WO2016000344A1 - 一种多径选择方法和设备、存储介质 - Google Patents

一种多径选择方法和设备、存储介质 Download PDF

Info

Publication number
WO2016000344A1
WO2016000344A1 PCT/CN2014/088241 CN2014088241W WO2016000344A1 WO 2016000344 A1 WO2016000344 A1 WO 2016000344A1 CN 2014088241 W CN2014088241 W CN 2014088241W WO 2016000344 A1 WO2016000344 A1 WO 2016000344A1
Authority
WO
WIPO (PCT)
Prior art keywords
multipath component
component signal
region
signal
power
Prior art date
Application number
PCT/CN2014/088241
Other languages
English (en)
French (fr)
Inventor
刘中伟
邱宁
肖海勇
邢艳楠
Original Assignee
深圳市中兴微电子技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市中兴微电子技术有限公司 filed Critical 深圳市中兴微电子技术有限公司
Priority to US15/322,428 priority Critical patent/US9942061B2/en
Publication of WO2016000344A1 publication Critical patent/WO2016000344A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • H04B1/1081Reduction of multipath noise
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/345Interference values
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines

Definitions

  • the present invention relates to channel estimation techniques, and in particular, to a multipath selection method and apparatus, and a storage medium.
  • a wireless signal is transmitted from a base station to a user equipment (UE, User Equipment), and sequentially passes through a transmit filter, a wireless fading channel, and a receive filter, so that the received signal received by the UE includes not only a wireless fading channel.
  • the resulting multipath component also includes the extension of the multipath component caused by the filter filtering process.
  • the signal and the noise are distinguished by setting a uniform threshold threshold, which causes the signal and the noise to be misjudged if the threshold is set too high or the setting is too low, thereby reducing the The accuracy and signal-to-noise ratio of multipath component selection.
  • embodiments of the present invention are expected to provide a multipath selection method and apparatus, and a storage medium, which can improve a selection accuracy signal to noise ratio of a multipath component.
  • an embodiment of the present invention provides a multipath selection method, where the method includes:
  • Searching the at least one first multipath component region according to a preset first noise threshold acquiring An effective multipath component signal in the at least one first multipath component region; and searching for a second multipath component region according to a preset second noise threshold to obtain an effective multipath component in the second multipath component region signal.
  • the power spectrum of the correlation sequence is divided into at least one first multipath component region according to a preset division rule according to an average noise power of the received signal.
  • a second multipath component region including:
  • the preset determining strategy includes: when a ratio of a maximum power value of the correlation sequence power spectrum to an average noise power is greater than a first decision threshold TH1 Or less than the first decision threshold TH1 but greater than the second decision threshold TH2, or less than the second decision threshold TH2 but greater than the third decision threshold TH3, the multipath component signal corresponding to the maximum power value of the correlation sequence power spectrum is a multipath component signal; wherein TH1>TH2>TH3>0;
  • the preset selection strategy includes: when the ratio of the power of the first multipath component signal to the average noise power is greater than the first decision threshold TH1, selecting the first plurality in the correlation sequence power spectrum
  • the region of the region having a width of 2 ⁇ N 1 +1 is the first multipath component region corresponding to the first multipath component signal;
  • the region width is 2 with the first multipath component as the center.
  • a region of ⁇ N 2 +1 is a first multipath component region corresponding to the first multipath component signal;
  • the region width is 2 with the first multipath component as the center.
  • a region of ⁇ N 3 +1 is a first multipath component region corresponding to the first multipath component signal;
  • N 1 >N 2 >N 3 and N 1 , N 2 and N 3 are all positive integers.
  • the determining in combination with the first or second possible implementation manner, the determining, according to a preset determining strategy, determining an ith first multipath component signal of the correlation sequence power spectrum, including :
  • determining, according to a preset determination strategy, a multipath component signal corresponding to a maximum power value of the correlation sequence power spectrum is an ith first multipath component signal of the correlation sequence power spectrum
  • the multipath component signal corresponding to the maximum power value of the remaining correlation sequence power spectrum is determined to be the ith first multipath component signal of the correlation sequence power spectrum.
  • the searching for the at least one first multipath component region according to the preset first noise threshold, and obtaining the effective in the at least one first multipath component region The multipath component signal is searched for, and the second multipath component region is searched according to the preset second noise threshold, and the effective multipath component signal in the second multipath component region is obtained, including:
  • the multipath component signal whose power is greater than the first noise threshold G1 is an effective multipath component signal; and the multipath component signal smaller than the first noise threshold G1 is a non-effective multipath component signal;
  • the multipath component signal having a power greater than the second noise threshold G2 is an effective multipath component signal; and the multipath component signal having a power less than the second noise threshold G2 is a non-effective multipath component signal.
  • an embodiment of the present invention provides a multipath selection device, where the device includes: Acquiring a unit, a dividing unit, and a routing unit, wherein
  • the acquiring unit is configured to acquire a correlation sequence between the received signal and the local reference signal by using a correlation calculation method
  • the dividing unit is configured to divide, according to a preset dividing rule, a power spectrum of the correlation sequence into at least one first multipath component region and a second multipath component region according to an average noise power of the received signal;
  • the selection unit is configured to search the at least one first multipath component region according to a preset first noise threshold, and acquire an effective multipath component signal in the at least one first multipath component region; And setting a second noise threshold to search for the second multipath component region, and acquiring an effective multipath component signal in the second multipath component region.
  • the dividing unit includes: a determining subunit, a selecting subunit, and an obtaining subunit, where
  • the determining subunit is configured to determine an i-th first multipath component signal of the correlation sequence power spectrum according to a preset determination policy, where i represents a sequence number of the first multipath component signal, represented by a positive integer ;
  • the selecting subunit is configured to determine an i th first multipath component region corresponding to the i th first multipath component signal according to a preset selection policy
  • the acquiring subunit is configured to acquire a second multipath component region.
  • the preset determining strategy includes: when a ratio of a maximum power value of the correlation sequence power spectrum to an average noise power is greater than a first decision threshold TH1 Or less than the first decision threshold TH1 but greater than the second decision threshold TH2, or less than the second decision threshold TH2 but greater than the third decision threshold TH3, the multipath component signal corresponding to the maximum power value of the correlation sequence power spectrum is a multipath component signal; wherein TH1>TH2>TH3>0;
  • the preset selection strategy includes: when the ratio of the power of the first multipath component signal to the average noise power is greater than the first decision threshold TH1, selecting the first plurality in the correlation sequence power spectrum
  • the region of the region having a width of 2 ⁇ N 1 +1 is the first multipath component region corresponding to the first multipath component signal;
  • the region width is 2 with the first multipath component as the center.
  • a region of ⁇ N 2 +1 is a first multipath component region corresponding to the first multipath component signal;
  • the region width is 2 with the first multipath component as the center.
  • a region of ⁇ N 3 +1 is a first multipath component region corresponding to the first multipath component signal;
  • N 1 >N 2 >N 3 and N 1 , N 2 and N 3 are all positive integers.
  • the determining subunit is configured to:
  • determining, according to a preset determination strategy, a multipath component signal corresponding to a maximum power value of the correlation sequence power spectrum is an ith first multipath component signal of the correlation sequence power spectrum
  • the multipath component signal corresponding to the maximum power value of the remaining correlation sequence power spectrum is determined to be the ith first multipath component signal of the correlation sequence power spectrum.
  • the selection unit includes a first selection subunit and a second selection subunit, wherein
  • the first path selection sub-unit is configured to: in the first multipath component region, the multipath component signal whose power is greater than the first noise threshold G1 is an effective multipath component signal; and less than the first noise threshold G1
  • the multipath component signal is a non-effective multipath component signal;
  • the second selection subunit is configured to: in the second multipath component region, the multipath component signal whose power is greater than the second noise threshold G2 is an effective multipath component signal; and the multipath component signal whose power is smaller than the second noise threshold G2 Is a non-effective multipath component signal.
  • a storage medium storing a computer program configured to perform the multipath selection method of the foregoing embodiments.
  • the embodiment of the invention provides a multipath selection method and device, which effectively multiplies the strong multipath component and its corresponding extended region and non-strong multipath components and their corresponding extension regions by different noise thresholds.
  • the choice of the diameter thereby improving the selection accuracy and signal to noise ratio of the multipath component.
  • FIG. 1 is a schematic flowchart diagram of a multipath selection method according to an embodiment of the present invention
  • FIG. 2 is a power spectrum diagram of a correlation sequence according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a method for dividing a first multipath component region and a second multipath component region according to an embodiment of the present disclosure
  • FIG. 4 is a comparison diagram of effects according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a multipath selection device according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of another multipath selection device according to an embodiment of the present invention.
  • a flow of a multipath selection method may be applied to a receiver side in a communication or radar system.
  • the receiver may be a device that has a signal receiving capability, such as a UE or a base station.
  • the method may include:
  • the received signal includes at least one multipath component signal. Therefore, the correlation operation between the received signal and the local reference signal is substantially to determine a plurality of multipath component signals and local reference signals in the received signal.
  • the local reference signal may be a local scrambling code, which is not specifically limited in this embodiment of the present invention.
  • the local reference signal and the received signal are respectively sampled before the correlation operation is performed on the received signal and the local reference signal.
  • the specific sampling process may include:
  • sampling the local reference signal to acquire a sequence of sampling points of a local reference signal composed of sampling points of M local reference signals
  • the sampling sequence of the at least one multipath component signal in the received signal is obtained by performing sliding window sampling on the received signal.
  • the correlation sequence between the received signal and the local reference signal is obtained by a correlation calculation method, according to a sampling point sequence of the m multipath component signals of the received signal and a sampling point sequence of the local reference signal;
  • the sampling point sequence of the m multipath component signals may be formed into a conjugate of the first matrix of m ⁇ M and multiplied by the sequence of sampling points of the local reference signal to obtain the received signal and the a correlation sequence between local reference signals, the length of the correlation sequence being m ⁇ 1;
  • the value of m is selected to be 64, and the value of M is selected to be 256.
  • S102 Acquire a power spectrum of the correlation sequence and an average noise power of the received signal
  • the power spectrum of the correlation sequence may be obtained by performing a point multiplication operation on the correlation sequence.
  • the VA120 channel is used for simulation, and the obtained power spectrum of the correlation sequence may be specifically as shown in the figure. 2; in the power spectrum shown in FIG. 2, the abscissa represents the delay number of the multipath component signal, that is, the sequence number of the multipath component signal; and the ordinate represents the power of the multipath component signal corresponding to the specific delay sequence number.
  • the unit is decibel dB, and the solid line is the waveform of the power spectrum of the relevant sequence.
  • S103 The power spectrum of the correlation sequence is divided into at least one first multipath component region and a second multipath component region according to a preset division rule according to an average noise power of the received signal.
  • step S103 may specifically include S1031 to S1033:
  • S1031 Determine an ith first multipath component signal of the power spectrum of the correlation sequence according to a preset determining policy.
  • i represents the sequence number of the first multipath component signal, represented by a positive integer
  • the i-th first multipath component signal of the correlation sequence power spectrum may determine the multipath component signal corresponding to the maximum power value of the correlation sequence power spectrum according to a preset determination strategy. Determining; in this embodiment, the preset determining strategy may include: when the ratio of the maximum power value of the correlation sequence power spectrum to the average noise power is greater than the first decision threshold TH1, or less than the first decision threshold TH1 but greater than When the second decision threshold TH2 is less than the second decision threshold TH2 but greater than the third decision threshold TH3, the multipath component signal corresponding to the maximum power value of the correlation sequence power spectrum is the first multipath component signal; wherein TH1>TH2 >TH3>0.
  • the number of the decision threshold and the specific value of the decision threshold may be determined according to the historical data, and/or the rule of the experience, and/or the prior knowledge, etc., which is not specifically limited in this embodiment.
  • the first decision threshold TH1, the second decision threshold TH2, and the third decision threshold TH3 are only used to describe the specific technical solutions of the embodiment, and are not specifically limited;
  • the i-th first multipath component signal of the correlation sequence power spectrum may be removed by removing the first to i-th first multipath component regions in the correlation sequence power spectrum In the remaining correlation sequence power spectrum, the multipath component signal corresponding to the maximum power value of the remaining correlation sequence power spectrum is determined according to the foregoing predetermined determination strategy, and the specific process is not described herein;
  • S1032 Determine, according to a preset selection policy, an i-th first multipath component region corresponding to the i-th first multipath component signal;
  • the preset selection policy is corresponding to the foregoing determining policy, specifically:
  • the region width is 2 with the first multipath component as the center a region of ⁇ N 1 +1 is a first multipath component region corresponding to the first multipath component signal;
  • the region width is 2 ⁇ N with the first multipath component as the center.
  • a region of 2 +1 is a first multipath component region corresponding to the first multipath component signal;
  • the region width is 2 ⁇ N centered on the first multipath component.
  • the area of 3 +1 is the first multipath component area corresponding to the first multipath component signal;
  • N 1 >N 2 >N 3 and N 1 , N 2 and N 3 are all positive integers.
  • the ith first multipath component region may be removed, for example, the power value in the region may be set to zero. And determining, according to step S1031 and step S1032, the i+1th first multipath component signal of the correlation sequence power spectrum and the corresponding number of the i+1th first multipath component signal according to step S1031 and step S1032 i+1 first multipath component regions.
  • the remaining related sequence power spectra are The area is the second multipath component area.
  • S104 Searching the at least one first multipath component region according to a preset first noise threshold, acquiring an effective multipath component signal in the at least one first multipath component region, and according to a preset second noise threshold Searching a second multipath component region to obtain an effective multipath component signal in the second multipath component region;
  • the effective multipath component signals in the two multipath component regions need to be selected respectively, because the first multipath component region corresponds to The power of the first multipath component signal is generally large, and therefore, it is understood that the probability of the effective multipath component signal in the region is greater; and the multipath component signal in the second multipath component region The power is generally small, so the probability of more effective multipath component signals in this region is less;
  • the multipath component signal whose power is greater than the first noise threshold G1 is an effective multipath component signal; and the multipath component signal smaller than the first noise threshold G1 is inactive.
  • the path component signal; in this embodiment, the effective multipath component signal and the non-effective multipath component signal can be represented by a mask table, for example, a mapping table is established, and the label of the element in the table corresponds to the multipath component.
  • the serial number of the signal when the multipath component signal is more effective In the case of the path component signal, the element of the label corresponding to the multipath component signal in the mapping table is set to 1.
  • the multipath component signal is the non-effective multipath component signal
  • the elements of the label corresponding to the multipath component signal in the mapping table are Set to 0.
  • the multipath component signal whose power is greater than the second noise threshold G2 is an effective multipath component signal; and the multipath component signal whose power is smaller than the second noise threshold G2 is a non-effective multipath component signal;
  • the effective multipath component signal and the non-effective multipath component signal are represented by a mask table according to the above, and therefore, in the above mask table, when the multipath component signal is an effective multipath component signal
  • the element of the label corresponding to the multipath component signal in the mapping table is set to 1.
  • the element of the label corresponding to the multipath component signal in the mapping table is set to zero.
  • the mask table obtained by S104 can represent the selection result of the multipath component signal. Due to the entire multipath selection process, two thresholds are refinely set according to the power characteristics of the multipath signal, thereby improving the multipath component. Select the precision. As shown in FIG. 2, the broken line indicates the noise threshold corresponding to the first multipath component region and the second multipath component region respectively. It can be known that the first noise threshold is lower than the second noise threshold because: the first In the radial component region, the signal components are mostly. Therefore, in order to retain more signal components, it is necessary to set a lower threshold to avoid misidentification of signal components as noise. In the second multipath component region, noise components are mostly, therefore, Eliminating more noise components requires setting a higher threshold to avoid misinterpreting the noise component as a signal.
  • the multipath selection method of S101 to S104 is compared with the conventional method of multipath selection by a fixed threshold.
  • the dotted line is a fixed threshold adopted by the conventional method, from FIG. 2 It can be seen that the selection of the fixed threshold causes some of the first multipath component regions with more signal components to be misjudged as noise, and some of the second multipath component regions with more noise components are misjudged as signals.
  • the specific effect comparison is shown in FIG. 4. In FIG.
  • the abscissa represents the signal-to-noise ratio, and the unit is decibel dB; the ordinate represents the throughput rate, and the unit is kbps; the broken line is the effect diagram of the method proposed in the embodiment; Lines are a single fixed threshold for traditional methods. can watch The method proposed in this embodiment has a higher throughput rate than the conventional method under the same signal-to-noise ratio compared with the conventional method, thereby indicating that more data can be transmitted. This further illustrates that the method proposed in this embodiment has better throughput performance.
  • the multipath selection method provided in this embodiment selects effective multipath by using different noise thresholds for the strong multipath component and its corresponding extended region and non-strong multipath components and their corresponding extension regions respectively. , thereby improving the selection accuracy and signal to noise ratio of the multipath component.
  • a multipath selection device 50 according to an embodiment of the present invention is shown.
  • the device 50 can be applied to a back end of a receiving device, such as an antenna, to select a multipath component signal in a received signal.
  • the method may include: an obtaining unit 501, a dividing unit 502, and a routing unit 503, where
  • the acquiring unit 501 is configured to acquire a correlation sequence between the received signal and the local reference signal by using a correlation calculation method
  • the dividing unit 502 is configured to divide, according to a preset dividing rule, a power spectrum of the correlation sequence into at least one first multipath component region and a second multipath component region according to an average noise power of the received signal;
  • the routing unit 503 is configured to search the at least one first multipath component region according to a preset first noise threshold, and acquire an effective multipath component signal in the at least one first multipath component region;
  • the preset second noise threshold searches for the second multipath component region to acquire the effective multipath component signal in the second multipath component region.
  • the obtaining unit 501 is further configured to separately sample the local reference signal and the received signal before performing correlation operations on the received signal and the local reference signal, specifically, the acquiring The unit 501 is configured to sample the local reference signal, and acquire a sequence of sampling points of local reference signals composed of sampling points of M local reference signals;
  • the obtaining unit 501 is slid from the starting sampling point of the received signal, and is slid one by one by a sliding window of length M to obtain a sampling point sequence of m multipath component signals of the received signal, wherein each The sampling point sequence of the multipath component signals includes M sampling points;
  • the acquiring unit 501 After obtaining the sampling of the local reference signal and the received signal, the acquiring unit 501 passes the correlation calculation method, and according to the sampling point sequence of the m multipath component signals of the received signal and the local Obtaining a correlation sequence between the received signal and the local reference signal in a sample sequence of the reference signal; in this embodiment, the acquiring unit 501 may form a sequence of sampling points of the m multipath component signals into m ⁇ M The first matrix is multiplied by the conjugate of the sequence of sample points of the local reference signal to obtain a correlation sequence between the received signal and the local reference signal, the length of the correlation sequence being m ⁇ 1;
  • the value of m is selected to be 64, and the value of M is selected to be 256.
  • the power spectrum of the correlation sequence may be obtained by performing a point multiplication operation with the correlation sequence.
  • the VA120 channel is used for simulation, and the obtained power spectrum of the correlation sequence may be specifically as shown in the figure. 2; in the power spectrum shown in FIG. 2, the abscissa represents the delay number of the multipath component signal, that is, the sequence number of the multipath component signal; and the ordinate represents the power of the multipath component signal corresponding to the specific delay sequence number.
  • the unit is decibel dB, and the solid line is the waveform of the power spectrum of the relevant sequence.
  • the dividing unit 502 may include: a determining subunit 5021, a selecting subunit 5022, and an obtaining subunit 5023, where
  • the determining subunit 5021 is configured to determine an i-th first multipath component signal of the correlation sequence power spectrum according to a preset determination policy, where i represents a sequence number of the first multipath component signal, and a positive integer is used.
  • the preset determining strategy includes: when a ratio of a maximum power value of the correlation sequence power spectrum to an average noise power is greater than a first decision threshold TH1, or less than a first decision threshold TH1 but greater than a second decision threshold TH2 Or less than the second decision threshold TH2 but greater than the third decision threshold TH3, the multipath component signal corresponding to the maximum power value of the correlation sequence power spectrum is the first multipath component signal; wherein TH1>TH2>TH3>0 ;
  • the number of the decision threshold and the specific value of the decision threshold may be determined according to the historical data, and/or the rule of the experience, and/or the prior knowledge, etc., which is not specifically limited in this embodiment.
  • the first decision threshold TH1, the second decision threshold TH2, and the third decision threshold TH3 are only used to describe the specific technical solutions of the embodiment, and are not specifically limited;
  • the determining subunit 5021 is configured to:
  • determining, according to a preset determination strategy, a multipath component signal corresponding to a maximum power value of the correlation sequence power spectrum is an ith first multipath component signal of the correlation sequence power spectrum
  • the multipath component signal corresponding to the maximum power value of the remaining correlation sequence power spectrum is determined to be the ith first multipath component signal of the correlation sequence power spectrum.
  • the selecting subunit 5022 is configured to determine an i th first multipath component region corresponding to the i th first multipath component signal according to a preset selection policy
  • the preset selection policy is corresponding to the foregoing determining policy, specifically:
  • the region width is 2 with the first multipath component as the center a region of ⁇ N 1 +1 is a first multipath component region corresponding to the first multipath component signal;
  • the region width is 2 ⁇ N with the first multipath component as the center.
  • a region of 2 +1 is a first multipath component region corresponding to the first multipath component signal;
  • the region width is 2 ⁇ N centered on the first multipath component.
  • the area of 3 +1 is the first multipath component area corresponding to the first multipath component signal;
  • N 1 >N 2 >N 3 and N 1 , N 2 and N 3 are all positive integers.
  • the selecting sub-unit 5022 may remove the i-th first multi-path component area after determining the i-th first multi-path component area, for example, in the area.
  • the power values are all set to zero; then the i+1th first multipath component signal of the correlation sequence power spectrum is determined from the remaining power spectrum by decision subunit 5021, and the ith is determined by the selection subunit 5022 +1 th+1th first multipath component regions corresponding to the first multipath component signals.
  • the obtaining subunit 5023 is configured to acquire a second multipath component region.
  • the obtaining subunit 5023 After determining, by the determining subunit 5021 and the selecting subunit 5022, all the first multipath component regions of the correlation sequence power spectrum or the first multipath component region of the preset value are determined, the obtaining subunit 5023 The region of the remaining power spectrum of the correlation sequence is the second multipath component region.
  • the first multipath component region and the second multipath component are divided at the dividing unit 502.
  • the selection unit 503 is required to select the effective multipath component signals in the multi-path component regions, and the power of the first multipath component signal corresponding to the first multipath component region is generally large. It can be understood that the effective multipath component signal in the region is more likely to be larger; and the power of the multipath component signal in the second multipath component region is generally smaller, so the effective multipath component signal in the region is More possibilities are less;
  • the selection unit 503 includes a first selection subunit 5031 and a second selection subunit 5032, wherein
  • the first selection sub-unit 5031 is configured to: in the first multipath component region, the multipath component signal whose power is greater than the first noise threshold G1 is an effective multipath component signal; and the multipath component signal that is smaller than the first noise threshold G1.
  • the first selection subunit 5031 can represent the effective multipath component signal and the non-effective multipath component signal in the form of a mask table, for example, the first selection subunit 5031, a mapping table is established, wherein the label of the element in the table corresponds to the sequence number of the multipath component signal, and when the multipath component signal is the effective multipath component signal, the first selection subunit 5031 corresponds to the multipath component signal in the mapping table.
  • the element of the label is set to 1.
  • the first selection subunit 5031 sets the element of the label corresponding to the multipath component signal in the mapping table to zero.
  • the second selection sub-unit 5032 is configured to: in the second multipath component region, the multipath component signal whose power is greater than the second noise threshold G2 is an effective multipath component signal; the power is smaller than the multipath component of the second noise threshold G2
  • the signal is a non-effective multipath component signal; in this embodiment, the second selection subunit 5032 can also represent the effective multipath component signal and the non-effective multipath component signal in the form of a mask table according to the foregoing, and therefore, In the above mask table, when the multipath component signal is an effective multipath component signal, the second selection subunit 5032 sets the element of the label corresponding to the multipath component signal in the mapping table, and when the multipath component signal is In the case of the non-effective multipath component signal, the second selection subunit 5032 sets the element of the label corresponding to the multipath component signal in the mapping table to zero.
  • the multipath selection device 50 provided by this embodiment provides a strong multipath component and its corresponding extension
  • the regional and non-strong multipath components and their corresponding extension regions respectively select the effective multipath through different noise thresholds, thereby improving the selection accuracy and signal to noise ratio of the multipath components.
  • the embodiment further describes a storage medium in which a computer program is stored, the computer program being configured to execute the multipath selection method of the foregoing embodiments.
  • embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention can take the form of a hardware embodiment, a software embodiment, or a combination of software and hardware. Moreover, the invention can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage and optical storage, etc.) including computer usable program code.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions are provided to implement the work specified in one or more blocks of a flow or a flow and/or a block diagram of the flowchart The steps that can be made.
  • the invention selects the effective multipath by using the different noise thresholds for the strong multipath component and its corresponding extended region and non-strong multipath components and their corresponding extension regions, thereby improving the selection accuracy of the multipath component. And signal to noise ratio.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Noise Elimination (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种多径选择方法和设备、存储介质,该方法可以包括:通过相关性计算方法获取接收信号与本地参考信号之间的相关序列;获取所述相关序列的功率谱和所述接收信号的平均噪声功率;根据所述接收信号的平均噪声功率,按照预设的划分规则将所述相关序列的功率谱划分为至少一个第一多径分量区域和第二多径分量区域;根据预设的第一噪声门限搜索所述至少一个第一多径分量区域,获取所述至少一个第一多径分量区域中的有效多径分量信号;并根据预设的第二噪声门限搜索第二多径分量区域,获取所述第二多径分量区域中的有效多径分量信号。

Description

一种多径选择方法和设备、存储介质 技术领域
本发明涉及信道估计技术,尤其涉及一种多径选择方法和设备、存储介质。
背景技术
在无线通信***中,无线信号从基站向用户终端(UE,User Equipment)传播,依次经过了发射滤波器、无线衰落信道以及接收滤波器,从而使得UE收到的接收信号中不仅包含无线衰落信道导致的多径分量,还包含滤波器进行滤波处理导致的多径分量的延拓。
而目前现有技术中,对于多径分量是通过设置统一的门限阈值来区分信号与噪声,这样造成了如果门限设置过高或者设置过低,均会对信号与噪声进行误判,从而降低了多径分量选择的精度及信噪比。
发明内容
为解决上述技术问题,本发明实施例期望提供一种多径选择方法和设备、存储介质,能够提高多径分量的选择精度信噪比。
本发明的技术方案是这样实现的:
第一方面,本发明实施例提供了一种多径选择方法,所述方法包括:
通过相关性计算方法获取接收信号与本地参考信号之间的相关序列;
获取所述相关序列的功率谱和所述接收信号的平均噪声功率;
根据所述接收信号的平均噪声功率,按照预设的划分规则将所述相关序列的功率谱划分为至少一个第一多径分量区域和第二多径分量区域;
根据预设的第一噪声门限搜索所述至少一个第一多径分量区域,获取 所述至少一个第一多径分量区域中的有效多径分量信号;并根据预设的第二噪声门限搜索第二多径分量区域,获取所述第二多径分量区域中的有效多径分量信号。
根据第一种可能的实现方式,结合第一方面,所述根据所述接收信号的平均噪声功率,按照预设的划分规则将所述相关序列的功率谱划分为至少一个第一多径分量区域和第二多径分量区域,包括:
依据预设的判定策略,确定所述相关序列功率谱的第i个第一多径分量信号,其中,i表示第一多径分量信号的序号,用正整数表示;
依据预设的选取策略,确定所述第i个第一多径分量信号对应的第i个第一多径分量区域;
获取第二多径分量区域。
根据第二种可能的实现方式,结合第一种可能的实现方式,所述预设的判定策略包括:当所述相关序列功率谱的最大功率值与平均噪声功率的比值大于第一判决门限TH1,或小于第一判决门限TH1但大于第二判决门限TH2,或小于第二判决门限TH2但大于第三判决门限TH3时,所述相关序列功率谱的最大功率值对应的多径分量信号为第一多径分量信号;其中,TH1>TH2>TH3>0;
所述预设的选取策略包括:当所述第一多径分量信号的功率与平均噪声功率的比值大于第一判决门限TH1时,在所述相关序列功率谱中,选取以所述第一多径分量为中心,区域宽度为2×N1+1的区域为所述第一多径分量信号对应的第一多径分量区域;
以及,当所述第一多径分量信号的功率与平均噪声功率的比值小于第一判决门限TH1但大于第二判决门限TH2时,选取以所述第一多径分量为中心,区域宽度为2×N2+1的区域为所述第一多径分量信号对应的第一多径分量区域;
以及,当所述第一多径分量信号的功率与平均噪声功率的比值小于第二判决门限TH2但大于第三判决门限TH3时,选取以所述第一多径分量为中心,区域宽度为2×N3+1的区域为所述第一多径分量信号对应的第一多径分量区域;
其中,N1>N2>N3,且N1、N2、N3均为正整数。
根据第三种可能的实现方式,结合第一种或第二种可能的实现方式,所述依据预设的判定策略,确定所述相关序列功率谱的第i个第一多径分量信号,包括:
当i=1时,按照预设的判定策略确定所述相关序列功率谱的最大功率值所对应的多径分量信号为所述相关序列功率谱的第i个第一多径分量信号;
当i>1时,通过将所述相关序列功率谱中的第1个至第i-1个第一多径分量区域去除后,在剩余的相关序列功率谱中,按照上述预设的判定策略确定剩余的相关序列功率谱的最大功率值所对应的多径分量信号为所述相关序列功率谱的第i个第一多径分量信号。
根据第四种可能的实现方式,结合第一方面,所述根据预设的第一噪声门限搜索所述至少一个第一多径分量区域,获取所述至少一个第一多径分量区域中的有效多径分量信号;并根据预设的第二噪声门限搜索第二多径分量区域,获取所述第二多径分量区域中的有效多径分量信号,包括:
在第一多径分量区域中,功率大于第一噪声门限G1的多径分量信号为有效多径分量信号;小于第一噪声门限G1的多径分量信号为非有效多径分量信号;
在第二多径分量区域中,功率大于第二噪声门限G2的多径分量信号为有效多径分量信号;功率小于第二噪声门限G2的多径分量信号为非有效多径分量信号。
第二方面,本发明实施例提供了一种多径选择设备,所述设备包括: 获取单元、划分单元和选径单元,其中,
所述获取单元,配置为通过相关性计算方法获取接收信号与本地参考信号之间的相关序列;
以及,获取所述相关序列的功率谱和所述接收信号的平均噪声功率;
所述划分单元,配置为根据所述接收信号的平均噪声功率,按照预设的划分规则将所述相关序列的功率谱划分为至少一个第一多径分量区域和第二多径分量区域;
所述选径单元,配置为根据预设的第一噪声门限搜索所述至少一个第一多径分量区域,获取所述至少一个第一多径分量区域中的有效多径分量信号;并根据预设的第二噪声门限搜索第二多径分量区域,获取所述第二多径分量区域中的有效多径分量信号。
根据第一种可能的实现方式,结合第二方面,所述划分单元包括:判定子单元、选取子单元和获取子单元,其中,
所述判定子单元,配置为依据预设的判定策略,确定所述相关序列功率谱的第i个第一多径分量信号,其中,i表示第一多径分量信号的序号,用正整数表示;
所述选取子单元,配置为依据预设的选取策略,确定所述第i个第一多径分量信号对应的第i个第一多径分量区域;
所述获取子单元,配置为获取第二多径分量区域。
根据第二种可能的实现方式,结合第一种可能的实现方式,所述预设的判定策略包括:当所述相关序列功率谱的最大功率值与平均噪声功率的比值大于第一判决门限TH1,或小于第一判决门限TH1但大于第二判决门限TH2,或小于第二判决门限TH2但大于第三判决门限TH3时,所述相关序列功率谱的最大功率值对应的多径分量信号为第一多径分量信号;其中,TH1>TH2>TH3>0;
所述预设的选取策略包括:当所述第一多径分量信号的功率与平均噪声功率的比值大于第一判决门限TH1时,在所述相关序列功率谱中,选取以所述第一多径分量为中心,区域宽度为2×N1+1的区域为所述第一多径分量信号对应的第一多径分量区域;
以及,当所述第一多径分量信号的功率与平均噪声功率的比值小于第一判决门限TH1但大于第二判决门限TH2时,选取以所述第一多径分量为中心,区域宽度为2×N2+1的区域为所述第一多径分量信号对应的第一多径分量区域;
以及,当所述第一多径分量信号的功率与平均噪声功率的比值小于第二判决门限TH2但大于第三判决门限TH3时,选取以所述第一多径分量为中心,区域宽度为2×N3+1的区域为所述第一多径分量信号对应的第一多径分量区域;
其中,N1>N2>N3,且N1、N2、N3均为正整数。
根据第三种可能的实现方式,结合第一种或第二种可能的实现方式,所述判定子单元,配置为:
当i=1时,按照预设的判定策略确定所述相关序列功率谱的最大功率值所对应的多径分量信号为所述相关序列功率谱的第i个第一多径分量信号;
当i>1时,通过将所述相关序列功率谱中的第1个至第i-1个第一多径分量区域去除后,在剩余的相关序列功率谱中,按照上述预设的判定策略确定剩余的相关序列功率谱的最大功率值所对应的多径分量信号为所述相关序列功率谱的第i个第一多径分量信号。
根据第四种可能的实现方式,结合第二方面,所述选径单元,包括第一选径子单元和第二选径子单元,其中,
所述第一选径子单元,配置为在第一多径分量区域中,功率大于第一噪声门限G1的多径分量信号为有效多径分量信号;小于第一噪声门限G1 的多径分量信号为非有效多径分量信号;
所述第二选径子单元,配置为在第二多径分量区域中,功率大于第二噪声门限G2的多径分量信号为有效多径分量信号;功率小于第二噪声门限G2的多径分量信号为非有效多径分量信号。
一种存储介质,所述存储介质中存储有计算机程序,所述计算机程序配置为执行前述各实施例的多径选择方法。
本发明实施例提供了一种多径选择方法和设备,对强多径分量及其对应的拓延区域和非强多径分量及其对应的拓延区域分别通过不同的噪声门限来进行有效多径的选择,从而提高了多径分量的选择精度和信噪比。
附图说明
图1为本发明实施例提供的一种多径选择方法的流程示意图;
图2为本发明实施例提供的一种相关序列的功率谱图;
图3为本发明实施例提供的一种划分第一多径分量区域和第二多径分量区域的方法示意图;
图4为本发明实施例提供的一种效果对比图;
图5为本发明实施例提供的一种多径选择设备的结构示意图;
图6为本发明实施例提供的另一种多径选择设备的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。
参见图1,为本发明实施例提供的一种多径选择方法的流程,可以应用于通信或雷达***中的接收机侧。以通信***为例,接收机可以是UE、基站等具有信号接收能力的设备,本发明实施例对此不作具体限定;该方法可以包括:
S101:通过相关性计算方法获取接收信号与本地参考信号之间的相关序列;
需要说明的是,接收信号中包括了至少一个多径分量信号,因此,接收信号与本地参考信号之间的相关运算实质上是求出接收信号中的多个多径分量信号与本地参考信号之间的相关序列,在本实施例中,本地参考信号可以是本地扰码,本发明实施例对此不作具体限定。
示例性地,在对所述接收信号和所述本地参考信号进行相关运算之前,分别对所述本地参考信号和所述接收信号进行采样,具体采样过程可以包括:
首先,对所述本地参考信号进行采样,获取由M个本地参考信号的采样点组成的本地参考信号的采样点序列;
然后,通过对接收信号进行滑窗采样,获取所述接收信号中至少一个多径分量信号的采样点序列,在本实施例中可以是:首先对所述接收信号进行采样,得到接收信号的N=m+M-1个采样点,其中,m为接收信号中包括的多径分量信号的个数,可以理解地,m也可以表示多径分量信号的多径时延个数,并且一个多径分量信号对应一个多径分量信号时延;接着从所述接收信号的起始采样点开始,通过长度为M的滑动窗逐个采样点地进行滑动,得到所述接收信号的m个多径分量信号的采样点序列,其中,每个多径分量信号的采样点序列包括M个采样点;
最后,通过相关性计算方法,并根据所述接收信号的m个多径分量信号的采样点序列与所述本地参考信号的采样点序列获取所述接收信号与本地参考信号之间的相关序列;具体在本实施例中,可以将m个多径分量信号的采样点序列组成m×M的第一矩阵左乘所述本地参考信号的采样点序列的共轭,得到所述接收信号与所述本地参考信号之间的相关序列,该相关序列的长度为m×1;
在本实施例中,优选地,m值选为64,M值选为256。
S102:获取所述相关序列的功率谱和所述接收信号的平均噪声功率;
需要说明的是,所述相关序列的功率谱可以通过所述相关序列对自身进行点乘运算得到,在本实施例中,以VA120信道进行仿真,所得到的相关序列的功率谱具体可以如图2所示;在图2所示的功率谱中,横坐标表示多径分量信号的时延序号,也就是多径分量信号的序号;纵坐标表示具体时延序号对应的多径分量信号的功率,单位为分贝dB,实线为相关序列的功率谱的波形图。
由于收、发端滤波器和无线传输信道的影响,在接收信号中不可避免的引入噪声,因此,需要获取接收信号中的平均噪声功率,而接收信号的平均噪声功率的获取为本领域技术人员的常规技术手段,在此不再赘述。
S103:根据所述接收信号的平均噪声功率,按照预设的划分规则将所述相关序列的功率谱划分为至少一个第一多径分量区域和第二多径分量区域;
示例性地,参见图3,步骤S103具体可以包括S1031至S1033:
S1031:依据预设的判定策略,确定所述相关序列功率谱的第i个第一多径分量信号;
作为一种实现方式,i表示第一多径分量信号的序号,用正整数表示;
当i=1时,所述相关序列功率谱的第i个第一多径分量信号可以按照预设的判定策略对所述相关序列功率谱的最大功率值所对应的多径分量信号进行判定来确定;在本实施例中,预设的判定策略可以包括:当所述相关序列功率谱的最大功率值与平均噪声功率的比值大于第一判决门限TH1,或小于第一判决门限TH1但大于第二判决门限TH2,或小于第二判决门限TH2但大于第三判决门限TH3时,所述相关序列功率谱的最大功率值对应的多径分量信号为第一多径分量信号;其中,TH1>TH2>TH3>0。
需要说明的是,判决门限的个数和判决门限的具体数值可以根据历史数据,和/或经验规则,和/或先验知识等来进行确定,本实施例对此不作具体限定,本实施例中所提及的第一判决门限TH1、第二判决门限TH2、第三判决门限TH3仅用于说明本实施例的具体技术方案,并不做具体的限定;
当i>1时,所述相关序列功率谱的第i个第一多径分量信号可以通过将所述相关序列功率谱中的第1个至第i-1个第一多径分量区域去除后,在剩余的相关序列功率谱中,按照上述预设的判定策略对剩余的相关序列功率谱的最大功率值所对应的多径分量信号进行判定来确定得到,具体过程在此不再赘述;
S1032:依据预设的选取策略,确定所述第i个第一多径分量信号对应的第i个第一多径分量区域;
需要说明的是,在本实施例中,所述预设的选取策略是与上述的判定策略相对应的,具体为:
当所述第一多径分量信号的功率与平均噪声功率的比值大于第一判决门限TH1时,在所述相关序列功率谱中,选取以所述第一多径分量为中心,区域宽度为2×N1+1的区域为所述第一多径分量信号对应的第一多径分量区域;
当所述第一多径分量信号的功率与平均噪声功率的比值小于第一判决门限TH1但大于第二判决门限TH2时,选取以所述第一多径分量为中心,区域宽度为2×N2+1的区域为所述第一多径分量信号对应的第一多径分量区域;
当所述第一多径分量信号的功率与平均噪声功率的比值小于第二判决门限TH2但大于第三判决门限TH3时,选取以所述第一多径分量为中心,区域宽度为2×N3+1的区域为所述第一多径分量信号对应的第一多径分量区域;
其中,N1>N2>N3,且N1、N2、N3均为正整数。
还需要说明的是,在每次确定完第i个第一多径分量区域之后,可以将所述第i个第一多径分量区域进行去除,比如可以将该区域内的功率值均置零;然后从剩余的功率谱中依据步骤S1031和步骤S1032确定所述相关序列功率谱的第i+1个第一多径分量信号以及所述第i+1个第一多径分量信号对应的第i+1个第一多径分量区域。
S1033:获取第二多径分量区域;
作为一种实现方式,通过步骤S1031至S1032将所述相关序列功率谱的所有第一多径分量区域或者预设数值的第一多径分量区域确定完毕之后,剩余的所述相关序列功率谱的区域就是第二多径分量区域。
S104:根据预设的第一噪声门限搜索所述至少一个第一多径分量区域,获取所述至少一个第一多径分量区域中的有效多径分量信号;并根据预设的第二噪声门限搜索第二多径分量区域,获取所述第二多径分量区域中的有效多径分量信号;
示例性地,在获取完第一多径分量区域和第二多径分量区域之后,需要分别对这两中多径分量区域中的有效多径分量信号进行选取,由于第一多径分量区域对应的第一多径分量信号的功率普遍较大,因此,可以理解地,该区域中的有效多径分量信号较多的可能性较大;而第二多径分量区域中的多径分量信号的功率普遍较小,因此该区域中的有效多径分量信号较多的可能性较小;
所以在本实施例中,在第一多径分量区域中,功率大于第一噪声门限G1的多径分量信号为有效多径分量信号;小于第一噪声门限G1的多径分量信号为非有效多径分量信号;在本实施例中,可以将有效多径分量信号与非有效多径分量信号通过掩码表的形式进行表示,例如,建立一张映射表,表中元素的标号对应多径分量信号的序号,当多径分量信号为有效多 径分量信号时,映射表中所述多径分量信号对应的标号的元素置1,当多径分量信号为非有效多径分量信号时,映射表中所述多径分量信号对应的标号的元素置0。
在第二多径分量区域中,功率大于第二噪声门限G2的多径分量信号为有效多径分量信号;功率小于第二噪声门限G2的多径分量信号为非有效多径分量信号;在本实施例中,根据上述将有效多径分量信号与非有效多径分量信号通过掩码表的形式进行表示,因此,在上述的掩码表中,当多径分量信号为有效多径分量信号时,映射表中所述多径分量信号对应的标号的元素置1,当多径分量信号为非有效多径分量信号时,映射表中所述多径分量信号对应的标号的元素置0。
通过S104所得到的掩码表就可以表示对多径分量信号的选择结果,由于整个多径选择过程,按照多径信号的功率特性细化地设置了两个门限,从而可以提高多径分量的选择精度。如图2所示,虚线表示第一多径分量区域和第二多径分量区域分别对应的噪声门限,可以得知,第一噪声门限要低于第二噪声门限,这是因为:第一多径分量区域中,信号成分居多,因此,为了保留更多的信号成分,需要设置较低的门限以避免将信号成分误判为噪声;第二多径分量区域中,噪声成分居多,因此,为了消除更多的噪声成分,需要设置较高的门限以避免将噪声成分误判为信号。
最后,本实施例将S101至S104的多径选择方法与目前通过固定门限进行多径选择的传统方法进行对比,如图2所示,点划线为传统方法采用的固定门限,从图2中可以看出,固定门限进行选择,会导致信号成分较多的某些第一多径分量区域被误判为噪声,而噪声成分较多的某些第二多径分量区域被误判为信号,具体的效果对比如图4所示,在图4中,横坐标表示信噪比,单位为分贝dB;纵坐标表示吞吐率,单位为kbps;虚线为本实施例提出的方法的效果图;实线为传统方法的单一固定门限。可以看 出,本实施例提出的方法与传统方法相比,在相同信噪比的条件下,本实施例提出的方法比传统方法相比有具有更高的吞吐率,从而说明能够传输更多的数据,这更加说明了本实施例所提出的方法具有更好的吞吐性能。
本实施例提供的一种多径选择方法,对强多径分量及其对应的拓延区域和非强多径分量及其对应的拓延区域分别通过不同的噪声门限来进行有效多径的选择,从而提高了多径分量的选择精度和信噪比。
参见图5,其示出了本发明实施例提供的一种多径选择设备50,该设备50可以应用于接收装置例如天线的后端,对接收信号中的多径分量信号进行选择,该设备可以包括:获取单元501、划分单元502和选径单元503,其中,
所述获取单元501,配置为通过相关性计算方法获取接收信号与本地参考信号之间的相关序列;
以及,获取所述相关序列的功率谱和所述接收信号的平均噪声功率;
所述划分单元502,配置为根据所述接收信号的平均噪声功率,按照预设的划分规则将所述相关序列的功率谱划分为至少一个第一多径分量区域和第二多径分量区域;
所述选径单元503,配置为根据预设的第一噪声门限搜索所述至少一个第一多径分量区域,获取所述至少一个第一多径分量区域中的有效多径分量信号;并根据预设的第二噪声门限搜索第二多径分量区域,获取所述第二多径分量区域中的有效多径分量信号。
示例性地,所述获取单元501在对所述接收信号和所述本地参考信号进行相关运算之前,还配置为分别对所述本地参考信号和所述接收信号进行采样,具体地,所述获取单元501,配置为对所述本地参考信号进行采样,获取由M个本地参考信号的采样点组成的本地参考信号的采样点序列;
以及,通过对接收信号进行滑窗采样,获取所述接收信号中至少一个 多径分量信号的采样点序列,在本实施例中可以是:首先所述获取单元501对所述接收信号进行采样,得到接收信号的N=m+M-1个采样点,其中,m为接收信号中包括的多径分量信号的个数,可以理解地,m也可以表示多径分量信号的多径时延个数,并且一个多径分量信号对应一个多径分量信号时延;接着所述获取单元501从所述接收信号的起始采样点开始,通过长度为M的滑动窗逐个采样点地进行滑动,得到所述接收信号的m个多径分量信号的采样点序列,其中,每个多径分量信号的采样点序列包括M个采样点;
所述获取单元501在完成了对所述本地参考信号和所述接收信号进行采样之后,通过相关性计算方法,并根据所述接收信号的m个多径分量信号的采样点序列与所述本地参考信号的采样点序列获取所述接收信号与本地参考信号之间的相关序列;具体在本实施例中,所述获取单元501可以将m个多径分量信号的采样点序列组成m×M的第一矩阵左乘所述本地参考信号的采样点序列的共轭,得到所述接收信号与所述本地参考信号之间的相关序列,该相关序列的长度为m×1;
在本实施例中,优选地,m值选为64,M值选为256。
需要说明的是,所述相关序列的功率谱可以通过所述相关序列与自身进行点乘运算得到,在本实施例中,以VA120信道进行仿真,所得到的相关序列的功率谱具体可以如图2所示;在图2所示的功率谱中,横坐标表示多径分量信号的时延序号,也就是多径分量信号的序号;纵坐标表示具体时延序号对应的多径分量信号的功率,单位为分贝dB,实线为相关序列的功率谱的波形图。
由于收、发端滤波器和无线传输信道的影响,在接收信号中不可避免的引入噪声,因此,需要获取接收信号中的平均噪声功率,而接收信号的平均噪声功率的获取为本领域技术人员的常规技术手段,在此不再赘述。
示例性地,参见图6,所述划分单元502可以包括:判定子单元5021、选取子单元5022和获取子单元5023,其中,
所述判定子单元5021,配置为依据预设的判定策略,确定所述相关序列功率谱的第i个第一多径分量信号,其中,i表示第一多径分量信号的序号,用正整数表示;
具体地,所述预设的判定策略包括:当所述相关序列功率谱的最大功率值与平均噪声功率的比值大于第一判决门限TH1,或小于第一判决门限TH1但大于第二判决门限TH2,或小于第二判决门限TH2但大于第三判决门限TH3时,所述相关序列功率谱的最大功率值对应的多径分量信号为第一多径分量信号;其中,TH1>TH2>TH3>0;
需要说明的是,判决门限的个数和判决门限的具体数值可以根据历史数据,和/或经验规则,和/或先验知识等来进行确定,本实施例对此不作具体限定,本实施例中所提及的第一判决门限TH1、第二判决门限TH2、第三判决门限TH3仅用于说明本实施例的具体技术方案,并不做具体的限定;
作为一种实现方式,所述判定子单元5021,配置为:
当i=1时,按照预设的判定策略确定所述相关序列功率谱的最大功率值所对应的多径分量信号为所述相关序列功率谱的第i个第一多径分量信号;
当i>1时,通过将所述相关序列功率谱中的第1个至第i-1个第一多径分量区域去除后,在剩余的相关序列功率谱中,按照上述预设的判定策略确定剩余的相关序列功率谱的最大功率值所对应的多径分量信号为所述相关序列功率谱的第i个第一多径分量信号。
所述选取子单元5022,配置为依据预设的选取策略,确定所述第i个第一多径分量信号对应的第i个第一多径分量区域;
需要说明的是,在本实施例中,所述预设的选取策略是与上述的判定策略相对应的,具体为:
当所述第一多径分量信号的功率与平均噪声功率的比值大于第一判决门限TH1时,在所述相关序列功率谱中,选取以所述第一多径分量为中心,区域宽度为2×N1+1的区域为所述第一多径分量信号对应的第一多径分量区域;
当所述第一多径分量信号的功率与平均噪声功率的比值小于第一判决门限TH1但大于第二判决门限TH2时,选取以所述第一多径分量为中心,区域宽度为2×N2+1的区域为所述第一多径分量信号对应的第一多径分量区域;
当所述第一多径分量信号的功率与平均噪声功率的比值小于第二判决门限TH2但大于第三判决门限TH3时,选取以所述第一多径分量为中心,区域宽度为2×N3+1的区域为所述第一多径分量信号对应的第一多径分量区域;
其中,N1>N2>N3,且N1、N2、N3均为正整数。
还需要说明的是,所述选取子单元5022在每次确定完第i个第一多径分量区域之后,可以将所述第i个第一多径分量区域进行去除,比如可以将该区域内的功率值均置零;然后从剩余的功率谱中通过判定子单元5021确定所述相关序列功率谱的第i+1个第一多径分量信号,以及通过选取子单元5022确定所述第i+1个第一多径分量信号对应的第i+1个第一多径分量区域。
所述获取子单元5023,配置为获取第二多径分量区域。
作为一种实现方式,通过判定子单元5021和选取子单元5022将所述相关序列功率谱的所有第一多径分量区域或者预设数值的第一多径分量区域确定完毕之后,获取子单元5023将剩余的所述相关序列功率谱的区域就是第二多径分量区域。
示例性地,在划分单元502划分完第一多径分量区域和第二多径分量 区域之后,需要选径单元503分别对这两中多径分量区域中的有效多径分量信号进行选取,由于第一多径分量区域对应的第一多径分量信号的功率普遍较大,因此,可以理解地,该区域中的有效多径分量信号较多的可能性较大;而第二多径分量区域中的多径分量信号的功率普遍较小,因此该区域中的有效多径分量信号较多的可能性较小;
所以在本实施例中,如图6所示,所述选径单元503,包括第一选径子单元5031和第二选径子单元5032,其中,
所述第一选径子单元5031,配置为在第一多径分量区域中,功率大于第一噪声门限G1的多径分量信号为有效多径分量信号;小于第一噪声门限G1的多径分量信号为非有效多径分量信号;在本实施例中,第一选径子单元5031可以将有效多径分量信号与非有效多径分量信号通过掩码表的形式进行表示,例如,第一选径子单元5031建立一张映射表,表中元素的标号对应多径分量信号的序号,当多径分量信号为有效多径分量信号时,第一选径子单元5031将映射表中所述多径分量信号对应的标号的元素置1,当多径分量信号为非有效多径分量信号时,第一选径子单元5031将映射表中所述多径分量信号对应的标号的元素置0。
所述第二选径子单元5032,配置为在第二多径分量区域中,功率大于第二噪声门限G2的多径分量信号为有效多径分量信号;功率小于第二噪声门限G2的多径分量信号为非有效多径分量信号;在本实施例中,第二选径子单元5032也可以根据上述将有效多径分量信号与非有效多径分量信号通过掩码表的形式进行表示,因此,在上述的掩码表中,当多径分量信号为有效多径分量信号时,第二选径子单元5032将映射表中所述多径分量信号对应的标号的元素置1,当多径分量信号为非有效多径分量信号时,第二选径子单元5032将映射表中所述多径分量信号对应的标号的元素置0。
本实施例提供的一种多径选择设备50,对强多径分量及其对应的拓延 区域和非强多径分量及其对应的拓延区域分别通过不同的噪声门限来进行有效多径的选择,从而提高了多径分量的选择精度和信噪比。
本实施例还记载了一种存储介质,所述存储介质中存储有计算机程序,所述计算机程序配置为执行前述各实施例的多径选择方法。
本领域内的技术人员应明白,本发明的实施例可提供为方法、***、或计算机程序产品。因此,本发明可采用硬件实施例、软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(***)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功 能的步骤。
以上所述,仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。
工业实用性
本发明对强多径分量及其对应的拓延区域和非强多径分量及其对应的拓延区域分别通过不同的噪声门限来进行有效多径的选择,从而提高了多径分量的选择精度和信噪比。

Claims (11)

  1. 一种多径选择方法,包括:
    通过相关性计算方法获取接收信号与本地参考信号之间的相关序列;
    获取所述相关序列的功率谱和所述接收信号的平均噪声功率;
    根据所述接收信号的平均噪声功率,按照预设的划分规则将所述相关序列的功率谱划分为至少一个第一多径分量区域和第二多径分量区域;
    根据预设的第一噪声门限搜索所述至少一个第一多径分量区域,获取所述至少一个第一多径分量区域中的有效多径分量信号;并根据预设的第二噪声门限搜索第二多径分量区域,获取所述第二多径分量区域中的有效多径分量信号。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述接收信号的平均噪声功率,按照预设的划分规则将所述相关序列的功率谱划分为至少一个第一多径分量区域和第二多径分量区域,包括:
    依据预设的判定策略,确定所述相关序列功率谱的第i个第一多径分量信号,其中,i表示第一多径分量信号的序号,用正整数表示;
    依据预设的选取策略,确定所述第i个第一多径分量信号对应的第i个第一多径分量区域;
    获取第二多径分量区域。
  3. 根据权利要求2所述的方法,其特征在于,
    所述预设的判定策略包括:当所述相关序列功率谱的最大功率值与平均噪声功率的比值大于第一判决门限TH1,或小于第一判决门限TH1但大于第二判决门限TH2,或小于第二判决门限TH2但大于第三判决门限TH3时,所述相关序列功率谱的最大功率值对应的多径分量信号为第一多径分量信号;其中,TH1>TH2>TH3>0;
    所述预设的选取策略包括:当所述第一多径分量信号的功率与平均噪 声功率的比值大于第一判决门限TH1时,在所述相关序列功率谱中,选取以所述第一多径分量为中心,区域宽度为2×N1+1的区域为所述第一多径分量信号对应的第一多径分量区域;
    以及,当所述第一多径分量信号的功率与平均噪声功率的比值小于第一判决门限TH1但大于第二判决门限TH2时,选取以所述第一多径分量为中心,区域宽度为2×N2+1的区域为所述第一多径分量信号对应的第一多径分量区域;
    以及,当所述第一多径分量信号的功率与平均噪声功率的比值小于第二判决门限TH2但大于第三判决门限TH3时,选取以所述第一多径分量为中心,区域宽度为2×N3+1的区域为所述第一多径分量信号对应的第一多径分量区域;
    其中,N1>N2>N3,且N1、N2、N3均为正整数。
  4. 根据权利要求2或3所述的方法,其特征在于,所述依据预设的判定策略,确定所述相关序列功率谱的第i个第一多径分量信号,包括:
    当i=1时,按照预设的判定策略确定所述相关序列功率谱的最大功率值所对应的多径分量信号为所述相关序列功率谱的第i个第一多径分量信号;
    当i>1时,通过将所述相关序列功率谱中的第1个至第i-1个第一多径分量区域去除后,在剩余的相关序列功率谱中,按照上述预设的判定策略确定剩余的相关序列功率谱的最大功率值所对应的多径分量信号为所述相关序列功率谱的第i个第一多径分量信号。
  5. 根据权利要求1所述的方法,其特征在于,所述根据预设的第一噪声门限搜索所述至少一个第一多径分量区域,获取所述至少一个第一多径分量区域中的有效多径分量信号;并根据预设的第二噪声门限搜索第二多径分量区域,获取所述第二多径分量区域中的有效多径分量信号,包括:
    在第一多径分量区域中,功率大于第一噪声门限G1的多径分量信号为 有效多径分量信号;小于第一噪声门限G1的多径分量信号为非有效多径分量信号;
    在第二多径分量区域中,功率大于第二噪声门限G2的多径分量信号为有效多径分量信号;功率小于第二噪声门限G2的多径分量信号为非有效多径分量信号。
  6. 一种多径选择设备,包括:获取单元、划分单元和选径单元,其中,
    所述获取单元,配置为通过相关性计算方法获取接收信号与本地参考信号之间的相关序列;
    以及,获取所述相关序列的功率谱和所述接收信号的平均噪声功率;
    所述划分单元,配置为根据所述接收信号的平均噪声功率,按照预设的划分规则将所述相关序列的功率谱划分为至少一个第一多径分量区域和第二多径分量区域;
    所述选径单元,配置为根据预设的第一噪声门限搜索所述至少一个第一多径分量区域,获取所述至少一个第一多径分量区域中的有效多径分量信号;并根据预设的第二噪声门限搜索第二多径分量区域,获取所述第二多径分量区域中的有效多径分量信号。
  7. 根据权利要求6所述的设备,其特征在于,所述划分单元包括:判定子单元、选取子单元和获取子单元,其中,
    所述判定子单元,配置为依据预设的判定策略,确定所述相关序列功率谱的第i个第一多径分量信号,其中,i表示第一多径分量信号的序号,用正整数表示;
    所述选取子单元,配置为依据预设的选取策略,确定所述第i个第一多径分量信号对应的第i个第一多径分量区域;
    所述获取子单元,配置为获取第二多径分量区域。
  8. 根据权利要求7所述的设备,其特征在于,
    所述预设的判定策略包括:当所述相关序列功率谱的最大功率值与平均噪声功率的比值大于第一判决门限TH1,或小于第一判决门限TH1但大于第二判决门限TH2,或小于第二判决门限TH2但大于第三判决门限TH3时,所述相关序列功率谱的最大功率值对应的多径分量信号为第一多径分量信号;其中,TH1>TH2>TH3>0;
    所述预设的选取策略包括:当所述第一多径分量信号的功率与平均噪声功率的比值大于第一判决门限TH1时,在所述相关序列功率谱中,选取以所述第一多径分量为中心,区域宽度为2×N1+1的区域为所述第一多径分量信号对应的第一多径分量区域;
    以及,当所述第一多径分量信号的功率与平均噪声功率的比值小于第一判决门限TH1但大于第二判决门限TH2时,选取以所述第一多径分量为中心,区域宽度为2×N2+1的区域为所述第一多径分量信号对应的第一多径分量区域;
    以及,当所述第一多径分量信号的功率与平均噪声功率的比值小于第二判决门限TH2但大于第三判决门限TH3时,选取以所述第一多径分量为中心,区域宽度为2×N3+1的区域为所述第一多径分量信号对应的第一多径分量区域;
    其中,N1>N2>N3,且N1、N2、N3均为正整数。
  9. 根据权利要求7或8所述的设备,其特征在于,所述判定子单元,配置为:
    当i=1时,按照预设的判定策略确定所述相关序列功率谱的最大功率值所对应的多径分量信号为所述相关序列功率谱的第i个第一多径分量信号;
    当i>1时,通过将所述相关序列功率谱中的第1个至第i-1个第一多径分量区域去除后,在剩余的相关序列功率谱中,按照上述预设的判定策略确定剩余的相关序列功率谱的最大功率值所对应的多径分量信号为所述相 关序列功率谱的第i个第一多径分量信号。
  10. 根据权利要求6所述的设备,其特征在于,所述选径单元,包括第一选径子单元和第二选径子单元,其中,
    所述第一选径子单元,配置为在第一多径分量区域中,功率大于第一噪声门限G1的多径分量信号为有效多径分量信号;小于第一噪声门限G1的多径分量信号为非有效多径分量信号;
    所述第二选径子单元,配置为在第二多径分量区域中,功率大于第二噪声门限G2的多径分量信号为有效多径分量信号;功率小于第二噪声门限G2的多径分量信号为非有效多径分量信号。
  11. 一种存储介质,所述存储介质中存储有计算机程序,所述计算机程序配置为执行权利要求1至5任一项所述的多径选择方法。
PCT/CN2014/088241 2014-06-30 2014-10-09 一种多径选择方法和设备、存储介质 WO2016000344A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/322,428 US9942061B2 (en) 2014-06-30 2014-10-09 Multipath selection method and device, and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410307646.4 2014-06-30
CN201410307646.4A CN105282059A (zh) 2014-06-30 2014-06-30 一种多径选择方法和设备

Publications (1)

Publication Number Publication Date
WO2016000344A1 true WO2016000344A1 (zh) 2016-01-07

Family

ID=55018366

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/088241 WO2016000344A1 (zh) 2014-06-30 2014-10-09 一种多径选择方法和设备、存储介质

Country Status (3)

Country Link
US (1) US9942061B2 (zh)
CN (1) CN105282059A (zh)
WO (1) WO2016000344A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106254001B (zh) * 2016-09-13 2019-07-02 京信通信***(中国)有限公司 一种srs信道质量测量方法及装置
CN111565080B (zh) * 2020-03-24 2022-07-15 国网辽宁省电力有限公司朝阳供电公司 一种基于认知无线电自适应频谱感知与分配方法
CN112466330B (zh) * 2020-11-11 2021-07-30 东南大学 一种多途信道下噪声源的声源级估计方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1464638A (zh) * 2002-06-11 2003-12-31 上海贝尔有限公司 瑞克接收机多径选择判决方法及其装置
CN1697428A (zh) * 2004-05-13 2005-11-16 株式会社Ntt都科摩 噪声功率估计装置、噪声功率估计方法及信号检测装置
CN101136651A (zh) * 2006-10-11 2008-03-05 中兴通讯股份有限公司 一种cdma***中的多径搜索方法和装置
CN102377720A (zh) * 2010-08-27 2012-03-14 普天信息技术研究院有限公司 一种高速模式的zc序列检测方法和装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5808582A (en) * 1996-09-13 1998-09-15 Litton Consulting Group, Inc. Global positioning system receiver with improved multipath signal rejection
MY130820A (en) 1998-12-16 2007-07-31 Ericsson Telefon Ab L M Channel estimation for a cdma system using pre-defined symbols in addition to pilot symbols
JP3322246B2 (ja) * 1999-07-21 2002-09-09 日本電気株式会社 パスサーチ装置および方法
CN1112774C (zh) 1999-11-10 2003-06-25 深圳市中兴通讯股份有限公司 一种应用于wcdma接收机中的信道估计方法
US7190750B2 (en) * 2002-02-28 2007-03-13 Qualcomm Incorporated Rake receiver for tracking closely spaced multipath
US7352704B1 (en) * 2003-08-29 2008-04-01 National Semiconductor Corporation Method and apparatus for multi-path delay spread detection in wideband CDMA systems
JP2006101308A (ja) * 2004-09-30 2006-04-13 Fujitsu Ltd 無線基地局装置及びパスサーチ方法
US7983323B2 (en) * 2004-10-06 2011-07-19 Broadcom Corporation Method and system for managing, controlling, and combining signals in a frequency selective multipath fading channel
US20060209932A1 (en) 2005-03-18 2006-09-21 Qualcomm Incorporated Channel estimation for single-carrier systems
EP1977531B1 (en) * 2006-01-27 2013-08-28 Thomson Licensing Method and apparatus for multiresolution / multipath searcher
US8248997B2 (en) * 2009-08-17 2012-08-21 Nokia Corporation Apparatus and method for positioning a wireless user equipment
CN102316601B (zh) * 2011-09-28 2014-05-07 北京北方烽火科技有限公司 一种随机接入信道的前导序列检测方法和装置
CN103108337B (zh) * 2011-11-14 2015-06-17 京信通信***(中国)有限公司 一种随机接入信号的检测方法、装置及基站
WO2013098581A1 (en) * 2011-12-27 2013-07-04 Renesas Mobile Corporation Method and device for determining paths in multipath search
CN104464597B (zh) * 2014-12-23 2018-01-05 厦门天马微电子有限公司 多路选择电路和显示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1464638A (zh) * 2002-06-11 2003-12-31 上海贝尔有限公司 瑞克接收机多径选择判决方法及其装置
CN1697428A (zh) * 2004-05-13 2005-11-16 株式会社Ntt都科摩 噪声功率估计装置、噪声功率估计方法及信号检测装置
CN101136651A (zh) * 2006-10-11 2008-03-05 中兴通讯股份有限公司 一种cdma***中的多径搜索方法和装置
CN102377720A (zh) * 2010-08-27 2012-03-14 普天信息技术研究院有限公司 一种高速模式的zc序列检测方法和装置

Also Published As

Publication number Publication date
US9942061B2 (en) 2018-04-10
US20170207930A1 (en) 2017-07-20
CN105282059A (zh) 2016-01-27

Similar Documents

Publication Publication Date Title
KR101271430B1 (ko) 무선 통신 시스템에서의 수신 신호 검출 방법 및 장치
US20130243111A1 (en) Method and apparatus for estimating offset value, receiving apparatus, and method of processing signal in receiving apparatus
WO2017036325A1 (zh) 信号同步的方法和信号同步的装置
JP2018529107A5 (zh)
WO2016000344A1 (zh) 一种多径选择方法和设备、存储介质
CN110099022A (zh) 多径时延估计方法和装置
WO2018161505A1 (zh) 一种主同步信号的符号位置的确定方法、装置及存储介质
WO2021027590A1 (zh) 突发ofdm数据传输的帧同步方法及***
KR20040024987A (ko) 오에프디엠 시스템의 채널추정과 심볼동기 타이밍결정장치 및 방법
CN103873421A (zh) 一种多径信道下的符号同步方法
CN114221674A (zh) 一种扩频信号速率自适应捕获方法
CN107465639B (zh) 一种基于短时离散傅立叶变换的多路延时同步判决解调方法
CN111865854B (zh) 突发ofdm***的帧捕获及同步方法
CN106850481B (zh) 一种帧头位置搜索的方法及搜索装置
CN102882645B (zh) 一种帧边界检测的方法及装置
CN107018100B (zh) 一种时域去噪方法及装置
CN115765786A (zh) 一种非相关扩频伪码同步的fpga实现方法
WO2014150733A1 (en) Device and method for computing a channel estimate
CN109617642B (zh) 互相关序列的选取方法
CN105873135B (zh) 多路径信道的参数确定方法、装置以及通信***
US10257004B2 (en) Inter-block interference suppression using a null guard interval
KR101644560B1 (ko) 통신 신호에 대한 tdoa/fdoa 정보 추정 장치 및 방법
CN103944661B (zh) 一种检测主同步信号的方法及装置
JP2013058940A (ja) 無線受信装置
CN106302267B (zh) 一种单强径信道检测方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14896612

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15322428

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 14896612

Country of ref document: EP

Kind code of ref document: A1