WO2016006793A1 - 전해 동박 및 그 제조 방법과, 이 전해 동박을 포함하는 리튬 이차전지용 집전체 및 리튬 이차전지 - Google Patents

전해 동박 및 그 제조 방법과, 이 전해 동박을 포함하는 리튬 이차전지용 집전체 및 리튬 이차전지 Download PDF

Info

Publication number
WO2016006793A1
WO2016006793A1 PCT/KR2015/002986 KR2015002986W WO2016006793A1 WO 2016006793 A1 WO2016006793 A1 WO 2016006793A1 KR 2015002986 W KR2015002986 W KR 2015002986W WO 2016006793 A1 WO2016006793 A1 WO 2016006793A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper foil
electrolytic copper
secondary battery
lithium secondary
current collector
Prior art date
Application number
PCT/KR2015/002986
Other languages
English (en)
French (fr)
Inventor
전검배
김영태
전상현
이현우
이상우
정은선
김동우
Original Assignee
엘에스엠트론 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘에스엠트론 주식회사 filed Critical 엘에스엠트론 주식회사
Priority to JP2017501022A priority Critical patent/JP2017526115A/ja
Priority to CN201580037574.9A priority patent/CN106536791A/zh
Publication of WO2016006793A1 publication Critical patent/WO2016006793A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/38Electroplating: Baths therefor from solutions of copper
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an electrolytic copper foil, a production method thereof, a current collector for a lithium secondary battery including the electrolytic copper foil, and a lithium secondary battery. More specifically, And an electrolytic copper foil containing the electrolytic copper foil, a production method thereof, and a current collector for a lithium secondary battery including the electrolytic copper foil and a lithium secondary battery.
  • the lithium secondary battery has many advantages such as high energy density, high operating voltage and excellent preservation and life characteristics compared to other secondary batteries.
  • the lithium secondary battery can be used for a variety of purposes such as a personal computer, a camcorder, a portable telephone, a portable CD player, a PDA And is widely used in portable electronic devices.
  • a lithium secondary battery has a structure including a positive electrode and a negative electrode disposed with an electrolyte interposed therebetween, and the positive electrode has a structure in which a positive electrode active material is attached to a positive electrode collector, and the negative electrode has a negative electrode active material attached .
  • an electrolytic copper foil is mainly used as a material of the negative electrode current collector.
  • Such an electrolytic copper foil is used to maintain the performance of the secondary battery even if severe conditions are repeatedly formed in the secondary battery due to charging / discharging of the secondary battery. It should have excellent physical properties.
  • Examples of physical properties that the electrolytic copper foil should have include cracks are not likely to be generated even when severe conditions due to charging and discharging are repeated, rate of decrease in discharge capacity retention rate due to progress of charging and discharging is not too fast, There is no fear of performance deterioration and / or safety accident of the secondary battery due to overheating.
  • the excellent physical properties of the electrodeposited copper foil can be ensured by controlling various factors, and it is difficult to find out the desired properties by controlling what factors are within a certain range.
  • the present invention has been made in view of the above problems, and it is an object of the present invention to find an important factor for exhibiting excellent performance of a lithium secondary battery and to control the electrolytic copper foil so that the electrolytic copper foil has properties for exhibiting excellent performance of a lithium secondary battery do.
  • the present inventors have repeatedly conducted research and experiments to solve the above technical problems. As a result, it has been found that by applying an electrolytic copper foil having a properly adjusted breaking coefficient to a current collector for a lithium secondary battery, Can be maintained excellent.
  • the electrolytic copper foil according to an embodiment of the present invention which can maintain the characteristics of a lithium secondary battery as described above is an electrolytic copper foil applied as a current collector for a lithium secondary battery.
  • the electrolytic copper foil is annealed at 190 ° C for 1 hour (F) corresponding to a range of 5.0 to 18.0.
  • the electrolytic copper foil may have a protective layer formed on the surface thereof, and the protective layer may be formed of at least one selected from the group consisting of chromate, benzotriazole (BTA), and silane coupling agent.
  • the protective layer may be formed of at least one selected from the group consisting of chromate, benzotriazole (BTA), and silane coupling agent.
  • the electrolytic copper foil may have a thickness of less than 20 mu m.
  • the electrolytic copper foil may have a surface roughness (Rz) of more than 0 and 2 mu m or less.
  • the electrolytic copper foil may be manufactured by the electrolytic copper foil manufacturing method according to one embodiment of the present invention.
  • the electrolytic copper foil manufacturing method according to one embodiment of the present invention when annealed at 190 ° C for 1 hour (A) a copper sulfate aqueous solution having a copper concentration of 70 g / L to 80 g / L and a sulfuric acid concentration of 80 g / L to 110 g / L, the method comprising the steps of: Lt; / RTI > And (b) electrodepositing copper (Cu) on the surface of the drum of the making machine at a current density of 40 A / m 2 to 70 A / m 2 at a temperature of 40 ° C to 45 ° C using the aqueous solution of copper sulfate as an electrolyte.
  • the electrolytic copper foil manufacturing method may include (c) forming a protective layer made of at least one selected from the group consisting of chromate, benzotriazole, and silane coupling agent on the surface of the electrodeposited copper layer.
  • the technical problem described above can be achieved not only by the electrode current collector for a lithium secondary battery made of the electrolytic copper foil mentioned above, but also by a lithium secondary battery including the electrode current collector for the lithium secondary battery.
  • the present invention it is possible to minimize the phenomenon in which the capacity retention rate of the lithium secondary battery is reduced and / or the occurrence of ignition due to internal overheating, even if the severe conditions generated in the secondary battery are repeated by charging and discharging the lithium secondary battery This makes it possible to improve the performance of the secondary battery and / or to secure safety in the use of the secondary battery.
  • FIG. 1 is a cross-sectional view showing an electrolytic copper foil according to an embodiment of the present invention.
  • FIG. 2 is a view showing a process in which the electrolytic copper foil is broken in a tensile test on the electrolytic copper foil.
  • 3 is a stress-elongation graph for explaining the breaking property coefficient.
  • FIG. 1 is a cross-sectional view showing an electrolytic copper foil according to an embodiment of the present invention.
  • an electrolytic copper foil 10 according to an embodiment of the present invention includes a copper layer 11 and a protective layer 12 selectively formed on the surface of the copper layer 11.
  • the electrolytic copper foil 10 is preferably used as an anode current collector of a lithium secondary battery. That is, in the lithium secondary battery, the electrolytic copper foil 10 is preferably used as the negative electrode current collector to be combined with the negative electrode active material. On the other hand, a foil made of aluminum (Al) is generally used as the positive electrode current collector to be combined with the positive electrode active material.
  • the case where the electrolytic copper foil 10 is used as a current collector for a secondary battery according to an embodiment of the present invention corresponds to an anode current collector will be described as an example.
  • the electrolytic copper foil 10 When the electrolytic copper foil 10 is used as a collector of a lithium secondary battery, the electrolytic copper foil 10 receives a force due to the volume expansion of the electrode due to repetitive charging and discharging. In this case, even if a tensile force exceeding the breaking strength of the electrolytic copper foil 10 is applied It does not immediately break.
  • the electrolytic copper foil 10 is completely broken through a necking step, a void generating step, a growth and bonding step of voids, and a shearing step at the surface.
  • the electrodeposited copper foil 10 shows an increase in elongation after the stress of the electrolytic copper foil reaches the breaking strength in the stress-elongation graph showing such ductile fracture As a result, the stress tends to decrease gradually, resulting in complete fracture.
  • the value obtained by dividing the change amount of the elongation until the stress reaches the breaking strength and the complete elongation of the after-electrolytic copper foil 10 divided by the stress value at the beginning of the fracture, i.e., the breaking strength value is multiplied by 1000, (f).
  • such a breaking characteristic coefficient f can be expressed by the following equation:
  • A, B and C are the stresses of the electrolytic copper foil at the time when the breakage of the electrolytic copper foil is started in the tensile test on the electrolytic copper foil, the elongation at the time when the breakage of the electrolytic copper foil is started, And the elongation at the time point at which the fracture of the steel sheet is terminated.
  • the time point at which the electrolytic copper foil starts to break corresponds to a point corresponding to a point P1 at which a stress that increases together with an increase in elongation in the stress-elongation graph of Fig. 3 starts to decrease.
  • the time point at which the electrolytic copper foil ends the fracture is a point corresponding to the point P2 at which the stress decreased as the elongation rate increases in the stress-elongation graph of Fig. 3, and at this point, The copper foil is destroyed and separated into two or more pieces.
  • the electrolytic copper foil 10 tears in a short time when it is torn by an external force, and thus the electrolytic copper foil 10 is used as a collector of the lithium secondary battery There is a problem in that it is difficult to maintain the performance of the secondary battery in a severe condition in the secondary battery due to repetitive charging and discharging.
  • the breaking characteristic coefficient f should be maintained in an appropriate range, preferably in the range of 5.0 to 18.0.
  • Such a breaking characteristic coefficient f is measured in a state where the electrolytic copper foil 10 is annealed at 190 ⁇ for one hour. Such annealing is performed in the process of manufacturing a lithium secondary battery by applying the electrolytic copper foil 10 as a current collector So that the high-temperature conditions to be applied are applied.
  • the fracture characteristics factor f is determined by the change in the concentration of copper and sulfuric acid contained in the plating liquid for electrolytic plating in the course of manufacturing the electrolytic copper foil 10 and various additives (inorganic additives, Brightener, etc.), changes in the current density during plating, and changes in the temperature of the plating solution.
  • the electrolytic copper foil 10 manufactured by electroplating has a shiny surface 11a having a relatively low surface roughness (Rz) and a so-called mountain surface as a surface opposite thereto, And a matte surface 11b having a relatively high surface roughness Rz due to the structure.
  • the surface roughness Rz of the matte surface 11a is determined by the degree of polishing of the cylindrical drum on which the copper is precipitated while the surface roughness Rz of the matte surface 11b is determined by the thickness of the surface of the electrolytic copper foil 10 It can be controlled by changing the composition of the material constituting the plating liquid and the current density during the electrolysis reaction.
  • the surface roughness Rz of the matte surface 11b of the electrolytic copper foil 10 is too high, it is difficult for the active material and the electrolytic copper foil 10 to contact each other uniformly, . Therefore, it is necessary to adjust the surface roughness Rz to an appropriate level. It is preferable to suppress the surface roughness Rz of the matte surface 11b of the electrolytic copper foil 10 to approximately 2 ⁇ or less.
  • the protective layer 12 is selectively formed on the surface of the copper layer 11 for the anticorrosive treatment of the electrolytic copper foil 10 and is formed of chromate, benzotriazole (BTA), silane coupling agent Or the like.
  • the protective layer 12 may not only provide an anticorrosive property to the electrolytic copper foil 10 but also impart heat resistance and / or bonding strength to the active material.
  • the electrolytic copper foil according to an embodiment of the present invention is a copper electrolytic copper foil which is obtained by electrodepositing copper on a cylindrical cathode surface rotated by supplying a plating solution between a cylindrical negative electrode rotating at a constant speed using an aqueous solution of copper sulfate, (The thinner the electrolytic copper foil is, the more the current collector with the active material can enter into the secondary battery, which is advantageous for high capacity, while the thicker the electrolytic copper foil is, the more the thickness of the electrolytic copper foil is applied to the secondary battery , It is preferable that the thickness of the electrolytic copper foil does not exceed 20 ⁇ ).
  • the respective conditions applied in the examples and comparative examples were as follows:
  • the electrolytic copper foil produced by electrolytic plating has two different sides. That is, in the electrolytic copper foil, there are a shiny side (S side) contacting with the negative electrode drum and a side (Matt side, M side) located in the direction in which crystal grains are grown by precipitation.
  • the surface roughness (Rz) of the S-plane and M-plane of the electrolytic copper foil was formed in a range of approximately 2 ⁇ or less.
  • a plating solution having a copper concentration of 70 to 80 g / L and a sulfuric acid concentration of 80 to 110 g / L was prepared, and various additives (inorganic metal, leveler, brightener)
  • An electrolytic copper foil was prepared with a current density of about 40 to 70 ASD (although this is not necessarily limited to this range, it can be suitably adjusted within a range that can achieve the object of the present invention).
  • inorganic additive Fe, W, Zn, Mo and the like were applied.
  • leveler gelatin, collagen and PEG (polyethylene glycol) were used.
  • brighteners bis (3-sulfopropyl) disulfide, MPS mercapto-propane sulphonic acid and DPS (3-N, N-dimethylaminodithiocarbamoyl-1-propanesulphonic acid).
  • the fracture characteristics factor (f) of electrolytic copper foil was measured by UTM, which is a standardized measurement method.
  • the UTM conditions applied were a gauge length of 50 mm, a width of 12.7 mm, and a measurement speed of 2 mm / min.
  • the electrolytic copper foils of Examples 1 to 6 exhibited the breaking property coefficient values in the range of 5.0 to 18.0, while the electrolytic copper foils of Comparative Examples 1 to 3 showed the breaking property coefficient values of less than 5.0, The electrolytic copper foil of Comparative Example 4 exhibited a breaking property coefficient value exceeding 18.0.
  • Anode material (LiCoO2): 85 wt%
  • Conductive material (acetylene black): 8 wt%
  • Binder polyvinylidene fluoride: 7 wt%
  • Negative electrode material (graphite or carbon material): 95 ⁇ 98wt%
  • Binder polyvinylidene fluoride: 2 to 5 wt%
  • N-methylpyrrolidone is added to the above material to form a slurry, which is then applied to the surface of a negative electrode current collector made of a positive electrode current collector made of aluminum foil and an electrolytic copper foil to evaporate the solvent, followed by rolling and slitting in a predetermined size To prepare a positive electrode plate and a negative electrode plate.
  • a positive electrode plate, a separator (hydrophilic porous polyethylene film), and three negative electrode plates were sequentially laminated and wound up, and this was placed in a container to inject / seal the electrolyte, thereby completing a cylindrical battery.
  • the standard of the battery was 18650, which is a general cylindrical type.
  • a lithium secondary battery (a secondary battery according to an embodiment of the present invention) manufactured by using the negative electrode current collector to which the electrolytic copper foil according to Examples 1 to 6 shown in Table 1 was applied among the lithium secondary batteries fabricated according to the above- Thereby preparing a lithium secondary battery according to Examples 1 to 6, respectively.
  • the lithium secondary batteries fabricated using the negative electrode current collector to which the electrolytic copper foil according to Comparative Examples 1 to 4 shown in Table 1 were applied were the lithium secondary batteries according to Comparative Examples 1 to 4, respectively.
  • the lithium secondary batteries thus prepared were subjected to 500 repetitive charging and discharging tests. At this time, charging was performed under the same conditions as CCCV (constant current constant voltage) mode, charging voltage was 4.3 V, and charging current was 0.2 C (current which can be fully charged by charging for 5 hours) Mode, a discharge voltage of 3.0 V, and a discharge current of 0.5 C (a current which can be completely discharged in two hours).
  • CCCV constant current constant voltage
  • charging voltage was 4.3 V
  • charging current was 0.2 C (current which can be fully charged by charging for 5 hours) Mode
  • a discharge voltage of 3.0 V a discharge voltage of 3.0 V
  • a discharge current of 0.5 C a current which can be completely discharged in two hours).
  • the lithium secondary batteries (Examples 1 to 6) according to the embodiment of the present invention, in which the rupture coefficient f of the electrolytic copper foil is in the range of 5.0 to 18.0, No crack was generated in the current collector, and the capacity retention rate was maintained as high as about 84% to 93% of the initial capacity (500 charge / discharge cycles, usually about 80% to 90% capacity retention, If there is a problem in the secondary battery, it suddenly falls off, which is a big difference from the normal value.
  • the lithium secondary batteries of Examples 1 to 6 have a surface temperature in the normal temperature range of about 25 ° C to 28 ° C (within a normal temperature range of about 30 ° C or less) in the exothermic measurement conducted in such a manner that charge- , And even if the temperature rises temporarily, it does not exceed 40 ° C unless there is a particular abnormality).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

본 발명의 일 실시예에 따른 전해 동박은, 리튬 이차전지용 집전체로 적용되는 전해 동박이며, 상기 전해 동박은 190℃ 에서 1시간 동안 어닐링 되었을 때 5.0 내지 18.0 범위에 해당하는 파단특성계수(f)를 가지며, 여기서 상기 파단특성계수(f)는 f={(C-B)/A}×1000 으로 정의되고, 상기 A는 상기 전해 동박에 대한 인장 시험에 있어서 상기 전해 동박의 파단이 개시되는 시점에 전해 동박이 갖는 응력을 나타내고, 상기 B는 상기 전해 동박의 파단이 개시되는 시점에서의 연신율을 나타내며, 상기 C는 상기 전해 동박의 파단이 종료되는 시점에서의 연신율을 나타내고, 상기 전해 동박의 파단이 개시되는 시점은 상기 인장 시험에 있어서 상기 전해 동박의 연신율이 증가함에 따라 증가하던 응력이 감소되기 시작하는 시점에 해당하며, 상기 전해 동박의 파단이 종료되는 시점은 상기 전해 동박이 파괴되어 2 이상의 조각으로 분리되는 시점에 해당한다.

Description

전해 동박 및 그 제조 방법과, 이 전해 동박을 포함하는 리튬 이차전지용 집전체 및 리튬 이차전지
본 발명은 전해 동박 및 그 제조 방법과, 이 전해 동박을 포함하는 리튬 이차전지용 집전체 및 리튬 이차전지에 관한 것으로서, 좀 더 구체적으로는 파단특성계수 값이 일정 범위로 제한됨으로써 이차전지의 특성을 향상시킬 수 있는 전해 동박 및 이를 포함하는 전해 동박 및 그 제조 방법과, 이 전해 동박을 포함하는 리튬 이차전지용 집전체 및 리튬 이차전지에 관한 것이다.
본 출원은 2014년 07월 10일에 출원된 한국특허출원 제10-2014-0086970호에 기초한 우선권 주장을 하며, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 본 출원에 원용된다.
리튬 이차전지는 여타의 이차전지에 비해 상대적으로 에너지 밀도가 높고, 작동전압이 높을 뿐만 아니라 우수한 보존 및 수명특성을 보이는 등 많은 장점이 있어 개인용 컴퓨터, 캠코더, 휴대용 전화기, 휴대용 CD 플레이어, PDA 등 각종 휴대용 전자기기에 널리 사용되고 있다.
일반적으로 리튬 이차전지는 전해질을 사이에 두고 배치된 양극 및 음극을 포함하는 구조를 가지며, 상기 양극은 양극 집전체에 양극 활물질이 부착된 구조를 가지고, 상기 음극은 음극 집전체에 음극 활물질이 부착된 구조를 갖는다.
리튬 이차전지에 있어서 음극 집전체의 소재로는 주로 전해 동박이 사용되는데, 이러한 전해 동박은 이차전지의 충방전에 따라 이차전지 내부에 가혹 조건이 반복적으로 형성되더라도 이차전지의 성능이 유지될 수 있도록 우수한 물성을 가져야 한다.
상기 전해 동박이 가져야 할 물성으로는, 예를 들어, 충방전에 따른 가혹 조건이 반복되더라도 크랙이 잘 발생되지 않을 것, 충방전이 진행됨에 따른 방전용량 유지율의 저하 속도가 지나치게 빠르지 않을 것, 내부 과열로 인한 이차전지의 성능저하 및/또는 안전사고의 우려가 없을 것 등을 들 수 있다.
한편, 이러한 전해 동박의 우수한 물성은 여러가지 인자들의 조절에 따라 확보될 수 있는데, 어떠한 인자를 어떠한 범위로 조절함으로써 원하는 물성을 얻을 수 있는지 밝혀내는 데에는 많은 어려움이 따른다.
본 발명은 상술한 문제점을 고려하여 창안된 것으로서, 리튬 이차전지의 우수한 성능 발현을 위한 중요한 인자를 찾아내고 이를 조절함으로써 전해 동박이 리튬 이차전지의 우수한 성능 발현을 위한 물성을 갖도록 하는 것을 일 목적으로 한다.
다만, 본 발명이 이루고자 하는 기술적 과제는 상술한 과제에 제한되지 않으며, 위에서 언급되지 않은 또 다른 기술적 과제들은 아래에 기재된 발명의 설명으로부터 당업자에게 명확하게 이해될 수 있을 것이다.
본 발명자들은 상술한 기술적 과제를 해결하기 위해 반복적인 연구와 실험을 거듭하였으며, 그 결과 파단특성계수가 적절히 조절된 전해 동박을 리튬 이차전지용 집전체에 적용함으로써 반복된 충방전에도 리튬 이차전지의 특성이 우수하게 유지될 수 있음을 알아내었다.
이처럼 리튬 이차전지의 특성을 우수하게 유지시킬 수 있는 본 발명의 일 실시예에 따른 전해 동박은, 리튬 이차전지용 집전체로 적용되는 전해 동박이며, 상기 전해 동박은 190℃ 에서 1시간 동안 어닐링 되었을 때 5.0 내지 18.0 범위에 해당하는 파단특성계수(f)를 갖는다.
여기서, 상기 파단특성계수(f)는 f={(C-B)/A}×1000 으로 정의되고, 상기 A는 상기 전해 동박에 대한 인장 시험에 있어서 상기 전해 동박의 파단이 개시되는 시점에 전해 동박이 갖는 응력을 나타내고, 상기 B는 상기 전해 동박의 파단이 개시되는 시점에서의 연신율을 나타내며, 상기 C는 상기 전해 동박의 파단이 종료되는 시점에서의 연신율을 나타내고, 상기 전해 동박의 파단이 개시되는 시점은 상기 인장 시험에 있어서 상기 전해 동박의 연신율이 증가함에 따라 증가하던 응력이 감소되기 시작하는 시점에 해당하며, 상기 전해 동박의 파단이 종료되는 시점은 상기 전해 동박이 파괴되어 2 이상의 조각으로 분리되는 시점에 해당한다.
상기 전해 동박은, 표면에 형성된 보호 층을 구비하며, 상기 보호 층은 크로메이트(chromate), BTA(benzotriazole) 및 실란 커플링제 중 선택된 적어도 어느 하나로 이루어질 수 있다.
상기 전해 동박은, 20㎛ 미만의 두께를 가질 수 있다.
상기 전해 동박은, 0 초과 2㎛ 이하의 표면거칠기(Rz)를 가질 수 있다.
한편, 상기 전해 동박은, 본 발명의 일 실시예에 따른 전해 동박 제조방법에 의해 제조될 수 있는데, 이러한 본 발명의 일 실시예에 따른 전해 동박 제조방법은, 190℃ 에서 1시간 동안 어닐링 되었을 때 5.0 내지 18.0 범위에 해당하는 파단특성계수(f)를 갖는 전해 동박을 제조하는 방법으로서, (a) 구리 농도가 70g/L 내지 80g/L 이고 황산 농도가 80g/L 내지 110g/L 인 황산동 수용액을 제조하는 단계; 및 (b) 상기 황산동 수용액을 전해액으로 하여 40℃ 내지 45℃ 의 온도에서 40A/m2 내지 70A/m2 의 전류밀도로 제박기의 드럼 표면에 구리(Cu)를 전착하는 단계를 포함한다.
상기 전해 동박 제조방법은, (c) 전착된 구리 층의 표면에 크로메이트(chromate), BTA(benzotriazole) 및 실란 커플링제 중 선택된 적어도 어느 하나로 이루어지는 보호 층을 형성하는 단계;를 포함할 수 있다.
한편, 상술한 기술적 과제는, 상술한 전해 동박으로 이루어진 리튬 이차전지용 전극 집전체에 의해서 달성될 수 있을 뿐만 아니라, 이러한 리튬 이차전지용 전극 집전체를 포함하는 리튬 이차전지에 의해서도 달성 가능하다.
본 발명에 따르면 리튬 이차전지의 충방전에 의해 이차전지 내부에 발생되는 가혹조건이 반복되더라도 리튬 이차전지의 용량 유지율이 감소되는 현상의 최소화 및/또는 내부 과열에 의한 발화 발생 방지 등을 가능하게 하며, 이로써 이차전지의 성능 향상 및/또는 이차전지 사용상의 안전성 확보를 가능하게 한다.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 후술되는 발명의 상세한 설명과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.
도 1은 본 발명의 일 실시예에 따른 전해 동박을 나타내는 단면도이다.
도 2는 전해 동박에 대한 인장 시험에 있어서 전해 동박이 파단되는 과정을 나타내는 도면이다.
도 3은 파단특성계수를 설명하기 위한 응력-연신율 그래프이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일부 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
도 1을 참조하여 본 발명의 일 실시예에 따른 전해 동박(10)의 구성을 설명하기로 한다.
도 1은 본 발명의 일 실시예에 따른 전해 동박을 나타내는 단면도이다.
도 1을 참조하면, 본 발명의 일 실시예에 따른 전해 동박(10)은 구리 층(11) 및 상기 구리 층(11) 표면에 선택적으로 형성되는 보호 층(12)을 포함한다.
상기 전해 동박(10)은 리튬 이차전지의 음극 집전체로 사용되는 것이 바람직하다. 즉, 리튬 이차전지에 있어서, 음극 활물질과 결합되는 음극 집전체로는 전해 동박(10)이 사용되는 것이 바람직하다. 반면, 양극 활물질과 결합되는 양극 집전체로는 알루미늄(Al)으로 이루어진 박(foil)이 사용되는 것이 일반적이다.
이에 따라, 본 발명에서는 상기 전해 동박(10)이 사용되는 본 발명의 일 실시예에 따른 이차전지용 집전체가 음극 집전체에 해당하는 경우를 예로 들어 설명하기로 한다.
상기 전해 동박(10)은 리튬 이차전지의 집전체로 이용되는 경우 반복적인 충방전에 의한 전극의 부피 팽창으로 인해 힘을 받게 되는데, 이 경우 전해 동박(10)의 파단강도를 넘어서는 인장력이 가해지더라도 즉시 파단이 이루어지는 것은 아니다.
즉, 도 2를 참조하면, 전해 동박(10)은 넥킹 단계, 보이드(void) 발생 단계, 보이드의 성장 및 결합 단계, 및 표면에서의 전단 발생 단계를 거쳐 완전 파단에 이르게 된다.
이러한 파단형태를 연성파단이라 하며, 도 3을 참조하면, 상기 전해 동박(10)은, 이러한 연성파단을 나타내는 응력-연신율 그래프에 있어서 전해 동박이 갖는 응력이 파단강도에 이른 이후에는 연신율이 증가함에 따라 응력이 점점 줄어드는 경향을 보이다가 결국 완전 파단에 이르게 된다.
응력이 파단강도에 이른 시점 이 후 전해 동박(10)이 완전 파단에 이를 때까지의 연신율의 변화량을 파단이 시작될 때의 응력 값, 즉 파단강도 값으로 나눈 값에 1000을 곱한 값을 파단특성계수(f)라고 한다.
도 3을 참조하면, 이러한 파단특성계수(f)는 다음과 같은 수식으로 나타낼 수 있다:
f={(C-B)/A}×1000
여기서, A, B 및 C는 각각 상기 전해 동박에 대한 인장 시험에 있어서 상기 전해 동박의 파단이 개시되는 시점에 전해 동박이 갖는 응력, 상기 전해 동박의 파단이 개시되는 시점에서의 연신율 및 상기 전해 동박의 파단이 종료되는 시점에서의 연신율을 나타낸다.
상기 전해 동박의 파단이 개시되는 시점은, 도 3의 응력-연신율 그래프에 있어서 연신율이 증가함에 따라 함께 증가하던 응력이 오히려 감소하기 시작하는 지점(P1)에 대응되는 시점을 의미한다.
또한, 상기 전해 동박의 파단이 종료되는 시점은 도 3의 응력-연신율 그래프에 있어서 연신율이 증가함에 따라 감소하던 응력이 0이 되는 지점(P2)에 대응되 시점을 의미하는 것으로서, 이 시점에서 전해 동박은 파괴되어 2 이상의 조각으로 분리된다.
상기 파단특성계수(f)가 지나치게 작은 값을 갖는 경우 전해 동박(10)이 외부 힘에 의해 찢겨질 때 단 시간 내에 찢어지게 되며, 이에 따라 전해 동박(10)을 리튬 이차전지의 집전체로 이용하는 경우 반복적인 충방전에 따른 이차전지 내의 가혹조건에서 이차전지의 성능 유지가 어려운 문제점이 있다.
반대로 상기 파단특성계수(f)가 지나치게 큰 값을 갖는 경우 전해 동박(10)이 외부 힘에 의해 찢겨지는 상황에서 불안정한 상태가 오래 지속되기 때문에 과도한 열 발생이 있을 수 있고, 이로 인해 전지의 성능 저하의 문제점 및 이차전지 사용상의 안전성 확보가 어려운 문제점이 있을 수 있다.
따라서, 상기 파단특성계수(f)는 적절한 범위를 유지해야 하는데, 바람직하게는 5.0 내지 18.0 범위를 유지해야 한다.
이러한 파단특성계수(f)는 전해 동박(10)이 190℃ 에서 1시간 동안 어닐링 된 상태에서 측정된 것으로서, 이러한 어닐링은 전해 동박(10)을 집전체로 적용하여 리튬 이차전지를 제작하는 과정에서 거치게 되는 고온의 조건이 적용되도록 하기 위한 것이다.
상기 파단특성계수(f)는 전해 동박(10)의 제조 과정에서 도금을 위한 도금액(전해액)에 함유되는 구리, 황산의 농도 변화, 도금액에 선택적으로 첨가될 수 있는 각종 첨가제(무기 첨가제, 레벨러, 브라이트너 등)의 농도 변화, 도금 시의 전류밀도의 변화 및 도금액의 온도 변화 등을 통해 조절이 가능하다.
한편, 전기 도금에 의해 제조되는 상기 전해 동박(10)은 상대적으로 표면거칠기(Rz)(surface roughness)가 낮게 형성되는 샤이니 면(Shiny surface)(11a) 및 그와 반대측 면으로서 이른바 산(Mountain) 구조에 의해 상대적으로 표면거칠기(Rz)가 높게 형성되는 매트 면(Matte surface)(11b)으로 이루어진다.
상기 샤이니 면(11a)의 표면거칠기(Rz)는 동이 석출되는 원통형 드럼(음극)이 연마된 정도에 따라 결정되는 반면, 매트 면(11b)의 표면거칠기(Rz)는 전해 동박(10)의 제조 과정에서 도금액을 구성하는 물질의 조성, 전해 반응시의 전류 밀도 등을 변화시킴으로써 조절이 가능하다.
한편, 이러한 전해 동박(10)의 매트 면(11b)이 갖는 표면거칠기(Rz)가 지나치게 높은 경우에는 활물질과 전해 동박(10)의 접촉이 균일하게 이루어지기 어려워 리튬 이차전지의 방전용량 유지율이 저하될 수 있다. 따라서, 표면거칠기(Rz)를 적절한 수준으로 조절할 필요가 있는데, 전해 동박(10)의 매트 면(11b)이 갖는 표면거칠기(Rz)는 대략 2㎛ 이하로 억제하는 것이 바람직하다.
상기 보호 층(12)은 전해 동박(10)의 방청 처리를 위해 구리 층(11)의 표면에 선택적으로 형성되는 것으로서, 크롬산염(Chromate), BTA(Benzotriazole) 및 실란 커플링(Silane coupling)제 중 선택된 적어도 어느 하나로 이루어질 수 있다. 상기 보호 층(12)은 전해 동박(10)에 대해 방청 특성뿐만 아니라, 내열 특성 및/또는 활물질과의 결합력 증대 특성을 부여하는 역할 또한 할 수 있다.
1. 전해 동박의 제조
표 1
Figure PCTKR2015002986-appb-T000001
본 발명의 일 실시예에 따른 전해 동박은 황산동 수용액을 도금액(전해액)으로서 이용해 일정속도로 회전하는 원통형의 음극 및 반대쪽에 위치한 양극 사이에 도금액을 공급하여 회전하는 원통형의 음극 면에 구리를 전착, 환원 석출시킴으로써 제조되었으며, 대략 20㎛ 미만의 두께로 제조되었다(전해 동박의 두께가 얇을수록 활물질이 부착된 집전체가 이차전지 내에 많이 들어갈 수 있으므로 고용량화에 유리한 반면 그 두께가 두꺼울수록 이차전지에 적용 시에 고용량화가 어려울 수 있으므로, 전해 동박의 두께는 20㎛ 를 초과하지 않는 것이 바람직함). 실시예와 비교예에서 적용된 각각의 조건들은 아래의 설명에 따랐다:
일반적으로 전해도금에 의해 생성되는 전해 동박에는 두 가지의 서로 다른 면이 있다. 즉, 전해 동박에는 음극드럼에 접해 있는 면(shiny side, S면)과 석출에 의해 결정립이 성장하는 방향에 위치한 면(Matt side, M면)이 있다. 이러한 전해 동박의 S면과 M면의 표면거칠기(Rz)는 대략 2㎛ 이하의 범위에서 형성되었다.
(실시예)
표 1과 같이, 구리 농도가 70 ~ 80g/L, 황산 농도가 80 ~ 110g/L 인 도금액을 제조하였으며, 각종 첨가제(무기금속, 레벨러, 브라이트너)를 첨가하여 대략40 ~ 45℃ 범위의 온도, 대략 40 ~ 70ASD 의 전류밀도 조건으로 전해 동박을 제조하였다(다만, 반드시 이러한 범위로 한정되는 것은 아니며, 본 발명의 목적을 달성할 수 있는 범위 내에서 적절히 조절될 수 있음).
여기서, 무기 첨가제로는 Fe, W, Zn, Mo 등이 적용되었고, 레벨러로는 젤라틴, 콜라겐, PEG(polyethylene glycol)가 이용되었으며, 브라이트너로는 SPS(bis(3-sulfoproply)disulfide), MPS(mercapto-propane sulphonic acid), DPS(3-N,N-dimethylaminodithiocarbamoyl-1-propanesulphonic acid)가 이용되었다.
한편, 상기와 같은 공정 조건에 따라 제조된 전해 동박에 대한 보호(방청 등)를 위해 표면에 크로메이트(Chromate) 처리를 하였다.
(비교예)
표 1과 같이, 구리농도가 70 ~ 80g/L, 황산 농도가 95 ~ 105g/L 인 도금액에 각종 첨가제(실시예와 동일한 첨가제)를 첨가하여, 대략 45℃의 온도, 대략 50 ~ 70ASD 의 전류밀도 조건으로 전해 동박을 제조하였다.
2. 파단 특성계수의 측정
상술한 바와 같은 공정조건에 따라 제조된 본 발명의 실시예에 따른 전해 동박과 비교예에 따른 전해 동박에 대한 파단특성계수(f)를 측정하였다.
전해 동박이 갖는 파단특성계수(f)는 표준화된 측정방법인 UTM을 통해 측정하였으며, 이 때 적용된 UTM 조건은 표점거리 50mm, 폭 12.7mm, 측정속도 2mm/min 였다.
전해 동박에 대한 파단특성계수(f)의 측정은 상술한 조건에 따라 제조된 실시예/비교예에 따른 전해 동박이 완성된 리튬 이차전지 내에서의 조건과 동등한 조건을 갖도록 하기 위해 190℃ 에서 1시간 동안 어닐링을 수행한 이후에 시행되었다. 즉, 리튬 이차전지는 그 제조 시에 통상적으로 일정시간 동안 고온 상태가 유지되는 과정을 거치게 될 수 있는데, 이와 유사한 조건을 만들어 주기 위해 전해 동박을 어닐링 하는 것이다.
이러한 어닐링 과정을 거친 전해 동박의 파단특성계수(f) 측정 결과는 아래 표 2에 나타나 있다.
표 2
Figure PCTKR2015002986-appb-T000002
표 2의 결과를 참조하면, 실시예 1 내지 6의 전해 동박의 경우 5.0 내지 18.0 범위의 파단특성계수값을 나타내는 반면, 비교예 1 내지 3의 전해 동박은 5.0 미만의 파단특성계수 값을 나타내고, 비교예 4의 전해 동박은 18.0을 초과하는 파단특성계수 값을 나타냈다.
3 . 리튬 이차전지의 제조
- 양극판 및 음극판의 제조
(양극재 혼합물의 조성)
양극재(LiCoO2): 85wt%
도전재(아세틸렌블랙): 8wt%
바인더(폴리불화비닐리덴): 7wt%
(음극재 혼합물의 조성)
음극재(그라파이트 또는 탄소재): 95~98wt%
바인더(폴리불화비닐리덴): 2~5wt%
상기 재료에 N-메틸피롤리돈을 첨가하여 슬러리로 만든다음 각각 알루미늄 박으로 이루어진 양극 집전체 및 전해 동박으로 이루어진 음극 집전체의 표면에 도포하여 용제를 증발시킨 후, 압연 및 일정사이즈로 슬리팅하여 양극판 및 음극판을 제작하였다.
- 리튬 이차전지의 조립
양극판, 세퍼레이터(친수 처리한 다공질 폴리에틸렌 필름), 음극판 3장을 순차적으로 적층 및 권취하고, 이것을 용기에 넣어 전해액을 주입/밀봉 함으로써 원통형 전지를 완성하였다. 전지의 규격은 일반적인 원통형인 18650형을 사용하였다.
여기서, 전해액으로는 에틸렌카보네이트(EC) 및 디메틸카보네이트(DMC)를 1:1로 체적비로 혼합한 용매에 1M의 LiPF6 을 용해시킨 것을 사용하였다.
4. 충방전 시험
상술한 조건에 따라 제작된 리튬 이차전지 중, 표 1에 나타난 실시예 1 내지 6에 따른 전해 동박이 적용된 음극 집전체를 이용하여 제작된 리튬 이차전지(본 발명의 실시예에 따른 이차전지)를 각각 실시예 1 내지 6에 따른 리튬 이차전지로 하였다.
마찬가지로, 표 1에 나타난 비교예 1 내지 4에 따른 전해 동박이 적용된 음극 집전체를 이용하여 제작된 리튬 이차전지를 각각 비교예 1 내지 4에 따른 리튬 이차전지로 하였다.
이와 같이 마련된 리튬 이차전지들을 대상으로 500회의 반복적인 충방전 시험을 진행하였다. 이 때, 충전은 CCCV(정전류 정전압) 모드, 충전 전압은 4.3V, 충전 전류는 0.2C(5시간 동안 충전을 함으로써 완전 충전될 수 있는 전류)과 같은 조건으로 실시하였으며, 방전은 CC(정전류) 모드, 방전 전압 3.0V, 방전 전류0.5C(2시간만에 완전 방전 될 수 있는 전류)과 같은 조건으로 실시하였다.
이와 같이, 반복적인 충방전을 완료한 다음, 리튬 이차전지의 용량 유지율, 발열 정도 및 집전체를 이루는 전해 동박에 크랙이 발생하였는지 여부에 대한 측정을 하여 표 3에 나타내었다.
표 3
Figure PCTKR2015002986-appb-T000003
상기 표 3을 참조하면, 전해 동박의 파단특성계수(f)가 5.0 내지 18.0 범위 내에 있는 본 발명의 실시예에 따른 리튬 이차전지들(실시예 1 내지 6)은 500회의 충방전이 완료된 이 후에도 집전체에 크랙이 발생되지 않았고, 용량 유지율 또한 처음의 용량 대비 대략 84% 내지 93%로 높게 유지되었다(500회의 충방전 사이클 수행의 경우, 통상 대략 80% 내지 90% 가량의 용량 유지율을 나타내며, 이차전지 내부에 문제가 발생된 경우 급격히 떨어져 이러한 정상적인 수치와는 큰 차이를 보이게 됨).
또한, 실시예 1 내지 6의 리튬 이차전지는, 항온 챔버 내에서 충방전 테스트가 이루어지는 방식으로 진행된 발열 측정에 있어서도 표면 온도가 대략 25℃ 내지 28℃ 정도로 정상적인 온도 범위(대략 30℃ 이내이면 정상 범위로 볼 수 있으며, 일시적으로 온도가 상승하는 경우라도 특별한 이상이 없다면 40℃를 넘지 않음)를 나타냈다.
반면, 전해 동박의 파단특성계수(f)가 5.0 미만인 비교예에 따른 리튬 이차전지들(비교예 1 내지 3)은 반복된 충방전으로 인해 집전체에 크랙이 발생하였으며, 용량 유지율 또한 처음의 용량 대비 대략 24% 내지 42% 수준으로 나타나 이차전지로서의 기능을 크게 상실한 것으로 나타났다. 집전체에 발생된 크랙은 집전체에 부착된 전극 활물질이 탈락되는 원인이 되므로 이러한 크랙 발생은 용량 유지율 저하에 직접적인 영향을 미치게 되는 것이다.
한편, 전해 동박의 파단특성계수(f)가 18.0을 초과하는 비교예에 따른 리튬 이차전지(비교예 4)는 반복된 충방전에도 크랙이 발생되지 않고 용량 유지율 또한 비교적 높게 유지되었으나, 발열 측정에 있어서는 대략 41℃의 온도를 나타냄으로써 통상 정상 범위로 볼 수 있는 30℃를 크게 초과하였다. 이러한 비정상적인 발열 현상은 리튬 이차전지의 성능을 저하시킬 수 있음은 물론 안전사고의 위험 또한 증가시킬 수 있다.
상기 실험 결과로부터 전해 동박(10)의 파단특성계수(f)가 일정 범위 내(5.0 내지 18.0)로 유지되는 경우 반복적인 충방전에 의한 가혹조건 속에서도 이차전지의 성능을 유지할 수 있고, 이로써 이차전지 사용상의 안정성 또한 확보할 수 있음을 명확히 알 수 있다.
이상에서 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.

Claims (8)

  1. 리튬 이차전지용 집전체로 적용되는 전해 동박에 있어서,
    상기 전해 동박은 190℃ 에서 1시간 동안 어닐링 되었을 때 5.0 내지 18.0 범위에 해당하는 파단특성계수(f)를 가지며,
    f={(C-B)/A}×1000 으로 정의되고,
    상기 A는 상기 전해 동박에 대한 인장 시험에 있어서 상기 전해 동박의 파단이 개시되는 시점에 전해 동박이 갖는 응력을 나타내고,
    상기 B는 상기 전해 동박의 파단이 개시되는 시점에서의 연신율을 나타내며,
    상기 C는 상기 전해 동박의 파단이 종료되는 시점에서의 연신율을 나타내고,
    상기 전해 동박의 파단이 개시되는 시점은 상기 인장 시험에 있어서 상기 전해 동박의 연신율이 증가함에 따라 증가하던 응력이 감소되기 시작하는 시점에 해당하며,
    상기 전해 동박의 파단이 종료되는 시점은 상기 전해 동박이 파괴되어 2 이상의 조각으로 분리되는 시점에 해당하는 것을 특징으로 하는 전해 동박.
  2. 제1항에 있어서,
    상기 전해 동박은,
    표면에 형성된 보호 층을 구비하며,
    상기 보호 층은 크로메이트(chromate), BTA(benzotriazole) 및 실란 커플링제 중 선택된 적어도 어느 하나로 이루어지는 것을 특징으로 하는 전해 동박.
  3. 제1항에 있어서,
    상기 전해 동박은,
    20㎛ 미만의 두께를 갖는 것을 특징으로 하는 전해 동박.
  4. 제1항에 있어서,
    상기 전해 동박은,
    0 초과 2㎛ 이하의 표면거칠기(Rz)를 갖는 것을 특징으로 하는 전해 동박.
  5. 190℃ 에서 1시간 동안 어닐링 되었을 때 5.0 내지 18.0 범위에 해당하는 파단특성계수(f)를 갖는 전해 동박을 제조하는 방법으로서,
    (a) 구리 농도가 70g/L 내지 80g/L 이고 황산 농도가 80g/L 내지 110g/L 인 황산동 수용액을 제조하는 단계; 및
    (b) 상기 황산동 수용액을 전해액으로 하여 40℃ 내지 45℃ 의 온도에서 40A/m2 내지 70A/m2 의 전류밀도로 제박기의 드럼 표면에 구리(Cu)를 전착하는 단계를 포함하는 전해 동박의 제조방법.
  6. 제5항에 있어서,
    (c) 전착된 구리 층의 표면에 크로메이트(chromate), BTA(benzotriazole) 및 실란 커플링제 중 선택된 적어도 어느 하나로 이루어지는 보호 층을 형성하는 단계를 포함하는 것을 특징으로 하는 전해 동박의 제조방법.
  7. 제1항 내지 제4항 중 어느 한 항에 따른 전해 동박으로 이루어진 리튬 이차전지용 전극 집전체.
  8. 제7항에 따른 리튬 이차전지용 전극 집전체를 포함하는 리튬 이차전지.
PCT/KR2015/002986 2014-07-10 2015-03-26 전해 동박 및 그 제조 방법과, 이 전해 동박을 포함하는 리튬 이차전지용 집전체 및 리튬 이차전지 WO2016006793A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017501022A JP2017526115A (ja) 2014-07-10 2015-03-26 電解銅箔及びその製造方法、該電解銅箔を含むリチウム二次電池用集電体及びリチウム二次電池
CN201580037574.9A CN106536791A (zh) 2014-07-10 2015-03-26 电解铜箔及其制造方法、包含该电解铜箔的锂二次电池用的集电体及锂二次电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140086970A KR101737028B1 (ko) 2014-07-10 2014-07-10 전해 동박의 제조 방법
KR10-2014-0086970 2014-07-10

Publications (1)

Publication Number Publication Date
WO2016006793A1 true WO2016006793A1 (ko) 2016-01-14

Family

ID=55064395

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/002986 WO2016006793A1 (ko) 2014-07-10 2015-03-26 전해 동박 및 그 제조 방법과, 이 전해 동박을 포함하는 리튬 이차전지용 집전체 및 리튬 이차전지

Country Status (5)

Country Link
JP (1) JP2017526115A (ko)
KR (1) KR101737028B1 (ko)
CN (1) CN106536791A (ko)
TW (1) TWI639731B (ko)
WO (1) WO2016006793A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019536209A (ja) * 2016-11-11 2019-12-12 イルジン マテリアルズ カンパニー リミテッドIljin Materials Co., Ltd. 二次電池用電解銅箔及びその製造方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101733410B1 (ko) * 2016-11-11 2017-05-10 일진머티리얼즈 주식회사 저온 물성이 우수한 이차전지용 전해동박 및 그의 제조방법
KR101734840B1 (ko) * 2016-11-11 2017-05-15 일진머티리얼즈 주식회사 내굴곡성이 우수한 이차전지용 전해동박 및 그의 제조방법
KR101733409B1 (ko) * 2016-11-11 2017-05-10 일진머티리얼즈 주식회사 이차전지용 전해동박 및 그의 제조방법
CN106960960A (zh) * 2017-05-11 2017-07-18 天津理工大学 一种提高锂离子电池负极材的循环性能的柔性集流体的制备方法
KR102473030B1 (ko) 2017-08-30 2022-11-30 에스케이넥실리스 주식회사 전해동박, 그의 제조방법 및 그것을 포함하는 고용량 Li 이차전지용 음극
KR102483089B1 (ko) 2018-01-31 2022-12-29 에스케이넥실리스 주식회사 후속 공정에서 핸들링 특성이 우수한 전해동박 및 그 제조방법
TWI705160B (zh) 2019-12-09 2020-09-21 長春石油化學股份有限公司 電解銅箔、包含其的電極和覆銅積層板
KR102559954B1 (ko) 2021-11-24 2023-07-25 동아대학교 산학협력단 고연신율 금속박 제조방법 및 고연신율 금속박

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070107803A (ko) * 2005-03-31 2007-11-07 미쓰이 긴조꾸 고교 가부시키가이샤 전해 동박 및 전해 동박의 제조 방법, 그 전해 동박을이용하여 얻어진 표면 처리 전해 동박, 그 표면 처리 전해동박을 이용한 동장 적층판 및 프린트 배선판
KR20080064884A (ko) * 2005-10-31 2008-07-09 미쓰이 긴조꾸 고교 가부시키가이샤 전해 동박의 제조 방법, 이 제조 방법으로 얻어지는 전해동박, 이 전해 동박을 이용하여 얻어지는 표면 처리 동박,및 전해 동박 또는 표면 처리 동박을 이용하여 얻어지는동박 적층판
KR20130014331A (ko) * 2011-07-29 2013-02-07 히타치 덴센 가부시키가이샤 압연동박 및 그 제조방법 및 상기 압연동박을 사용한 리튬이온 이차전지 음극
KR20140007507A (ko) * 2010-07-01 2014-01-17 미쓰이금속광업주식회사 전해 동박 및 그 제조 방법
KR20140078883A (ko) * 2012-12-18 2014-06-26 주식회사 엘지화학 이차전지의 집전체용 전해동박의 제조 방법

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3850321B2 (ja) * 2002-03-19 2006-11-29 日本電解株式会社 二次電池
US20100136434A1 (en) * 2007-04-20 2010-06-03 Nippon Mining & Metals Co., Ltd. Electrolytic Copper Foil for Lithium Rechargeable Battery and Process for Producing the Copper Foil
JP5352542B2 (ja) * 2010-07-15 2013-11-27 エル エス エムトロン リミテッド リチウム二次電池の集電体用銅箔

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070107803A (ko) * 2005-03-31 2007-11-07 미쓰이 긴조꾸 고교 가부시키가이샤 전해 동박 및 전해 동박의 제조 방법, 그 전해 동박을이용하여 얻어진 표면 처리 전해 동박, 그 표면 처리 전해동박을 이용한 동장 적층판 및 프린트 배선판
KR20080064884A (ko) * 2005-10-31 2008-07-09 미쓰이 긴조꾸 고교 가부시키가이샤 전해 동박의 제조 방법, 이 제조 방법으로 얻어지는 전해동박, 이 전해 동박을 이용하여 얻어지는 표면 처리 동박,및 전해 동박 또는 표면 처리 동박을 이용하여 얻어지는동박 적층판
KR20140007507A (ko) * 2010-07-01 2014-01-17 미쓰이금속광업주식회사 전해 동박 및 그 제조 방법
KR20130014331A (ko) * 2011-07-29 2013-02-07 히타치 덴센 가부시키가이샤 압연동박 및 그 제조방법 및 상기 압연동박을 사용한 리튬이온 이차전지 음극
KR20140078883A (ko) * 2012-12-18 2014-06-26 주식회사 엘지화학 이차전지의 집전체용 전해동박의 제조 방법

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019536209A (ja) * 2016-11-11 2019-12-12 イルジン マテリアルズ カンパニー リミテッドIljin Materials Co., Ltd. 二次電池用電解銅箔及びその製造方法
JP2022008856A (ja) * 2016-11-11 2022-01-14 イルジン マテリアルズ カンパニー リミテッド 二次電池用電解銅箔及びその製造方法

Also Published As

Publication number Publication date
KR20160007047A (ko) 2016-01-20
TW201602418A (zh) 2016-01-16
CN106536791A (zh) 2017-03-22
KR101737028B1 (ko) 2017-05-17
TWI639731B (zh) 2018-11-01
JP2017526115A (ja) 2017-09-07

Similar Documents

Publication Publication Date Title
WO2016006793A1 (ko) 전해 동박 및 그 제조 방법과, 이 전해 동박을 포함하는 리튬 이차전지용 집전체 및 리튬 이차전지
KR101108911B1 (ko) 리튬 2차 전지용 전해 구리박 및 그 구리박의 제조 방법
WO2016208858A1 (ko) 리튬 이차전지용 전해동박 및 이를 포함하는 리튬 이차전지
KR101660335B1 (ko) 전해 동박
WO2015142100A1 (ko) 전해동박, 이를 포함하는 집전체, 음극 및 리튬전지
CN103649378A (zh) 电解铜箔、该电解铜箔的制造方法、以及将该电解铜箔作为集电体的锂离子二次电池
KR20190003451A (ko) 전해 동박, 리튬 이온 2차 전지용 부극 전극 및 리튬 이온 2차 전지 그리고 프린트 배선판
KR102109379B1 (ko) 전해 동박과, 이 전해 동박을 포함하는 리튬 이차전지용 집전체 및 리튬 이차전지
WO2018088642A1 (ko) 이차전지용 전해동박 및 그의 제조방법
JP2018524772A (ja) リチウム二次電池用の電解銅箔及びこれを含むリチウム二次電池
KR20190044017A (ko) 이차전지 음극 집전체용 압연 동박, 이를 이용한 이차전지 음극 및 이차전지, 및 이차전지 음극 집전체용 압연 동박의 제조 방법
JP2022027830A (ja) 低温物性が優れた二次電池用電解銅箔及びその製造方法
JP2018519632A (ja) リチウム二次電池用の電解銅箔及びこれを含むリチウム二次電池
JP2004079523A (ja) 電解銅箔および二次電池集電体用電解銅箔
WO2018088646A1 (ko) 이차전지용 전해동박 및 그의 제조방법
KR20240025712A (ko) 이차 전지 부극 집전체용 압연 구리박, 그것을 사용한 이차 전지 부극 집전체 및 이차 전지, 그리고 이차 전지 부극 집전체용 압연 구리박의 제조 방법
WO2016208869A1 (ko) 리튬 이차전지용 전해동박 및 이를 포함하는 리튬 이차전지
KR20190131231A (ko) 전해동박 및 이를 이용한 이차전지
WO2023057068A1 (en) Copper foil with high engery at break and secondary battery comprising the same
CN114068873A (zh) 一种复合负极片及其制备方法和应用
JP2012201964A (ja) 圧延銅箔及びそれを用いた二次電池
JP4061910B2 (ja) 電池用銅箔
WO2019022408A1 (ko) 이차전지용 동박, 그 제조 방법 및 이를 포함하는 이차전지
KR102524929B1 (ko) 높은 파괴 에너지를 갖는 동박 및 이를 포함하는 이차전지
WO2017123034A1 (ko) 동박, 그 제조방법, 그것을 포함하는 전극, 및 그것을 포함하는 이차전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15819126

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017501022

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15819126

Country of ref document: EP

Kind code of ref document: A1