては、上記の酸化ジルコニウム含有組成物と相溶性がよいものであれば特に限定されない。例えば、ヘキサン、ヘプタン、およびシクロヘキサン等の脂肪族炭化水素類、トルエン、およびキシレン等の芳香族炭化水素類、メタノール、エタノール、およびプロパノール等のアルコール類、塩化メチレン、塩化エチレン等のハロゲン化炭化水素類、アセトン、メチルエチルケトン、メチルイソブチルケトン、2-ペンタノン、およびイソホロン等のケトン類、酢酸エチル、および酢酸ブチル等のエステル類、エチルセロソルブ等のセロソルブ類、プロピレングリコールモノメチルエーテル、およびプロピレングリコールモノエチルエーテル等のエーテル類、アミド系溶媒、およびエーテルエステル系溶媒が挙げられる。これらの溶媒は、1種単独で用いてもよく、2種以上を混合して用いてもよい。
The viscosity of the zirconium oxide-containing composition is preferably adjusted to the above range by appropriately adding an organic solvent to the zirconium oxide-containing composition.
The organic solvent is not particularly limited as long as it is compatible with the above zirconium oxide-containing composition. For example, aliphatic hydrocarbons such as hexane, heptane and cyclohexane, aromatic hydrocarbons such as toluene and xylene, alcohols such as methanol, ethanol and propanol, halogenated hydrocarbons such as methylene chloride and ethylene chloride Ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, 2-pentanone and isophorone, esters such as ethyl acetate and butyl acetate, cellosolves such as ethyl cellosolve, propylene glycol monomethyl ether, and propylene glycol monoethyl ether And ethers such as amide solvents and ether ester solvents. These solvents may be used alone or in combination of two or more.
 本実施形態の酸化ジルコニウム含有組成物は、透明性が高く、酸化ジルコニウムの分散安定性に優れる、本発明の酸化ジルコニウム分散液を含有する。このため、透明性が高く、酸化ジルコニウムの分散安定性に優れ、組成物の長期保管の安定性にも優れる。 The zirconium oxide-containing composition of the present embodiment contains the zirconium oxide dispersion of the present invention that is highly transparent and excellent in dispersion stability of zirconium oxide. For this reason, transparency is high, the dispersion stability of zirconium oxide is excellent, and the stability of the composition for long-term storage is also excellent.
[酸化ジルコニウム含有組成物の製造方法]
 本実施形態の酸化ジルコニウム含有組成物の製造方法としては、酸化ジルコニウム含有組成物の構成要素として上述した各材料を機械的に混合する方法が挙げられる。
 混合装置としては、例えば、撹拌機、自公転式ミキサー、ホモジナイザー、超音波ホモジナイザー等が挙げられる。
[Method for Producing Zirconium Oxide-Containing Composition]
As a manufacturing method of the zirconium oxide containing composition of this embodiment, the method of mechanically mixing each material mentioned above as a component of a zirconium oxide containing composition is mentioned.
Examples of the mixing device include a stirrer, a self-revolving mixer, a homogenizer, and an ultrasonic homogenizer.
[塗膜]
 本実施形態の塗膜は、本実施形態の酸化ジルコニウム含有組成物を用いて形成される。
 この塗膜の膜厚は、用途に応じて適宜調整されるが、通常0.01μm以上かつ20μm以下であることが好ましく、0.5μm以上かつ10μm以下であることがより好ましく、0.5μm以上かつ2μm以下であることがさらに好ましい。
[Coating]
The coating film of this embodiment is formed using the zirconium oxide containing composition of this embodiment.
The film thickness of this coating film is appropriately adjusted depending on the application, but is usually preferably 0.01 μm or more and 20 μm or less, more preferably 0.5 μm or more and 10 μm or less, and more preferably 0.5 μm or more. And it is more preferable that it is 2 micrometers or less.
 本実施形態の塗膜の製造方法は、上記の酸化ジルコニウム含有組成物を被塗布物上に塗工することで塗膜を形成する工程と、この塗膜を硬化させる工程とを有する。
 塗膜を形成する塗工方法としては、例えば、バーコート法、フローコート法、ディップコート法、スピンコート法、ロールコート法、スプレーコート法、メニスカスコート法、グラビアコート法、吸上げ塗工法、およびはけ塗り法等の通常のウェットコート法が用いられる。
The manufacturing method of the coating film of this embodiment has the process of forming a coating film by apply | coating said zirconium oxide containing composition on a to-be-coated object, and the process of hardening this coating film.
Examples of the coating method for forming a coating film include a bar coating method, a flow coating method, a dip coating method, a spin coating method, a roll coating method, a spray coating method, a meniscus coating method, a gravure coating method, a suction coating method, Ordinary wet coating methods such as brushing are used.
 塗膜を硬化させる硬化方法としては、バインダー成分の種類に応じて適宜選択され、熱硬化させるか光硬化させる方法が用いられる。
 光硬化に用いるエネルギー線としては、塗膜が硬化すれば、特に限定されない。例えば、紫外線、遠赤外線、近紫外線、赤外線、X線、γ線、電子線、プロトン線、および中性子線等のエネルギー線が用いられる。これらのエネルギー線の中でも、硬化速度が速く、装置の入手および取り扱いが容易である点から、紫外線を用いることが好ましい。
As a curing method for curing the coating film, a method of appropriately selecting according to the kind of the binder component and performing thermal curing or photocuring is used.
The energy ray used for photocuring is not particularly limited as long as the coating is cured. For example, energy rays such as ultraviolet rays, far infrared rays, near ultraviolet rays, infrared rays, X-rays, γ rays, electron beams, proton rays, and neutron rays are used. Among these energy rays, it is preferable to use ultraviolet rays because the curing speed is fast and the device is easily available and handled.
 紫外線照射による硬化の場合、200nm~500nmの波長帯域の紫外線を発生する高圧水銀ランプ、メタルハライドランプ、キセノンランプ、およびケミカルランプ等を用いて、100~3,000mJ/cmのエネルギーにて、紫外線を照射する方法等が挙げられる。 In the case of curing by ultraviolet irradiation, ultraviolet rays are emitted at an energy of 100 to 3,000 mJ / cm 2 using a high-pressure mercury lamp, metal halide lamp, xenon lamp, chemical lamp or the like that generates ultraviolet rays in a wavelength band of 200 nm to 500 nm. And the like.
 本実施形態の塗膜では、本実施形態におけるシャープな粒度分布を有する酸化ジルコニウム、換言すれば、酸化ジルコニウム含有組成物中において、酸化ジルコニウムの大きさがほぼ均一であるため、塗膜中に酸化ジルコニウムが隙間なく均一に充填されやすい。そのため、塗膜の成膜性に優れ、膜面内のすべての箇所での性能が均一となる。従って、例えば、膜面内における屈折率がほぼ均一になるため、塗膜の色ムラの発生が抑制され、表示装置などに適用された場合には、視認性を向上させることができる。 In the coating film of the present embodiment, zirconium oxide having a sharp particle size distribution in the present embodiment, in other words, in the zirconium oxide-containing composition, the size of zirconium oxide is almost uniform, so that the oxidized film is oxidized in the coating film. Zirconium is easily filled uniformly without gaps. Therefore, the film-forming property of the coating film is excellent, and the performance at all locations in the film surface is uniform. Therefore, for example, since the refractive index in the film surface becomes almost uniform, the occurrence of uneven color in the coating film is suppressed, and the visibility can be improved when applied to a display device or the like.
 本実施形態の塗膜では、シャープな粒度分布を有する酸化ジルコニウムが用いられているため、膜内に均一に酸化ジルコニウムが充填され、膜内の空隙が少ない。そのため、例えば、屈折率が1.9以上の酸化ジルコニウムを用いて屈折率を向上させたい場合に、従来よりも屈折率を向上させるのに必要な酸化ジルコニウムの量を減らすことができる。従って、10nm~200nmのような薄膜であっても、塗膜全体に均質に酸化ジルコニウムが充填されて、均質に膜内の空隙を減らすことができるため、塗膜の屈折率を向上させることができる。
 また、本実施形態の塗膜では、膜面内の全ての箇所での性能が均一となるため、膜厚が1μm以上の厚膜にしても、光学ムラの発生を抑制することができる。特にケイ素化合物が重合性不飽和基を有する官能基を有する場合、金属酸化物粒子が硬化時に樹脂と結合するため、硬化時に膜中で凝集したり、膜の表面と内部で粒子分布が異なることが抑制されるので好適であり、1μm以上の厚膜の場合は特に好適である。
 すなわち、本実施形態の塗膜は、屈折率を調整するための薄膜であってもよく、屈折率を調整でき、かつ、ハードコート性も有する厚膜であっても、用途に応じて適宜選択して用いることができる。
In the coating film of this embodiment, since zirconium oxide having a sharp particle size distribution is used, zirconium oxide is uniformly filled in the film, and there are few voids in the film. Therefore, for example, when it is desired to improve the refractive index using zirconium oxide having a refractive index of 1.9 or more, it is possible to reduce the amount of zirconium oxide required to improve the refractive index as compared with the prior art. Therefore, even in a thin film of 10 nm to 200 nm, the entire coating film is uniformly filled with zirconium oxide, and the voids in the film can be reduced uniformly, so that the refractive index of the coating film can be improved. it can.
Moreover, in the coating film of this embodiment, since the performance in all the places in a film surface becomes uniform, generation | occurrence | production of an optical nonuniformity can be suppressed even if a film thickness is 1 micrometers or more. Particularly when the silicon compound has a functional group having a polymerizable unsaturated group, the metal oxide particles are bonded to the resin at the time of curing, so that they aggregate in the film at the time of curing or the particle distribution differs between the surface and the inside of the film. Is preferable, and a thick film of 1 μm or more is particularly preferable.
That is, the coating film of this embodiment may be a thin film for adjusting the refractive index, or may be a thick film that can adjust the refractive index and also has a hard coat property, depending on the application. Can be used.
 本実施形態の塗膜は、本実施形態の酸化ジルコニウム含有組成物を用いて形成されているため、透明性と成膜性に優れた塗膜を得ることができる。 Since the coating film of the present embodiment is formed using the zirconium oxide-containing composition of the present embodiment, a coating film having excellent transparency and film forming property can be obtained.
[塗膜付きプラスチック基材]
 本実施形態の塗膜付きプラスチック基材は、樹脂材料を用いて形成された基体本体(プラスチック基材)と、基体本体の少なくとも一面に設けられた本実施形態の塗膜とを有する。
[Plastic substrate with paint film]
The plastic substrate with a coating film of this embodiment has a base body (plastic base material) formed using a resin material and a coating film of this embodiment provided on at least one surface of the base body.
 塗膜付きプラスチック基材は、本実施形態の酸化ジルコニウム含有組成物を、公知の塗工法を用いて基体本体上に塗工することで塗膜を形成し、その塗膜を硬化させることにより得られる。 The plastic substrate with a coating film is obtained by coating the zirconium oxide-containing composition of the present embodiment on the substrate body using a known coating method, and then curing the coating film. It is done.
 基材本体は、プラスチック基材であれば特に限定されない。例えば、ポリエチレンテレフタレート、トリアセチルセルロース、アクリル、アクリル-スチリル共重合体、アクリロニトリル-ブタジエン-スチレン共重合体、ポリスチレン、ポリエチレン、ポリプロピレン、ポリカーボネート、および塩化ビニル等のプラスチックから形成されたものが用いられる。
 表示装置用途で用いる場合には、基材本体としては、光透過性を有するプラスチック基材を用いることが好ましい。
The substrate body is not particularly limited as long as it is a plastic substrate. For example, those formed from plastics such as polyethylene terephthalate, triacetyl cellulose, acrylic, acrylic-styryl copolymer, acrylonitrile-butadiene-styrene copolymer, polystyrene, polyethylene, polypropylene, polycarbonate, and vinyl chloride are used.
When used for a display device, it is preferable to use a plastic substrate having optical transparency as the substrate body.
 基材本体は、シート状であってもよく、フィルム状であってもよいが、フィルム状であることが好ましい。 The substrate body may be in the form of a sheet or film, but is preferably in the form of a film.
 本実施形態の塗膜付きプラスチック基材は、空気を基準として測定した場合に、ヘーズ値が1.4%以下であることが好ましく、1.0%以下であることがより好ましい。 The plastic substrate with a coating film of the present embodiment has a haze value of preferably 1.4% or less, more preferably 1.0% or less, when measured on the basis of air.
 ここで、「ヘーズ値」とは、全光線透過光に対する拡散透過光の割合(%)のことであり、空気を基準として、ヘイズメーターNDH-2000(日本電色社製)を用い、日本工業規格JIS-K-7136に基づいて測定した値を意味する。 Here, the “haze value” is a ratio (%) of diffuse transmitted light to total light transmitted light, and a haze meter NDH-2000 (manufactured by Nippon Denshoku Co., Ltd.) is used on the basis of air. It means a value measured based on the standard JIS-K-7136.
 本実施形態の塗膜付きプラスチック基材は、プラスチック基材と塗膜の間にハードコート膜を設けてもよい。さらに、塗膜は屈折率等の性能が異なる膜をさらに積層させてもよい。 The plastic substrate with a coating film of this embodiment may be provided with a hard coat film between the plastic substrate and the coating film. Furthermore, the coating film may be further laminated with films having different performance such as refractive index.
 本発明の塗膜付きプラスチック基材は、本実施形態の塗膜を具備するため、透明性と成膜性とに優れる。 Since the plastic substrate with a coating film of the present invention has the coating film of the present embodiment, it is excellent in transparency and film formability.
[表示装置]
 本実施形態の表示装置は、本実施形態の塗膜および本実施形態の塗膜付きプラスチック基材のいずれか一方または両方を備える。
 表示装置は、特に限定されないが、本実施形態ではタッチパネル用の液晶表示装置について説明する。
[Display device]
The display device of this embodiment includes one or both of the coating film of this embodiment and the plastic substrate with a coating film of this embodiment.
The display device is not particularly limited, but in this embodiment, a liquid crystal display device for a touch panel will be described.
[タッチパネル]
 タッチパネルにおいて、ITO電極と透明基材(ポリエチレンテレフタレート等のプラスチック基材)との屈折率差が大きい場合には、ITO電極部分が見え易くなる、いわゆる骨見え現象が起こる。
 そのため、屈折率が1.9以上の酸化ジルコニウムを選択した本実施形態の塗膜を、透明基材とITO電極との間の層として設けることにより、透明基材とITO電極の屈折率差を緩和して、骨見え現象を抑制することができる。
 本実施形態の塗膜および本実施形態の塗膜付きプラスチック基材のいずれか一方または両方をタッチパネルに設ける方法は、特に限定されず、公知の方法により実装すればよい。例えば、本実施形態の塗膜付きプラスチック基材の塗膜面に、ITO電極をパターニングし、配向膜、液晶層を積層した構造等が挙げられる。
[Touch panel]
In the touch panel, when the refractive index difference between the ITO electrode and the transparent base material (plastic base material such as polyethylene terephthalate) is large, a so-called bone appearance phenomenon occurs in which the ITO electrode portion is easily visible.
Therefore, the difference in the refractive index between the transparent substrate and the ITO electrode can be obtained by providing the coating film of this embodiment in which the zirconium oxide having a refractive index of 1.9 or more is selected as a layer between the transparent substrate and the ITO electrode. The bone appearance phenomenon can be suppressed by relaxing.
The method of providing either one or both of the coating film of this embodiment and the plastic substrate with a coating film of this embodiment on the touch panel is not particularly limited, and may be implemented by a known method. For example, the structure etc. which patterned the ITO electrode on the coating-film surface of the plastic base material with a coating film of this embodiment, and laminated | stacked the orientation film and the liquid crystal layer are mentioned.
 本実施形態の表示装置は、透明性と成膜性とに優れる、本実施形態の塗膜および本実施形態の塗膜付きプラスチック基材のいずれか一方または両方を備えている。このため、塗膜面内における光学特性のばらつきがほとんどないため、視認性に優れた表示装置を得ることができる。 The display device of this embodiment includes either one or both of the coating film of this embodiment and the plastic substrate with a coating film of this embodiment, which are excellent in transparency and film forming property. For this reason, since there is almost no dispersion | variation in the optical characteristic in the coating-film surface, the display apparatus excellent in visibility can be obtained.
 以下、実施例および比較例により本発明を具体的に説明するが、本発明はこれらの実施例により限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.
[実施例1]
「酸化ジルコニウム」
 85℃に加熱した0.6Mオキシ塩化ジルコニウム水溶液(700ml)に、15質量%硫酸アンモニウム水溶液を、5分間かけて添加した。
 オキシ塩化ジルコニウム水溶液に対する硫酸アンモニウム水溶液の添加量を、モル比で、硫酸アンモニウム:オキシ塩化ジルコニウム=0.45:1となる量にした。
 硫酸アンモニウム水溶液を添加した後、オキシ塩化ジルコニウム水溶液は白濁したことから、水に対して不溶性の塩基性硫酸ジルコニウムが生成したことを確認した。
 硫酸アンモニウム水溶液を添加した、オキシ塩化ジルコニウム水溶液を30分間攪拌した後、その混合溶液に、1N水酸化ナトリウム水溶液を添加して、混合溶液のpHを9~10に調整した。
 その後、混合溶液を固液分離して、固形分を回収した。ついで、再び、その固形分を1N水酸化ナトリウム水溶液に添加して、固形分から硫酸イオンを除去した。この固液分離と、水酸化ナトリウムによる硫酸イオンを除去する処理とを1セット行った。
 その後、回収した固形分を純水により洗浄する処理を1回行って水酸化ジルコニウムを得た。
 得られた水酸化ジルコニウムを乾燥した後、430℃で1時間焼成し、その後、焼成物を粉砕して、実施例1の酸化ジルコニウムを得た。
[Example 1]
"Zirconium oxide"
To a 0.6 M zirconium oxychloride aqueous solution (700 ml) heated to 85 ° C., a 15 mass% ammonium sulfate aqueous solution was added over 5 minutes.
The addition amount of the ammonium sulfate aqueous solution with respect to the zirconium oxychloride aqueous solution was such that ammonium sulfate: zirconium oxychloride = 0.45: 1 in molar ratio.
After addition of the aqueous ammonium sulfate solution, the aqueous zirconium oxychloride solution became cloudy, confirming the formation of basic zirconium sulfate insoluble in water.
After stirring the aqueous solution of zirconium oxychloride to which an aqueous ammonium sulfate solution was added for 30 minutes, a 1N aqueous sodium hydroxide solution was added to the mixed solution to adjust the pH of the mixed solution to 9-10.
Thereafter, the mixed solution was subjected to solid-liquid separation to recover a solid content. Then, the solid content was added again to a 1N aqueous sodium hydroxide solution to remove sulfate ions from the solid content. One set of this solid-liquid separation and a treatment for removing sulfate ions by sodium hydroxide was performed.
Then, the process which wash | cleans the collect | recovered solid content with a pure water was performed once, and the zirconium hydroxide was obtained.
The obtained zirconium hydroxide was dried and then fired at 430 ° C. for 1 hour, and then the fired product was pulverized to obtain zirconium oxide of Example 1.
「酸化ジルコニウムの評価」
 得られた酸化ジルコニウムのBET比表面積を、比表面積計(BelsorpII、日本ベル社製)を用いて、窒素吸着法によるBET多点法により測定した。結果を表1に示す。
 また、酸化ジルコニウムにおける硫酸イオン(SO 2-)の含有量およびナトリウム(Na)の含有量を、燃焼式イオンクロマトグラフィーにより測定した。具体的には、純水に酸化ジルコニウムを懸濁させて、100℃で30分保持した後、その懸濁液の上澄み液を、燃焼式イオンクロマトグラフィーにより評価した。
 得られた硫酸イオンの含有量とナトリウムとの含有量から、硫酸イオンの含有量と、ナトリウムの含有量との比である(硫酸イオンの含有量(mg/kg))/(ナトリウムの含有量(mg/kg))を算出した。結果を表1に示す。
"Evaluation of zirconium oxide"
The BET specific surface area of the obtained zirconium oxide was measured by a BET multipoint method using a nitrogen adsorption method using a specific surface area meter (Belsorb II, manufactured by Nippon Bell Co., Ltd.). The results are shown in Table 1.
The content of sulfate ion (SO 4 2− ) and the content of sodium (Na) in zirconium oxide were measured by combustion ion chromatography. Specifically, zirconium oxide was suspended in pure water and held at 100 ° C. for 30 minutes, and then the supernatant of the suspension was evaluated by combustion ion chromatography.
From the obtained sulfate ion content and sodium content, it is the ratio of the sulfate ion content to the sodium content (sulfate ion content (mg / kg)) / (sodium content) (Mg / kg)) was calculated. The results are shown in Table 1.
「酸化ジルコニウム分散液」
 得られた酸化ジルコニウムを30質量%、3-メタクリロキシプロピルトリメトキシシランを4.5質量%、アミン系分散剤を0.4質量%、メチルイソブチルケトン(MIBK)を65.1質量%混合した後、ビーズミルを用いて、分散処理を行って、実施例1の酸化ジルコニウム分散液を得た。
"Zirconium oxide dispersion"
30% by mass of the obtained zirconium oxide, 4.5% by mass of 3-methacryloxypropyltrimethoxysilane, 0.4% by mass of an amine dispersant, and 65.1% by mass of methyl isobutyl ketone (MIBK) were mixed. Then, the dispersion process was performed using the bead mill and the zirconium oxide dispersion liquid of Example 1 was obtained.
「酸化ジルコニウム分散液の評価」
 得られた酸化ジルコニウム分散液の液ヘーズ値を、2mmキュベットを用いて、ヘーズメーター(商品名:HAZE METER TC-H3DP、東京電色社製)で測定した。結果を表1に示す。
"Evaluation of zirconium oxide dispersion"
The liquid haze value of the obtained zirconium oxide dispersion was measured with a haze meter (trade name: HAZE METER TC-H3DP, manufactured by Tokyo Denshoku Co., Ltd.) using a 2 mm cuvette. The results are shown in Table 1.
[実施例2]
 固液分離処理と、硫酸イオン除去処理とを5セット繰り返し、混合溶液から回収した固形分を純水により洗浄する処理を2回繰り返して水酸化ジルコニウムを得た以外は実施例1と同様にして、実施例2の酸化ジルコニウムを得た。
 得られた酸化ジルコニウムのBET比表面積、硫酸イオンの含有量、ナトリウムの含有量、硫酸イオンの含有量とナトリウムの含有量との比を、実施例1と同様に測定した。結果を表1に示す。
 また、実施例1と同様にして、実施例2の酸化ジルコニウム分散液を得た。
 得られた酸化ジルコニウム分散液の液ヘーズ値を、実施例1と同様に測定した。結果を表1に示す。
[Example 2]
The same procedure as in Example 1 was repeated except that the solid-liquid separation treatment and the sulfate ion removal treatment were repeated 5 sets, and the treatment of washing the solid content recovered from the mixed solution with pure water was repeated twice to obtain zirconium hydroxide. Thus, zirconium oxide of Example 2 was obtained.
The BET specific surface area, the sulfate ion content, the sodium content, and the ratio of the sulfate ion content to the sodium content of the obtained zirconium oxide were measured in the same manner as in Example 1. The results are shown in Table 1.
Further, a zirconium oxide dispersion of Example 2 was obtained in the same manner as Example 1.
The liquid haze value of the obtained zirconium oxide dispersion was measured in the same manner as in Example 1. The results are shown in Table 1.
[実施例3]
 固液分離と、硫酸イオン除去処理とを3セット繰り返し、混合溶液から回収した固形分を純水により洗浄する処理を3回繰り返して水酸化ジルコニウムを得た以外は実施例1と同様にして、実施例3の酸化ジルコニウムを得た。
 得られた酸化ジルコニウムのBET比表面積、硫酸イオンの含有量、ナトリウムの含有量、硫酸イオンの含有量とナトリウムの含有量との比を、実施例1と同様に測定した。結果を表1に示す。
 また、実施例1と同様にして、実施例3の酸化ジルコニウム分散液を得た。
 得られた酸化ジルコニウム分散液の液ヘーズ値を、実施例1と同様に測定した。結果を表1に示す。
[Example 3]
In the same manner as in Example 1, except that solid-liquid separation and sulfate ion removal treatment were repeated three sets, and the treatment of washing the solid content recovered from the mixed solution with pure water was repeated three times to obtain zirconium hydroxide. The zirconium oxide of Example 3 was obtained.
The BET specific surface area, the sulfate ion content, the sodium content, and the ratio of the sulfate ion content to the sodium content of the obtained zirconium oxide were measured in the same manner as in Example 1. The results are shown in Table 1.
Further, in the same manner as in Example 1, a zirconium oxide dispersion of Example 3 was obtained.
The liquid haze value of the obtained zirconium oxide dispersion was measured in the same manner as in Example 1. The results are shown in Table 1.
[実施例4]
 固液分離と、硫酸イオン除去処理とを4セット繰り返し、混合溶液から回収した固形分を純水により洗浄する処理を3回繰り返して水酸化ジルコニウムを得た以外は実施例1と同様にして、実施例4の酸化ジルコニウムを得た。
 得られた酸化ジルコニウムのBET比表面積、硫酸イオンの含有量、ナトリウムの含有量、硫酸イオンの含有量とナトリウムの含有量との比を、実施例1と同様に測定した。結果を表1に示す。
 また、実施例1と同様にして、実施例4の酸化ジルコニウム分散液を得た。
 得られた酸化ジルコニウム分散液の液ヘーズ値を、実施例1と同様に測定した。結果を表1に示す。
[Example 4]
The same procedure as in Example 1 was repeated except that solid-liquid separation and sulfate ion removal treatment were repeated 4 sets, and the solid content recovered from the mixed solution was washed 3 times with pure water to obtain zirconium hydroxide. The zirconium oxide of Example 4 was obtained.
The BET specific surface area, the sulfate ion content, the sodium content, and the ratio of the sulfate ion content to the sodium content of the obtained zirconium oxide were measured in the same manner as in Example 1. The results are shown in Table 1.
Further, in the same manner as in Example 1, the zirconium oxide dispersion of Example 4 was obtained.
The liquid haze value of the obtained zirconium oxide dispersion was measured in the same manner as in Example 1. The results are shown in Table 1.
[比較例1]
 実施例1では固液分離処理と、水酸化ナトリウムによる硫酸イオン除去処理とを1セット行った後、純水洗浄処理を1回行ったのに対して、純水洗浄処理を2回行った以外は実施例1と同様にして、比較例1の酸化ジルコニウムを得た。
 得られた酸化ジルコニウムのBET比表面積、硫酸イオンの含有量、ナトリウムの含有量、硫酸イオンの含有量とナトリウムの含有量との比を、実施例1と同様に測定した。結果を表1に示す。
 また、実施例1と同様にして、比較例1の酸化ジルコニウム分散液を得た。
 得られた酸化ジルコニウム分散液の液ヘーズ値を、実施例1と同様に測定した。結果を表1に示す。
[Comparative Example 1]
In Example 1, after one set of solid-liquid separation processing and sulfate ion removal processing with sodium hydroxide was performed, pure water cleaning processing was performed once, whereas pure water cleaning processing was performed twice. Was obtained in the same manner as in Example 1 to obtain zirconium oxide of Comparative Example 1.
The BET specific surface area, the sulfate ion content, the sodium content, and the ratio of the sulfate ion content to the sodium content of the obtained zirconium oxide were measured in the same manner as in Example 1. The results are shown in Table 1.
Further, a zirconium oxide dispersion of Comparative Example 1 was obtained in the same manner as Example 1.
The liquid haze value of the obtained zirconium oxide dispersion was measured in the same manner as in Example 1. The results are shown in Table 1.
[比較例2]
 実施例1では固液分離処理と、水酸化ナトリウムによる硫酸イオン除去処理とを1セット行った後、純水洗浄処理を1回行ったのに対して、固液分離処理と、水酸化ナトリウムにより硫酸イオン除去処理とを2セット行った後、純水洗浄処理を3回行った以外は実施例1と同様にして、比較例2の酸化ジルコニウムを得た。
 得られた酸化ジルコニウムのBET比表面積、硫酸イオンの含有量、ナトリウムの含有量、硫酸イオンの含有量とナトリウムの含有量との比を、実施例1と同様に測定した。結果を表1に示す。
 また、実施例1と同様にして、比較例2の酸化ジルコニウム分散液を得た。
 得られた酸化ジルコニウム分散液の液ヘーズ値を、実施例1と同様に測定した。結果を表1に示す。
[Comparative Example 2]
In Example 1, one set of solid-liquid separation treatment and sulfate ion removal treatment with sodium hydroxide was performed and then pure water washing treatment was performed once, whereas solid-liquid separation treatment and sodium hydroxide Zirconium oxide of Comparative Example 2 was obtained in the same manner as in Example 1 except that two sets of sulfate ion removal treatment were performed and then pure water washing treatment was performed three times.
The BET specific surface area, the sulfate ion content, the sodium content, and the ratio of the sulfate ion content to the sodium content of the obtained zirconium oxide were measured in the same manner as in Example 1. The results are shown in Table 1.
Further, in the same manner as in Example 1, a zirconium oxide dispersion of Comparative Example 2 was obtained.
The liquid haze value of the obtained zirconium oxide dispersion was measured in the same manner as in Example 1. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
                  
Figure JPOXMLDOC01-appb-T000001
                  
 表1の結果から、実施例1~4と、比較例1および2とを比較すると、実施例1~4の酸化ジルコニウムは、硫酸イオンの含有量と、ナトリウムの含有量との比である(硫酸イオンの含有量(mg/kg))/(ナトリウムの含有量(mg/kg))を4.6以下としたので、液ヘーズ値が低く、透明性が高く、分散安定性に優れた酸化ジルコニウム分散液が得られることが分かった。 From the results of Table 1, when comparing Examples 1 to 4 and Comparative Examples 1 and 2, the zirconium oxide of Examples 1 to 4 is the ratio of the sulfate ion content to the sodium content ( Since the sulfate ion content (mg / kg) / (sodium content (mg / kg)) was 4.6 or less, the liquid haze value was low, the transparency was high, and the dispersion stability was excellent. It was found that a zirconium dispersion was obtained.
 また、実施例1~4の酸化ジルコニウム分散液を、25℃にて90日保管した後、液ヘーズ値を測定したところ、保管前の値とほぼ同一であり、実施例1~4の酸化ジルコニウム分散液は、長期保管の安定性に優れることが確認された。 Further, after storing the zirconium oxide dispersions of Examples 1 to 4 at 25 ° C. for 90 days, the liquid haze value was measured and found to be almost the same as the value before storage, and the zirconium oxides of Examples 1 to 4 It was confirmed that the dispersion was excellent in long-term storage stability.
[実施例5]
「酸化ジルコニウム含有組成物」
 実施例1の酸化ジルコニウム分散液を82.7質量%、ウレタンアクリレート(重量平均分子量(MW)20,000~40,000)を10.6質量%、重合開始剤を0.6質量%、重合促進剤を0.1質量%、イソプロピルアルコールを6質量%混合して、実施例5の酸化ジルコニウム含有組成物を得た。この組成物は、溶剤以外の成分、すなわち、固形分が40質量%であり、固形分100質量%中の酸化ジルコニウムの含有量は62質量%であった。
[Example 5]
"Zirconium oxide-containing composition"
82.7% by mass of the zirconium oxide dispersion of Example 1, 10.6% by mass of urethane acrylate (weight average molecular weight (MW) 20,000 to 40,000), 0.6% by mass of polymerization initiator, polymerization The zirconium oxide-containing composition of Example 5 was obtained by mixing 0.1% by mass of the accelerator and 6% by mass of isopropyl alcohol. This composition had components other than the solvent, that is, a solid content of 40% by mass, and the content of zirconium oxide in the solid content of 100% by mass was 62% by mass.
「塗膜および塗膜付きプラスチック基材」
 得られた酸化ジルコニウム含有組成物を50μm厚のポリエチレンテレフタレートフィルムに、乾燥膜厚が1μmとなるようにバーコーティング法で塗布し、90℃ にて1分間加熱して乾燥させ、塗膜を形成した。
 次いで、高圧水銀灯(120W/cm)を用い、塗膜に紫外線を250mJ/cmのエネルギーとなるように露光し、塗膜を硬化させて、実施例5の塗膜付きプラスチック基材を得た。
"Coating substrates and plastic substrates with coatings"
The resulting zirconium oxide-containing composition was applied to a 50 μm thick polyethylene terephthalate film by a bar coating method so that the dry film thickness was 1 μm, and dried by heating at 90 ° C. for 1 minute to form a coating film. .
Next, using a high pressure mercury lamp (120 W / cm), the coating film was exposed to ultraviolet light with an energy of 250 mJ / cm 2 , and the coating film was cured to obtain a plastic substrate with a coating film of Example 5. .
「塗膜付きプラスチック基材の評価」
「全光線透過率、ヘーズ値」
 塗膜付きプラスチック基材の全光線透過率とヘーズ値とを、空気を基準として、ヘーズメーターNDH-2000(日本電色社製)を用い、日本工業規格JIS-K-7136に基づいて測定した。全光線透過率とヘーズ値との測定には、作製した塗膜付きプラスチック基材から100mm×100mmの試験片を作製し、その試験片を用いた。
 その結果、全光線透過率は89.3%であり、ヘーズ値は0.73%であった。
"Evaluation of plastic substrate with coating film"
"Total light transmittance, haze value"
The total light transmittance and haze value of the plastic substrate with a coating film were measured based on Japanese Industrial Standard JIS-K-7136 using a haze meter NDH-2000 (manufactured by Nippon Denshoku Co., Ltd.) on the basis of air. . For the measurement of the total light transmittance and the haze value, a test piece of 100 mm × 100 mm was produced from the produced plastic substrate with a coating film, and the test piece was used.
As a result, the total light transmittance was 89.3%, and the haze value was 0.73%.
「耐擦傷性」
 塗膜付きプラスチック基材の耐擦傷性を評価した。
 塗膜付きプラスチック基材の塗膜面に対して、#0000のスチールウールを装着したラビングテスター(太平理化工業社製)を用いて、250g/cmの荷重を掛け、10往復させた。次いで、目視で傷の本数を数えたところ、10本以下であった。
"Abrasion resistance"
The scratch resistance of the coated plastic substrate was evaluated.
Using a rubbing tester (manufactured by Taihei Rika Kogyo Co., Ltd.) equipped with # 0000 steel wool, a load of 250 g / cm 2 was applied to the coating film surface of the plastic substrate with a coating film and reciprocated 10 times. Then, when the number of scratches was counted visually, it was 10 or less.
「酸化ジルコニウム含有組成物の保管安定性の評価」
 得られた組成物の保管安定性は、5℃、25℃、35℃の恒温漕でそれぞれ保管し、30日後、60日後、90日後に、実施例5と同様の方法で塗膜を作製し、その塗膜の全光線透過率およびヘーズ値を測定することにより評価した。
 その結果、それぞれの温度で30日間、60日間または90日間保管後、塗膜の全光線透過率は、89.3%~89.6%、塗膜のヘーズ値は、0.63%~0.86%であり、ほとんど差異がなかった。従って、実施例5の酸化ジルコニウム含有組成物は、保管安定性に優れることが確認された。
 また、上記と同様にして、それぞれの温度で30日間、60日間または90日間保管後の塗膜の耐擦傷性を評価した。その結果、目視で傷の本数を数えたところ、10本以下であった。
"Evaluation of storage stability of zirconium oxide-containing compositions"
The storage stability of the obtained composition was stored at 5 ° C., 25 ° C., and 35 ° C., respectively, and after 30 days, 60 days, and 90 days, a coating film was prepared in the same manner as in Example 5. The film was evaluated by measuring the total light transmittance and haze value of the coating film.
As a result, after storage at each temperature for 30, 60 or 90 days, the total light transmittance of the coating film was 89.3% to 89.6%, and the haze value of the coating film was 0.63% to 0 .86%, almost no difference. Therefore, it was confirmed that the zirconium oxide containing composition of Example 5 was excellent in storage stability.
Further, in the same manner as described above, the scratch resistance of the coating film after storage at each temperature for 30 days, 60 days, or 90 days was evaluated. As a result, when the number of scratches was counted visually, it was 10 or less.
[実施例6]
「酸化ジルコニウム分散液」
 実施例1の酸化ジルコニウムを40質量%、3-メタクリロキシプロピルトリメトキシシランを6質量%、アミン系分散剤を0.4質量%、メチルイソブチルケトン(MIBK)を53.6質量%混合した後、ビーズミルを用いて、分散処理を行って、実施例5の酸化ジルコニウム分散液を得た。
 得られた酸化ジルコニウム分散液の液ヘーズ値を、実施例1と同様に測定した結果、18.6%であった。
[Example 6]
"Zirconium oxide dispersion"
After mixing 40% by mass of zirconium oxide of Example 1, 6% by mass of 3-methacryloxypropyltrimethoxysilane, 0.4% by mass of an amine dispersant, and 53.6% by mass of methyl isobutyl ketone (MIBK). Then, a dispersion treatment was performed using a bead mill to obtain a zirconium oxide dispersion of Example 5.
The liquid haze value of the obtained zirconium oxide dispersion was measured in the same manner as in Example 1. As a result, it was 18.6%.
「酸化ジルコニウム含有組成物」
 実施例6の酸化ジルコニウム分散液を71.3質量%、ジペンタエリスリトールヘキサアクリレートを16.2質量%、重合開始剤を0.6質量%、重合促進剤を0.1質量%、イソプロピルアルコールを5質量%、メチルイソブチルケトンを6.8質量%混合して、実施例6の酸化ジルコニウム含有組成物を得た。この組成物は、溶剤以外の成分、すなわち、固形分が50質量%であり、固形分100質量%中の酸化ジルコニウムの含有量は57質量%であった。
"Zirconium oxide-containing composition"
The zirconium oxide dispersion of Example 6 was 71.3 mass%, dipentaerythritol hexaacrylate was 16.2 mass%, the polymerization initiator was 0.6 mass%, the polymerization accelerator was 0.1 mass%, and isopropyl alcohol. A zirconium oxide-containing composition of Example 6 was obtained by mixing 5% by mass and 6.8% by mass of methyl isobutyl ketone. This composition had components other than the solvent, that is, a solid content of 50% by mass, and the content of zirconium oxide in the solid content of 100% by mass was 57% by mass.
「塗膜付きプラスチック基材」
 実施例5の酸化ジルコニウム含有組成物の替わりに、実施例6の酸化ジルコニウム含有組成物を用いた以外は実施例5と同様にして、実施例6の塗膜付きプラスチック基材を得た。
 実施例5と同様にして、この塗膜付きプラスチック基材の全光線透過率とヘーズ値を評価した。その結果、全光線透過率は89.5%であり、ヘーズ値は0.85%であった。
 また、実施例5と同様にして、実施例6の塗膜付きプラスチック基材の耐擦傷性を評価した。その結果、目視で傷の本数を数えたところ10本以下であった。
"Plastic substrate with coating film"
A plastic substrate with a coating film of Example 6 was obtained in the same manner as in Example 5 except that the zirconium oxide-containing composition of Example 6 was used instead of the zirconium oxide-containing composition of Example 5.
In the same manner as in Example 5, the total light transmittance and haze value of the plastic substrate with a coating film were evaluated. As a result, the total light transmittance was 89.5%, and the haze value was 0.85%.
Further, in the same manner as in Example 5, the scratch resistance of the plastic substrate with a coating film of Example 6 was evaluated. As a result, when the number of scratches was counted visually, it was 10 or less.
 本発明の酸化ジルコニウムは、従来、酸化ジルコニウム分散液が使用されている全ての工業用途に適用することができ、例えば、光学フィルム用途、住宅外装用途、熱線遮蔽用途等に適用することができる。 The zirconium oxide of the present invention can be applied to all industrial uses in which a zirconium oxide dispersion is conventionally used. For example, it can be applied to optical film uses, house exterior uses, heat ray shielding uses, and the like.

Claims (7)

  1.  硫酸イオンとナトリウムとを含み、硫酸イオンの含有量と、ナトリウムの含有量との比である(硫酸イオンの含有量(mg/kg))/(ナトリウムの含有量(mg/kg))が6以下であることを特徴とする酸化ジルコニウム。 It contains sulfate ions and sodium, and the ratio of the sulfate ion content to the sodium content (sulfate ion content (mg / kg)) / (sodium content (mg / kg)) is 6 Zirconium oxide characterized by:
  2.  比表面積が75m/g以上かつ90m/g以下であることを特徴とする請求項1に記載の酸化ジルコニウム。 2. The zirconium oxide according to claim 1, wherein the specific surface area is 75 m 2 / g or more and 90 m 2 / g or less.
  3.  請求項1または2に記載の酸化ジルコニウムが、分散媒に分散されてなることを特徴とする酸化ジルコニウム分散液。 A zirconium oxide dispersion, wherein the zirconium oxide according to claim 1 or 2 is dispersed in a dispersion medium.
  4.  前記酸化ジルコニウムの含有率を30質量%とし、かつ光路長を2mmとしたときの液ヘーズ値が50%以下であることを特徴とする請求項3に記載の酸化ジルコニウム分散液。 The zirconium oxide dispersion according to claim 3, wherein a liquid haze value is 50% or less when the content of the zirconium oxide is 30% by mass and the optical path length is 2 mm.
  5.  請求項3または4に記載の酸化ジルコニウム分散液と、バインダー成分とを含有してなることを特徴とする酸化ジルコニウム含有組成物。 A zirconium oxide-containing composition comprising the zirconium oxide dispersion according to claim 3 or 4 and a binder component.
  6.  請求項5に記載の酸化ジルコニウム含有組成物を用いて形成されたことを特徴とする塗膜。 A coating film formed using the zirconium oxide-containing composition according to claim 5.
  7.  請求項6に記載の塗膜を備えたことを特徴とする表示装置。 A display device comprising the coating film according to claim 6.
PCT/JP2015/069914 2014-07-14 2015-07-10 Zirconium oxide, zirconium oxide dispersion liquid, zirconium oxide-containing composition, coating film and display device WO2016009962A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020177001446A KR20170030533A (en) 2014-07-14 2015-07-10 Zirconium oxide, zirconium oxide dispersion liquid, zirconium oxide-containing composition, coating film and display device
JP2016534408A JP6547749B2 (en) 2014-07-14 2015-07-10 Zirconium oxide, zirconium oxide dispersion liquid, zirconium oxide-containing composition, coating film, and display device
CN201580038130.7A CN106573793A (en) 2014-07-14 2015-07-10 Zirconium oxide, zirconium oxide dispersion liquid, zirconium oxide-containing composition, coating film and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014144383 2014-07-14
JP2014-144383 2014-07-14

Publications (1)

Publication Number Publication Date
WO2016009962A1 true WO2016009962A1 (en) 2016-01-21

Family

ID=55078456

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/069914 WO2016009962A1 (en) 2014-07-14 2015-07-10 Zirconium oxide, zirconium oxide dispersion liquid, zirconium oxide-containing composition, coating film and display device

Country Status (5)

Country Link
JP (1) JP6547749B2 (en)
KR (1) KR20170030533A (en)
CN (1) CN106573793A (en)
TW (1) TWI676601B (en)
WO (1) WO2016009962A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114573024A (en) * 2022-03-18 2022-06-03 山东国瓷功能材料股份有限公司 Zirconium oxide monomer type dispersion liquid, preparation method thereof, optical film and display screen
CN114573024B (en) * 2022-03-18 2024-05-28 山东国瓷功能材料股份有限公司 Zirconia monomer type dispersion liquid, preparation method thereof, optical film and display screen

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003206137A (en) * 2002-01-11 2003-07-22 Dowa Mining Co Ltd Partially stabilized or stabilized zirconia fine powder, precursor thereof and production method therefor
JP2010143813A (en) * 2008-12-22 2010-07-01 Dai Ichi Kogyo Seiyaku Co Ltd Zirconium oxide, precursor of the same and method for producing them
JP2011171015A (en) * 2010-02-16 2011-09-01 Sumitomo Osaka Cement Co Ltd Low-resistance transparent conductive film, manufacturing method therefor, solar cell, and electronic apparatus

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5851829B2 (en) 1978-07-20 1983-11-18 日本電信電話株式会社 film typeface
JPH01270515A (en) 1988-04-21 1989-10-27 Nippon Denko Kk Production of zirconia fine powder
JPH11263621A (en) 1998-03-18 1999-09-28 Daiichi Kigensokagaku Kogyo Co Ltd Production of zirconia carrying sulfuric acid
JP4817254B2 (en) * 2006-12-01 2011-11-16 大日本塗料株式会社 Zirconium oxide particle dispersion, photocurable composition containing zirconium oxide particles, and cured film
KR102564522B1 (en) 2023-02-02 2023-08-07 엠앤앤에이치 주식회사 Multi-view shooting apparatus and method for creating 3D volume object

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003206137A (en) * 2002-01-11 2003-07-22 Dowa Mining Co Ltd Partially stabilized or stabilized zirconia fine powder, precursor thereof and production method therefor
JP2010143813A (en) * 2008-12-22 2010-07-01 Dai Ichi Kogyo Seiyaku Co Ltd Zirconium oxide, precursor of the same and method for producing them
JP2011171015A (en) * 2010-02-16 2011-09-01 Sumitomo Osaka Cement Co Ltd Low-resistance transparent conductive film, manufacturing method therefor, solar cell, and electronic apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114573024A (en) * 2022-03-18 2022-06-03 山东国瓷功能材料股份有限公司 Zirconium oxide monomer type dispersion liquid, preparation method thereof, optical film and display screen
CN114573024B (en) * 2022-03-18 2024-05-28 山东国瓷功能材料股份有限公司 Zirconia monomer type dispersion liquid, preparation method thereof, optical film and display screen

Also Published As

Publication number Publication date
KR20170030533A (en) 2017-03-17
JPWO2016009962A1 (en) 2017-06-01
JP6547749B2 (en) 2019-07-24
CN106573793A (en) 2017-04-19
TW201605736A (en) 2016-02-16
TWI676601B (en) 2019-11-11

Similar Documents

Publication Publication Date Title
JP5846322B2 (en) Inorganic particle dispersion, inorganic particle-containing composition, coating film, plastic substrate with coating film, display device
JP6083490B2 (en) Method for producing inorganic fine particle dispersion and method for producing cured product for optical member
JP6354409B2 (en) Metal oxide particle dispersion, metal oxide particle-containing composition, coating film, display device
WO2011059081A1 (en) Process for production of silica-alumina sol, silica-alumina sol, coating agent for formation of transparent coating film which comprises the sol, and substrate having transparent coating film attached thereto
JP2009035595A (en) Substrate with hard coat film and coating liquid for forming hard coat film
JP5709706B2 (en) Paint for forming transparent film and substrate with transparent film
JP5696581B2 (en) Antistatic hard coat coating material and optical member
JP5466612B2 (en) Method for producing resin-coated metal oxide particle resin dispersion composition and substrate with transparent coating
JP2011132343A (en) Antistatic hard coating material and optical member
JP2017019938A (en) Inorganic particle-containing composition, coating film, plastic substrate with coating film, and display device
WO2016031931A1 (en) Resin composition, coating film, plastic film with coating film, and display device
JP6241574B2 (en) Transparent resin composition and heat ray shielding film
JP6547749B2 (en) Zirconium oxide, zirconium oxide dispersion liquid, zirconium oxide-containing composition, coating film, and display device
JP2014189604A (en) Coating material for forming hard coat film, method for producing coating material for forming hard coat film, hard coat film, plastic base material including the same, and touch panel
WO2018123096A1 (en) Dispersion liquid, coating liquid, and heat ray shielding film
JP6455473B2 (en) Inorganic particle dispersion, inorganic particle-containing composition, coating film, plastic substrate with coating film, and display device
JP6834433B2 (en) Manufacturing method of fine uneven structure
JP6489049B2 (en) Inorganic particle-containing composition, coating film, plastic substrate with coating film, and display device
JP2018053096A (en) Dispersion liquid and method for producing the same, coating, and coating film
WO2023112953A1 (en) Zro2 liquid dispersion
JP2018053098A (en) Inorganic particle-containing composition, coating film, plastic substrate with coating film, and display device
JP2015218215A (en) Cyclic olefin resin film and optical film
JP2016169343A (en) Composition containing inorganic particle, coating film, plastic substrate with coating film, and display device
JP2016194000A (en) Inorganic particle-containing composition, coating film, plastic substrate with coating film, and display device
JP2016190940A (en) Metal oxide particle-containing composition, coating film, plastic film with coating film, and display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15822893

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016534408

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177001446

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 15822893

Country of ref document: EP

Kind code of ref document: A1