WO2016002277A1 - Porous body and method for manufacturing same, structural element, power storage device, catalyst, transistor, sensor, solar cell, lithium cell, and vaporizing device - Google Patents

Porous body and method for manufacturing same, structural element, power storage device, catalyst, transistor, sensor, solar cell, lithium cell, and vaporizing device Download PDF

Info

Publication number
WO2016002277A1
WO2016002277A1 PCT/JP2015/059295 JP2015059295W WO2016002277A1 WO 2016002277 A1 WO2016002277 A1 WO 2016002277A1 JP 2015059295 W JP2015059295 W JP 2015059295W WO 2016002277 A1 WO2016002277 A1 WO 2016002277A1
Authority
WO
WIPO (PCT)
Prior art keywords
porous body
porous
pores
sample
metal
Prior art date
Application number
PCT/JP2015/059295
Other languages
French (fr)
Japanese (ja)
Inventor
陳明偉
伊藤良一
邱華軍
譚勇文
韓久慧
田邉洋一
郭現偉
藤田武志
平田秋彦
谷垣勝己
Original Assignee
国立大学法人東北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東北大学 filed Critical 国立大学法人東北大学
Priority to JP2016531142A priority Critical patent/JP6455942B2/en
Publication of WO2016002277A1 publication Critical patent/WO2016002277A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • B01J27/047Sulfides with chromium, molybdenum, tungsten or polonium
    • B01J27/051Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • B01J35/56
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/08Alloys with open or closed pores
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/08Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a porous body and a method for producing the same, a structure, a power storage device, a catalyst, a transistor, a sensor, a solar battery, a lithium battery, and a vaporizer, for example, a porous body containing graphene and the like, a method for producing the same, a structure,
  • the present invention relates to a power storage device, a catalyst, a transistor, a sensor, a solar battery, a lithium battery, and a vaporizer.
  • Non-Patent Documents 1 and 2 describe that graphene has a three-dimensional structure and is a porous body having pores.
  • Non-Patent Documents 1 and 2 it is conceivable to use graphene or the like as a porous body having a three-dimensional structure. However, if graphene or the like has a three-dimensional structure, it does not have electrical characteristics and catalytic characteristics, which are characteristics as a two-dimensional substance, and these characteristics deteriorate.
  • the present invention has been made in view of the above problems, and an object thereof is to improve the electrical characteristics and / or catalytic characteristics of a porous body or structure.
  • the present invention is a porous body comprising a carbon structure having pores having an average size of 2 ⁇ m or less and a minimum size of 60 nm or more.
  • the carbon structure may have a Dirac cone electronic density of states.
  • the pores may be hollow.
  • it comprises a porous metal, and the carbon structure can be configured to cover the surface of the porous metal.
  • the carbon structure may include a substance that serves as a catalyst.
  • the carbon structure may include at least one of nitrogen, boron, phosphorus, sulfur, nickel, and manganese.
  • the said structure WHEREIN: The average size of the said pore can be set as the structure which is 1 micrometer or less.
  • the present invention is a porous body comprising a porous metal and a transition metal chalcogenide film having a layered structure provided so as to cover the surface of the porous metal.
  • the present invention is a structure characterized by having a structure in which the porous body is crushed.
  • the present invention is a structure including a metal having an average crystal grain size of 2 ⁇ m or less and a graphene layer provided at a grain boundary so as to cover the crystal grain.
  • the present invention is a structure characterized by having a structure obtained by oxidizing the porous carbon structure.
  • the present invention is a structure characterized by having a structure obtained by oxidizing and reducing the porous carbon structure.
  • the present invention is a power storage device including the porous body or the structure.
  • the present invention is a catalyst comprising the porous body or the structure.
  • the present invention is a transistor including the porous body or the structure.
  • the present invention is a sensor comprising the porous body or the structure.
  • a solar cell comprising the porous body or the structure.
  • the present invention includes a step of heat-treating a porous metal formed by dealloying so as to increase the size of pores and ligaments, and a carbon structure having a Dirac-cone electronic density of states on the surface of the porous metal. Forming the body, and the step of performing the heat treatment is performed before or simultaneously with the step of forming the carbon structure.
  • the present invention provides a lithium battery comprising an electrode including a carbon structure doped with at least one of N and S, having an average size of 2 ⁇ m or less and a minimum size of 60 nm or more. It is.
  • the electrode may be a positive electrode
  • the lithium battery may be a lithium air battery
  • the present invention is a vaporization device including the porous body or the structure.
  • the electrical characteristics and / or catalytic characteristics of the porous body or structure can be improved.
  • FIG. 1A to FIG. 1D are cross-sectional views illustrating a method for manufacturing a porous body according to the first embodiment.
  • FIG. 2A and FIG. 2B are examples of a structure using the porous body of the first embodiment
  • FIG. 2C is a cross-sectional view showing the power storage device according to the second embodiment.
  • . 3A is a cross-sectional view showing a transistor according to Embodiment 3
  • FIG. 3B is a cross-sectional view showing a sensor according to Embodiment 4
  • FIG. 3C is a solar cell according to Embodiment 5.
  • FIG. 4A to 4D are SEM images in Example 1.
  • FIG. FIG. 5 is a diagram showing the results of Raman measurement in Example 1.
  • FIG. 6A is a bright field STEM image of the graphene layer 24 in Example 1
  • FIG. 6B is a diffraction pattern
  • FIG. 6C is an enlarged image of the region A in FIG. 6A
  • FIG. 6D is a diffraction pattern of FIG. 6C
  • FIG. 6E is an image diagram of FIG. 6C
  • FIG. 6F is an enlarged image of a region B in FIG. 6A
  • FIG. 6 (h) is an image diagram of FIG. 6 (f).
  • FIG. 7A is a diagram showing the strength with respect to the binding energy of each sample in Example 1, FIG.
  • FIG. 7B is an enlarged view of the vicinity of the Fermi level of the sample G900L
  • FIG. 7C is the angle dependence of the sample G900L.
  • FIG. 8 is a diagram showing the mobility with respect to temperature in the first embodiment.
  • FIG. 9 is a diagram illustrating the current density with respect to the voltage of each sample in Example 2.
  • Figure 10 is a diagram showing a nitrogen concentration and the current density J k of each sample in Example 2.
  • FIG. 11A is a diagram showing the current density with respect to the voltage of each sample in Modification 1 of Example 2
  • FIG. 11B is a diagram showing the mobility with respect to temperature in Example 2 and Modification. is there.
  • FIG. 12 is a diagram illustrating the current density with respect to the voltage of each sample in the second modification of the second embodiment.
  • FIG. 13 is a diagram showing the results of XPS measurement before and after removing Ni from sample 6h.
  • FIG. 14 is a diagram illustrating the current density with respect to the voltage of each sample in Example 3.
  • FIG. 15 is a diagram showing the voltage with respect to the capacity of the lithium-air battery in Example 4.
  • FIG. 16A and FIG. 16B are diagrams showing current density with respect to voltage in Example 5.
  • FIG. 17 is a stress strain diagram in Example 6.
  • FIG. 18 is a diagram showing the hardness in Example 6.
  • FIG. 19A is an SEM image in Example 6, and FIG. 19B is an EBSD image.
  • FIG. 20 is a diagram showing the volume capacity with respect to the current density in Example 7.
  • FIG. 21 is a diagram illustrating the response R with respect to the voltage in the eighth embodiment.
  • FIG. 22A is an SEM image in Example 9, and FIG. 22B is an enlarged image of FIG.
  • FIG. 23 is a diagram showing the results of Raman measurement in Example 9.
  • FIG. 24 is a diagram illustrating the current density with respect to the voltage of each sample in Example 9.
  • FIG. 25 is a plan view of a configuration obtained by measuring transistor characteristics in Example 10.
  • Figure 26 is a diagram showing conductance ⁇ versus gate voltage V G was measured in Example 10.
  • FIG. 27A to FIG. 27D are diagrams showing the voltage with respect to the capacity of the lithium air battery according to Example 11.
  • FIG. 28 is a diagram (part 1) illustrating the performance of a lithium-air battery that has been announced.
  • FIG. 29 is a diagram (part 2) illustrating the performance of the lithium-ion battery that has been announced.
  • FIGS. 30 (a) and 30 (b) are schematic views of a part of a porous body according to a modification of Example 11, and FIGS. 30 (c) and 30 (d) are modifications of Example 11. It is a figure which shows the voltage with respect to the capacity
  • FIG. 31A and FIG. 31B are diagrams showing the voltage with respect to the capacity of the lithium-air battery according to the second modification of the eleventh embodiment.
  • FIG. 32 is a diagram showing voltage and energy efficiency with respect to the number of cycles of a lithium-air battery according to Modification 2 of Example 11.
  • FIG. 33 is a diagram showing the total reflectance and transmittance of each sample used in Example 12 with respect to the wavelength of light.
  • FIG. 34 is a diagram showing the thermal conductivity with respect to the temperature of each sample used in Example 12.
  • FIG. 35 is a cross-sectional view of the vaporizer according to the twelfth embodiment.
  • FIG. 36 is a diagram showing the results of measuring the amount of water evaporation using each sample in Example 12.
  • FIG. 1A to FIG. 1D are cross-sectional views illustrating a method for manufacturing a porous body according to the first embodiment.
  • an alloy 18 of a plurality of metal elements is formed.
  • the alloy 18 is formed, for example, by heating to a temperature at which a plurality of metal elements melt and then cooling.
  • the alloy 18 is, for example, amorphous.
  • gold (Au), silver (Ag), palladium (Pd), platinum (Pt), aluminum (Al), nickel (Ni), manganese (Mn), copper (Cu) and zinc (Zn) Can be used.
  • the number of metal elements contained in the alloy may be two, or three or more.
  • an alloy of nickel and manganese is used.
  • an alloy of gold and silver is used.
  • the alloy 18 is dealloyed. In the dealloying, some of the metal elements are selectively etched.
  • the solution to be etched can be appropriately selected depending on the metal element constituting the alloy 18.
  • an ammonium sulfate ((NH 4 ) 2 SO 4 ) aqueous solution is used as the solution.
  • gold and silver are used as the alloy 18, for example, a nitric acid (HNO 3 ) aqueous solution is used as the solution.
  • the porous metal 10 is formed by dealloying.
  • the porous metal 10 has pores 12a and ligaments 14a. The sizes of the pores 12a and the ligaments 14a are, for example, 10 nm to 100 nm, for example, 50 nm or less.
  • a layer 24 is formed on the surface of the porous metal 10.
  • the porous metal 10 is heat treated.
  • the heat treatment temperature is, for example, 700 ° C. to 1000 ° C.
  • the heat treatment time is, for example, 1 minute to several hours.
  • the ligaments 14a of the porous metal 10 are accumulated, and the sizes of the pores 12 and the ligaments 14 are increased.
  • the sizes of the pores 12 and the ligaments 14 are, for example, 60 nm or more and 2 ⁇ m or less.
  • the layer 24 is a substance having a layered structure such as a carbon structure such as graphene or a transition metal chalcogenide.
  • the layer 24 is formed by using, for example, a CVD (Chemical Vapor Deposition) method. Thereby, the porous body 30 is formed.
  • the porous body 30 includes a porous metal 10 and a layer 24 provided so as to cover the surface of the ligament 14 of the porous metal 10.
  • the layer 24 becomes a three-dimensional structure.
  • the porous metal 10 is removed by etching or the like.
  • the porous body 32 has a layer 24 and pores 22.
  • the size of the pores 22 is substantially the same as the pores 12 and the ligaments 14 in FIG.
  • the size of the ligament 14 corresponds to, for example, the diameter when the ligament 14 is approximated to a cylinder.
  • the size of the pores 22 is, for example, about 60 nm to 2 ⁇ m, and the radius of curvature of the pores 22 is not less than 30 nm and not more than 1 ⁇ m. Note that the radius of curvature is about 1 ⁇ 2 of the size.
  • the graphene layer 24 is a graphene-like sheet. In graphene, six-membered ring carbon atoms are regularly arranged. As a result, graphene has a Dirac-cone electronic density of states and has two-dimensionally excellent electrical conductivity.
  • the pores 22 are large, the density of the carbon structure 20 in the porous body 32 will be small. Therefore, for example, the surface area of the carbon structure 20 is reduced, and the function as the porous body 32 is lowered. For example, the function as a catalyst using the porous body 32 is reduced. In the method of Non-Patent Document 1, it is difficult to set the average size of the pores 22 to 2 ⁇ m or less.
  • the porous metal 10 having the pores 12 and the ligaments 14 is formed by dealloying.
  • FIG. 1C before or simultaneously with the step of forming the carbon structure 20, heat treatment is performed so that the pores 12 and the ligaments 14 are large in size and have a gentle curvature.
  • the average size of the pores 22 can be 2 ⁇ m or less.
  • the average size of the pores 22 is more preferably 1.5 ⁇ m or less, more preferably 1.0 ⁇ m or less, and further preferably 0.5 ⁇ m or less.
  • the average size of the pores 22 is preferably 60 nm or more, and more preferably 100 nm or more.
  • the size of pores and ligaments can be measured from images such as SEM (Scanning Electron Microscope) or TEM (Transmission Electron Microscope).
  • the pore size can be measured using a BJH (Barrett-Joyner-Hallender) method.
  • the graphene layer 24 has a curved surface. If the graphene layer 24 is to be curved, defects such that a part of the six-membered ring in the graphene layer 24 becomes a five-membered ring and a seven-membered ring are formed. This defect increases as the size of the pores 22 decreases and the curvature of the graphene layer 24 decreases. The electrical characteristics deteriorate at locations with many defects.
  • the electrical conduction at this portion becomes extremely low.
  • the radius of curvature of the carbon layer (the carbon layer that becomes the graphene layer 24) is larger than the size that can maintain two-dimensionality (that is, graphene that is a two-dimensional material). It is required to be.
  • Non-Patent Document 1 the curvature of the pores and ligaments of the Ni template (corresponding to the porous metal 10 of Embodiment 1) varies, and a portion with an extremely small curvature is observed.
  • the carbon layer cannot maintain the shape of one continuous sheet. For this reason, it is considered difficult to maintain two-dimensional characteristics and high electrical conductivity.
  • the pore size and ligament size of the carbon structure 20 are larger than those of the present invention. For this reason, the performance per volume is inferior.
  • the diameter of the carbon sphere considered to correspond to the size of the pores of the carbon structure is about 100 nm.
  • the spheres are adjacent to each other in a daisy chain. For this reason, the location where the radius of curvature is extremely small is made at the contact point of the sphere. Due to the presence of the spherical contact, the carbon layer cannot maintain a smooth and continuous sheet shape. Therefore, it is considered that the two-dimensional characteristic is lost.
  • Embodiment 1 since it is graphene which is a two-dimensional material, it has sufficient curvature over the entire structure. For this reason, the carbon layer maintains two-dimensional characteristics.
  • the carbon structure 20 has a Dirac cone electronic density of states as will be described later with reference to FIG. High conductivity is also shown. So far, there has been no example in which the density of states of Dirac cones (that is, the grounds for graphene) has been observed in a carbon porous body having nano-sized pore diameters.
  • the size of the pores 12 and the ligaments 14 is increased by heat-treating the porous metal 10 formed by dealloying.
  • the porous metal 10 having a small size distribution of the pores 12 and the ligaments 14 can be formed. Therefore, the minimum size of the ligament 14 is increased, and the minimum size of the pores 22 can be increased. Therefore, the electrical characteristics of the carbon structure 20 can be improved.
  • the minimum size of the pores 22 is preferably 60 nm or more, more preferably 100 nm or more, and further preferably 200 nm or more. Note that the minimum size of the pores 22 is a minimum size that does not include a portion having a small size that does not affect the electrical characteristics of the porous body 30 or 32 as a rare frequency.
  • defects such as a five-membered ring and a seven-membered ring are appropriately introduced into the carbon structure 20.
  • the catalyst characteristics are improved by appropriately introducing defects.
  • the defects are appropriately introduced into the carbon structure 20, it is preferable to reduce the size of the pores 22.
  • the average size of the pores 22 is preferably 2.0 ⁇ m or less, more preferably 1.5 ⁇ m or less, more preferably 1.0 ⁇ m or less, and further preferably 0.5 ⁇ m or less.
  • the porous bodies 30 and 32 include the carbon structures 20 having pores 22 having an average size of 2 ⁇ m or less and having a Dirac cone type electronic state density. Thereby, electrical characteristics can be improved. Moreover, the catalyst characteristic in the case of using the porous bodies 30 and 32 as a catalyst can be improved. Furthermore, the average size of the pores 22 is 60 nm or more. Thereby, electrical characteristics can be further improved.
  • the pores 22 of the porous body 32 may be hollow. Thereby, the mass of the porous body 32 can be made small. Further, the reaction field can be increased in the pores 22 by increasing the surface area of the porous body 32.
  • the ligament 14 of the porous metal 10 may be located in the pores 22 of the carbon structure 20, and the carbon structure 20 may cover the surface of the ligament 14. Thereby, since the porous metal 10 contributes to electric conduction in addition to the carbon structure 20, the resistance of the porous body 30 can be further reduced. In addition, the carbon structure 20 can be reinforced by the porous metal 10.
  • the carbon structure 20 may contain an element that functions as a catalyst, such as nitrogen or nickel.
  • the element that functions as a catalyst may be bonded to carbon of the carbon structure 20.
  • the element that functions as a catalyst may be supported on the carbon structure 20. Thereby, a catalyst characteristic can be improved. Further, catalytic properties can be further improved by oxidizing part of the carbon structure 20 and reducing part of oxygen.
  • a transition metal chalcogenide MX 2 having a layered structure can be used as the layer 24 .
  • M for example, molybdenum (Mo), tungsten (W), titanium (Ti), zirconium (Zr), hafnium (Hf), vanadium (V), niobium (Nb) and tantalum (Ta)
  • Mo molybdenum
  • W tungsten
  • Ti titanium
  • Zr zirconium
  • V vanadium
  • Nb niobium
  • Ta tantalum
  • X may be, for example, at least one of sulfur, selenium and tellurium (Te).
  • the layer 24 is a transition metal chalcogenide or the like
  • an inexpensive metal can be used as the porous metal 10
  • a metal with good catalytic characteristics or electrical characteristics can be used as the layer 24. Therefore, inexpensive and high-performance porous bodies 30 and 32 can also be provided.
  • 2 (a) and 2 (b) are examples of structures using the porous body of the first embodiment.
  • the structure 34 has a structure in which the porous body 30 or 32 is crushed.
  • Layer 24 covers metal 15. The metal 15 may be removed. Thereby, the performance per unit volume can be improved.
  • the layer 24 is a graphene layer
  • the porous body 30 having the graphene layer 24 may be crushed and then heat-treated. Thereby, the metal 15 becomes a crystal grain having an average size of 2 ⁇ m or less.
  • the graphene layer 24 covers the metal 15. Thereby, the strength of the structure 34 is increased.
  • the structure 36 includes an oxide layer 26 obtained by oxidizing the layer 24 of the porous body 32.
  • the modified Hummers method can be used to form the oxide layer 26.
  • the structure 36 is a structure in which the oxide layers 26 are three-dimensionally networked. For this reason, it can be used for an optical sensor or a solar cell, for example.
  • FIG. 2C is a cross-sectional view illustrating the power storage device according to the second embodiment.
  • the power storage device 40 includes a positive electrode 42, a negative electrode 46, and an electrolyte 44.
  • the power storage device 40 is, for example, a lithium air battery, a secondary battery, or an electric double layer capacitor.
  • the porous bodies 30 and 32 or the structure 34 of the first embodiment can be used for at least one of the positive electrode 42 and the negative electrode 46.
  • the porous bodies 30, 32, or the structure 34 may be held in, for example, a conductive material, or the porous bodies 30, 32, or the structure 34 may be used alone.
  • the performance of the power storage device can be improved.
  • FIG. 3A is a cross-sectional view illustrating a transistor according to the third embodiment.
  • the transistor 50 includes a channel 52, a gate electrode 54, a source electrode 56, and a drain electrode 58.
  • the channel 52 includes a porous body 30, 32 or a structure 34.
  • the gate electrode 54 By applying a voltage to the gate electrode 54, the current between the source electrode 56 and the drain electrode 58 is controlled. Since the porous bodies 30 and 32 or the structure 34 have a three-dimensional structure and high mobility, the performance of the transistor 50 can be improved.
  • FIG. 3B is a cross-sectional view illustrating the sensor according to the fourth embodiment.
  • the sensor 60 is provided with electrodes 64 and 66 on a sensing body 62.
  • the sensing body 62 includes the porous bodies 30 and 32 and the structure 34 or 36.
  • the electrical characteristics change according to the change in the detection amount.
  • the electrodes 64 and 66 convert changes in the electrical characteristics of the sensing body 62 into electrical signals.
  • the sensing body 62 is a gas sensor, for example, when gas is adsorbed to the sensing body 62, the electrical conductivity of the sensing body 62 changes.
  • the sensing body 62 is an optical sensor, for example, when the sensing body 62 is irradiated with light, the electrical conductivity of the sensing body 62 changes.
  • the electrodes 64 and 66 detect a change in electrical conductivity of the sensing body 62.
  • the sensor 60 may be an ion sensor. Since the porous bodies 30 and 32 and the structures 34 or 36 have a large surface area and / or high mobility, the detection performance of the sensor 60 can be improved.
  • FIG. 3C is a cross-sectional view showing the solar cell according to the fifth embodiment.
  • the solar cell 70 is provided with electrodes 74 and 76 on a photoelectric conversion layer 72.
  • the electrode 74 has a mesh shape so that the photoelectric conversion layer 72 is irradiated with light.
  • the photoelectric conversion layer 72 is the porous body 30 or 32 and the structure 34 or 36.
  • the photoelectric conversion layer 72 generates current or voltage when irradiated with light. Thereby, a potential difference is generated between the electrodes 74 and 76. Since the porous bodies 30 and 32 and the structures 34 or 36 have a large surface area and / or high mobility, the performance of the solar cell 70 can be improved.
  • the power storage device 40, the transistor 50, the sensor 60, and the solar cell 70 have been described as examples, but the porous body 30, 32, the structure 34, or 36 can also be used for other devices.
  • Example 1 is an example of a porous body containing a carbon structure.
  • a porous body according to Example 1 was produced as follows. 4A to 4D are SEM images in Example 1. FIG.
  • a Ni 30 Mn 70 alloy 18 having a film thickness of about 50 ⁇ m is produced.
  • the alloy 18 is dealloyed using a (NH 4 ) 2 SO 4 solution at 50 ° C. Thereby, the Ni porous metal 10 having pores 12a and ligaments 14a having an average size of about 10 nm is formed.
  • the film thickness of the porous metal 10 is about 30 ⁇ m.
  • the Ni porous metal 10 has a nanoporous structure having pores and ligaments.
  • the Ni porous metal 10 is heat-treated in a CVD apparatus as a mixed atmosphere of hydrogen (H 2 ), argon (Ar), and benzene. This increases the size of the pores 12 and the ligaments 14 of the Ni porous metal 10.
  • a graphene layer 24 is formed on the surface of the Ni porous metal 10.
  • the heat treatment temperature is, for example, 800 ° C. to 1000 ° C.
  • the heat treatment time is, for example, 5 minutes to 30 minutes. By appropriately setting the heat treatment temperature and the heat treatment time, the sizes of the pores 12 and the ligaments 14 can be controlled.
  • the film thickness of the porous metal 10 is 15 ⁇ m to 25 ⁇ m.
  • Table 1 is a table showing the heat treatment temperature and heat treatment time of samples G900S and G900L.
  • Sample G900S was heat-treated at 900 ° C. for 5 minutes, and sample G900L was heat-treated at 900 ° C. for 30 minutes.
  • the size distribution of the pores 12 and the ligaments 14 of the sample G900S is in the range of 100 nm to 300 nm, and the average size is 210 nm.
  • the minimum radius of curvature of the ligament 14 is about 50 nm.
  • the size distribution of the pores 12 and the ligaments 14 in the sample G900L ranges from 1.5 ⁇ m to 2.0 ⁇ m.
  • the minimum radius of curvature of the ligament 14 is about 0.75 ⁇ m.
  • the sizes of the pores 12 and the ligaments 14 were measured using a fast Fourier transform method (Fast Fourier method) based on SEM images.
  • the pores 12 and the ligaments 14 are formed.
  • a graphene layer 24 is formed on the surface of the ligament 14.
  • the porous metal 10 is dissolved using a hydrochloric acid (HCl) aqueous solution at room temperature. Thereby, the Ni porous metal 10 is dissolved, and the porous body 32 becomes only the carbon structure 20.
  • the carbon structure 20 has pores 22 and a graphene layer 24.
  • the film thickness of the carbon structure 20 is 15 ⁇ m to 25 ⁇ m.
  • the Ni concentration remaining in the carbon structure 20 was measured, the Ni concentration was 0.08 atomic% or less.
  • the sheet-like graphene layer 24 remains.
  • the average size of the pores 22 in the sample G900S measured by the BJH method is about 200 nm. This substantially matches the size of the pores 12 and the ligaments 14 of the porous metal 10.
  • the size distribution of the pores 22 is substantially the same as the size distribution of the pores 12 and the ligaments 14.
  • FIG. 5 is a diagram showing the results of Raman measurement in Example 1. As shown in FIG. 5, there is Ni (the porous body 30 before removing the porous metal 10 as shown in FIG. 1B) and no Ni (as shown in FIG. 1C). When comparing the porous body 32) after removing the metal 10, there is no significant difference in the Raman spectrum. Thereby, it turns out that the big damage is not introduced into the carbon structure 20 by melt
  • FIG. 6A is a bright field S (Scanning) TEM image of the graphene layer 24 in Example 1
  • FIG. 6B is a diffraction pattern
  • FIG. 6C is an enlarged view of a region A in FIG. 6A.
  • 6 (d) is a diffraction pattern of FIG. 6 (c)
  • FIG. 6 (e) is an image diagram of FIG. 6 (c)
  • FIG. 6 (f) is an enlarged image of region B in FIG. 6 (a)
  • FIG. 6G is a diffraction pattern of FIG. 6F
  • FIG. 6H is an image diagram of FIG.
  • FIG. 6E and FIG. 6H are diagrams showing carbon atom bonds, in which carbon atoms are illustrated as spheres and bonds between carbon atoms are illustrated as bars.
  • the graphene layer 24 in the carbon structure 20 has a three-dimensional structure.
  • many concentric spots can be observed in the diffraction pattern. This indicates that the carbon structure 20 is formed three-dimensionally.
  • the graphene layer 24 appears regularly.
  • six spots are observed in the diffraction pattern of the region A. This indicates that the graphene layer 24 in the region A has a regular six-membered ring as shown in FIG.
  • the graphene layer 24 seems to have irregular portions. As shown in FIG. 6G, irregular spots are observed in the region B. As shown in FIG. 6H, in the region B, it is considered that the five-membered ring 90 and the seven-membered ring 92 are formed in the graphene layer 24. Thus, in the region B, since the graphene layer 24 is curved, it is considered that defects such as the five-membered ring 90 and the seven-membered ring 92 are introduced into the graphene layer 24.
  • FIG. 7A is a diagram showing the signal intensity with respect to the binding energy of each sample in Example 1
  • FIG. 7B is an enlarged view near the Fermi level of the sample G900L
  • FIG. 7C is the angle of the sample G900L. It is a figure which shows dependence.
  • the binding energy represents the energy from the Fermi level E F, the signal intensity corresponding to the electronic density of states. As shown in FIG.
  • the energy close to the Fermi level E F, intensity changes linearly.
  • the samples G900S and G900L have a Dirac cone electronic density of states specific to graphene.
  • the signal intensity relative to the binding energy is linearly approximated using the method of least squares.
  • the number of relationships is 90% or more.
  • the correlation coefficient is 95% or more, or 98% or more.
  • the same signal can be obtained even when the angle is changed.
  • the density of electronic states does not depend on the angle, it has a Dirac cone type electronic state density.
  • the graphene layer 24 is formed three-dimensionally.
  • FIG. 8 is a diagram showing the mobility ⁇ with respect to the temperature in the first embodiment. It can be seen that both the samples G900S and G900L have a high mobility of 8500 to 12000 cm 2 / Vs at 100 K or less and 6600 to 8000 cm 2 / Vs even at room temperature.
  • the graphene layer 24 is formed on the Ni porous metal 10 formed by dealloying.
  • the average size of the pores 22 can be 2 ⁇ m or less.
  • the minimum size of the pores 22 can be set to 60 nm or more.
  • the carbon structure 20 having a three-dimensional structure having a Dirac cone electronic density of states can be provided.
  • the carbon structure 20 has an electron mobility of 8000 cm 2 / Vs or more at room temperature, and is 10000 cm 2 / Vs or more depending on a sample.
  • the carbon structure 20 can be made conductive and / or electrical characteristics can be improved.
  • Example 2 is an example of a porous body 32 having a carbon structure 20 containing nitrogen (N).
  • N nitrogen
  • pyridine was used instead of benzene when forming the carbon structure 20.
  • Other methods for forming the porous body 32 are the same as those in the first embodiment.
  • Graphene doped with N has a high catalytic activity in an oxygen reduction reaction (ORR: Oxygen reduction reaction).
  • Table 2 is a table showing the heat treatment temperature and time of each sample.
  • Sample N1000 was heat-treated at 1000 ° C. for 20 minutes, sample N900 was heat-treated at 900 ° C. for 5 minutes, sample N800S was heat-treated at 800 ° C. for 5 minutes, and sample N800L was heat-treated at 800 ° C. for 30 minutes.
  • G900 is Example 1 in which N is not doped, and heat treatment was performed at 900 ° C. for 20 minutes. The size of the pores 22 becomes larger as the heat treatment temperature is higher and the time is longer.
  • the catalytic properties of each sample prepared were examined using a cyclic voltammetry method.
  • the porous body 32 was used as a working electrode, Pt as a counter electrode, and silver (Ag) / silver chloride (AgCl) as a reference electrode.
  • the solution is a 0.1 M potassium hydroxide (KOH) solution. A voltage was applied to the working electrode with respect to the reference electrode, and the current flowing between the counter electrode and the working electrode was measured.
  • FIG. 9 is a graph showing the current density with respect to the voltage of each sample in Example 2.
  • the current hardly changes even when a negative voltage is applied.
  • N800S, N800L, and N900 when a negative voltage is applied from 0V, ORR starts at -0.08V, -0.10, and -0.14V, respectively.
  • ORR when the carbon structure 20 contains nitrogen and the size of the pores 22 is small, high ORR activity is obtained.
  • OR 900 is inactive in G900 which is not doped with N.
  • Figure 10 is a diagram showing a nitrogen concentration and the current density J k of each sample in Example 2.
  • the current density J k is calculated using the Koutecky-Levich Equation.
  • the nitrogen concentration was determined by measuring the peak of N1s bond using XPS (X-ray Photoelectron Spectroscopy) method.
  • N O bonded nitrogen (Oxidized N)
  • CN C bonded nitrogen (Pyridinic N)
  • NC 3 bonded nitrogen Graphitic N).
  • the current density J k is approximately zero. This indicates that there is almost no catalytic function of ORR. N1000 is not doped with N but has a catalytic function. On the other hand, N800S, N800L and N900 are good current density J k is greater catalytic properties in this order.
  • N800S, N800L, N900, and N1000 Graphic N have almost the same concentration.
  • Pyridinic N is very small. Pyridinic N increases in the order of N800S, N900L, and N900. Thus, the catalyst characteristics correlate with the Pyridinic®N concentration.
  • the defect density of five-membered rings and seven-membered rings is low.
  • the curvature radius of the graphene layer 24 is small.
  • the defect density of a five-membered ring and a seven-membered ring is increased.
  • the increase in the density of the five-membered ring can be said to indicate that the Pyridinic®N concentration is high. Therefore, it is considered that the catalyst characteristics are improved.
  • the size of the pores 22 is preferably 1 ⁇ m or less, more preferably 800 nm or less.
  • Example 2 since the size of the pores 22 can be reduced, the catalyst characteristics can be improved. Further, the electronic conductivity of the carbon structure 20 is 1.2 ⁇ 10 4 S / m, which is 2 to 3 orders of magnitude higher than that of activated carbon and carbon black. Thereby, a catalyst characteristic can be improved more.
  • Example 2 demonstrated the example which doped N, even when doped with the element which functions as another catalyst, the carbon characteristic 20 improves a catalyst characteristic by including those elements to some extent in a defect part. be able to.
  • a carbon structure 20 doped with phosphorus (P), sulfur (S), nitrogen and phosphorus, nitrogen and sulfur, or boron (B) was produced.
  • the raw material gas when doping each element is shown below.
  • Doping element Source gas Phosphorus Tripropylphosphine Sulfur Thiophene Nitrogen and phosphorus Pyridine and tripropylphosphine Nitrogen and sulfur Pyridine and thiophene Boron Triethylborane
  • Other conditions for producing the carbon structure 20 are the same as in Example 2.
  • the catalytic characteristics of the hydrogen evolution reaction (HER) of each sample of the modified example 1 of the produced example 2 were examined using a cyclic voltammetry method. Since hydrogen is also used as a fuel for fuel cells, HER is attracting attention.
  • the solution is a 0.5 M sulfuric acid (H 2 SO 4 ) solution.
  • the reference electrode is a reversible hydrogen electrode (RHE).
  • Other measurement methods are the same as those in Example 2, and the description thereof is omitted.
  • FIG. 11A is a diagram showing the current density with respect to the voltage of each sample in the first modification of the second embodiment.
  • P800 indicates a phosphorus-doped sample having a temperature of 800 ° C. when the graphene layer 24 is formed.
  • S800 indicates a sulfur-doped sample having a temperature of 800 ° C.
  • NP800 represents a nitrogen and phosphorus doped sample having a temperature of 800 ° C.
  • NS800 represents a nitrogen and sulfur doped sample with a temperature of 800 ° C.
  • Sample Pt is platinum.
  • HER catalytic characteristics can be improved by doping the carbon structure 20 with phosphorus, sulfur, nitrogen and phosphorus, or nitrogen and sulfur.
  • FIG. 11B is a diagram illustrating the mobility with respect to temperature in the second embodiment and the first modification.
  • Sample B is a sample doped with boron, and the temperature at which the graphene layer 24 is formed is 900 ° C.
  • Samples G900L and G900S have the same data as in FIG.
  • Samples N800L and N800S are the samples of Example 2. As shown in FIG. 11B, samples B and N800L have the same electron mobility as that of the first embodiment.
  • the carbon structure 20 was oxidized and further reduced.
  • a modified Hummers method was used, and for the reduction, a hydrazine aqueous solution was used.
  • the oxidation time and reduction time of each sample are shown below.
  • the original sample is a sample before redox.
  • FIG. 12 is a diagram showing the current density with respect to the voltage of each sample in Modification 2 of Example 2.
  • sample RGO when applied to a positive voltage, it becomes OER, and when applied to a negative voltage, it becomes ORR.
  • sample RGO has improved OER catalytic properties compared to sample N800S.
  • sample NRGO has improved OER catalyst characteristics and ORR catalyst characteristics compared to the sample N800S.
  • sample NGO and sample GO are almost inactive as catalysts.
  • the carbon structure 20 is inactive as a catalyst in the oxidized state, but the catalytic properties are improved by reducing the oxidized carbon structure 20.
  • the reason why workplace characteristics are improved by redox is not clear. For example, a part of the carbon structure 20 is oxidized, and the oxidized part is reduced. At this time, the carbon structure 20 is defective. This defect is thought to improve the catalyst characteristics.
  • Example 3 is an example of the porous body 32 in which the carbon structure 20 is doped with Ni. When Ni is bonded to an OH group and becomes Ni (OH) 2 , it has a high catalytic activity for hydrogen generation reaction. In Example 3, when removing Ni from the porous metal 10 in FIG. 1D, a part of Ni remained. Other methods for forming the porous body 30 are the same as those in the first embodiment, and the description thereof is omitted.
  • the heat treatment in FIG. 1B was performed at 800 ° C. for 5 minutes.
  • the size distribution of the pores 12 and ligaments 14 is 100 nm to 300 nm.
  • the ligament 14 was removed with a 2M hydrochloric acid (HCl) solution.
  • the treatment time with the solution was 4 hours (sample 4h), 6 hours (sample 6h), and 9 hours (sample 9h).
  • Ni is remaining as the time is shorter.
  • the Ni concentration in the sample 6h measured using an EDX (Energy Dispersive X-ray Spectroscopy) method is 4 atomic% to 8 atomic%.
  • Sample GO is a sample obtained by oxidizing graphene using a modified Hummers method.
  • Sample Pt is platinum.
  • FIG. 13 is a diagram showing the results of XPS measurement before and after removing Ni from sample 6h. Ni2p binding energy is shown.
  • the Ni 0 peak zero-valent Ni peak
  • the Ni 0 peak is a bond between Ni and OH.
  • Ni (OH) 2 having a function as a catalyst is present in the sample after removing Ni.
  • the catalytic characteristics in HER of each prepared sample were examined using a cyclic voltammetry method.
  • the solution is a 0.5 M sulfuric acid (H 2 SO 4 ) solution.
  • the reference electrode is a reversible hydrogen electrode.
  • Other measurement methods are the same as those in Example 2, and the description thereof is omitted.
  • FIG. 14 is a diagram showing the current density with respect to the voltage of each sample in Example 3. This shows a state after repeating voltage scanning between 0.1 V and ⁇ 0.2 V for 200 cycles.
  • sample GO is HER inactive.
  • the catalyst characteristics approach the sample Pt.
  • the carbon structure 20 doped with Ni exhibits good catalytic properties.
  • the carbon structure 20 has high electron conductivity and is light. For this reason, it is possible to have high catalytic properties by doping the carbon structure 20 with an element having a catalytic function. Further, an inexpensive catalyst can be provided as compared with the case where Pt is used as the catalyst.
  • the carbon structure 20 can improve catalyst characteristics by containing at least one of nitrogen, boron, phosphorus, sulfur, nickel and manganese, for example. Nitrogen, boron, phosphorus and sulfur are combined with carbon in the graphene layer 24. On the other hand, nickel and manganese are supported on the graphene layer 24. As described above, the element contained in the carbon structure may be bonded to carbon in the graphene layer 24 or may be supported on the graphene layer 24.
  • Example 4 is an example in which the porous body 32 according to Example 2 was used for the positive electrode of a lithium-air battery. Each material of the lithium air battery produced below is shown.
  • Negative electrode Metallic lithium Electrolyte: Organic electrolyte (LiTFSI / TEGDME)
  • Positive electrode Sample N800S of Example 2 is held on a titanium (Ti) mesh. Note that lithium perchlorate is the first source of lithium ions.
  • FIG. 15 is a diagram showing the voltage with respect to the capacity of the lithium-air battery in Example 4.
  • the discharge rate and the charge rate are 300 mAh / g (per unit porous body weight).
  • Each curve shows that the charge / discharge cycle is 1, 2, 3, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90 and 100 times in the direction of the arrow.
  • a capacity of 500 mAh / g can be realized. Even after 100 cycles of discharge and charge, the discharge and charge characteristics do not change significantly.
  • the porous body of Examples 1 to 3 can be used for an electrode of a power storage device such as a lithium-air battery. Since the porous body 32 is mainly the carbon structure 20, it is less expensive than using a noble metal for the electrode.
  • Example 5 is an example of the porous body 30 in a state in which the graphene layer 24 is formed on the porous metal 10 as shown in FIG.
  • the graphene layer 24 was formed by heat treatment at 900 ° C. for 5 minutes using benzene as in Example 1.
  • the size distribution of the pores 22 of the prepared sample is 200 nm to 400 nm.
  • Comparative Example 1 a sample that was heat-treated without forming the graphene layer 24 was produced.
  • the size of the pores 12 of Comparative Example 1 is approximately the same as that of Example 5.
  • OER Oxygen evolution reaction
  • FIG. 16 (a) and 16 (b) are diagrams showing current density with respect to voltage in Example 5.
  • FIG. 16A the peaks when the voltage is swept in the positive direction and the negative direction in Example 5 are 345 mV and 276 mV, respectively.
  • the peaks when the voltage is swept in the positive direction and the negative direction in Comparative Example 1 are 359 mV and 256 mV, respectively.
  • the peak interval between the anode and the cathode is smaller than that of Comparative Example 1. This indicates that Example 5 promotes the electrochemical reaction as compared with Comparative Example 1.
  • the current density in Example 5 is abruptly increased as compared with Comparative Example 1. This indicates that Example 5 promotes OER as compared with Comparative Example 1.
  • FIG. 16B shows the characteristics before and after the voltage scan (0 V to 0.8 V) was performed for 1000 cycles.
  • the catalyst characteristics greatly deteriorate after 1000 cycles.
  • the catalyst characteristics are almost the same at around 1000 cycles.
  • the porous metal 10 is used as a catalyst, the deterioration due to the voltage cycle can be suppressed by forming the graphene layer 24.
  • Example 5 when the carbon structure 20 covers the ligament 14 of the porous metal 10, the catalytic properties of OER are improved. Further, since the carbon structure 20 protects the porous metal 10, the porous body 32 can be kept stable.
  • the sixth embodiment is an example in which the fifth embodiment is crushed.
  • the porous metal 10 is produced by dealloying Ni 30 Mn 70 alloy.
  • the graphene layer 24 is formed by heat treatment at 800 ° C. for 5 minutes using benzene as a source gas. This sample is cold rolled. Thereafter, heat treatment is performed at 600 ° C. for 5 minutes. Then, hot rolling is performed twice. Thereafter, heat treatment is performed at a temperature range of 700 to 900 ° C. for 30 minutes to 1 hour. Thereby, as shown in FIG. 2A, the structure 34 according to Example 6 in which the porous body of Example 5 is crushed is formed. In FIG. 1C, the porous metal 10 is produced by dealloying Ni 30 Mn 70 alloy.
  • the graphene layer 24 is formed by heat treatment at 800 ° C. for 5 minutes using benzene as a source gas. This sample is cold rolled. Thereafter, heat treatment is performed at 600 ° C. for 5 minutes. Then, hot rolling is performed twice. Thereafter
  • the structure according to Comparative Example 2 is manufactured by forming only the heat treatment without forming the graphene layer 24 and crushing the porous metal 10 of Comparative Example 1.
  • the samples of Comparative Example 2 and Example 6 were measured for tensile stress-engineering strain characteristics and hardness.
  • FIG. 17 is a stress strain diagram in Example 6.
  • the temperature and time in the figure indicate the heat treatment temperature and heat treatment time in FIG.
  • Example 6 has a higher tensile strength (maximum stress) than Comparative Example 2. Further, Example 6 has a larger strain to break than Comparative Example 2. Samples having a low heat treatment temperature and a short heat treatment time (that is, small pore 22 size) tend to have a high tensile strength.
  • FIG. 18 is a diagram showing the hardness in Example 6.
  • the temperature and time in the figure indicate the heat treatment temperature and heat treatment time in FIG. Square dots indicate average values, and vertical bars indicate variation.
  • Example 6 has higher hardness than Comparative Example 2.
  • a sample having a low heat treatment temperature that is, a small size of the pores 22) has high hardness.
  • FIG. 19A is an SEM image in Example 6, and FIG. 19B is an EBSD (Electron Back Scatter Diffraction) image.
  • the heat treatment after hot rolling of the measured sample is performed at 900 ° C. for 180 minutes.
  • the graphene layer 24 covers the Ni metal 15.
  • the Ni metal in one pore in the carbon structure 20 has the same color (FIG. 19B has the same brightness because it is black and white). This indicates that the Ni metal 15 in the pores is one crystal grain.
  • the graphene layer 24 is located at the grain boundary of the crystal grains of the metal 15. The average size of the crystal grains is about 1 ⁇ m.
  • the carbon structure 20 covers the ligament 14 of the porous metal 10.
  • the hardness of the porous body 32 or the structure 34 can be increased, and the tensile strength can be increased.
  • Crystal grains are formed in the graphene layer 24 by heat-treating the porous body of Example 5 after rolling. Since the average size of the crystal grains is as small as 2 ⁇ m or less and the graphene layer 24 is provided at the grain boundaries of the crystal grains, it is considered that the hardness of the structure 34 is increased.
  • the average size of the crystal grains is more preferably 1 ⁇ m or less.
  • the average size of the crystal grains is preferably 60 nm or more, and more preferably 100 nm or more.
  • Example 7 is an example in which the porous body according to Example 2 is used for an electric double layer capacitor. Each material of the produced electric double layer capacitor is shown below. Negative electrode: Platinum Electrolyte: 1M KOH solution Positive electrode: Sample C or D Here, the sample C is the sample N800S of Example 2, and the sample D is a sample obtained by stacking five samples N800S and pressing and crushing them at a pressure of 30 MPa for 5 minutes.
  • FIG. 20 is a diagram showing the volume capacity with respect to the current density in Example 7.
  • the voltage is 1V.
  • Sample D has a larger volume capacity than Sample C.
  • Sample D has a volume capacity of 160 to 300 F / cm 3 . This is larger than when two-dimensionally prepared graphene is used for the electrode.
  • the volume capacity of the power storage device such as an electric double layer capacitor can be increased.
  • Example 8 is an example in which a structure 36 obtained by oxidizing the porous body 32 is used for a photocurrent sensor.
  • the structure G was produced by oxidizing the sample G900S of Example 1 using the modified Hummers method. Electrodes were formed on both sides of the structure 36. A voltage was applied between the electrodes, the structure 36 was irradiated with light, and the responsiveness was measured.
  • FIG. 21 is a diagram illustrating the response R with respect to the voltage in the eighth embodiment.
  • the light intensity per unit area irradiated on the structure was changed from 585 ⁇ W / cm 2 to 10 nW / cm 2 .
  • the response R is about 10 4 A / W.
  • This value is inferior to the response using quantum dots reported in Nature Nanotechnology Vol. 7, pp363-368 (2012), but in ACS nano Vol.7, No.7, pp6310-6320 (2013). It is about 1000 times higher than the reported graphene oxide alone. The reason why such high responsiveness was obtained is thought to be that the conductivity of the photoexcited holes and electrons can be increased because the network of the layer 24 has a three-dimensional structure.
  • Example 8 it is possible to provide a highly responsive photoelectric device without using a complex material such as a quantum dot.
  • the structure 36 can also be applied to a device such as a photocurrent sensor or a solar cell.
  • Example 9 is an example of a porous body 30 having a transition metal chalcogenide as a two-dimensional material layer 24.
  • a porous body according to Example 9 was produced as follows.
  • FIG. 1A an Au 35 Ag 65 alloy 18 is produced.
  • FIG. 1B the alloy 18 is dealloyed using a nitric acid (HNO 3 ) aqueous solution.
  • HNO 3 nitric acid
  • the average size of the pores 12a of the porous metal 10 is about 20 nm to 30 nm.
  • FIG. 1 (c) in an electric furnace, sulfur (S), placing the MoO 3 and the porous metal 10.
  • Heat treatment is performed under reduced pressure in an Ar atmosphere.
  • the heat treatment temperature is 700 ° C. and the heat treatment time is 30 minutes.
  • the porous body 30 in which MoS 2 is formed as the two-dimensional material layer 24 on the surface of the ligament 14 of the porous metal 10 is obtained.
  • the pores 12 and the ligaments 14 of the porous metal 10 become large.
  • the sizes of the pores 12 and the ligaments 14 can be controlled.
  • FIG. 22 (a) is an SEM image in Example 9, and FIG. 22 (b) is an enlarged image of FIG. 22 (a).
  • FIGS. 22A and 22B the pores 12 and the ligaments 14 can be observed.
  • a two-dimensional material layer 24 is formed on the surface of the ligament 14. The size of the pores 22 is about 100 nm.
  • FIG. 23 is a diagram showing the results of Raman measurement in Example 9.
  • Sample bulk is the bulk of MoS 2.
  • Samples 1L to 3L are samples in which the number of layers of MoS 2 is 1 to 3 in Example 9, respectively.
  • peaks A 1 g and E 1 2 g can be observed.
  • the wave number difference ⁇ between A 1g and E 1 2g increases as the number of layers increases.
  • is 20 cm ⁇ 1 , 22 cm ⁇ 1 and 23 cm ⁇ 1 , respectively, corresponding to when MoS 2 is a monolayer, a bilayer and a trilayer.
  • the two-dimensional material layer 24 is one to several atomic layers of MoS 2 .
  • the catalytic properties of each sample prepared were examined using a cyclic voltammetry method.
  • the solution is a 0.5 M sulfuric acid (H 2 SO 4 ) solution.
  • the reference electrode is a reversible hydrogen electrode.
  • Other measurement methods are the same as those in Example 2, and the description thereof is omitted.
  • FIG. 24 is a diagram illustrating the current density with respect to the voltage of each sample in Example 9.
  • a sample Pt is a sample having a working electrode Pt
  • a sample NPG is a porous metal 10 made of Au not forming MoS 2 .
  • the catalytic properties of samples 1L to 3L are improved with respect to sample NPG.
  • Sample 1L has the best catalytic properties.
  • the two-dimensional material layer 24 is preferably 3 atomic layers or less, and more preferably 1 atomic layer.
  • porous metal 10 was produced under the same conditions as in Example 1.
  • sulfur, WO 3 and porous metal 10 were placed in an electric furnace, and heat treatment was performed at 900 ° C. for 30 minutes in an Ar atmosphere pressure. Was done. Thereby, the porous body 30 having WS 2 as the two-dimensional material layer 24 was formed.
  • FIG. 1 (c) a porous metal 10 was produced under the same conditions as in Example 1.
  • selenium (Se), MoO 3 and the porous metal 10 were placed, and 700 ° C. 30 in an Ar atmosphere pressure. Heat treatment for 1 min. This allowed a porous body 30 having MoSe 2 as a two-dimensional material layer 24.
  • the two-dimensional material layer 24 having high catalytic properties is formed on the surface of the porous metal 10.
  • similar to Pt, for example using the porous metal 10 cheaper than Pt can be provided.
  • the porous body according to Example 9 can be used for the electrode of the power storage device.
  • Example 10 is an example of measuring transistor characteristics.
  • FIG. 25 is a plan view of a configuration obtained by measuring transistor characteristics in Example 10. As shown in FIG. 25, the gate electrode 83 and the channel 85 are disposed on the double-sided tape 81. The gate electrode 83 and the channel 85 are G900S of the first embodiment. A platinum electrode 84 is in contact with the gate electrode 83. A platinum electrode 86 is in contact with the channel 85. A copper-coated wire 87 is connected to the platinum electrodes 84 and 86 using a silver paste 89. An electric double layer forming ionic liquid 82 is dropped so as to cover the gate electrode 83 and the channel 85.
  • the ionic liquid 82 is a mixture of N, N-diethyl-N-methyl-N- (2methoxyethyl) ammonium and bis (trifluoromethanesulfonyl) imide.
  • the platinum electrodes 84 and 86 are protected from the ionic liquid 82 by a silicon resin (not shown).
  • a voltage is applied to the gate electrode 83 via the copper clad wire 87 and the platinum electrode 84, an electric field is applied to the surface of the channel 85 via the electric double layer formed by the ionic liquid 82.
  • the conductance of channel 85 is measured using platinum electrode 86.
  • Figure 26 is a diagram showing conductance ⁇ versus gate voltage V G was measured in Example 10. As shown in FIG. 26, the conductance ⁇ is changed when changing the gate voltage V G. As a result, it can be seen that the transistor of Example 10 operates as a transistor. The conductance ⁇ is about 1000 times that of a transistor using graphene reported in PNAS Vol. 1080, no. 32, pp13002-13006. In this manner, since graphene can have a three-dimensional structure, characteristics of the transistor can be improved.
  • the nanoporous body that maintains the two-dimensional characteristics can be produced, thereby enabling various applications that could not be realized with graphene.
  • Example 11 is an example in which G800 of Example 1, N800S of Example 2, S800 and NS800 of Modification 1 of Example 2 were used for the positive electrode of a lithium-air battery. Each material of the lithium air battery produced below is shown.
  • Negative electrode Metallic lithium Electrolyte: Organic electrolyte (LiTFSI / TEGDME)
  • Positive electrode Sample G800, N800S, S800, or NS800 is held on a mesh made of titanium (Ti). Other configurations are the same as those of the lithium-air battery of Example 4, and the description thereof is omitted.
  • FIGS. 27 (a) to 27 (d) are diagrams showing the voltage with respect to the capacity of the lithium air battery according to Example 11.
  • FIG. FIG. 27A to FIG. 27D correspond to samples G800, N800S, S800, and NS800, respectively.
  • the discharge rate and the charge rate with an electric capacity of 1000 mAh / g are 300 mA / g.
  • Each curve in FIG. 27A indicates that charge / discharge cycles are 1, 10, 20, 30, 40, 50, 60 and 70 in the direction of the arrow.
  • Each curve in FIG. 27B indicates that the charge / discharge cycle is 1, 10, 20, 30, 40, 50, 60, 70, 80, 90 and 100 in the direction of the arrow.
  • Each curve of FIG.27 (c) and FIG.27 (d) shows that the cycle of charging / discharging is 1, 10, 20, 30, and 40 in the arrow direction.
  • each lithium-air battery can achieve a capacity of 1000 mAh / g.
  • the charge / discharge characteristics hardly change until 100 cycles.
  • G800, S800, and NS800 have different charge / discharge characteristics due to charge / discharge cycles compared to N800S.
  • the voltage at the time of discharge is slightly larger in N800S, S800, and NS800 than in G800. From these, N800S is most preferable for the electrode of the battery, S800 and NS800 are next preferable, and G800 is next preferable.
  • a doped carbon structure for the positive electrode of a lithium battery such as a lithium-air battery, a lithium secondary battery, or a lithium primary battery.
  • a carbon structure doped with at least one of N and S it is preferable to use a carbon structure doped with at least one of N and S.
  • FIG. 28 and FIG. 29 are diagrams comparing the performance of the lithium air battery that has been announced so far with the performance of the lithium air battery using N800S of Example 11.
  • the top line in FIG. 28 corresponds to N800S in the eleventh embodiment.
  • Each row of Ref [1] to [20] is a reported lithium-air battery. Since [1] to [20] correspond to documents, the same number may correspond to a plurality of lithium air batteries.
  • Each column shows the material of the positive electrode, the surface area measured using the BET (Brunauer-Emmett-Teller) method, the electrolyte material, the operating voltage, the round trip efficiency, the maximum discharge capacity, the possibility of recharging, and the cycle life.
  • BET Brunauer-Emmett-Teller
  • Example 11 by using a carbon structure doped with at least one of N and S as a positive electrode, the positive electrode does not contain a metal catalyst. The characteristics could be obtained.
  • FIGS. 30 (c) and 30 (d) are diagrams of Example 11. It is a figure which shows the voltage with respect to the capacity
  • a method for manufacturing Sample A will be described with reference to FIG. The Ni porous metal is heated to 800 ° C. for 3 minutes, and pyridine is supplied for 1 minute while being heated to 800 ° C. to form N-doped graphene 24a.
  • N-doped graphene 24a is immersed in an aqueous ruthenium dioxide (RuO 2 ) solution for 10 minutes. Thereafter, heat treatment is performed at 500 ° C. for 30 minutes. Thereafter, the temperature is lowered to room temperature, and the Ni porous metal is removed with an aqueous hydrochloric acid solution.
  • RuO 2 ruthenium dioxide
  • sample A ruthenium 25 is supported on the N-doped graphene 24a.
  • a method for manufacturing Sample B will be described with reference to FIG. Sample A after heat treatment at 500 ° C. for 30 minutes and before removing the Ni porous metal is heated to 800 ° C., and pyridine is supplied for 1 minute to form N-doped graphene 24b. After the temperature is lowered, the Ni porous metal is removed with an aqueous hydrochloric acid solution.
  • N-doped graphenes 24 a and 24 b are formed so as to sandwich ruthenium 25.
  • the manufacturing method of the lithium air battery according to Modification 1 of Example 11 is the same as Example 11 except that Samples A and B are used, and the description thereof is omitted.
  • the discharge rate and the charge rate in FIGS. 30B and 30C are 200 mA / g.
  • Each curve of FIG.30 (c) and FIG.30 (d) shows that the cycle of charging / discharging is 1-45.
  • Sample A has a lower voltage during charging and a higher voltage during discharging than N800 in FIG. 27 (b).
  • the sample B has a lower voltage during charging and a higher voltage during discharge than the sample A.
  • the porous body 30 (see FIG. 1C) in which the graphene layer 24 is formed on the porous metal 10 as in Example 5 was used for the positive electrode of the lithium-air battery. It is an example.
  • the graphene layer 24 is N800S of Example 2.
  • FIG. 31A and FIG. 31B are diagrams showing the voltage with respect to the capacity of the lithium-air battery according to the second modification of the eleventh embodiment.
  • the discharge rate and the charge rate are 0.05 mA / cm 2 .
  • 500 mAh / cm 3 can be realized as the capacity per unit volume.
  • Each curve in FIG.31 (b) shows that the cycle of charging / discharging is 1-50. As shown in FIG. 31B, it has good cycle characteristics.
  • FIG. 32 is a diagram showing voltage and energy efficiency with respect to the number of cycles of a lithium-air battery according to Modification 2 of Example 11. As shown in FIG. 32, the charge voltage and the discharge voltage hardly change until 50 cycles. The energy efficiency is stable at 62% or more.
  • graphene functions as an ORR catalyst by doping N into graphene, and the voltage during discharge can be increased. Further, by leaving Ni, nickel oxide functions as an OER catalyst, and the charging voltage can be lowered.
  • the Ni porous metal can be left and used in an alkaline air battery.
  • the discharge voltage is increased by doping graphene with at least one of N and S, and the charge voltage can be decreased by using a metal catalyst.
  • Metal catalysts other than Ni or Ru may be used.
  • Example 12 is an example in which the porous graphene of Examples 1 to 3 is used for the vaporizer.
  • Samples G950, G800, N950, and N800 were produced using the same method as in Examples 1 and 2 except for the heat treatment.
  • Table 3 shows the heat treatment method.
  • Ni porous metal is heat-treated for pretreatment in a mixed gas atmosphere of argon and hydrogen.
  • the pore size is set to a desired size.
  • Samples G950 and N950 have a heat treatment temperature of 950 ° C. and a heat treatment time of 25 minutes.
  • Samples G800 and N800 have a heat treatment temperature of 800 ° C. and a heat treatment time of 2 minutes.
  • a raw material gas is introduced and heat treatment is performed.
  • Sample G950 has a heat treatment temperature of 950 ° C. and a heat treatment time of 5 minutes.
  • Sample N950 has a heat treatment temperature of 800 ° C. and a heat treatment time of 5 minutes.
  • Samples G800 and N800 have a heat treatment temperature of 800 ° C. and a heat treatment time of 3 minutes.
  • the reason why the heat treatment temperature for graphene film formation in Sample N950 is low is that when the heat treatment temperature is 950 ° C., the doping amount of N decreases.
  • the source gas for CVD of samples G950 and G800 is benzene, and the source gas for CVD of samples N950 and N800 is pyridine.
  • the film thickness of each sample is 30 ⁇ m to 35 ⁇ m.
  • the pore sizes measured using the BJH method of samples G800 and N800 are 258 nm and 259 nm, respectively.
  • the pore size measured using SEM of samples G800 and N800 is from 100 nm to 300 nm.
  • the pore size measured using SEM of samples G950 and N950 is 1 ⁇ m to 2 ⁇ m.
  • the surface areas of samples G950, G800, N950 and N800 measured using the BET method are 978 m 2 / g, 1260 m 2 / g, 778 m 2 / g and 786 m 2 / g, respectively.
  • FIG. 33 is a diagram showing the total reflectance and transmittance of each sample used in Example 12 with respect to the wavelength of light.
  • the transmittance with each sample is as small as about 0.001%.
  • the reflectance is as small as 20% or less.
  • Light that is neither transmitted nor reflected is absorbed by each sample.
  • the contact angle of water was examined.
  • the water contact angles of samples G950, G800, N950 and N800 are 115 °, 105 °, 82 ° and 74 °, respectively.
  • the N-doped sample has a small contact angle.
  • FIG. 34 is a diagram showing the thermal conductivity with respect to the temperature of each sample used in Example 12. Low thermal conductivity with each sample. In particular, the thermal conductivity of N950 and N800 is small. As described above, a sheet having a high light absorption rate, a low thermal conductivity, a high hydrophilicity, and a large surface area can be used for a vaporizer.
  • FIG. 35 is a cross-sectional view of the vaporizer according to the twelfth embodiment.
  • the vaporizer 95 includes a container 97 and porous graphene 98.
  • a liquid 96 such as water is stored in the container 97.
  • Porous graphene 98 is floating in the liquid 96.
  • the porous graphene 98 is irradiated with light 99. Since the porous graphene 98 has a high light absorption rate, it absorbs the light 99 and generates heat. Since the porous graphene 98 has a low thermal conductivity and confines the liquid 96 in the porous body, heat does not escape to the liquid 96 and maintains a high temperature.
  • the liquid 96 is supplied into the pores by capillary action if the hydrophilicity is high. Since the porous graphene 98 has a high temperature, the liquid 82 evaporates. In this way, the liquid 96 can be efficiently evaporated.
  • FIG. 36 is a diagram showing the results of measuring the amount of water evaporation using each sample in Example 12.
  • the mass change indicates a change in the mass of water due to water evaporation.
  • Water indicates the evaporation of water in the absence of each sample.
  • the evaporation rate of water is increased by using each sample.
  • the evaporation rate of water alone is 0.357 kg / m 2 h.
  • the evaporation rates when using samples G950, G800, N950 and N800 are 1.32 kg / m 2 h, 1.04 kg / m 2 h, 1.50 kg / m 2 h and 1.14 kg / m 2 h, respectively. there were.
  • the sample doped with N has a high evaporation rate. This is presumably because doping with N increases the hydrophilicity and decreases the thermal conductivity.
  • G950 and N950 have a higher evaporation rate than G800 and N800. This is presumably because the pore size of G950 and N950 is likely to cause water capillary phenomenon (for example, about 1 ⁇ m), and that of G800 and N800 is too small.
  • the porous graphene of Examples 1 to 3 is used for the vaporizer. Thereby, the vaporization speed of a liquid ground can be raised. Moreover, the porous bodies 30 and 32 and the structure 34 or 36 which concern on Embodiment 1 can be used for a vaporizer. Since the porous bodies 30 and 32 and the structure 34 or 36 have a pore size in which the capillary current is likely to occur and have a large surface area, the vaporization rate surface area is large, so that the vaporization rate can be increased. Moreover, a water purification rate can be raised by using this vaporization apparatus for a water purifier.

Abstract

 A porous body provided with a carbon structure (20) having pores, the average size of the pores being 2 µm or less and the minimum size thereof being at least 60 nm. A porous body provided with a porous metal (10) and a transition metal chalcogenide film (24) having a layered structure provided so as to cover a surface of the porous metal. A method for manufacturing a porous body, the method including a step for heat-treating a porous metal (10) formed by dealloying so that the size of pores (12) and ligaments (14) increases, and a step for forming a carbon structure (20) having a Dirac-cone-type electronic state density on a surface of the porous metal, the step for heat treatment being performed before or simultaneously with the step for forming a carbon structure.

Description

多孔質体およびその製造方法、構造体、蓄電装置、触媒、トランジスタ、センサー、太陽電池、リチウム電池および気化装置Porous body and manufacturing method thereof, structure, power storage device, catalyst, transistor, sensor, solar cell, lithium battery, and vaporizer
 本発明は、多孔質体およびその製造方法、構造体、蓄電装置、触媒、トランジスタ、センサー、太陽電池、リチウム電池および気化装置に関し、例えばグラフェン等を含む多孔質体およびその製造方法、構造体、蓄電装置、触媒、トランジスタ、センサー、太陽電池、リチウム電池および気化装置に関する。 The present invention relates to a porous body and a method for producing the same, a structure, a power storage device, a catalyst, a transistor, a sensor, a solar battery, a lithium battery, and a vaporizer, for example, a porous body containing graphene and the like, a method for producing the same, a structure, The present invention relates to a power storage device, a catalyst, a transistor, a sensor, a solar battery, a lithium battery, and a vaporizer.
 グラフェン、遷移金属カルコゲナイド等は層状物質であり、2次元物質で導電性を有する材料である。これらの材料は、トランジスタ、蓄電装置、太陽電池、光/イオンセンサー、ガスセンサーおよび触媒などの分野への適用が検討されている。非特許文献1、2には、グラフェンを3次元構造とし、細孔(Pore)を有する多孔質体とすることが記載されている。 Graphene, transition metal chalcogenide, and the like are layered materials, and are two-dimensional materials having conductivity. Application of these materials to fields such as transistors, power storage devices, solar cells, photo / ion sensors, gas sensors, and catalysts has been studied. Non-Patent Documents 1 and 2 describe that graphene has a three-dimensional structure and is a porous body having pores.
 グラフェン、遷移金属カルコゲナイド等は、2次元物質として優れた電気的特性等を有する。しかし、3次元構造を有さないため、体積あたりの性能は低い。そこで、非特許文献1および2のように、グラフェン等を3次元構造の多孔質体とすることが考えられる。しかしながら、グラフェン等を3次元構造とすると、2次元物質としての特性である電気的特性や触媒特性を有さず、これらの特性が劣化してしまう。 Graphene, transition metal chalcogenides, etc. have excellent electrical properties as a two-dimensional material. However, since it does not have a three-dimensional structure, the performance per volume is low. Therefore, as in Non-Patent Documents 1 and 2, it is conceivable to use graphene or the like as a porous body having a three-dimensional structure. However, if graphene or the like has a three-dimensional structure, it does not have electrical characteristics and catalytic characteristics, which are characteristics as a two-dimensional substance, and these characteristics deteriorate.
 本発明は、上記課題に鑑みなされたものであり、多孔質体または構造体の電気的特性および/または触媒特性等を向上させることを目的とする。 The present invention has been made in view of the above problems, and an object thereof is to improve the electrical characteristics and / or catalytic characteristics of a porous body or structure.
 本発明は、平均サイズが2μm以下であり、かつ最小サイズが60nm以上である細孔を有する炭素構造体を具備することを特徴とする多孔質体である。 The present invention is a porous body comprising a carbon structure having pores having an average size of 2 μm or less and a minimum size of 60 nm or more.
 上記構成において、前記炭素構造体は、ディラックコーン型の電子状態密度を有する構成とすることができる。また、上記構成において、前記細孔内は空洞である構成とすることができる。さらに、多孔質金属を具備し、前記炭素構造体は、前記多孔質金属の表面を覆う構成とすることができる。さらに、上記構成において、前記炭素構造体は、触媒となる物質を含む構成とすることができる。さらに、上記構成において、前記炭素構造体は、窒素、ホウ素、リン、硫黄、ニッケルおよびマンガンの少なくとも1つを含む構成とすることができる。さらに、上記構成において、前記細孔の平均サイズは1μm以下である構成とすることができる。 In the above configuration, the carbon structure may have a Dirac cone electronic density of states. In the above configuration, the pores may be hollow. Furthermore, it comprises a porous metal, and the carbon structure can be configured to cover the surface of the porous metal. Furthermore, in the above configuration, the carbon structure may include a substance that serves as a catalyst. Furthermore, in the above configuration, the carbon structure may include at least one of nitrogen, boron, phosphorus, sulfur, nickel, and manganese. Furthermore, the said structure WHEREIN: The average size of the said pore can be set as the structure which is 1 micrometer or less.
 本発明は、多孔質金属と、前記多孔質金属の表面を覆うように設けられた層状構造を有する遷移金属カルコゲナイド膜と、を具備することを特徴とする多孔質体である。 The present invention is a porous body comprising a porous metal and a transition metal chalcogenide film having a layered structure provided so as to cover the surface of the porous metal.
 本発明は、上記多孔質体を潰した構造を有することを特徴とする構造体である。また、本発明は、結晶粒の平均サイズが2μm以下である金属と、前記結晶粒を覆うように粒界に設けられたグラフェン層と、を具備することを特徴とする構造体である。さらに本発明は、上記多孔質体の炭素構造体を酸化させた構造を有することを特徴とする構造体である。さらに、本発明は、上記多孔質体の炭素構造体を酸化および還元させた構造を有することを特徴とする構造体である。 The present invention is a structure characterized by having a structure in which the porous body is crushed. In addition, the present invention is a structure including a metal having an average crystal grain size of 2 μm or less and a graphene layer provided at a grain boundary so as to cover the crystal grain. Furthermore, the present invention is a structure characterized by having a structure obtained by oxidizing the porous carbon structure. Furthermore, the present invention is a structure characterized by having a structure obtained by oxidizing and reducing the porous carbon structure.
 本発明は、上記多孔質体または上記構造体を含むことを特徴とする蓄電装置である。 The present invention is a power storage device including the porous body or the structure.
 本発明は、上記多孔質体または上記構造体を含むことを特徴とする触媒である。 The present invention is a catalyst comprising the porous body or the structure.
 本発明は、上記多孔質体または上記構造体を含むことを特徴とするトランジスタである。 The present invention is a transistor including the porous body or the structure.
 本発明は、上記多孔質体または上記構造体を含むことを特徴とするセンサーである。 The present invention is a sensor comprising the porous body or the structure.
 上記多孔質体または上記構造体を含むことを特徴とする太陽電池である。 A solar cell comprising the porous body or the structure.
 本発明は、脱合金化により形成された多孔質金属を細孔およびリガメントのサイズが大きくなるように熱処理する工程と、前記多孔質金属の表面に、ディラックコーン型の電子状態密度を有する炭素構造体を形成する工程と、を含み、前記熱処理する工程は、前記炭素構造体を形成する工程の前または同時に実施されることを特徴とする多孔質体の製造方法である。 The present invention includes a step of heat-treating a porous metal formed by dealloying so as to increase the size of pores and ligaments, and a carbon structure having a Dirac-cone electronic density of states on the surface of the porous metal. Forming the body, and the step of performing the heat treatment is performed before or simultaneously with the step of forming the carbon structure.
 本発明は、NおよびSの少なくとも一方がドープされ、平均サイズが2μm以下であり、かつ最小サイズが60nm以上である細孔を有する炭素構造体を含む電極を具備することを特徴とするリチウム電池である。 The present invention provides a lithium battery comprising an electrode including a carbon structure doped with at least one of N and S, having an average size of 2 μm or less and a minimum size of 60 nm or more. It is.
 上記構成において、前記電極は正電極であり、前記リチウム電池はリチウム空気電池である構成とすることができる。 In the above configuration, the electrode may be a positive electrode, and the lithium battery may be a lithium air battery.
 本発明は、上記多孔質体または上記構造体を含むことを特徴とする気化装置である。 The present invention is a vaporization device including the porous body or the structure.
 本発明によれば、多孔質体または構造体の電気的特性および/または触媒特性等を向上させることができる。 According to the present invention, the electrical characteristics and / or catalytic characteristics of the porous body or structure can be improved.
図1(a)から図1(d)は、実施形態1に係る多孔質体の製造方法を示す断面図である。FIG. 1A to FIG. 1D are cross-sectional views illustrating a method for manufacturing a porous body according to the first embodiment. 図2(a)および図2(b)は、実施形態1の多孔質体を用いた構造体の例であり、図2(c)は、実施形態2に係る蓄電装置を示す断面図である。FIG. 2A and FIG. 2B are examples of a structure using the porous body of the first embodiment, and FIG. 2C is a cross-sectional view showing the power storage device according to the second embodiment. . 図3(a)は、実施形態3に係るトランジスタを示す断面図、図3(b)は、実施形態4に係るセンサーを示す断面図、図3(c)は、実施形態5に係る太陽電池を示す断面図である。3A is a cross-sectional view showing a transistor according to Embodiment 3, FIG. 3B is a cross-sectional view showing a sensor according to Embodiment 4, and FIG. 3C is a solar cell according to Embodiment 5. FIG. 図4(a)から図4(d)は、実施例1におけるSEM画像である。4A to 4D are SEM images in Example 1. FIG. 図5は、実施例1におけるラマン測定の結果を示す図である。FIG. 5 is a diagram showing the results of Raman measurement in Example 1. 図6(a)は、実施例1におけるグラフェン層24の明視野STEM画像、図6(b)は回折パターン、図6(c)は図6(a)内の領域Aの拡大画像、図6(d)は図6(c)の回折パターン、図6(e)は図6(c)のイメージ図、図6(f)は図6(a)内の領域Bの拡大画像、図6(g)は図6(f)の回折パターン、図6(h)は図6(f)のイメージ図である。6A is a bright field STEM image of the graphene layer 24 in Example 1, FIG. 6B is a diffraction pattern, FIG. 6C is an enlarged image of the region A in FIG. 6A, and FIG. 6D is a diffraction pattern of FIG. 6C, FIG. 6E is an image diagram of FIG. 6C, FIG. 6F is an enlarged image of a region B in FIG. 6A, and FIG. ) Is the diffraction pattern of FIG. 6 (f), and FIG. 6 (h) is an image diagram of FIG. 6 (f). 図7(a)は、実施例1における各サンプルの結合エネルギーに対する強度を示す図、図7(b)は、サンプルG900Lのフェルミレベル付近の拡大図、図7(c)はサンプルG900Lの角度依存を示す図である。FIG. 7A is a diagram showing the strength with respect to the binding energy of each sample in Example 1, FIG. 7B is an enlarged view of the vicinity of the Fermi level of the sample G900L, and FIG. 7C is the angle dependence of the sample G900L. FIG. 図8は、実施例1における温度に対する移動度を示す図である。FIG. 8 is a diagram showing the mobility with respect to temperature in the first embodiment. 図9は、実施例2における各サンプルの電圧に対する電流密度を示す図である。FIG. 9 is a diagram illustrating the current density with respect to the voltage of each sample in Example 2. 図10は、実施例2における各サンプルの窒素濃度と電流密度Jを示す図である。Figure 10 is a diagram showing a nitrogen concentration and the current density J k of each sample in Example 2. 図11(a)は、実施例2の変形例1における各サンプルの電圧に対する電流密度を示す図であり、図11(b)は、実施例2および変形例において温度に対する移動度を示す図である。FIG. 11A is a diagram showing the current density with respect to the voltage of each sample in Modification 1 of Example 2, and FIG. 11B is a diagram showing the mobility with respect to temperature in Example 2 and Modification. is there. 図12は、実施例2の変形例2における各サンプルの電圧に対する電流密度を示す図である。FIG. 12 is a diagram illustrating the current density with respect to the voltage of each sample in the second modification of the second embodiment. 図13は、サンプル6hのNiの除去前後のXPS測定の結果を示す図である。FIG. 13 is a diagram showing the results of XPS measurement before and after removing Ni from sample 6h. 図14は、実施例3における各サンプルの電圧に対する電流密度を示す図である。FIG. 14 is a diagram illustrating the current density with respect to the voltage of each sample in Example 3. 図15は、実施例4におけるリチウム空気電池の容量に対する電圧を示す図である。FIG. 15 is a diagram showing the voltage with respect to the capacity of the lithium-air battery in Example 4. 図16(a)および図16(b)は、実施例5における電圧に対する電流密度を示す図である。FIG. 16A and FIG. 16B are diagrams showing current density with respect to voltage in Example 5. FIG. 図17は、実施例6における応力歪線図である。FIG. 17 is a stress strain diagram in Example 6. 図18は、実施例6における硬度を示す図である。FIG. 18 is a diagram showing the hardness in Example 6. 図19(a)は、実施例6におけるSEM画像、図19(b)は、EBSD画像である。FIG. 19A is an SEM image in Example 6, and FIG. 19B is an EBSD image. 図20は、実施例7における電流密度に対する体積容量を示す図である。FIG. 20 is a diagram showing the volume capacity with respect to the current density in Example 7. 図21は、実施例8における電圧に対する応答性Rを示す図である。FIG. 21 is a diagram illustrating the response R with respect to the voltage in the eighth embodiment. 図22(a)は、実施例9におけるSEM画像であり、図22(b)は、図22(a)の拡大画像である。FIG. 22A is an SEM image in Example 9, and FIG. 22B is an enlarged image of FIG. 図23は、実施例9におけるラマン測定の結果を示す図である。FIG. 23 is a diagram showing the results of Raman measurement in Example 9. 図24は、実施例9における各サンプルの電圧に対する電流密度を示す図である。FIG. 24 is a diagram illustrating the current density with respect to the voltage of each sample in Example 9. 図25は、実施例10におけるトランジスタ特性を測定した構成の平面図である。FIG. 25 is a plan view of a configuration obtained by measuring transistor characteristics in Example 10. 図26は、実施例10において測定したゲート電圧Vに対するコンダクタンスσを示す図である。Figure 26 is a diagram showing conductance σ versus gate voltage V G was measured in Example 10. 図27(a)から図27(d)は、実施例11に係るリチウム空気電池の容量に対する電圧を示す図である。FIG. 27A to FIG. 27D are diagrams showing the voltage with respect to the capacity of the lithium air battery according to Example 11. 図28は、発表されているリチウム空気電池の性能を示す図(その1)である。FIG. 28 is a diagram (part 1) illustrating the performance of a lithium-air battery that has been announced. 図29は、発表されているリチウム空気電池の性能を示す図(その2)である。FIG. 29 is a diagram (part 2) illustrating the performance of the lithium-ion battery that has been announced. 図30(a)および図30(b)は、実施例11の変形例の多孔質体の一部の模式図であり、図30(c)および図30(d)は、実施例11の変形例に係るリチウム空気電池の容量に対する電圧を示す図である。30 (a) and 30 (b) are schematic views of a part of a porous body according to a modification of Example 11, and FIGS. 30 (c) and 30 (d) are modifications of Example 11. It is a figure which shows the voltage with respect to the capacity | capacitance of the lithium air battery which concerns on an example. 図31(a)および図31(b)は、実施例11の変形例2に係るリチウム空気電池の容量に対する電圧を示す図である。FIG. 31A and FIG. 31B are diagrams showing the voltage with respect to the capacity of the lithium-air battery according to the second modification of the eleventh embodiment. 図32は、実施例11の変形例2に係るリチウム空気電池のサイクル数に対する電圧およびエネルギー効率を示す図である。FIG. 32 is a diagram showing voltage and energy efficiency with respect to the number of cycles of a lithium-air battery according to Modification 2 of Example 11. 図33は、実施例12に用いる各サンプルの光の波長に対する全反射率および透過率を示す図である。FIG. 33 is a diagram showing the total reflectance and transmittance of each sample used in Example 12 with respect to the wavelength of light. 図34は、実施例12に用いる各サンプルの温度に対する熱伝導率を示す図である。FIG. 34 is a diagram showing the thermal conductivity with respect to the temperature of each sample used in Example 12. 図35は、実施例12に係る気化装置の断面図である。FIG. 35 is a cross-sectional view of the vaporizer according to the twelfth embodiment. 図36は、実施例12における各サンプルを用いた水の蒸発量を測定した結果を示す図である。FIG. 36 is a diagram showing the results of measuring the amount of water evaporation using each sample in Example 12.
 以下、本発明の実施形態について説明する。 Hereinafter, embodiments of the present invention will be described.
(実施形態1)
 図1(a)から図1(d)は、実施形態1に係る多孔質体の製造方法を示す断面図である。図1(a)に示すように、複数の金属元素の合金18を形成する。合金18の形成は、例えば複数の金属元素が溶融する温度に加熱後、冷却することにより行なう。合金18は、例えば非晶質である。複数の金属元素としては、金(Au)、銀(Ag)、パラジウム(Pd)、白金(Pt)、アルミニウム(Al)、ニッケル(Ni)、マンガン(Mn)、銅(Cu)および亜鉛(Zn)を用いることができる。合金に含まれる金属元素の数は2つでもよいし、3つ以上でもよい。例えばニッケルを主成分とする多孔質金属を製造する場合、ニッケルとマンガンとの合金を用いる。例えば金を主成分とする多孔質金属を製造する場合、金と銀との合金を用いる。
(Embodiment 1)
FIG. 1A to FIG. 1D are cross-sectional views illustrating a method for manufacturing a porous body according to the first embodiment. As shown in FIG. 1A, an alloy 18 of a plurality of metal elements is formed. The alloy 18 is formed, for example, by heating to a temperature at which a plurality of metal elements melt and then cooling. The alloy 18 is, for example, amorphous. As a plurality of metal elements, gold (Au), silver (Ag), palladium (Pd), platinum (Pt), aluminum (Al), nickel (Ni), manganese (Mn), copper (Cu) and zinc (Zn) ) Can be used. The number of metal elements contained in the alloy may be two, or three or more. For example, when producing a porous metal mainly composed of nickel, an alloy of nickel and manganese is used. For example, when producing a porous metal mainly composed of gold, an alloy of gold and silver is used.
 図1(b)に示すように、合金18を脱合金化する。脱合金化は、複数の金属元素のうち一部の金属元素を選択的にエッチングする。エッチングする溶液は、合金18を構成する金属元素により適宜選択することができる。合金としてニッケルとマンガンとの合金18を用いる場合、溶液として例えば硫酸アンモニウム((NHSO)水溶液を用いる。合金18として金と銀を用いる場合、溶液として例えば硝酸(HNO)水溶液を用いる。脱合金化により、多孔質金属10が形成される。多孔質金属10は、細孔12aとリガメント14aとを有している。細孔12aおよびリガメント14aのサイズは、例えば10nmから100nmであり、例えば50nm以下である。 As shown in FIG. 1B, the alloy 18 is dealloyed. In the dealloying, some of the metal elements are selectively etched. The solution to be etched can be appropriately selected depending on the metal element constituting the alloy 18. When the alloy 18 of nickel and manganese is used as the alloy, for example, an ammonium sulfate ((NH 4 ) 2 SO 4 ) aqueous solution is used as the solution. When gold and silver are used as the alloy 18, for example, a nitric acid (HNO 3 ) aqueous solution is used as the solution. The porous metal 10 is formed by dealloying. The porous metal 10 has pores 12a and ligaments 14a. The sizes of the pores 12a and the ligaments 14a are, for example, 10 nm to 100 nm, for example, 50 nm or less.
 図1(c)に示すように、多孔質金属10の表面に層24を形成する。層24を形成する前または形成するときに、多孔質金属10を熱処理する。熱処理温度は、例えば700℃から1000℃であり、熱処理時間は、例えば、1分から数時間である。熱処理により、多孔質金属10のリガメント14aが集積し、細孔12およびリガメント14のサイズが大きくなる。細孔12およびリガメント14のサイズは、例えば60nm以上かつ2μm以下である。このように、脱合金化により形成された多孔質金属10を熱処理することにより、サイズの分布が小さく、細孔12およびリガメント14の曲率半径の分布が小さくなる。 As shown in FIG. 1 (c), a layer 24 is formed on the surface of the porous metal 10. Before or when the layer 24 is formed, the porous metal 10 is heat treated. The heat treatment temperature is, for example, 700 ° C. to 1000 ° C., and the heat treatment time is, for example, 1 minute to several hours. By the heat treatment, the ligaments 14a of the porous metal 10 are accumulated, and the sizes of the pores 12 and the ligaments 14 are increased. The sizes of the pores 12 and the ligaments 14 are, for example, 60 nm or more and 2 μm or less. Thus, by heat-treating the porous metal 10 formed by dealloying, the size distribution is small and the curvature radius distribution of the pores 12 and the ligaments 14 is small.
 層24は、例えばグラフェン等の炭素構造体、遷移金属カルコゲナイド等の層状構造を有する物質である。層24は、例えばCVD(Chemical Vapor Deposition)法を用いて形成する。これにより、多孔質体30が形成される。多孔質体30は、多孔質金属10と、多孔質金属10のリガメント14の表面を覆うように設けられた層24と、を有する。層24は、3次元の構造体となる。 The layer 24 is a substance having a layered structure such as a carbon structure such as graphene or a transition metal chalcogenide. The layer 24 is formed by using, for example, a CVD (Chemical Vapor Deposition) method. Thereby, the porous body 30 is formed. The porous body 30 includes a porous metal 10 and a layer 24 provided so as to cover the surface of the ligament 14 of the porous metal 10. The layer 24 becomes a three-dimensional structure.
 図1(d)に示すように、実施形態1の一例においては、多孔質金属10をエッチング等により除去する。多孔質体32は、層24と細孔22を有する。細孔22のサイズは、図1(c)の細孔12およびリガメント14とほぼ同じとなる。なお、リガメント14のサイズは、例えばリガメント14を円柱近似した場合の直径に相当する。細孔22のサイズは例えば60nmから2μm程度であり、細孔22の曲率半径は30nm以上かつ1μm以下である。なお、曲率半径はサイズの約1/2となる。 As shown in FIG. 1D, in an example of Embodiment 1, the porous metal 10 is removed by etching or the like. The porous body 32 has a layer 24 and pores 22. The size of the pores 22 is substantially the same as the pores 12 and the ligaments 14 in FIG. The size of the ligament 14 corresponds to, for example, the diameter when the ligament 14 is approximated to a cylinder. The size of the pores 22 is, for example, about 60 nm to 2 μm, and the radius of curvature of the pores 22 is not less than 30 nm and not more than 1 μm. Note that the radius of curvature is about ½ of the size.
 多孔質体32が細孔22とグラフェン層24とを有する炭素構造体20の場合について説明する。グラフェン層24は、グラフェン様のシートである。グラフェンは、六員環の炭素原子が規則的に配列されている。これにより、グラフェンはディラックコーン型の電子状態密度を有し、2次元的に優れた電気伝導性を有する。 The case where the porous body 32 is the carbon structure 20 having the pores 22 and the graphene layer 24 will be described. The graphene layer 24 is a graphene-like sheet. In graphene, six-membered ring carbon atoms are regularly arranged. As a result, graphene has a Dirac-cone electronic density of states and has two-dimensionally excellent electrical conductivity.
 細孔22が大きいと、多孔質体32に占める炭素構造体20の密度が小さくなってしまう。よって、例えば炭素構造体20の表面積が小さくなり、多孔質体32しての機能が低下する。例えば、多孔質体32を用いた触媒としての機能が低下する。非特許文献1の方法では、細孔22の平均サイズを2μm以下とすることが困難である。 If the pores 22 are large, the density of the carbon structure 20 in the porous body 32 will be small. Therefore, for example, the surface area of the carbon structure 20 is reduced, and the function as the porous body 32 is lowered. For example, the function as a catalyst using the porous body 32 is reduced. In the method of Non-Patent Document 1, it is difficult to set the average size of the pores 22 to 2 μm or less.
 実施形態1によれば、図1(b)のように、脱合金化により細孔12およびリガメント14を有する多孔質金属10を形成する。図1(c)のように、炭素構造体20を形成する工程の前または同時に、細孔12およびリガメント14のサイズが大きく、曲率が緩やかになるように熱処理する。このような工程により、細孔22の平均サイズを2μm以下とすることができる。細孔22の平均サイズは、1.5μm以下がより好ましく、1.0μm以下がより好ましく、0.5μm以下がさらに好ましい。細孔22の平均サイズは、60nm以上が好ましく、100nm以上がより好ましい。細孔およびリガメントのサイズは、例えばSEM(Scanning Electron Microscope)またはTEM(Transmission Electron Microscope)等の画像から測定することができる。また、細孔のサイズは、BJH(Barrett-Joyner-Hallender)法を用い測定することができる。 According to Embodiment 1, as shown in FIG. 1B, the porous metal 10 having the pores 12 and the ligaments 14 is formed by dealloying. As shown in FIG. 1C, before or simultaneously with the step of forming the carbon structure 20, heat treatment is performed so that the pores 12 and the ligaments 14 are large in size and have a gentle curvature. By such a process, the average size of the pores 22 can be 2 μm or less. The average size of the pores 22 is more preferably 1.5 μm or less, more preferably 1.0 μm or less, and further preferably 0.5 μm or less. The average size of the pores 22 is preferably 60 nm or more, and more preferably 100 nm or more. The size of pores and ligaments can be measured from images such as SEM (Scanning Electron Microscope) or TEM (Transmission Electron Microscope). The pore size can be measured using a BJH (Barrett-Joyner-Hallender) method.
 グラフェン層24を3次元構造とする場合、グラフェン層24が曲面となる。グラフェン層24を曲面にしようとすると、グラフェン層24内の六員環の一部が五員環および七員環となるような欠陥が形成される。細孔22のサイズが小さくなり、グラフェン層24の曲率が小さくなると、この欠陥が多くなる。欠陥が多い箇所は、電気的特性が劣化する。 When the graphene layer 24 has a three-dimensional structure, the graphene layer 24 has a curved surface. If the graphene layer 24 is to be curved, defects such that a part of the six-membered ring in the graphene layer 24 becomes a five-membered ring and a seven-membered ring are formed. This defect increases as the size of the pores 22 decreases and the curvature of the graphene layer 24 decreases. The electrical characteristics deteriorate at locations with many defects.
 このように、炭素構造体20内に細孔22の曲率半径が極端に小さい箇所(つまり細孔22のサイズが小さい箇所)があると、この箇所の電気伝導が極めて低くなる。炭素構造体20が電気伝導性を保つためには、炭素層(グラフェン層24となる炭素層)の曲率半径が、2次元性を維持できる(つまり2次元物質であるグラフェンである)大きさ以上であることが求められる。 Thus, if there is a portion in the carbon structure 20 where the radius of curvature of the pores 22 is extremely small (that is, a portion where the size of the pores 22 is small), the electrical conduction at this portion becomes extremely low. In order for the carbon structure 20 to maintain electrical conductivity, the radius of curvature of the carbon layer (the carbon layer that becomes the graphene layer 24) is larger than the size that can maintain two-dimensionality (that is, graphene that is a two-dimensional material). It is required to be.
 非特許文献1では、Niテンプレート(実施形態1の多孔質金属10に相当する)の細孔およびリガメントの曲率にばらつきがあり、極端に曲率の小さな箇所が観察される。Niテンプレートがこのような構造を有する場合、炭素層は1枚のつながったシート形状を維持できない。このため、2次元特性および高い電気伝導性を維持することは難しいと考えられる。また、炭素構造体20の細孔サイズおよびリガメントサイズも本発明に比較して大きい。このため、体積当たりの性能は劣る。 In Non-Patent Document 1, the curvature of the pores and ligaments of the Ni template (corresponding to the porous metal 10 of Embodiment 1) varies, and a portion with an extremely small curvature is observed. When the Ni template has such a structure, the carbon layer cannot maintain the shape of one continuous sheet. For this reason, it is considered difficult to maintain two-dimensional characteristics and high electrical conductivity. In addition, the pore size and ligament size of the carbon structure 20 are larger than those of the present invention. For this reason, the performance per volume is inferior.
 非特許文献2では、炭素構造体の細孔のサイズにあたると考えられる炭素球体の直径は100nm程度である。この球体が数珠つなぎに隣り合っている構造である。このため、球体の接点に、曲率半径の極端に小さい箇所ができている。この球体の接点の存在のため炭素層は滑らかに連続したシート形状を保てない。よって2次元特性は失われていると考えられる。 In Non-Patent Document 2, the diameter of the carbon sphere considered to correspond to the size of the pores of the carbon structure is about 100 nm. The spheres are adjacent to each other in a daisy chain. For this reason, the location where the radius of curvature is extremely small is made at the contact point of the sphere. Due to the presence of the spherical contact, the carbon layer cannot maintain a smooth and continuous sheet shape. Therefore, it is considered that the two-dimensional characteristic is lost.
 これに対し、実施形態1では、2次元物質であるグラフェンであるために十分な曲率を構造体全体に亘って有している。このため、炭素層は2次元特性を維持している。その根拠として、炭素構造体20は、図7において後述するようにディラックコーン型の電子状態密度を有している。また、高い導電性も示されている。これまで、このナノサイズの細孔径を有する炭素の多孔質体でディラックコーンの状態密度(つまりグラフェンであるという根拠)が観測された例はない。 On the other hand, in Embodiment 1, since it is graphene which is a two-dimensional material, it has sufficient curvature over the entire structure. For this reason, the carbon layer maintains two-dimensional characteristics. As a basis for this, the carbon structure 20 has a Dirac cone electronic density of states as will be described later with reference to FIG. High conductivity is also shown. So far, there has been no example in which the density of states of Dirac cones (that is, the grounds for graphene) has been observed in a carbon porous body having nano-sized pore diameters.
 このように、非特許文献1および2の方法では、細孔22の最小サイズを2次元性能が保てる程度に十分に大きくすることができない。 Thus, in the methods of Non-Patent Documents 1 and 2, the minimum size of the pores 22 cannot be made large enough to maintain the two-dimensional performance.
 実施形態1によれば、脱合金化により形成された多孔質金属10を熱処理することにより、細孔12およびリガメント14のサイズを大きくする。これにより、細孔12およびリガメント14のサイズ分布の小さな多孔質金属10を形成できる。よって、リガメント14の最小サイズが大きくなり、細孔22の最小サイズを大きくできる。よって、炭素構造体20の電気的特性を向上できる。細孔22の最小サイズは、60nm以上が好ましく、100nm以上であることがより好ましく、200nm以上がさらに好ましい。なお、細孔22の最小サイズは、多孔質体30または32全体の電気的特性に影響しないような稀な頻度で存在するようなサイズの小さい箇所は含まないような最小のサイズである。 According to Embodiment 1, the size of the pores 12 and the ligaments 14 is increased by heat-treating the porous metal 10 formed by dealloying. Thereby, the porous metal 10 having a small size distribution of the pores 12 and the ligaments 14 can be formed. Therefore, the minimum size of the ligament 14 is increased, and the minimum size of the pores 22 can be increased. Therefore, the electrical characteristics of the carbon structure 20 can be improved. The minimum size of the pores 22 is preferably 60 nm or more, more preferably 100 nm or more, and further preferably 200 nm or more. Note that the minimum size of the pores 22 is a minimum size that does not include a portion having a small size that does not affect the electrical characteristics of the porous body 30 or 32 as a rare frequency.
 また、炭素構造体20に、五員環および七員環といった欠陥が適度に導入されることが好ましい場合がある。例えば、炭素構造体20を触媒として用いる場合、欠陥が適度に導入されることにより触媒特性が向上する。以上のように、炭素構造体20に適度に欠陥を導入する場合、細孔22のサイズを小さくすることが好ましい。この観点から、細孔22の平均サイズは、2.0μm以下が好ましく、1.5μm以下がより好ましく、1.0μm以下がより好ましく、0.5μm以下がさらに好ましい。 In addition, it may be preferable that defects such as a five-membered ring and a seven-membered ring are appropriately introduced into the carbon structure 20. For example, when the carbon structure 20 is used as a catalyst, the catalyst characteristics are improved by appropriately introducing defects. As described above, when the defects are appropriately introduced into the carbon structure 20, it is preferable to reduce the size of the pores 22. In this respect, the average size of the pores 22 is preferably 2.0 μm or less, more preferably 1.5 μm or less, more preferably 1.0 μm or less, and further preferably 0.5 μm or less.
 以上のように、多孔質体30および32は、平均サイズが2μm以下の細孔22を有し、ディラックコーン型の電子状態密度を有する炭素構造体20を備える。これにより、電気的特性を向上させることができる。また、多孔質体30および32を触媒として用いる場合の触媒特性を向上させることができる。さらに、細孔22の平均サイズは60nm以上である。これにより、電気的特性をより向上させることができる。 As described above, the porous bodies 30 and 32 include the carbon structures 20 having pores 22 having an average size of 2 μm or less and having a Dirac cone type electronic state density. Thereby, electrical characteristics can be improved. Moreover, the catalyst characteristic in the case of using the porous bodies 30 and 32 as a catalyst can be improved. Furthermore, the average size of the pores 22 is 60 nm or more. Thereby, electrical characteristics can be further improved.
 図1(d)のように、多孔質体32の細孔22内は空洞でもよい。これにより、多孔質体32の質量を小さくすることができる。また、多孔質体32の表面積が増えることで、細孔22内に反応場を増すことができる。 As shown in FIG. 1D, the pores 22 of the porous body 32 may be hollow. Thereby, the mass of the porous body 32 can be made small. Further, the reaction field can be increased in the pores 22 by increasing the surface area of the porous body 32.
 図1(c)のように、炭素構造体20の細孔22内に多孔質金属10のリガメント14が位置し、炭素構造体20は、リガメント14の表面を覆っていてもよい。これにより、炭素構造体20に加え、多孔質金属10が電気伝導に寄与するため、多孔質体30の抵抗をより低くできる。また、多孔質金属10により、炭素構造体20を補強することができる。 As shown in FIG. 1 (c), the ligament 14 of the porous metal 10 may be located in the pores 22 of the carbon structure 20, and the carbon structure 20 may cover the surface of the ligament 14. Thereby, since the porous metal 10 contributes to electric conduction in addition to the carbon structure 20, the resistance of the porous body 30 can be further reduced. In addition, the carbon structure 20 can be reinforced by the porous metal 10.
 炭素構造体20は、例えば窒素またはニッケルのような触媒として機能する元素を含んでいてもよい。触媒として機能する元素は、炭素構造体20の炭素と結合していてもよい。また、触媒として機能する元素は、炭素構造体20に担持されていてもよい。これにより、触媒特性を向上させることができる。また、炭素構造体20の一部を酸化させ、酸素の一部を還元することにより、触媒特性をより向上させることができる。 The carbon structure 20 may contain an element that functions as a catalyst, such as nitrogen or nickel. The element that functions as a catalyst may be bonded to carbon of the carbon structure 20. The element that functions as a catalyst may be supported on the carbon structure 20. Thereby, a catalyst characteristic can be improved. Further, catalytic properties can be further improved by oxidizing part of the carbon structure 20 and reducing part of oxygen.
 層24として、層状構造を有する遷移金属カルコゲナイドMXを用いることができる。遷移金属カルコゲナイドMXにおいて、Mとして、例えばモリブデン(Mo)、タングステン(W)、チタン(Ti)、ジルコニウム(Zr)、ハフニウム(Hf)、バナジウム(V)、ニオブ(Nb)およびタンタル(Ta)の少なくとも1つとすることができる。Xとして、例えば硫黄、セレンおよびテルル(Te)の少なくとも1つとすることができる。 As the layer 24, a transition metal chalcogenide MX 2 having a layered structure can be used. In the transition metal chalcogenides MX 2, as M, for example, molybdenum (Mo), tungsten (W), titanium (Ti), zirconium (Zr), hafnium (Hf), vanadium (V), niobium (Nb) and tantalum (Ta) At least one of the following. X may be, for example, at least one of sulfur, selenium and tellurium (Te).
 層24が遷移金属カルコゲナイド等の場合、多孔質金属10として安価な金属を用い、層24として触媒特性または電気的特性のよい金属を用いることもできる。よって、安価で高性能な多孔質体30および32を提供することもできる。 When the layer 24 is a transition metal chalcogenide or the like, an inexpensive metal can be used as the porous metal 10, and a metal with good catalytic characteristics or electrical characteristics can be used as the layer 24. Therefore, inexpensive and high-performance porous bodies 30 and 32 can also be provided.
 図2(a)および図2(b)は、実施形態1の多孔質体を用いた構造体の例である。図2(a)に示すように、構造体34は、多孔質体30または32を潰した構造である。層24が金属15を覆っている。金属15は除去されていてもよい。これにより、単位体積あたりの性能を向上させることができる。 2 (a) and 2 (b) are examples of structures using the porous body of the first embodiment. As shown in FIG. 2A, the structure 34 has a structure in which the porous body 30 or 32 is crushed. Layer 24 covers metal 15. The metal 15 may be removed. Thereby, the performance per unit volume can be improved.
 また、層24がグラフェン層のとき、グラフェン層24を有する多孔質体30を潰した後、熱処理してもよい。これにより、金属15は、平均サイズが2μm以下の結晶粒となる。グラフェン層24が金属15を覆う。これにより、構造体34の強度が高くなる。 Further, when the layer 24 is a graphene layer, the porous body 30 having the graphene layer 24 may be crushed and then heat-treated. Thereby, the metal 15 becomes a crystal grain having an average size of 2 μm or less. The graphene layer 24 covers the metal 15. Thereby, the strength of the structure 34 is increased.
 図2(b)に示すように、構造体36は、多孔質体32の層24を酸化させた酸化層26を含む。酸化層26の形成には、例えば修正Hummers法を用いることができる。構造体36は、酸化層26が3次元的にネットワークした構造である。このため、例えば光センサーまたは太陽電池等に用いることができる。 As shown in FIG. 2B, the structure 36 includes an oxide layer 26 obtained by oxidizing the layer 24 of the porous body 32. For example, the modified Hummers method can be used to form the oxide layer 26. The structure 36 is a structure in which the oxide layers 26 are three-dimensionally networked. For this reason, it can be used for an optical sensor or a solar cell, for example.
(実施形態2)
 図2(c)は、実施形態2に係る蓄電装置を示す断面図である。図2(c)に示すように、蓄電装置40は、正極42、負極46および電解質44を備えている。蓄電装置40は、例えば、リチウム空気電池、二次電池、または電気二重層キャパシタである。正極42および負極46の少なくも一方の電極に実施形態1の多孔質体30、32、または構造体34を用いることができる。多孔質体30、32、または構造体34は、例えば導電性材料に保持されていてもよいし、多孔質体30、32、または構造体34を単独で用いてもよい。実施形態1の多孔質体30、32、または構造体34を電極の触媒として用いることにより、蓄電装置の性能を向上できる。
(Embodiment 2)
FIG. 2C is a cross-sectional view illustrating the power storage device according to the second embodiment. As shown in FIG. 2C, the power storage device 40 includes a positive electrode 42, a negative electrode 46, and an electrolyte 44. The power storage device 40 is, for example, a lithium air battery, a secondary battery, or an electric double layer capacitor. The porous bodies 30 and 32 or the structure 34 of the first embodiment can be used for at least one of the positive electrode 42 and the negative electrode 46. The porous bodies 30, 32, or the structure 34 may be held in, for example, a conductive material, or the porous bodies 30, 32, or the structure 34 may be used alone. By using the porous bodies 30 and 32 or the structure body 34 of the first embodiment as an electrode catalyst, the performance of the power storage device can be improved.
(実施形態3)
 図3(a)は、実施形態3に係るトランジスタを示す断面図である。図3(a)に示すように、トランジスタ50は、チャネル52、ゲート電極54、ソース電極56およびドレイン電極58を備えている。チャネル52は、多孔質体30、32、または構造体34を含む。ゲート電極54に電圧を印加することにより、ソース電極56とドレイン電極58との間の電流を制御する。多孔質体30、32、または構造体34は、3次元構造を有しかつ移動度が高いため、トランジスタ50の性能を高めることができる。
(Embodiment 3)
FIG. 3A is a cross-sectional view illustrating a transistor according to the third embodiment. As shown in FIG. 3A, the transistor 50 includes a channel 52, a gate electrode 54, a source electrode 56, and a drain electrode 58. The channel 52 includes a porous body 30, 32 or a structure 34. By applying a voltage to the gate electrode 54, the current between the source electrode 56 and the drain electrode 58 is controlled. Since the porous bodies 30 and 32 or the structure 34 have a three-dimensional structure and high mobility, the performance of the transistor 50 can be improved.
(実施形態4)
 図3(b)は、実施形態4に係るセンサーを示す断面図である。図3(b)に示すように、センサー60は、センシング体62に電極64および66が設けられている。センシング体62は、多孔質体30、32、構造体34または36を含む。センシング体62では、検出量の変化により、その電気的特性が変化する。電極64および66は、センシング体62の電気的特性の変化を電気信号に変換する。
(Embodiment 4)
FIG. 3B is a cross-sectional view illustrating the sensor according to the fourth embodiment. As shown in FIG. 3 (b), the sensor 60 is provided with electrodes 64 and 66 on a sensing body 62. The sensing body 62 includes the porous bodies 30 and 32 and the structure 34 or 36. In the sensing body 62, the electrical characteristics change according to the change in the detection amount. The electrodes 64 and 66 convert changes in the electrical characteristics of the sensing body 62 into electrical signals.
 センシング体62が例えばガスセンサーの場合、センシング体62にガスが吸着すると、センシング体62の電気伝導率が変化する。センシング体62が例えば光センサーの場合、センシング体62に光が照射されると、センシング体62の電気伝導率が変化する。電極64および66は、センシング体62の電気伝導率の変化を検出する。センサー60としては、イオンセンサーとすることもできる。多孔質体30、32、構造体34または36は、表面積が大きく、および/または移動度が高いため、センサー60の検出性能を高めることができる。 When the sensing body 62 is a gas sensor, for example, when gas is adsorbed to the sensing body 62, the electrical conductivity of the sensing body 62 changes. When the sensing body 62 is an optical sensor, for example, when the sensing body 62 is irradiated with light, the electrical conductivity of the sensing body 62 changes. The electrodes 64 and 66 detect a change in electrical conductivity of the sensing body 62. The sensor 60 may be an ion sensor. Since the porous bodies 30 and 32 and the structures 34 or 36 have a large surface area and / or high mobility, the detection performance of the sensor 60 can be improved.
(実施形態5)
 図3(c)は、実施形態5に係る太陽電池を示す断面図である。図3(c)に示すように、太陽電池70は、光電変換層72に電極74および76が設けられている。電極74は、光が光電変換層72に照射されるように、メッシュ状である。光電変換層72は多孔質体30、32、構造体34または36である。光電変換層72は、光が照射されると、電流または電圧を発生させる。これにより、電極74および76の間に、電位差が生じる。多孔質体30、32、構造体34または36は、表面積が大きく、および/または移動度が高いため、太陽電池70の性能を高めることができる。
(Embodiment 5)
FIG. 3C is a cross-sectional view showing the solar cell according to the fifth embodiment. As shown in FIG. 3C, the solar cell 70 is provided with electrodes 74 and 76 on a photoelectric conversion layer 72. The electrode 74 has a mesh shape so that the photoelectric conversion layer 72 is irradiated with light. The photoelectric conversion layer 72 is the porous body 30 or 32 and the structure 34 or 36. The photoelectric conversion layer 72 generates current or voltage when irradiated with light. Thereby, a potential difference is generated between the electrodes 74 and 76. Since the porous bodies 30 and 32 and the structures 34 or 36 have a large surface area and / or high mobility, the performance of the solar cell 70 can be improved.
 実施形態2から5においては、蓄電装置40、トランジスタ50、センサー60および太陽電池70を例に説明したが、多孔質体30、32、構造体34または36を他の装置に用いることもできる。 In Embodiments 2 to 5, the power storage device 40, the transistor 50, the sensor 60, and the solar cell 70 have been described as examples, but the porous body 30, 32, the structure 34, or 36 can also be used for other devices.
 実施例1は、炭素構造体を含む多孔質体の例である。以下のように実施例1に係る多孔質体を作製した。図4(a)から図4(d)は、実施例1におけるSEM画像である。 Example 1 is an example of a porous body containing a carbon structure. A porous body according to Example 1 was produced as follows. 4A to 4D are SEM images in Example 1. FIG.
 図1(a)に示すように、膜厚が約50μmのNi30Mn70合金18を作製する。図4(a)に示すように、合金18には細孔は観察されない。図1(b)に示すように、合金18を50℃の(NHSO溶液を用い脱合金化する。これにより、平均サイズが約10nmの細孔12aおよびリガメント14aを有するNi多孔質金属10が形成される。多孔質金属10の膜厚は約30μmとなる。図4(b)に示すように、Ni多孔質金属10には、細孔およびリガメントを有するナノ多孔質構造が形成されている。 As shown in FIG. 1A, a Ni 30 Mn 70 alloy 18 having a film thickness of about 50 μm is produced. As shown in FIG. 4A, no pores are observed in the alloy 18. As shown in FIG. 1B, the alloy 18 is dealloyed using a (NH 4 ) 2 SO 4 solution at 50 ° C. Thereby, the Ni porous metal 10 having pores 12a and ligaments 14a having an average size of about 10 nm is formed. The film thickness of the porous metal 10 is about 30 μm. As shown in FIG. 4B, the Ni porous metal 10 has a nanoporous structure having pores and ligaments.
 図1(c)のように、CVD装置内において、水素(H)、アルゴン(Ar)、ベンゼンの混合雰囲気として、Ni多孔質金属10を熱処理する。これにより、Ni多孔質金属10の細孔12およびリガメント14のサイズが大きくなる。Ni多孔質金属10の表面にグラフェン層24が形成される。熱処理温度は、例えば800℃から1000℃、熱処理時間は、例えば5分から30分である。熱処理温度および熱処理時間を適宜設定することにより、細孔12およびリガメント14の大きさを制御できる。多孔質金属10の膜厚は15μmから25μmとなる。 As shown in FIG. 1C, the Ni porous metal 10 is heat-treated in a CVD apparatus as a mixed atmosphere of hydrogen (H 2 ), argon (Ar), and benzene. This increases the size of the pores 12 and the ligaments 14 of the Ni porous metal 10. A graphene layer 24 is formed on the surface of the Ni porous metal 10. The heat treatment temperature is, for example, 800 ° C. to 1000 ° C., and the heat treatment time is, for example, 5 minutes to 30 minutes. By appropriately setting the heat treatment temperature and the heat treatment time, the sizes of the pores 12 and the ligaments 14 can be controlled. The film thickness of the porous metal 10 is 15 μm to 25 μm.
 表1は、サンプルG900SおよびG900Lの熱処理温度および熱処理時間を示す表である。サンプルG900Sは900℃5分、サンプルG900Lは900℃30分の熱処理を行なった。
Figure JPOXMLDOC01-appb-T000001
Table 1 is a table showing the heat treatment temperature and heat treatment time of samples G900S and G900L. Sample G900S was heat-treated at 900 ° C. for 5 minutes, and sample G900L was heat-treated at 900 ° C. for 30 minutes.
Figure JPOXMLDOC01-appb-T000001
 サンプルG900Sの細孔12およびリガメント14のサイズの分布は100nmから300nmの範囲であり、平均サイズは210nmである。リガメント14の最小曲率半径は約50nmである。サンプルG900Lの細孔12およびリガメント14のサイズの分布は1.5μmから2.0μmの範囲である。リガメント14の最小曲率半径は約0.75μmである。なお、細孔12およびリガメント14のサイズは、SEM画像を元に高速フーリエ変換法(Fast Fourier method)を用い測定した。 The size distribution of the pores 12 and the ligaments 14 of the sample G900S is in the range of 100 nm to 300 nm, and the average size is 210 nm. The minimum radius of curvature of the ligament 14 is about 50 nm. The size distribution of the pores 12 and the ligaments 14 in the sample G900L ranges from 1.5 μm to 2.0 μm. The minimum radius of curvature of the ligament 14 is about 0.75 μm. The sizes of the pores 12 and the ligaments 14 were measured using a fast Fourier transform method (Fast Fourier method) based on SEM images.
 図4(c)に示すように、細孔12とリガメント14が形成される。リガメント14の表面にはグラフェン層24が形成されている。 As shown in FIG. 4C, the pores 12 and the ligaments 14 are formed. A graphene layer 24 is formed on the surface of the ligament 14.
 図1(d)のように、室温の塩酸(HCl)水溶液を用い多孔質金属10を溶解させる。これにより、Ni多孔質金属10が溶解し、多孔質体32は炭素構造体20のみとなる。炭素構造体20は、細孔22およびグラフェン層24を有する。炭素構造体20の膜厚は15μmから25μmとなる。炭素構造体20に残存するNi濃度を測定したところ、Ni濃度は0.08原子%以下であった。図4(d)に示すように、シート状のグラフェン層24が残存する。BJH法で測定したサンプルG900Sにおける細孔22の平均サイズは、約200nmである。これは、多孔質金属10の細孔12およびリガメント14のサイズにほぼ一致する。このように、細孔22のサイズ分布は、細孔12およびリガメント14のサイズ分布とほぼ同じである。 As shown in FIG. 1D, the porous metal 10 is dissolved using a hydrochloric acid (HCl) aqueous solution at room temperature. Thereby, the Ni porous metal 10 is dissolved, and the porous body 32 becomes only the carbon structure 20. The carbon structure 20 has pores 22 and a graphene layer 24. The film thickness of the carbon structure 20 is 15 μm to 25 μm. When the Ni concentration remaining in the carbon structure 20 was measured, the Ni concentration was 0.08 atomic% or less. As shown in FIG. 4D, the sheet-like graphene layer 24 remains. The average size of the pores 22 in the sample G900S measured by the BJH method is about 200 nm. This substantially matches the size of the pores 12 and the ligaments 14 of the porous metal 10. Thus, the size distribution of the pores 22 is substantially the same as the size distribution of the pores 12 and the ligaments 14.
 図5は、実施例1におけるラマン測定の結果を示す図である。図5に示すように、Niあり(図1(b)のように、多孔質金属10を除去する前の多孔質体30)と、Niなし(図1(c)のように、Ni多孔質金属10を除去した後の多孔質体32)と、を比較すると、ラマンスペクトルに大きな差がない。これにより、Ni多孔質金属10の溶解により、炭素構造体20に大きなダメージは導入されていないことがわかる。 FIG. 5 is a diagram showing the results of Raman measurement in Example 1. As shown in FIG. 5, there is Ni (the porous body 30 before removing the porous metal 10 as shown in FIG. 1B) and no Ni (as shown in FIG. 1C). When comparing the porous body 32) after removing the metal 10, there is no significant difference in the Raman spectrum. Thereby, it turns out that the big damage is not introduced into the carbon structure 20 by melt | dissolution of the Ni porous metal 10. FIG.
 図6(a)は、実施例1におけるグラフェン層24の明視野S(Scanning)TEM画像、図6(b)は回折パターン、図6(c)は図6(a)内の領域Aの拡大画像、図6(d)は図6(c)の回折パターン、図6(e)は図6(c)のイメージ図、図6(f)は図6(a)内の領域Bの拡大画像、図6(g)は図6(f)の回折パターン、図6(h)は図6(f)のイメージ図である。図6(e)および図6(h)は、炭素原子の結合を示す図であり、炭素原子を球で図示し、炭素原子間の結合を棒で図示している。 6A is a bright field S (Scanning) TEM image of the graphene layer 24 in Example 1, FIG. 6B is a diffraction pattern, and FIG. 6C is an enlarged view of a region A in FIG. 6A. 6 (d) is a diffraction pattern of FIG. 6 (c), FIG. 6 (e) is an image diagram of FIG. 6 (c), FIG. 6 (f) is an enlarged image of region B in FIG. 6 (a), FIG. 6G is a diffraction pattern of FIG. 6F, and FIG. 6H is an image diagram of FIG. FIG. 6E and FIG. 6H are diagrams showing carbon atom bonds, in which carbon atoms are illustrated as spheres and bonds between carbon atoms are illustrated as bars.
 図6(a)に示すように、炭素構造体20内のグラフェン層24は3次元構造を有している。図6(b)に示すように、回折パターンに同心円状の多くのスポットが観察できる。これは、炭素構造体20が3次元的に形成されていることを示している。図6(c)に示すように、曲率半径の大きい領域Aでは、グラフェン層24は規則的に見える。図6(d)に示すように、領域Aの回折パターンには6つのスポットが観察される。これは、図6(e)に示すように、領域Aのグラフェン層24が規則的な六員環を有することを示している。 As shown in FIG. 6A, the graphene layer 24 in the carbon structure 20 has a three-dimensional structure. As shown in FIG. 6B, many concentric spots can be observed in the diffraction pattern. This indicates that the carbon structure 20 is formed three-dimensionally. As shown in FIG. 6C, in the region A having a large curvature radius, the graphene layer 24 appears regularly. As shown in FIG. 6D, six spots are observed in the diffraction pattern of the region A. This indicates that the graphene layer 24 in the region A has a regular six-membered ring as shown in FIG.
 図6(f)に示すように、曲率半径の小さい領域Bでは、グラフェン層24に不規則な箇所があるようにみえる。図6(g)に示すように、領域Bでは不規則なスポットが観察される。図6(h)に示すように、領域Bでは、グラフェン層24に五員環90および七員環92が形成されていると考えられる。このように、領域Bでは、グラフェン層24が曲面となるために、グラフェン層24内に五員環90および七員環92等の欠陥が導入されていると考えられる。 As shown in FIG. 6F, in the region B having a small radius of curvature, the graphene layer 24 seems to have irregular portions. As shown in FIG. 6G, irregular spots are observed in the region B. As shown in FIG. 6H, in the region B, it is considered that the five-membered ring 90 and the seven-membered ring 92 are formed in the graphene layer 24. Thus, in the region B, since the graphene layer 24 is curved, it is considered that defects such as the five-membered ring 90 and the seven-membered ring 92 are introduced into the graphene layer 24.
 PES(Photo Emission Spectroscopy)法を用いてサンプルG900SおよびG900Lの電子状態密度を調査した。測定は、HeIIα線(40.814eV)を用い、室温で行なった。図7(a)は、実施例1における各サンプルの結合エネルギーに対する信号強度を示す図、図7(b)は、サンプルG900Lのフェルミレベル付近の拡大図、図7(c)はサンプルG900Lの角度依存を示す図である。図7(a)から図7(c)において、結合エネルギーはフェルミレベルEからのエネルギーを示し、信号強度は電子状態密度に対応する。図7(a)および図7(b)に示すように、フェルミレベルEに近いエネルギーでは、強度が直線的に変化する。これは、サンプルG900SおよびG900Lがグラフェン特有のディラックコーン型の電子状態密度を有することを示している。ディラックコーン型の電子状態密度を有している場合、例えば図7(b)の結合エネルギーが0から0.4eVの範囲において、結合エネルギーに対する信号強度を最小自乗法を用い直線近似したときの相関係数が90%以上となる。また、より直線に近い場合、相関係数が95%以上、または98%以上となる。図7(c)に示すように、角度を変化させて測定してもほぼ同じ信号が得られる、このように、電子状態密度は角度によらないことから、ディラックコーン型の電子状態密度を有するグラフェン層24が三次元的に形成されている。 The electronic state densities of samples G900S and G900L were investigated using PES (Photo Emission Spectroscopy). The measurement was performed at room temperature using HeIIα rays (40.814 eV). FIG. 7A is a diagram showing the signal intensity with respect to the binding energy of each sample in Example 1, FIG. 7B is an enlarged view near the Fermi level of the sample G900L, and FIG. 7C is the angle of the sample G900L. It is a figure which shows dependence. In FIG. 7 (c) from FIG. 7 (a), the binding energy represents the energy from the Fermi level E F, the signal intensity corresponding to the electronic density of states. As shown in FIG. 7 (a) and 7 (b), the energy close to the Fermi level E F, intensity changes linearly. This indicates that the samples G900S and G900L have a Dirac cone electronic density of states specific to graphene. In the case of having a Dirac cone electronic density of states, for example, when the binding energy in FIG. 7B is in the range of 0 to 0.4 eV, the signal intensity relative to the binding energy is linearly approximated using the method of least squares. The number of relationships is 90% or more. Moreover, when it is closer to a straight line, the correlation coefficient is 95% or more, or 98% or more. As shown in FIG. 7 (c), the same signal can be obtained even when the angle is changed. Thus, since the density of electronic states does not depend on the angle, it has a Dirac cone type electronic state density. The graphene layer 24 is formed three-dimensionally.
 次に、サンプルG900SおよびG900Lの電子移動度を、2次元曲面上における単一ディラック電子(single Dirac carrier)の磁場中での運動を準古典近似により記述した理論モデルから算出した。図8は、実施例1における温度に対する移動度μを示す図である。サンプルG900SおよびG900Lとも100K以下では8500~12000cm/Vsであり、室温においても6600~8000cm/Vsと高い移動度を有することがわかる。 Next, the electron mobility of samples G900S and G900L was calculated from a theoretical model in which the motion of a single Dirac carrier on a two-dimensional curved surface in a magnetic field was described by a quasiclassical approximation. FIG. 8 is a diagram showing the mobility μ with respect to the temperature in the first embodiment. It can be seen that both the samples G900S and G900L have a high mobility of 8500 to 12000 cm 2 / Vs at 100 K or less and 6600 to 8000 cm 2 / Vs even at room temperature.
 実施例1によれば、脱合金化により形成したNi多孔質金属10に、グラフェン層24を形成する。これにより、細孔22の平均サイズを2μm以下とすることができる。また、細孔22の最小サイズを60nm以上とすることができる。これにより、ディラックコーン型電子状態密度を有する3次元構造の炭素構造体20を提供できる。この炭素構造体20は、室温における電子移動度が8000cm/Vs以上であり、サンプルによっては10000cm/Vs以上である。このように、炭素構造体20に導電性を持たせること、および/または電気的特性を向上させることができる。 According to Example 1, the graphene layer 24 is formed on the Ni porous metal 10 formed by dealloying. Thereby, the average size of the pores 22 can be 2 μm or less. Further, the minimum size of the pores 22 can be set to 60 nm or more. Thereby, the carbon structure 20 having a three-dimensional structure having a Dirac cone electronic density of states can be provided. The carbon structure 20 has an electron mobility of 8000 cm 2 / Vs or more at room temperature, and is 10000 cm 2 / Vs or more depending on a sample. Thus, the carbon structure 20 can be made conductive and / or electrical characteristics can be improved.
 実施例2は、窒素(N)を含む炭素構造体20を有する多孔質体32の例である。実施例2では、炭素構造体20を形成するときにベンゼンの代わりにピリジンを用いた。その他の多孔質体32の形成方法は実施例1と同じである。Nがドープされたグラフェンは酸素還元反応(ORR:Oxygen reduction reaction)の高い触媒活性を有する。 Example 2 is an example of a porous body 32 having a carbon structure 20 containing nitrogen (N). In Example 2, pyridine was used instead of benzene when forming the carbon structure 20. Other methods for forming the porous body 32 are the same as those in the first embodiment. Graphene doped with N has a high catalytic activity in an oxygen reduction reaction (ORR: Oxygen reduction reaction).
 表2は、各サンプルの熱処理温度および時間を示す表である。
Figure JPOXMLDOC01-appb-T000002
Table 2 is a table showing the heat treatment temperature and time of each sample.
Figure JPOXMLDOC01-appb-T000002
 サンプルN1000は1000℃20分、サンプルN900は900℃5分、サンプルN800Sは800℃5分、サンプルN800Lは800℃30分の熱処理を行なった。G900はNをドープしない実施例1であり、900℃20分の熱処理を行なった。細孔22のサイズは、熱処理温度が高く、時間が長くなるほど大きくなる。 Sample N1000 was heat-treated at 1000 ° C. for 20 minutes, sample N900 was heat-treated at 900 ° C. for 5 minutes, sample N800S was heat-treated at 800 ° C. for 5 minutes, and sample N800L was heat-treated at 800 ° C. for 30 minutes. G900 is Example 1 in which N is not doped, and heat treatment was performed at 900 ° C. for 20 minutes. The size of the pores 22 becomes larger as the heat treatment temperature is higher and the time is longer.
 作製した各サンプルの触媒特性をサイクリックボルタンメトリー法を用い調べた。多孔質体32を作用極、Ptを対極、銀(Ag)/塩化銀(AgCl)を参照極とした。溶液は、0.1M 水酸化カリウム(KOH)溶液である。参照極に対し作用極に電圧を印加し、対極と作用極とに流れる電流を測定した。 The catalytic properties of each sample prepared were examined using a cyclic voltammetry method. The porous body 32 was used as a working electrode, Pt as a counter electrode, and silver (Ag) / silver chloride (AgCl) as a reference electrode. The solution is a 0.1 M potassium hydroxide (KOH) solution. A voltage was applied to the working electrode with respect to the reference electrode, and the current flowing between the counter electrode and the working electrode was measured.
 図9は、実施例2における各サンプルの電圧に対する電流密度を示す図である。図9に示すように、サンプルG900およびN1000は、負に電圧を印加していっても電流はほとんど変わらない。N800S、N800LおよびN900では、電圧を0Vから負電圧を印加すると、それぞれ-0.08V、-0.10および-0.14VにおいてORRが開始する。このように、炭素構造体20が窒素を含み、細孔22のサイズが小さいと高いORR活性となる。一方、NがドープされていないG900ではORR非活性である。 FIG. 9 is a graph showing the current density with respect to the voltage of each sample in Example 2. As shown in FIG. 9, in the samples G900 and N1000, the current hardly changes even when a negative voltage is applied. In N800S, N800L, and N900, when a negative voltage is applied from 0V, ORR starts at -0.08V, -0.10, and -0.14V, respectively. Thus, when the carbon structure 20 contains nitrogen and the size of the pores 22 is small, high ORR activity is obtained. On the other hand, OR 900 is inactive in G900 which is not doped with N.
 図10は、実施例2における各サンプルの窒素濃度と電流密度Jを示す図である。電流密度Jは、Koutecky-Levich Equationを用いて算出したものである。窒素濃度は、XPS(X-ray Photoelectron Spectroscopy)法を用いN1s結合のピークを測定することにより求めた。N=O結合した窒素(Oxidized N)、C-N=C結合した窒素(Pyridinic N)、およびNC結合した窒素(Graphitic N)の窒素濃度に分類した。 Figure 10 is a diagram showing a nitrogen concentration and the current density J k of each sample in Example 2. The current density J k is calculated using the Koutecky-Levich Equation. The nitrogen concentration was determined by measuring the peak of N1s bond using XPS (X-ray Photoelectron Spectroscopy) method. N = O bonded nitrogen (Oxidized N), CN = C bonded nitrogen (Pyridinic N), and NC 3 bonded nitrogen (Graphitic N).
 図10に示すように、サンプルG900およびN1000では、電流密度Jはほぼ0である。これは、ORRの触媒機能がほとんどないことを示している。N1000においては、Nがドープされているものの触媒機能がない。一方、N800S、N800LおよびN900は、この順に電流密度Jが大きく触媒特性がよい。 As shown in FIG. 10, in the sample G900 and N1000, the current density J k is approximately zero. This indicates that there is almost no catalytic function of ORR. N1000 is not doped with N but has a catalytic function. On the other hand, N800S, N800L and N900 are good current density J k is greater catalytic properties in this order.
 N800S、N800L、N900およびN1000のGraphitic Nはほぼ同じ濃度である。一方、N1000では、Pyridinic Nが非常に少ない。N800S、N900LおよびN900の順にPyridinic Nが多くなる。このように、触媒特性はPyridinic N濃度と相関がある。 N800S, N800L, N900, and N1000 Graphic N have almost the same concentration. On the other hand, in N1000, Pyridinic N is very small. Pyridinic N increases in the order of N800S, N900L, and N900. Thus, the catalyst characteristics correlate with the Pyridinic®N concentration.
 細孔22のサイズが大きいと、グラフェン層24の曲率半径が大きい。このため、五員環および七員環等の欠陥密度は低い。細孔22のサイズが小さいと、グラフェン層24の曲率半径が小さい。このため、五員環および七員環等の欠陥密度が高くなる。例えば五員環の密度が増加するということは、Pyridinic N濃度が高くなっているともいえる。よって、触媒特性が向上するものと考えられる。 When the size of the pores 22 is large, the radius of curvature of the graphene layer 24 is large. For this reason, the defect density of five-membered rings and seven-membered rings is low. When the size of the pores 22 is small, the curvature radius of the graphene layer 24 is small. For this reason, the defect density of a five-membered ring and a seven-membered ring is increased. For example, the increase in the density of the five-membered ring can be said to indicate that the Pyridinic®N concentration is high. Therefore, it is considered that the catalyst characteristics are improved.
 図10および表2から、触媒特性を向上させるためには、細孔22のサイズは1μm以下が好ましく、800nm以下がより好ましい。 From FIG. 10 and Table 2, in order to improve the catalyst characteristics, the size of the pores 22 is preferably 1 μm or less, more preferably 800 nm or less.
 実施例2によれば、細孔22のサイズを小さくできることから触媒特性を向上できる。また、炭素構造体20の電子伝導率は1.2×10S/mと活性炭およびカーボンブラックより、2桁から3桁大きい。これにより、触媒特性をより向上できる。 According to Example 2, since the size of the pores 22 can be reduced, the catalyst characteristics can be improved. Further, the electronic conductivity of the carbon structure 20 is 1.2 × 10 4 S / m, which is 2 to 3 orders of magnitude higher than that of activated carbon and carbon black. Thereby, a catalyst characteristic can be improved more.
 実施例2は、Nをドープした例を説明したが、他の触媒として機能する元素をドープした場合においても、炭素構造体20が欠陥部にそれらの元素をある程度含むことにより触媒特性を向上させることができる。 Although Example 2 demonstrated the example which doped N, even when doped with the element which functions as another catalyst, the carbon characteristic 20 improves a catalyst characteristic by including those elements to some extent in a defect part. be able to.
 実施例2の変形例1として、リン(P)、硫黄(S)、窒素とリン、窒素と硫黄、またはホウ素(B)をドープした炭素構造体20を作製した。以下に、各元素をドープするときの原料ガスを示す。
 ドープ元素 原料ガス
 リン    トリプロピルホスフィン
 硫黄    チオフェン
 窒素とリン ピリジンとトリプロピルホスフィン
 窒素と硫黄 ピリジンとチオフェン
 ホウ素   トリエチルボラン
 その他の炭素構造体20の作製条件は実施例2と同じである。
As Modification 1 of Example 2, a carbon structure 20 doped with phosphorus (P), sulfur (S), nitrogen and phosphorus, nitrogen and sulfur, or boron (B) was produced. The raw material gas when doping each element is shown below.
Doping element Source gas Phosphorus Tripropylphosphine Sulfur Thiophene Nitrogen and phosphorus Pyridine and tripropylphosphine Nitrogen and sulfur Pyridine and thiophene Boron Triethylborane Other conditions for producing the carbon structure 20 are the same as in Example 2.
 作製した実施例2の変形例1の各サンプルの水素発生反応(HER:Hydrogen evolution reaction)の触媒特性をサイクリックボルタンメトリー法を用い調べた。水素は燃料電池の燃料としても用いられるため、HERは注目されている。溶液は、0.5M 硫酸(HSO)溶液である。参照極は可逆水素電極(RHE:reversible hydrogen electrode)である。その他の測定方法は実施例2と同じであり、説明を省略する。 The catalytic characteristics of the hydrogen evolution reaction (HER) of each sample of the modified example 1 of the produced example 2 were examined using a cyclic voltammetry method. Since hydrogen is also used as a fuel for fuel cells, HER is attracting attention. The solution is a 0.5 M sulfuric acid (H 2 SO 4 ) solution. The reference electrode is a reversible hydrogen electrode (RHE). Other measurement methods are the same as those in Example 2, and the description thereof is omitted.
 図11(a)は、実施例2の変形例1における各サンプルの電圧に対する電流密度を示す図である。P800は、グラフェン層24を形成するときの温度が800℃であるリンドープのサンプルを示す。S800は、温度が800℃である硫黄ドープのサンプルを示す。NP800は、温度が800℃である窒素とリンドープのサンプルを示す。NS800は、温度が800℃である窒素と硫黄ドープのサンプルを示す。サンプルPtは白金である。図11(a)に示すように、リン、硫黄、窒素とリン、または窒素と硫黄を炭素構造体20にドープすることにより、HERの触媒特性を向上できる。 FIG. 11A is a diagram showing the current density with respect to the voltage of each sample in the first modification of the second embodiment. P800 indicates a phosphorus-doped sample having a temperature of 800 ° C. when the graphene layer 24 is formed. S800 indicates a sulfur-doped sample having a temperature of 800 ° C. NP800 represents a nitrogen and phosphorus doped sample having a temperature of 800 ° C. NS800 represents a nitrogen and sulfur doped sample with a temperature of 800 ° C. Sample Pt is platinum. As shown in FIG. 11A, HER catalytic characteristics can be improved by doping the carbon structure 20 with phosphorus, sulfur, nitrogen and phosphorus, or nitrogen and sulfur.
 実施例2および変形例1のサンプルの電子移動度を実施例1の図8と同じ方法で算出した。図11(b)は、実施例2および変形例1において温度に対する移動度を示す図である。サンプルBは、ホウ素をドープしたサンプルであり、グラフェン層24を形成するときの温度は900℃である。サンプルG900LおよびG900Sは、実施例1の図8と同じデータである。サンプルN800LおよびN800Sは、実施例2のサンプルである。図11(b)に示すように、サンプルBおよびN800Lは、実施例1と同程度の電子移動度を有する。 The electron mobility of the samples of Example 2 and Modification 1 was calculated by the same method as in FIG. FIG. 11B is a diagram illustrating the mobility with respect to temperature in the second embodiment and the first modification. Sample B is a sample doped with boron, and the temperature at which the graphene layer 24 is formed is 900 ° C. Samples G900L and G900S have the same data as in FIG. Samples N800L and N800S are the samples of Example 2. As shown in FIG. 11B, samples B and N800L have the same electron mobility as that of the first embodiment.
 実施例2の変形例2として、炭素構造体20を酸化させ、さらに還元させた。酸化は修正Hummers法を用い、還元はヒドラジン水溶液を用いた。以下に各サンプルの酸化時間および還元時間を示す。元サンプルは、酸化還元する前のサンプルである。
サンプル   元サンプル 酸化時間 還元時間
NRGO   N800S 30分  1.2時間
NGO    N800S 3時間  還元せず
RGO    G800S 3時間  3時間
GO     G800S 3時間  還元せず
As Modification 2 of Example 2, the carbon structure 20 was oxidized and further reduced. For the oxidation, a modified Hummers method was used, and for the reduction, a hydrazine aqueous solution was used. The oxidation time and reduction time of each sample are shown below. The original sample is a sample before redox.
Sample Original sample Oxidation time Reduction time NRGO N800S 30 minutes 1.2 hours NGO N800S 3 hours No reduction RGO G800S 3 hours 3 hours GO G800S 3 hours No reduction
 作製した各サンプルのORRおよび酸素発生反応(OER: Oxygen evolution reaction)の触媒特性をサイクリックボルタンメトリー法を用い調べた。測定方法は実施例2と同じであり、説明を省略する。 The catalytic characteristics of the ORR and oxygen generation reaction (OER: 各 Oxygen revolution reaction) of each prepared sample were examined using a cyclic voltammetry method. The measurement method is the same as in Example 2, and the description is omitted.
 図12は、実施例2の変形例2における各サンプルの電圧に対する電流密度を示す図である。図12において、正電圧に印加するとOERとなり、負電圧に印加するとORRとなる。図12に示すように、サンプルRGOはサンプルN800Sに比べ、OERの触媒特性が向上する。さらにサンプルNRGOは、サンプルN800Sに比べ、OERの触媒特性およびORRの触媒特性が向上する。一方、サンプルNGOおよびサンプルGOは、触媒としてほとんど非活性である。 FIG. 12 is a diagram showing the current density with respect to the voltage of each sample in Modification 2 of Example 2. In FIG. 12, when applied to a positive voltage, it becomes OER, and when applied to a negative voltage, it becomes ORR. As shown in FIG. 12, sample RGO has improved OER catalytic properties compared to sample N800S. Furthermore, the sample NRGO has improved OER catalyst characteristics and ORR catalyst characteristics compared to the sample N800S. On the other hand, sample NGO and sample GO are almost inactive as catalysts.
 実施例2の変形例2のように、炭素構造体20を酸化した状態では触媒として非活性であるが、酸化した炭素構造体20を還元することにより、触媒特性が向上する。酸化還元により職場特性が向上する理由は明確ではない。例えば、炭素構造体20の一部が酸化し、酸化した一部が還元する。このとき、炭素構造体20内に欠陥する。この欠陥により触媒特性が向上するものと考えられる。 As in Modification 2 of Example 2, the carbon structure 20 is inactive as a catalyst in the oxidized state, but the catalytic properties are improved by reducing the oxidized carbon structure 20. The reason why workplace characteristics are improved by redox is not clear. For example, a part of the carbon structure 20 is oxidized, and the oxidized part is reduced. At this time, the carbon structure 20 is defective. This defect is thought to improve the catalyst characteristics.
 実施例3は、炭素構造体20にNiをドープした多孔質体32の例である。Niは、OH基と結合し、Ni(OH)となった場合、水素発生反応の高い触媒活性を有する。実施例3では、図1(d)において多孔質金属10のNiを除去するときに、Niを一部残存させた。その他の多孔質体30の形成方法は実施例1と同じであり説明を省略する。 Example 3 is an example of the porous body 32 in which the carbon structure 20 is doped with Ni. When Ni is bonded to an OH group and becomes Ni (OH) 2 , it has a high catalytic activity for hydrogen generation reaction. In Example 3, when removing Ni from the porous metal 10 in FIG. 1D, a part of Ni remained. Other methods for forming the porous body 30 are the same as those in the first embodiment, and the description thereof is omitted.
 図1(b)の熱処理を800℃5分で行なった。細孔12およびリガメント14のサイズ分布は100nmから300nmである。各サンプルは、2M 塩酸(HCl)溶液によりリガメント14を除去した。溶液による処理時間を、4時間(サンプル4h)、6時間(サンプル6h)、9時間(サンプル9h)とした。時間が短いほどNiが残存している。EDX(Energy Dispersive X-ray Spectroscopy)法を用い測定したサンプル6hにおけるNi濃度は4原子%から8原子%である。サンプルGOは、グラフェンを修正Hummers法を用い酸化させたサンプルである。サンプルPtは白金である。 The heat treatment in FIG. 1B was performed at 800 ° C. for 5 minutes. The size distribution of the pores 12 and ligaments 14 is 100 nm to 300 nm. In each sample, the ligament 14 was removed with a 2M hydrochloric acid (HCl) solution. The treatment time with the solution was 4 hours (sample 4h), 6 hours (sample 6h), and 9 hours (sample 9h). Ni is remaining as the time is shorter. The Ni concentration in the sample 6h measured using an EDX (Energy Dispersive X-ray Spectroscopy) method is 4 atomic% to 8 atomic%. Sample GO is a sample obtained by oxidizing graphene using a modified Hummers method. Sample Pt is platinum.
 図13は、サンプル6hのNiの除去前後のXPS測定の結果を示す図である。Ni2p結合エネルギーを示している。Ni除去後のサンプルはNiのピーク(0価のNiのピーク)が、Ni2+のピークより支配的となる。NiピークはNiとOHとの結合である。このように、Niを除去後のサンプルでは、触媒としての機能を有するNi(OH)が存在していることが分かる。 FIG. 13 is a diagram showing the results of XPS measurement before and after removing Ni from sample 6h. Ni2p binding energy is shown. In the sample after removal of Ni, the Ni 0 peak (zero-valent Ni peak) becomes more dominant than the Ni 2+ peak. The Ni 0 peak is a bond between Ni and OH. Thus, it can be seen that Ni (OH) 2 having a function as a catalyst is present in the sample after removing Ni.
 作製した各サンプルのHERにおける触媒特性をサイクリックボルタンメトリー法を用い調べた。溶液は、0.5M 硫酸(HSO)溶液である。参照極は可逆水素電極である。その他の測定方法は実施例2と同じであり、説明を省略する。 The catalytic characteristics in HER of each prepared sample were examined using a cyclic voltammetry method. The solution is a 0.5 M sulfuric acid (H 2 SO 4 ) solution. The reference electrode is a reversible hydrogen electrode. Other measurement methods are the same as those in Example 2, and the description thereof is omitted.
 図14は、実施例3における各サンプルの電圧に対する電流密度を示す図である。0.1Vと-0.2Vと間の電圧走査を200サイクル繰り返した後を示す。図14に示すように、サンプルGOは、HER非活性である。サンプル9h、6hおよび4hとなるに従い(つまり、Niが残存しているサンプルほど)、触媒特性がサンプルPtに近づく。 FIG. 14 is a diagram showing the current density with respect to the voltage of each sample in Example 3. This shows a state after repeating voltage scanning between 0.1 V and −0.2 V for 200 cycles. As shown in FIG. 14, sample GO is HER inactive. As the samples 9h, 6h, and 4h are obtained (that is, the samples with Ni remaining), the catalyst characteristics approach the sample Pt.
 実施例3によれば、Niをドープした炭素構造体20は良好な触媒特性を示す。 According to Example 3, the carbon structure 20 doped with Ni exhibits good catalytic properties.
 実施例2、3およびその変形例のように、炭素構造体20は、電子伝導度が高く、かつ軽い。このため、触媒機能を有する元素を炭素構造体20にドープすることで、高い触媒特性を有することができる。また、Ptを触媒に用いるのに比べ、安価な触媒を提供できる。 As in Examples 2 and 3 and the modifications thereof, the carbon structure 20 has high electron conductivity and is light. For this reason, it is possible to have high catalytic properties by doping the carbon structure 20 with an element having a catalytic function. Further, an inexpensive catalyst can be provided as compared with the case where Pt is used as the catalyst.
 炭素構造体20は、例えば窒素、ホウ素、リン、硫黄、ニッケルおよびマンガンの少なくとも1つを含むことにより、触媒特性を向上させることができる。窒素、ホウ素、リンおよび硫黄は、グラフェン層24内の炭素と結合する。一方、ニッケルおよびマンガンは、グラフェン層24に担持される。このように、炭素構造体に含まれる元素は、グラフェン層24内の炭素と結合してもよいし、グラフェン層24に担持されてもよい。 The carbon structure 20 can improve catalyst characteristics by containing at least one of nitrogen, boron, phosphorus, sulfur, nickel and manganese, for example. Nitrogen, boron, phosphorus and sulfur are combined with carbon in the graphene layer 24. On the other hand, nickel and manganese are supported on the graphene layer 24. As described above, the element contained in the carbon structure may be bonded to carbon in the graphene layer 24 or may be supported on the graphene layer 24.
 実施例4は、実施例2に係る多孔質体32をリチウム空気電池の正極に用いた例である。以下に作製したリチウム空気電池の各材料を示す。
 負極: 金属リチウム
 電解質:有機電解液(LiTFSI/TEGDME)
 正極: 実施例2のサンプルN800Sをチタン(Ti)製のメッシュに保持させる。
 なお、過塩素酸リチウムは、リチウムイオンの最初の供給源である。
Example 4 is an example in which the porous body 32 according to Example 2 was used for the positive electrode of a lithium-air battery. Each material of the lithium air battery produced below is shown.
Negative electrode: Metallic lithium Electrolyte: Organic electrolyte (LiTFSI / TEGDME)
Positive electrode: Sample N800S of Example 2 is held on a titanium (Ti) mesh.
Note that lithium perchlorate is the first source of lithium ions.
 図15は、実施例4におけるリチウム空気電池の容量に対する電圧を示す図である。放電レートおよび充電レートは300mAh/g(単位多孔質体重量当たり)である。各曲線は、矢印方向に充放電のサイクルが1、2、3、5、10、20、30、40、50、60、70、80、90および100回であることを示す。図15に示すように、500mAh/gの容量が実現できる。放電および充電を100サイクル行なっても放電および充電特性は大きくは変化しない。 FIG. 15 is a diagram showing the voltage with respect to the capacity of the lithium-air battery in Example 4. The discharge rate and the charge rate are 300 mAh / g (per unit porous body weight). Each curve shows that the charge / discharge cycle is 1, 2, 3, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90 and 100 times in the direction of the arrow. As shown in FIG. 15, a capacity of 500 mAh / g can be realized. Even after 100 cycles of discharge and charge, the discharge and charge characteristics do not change significantly.
 実施例4によれば、実施例1から3の多孔質体をリチウム空気電池等の蓄電装置の電極に用いることができる。多孔質体32は主に炭素構造体20であるため、貴金属を電極に用いるのに比べ安価である。 According to Example 4, the porous body of Examples 1 to 3 can be used for an electrode of a power storage device such as a lithium-air battery. Since the porous body 32 is mainly the carbon structure 20, it is less expensive than using a noble metal for the electrode.
 実施例5は、図1(c)のように、多孔質金属10にグラフェン層24を形成した状態の多孔質体30の例である。グラフェン層24は、実施例1のようにベンゼンを用い900℃で5分間熱処理することにより形成した。作製したサンプルの細孔22のサイズ分布は、200nmから400nmである。比較例1として、グラフェン層24を形成せず、熱処理を行なったサンプルを作製した。比較例1の細孔12のサイズは実施例5と同程度である。 Example 5 is an example of the porous body 30 in a state in which the graphene layer 24 is formed on the porous metal 10 as shown in FIG. The graphene layer 24 was formed by heat treatment at 900 ° C. for 5 minutes using benzene as in Example 1. The size distribution of the pores 22 of the prepared sample is 200 nm to 400 nm. As Comparative Example 1, a sample that was heat-treated without forming the graphene layer 24 was produced. The size of the pores 12 of Comparative Example 1 is approximately the same as that of Example 5.
 作製したサンプルの酸素還元反応(OER:Oxygen evolution reaction)における触媒特性をサイクリックボルタンメトリー法を用い調べた。酸素はリチウム空気電池の燃料としても用いられるため、OERは注目されている。測定方法は実施例2と同じであり、説明を省略する。 The catalytic characteristics of the prepared sample in the oxygen reduction reaction (OER: Oxygen evolution reaction) were examined using a cyclic voltammetry method. OER is attracting attention because oxygen is also used as a fuel for lithium-air batteries. The measurement method is the same as in Example 2, and the description is omitted.
 図16(a)および図16(b)は、実施例5における電圧に対する電流密度を示す図である。図16(a)に示すように、実施例5における正方向および負方向に電圧を掃引したときのピークは、それぞれ345mVおよび276mVである。比較例1における正方向および負方向に電圧を掃引したときのピークは、それぞれ359mVおよび256mVである。実施例5は、アノードおよびカソードのピーク間隔が比較例1より小さい。これは、実施例5は比較例1に比べ電気化学反応を促進させていることを示している。さらに、0.6V以上において、実施例5は比較例1に比べ電流密度が急激に増加している。これは、実施例5は比較例1に比べOERを促進していることを示している。 16 (a) and 16 (b) are diagrams showing current density with respect to voltage in Example 5. FIG. As shown in FIG. 16A, the peaks when the voltage is swept in the positive direction and the negative direction in Example 5 are 345 mV and 276 mV, respectively. The peaks when the voltage is swept in the positive direction and the negative direction in Comparative Example 1 are 359 mV and 256 mV, respectively. In Example 5, the peak interval between the anode and the cathode is smaller than that of Comparative Example 1. This indicates that Example 5 promotes the electrochemical reaction as compared with Comparative Example 1. Furthermore, at 0.6 V or more, the current density in Example 5 is abruptly increased as compared with Comparative Example 1. This indicates that Example 5 promotes OER as compared with Comparative Example 1.
 図16(b)は、電圧走査(0Vから0.8V)を1000サイクル行なった前後の特性を示す。図16(b)に示すように、比較例1では、1000サイクル後に触媒特性が大きく劣化する。実施例5では、1000サイクル前後で触媒特性はほとんど同じである。このように、多孔質金属10を触媒として用いる場合に、グラフェン層24を形成することにより、電圧サイクルによる劣化を抑制できる。 FIG. 16B shows the characteristics before and after the voltage scan (0 V to 0.8 V) was performed for 1000 cycles. As shown in FIG. 16 (b), in Comparative Example 1, the catalyst characteristics greatly deteriorate after 1000 cycles. In Example 5, the catalyst characteristics are almost the same at around 1000 cycles. Thus, when the porous metal 10 is used as a catalyst, the deterioration due to the voltage cycle can be suppressed by forming the graphene layer 24.
 実施例5によれば、炭素構造体20が多孔質金属10のリガメント14を覆うことにより、OERの触媒特性が向上する。また、炭素構造体20が多孔質金属10を保護することにより、多孔質体32を安定に保つことができる。 According to Example 5, when the carbon structure 20 covers the ligament 14 of the porous metal 10, the catalytic properties of OER are improved. Further, since the carbon structure 20 protects the porous metal 10, the porous body 32 can be kept stable.
 実施例6は、実施例5を潰した例である。図1(c)のように、Ni30Mn70合金を脱合金化することにより多孔質金属10を作製する。図1(b)のように、ベンゼンを原料ガスとして用い800℃で5分間熱処理することにより、グラフェン層24を成膜する。このサンプルを冷間圧延する。その後、600℃で5分間熱処理する。その後、熱間圧延を2回行なう。その後、700℃から900℃の温度範囲で30分間から1時間熱処理する。これにより、図2(a)のように、実施例5の多孔質体を潰した実施例6に係る構造体34を形成する。図1(c)において、グラフェン層24を形成せず熱処理のみ行い比較例1の多孔質金属10を潰した比較例2に係る構造体を作製する。比較例2と実施例6のサンプルについて、引っ張り公称応力(engineering stress)-公称歪(engineering strain)特性と硬度(hardness)を測定した。 The sixth embodiment is an example in which the fifth embodiment is crushed. As shown in FIG. 1C, the porous metal 10 is produced by dealloying Ni 30 Mn 70 alloy. As shown in FIG. 1B, the graphene layer 24 is formed by heat treatment at 800 ° C. for 5 minutes using benzene as a source gas. This sample is cold rolled. Thereafter, heat treatment is performed at 600 ° C. for 5 minutes. Then, hot rolling is performed twice. Thereafter, heat treatment is performed at a temperature range of 700 to 900 ° C. for 30 minutes to 1 hour. Thereby, as shown in FIG. 2A, the structure 34 according to Example 6 in which the porous body of Example 5 is crushed is formed. In FIG. 1C, the structure according to Comparative Example 2 is manufactured by forming only the heat treatment without forming the graphene layer 24 and crushing the porous metal 10 of Comparative Example 1. The samples of Comparative Example 2 and Example 6 were measured for tensile stress-engineering strain characteristics and hardness.
 図17は、実施例6における応力歪線図である。図中の温度および時間は、図1(c)における熱処理温度および熱処理時間を示す。図17に示すように、実施例6は比較例2に比べ引っ張り強さ(最大の応力)が大きい。また、実施例6は比較例2に比べ破断する歪が大きい。熱処理温度が低く熱処理時間が短い(つまり細孔22のサイズが小さい)サンプルは引っ張り強さが大きい傾向にある。 FIG. 17 is a stress strain diagram in Example 6. The temperature and time in the figure indicate the heat treatment temperature and heat treatment time in FIG. As shown in FIG. 17, Example 6 has a higher tensile strength (maximum stress) than Comparative Example 2. Further, Example 6 has a larger strain to break than Comparative Example 2. Samples having a low heat treatment temperature and a short heat treatment time (that is, small pore 22 size) tend to have a high tensile strength.
 図18は、実施例6における硬度を示す図である。図中の温度および時間は、図1(c)における熱処理温度および熱処理時間を示す。四角ドットは平均値、縦棒はバラツキを示す。図18に示すように、実施例6は比較例2に比べ硬度が高い。熱処理温度が低い(つまり細孔22のサイズが小さい)サンプルは硬度が高い。 FIG. 18 is a diagram showing the hardness in Example 6. The temperature and time in the figure indicate the heat treatment temperature and heat treatment time in FIG. Square dots indicate average values, and vertical bars indicate variation. As shown in FIG. 18, Example 6 has higher hardness than Comparative Example 2. A sample having a low heat treatment temperature (that is, a small size of the pores 22) has high hardness.
 図19(a)は、実施例6におけるSEM画像、図19(b)は、EBSD(Electron Back Scatter Diffraction)画像である。測定したサンプルの熱間圧延後の熱処理は900℃180分で行なっている。図19(a)に示すように、グラフェン層24がNi金属15を覆っている。図19(b)に示すように、炭素構造体20内の1つの細孔内のNi金属は、同じ色(図19(b)は白黒のため同じ明るさ)を有している。これは、細孔内のNi金属15が1つの結晶粒となっていることを示している。グラフェン層24は金属15の結晶粒の粒界に位置する。結晶粒の平均サイズは、約1μmである。 19A is an SEM image in Example 6, and FIG. 19B is an EBSD (Electron Back Scatter Diffraction) image. The heat treatment after hot rolling of the measured sample is performed at 900 ° C. for 180 minutes. As shown in FIG. 19A, the graphene layer 24 covers the Ni metal 15. As shown in FIG. 19B, the Ni metal in one pore in the carbon structure 20 has the same color (FIG. 19B has the same brightness because it is black and white). This indicates that the Ni metal 15 in the pores is one crystal grain. The graphene layer 24 is located at the grain boundary of the crystal grains of the metal 15. The average size of the crystal grains is about 1 μm.
 実施例6によれば、炭素構造体20が多孔質金属10のリガメント14を覆う。これにより、多孔質体32または構造体34の硬度を高め、引っ張り強さを大きくすることができる。実施例5の多孔質体を圧延後、熱処理することにより、グラフェン層24内に結晶粒が形成される。この結晶粒の平均サイズが2μm以下と小さく、かつ結晶粒の粒界にグラフェン層24が設けられるため、構造体34の硬度が高くなるものと考えられる。結晶粒の平均サイズは、1μm以下がより好ましい。結晶粒の平均サイズは、60nm以上が好ましく、100nm以上がより好ましい。 According to Example 6, the carbon structure 20 covers the ligament 14 of the porous metal 10. Thereby, the hardness of the porous body 32 or the structure 34 can be increased, and the tensile strength can be increased. Crystal grains are formed in the graphene layer 24 by heat-treating the porous body of Example 5 after rolling. Since the average size of the crystal grains is as small as 2 μm or less and the graphene layer 24 is provided at the grain boundaries of the crystal grains, it is considered that the hardness of the structure 34 is increased. The average size of the crystal grains is more preferably 1 μm or less. The average size of the crystal grains is preferably 60 nm or more, and more preferably 100 nm or more.
 実施例7は、実施例2に係る多孔質体を電気二重層キャパシタに用いる例である。
以下に作製した電気二重層キャパシタの各材料を示す。
 負極: 白金
 電解質:1M KOH溶液
 正極: サンプルCまたはD
 ここで、サンプルCは実施例2のサンプルN800Sであり、サンプルDはサンプルN800Sを5枚重ねて、30MPaの圧力で5分間加圧し潰したサンプルである。
Example 7 is an example in which the porous body according to Example 2 is used for an electric double layer capacitor.
Each material of the produced electric double layer capacitor is shown below.
Negative electrode: Platinum Electrolyte: 1M KOH solution Positive electrode: Sample C or D
Here, the sample C is the sample N800S of Example 2, and the sample D is a sample obtained by stacking five samples N800S and pressing and crushing them at a pressure of 30 MPa for 5 minutes.
 図20は、実施例7における電流密度に対する体積容量を示す図である。電圧は1Vである。サンプルDはサンプルCより体積容量が大きい。サンプルDの体積容量は160から300F/cmである。これは、2次元に作製したグラフェンを電極に用いた場合より大きい。 FIG. 20 is a diagram showing the volume capacity with respect to the current density in Example 7. The voltage is 1V. Sample D has a larger volume capacity than Sample C. Sample D has a volume capacity of 160 to 300 F / cm 3 . This is larger than when two-dimensionally prepared graphene is used for the electrode.
 実施例7によれば、多孔質体32を潰した構造体34を用いることにより電気二重層キャパシタ等の蓄電装置の体積容量を大きくできる。 According to the seventh embodiment, by using the structure 34 in which the porous body 32 is crushed, the volume capacity of the power storage device such as an electric double layer capacitor can be increased.
 実施例8は、多孔質体32を酸化した構造体36を光電流センサーに用いる例である。実施例1のサンプルG900Sを修正Hummers法を用い酸化させ構造体36を作製した。構造体36の両側に電極を形成した。電極間に電圧を印加し、構造体36に光を照射し、応答性を測定した。 Example 8 is an example in which a structure 36 obtained by oxidizing the porous body 32 is used for a photocurrent sensor. The structure G was produced by oxidizing the sample G900S of Example 1 using the modified Hummers method. Electrodes were formed on both sides of the structure 36. A voltage was applied between the electrodes, the structure 36 was irradiated with light, and the responsiveness was measured.
 図21は、実施例8における電圧に対する応答性Rを示す図である。構造体に照射した単位面積当たりの光強度を585μW/cmから10nW/cmまで変化させた。光強度が10nW/cmのとき応答性Rは10A/W程度となる。この値は、Nature Nanotechnology Vol. 7, pp363-368 (2012)で報告されている量子ドットを用いた応答性には劣るが、ACS nano Vol.7, No.7, pp6310-6320(2013)で報告されている酸化グラフェン単体に比べて1000倍程度高い。このように高い応答性が得られたのは、層24のネットワークが三次元構造となっているため、光励起したホールおよび電子の伝導率を高くできるためと考えられる。 FIG. 21 is a diagram illustrating the response R with respect to the voltage in the eighth embodiment. The light intensity per unit area irradiated on the structure was changed from 585 μW / cm 2 to 10 nW / cm 2 . When the light intensity is 10 nW / cm 2 , the response R is about 10 4 A / W. This value is inferior to the response using quantum dots reported in Nature Nanotechnology Vol. 7, pp363-368 (2012), but in ACS nano Vol.7, No.7, pp6310-6320 (2013). It is about 1000 times higher than the reported graphene oxide alone. The reason why such high responsiveness was obtained is thought to be that the conductivity of the photoexcited holes and electrons can be increased because the network of the layer 24 has a three-dimensional structure.
 実施例8によれば、量子ドットのような複雑な材料を用いず応答性の高い光電気デバイスを提供できる。構造体36は、光電流センサーまたは太陽電池等の装置にも適用できる。 According to Example 8, it is possible to provide a highly responsive photoelectric device without using a complex material such as a quantum dot. The structure 36 can also be applied to a device such as a photocurrent sensor or a solar cell.
 実施例9は、遷移金属カルコゲナイドを2次元物質層24とする多孔質体30の例である。以下のように実施例9に係る多孔質体を作製した。 Example 9 is an example of a porous body 30 having a transition metal chalcogenide as a two-dimensional material layer 24. A porous body according to Example 9 was produced as follows.
 図1(a)において、Au35Ag65合金18を作製する。図1(b)において、合金18を硝酸(HNO)水溶液を用い脱合金化する。これにより、Agが溶解し、Auからなるナノ多孔質金属10を形成する。多孔質金属10の細孔12aの平均サイズは約20nmから30nmである。 In FIG. 1A, an Au 35 Ag 65 alloy 18 is produced. In FIG. 1B, the alloy 18 is dealloyed using a nitric acid (HNO 3 ) aqueous solution. Thereby, Ag melt | dissolves and the nanoporous metal 10 which consists of Au is formed. The average size of the pores 12a of the porous metal 10 is about 20 nm to 30 nm.
 図1(c)において、電気炉内に、硫黄(S)、MoOおよび多孔質金属10を配置する。Ar雰囲気減圧中で熱処理する。熱処理温度は700℃、熱処理時間は30分である。これにより、多孔質金属10のリガメント14の表面に2次元物質層24としてMoSが形成された多孔質体30となる。熱処理により、多孔質金属10の細孔12およびリガメント14が大きくなる。熱処理温度および熱処理時間を適宜設定することにより、細孔12およびリガメント14の大きさを制御できる。 In FIG. 1 (c), in an electric furnace, sulfur (S), placing the MoO 3 and the porous metal 10. Heat treatment is performed under reduced pressure in an Ar atmosphere. The heat treatment temperature is 700 ° C. and the heat treatment time is 30 minutes. Thereby, the porous body 30 in which MoS 2 is formed as the two-dimensional material layer 24 on the surface of the ligament 14 of the porous metal 10 is obtained. By the heat treatment, the pores 12 and the ligaments 14 of the porous metal 10 become large. By appropriately setting the heat treatment temperature and the heat treatment time, the sizes of the pores 12 and the ligaments 14 can be controlled.
 図22(a)は、実施例9におけるSEM画像であり、図22(b)は、図22(a)の拡大画像である。図22(a)および図22(b)に示すように、細孔12およびリガメント14が観察できる。リガメント14の表面には2次元物質層24が形成されている。細孔22のサイズは約100nmである。 22 (a) is an SEM image in Example 9, and FIG. 22 (b) is an enlarged image of FIG. 22 (a). As shown in FIGS. 22A and 22B, the pores 12 and the ligaments 14 can be observed. A two-dimensional material layer 24 is formed on the surface of the ligament 14. The size of the pores 22 is about 100 nm.
 図23は、実施例9におけるラマン測定の結果を示す図である。サンプルバルクは、バルク状のMoSである。サンプル1Lから3Lは、実施例9においてMoSの層数がそれぞれ1から3のサンプルである。図23に示すように、ピークA1gとE 2gが観察できる。A1gとE 2gとの波数差Δは層数が増えると大きくなる。Δが20cm-1、22cm-1および23cm-1は、それぞれMoSが1原子層、2原子層および3原子層のときに対応する。このように、2次元物質層24は、1から数原子層のMoSであることがわかる。 FIG. 23 is a diagram showing the results of Raman measurement in Example 9. Sample bulk is the bulk of MoS 2. Samples 1L to 3L are samples in which the number of layers of MoS 2 is 1 to 3 in Example 9, respectively. As shown in FIG. 23, peaks A 1 g and E 1 2 g can be observed. The wave number difference Δ between A 1g and E 1 2g increases as the number of layers increases. Δ is 20 cm −1 , 22 cm −1 and 23 cm −1 , respectively, corresponding to when MoS 2 is a monolayer, a bilayer and a trilayer. Thus, it can be seen that the two-dimensional material layer 24 is one to several atomic layers of MoS 2 .
 作製した各サンプルの触媒特性をサイクリックボルタンメトリー法を用い調べた。溶液は、0.5M 硫酸(HSO)溶液である。参照極は可逆水素電極である。その他の測定方法は実施例2と同じであり、説明を省略する。 The catalytic properties of each sample prepared were examined using a cyclic voltammetry method. The solution is a 0.5 M sulfuric acid (H 2 SO 4 ) solution. The reference electrode is a reversible hydrogen electrode. Other measurement methods are the same as those in Example 2, and the description thereof is omitted.
 図24は、実施例9における各サンプルの電圧に対する電流密度を示す図である。サンプルPtは作用極をPtとしたサンプル、サンプルNPGはMoSを形成していないAuからなる多孔質金属10を示す。図24に示すように、サンプルNPGに対し、サンプル1Lから3Lは触媒特性が向上する。サンプル1Lが最も触媒特性が良好である。2次元物質層24は、3原子層以下であることが好ましく、1原子層であることがより好ましい。 FIG. 24 is a diagram illustrating the current density with respect to the voltage of each sample in Example 9. A sample Pt is a sample having a working electrode Pt, and a sample NPG is a porous metal 10 made of Au not forming MoS 2 . As shown in FIG. 24, the catalytic properties of samples 1L to 3L are improved with respect to sample NPG. Sample 1L has the best catalytic properties. The two-dimensional material layer 24 is preferably 3 atomic layers or less, and more preferably 1 atomic layer.
 実施例1と同じ条件で多孔質金属10を作製した、図1(c)において、電気炉内に、硫黄、WOおよび多孔質金属10を配置し、Ar雰囲気圧中900℃30分の熱処理を行なった。これにより、2次元物質層24としてWSを有する多孔質体30を形成できた。 In FIG. 1C, porous metal 10 was produced under the same conditions as in Example 1. In FIG. 1C, sulfur, WO 3 and porous metal 10 were placed in an electric furnace, and heat treatment was performed at 900 ° C. for 30 minutes in an Ar atmosphere pressure. Was done. Thereby, the porous body 30 having WS 2 as the two-dimensional material layer 24 was formed.
 実施例1と同じ条件で多孔質金属10を作製した、図1(c)において、電気炉内に、セレン(Se)、MoOおよび多孔質金属10を配置し、Ar雰囲気圧中700℃30分の熱処理を行なった。これにより、2次元物質層24としてMoSeを有する多孔質体30を形成できた。 In FIG. 1 (c), a porous metal 10 was produced under the same conditions as in Example 1. In the electric furnace, selenium (Se), MoO 3 and the porous metal 10 were placed, and 700 ° C. 30 in an Ar atmosphere pressure. Heat treatment for 1 min. This allowed a porous body 30 having MoSe 2 as a two-dimensional material layer 24.
 実施例9によれば、多孔質金属10の表面に触媒特性の高い2次元物質層24を形成する。これにより、例えばPtより安価な多孔質金属10を用い、Ptに近い高い触媒特性を有する多孔質体30を提供できる。実施例9に係る多孔質体を蓄電装置の電極に用いることができる。 According to Example 9, the two-dimensional material layer 24 having high catalytic properties is formed on the surface of the porous metal 10. Thereby, the porous body 30 which has the high catalyst characteristic close | similar to Pt, for example using the porous metal 10 cheaper than Pt can be provided. The porous body according to Example 9 can be used for the electrode of the power storage device.
 実施例10は、トランジスタ特性を測定する例である。図25は、実施例10におけるトランジスタ特性を測定した構成の平面図である。図25に示すように、両面テープ81上に、ゲート電極83およびチャネル85を配置する。ゲート電極83およびチャネル85は、実施例1のG900Sである。ゲート電極83に白金電極84が接触している。チャネル85に白金電極86が接触している。白金電極84および86には銀ペースト89を用い銅被覆線87が接続されている。ゲート電極83およびチャネル85を覆うように、電気二重層形成用イオン液体82が滴下されている。イオン液体82は、N,N-ジエチル-N-メチル-N-(2メトキシエチル)アンモニウムと、ビス(トリフルオロメタンスルホニル)イミドを混合させたものである。白金電極84および86はシリコン樹脂(不図示)のよりイオン液体82から保護されている。ゲート電極83に銅被覆線87および白金電極84を介し電圧を印加すると、イオン液体82により形成される電気二重層を介し、チャネル85の表面に電界が加わる。チャネル85のコンダクタンスを白金電極86を用い測定する。 Example 10 is an example of measuring transistor characteristics. FIG. 25 is a plan view of a configuration obtained by measuring transistor characteristics in Example 10. As shown in FIG. 25, the gate electrode 83 and the channel 85 are disposed on the double-sided tape 81. The gate electrode 83 and the channel 85 are G900S of the first embodiment. A platinum electrode 84 is in contact with the gate electrode 83. A platinum electrode 86 is in contact with the channel 85. A copper-coated wire 87 is connected to the platinum electrodes 84 and 86 using a silver paste 89. An electric double layer forming ionic liquid 82 is dropped so as to cover the gate electrode 83 and the channel 85. The ionic liquid 82 is a mixture of N, N-diethyl-N-methyl-N- (2methoxyethyl) ammonium and bis (trifluoromethanesulfonyl) imide. The platinum electrodes 84 and 86 are protected from the ionic liquid 82 by a silicon resin (not shown). When a voltage is applied to the gate electrode 83 via the copper clad wire 87 and the platinum electrode 84, an electric field is applied to the surface of the channel 85 via the electric double layer formed by the ionic liquid 82. The conductance of channel 85 is measured using platinum electrode 86.
 図26は、実施例10において測定したゲート電圧Vに対するコンダクタンスσを示す図である。図26に示すように、ゲート電圧Vを変化させるとコンダクタンスσが変化する。これにより、実施例10のトランジスタがトランジスタ動作していることがわかる。コンダクタンスσは、PNAS Vol. 1080, no. 32, pp13002-13006で報告されているグラフェンを用いたトタンジスタの約1000倍である。このように、グラフェンを3次元構造とすることができるため、トランジスタの特性を向上させることができる。 Figure 26 is a diagram showing conductance σ versus gate voltage V G was measured in Example 10. As shown in FIG. 26, the conductance σ is changed when changing the gate voltage V G. As a result, it can be seen that the transistor of Example 10 operates as a transistor. The conductance σ is about 1000 times that of a transistor using graphene reported in PNAS Vol. 1080, no. 32, pp13002-13006. In this manner, since graphene can have a three-dimensional structure, characteristics of the transistor can be improved.
 以上の実施例のように、2次元特性を維持したナノ多孔質体を作製できたことによって、これまでグラフェンでは実現できなかった様々な応用が可能となる。 As described above, the nanoporous body that maintains the two-dimensional characteristics can be produced, thereby enabling various applications that could not be realized with graphene.
 実施例11は、実施例1のG800、実施例2のN800S、実施例2の変形例1のS800およびNS800をリチウム空気電池の正極に用いた例である。以下に作製したリチウム空気電池の各材料を示す。
 負極: 金属リチウム
 電解質:有機電解液(LiTFSI/TEGDME)
 正極: サンプルG800、N800S、S800、またはNS800をチタン(Ti)製のメッシュに保持させる。
 その他の構成は実施例4のリチウム空気電池と同じであり、説明を省略する。
Example 11 is an example in which G800 of Example 1, N800S of Example 2, S800 and NS800 of Modification 1 of Example 2 were used for the positive electrode of a lithium-air battery. Each material of the lithium air battery produced below is shown.
Negative electrode: Metallic lithium Electrolyte: Organic electrolyte (LiTFSI / TEGDME)
Positive electrode: Sample G800, N800S, S800, or NS800 is held on a mesh made of titanium (Ti).
Other configurations are the same as those of the lithium-air battery of Example 4, and the description thereof is omitted.
 図27(a)から図27(d)は、実施例11に係るリチウム空気電池の容量に対する電圧を示す図である。図27(a)から図27(d)は、それぞれサンプルG800、N800S、S800およびNS800に対応する。電気容量1000mAh/gの放電レートおよび充電レートは300mA/gである。図27(a)の各曲線は、矢印方向に充放電のサイクルが1、10、20、30、40、50、60および70であることを示す。図27(b)の各曲線は、矢印方向に充放電のサイクルが1、10、20、30、40、50、60、70、80、90および100であることを示す。図27(c)および図27(d)の各曲線は、矢印方向に充放電のサイクルが1、10、20、30および40であることを示す。 FIGS. 27 (a) to 27 (d) are diagrams showing the voltage with respect to the capacity of the lithium air battery according to Example 11. FIG. FIG. 27A to FIG. 27D correspond to samples G800, N800S, S800, and NS800, respectively. The discharge rate and the charge rate with an electric capacity of 1000 mAh / g are 300 mA / g. Each curve in FIG. 27A indicates that charge / discharge cycles are 1, 10, 20, 30, 40, 50, 60 and 70 in the direction of the arrow. Each curve in FIG. 27B indicates that the charge / discharge cycle is 1, 10, 20, 30, 40, 50, 60, 70, 80, 90 and 100 in the direction of the arrow. Each curve of FIG.27 (c) and FIG.27 (d) shows that the cycle of charging / discharging is 1, 10, 20, 30, and 40 in the arrow direction.
 図27(a)から図27(d)に示すように、各リチウム空気電池とも1000mAh/gの容量が実現できる。特に、N800Sを用いた図27(b)では、100サイクルまで充放電特性はほとんど変化しない。G800、S800およびNS800は、N800Sに比べると充放電サイクルにより、充放電特性が変化する。特にG800はサイクル数が増加すると、充放電特性が劣化する。また、放電時の電圧は、N800S、S800およびNS800はG800よりやや大きい。これらより、電池の電極には、N800Sが最も好ましく、S800およびNS800が次に好ましく、G800は、次に好ましい。 As shown in FIGS. 27 (a) to 27 (d), each lithium-air battery can achieve a capacity of 1000 mAh / g. In particular, in FIG. 27B using N800S, the charge / discharge characteristics hardly change until 100 cycles. G800, S800, and NS800 have different charge / discharge characteristics due to charge / discharge cycles compared to N800S. In particular, when G800 increases the number of cycles, the charge / discharge characteristics deteriorate. Moreover, the voltage at the time of discharge is slightly larger in N800S, S800, and NS800 than in G800. From these, N800S is most preferable for the electrode of the battery, S800 and NS800 are next preferable, and G800 is next preferable.
 以上のように、リチウム空気電池、リチウム二次電池およびリチウム一次電池のようなリチウム電池の正電極には、ドープされた炭素構造体を用いることが好ましい。特に、NおよびSの少なくとも一方がドープされた炭素構造体を用いることが好ましい。 As described above, it is preferable to use a doped carbon structure for the positive electrode of a lithium battery such as a lithium-air battery, a lithium secondary battery, or a lithium primary battery. In particular, it is preferable to use a carbon structure doped with at least one of N and S.
 図28および図29は、これまで発表されているリチウム空気電池の性能と実施例11のN800Sを用いたリチウム空気電池の性能を比較した図である。図28の最上行が実施例11のN800Sに対応する。Refの[1]から[20]の各行は報告されているリチウム空気電池である。なお、[1]から[20]は、それぞれ文献に対応するため、同じ番号が複数のリチウム空気電池に対応している場合もある。各列は、正電極の材料、BET(Brunauer-Emmett-Teller)法を用い測定した表面積、電解質材料、動作電圧、ラウンドトリップ効率、最大放電容量、再充電の可否、サイクル寿命を示す。 FIG. 28 and FIG. 29 are diagrams comparing the performance of the lithium air battery that has been announced so far with the performance of the lithium air battery using N800S of Example 11. The top line in FIG. 28 corresponds to N800S in the eleventh embodiment. Each row of Ref [1] to [20] is a reported lithium-air battery. Since [1] to [20] correspond to documents, the same number may correspond to a plurality of lithium air batteries. Each column shows the material of the positive electrode, the surface area measured using the BET (Brunauer-Emmett-Teller) method, the electrolyte material, the operating voltage, the round trip efficiency, the maximum discharge capacity, the possibility of recharging, and the cycle life.
 図28および図29に示すように、金属触媒を使用せず100サイクルの寿命を有したものはこれまで報告されていない。金属触媒を使用することは、重量、資源確保および環境汚染の観点から好ましくない。実施例11では、NおよびSの少なくとも一方がドープされた炭素構造体を正電極として用いることにより、正電極に金属触媒を含まないものとしては、これまで報告されていないようなリチウム空気電池の特性を得ることができた。 As shown in FIG. 28 and FIG. 29, a metal catalyst that does not use a metal and has a life of 100 cycles has not been reported so far. Use of a metal catalyst is not preferable from the viewpoints of weight, resource securing and environmental pollution. In Example 11, by using a carbon structure doped with at least one of N and S as a positive electrode, the positive electrode does not contain a metal catalyst. The characteristics could be obtained.
 実施例11の変形例1として、触媒としてルテニウムを担持するN800をリチウム空気電池の正極に用いた。図30(a)および図30(b)は、実施例11の変形例1の多孔質体の一部の模式図であり、図30(c)および図30(d)は、実施例11の変形例に係るリチウム空気電池の容量に対する電圧を示す図である。図30(a)を参照し、サンプルAの作製方法を説明する。Ni多孔質金属を800℃に3分間加熱し、800℃に加熱した状態でピリジンを1分間供給しNドープグラフェン24aを形成する。降温後、Nドープグラフェン24aを二酸化ルテニウム(RuO)水溶液に10分浸す。その後、500℃30分間の熱処理を行なう。その後、室温に降温し、Ni多孔質金属を塩酸水溶液で除去する。サンプルAでは、Nドープグラフェン24aにルテニウム25が担持される。図30(b)を参照し、サンプルBの作製方法を説明する。500℃30分間熱処理後かつNi多孔質金属を除去前のサンプルAを、800℃に昇温し、ピリジンを1分間供給しNドープグラフェン24bを形成する。降温後、Ni多孔質金属を塩酸水溶液で除去する。サンプルBでは、ルテニウム25を挟むようにNドープグラフェン24aおよび24bが形成される。 As Modification 1 of Example 11, N800 carrying ruthenium as a catalyst was used for the positive electrode of a lithium air battery. 30 (a) and 30 (b) are schematic views of a part of the porous body of Modification Example 1 of Example 11, and FIGS. 30 (c) and 30 (d) are diagrams of Example 11. It is a figure which shows the voltage with respect to the capacity | capacitance of the lithium air battery which concerns on a modification. A method for manufacturing Sample A will be described with reference to FIG. The Ni porous metal is heated to 800 ° C. for 3 minutes, and pyridine is supplied for 1 minute while being heated to 800 ° C. to form N-doped graphene 24a. After cooling, the N-doped graphene 24a is immersed in an aqueous ruthenium dioxide (RuO 2 ) solution for 10 minutes. Thereafter, heat treatment is performed at 500 ° C. for 30 minutes. Thereafter, the temperature is lowered to room temperature, and the Ni porous metal is removed with an aqueous hydrochloric acid solution. In sample A, ruthenium 25 is supported on the N-doped graphene 24a. A method for manufacturing Sample B will be described with reference to FIG. Sample A after heat treatment at 500 ° C. for 30 minutes and before removing the Ni porous metal is heated to 800 ° C., and pyridine is supplied for 1 minute to form N-doped graphene 24b. After the temperature is lowered, the Ni porous metal is removed with an aqueous hydrochloric acid solution. In sample B, N- doped graphenes 24 a and 24 b are formed so as to sandwich ruthenium 25.
 実施例11の変形例1に係るリチウム空気電池の作製方法は、サンプルAおよびBを用いる以外実施例11と同じであり、説明を省略する。図30(b)および図30(c)における放電レートおよび充電レートは200mA/gである。図30(c)および図30(d)の各曲線は、充放電のサイクルが1から45であることを示す。図30(c)に示すように、サンプルAは、図27(b)のN800より充電時の電圧が低くかつ放電時の電圧が高い。図27(d)に示すように、サンプルBはサンプルAより充電時の電圧が低くかつ放電時の電圧が高い。 The manufacturing method of the lithium air battery according to Modification 1 of Example 11 is the same as Example 11 except that Samples A and B are used, and the description thereof is omitted. The discharge rate and the charge rate in FIGS. 30B and 30C are 200 mA / g. Each curve of FIG.30 (c) and FIG.30 (d) shows that the cycle of charging / discharging is 1-45. As shown in FIG. 30 (c), Sample A has a lower voltage during charging and a higher voltage during discharging than N800 in FIG. 27 (b). As shown in FIG. 27D, the sample B has a lower voltage during charging and a higher voltage during discharge than the sample A.
 実施例11の変形例1のように、NおよびSの少なくとも一方をドープされた炭素構造体に金属触媒を担持させることにより、充電時の電圧を低くかつ放電時の電圧を高くできる。さらに、金属触媒を炭素構造体で挟むことにより、充電時の電圧をより低くかつ放電時の電圧をより高くできる。このように、リチウム電池の炭素構造体に金属触媒を担持させることにより、充電時の電圧をより低くかつ放電時の電圧をより高くできる。 As in Modification 1 of Example 11, by supporting a metal catalyst on a carbon structure doped with at least one of N and S, the voltage during charging can be lowered and the voltage during discharging can be increased. Furthermore, by sandwiching the metal catalyst between the carbon structures, the voltage during charging can be lowered and the voltage during discharging can be further increased. Thus, by supporting the metal catalyst on the carbon structure of the lithium battery, the voltage during charging can be lowered and the voltage during discharging can be further increased.
 実施例11の変形例2は、実施例5のように、多孔質金属10にグラフェン層24を形成した状態の多孔質体30(図1(c)参照)をリチウム空気電池の正極に用いた例である。グラフェン層24は、実施例2のN800Sである。 In Modification 2 of Example 11, the porous body 30 (see FIG. 1C) in which the graphene layer 24 is formed on the porous metal 10 as in Example 5 was used for the positive electrode of the lithium-air battery. It is an example. The graphene layer 24 is N800S of Example 2.
 リチウム空気電池の作製方法は、実施例11と同じであり、説明を省略する。図31(a)および図31(b)は、実施例11の変形例2に係るリチウム空気電池の容量に対する電圧を示す図である。放電レートおよび充電レートは0.05mA/cmである。図31(a)に示すように、実施例11の変形例2では、単位体積あたりの容量として、500mAh/cmを実現することができる。図31(b)における各曲線は、充放電のサイクルが1から50であることを示す。図31(b)に示すように、良好なサイクル特性を有する。 The method for manufacturing the lithium-air battery is the same as that in Example 11, and the description thereof is omitted. FIG. 31A and FIG. 31B are diagrams showing the voltage with respect to the capacity of the lithium-air battery according to the second modification of the eleventh embodiment. The discharge rate and the charge rate are 0.05 mA / cm 2 . As shown in FIG. 31A, in the second modification of the eleventh embodiment, 500 mAh / cm 3 can be realized as the capacity per unit volume. Each curve in FIG.31 (b) shows that the cycle of charging / discharging is 1-50. As shown in FIG. 31B, it has good cycle characteristics.
 図32は、実施例11の変形例2に係るリチウム空気電池のサイクル数に対する電圧およびエネルギー効率を示す図である。図32に示すように、充電電圧および放電電圧は50サイクルまでほとんど変化しない。また、エネルギー効率は、62%以上で安定している。 FIG. 32 is a diagram showing voltage and energy efficiency with respect to the number of cycles of a lithium-air battery according to Modification 2 of Example 11. As shown in FIG. 32, the charge voltage and the discharge voltage hardly change until 50 cycles. The energy efficiency is stable at 62% or more.
 実施例11の変形例2では、グラフェンにNをドープすることにより、グラフェンがORRの触媒として機能し、放電時の電圧を高くできる。また、Niを残存させることにより、酸化ニッケルがOERの触媒として機能し、充電電圧を低くできる。 In Modification 2 of Example 11, graphene functions as an ORR catalyst by doping N into graphene, and the voltage during discharge can be increased. Further, by leaving Ni, nickel oxide functions as an OER catalyst, and the charging voltage can be lowered.
 実施例11の変形例2のように、Ni多孔質金属を残存させてアルカリ空気電池に用いることができる。実施例11の変形例1および2のように、グラフェンにNおよびSの少なくとも一方をドープすることにより、放電電圧を高くし、金属触媒を用いることにより、充電電圧を低くできる。金属触媒はNiまたはRu以外を用いてもよい。 As in Modification 2 of Example 11, the Ni porous metal can be left and used in an alkaline air battery. As in Modifications 1 and 2 of Example 11, the discharge voltage is increased by doping graphene with at least one of N and S, and the charge voltage can be decreased by using a metal catalyst. Metal catalysts other than Ni or Ru may be used.
 実施例12は、気化装置に実施例1から3の多孔質グラフェンを用いる例である。熱処理以外は、実施例1および2と同様の方法を用い、サンプルG950、G800、N950およびN800を作製した。熱処理方法を表3に示す。
Figure JPOXMLDOC01-appb-T000003
Example 12 is an example in which the porous graphene of Examples 1 to 3 is used for the vaporizer. Samples G950, G800, N950, and N800 were produced using the same method as in Examples 1 and 2 except for the heat treatment. Table 3 shows the heat treatment method.
Figure JPOXMLDOC01-appb-T000003
 まず、アルゴンと水素の混合ガス雰囲気において、Ni多孔質金属を前処理のために熱処理する。この前処理により、細孔サイズをほぼ所望と大きさとする。サンプルG950およびN950の熱処理温度は950℃、熱処理時間は25分である。サンプルG800およびN800の熱処理温度は800℃、熱処理時間は2分である。次に、グラフェンの成膜のため、原料ガスを導入し、熱処理する。サンプルG950の熱処理温度は950℃、熱処理時間は5分である。サンプルN950の熱処理温度は800℃、熱処理時間は5分である。サンプルG800およびN800の熱処理温度は800℃、熱処理時間は3分である。サンプルN950においてグラフェン成膜のための熱処理温度が低いのは、熱処理温度を950℃とするとNのドープ量が減るためである。 First, Ni porous metal is heat-treated for pretreatment in a mixed gas atmosphere of argon and hydrogen. By this pretreatment, the pore size is set to a desired size. Samples G950 and N950 have a heat treatment temperature of 950 ° C. and a heat treatment time of 25 minutes. Samples G800 and N800 have a heat treatment temperature of 800 ° C. and a heat treatment time of 2 minutes. Next, in order to form a graphene film, a raw material gas is introduced and heat treatment is performed. Sample G950 has a heat treatment temperature of 950 ° C. and a heat treatment time of 5 minutes. Sample N950 has a heat treatment temperature of 800 ° C. and a heat treatment time of 5 minutes. Samples G800 and N800 have a heat treatment temperature of 800 ° C. and a heat treatment time of 3 minutes. The reason why the heat treatment temperature for graphene film formation in Sample N950 is low is that when the heat treatment temperature is 950 ° C., the doping amount of N decreases.
 サンプルG950およびG800のCVDの原料ガスはベンゼンであり、サンプルN950およびN800のCVDの原料ガスはピリジンである。各サンプルの膜厚は30μmから35μmである。サンプルG800およびN800のBJH法を用い測定した細孔サイズは、それぞれ258nmおよび259nmである。サンプルG800およびN800のSEMを用いて測定した細孔のサイズは、100nmから300nmである。サンプルG950およびN950のSEMを用いて測定した細孔のサイズは、1μmから2μmである。BET法を用いて測定したサンプルG950、G800、N950およびN800の表面積は、それぞれ978m/g、1260m/g、778m/gおよび786m/gである。 The source gas for CVD of samples G950 and G800 is benzene, and the source gas for CVD of samples N950 and N800 is pyridine. The film thickness of each sample is 30 μm to 35 μm. The pore sizes measured using the BJH method of samples G800 and N800 are 258 nm and 259 nm, respectively. The pore size measured using SEM of samples G800 and N800 is from 100 nm to 300 nm. The pore size measured using SEM of samples G950 and N950 is 1 μm to 2 μm. The surface areas of samples G950, G800, N950 and N800 measured using the BET method are 978 m 2 / g, 1260 m 2 / g, 778 m 2 / g and 786 m 2 / g, respectively.
 図33は、実施例12に用いる各サンプルの光の波長に対する全反射率および透過率を示す図である。図33に示すように、各サンプルとの透過率は0.001%程度と非常に小さい。反射率は20%以下と小さい。透過せず反射しない光は各サンプルに吸収される。各サンプルの親水性を調べるため、水の接触角を調べた。サンプルG950、G800、N950およびN800の水の接触角は、それぞれ115°、105°、82°および74°である。Nドープしたサンプルは接触角が小さい。 FIG. 33 is a diagram showing the total reflectance and transmittance of each sample used in Example 12 with respect to the wavelength of light. As shown in FIG. 33, the transmittance with each sample is as small as about 0.001%. The reflectance is as small as 20% or less. Light that is neither transmitted nor reflected is absorbed by each sample. In order to examine the hydrophilicity of each sample, the contact angle of water was examined. The water contact angles of samples G950, G800, N950 and N800 are 115 °, 105 °, 82 ° and 74 °, respectively. The N-doped sample has a small contact angle.
 図34は、実施例12に用いる各サンプルの温度に対する熱伝導率を示す図である。各サンプルとの熱伝導率が小さい。特に、N950およびN800の熱伝導率は小さい。以上のように、光の吸収率が高く、熱伝導率が小さく、親水性が高くかつ表面積の大きいシートは、気化装置に用いることができる。 FIG. 34 is a diagram showing the thermal conductivity with respect to the temperature of each sample used in Example 12. Low thermal conductivity with each sample. In particular, the thermal conductivity of N950 and N800 is small. As described above, a sheet having a high light absorption rate, a low thermal conductivity, a high hydrophilicity, and a large surface area can be used for a vaporizer.
 図35は、実施例12に係る気化装置の断面図である。図35に示すように、気化装置95は容器97および多孔質グラフェン98を有する。容器97内には水等の液体96が溜められている。液体96に多孔質グラフェン98が浮いている。多孔質グラフェン98に光99が照射される。多孔質グラフェン98は、光の吸収率が高いため光99を吸収し発熱する。多孔質グラフェン98は、熱伝導率が小さく多孔質内に液体96を閉じ込めているため、熱が液体96に逃げず、高温を保つ。多孔質グラフェン98は細孔を有するため、親水性が高ければ毛管現象により細孔内に液体96が供給される。多孔質グラフェン98は高温のため、液体82が蒸発する。このようにして、効率的に液体96を蒸発させることができる。 FIG. 35 is a cross-sectional view of the vaporizer according to the twelfth embodiment. As shown in FIG. 35, the vaporizer 95 includes a container 97 and porous graphene 98. A liquid 96 such as water is stored in the container 97. Porous graphene 98 is floating in the liquid 96. The porous graphene 98 is irradiated with light 99. Since the porous graphene 98 has a high light absorption rate, it absorbs the light 99 and generates heat. Since the porous graphene 98 has a low thermal conductivity and confines the liquid 96 in the porous body, heat does not escape to the liquid 96 and maintains a high temperature. Since the porous graphene 98 has pores, the liquid 96 is supplied into the pores by capillary action if the hydrophilicity is high. Since the porous graphene 98 has a high temperature, the liquid 82 evaporates. In this way, the liquid 96 can be efficiently evaporated.
 液体96として水、光99として強度が1kW/mのソーラシュミレータ(太陽光に近い光)を用い水の蒸発速度を測定した。図36は、実施例12における各サンプルを用いた水の蒸発量を測定した結果を示す図である。質量変化は、水の蒸発による水の質量の変化を示す。水は、各サンプルのない状態での水の蒸発を示す。図36に示すように、水の蒸発速度は各サンプルを用いることにより速くなる。水のみの蒸発速度は、0.357kg/mhである。サンプルG950、G800、N950およびN800を用いたときの蒸発速度は、それぞれ1.32kg/mh、1.04kg/mh、1.50kg/mhおよび1.14kg/mhであった。Nをドープしたサンプルは蒸発速度が速い。これは、Nをドープすることで親水性が高くなり、かつ熱伝導率が低くなるためと考えられる。また、G950およびN950は、G800およびN800より蒸発速度が速い。これは、G950およびN950では、細孔のサイズが水の毛細現象を生じやすいサイズ(例えば約1μm)であり、G800およびN800では、細孔のサイズが小さすぎるためと考えられる。 The evaporation rate of water was measured using water as the liquid 96 and a solar simulator (light close to sunlight) having an intensity of 1 kW / m 2 as the light 99. FIG. 36 is a diagram showing the results of measuring the amount of water evaporation using each sample in Example 12. The mass change indicates a change in the mass of water due to water evaporation. Water indicates the evaporation of water in the absence of each sample. As shown in FIG. 36, the evaporation rate of water is increased by using each sample. The evaporation rate of water alone is 0.357 kg / m 2 h. The evaporation rates when using samples G950, G800, N950 and N800 are 1.32 kg / m 2 h, 1.04 kg / m 2 h, 1.50 kg / m 2 h and 1.14 kg / m 2 h, respectively. there were. The sample doped with N has a high evaporation rate. This is presumably because doping with N increases the hydrophilicity and decreases the thermal conductivity. Also, G950 and N950 have a higher evaporation rate than G800 and N800. This is presumably because the pore size of G950 and N950 is likely to cause water capillary phenomenon (for example, about 1 μm), and that of G800 and N800 is too small.
 以上のように、実施例1から3の多孔質グラフェンを気化装置に用いる。これにより、液地の気化速度を高めることができる。また、実施形態1に係る多孔質体30、32、構造体34または36を気化装置に用いることができる。多孔質体30、32、構造体34または36は、毛管現状が起こりやすい細孔サイズであり、かつ表面積が大きいため、気化速度表面積が大きいため、気化速度を大きくすることができる。また、この気化装置を浄水装置に用いることにより、浄水速度を高めることができる。 As described above, the porous graphene of Examples 1 to 3 is used for the vaporizer. Thereby, the vaporization speed of a liquid ground can be raised. Moreover, the porous bodies 30 and 32 and the structure 34 or 36 which concern on Embodiment 1 can be used for a vaporizer. Since the porous bodies 30 and 32 and the structure 34 or 36 have a pore size in which the capillary current is likely to occur and have a large surface area, the vaporization rate surface area is large, so that the vaporization rate can be increased. Moreover, a water purification rate can be raised by using this vaporization apparatus for a water purifier.
 以上、発明の好ましい実施例について詳述したが、本発明は係る特定の実施例に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。 The preferred embodiments of the present invention have been described in detail above. However, the present invention is not limited to the specific embodiments, and various modifications and changes can be made within the scope of the gist of the present invention described in the claims. It can be changed.
 10 多孔質金属
 12 細孔
 14 リガメント
 20 炭素構造体
 22 細孔
 24 層
 30、32 多孔質体
 34、36 構造体
 40 蓄電装置
 42 正極
 44 電解質
 46 負極
DESCRIPTION OF SYMBOLS 10 Porous metal 12 Pore 14 Ligament 20 Carbon structure 22 Pore 24 Layer 30, 32 Porous body 34, 36 Structure 40 Power storage device 42 Positive electrode 44 Electrolyte 46 Negative electrode

Claims (21)

  1.  平均サイズが2μm以下であり、かつ最小サイズが60nm以上である細孔を有する炭素構造体を具備することを特徴とする多孔質体。 A porous body comprising a carbon structure having pores having an average size of 2 μm or less and a minimum size of 60 nm or more.
  2.  前記炭素構造体は、ディラックコーン型の電子状態密度を有することを特徴とする請求項1記載の多孔質体。 The porous body according to claim 1, wherein the carbon structure has a Dirac-cone electronic density of states.
  3.  前記細孔内は空洞であることを特徴とする請求項1または2記載の多孔質体。 The porous body according to claim 1 or 2, wherein the pores are hollow.
  4.  多孔質金属を具備し、
     前記炭素構造体は、前記多孔質金属の表面を覆うことを特徴とする請求項1または2記載の多孔質体。
    Comprising a porous metal,
    The porous body according to claim 1, wherein the carbon structure covers a surface of the porous metal.
  5.  前記炭素構造体は、触媒となる物質を含むことを特徴とする請求項1から4のいずれか一項記載の多孔質体。 The porous body according to any one of claims 1 to 4, wherein the carbon structure includes a substance that serves as a catalyst.
  6.  前記炭素構造体は、窒素、ホウ素、リン、硫黄、ニッケルおよびマンガンの少なくとも1つを含むことを特徴とする請求項1から4のいずれか一項記載の多孔質体。 The porous body according to any one of claims 1 to 4, wherein the carbon structure includes at least one of nitrogen, boron, phosphorus, sulfur, nickel, and manganese.
  7.  前記細孔の平均サイズは1μm以下であることを特徴とする請求項6記載の多孔質体。 The porous body according to claim 6, wherein the average size of the pores is 1 μm or less.
  8.  多孔質金属と、
     前記多孔質金属の表面を覆うように設けられた層状構造を有する遷移金属カルコゲナイド膜と、
    を具備することを特徴とする多孔質体。
    Porous metal,
    A transition metal chalcogenide film having a layered structure provided so as to cover the surface of the porous metal;
    A porous body comprising:
  9.  請求項1から8のいずれか一項記載の多孔質体を潰した構造を有することを特徴とする構造体。 A structure having a structure in which the porous body according to any one of claims 1 to 8 is crushed.
  10.  結晶粒の平均サイズが2μm以下である金属と、
     前記結晶粒を覆うように粒界に設けられたグラフェン層と、
    を具備することを特徴とする構造体。
    A metal having an average size of crystal grains of 2 μm or less;
    A graphene layer provided at a grain boundary so as to cover the crystal grains;
    The structure characterized by comprising.
  11.  請求項3記載の多孔質体の炭素構造体を酸化させた構造を有することを特徴とする構造体。 A structure having a structure obtained by oxidizing the porous carbon structure according to claim 3.
  12.  請求項1から7のいずれか一項記載の多孔質体の炭素構造体を酸化および還元させた構造を有することを特徴とする構造体。 A structure having a structure obtained by oxidizing and reducing the porous carbon structure according to any one of claims 1 to 7.
  13.  請求項1から8のいずれか一項記載の多孔質体または請求項9から12のいずれか一項記載の構造体を含むことを特徴とする蓄電装置。 A power storage device comprising the porous body according to any one of claims 1 to 8 or the structure according to any one of claims 9 to 12.
  14.  請求項1から8のいずれか一項記載の多孔質体または請求項9から12のいずれか一項記載の構造体を含むことを特徴とする触媒。 A catalyst comprising the porous body according to any one of claims 1 to 8 or the structure according to any one of claims 9 to 12.
  15.  請求項1から8のいずれか一項記載の多孔質体または請求項9から12のいずれか一項記載の構造体を含むことを特徴とするトランジスタ。 A transistor comprising the porous body according to any one of claims 1 to 8 or the structure according to any one of claims 9 to 12.
  16.  請求項1から8のいずれか一項記載の多孔質体または請求項9から12のいずれか一項記載の構造体を含むことを特徴とするセンサー。 A sensor comprising the porous body according to any one of claims 1 to 8 or the structure according to any one of claims 9 to 12.
  17.  請求項1から8のいずれか一項記載の多孔質体または請求項9から12のいずれか一項記載の構造体を含むことを特徴とする太陽電池。 A solar cell comprising the porous body according to any one of claims 1 to 8 or the structure according to any one of claims 9 to 12.
  18.  脱合金化により形成された多孔質金属を細孔およびリガメントのサイズが大きくなるように熱処理する工程と、
     前記多孔質金属の表面に、ディラックコーン型の電子状態密度を有する炭素構造体を形成する工程と、
     を含み、
     前記熱処理する工程は、前記炭素構造体を形成する工程の前または同時に実施されることを特徴とする多孔質体の製造方法。
    Heat-treating the porous metal formed by dealloying to increase the size of the pores and ligaments;
    Forming a carbon structure having a Dirac cone electronic density of states on the surface of the porous metal;
    Including
    The method for producing a porous body, wherein the heat treatment step is performed before or simultaneously with the step of forming the carbon structure.
  19.  NおよびSの少なくとも一方がドープされ、平均サイズが2μm以下であり、かつ最小サイズが60nm以上である細孔を有する炭素構造体を含む電極を具備することを特徴とするリチウム電池。 A lithium battery comprising an electrode including a carbon structure doped with at least one of N and S, having an average size of 2 μm or less and a minimum size of 60 nm or more.
  20.  前記電極は正電極であり、前記リチウム電池はリチウム空気電池であることを特徴とする請求項19記載のリチウム電池。 The lithium battery according to claim 19, wherein the electrode is a positive electrode and the lithium battery is a lithium air battery.
  21.  請求項1から8のいずれか一項記載の多孔質体または請求項9から12のいずれか一項記載の構造体を含むことを特徴とする気化装置。 A vaporizer comprising the porous body according to any one of claims 1 to 8 or the structure according to any one of claims 9 to 12.
PCT/JP2015/059295 2014-07-04 2015-03-26 Porous body and method for manufacturing same, structural element, power storage device, catalyst, transistor, sensor, solar cell, lithium cell, and vaporizing device WO2016002277A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016531142A JP6455942B2 (en) 2014-07-04 2015-03-26 Porous body and method for manufacturing the same, power storage device, transistor and solar cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-139051 2014-07-04
JP2014139051 2014-07-04

Publications (1)

Publication Number Publication Date
WO2016002277A1 true WO2016002277A1 (en) 2016-01-07

Family

ID=55018836

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/059295 WO2016002277A1 (en) 2014-07-04 2015-03-26 Porous body and method for manufacturing same, structural element, power storage device, catalyst, transistor, sensor, solar cell, lithium cell, and vaporizing device

Country Status (2)

Country Link
JP (1) JP6455942B2 (en)
WO (1) WO2016002277A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3018735A4 (en) * 2013-09-13 2016-12-07 Lg Chemical Ltd Cathode for lithium-air battery and manufacturing method therefor
JP2017197424A (en) * 2016-04-28 2017-11-02 国立大学法人東北大学 Porous body and production method of the same, as well as electrode
WO2018198852A1 (en) * 2017-04-25 2018-11-01 鈴豊精鋼株式会社 Porous catalyst, catalyst layer for fuel cell, electrode, membrane electrode assembly, fuel cell, and method for porous catalyst
CN109291450A (en) * 2018-09-13 2019-02-01 中北大学 A kind of high-performance nano graphene foaming aluminum and preparation method thereof and prepare material
CN109994319A (en) * 2019-04-11 2019-07-09 合肥工业大学 The biomass derived carbon material and its synthetic method of a kind of nitrogen sulphur codope and application
JP2019200953A (en) * 2018-05-18 2019-11-21 日本電信電話株式会社 Metal-air battery and air electrode manufacturing method
JP2020524874A (en) * 2017-06-22 2020-08-20 インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation Batteries and methods of forming batteries

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107731936B (en) * 2017-10-20 2020-02-18 电子科技大学 Tunneling type photoelectric detector based on three-dimensional Dirac material and preparation method
CN110408950B (en) * 2019-08-30 2021-04-27 南通大学 Electrolytic water cathode based on microscopic blasting process and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001079113A1 (en) * 2000-04-18 2001-10-25 Sony Corporation Method and system for producing fullerene
JP2005263509A (en) * 2004-03-16 2005-09-29 Nippon Sheet Glass Co Ltd Porous carbon material and method for manufacturing the same
JP2006052115A (en) * 2004-08-13 2006-02-23 Japan Science & Technology Agency Method for manufacturing metal-supporting carbon material
JP2013109896A (en) * 2011-11-18 2013-06-06 Toyota Motor Corp Electrode material, and method for manufacturing electrode material

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007137794A1 (en) * 2006-05-31 2007-12-06 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Porous carbon electrode with conductive polymer coating
JP4967034B2 (en) * 2010-01-27 2012-07-04 株式会社日立製作所 Circuit device in which graphene film and metal electrode are electrically joined
WO2011122059A1 (en) * 2010-03-31 2011-10-06 日本碍子株式会社 Carbon membrane structure and method for producing same
KR20120063164A (en) * 2010-12-07 2012-06-15 삼성전자주식회사 Graphene structure and method of fabricating the same
JP5728031B2 (en) * 2011-02-09 2015-06-03 株式会社インキュベーション・アライアンス Method for producing multilayer graphene-coated substrate
JP2014055086A (en) * 2012-09-13 2014-03-27 Panasonic Corp Method for producing graphene

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001079113A1 (en) * 2000-04-18 2001-10-25 Sony Corporation Method and system for producing fullerene
JP2005263509A (en) * 2004-03-16 2005-09-29 Nippon Sheet Glass Co Ltd Porous carbon material and method for manufacturing the same
JP2006052115A (en) * 2004-08-13 2006-02-23 Japan Science & Technology Agency Method for manufacturing metal-supporting carbon material
JP2013109896A (en) * 2011-11-18 2013-06-06 Toyota Motor Corp Electrode material, and method for manufacturing electrode material

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9954231B2 (en) 2013-09-13 2018-04-24 Lg Chem, Ltd. Positive electrode for lithium-air battery and method for preparing the same
EP3018735A4 (en) * 2013-09-13 2016-12-07 Lg Chemical Ltd Cathode for lithium-air battery and manufacturing method therefor
JP2017197424A (en) * 2016-04-28 2017-11-02 国立大学法人東北大学 Porous body and production method of the same, as well as electrode
JP6467117B1 (en) * 2017-04-25 2019-02-06 鈴豊精鋼株式会社 Porous catalyst, catalyst layer for fuel cell, electrode, membrane electrode assembly, fuel cell, and method for producing porous catalyst
WO2018198852A1 (en) * 2017-04-25 2018-11-01 鈴豊精鋼株式会社 Porous catalyst, catalyst layer for fuel cell, electrode, membrane electrode assembly, fuel cell, and method for porous catalyst
JP2020524874A (en) * 2017-06-22 2020-08-20 インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation Batteries and methods of forming batteries
US11205777B2 (en) 2017-06-22 2021-12-21 International Business Machines Corporation Thin cathode for micro-battery
JP7041692B2 (en) 2017-06-22 2022-03-24 インターナショナル・ビジネス・マシーンズ・コーポレーション Batteries and how to form batteries
US11289704B2 (en) 2017-06-22 2022-03-29 International Business Machines Corporation Thin cathode for micro-battery
JP2019200953A (en) * 2018-05-18 2019-11-21 日本電信電話株式会社 Metal-air battery and air electrode manufacturing method
WO2019220999A1 (en) * 2018-05-18 2019-11-21 日本電信電話株式会社 Metal-air battery and method of producing air electrode
JP7025644B2 (en) 2018-05-18 2022-02-25 日本電信電話株式会社 Metal-air battery and air electrode manufacturing method
US11374229B2 (en) 2018-05-18 2022-06-28 Nippon Telegraph And Telephone Corporation Metal-air battery and method of producing air electrode
CN109291450A (en) * 2018-09-13 2019-02-01 中北大学 A kind of high-performance nano graphene foaming aluminum and preparation method thereof and prepare material
CN109994319A (en) * 2019-04-11 2019-07-09 合肥工业大学 The biomass derived carbon material and its synthetic method of a kind of nitrogen sulphur codope and application

Also Published As

Publication number Publication date
JPWO2016002277A1 (en) 2017-07-06
JP6455942B2 (en) 2019-01-23

Similar Documents

Publication Publication Date Title
JP6455942B2 (en) Porous body and method for manufacturing the same, power storage device, transistor and solar cell
Dong et al. Fabrication of hierarchical hollow Mn doped Ni (OH) 2 nanostructures with enhanced catalytic activity towards electrochemical oxidation of methanol
Khan et al. Two-dimensional (2D) nanomaterials towards electrochemical nanoarchitectonics in energy-related applications
Li et al. 3D hierarchical CoO@ MnO 2 core–shell nanohybrid for high-energy solid state asymmetric supercapacitors
Samdani et al. Self-assembled Bi2MoO6 nanopetal array on carbon spheres toward enhanced supercapacitor performance
Zheng et al. Ultrafine nickel–copper carbonate hydroxide hierarchical nanowire networks for high-performance supercapacitor electrodes
Wen et al. Anatase TiO2 ultrathin nanobelts derived from room-temperature-synthesized titanates for fast and safe lithium storage
Yan et al. Nanoparticle-decorated ultrathin La 2 O 3 nanosheets as an efficient electrocatalysis for oxygen evolution reactions
Mozaffari et al. Hierarchical NiO@ Ni (OH) 2 nanoarrays as high-performance supercapacitor electrode material
Meng et al. Synthesis of SnO2 nanoflowers and electrochemical properties of Ni/SnO2 nanoflowers in supercapacitor
US20190088420A1 (en) Laser induced graphene hybrid materials for electronic devices
Bayansal et al. Nano-structured CuO films prepared by simple solution methods: plate-like, needle-like and network-like architectures
Kamedulski et al. High surface area micro-mesoporous graphene for electrochemical applications
Tan et al. Controlled synthesis of MnO2/CNT nanocomposites for supercapacitor applications
Sivakumar et al. Hierarchical NiCo/NiO/NiCo2O4 composite formation by solvothermal reaction as a potential electrode material for hydrogen evolutions and asymmetric supercapacitors
Goncalves et al. Nanoporous gold‐based materials for electrochemical energy storage and conversion
Zhang et al. Enhanced performance of nano-Bi2WO6-graphene as pseudocapacitor electrodes by charge transfer channel
Ma et al. Synthesis and applications of one-dimensional porous nanowire arrays: a review
Hassan et al. In-situ fabrication of ZnO thin film electrode using spent Zn–C battery and its electrochemical performance for supercapacitance
Wu et al. Electrospun MnCo2O4 nanofibers for efficient hydrogen evolution reaction
Karthikeyan et al. Electrochemical performance of reduced graphene oxide (rGO) decorated lanthanum oxide (La2O3) composite nanostructure as asymmetric supercapacitors
Munir et al. Synergistic effect of noble metal doping and composite formation to boost the electrochemical properties of vanadium pentoxide
Akhtar et al. Synthesis and characterization of graphene oxide-based nanocomposite NaCr2O4/GO for electrochemical applications
Sun et al. Highly efficient reduction of aqueous Cr (VI) with novel ZnO/SnS nanocomposites through the piezoelectric effect
Faisal et al. Effect of binder on the performance of zinc‐tin‐sulfide nano flakes for the high‐performance supercapattery devices

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15815798

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016531142

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15815798

Country of ref document: EP

Kind code of ref document: A1