WO2015199399A1 - Attachment for controlling temperature and flow rate of brine - Google Patents

Attachment for controlling temperature and flow rate of brine Download PDF

Info

Publication number
WO2015199399A1
WO2015199399A1 PCT/KR2015/006328 KR2015006328W WO2015199399A1 WO 2015199399 A1 WO2015199399 A1 WO 2015199399A1 KR 2015006328 W KR2015006328 W KR 2015006328W WO 2015199399 A1 WO2015199399 A1 WO 2015199399A1
Authority
WO
WIPO (PCT)
Prior art keywords
brine
pipe
temperature
flow rate
outlet
Prior art date
Application number
PCT/KR2015/006328
Other languages
French (fr)
Korean (ko)
Inventor
김태현
Original Assignee
(주)제이티에스코리아
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)제이티에스코리아 filed Critical (주)제이티에스코리아
Publication of WO2015199399A1 publication Critical patent/WO2015199399A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering

Definitions

  • the present invention relates to a device used for stable process temperature control in a semiconductor process, and more particularly, is installed close to the semiconductor equipment, it is possible to precisely control the temperature of the brine supplied to the semiconductor equipment from the chiller using a refrigeration cycle A brine temperature and flow rate control additional device.
  • a chiller is a temperature control device for stable process control in a semiconductor device manufacturing process.
  • a semiconductor process is performed in a predetermined order in a process chamber for each unit process, and various types of auxiliary devices are configured to allow a normal process to be performed in the process chamber.
  • the semiconductor process includes a process environment in which a high temperature is required, such as an oxidation process.
  • a process environment in which a high temperature is required, such as an oxidation process.
  • each component or ancillary equipment installed to perform the semiconductor process may generate heat by itself.
  • a coolant circulation system is constructed in the semiconductor process facility.
  • a chiller is required for stable process control.
  • the chiller is mainly used in the etching and exposure processes among the various processes.
  • the wafer breakage and productivity due to the high temperature are maintained by keeping the temperature of the electrode plate and chamber where excessive heat is generated during the process. It will prevent the fall of.
  • the conventional chiller apparatus 10 includes a path 12 of brine, which is a fluid circulating inside the semiconductor processing equipment 1 and a path 11 of a refrigerant cooled through a refrigeration cycle. ) Is superimposed in the chiller heat exchanger 13 to lower the temperature of the brine, and then the brine is heated again using the heater 18 to maintain the temperature of the brine constant.
  • the refrigerant changed to the high temperature and high pressure state in the compressor 14 is condensed while releasing heat from the condenser 15. After releasing the heat, the refrigerant is liquefied and decompressed through the expansion valve 16 to become a low-temperature low-pressure liquid state. The refrigerant passing through the expansion valve 16 absorbs heat from the chiller heat exchanger 13 and evaporates.
  • the brine circulating in the semiconductor processing equipment 1 flows into the heat exchanger through the brine inlet 2.
  • the brine having undergone heat exchange with the refrigerant in the chiller heat exchanger 13 is heated by the heating heater 18 and then flows back into the semiconductor processing equipment 1 through the brine outlet 3.
  • the conventional chiller 10 is a semiconductor processing equipment after heating the brine cooled too much through the heat exchanger 18 through heat exchange with the refrigerant when the temperature of the brine required in the semiconductor processing equipment 1 is relatively high. Since it puts into (1), there exists a problem that too much unnecessary power consumption is carried out.
  • the brine temperature and flow rate control apparatus for achieving the above object is a device installed between the chiller and the process equipment is used for the process temperature control.
  • the apparatus is supplied to the first inlet, which is a passage through which the brine is circulated through the process equipment, the second inlet, which is a passage through which the brine passes through the chiller, the first outlet, a passage through which the brine supplied to the chiller is discharged, and is supplied to the process equipment. And a second outlet, which is a passage through which brine is discharged.
  • first heat exchanger configured to heat exchange between the coolant and the brine
  • second heat exchanger and the first heat exchanger configured to cause heat exchange between the brine cooled by the chiller and the brine supplied from the process equipment.
  • a configured coolant piping configured to heat exchange between the coolant and the brine
  • first brine pipe forming a path connecting the first inlet, the first heat exchanger and the first outlet
  • second brine forming a path connecting the second inlet, the second heat exchanger and the first brine pipe
  • a third brine pipe forming a path connecting the pipe, the first brine pipe, the second heat exchanger and the second outlet, and the second brine pipe on the second inlet side and the third brine pipe on the second outlet side. It includes a brine pipe having a first bypass pipe and configured to flow brine.
  • first three way valve installed in the first brine pipe and configured to connect the first brine pipe and the third brine pipe
  • a second three way installed in the first brine pipe and configured to connect the first brine pipe and the second brine pipe.
  • the valve further includes a third three-way valve installed on the second brine pipe and configured to connect the second brine pipe and the first bypass pipe.
  • the brine introduced through the first inlet is discharged to the first outlet after heat exchange with the coolant in the first heat exchanger, and the first three-way valve is discharged directly to the second outlet.
  • the brine introduced through the first inlet is discharged to the second outlet after heat exchange with the brine cooled in the chiller in the second heat exchanger, and the second inlet.
  • a controller configured to control the first three-way valve, the second three-way valve, and the third three-way valve to allow the cooled brine introduced through the second heat exchanger to be discharged to the first outlet after heat exchange with the brine supplied from the process equipment in the second heat exchanger.
  • the brine temperature and flow rate control device further includes a coolant flow rate control valve installed in the coolant pipe.
  • a first brine flow control valve installed in the second brine pipe.
  • the apparatus may further include a second bypass pipe provided between the first inlet side first brine pipe and the second outlet side third brine pipe, and a second brine flow rate control valve installed in the second bypass pipe.
  • the third brine pipe is provided with a flow rate sensor
  • the controller is configured to receive the brine flow rate data from the flow rate sensor, to control the second brine flow rate control valve.
  • first inlet, the second inlet, the first outlet it is preferable to further include temperature sensors respectively installed in the brine pipe adjacent to the second outlet.
  • the apparatus may further include a brine storage tank installed at a third brine pipe between the second heat exchanger and the second outlet.
  • the apparatus for controlling brine temperature and flow rate according to the present invention cools the brine through heat exchange with coolant in the high temperature operation mode. Therefore, it is possible to reduce power consumption due to unnecessary chiller cycle operation. In addition, by controlling the flow rate of the cooling water during the heat exchange with the cooling water, it is possible to minimize the operation of the heater to maintain the temperature of the brine required in the semiconductor processing equipment.
  • brine temperature and flow rate control apparatus can be easily installed in a conventional semiconductor process equipment.
  • brine temperature and flow rate control additional device can control the flow rate as well as the temperature of the brine.
  • FIG. 2 and 3 are schematic diagrams of the brine temperature and flow rate control additional device shown in FIG.
  • FIG. 4 is a system diagram of a conventional refrigeration chiller.
  • the brine circulating in the process facility 1 is supplied to the brine temperature and flow rate control additional device 20 through the first inlet 21.
  • the brine supplied to the brine temperature and flow rate control additional device 20 is supplied to the chiller 10 through the first outlet 22.
  • the brine having passed through the chiller 10 is supplied to the brine temperature and flow rate control additional device 20 through the second inlet 23.
  • the brine having passed through the brine temperature and flow rate control additional device 20 is supplied back to the process equipment 1 through the second outlet 24.
  • the process facility 1, the brine temperature and flow rate control addition device 20, the brine temperature and flow rate control addition device 20, and the freezing chiller 10 are connected to each other via communication lines 35 and 37, respectively.
  • the set temperature value transmitted from the process facility 1 is transmitted to the brine temperature and flow rate control additional device 20, and the brine temperature and flow rate control additional device 20 is based on the set temperature and the chiller chiller 10 and the brine temperature and The additional device 20 for flow rate control is controlled.
  • the brine temperature and the flow rate control additional device 20 operate the freezing chiller 10, but do not operate in the high temperature operating mode in which the set temperature is high.
  • FIGS. 2 and 3 are schematic diagrams of the brine temperature and flow rate control additional device shown in FIG.
  • FIGS. 2 and 3 are schematic diagrams of the brine temperature and flow rate control additional device shown in FIG.
  • the brine temperature and flow rate control additional device 20 includes a first heat exchanger 25, a second heat exchanger 26, a coolant pipe 27, a brine pipe 28, and brine.
  • Storage tank 29 and controller 30 is included.
  • first heat exchanger 25 heat exchange occurs between the cooling water and the brine supplied from the process equipment 1.
  • various types of heat exchangers such as a coil type, a double tube type, and a multi tube type, may be used.
  • the second heat exchanger 26 heat exchange occurs between the brine cooled by the chiller 10 and the brine supplied from the process equipment 1.
  • the second heat exchanger 26 may also use various types of heat exchangers.
  • the cooling water pipe 27 supplies a cooling water PCW of about 23 ° C. to the first heat exchanger 25, and forms a path for recovering cooling water having completed heat exchange with brine supplied from the process equipment 1.
  • the coolant pipe 27 is provided with a coolant flow control valve 34 capable of controlling the flow rate of the coolant.
  • the brine pipe 28 forms a path through which the brine supplied from the process equipment 1 and the cooled brine supplied from the chiller 10 flow.
  • the brine pipe 28 includes a first brine pipe 28-1, a second brine pipe 28-2, and a third brine pipe 28-3.
  • the first brine pipe 28-1 forms a path connecting the first inlet 21, the first heat exchanger 25, and the first outlet 22.
  • the first three-way valve 31 and the second three-way valve 32 are installed in the first brine pipe 28-1.
  • the second brine pipe 28-2 forms a path connecting the second inlet 23, the second heat exchanger 26, and the second three-way valve 32 of the first brine pipe 28-1.
  • the third three-way valve 33 is installed in the second brine pipe 28-2.
  • a first brine flow rate control valve 38 that adjusts the flow rate of the brine cooled by the chiller 10 is installed.
  • the third brine pipe 28-3 forms a path connecting the first three-way valve 31, the second heat exchanger 26, and the second outlet 24.
  • the brine pipe 28 is a first bypass pipe provided between the third brine pipe 28-3 on the second outlet 24 side and the second brine pipe 28-2 on the second inlet 23 side.
  • Second bypass piping 28 provided between the first brine pipe 28-1 on the side of the first inlet 21 and the third brine pipe 28-3 on the side of the second outlet 24. -5) is further provided.
  • the second brine flow control valve 39 is installed in the second bypass pipe 28-5. The more the second brine flow rate control valve 39 is opened, the lower the flow rate of brine supplied to the process equipment 1 through the second outlet 24.
  • the first three-way valve 31 is discharged from the process equipment (1) and the brine introduced to the brine temperature and flow rate control additional device 20 through the first inlet 21 is connected to the first heat exchanger (25) It serves to select and supply to the brine pipe (28-1) or the third brine pipe (28-3) connected to the second heat exchanger (26). That is, it determines whether to send the brine to the first heat exchanger 25 or the second heat exchanger (26).
  • the second three-way valve 32 serves to deliver the brine that passed through the first heat exchanger 25 or the second heat exchanger 26 to the first brine pipe 28-1 connected to the first outlet.
  • the third three-way valve 33 is discharged from the chiller 10 and the brine introduced into the brine temperature and flow rate control additional device 20 through the second inlet 23 and the second brine connected to the second heat exchanger 26 It serves to select and supply to the second bypass pipe (28-5) connected to the pipe (28-2) or the second outlet (24).
  • a pump 41 and a brine storage tank 29 are installed in the third brine pipe 28-3.
  • the flow rate sensor 40 is installed on the second outlet 24 side of the third brine pipe 28-3.
  • the controller 30 controls the brine temperature from the temperature sensors 42 installed in the brine pipe 28 adjacent to the first inlet 21, the second inlet 23, the first outlet 22, and the second outlet 24.
  • the data is received, and the brine flow rate data discharged from the flow rate sensor 40 to the second outlet 24 is received.
  • the coolant flow control valve 34, the first brine flow control valve 38, the second brine flow control valve 39, and the first three-way valve 31 based on the temperature data and the set temperature of the process equipment 1.
  • the second three-way valve 32 and the third three-way valve 33 is controlled.
  • the compressor and the heater of the chiller 10 can also be controlled.
  • the controller 30 may control the temperature of the brine discharged from the first heat exchanger 25 by controlling the cooling water flow rate control valve 34 to adjust the flow rate of the cooling water flowing in the cooling water pipe 27.
  • the first brine flow rate control valve 38 to adjust the flow rate of the brine cooled by the chiller 10 flowing through the second brine pipe 28-2. You can adjust the temperature of the brine.
  • the flow rate of the brine bypassed by controlling the second brine flow rate control valve 39, the flow rate of the brine discharged to the process facility 1 can also be controlled.
  • the controller 30 is a refrigeration chiller ( Turn off the compressor of 10).
  • the brine introduced from the process equipment 1 to the brine temperature and flow rate control additional device 20 through the first inlet 21 flows into the first heat exchanger 25 through the first brine pipe 28-1. .
  • the controller 30 is a coolant flow control valve based on temperature data received from the temperature sensors 42 installed in the first brine pipe 28-1 near the first inlet 21 and the first outlet 22. 34) to adjust the temperature of the brine.
  • the brine supplied to the freezing chiller 10 passes through the freezing chiller 10 and then flows back into the brine temperature and flow rate control additional device 20 through the second inlet 23. At this time, since the refrigeration cycle of the chiller 10 does not operate, the temperature of the brine does not change significantly in the cooled state by heat exchange with the cooling water.
  • the third three-way valve 33, the first bypass pipe 28-4, and the second outlet 24 are supplied to the process facility 1.
  • the controller 30 receives the flow rate data measured by the flow rate sensor 40 installed on the second outlet 24 side of the third brine pipe 28-3 to operate the second brine flow rate control valve 39. To control.
  • the controller 30 controls the amount of brine discharged through the second outlet 24 by controlling the second brine flow rate control valve 39.
  • the brine not discharged through the second outlet 24 is supplied to the first brine pipe 28-1 through the second bypass pipe 28-5.
  • the brine temperature and flow rate control apparatus 20 in the high temperature operation mode adjusts the flow rate of the coolant supplied to the first heat exchanger 25 and the amount of brine flowing through the second bypass pipe 28-5. Thereby, the temperature and flow rate of the brine supplied to the process equipment 1 are adjusted.
  • the controller 30 When the brine set temperature of the process equipment 1 is low, the controller 30 operates the compressor of the refrigeration chiller 10.
  • the brine introduced from the process equipment 1 to the brine temperature and flow rate control additional device 20 through the first inlet 21 passes through the first three-way valve 31 of the first brine pipe 28-1. Flow into brine pipe 28-3.
  • the brine is heat exchanged with the brine cooled to a low temperature in the freezing chiller 10 in the second heat exchanger (26).
  • stored in the brine storage tank 290 again flows along the third brine pipe (28-3), discharged through the second outlet 24, and flows into the process equipment 1.
  • the controller 30 Controls the amount of brine discharged through the second outlet 24 by controlling the second brine flow rate control valve 39.
  • the cold brine introduced into the brine temperature and flow rate control additional device 20 through the second inlet 23 from the freezing chiller 10 is the third three-way valve 33 and the first of the second brine pipe 28-2. After passing through the brine flow rate control valve 38, it is introduced into the second heat exchanger 26. The cold brine in the second heat exchanger 26 exchanges heat with the brine introduced from the process equipment 1. And it goes to the 2nd three-way valve 32 along the 2nd brine pipe 28-2. The brine having passed through the second three-way valve 32 is discharged to the first outlet 21 via the first brine pipe 28-1. The discharged brine is introduced into the freezing chiller 10 again. The controller 30 controls the first brine flow rate control valve 38 to adjust the flow rate of the cold brine. Through this, the temperature of the brine discharged to the process equipment (1) is adjusted.
  • the brine temperature and flow rate control additional device 20 in the low temperature operation mode measures the flow rate of the cold brine supplied to the second heat exchanger 26 and the amount of brine flowing through the second bypass pipe 28-5. By adjusting, the temperature and flow volume of the brine supplied to the process equipment 1 are adjusted.
  • the brine circulating in the process equipment 1 flows back into the process equipment 1 through both the brine temperature and flow rate control addition device 20 and the chiller 10.
  • the brine circulating in the process equipment 1 flows into the process equipment 1 immediately after heat exchange from the brine temperature and flow rate control additional device 20, and the brine circulating in the chiller 10 is the brine temperature and After the heat exchange in the flow rate control addition device 20 immediately flows back into the chiller 10.
  • the embodiment shown in FIG. 4 in that the brine cooled by the chiller 10 in the low temperature operating mode is used for temperature control of the brine supplied from the second heat exchanger 26 to the process equipment 1.
  • the temperature of the brine is precisely controlled again through heat exchange in the additional device 20 installed close to the process facility 1.
  • the flow rate is controlled as well as the temperature of the brine.
  • Second Inlet 24 Second Outlet

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

The present invention relates to a device to be used for stable process temperature control in a semiconductor process and the like and, more specifically, to an attachment for controlling the temperature and flow rate of brine, provided closely to semiconductor equipment so as to precisely control the temperature of brine supplied from a chiller using a freezing cycle to the semiconductor equipment. The attachment for controlling the temperature and flow rate of brine, according to the present invention, cools the brine by exchanging heat with a coolant in a high-temperature operation mode. Therefore, power consumption can be reduced according to an unnecessary refrigerant cycle operation of a chiller. In addition, the flow rate of a coolant is controlled even during heat exchange with the coolant such that a heater operation for maintaining the temperature of brine required in semiconductor process equipment can be minimized. Furthermore, the attachment for controlling the temperature and flow rate of brine, according to the present invention, can easily be provided to conventional semiconductor process equipment. Moreover, the attachment for controlling the temperature and flow rate of brine, according to the present invention, can control the temperature and flow rate of brine.

Description

브라인 온도 및 유량 제어용 부가 장치Additional device for brine temperature and flow control
본 발명은 반도체 공정 등에서 안정적인 공정온도 제어를 위해서 사용되는 장치에 관한 것으로서, 더욱 상세하게는 반도체 장비에 근접하여 설치되어, 냉동 사이클을 이용하는 칠러로부터 반도체 장비에 공급되는 브라인의 온도를 정밀 제어할 수 있는 브라인 온도 및 유량 제어용 부가 장치에 관한 것이다.The present invention relates to a device used for stable process temperature control in a semiconductor process, and more particularly, is installed close to the semiconductor equipment, it is possible to precisely control the temperature of the brine supplied to the semiconductor equipment from the chiller using a refrigeration cycle A brine temperature and flow rate control additional device.
칠러(chiller)란 반도체 소자의 제조공정에서 안정적인 공정제어를 위한 온도조절 장치이다.A chiller is a temperature control device for stable process control in a semiconductor device manufacturing process.
통상, 반도체 공정은 각 단위 공정별 공정 챔버에서 정해진 순서에 따라서 공정이 수행되며, 공정 챔버에서 정상적인 공정이 수행될 수 있도록 여러 종류의 부대장치들이 구성되어 있다.In general, a semiconductor process is performed in a predetermined order in a process chamber for each unit process, and various types of auxiliary devices are configured to allow a normal process to be performed in the process chamber.
또한, 반도체 공정은 공정환경으로 산화공정과 같이 고온이 요구되는 것도 포함되어 있고, 이와 다르게 반도체 공정을 수행하기 위하여 설치되는 각 구성 부품 또는 부대 설비들이 자체 발열 되는 경우도 있다.In addition, the semiconductor process includes a process environment in which a high temperature is required, such as an oxidation process. Alternatively, each component or ancillary equipment installed to perform the semiconductor process may generate heat by itself.
정상적인 반도체 공정의 진행을 위해서는 전자나 후자 모두 일정 온도 이하로 냉각되어야 하며, 이를 위하여 냉각제 순환시스템이 반도체 공정 설비에 구성되어 있다.In order to proceed with the normal semiconductor process, both the former and the latter must be cooled below a certain temperature. For this purpose, a coolant circulation system is constructed in the semiconductor process facility.
따라서, 반도체 소자의 제조공정에서는 안정적인 공정제어를 위하여 칠러(chiller)가 필요하다. 특히 반도체 소자 제조공정에서 칠러는 여러 공정 중에서 식각 및 노광 공정에서 주로 사용하게 되는데 공정 중 과도한 열이 발생하는 전극판 및 챔버(chamber)의 온도를 일정하게 유지시켜 줌으로써 고온으로 인한 웨이퍼의 파손 및 생산성의 저하를 막아주게 된다.Therefore, in the manufacturing process of the semiconductor device, a chiller is required for stable process control. In particular, in the semiconductor device manufacturing process, the chiller is mainly used in the etching and exposure processes among the various processes. The wafer breakage and productivity due to the high temperature are maintained by keeping the temperature of the electrode plate and chamber where excessive heat is generated during the process. It will prevent the fall of.
반도체 공정에 사용되는 장비의 공정시 발생하는 열을 흡수하기 위한 종래의 칠러는 도 4과 같이 구성된다.Conventional chillers for absorbing heat generated during the processing of equipment used in the semiconductor process is configured as shown in FIG.
도 4에 도시된 바와 같이, 종래의 칠러 장치(10)는 냉동 사이클을 통해서 냉각된 냉매의 경로(11)와 반도체 공정 설비(1)의 내부를 순환하는 유체인 브라인(Brine)의 경로(12)를 칠러 열교환기(13)에서 중첩시켜서 브라인의 온도를 낮춘 후, 히터(18)를 이용하여 브라인을 다시 가열하여 브라인의 온도를 일정하게 유지한다. As shown in FIG. 4, the conventional chiller apparatus 10 includes a path 12 of brine, which is a fluid circulating inside the semiconductor processing equipment 1 and a path 11 of a refrigerant cooled through a refrigeration cycle. ) Is superimposed in the chiller heat exchanger 13 to lower the temperature of the brine, and then the brine is heated again using the heater 18 to maintain the temperature of the brine constant.
이하에서는 먼저 냉매의 순환 경로를 설명한 후 브라인의 순환 경로에 대해서 설명한다. Hereinafter, the circulation path of the refrigerant will be described first and then the circulation path of the brine will be described.
압축기(14)에서 고온고압상태로 변화된 냉매는 응축기(15)에서 열을 방출하면서 응축된다. 열을 방출한 냉매는 액화된 후 팽창밸브(16)를 통해서 감압되어 저온저압의 액체 상태가 된다. 팽창밸브(16)를 거친 냉매는 칠러 열교환기(13)에서 열을 흡수하여 증발한다.The refrigerant changed to the high temperature and high pressure state in the compressor 14 is condensed while releasing heat from the condenser 15. After releasing the heat, the refrigerant is liquefied and decompressed through the expansion valve 16 to become a low-temperature low-pressure liquid state. The refrigerant passing through the expansion valve 16 absorbs heat from the chiller heat exchanger 13 and evaporates.
반도체 공정 설비(1)를 순환한 브라인은 브라인 인렛(2)을 통해서 열교환기로 유입된다. 칠러 열교환기(13)에서 냉매와 열교환을 거친 브라인은 가열용 히터(18)에서 가열된 후 브라인 아웃렛(3)을 통하여 다시 반도체 공정 설비(1)로 유입된다. The brine circulating in the semiconductor processing equipment 1 flows into the heat exchanger through the brine inlet 2. The brine having undergone heat exchange with the refrigerant in the chiller heat exchanger 13 is heated by the heating heater 18 and then flows back into the semiconductor processing equipment 1 through the brine outlet 3.
이와 같은 종래의 칠러(10)는 반도체 공정 설비(1)에서 요구되는 브라인의 온도가 상대적으로 높은 경우 냉매와의 열교환을 거쳐서 지나치게 냉각된 브라인을 히터(18)를 통해서 다시 가열한 후 반도체 공정 설비(1)에 투입하므로, 불필요한 전력 소비가 지나치게 많다는 문제가 있었다.The conventional chiller 10 is a semiconductor processing equipment after heating the brine cooled too much through the heat exchanger 18 through heat exchange with the refrigerant when the temperature of the brine required in the semiconductor processing equipment 1 is relatively high. Since it puts into (1), there exists a problem that too much unnecessary power consumption is carried out.
본 발명은 냉동 사이클을 이용하는 칠러의 소비 전력을 최소화할 수 있으며, 브라인의 온도 및 유량을 제어할 수 있는 부가 장치(Attachment)를 제공하는 것을 목적으로 한다. 또한, 기존의 공정 설비와 칠러의 구조를 변경하지 않고, 기존의 공정 설비와 칠러 사이에 용이하게 설치할 수 있는 브라인 온도 및 유량 제어용 부가 장치를 제공하는 것을 목적으로 한다.An object of the present invention is to provide an attachment that can minimize the power consumption of the chiller using a refrigeration cycle, and can control the temperature and flow rate of the brine. Another object of the present invention is to provide an additional device for controlling brine temperature and flow rate that can be easily installed between the existing process equipment and the chiller without changing the structure of the existing process equipment and the chiller.
상술한 목적을 달성하기 위한 본 발명에 따른 브라인 온도 및 유량 제어용 부가 장치는 공정온도 제어를 위해 브라인이 사용되는 공정 설비와 칠러 사이에 설치되는 장치이다.The brine temperature and flow rate control apparatus according to the present invention for achieving the above object is a device installed between the chiller and the process equipment is used for the process temperature control.
본 장치는 공정 설비를 순환한 브라인이 유입되는 통로인 제1인렛, 칠러를 통과한 브라인이 유입되는 통로인 제2인렛, 칠러에 공급되는 브라인이 배출되는 통로인 제1아웃렛, 공정 설비에 공급되는 브라인이 배출되는 통로인 제2아웃렛을 포함한다.The apparatus is supplied to the first inlet, which is a passage through which the brine is circulated through the process equipment, the second inlet, which is a passage through which the brine passes through the chiller, the first outlet, a passage through which the brine supplied to the chiller is discharged, and is supplied to the process equipment. And a second outlet, which is a passage through which brine is discharged.
또한, 냉각수와 브라인 사이에 열교환이 일어나도록 구성된 제1열교환기와, 칠러에 의해서 냉각된 브라인과 공정 설비에서 공급된 브라인 사이에 열교환이 일어나도록 구성된 제2열교환기 및 제1열교환기에 냉각수를 공급하도록 구성된 냉각수 배관을 포함한다.In addition, the first heat exchanger configured to heat exchange between the coolant and the brine, and the second heat exchanger and the first heat exchanger configured to cause heat exchange between the brine cooled by the chiller and the brine supplied from the process equipment. A configured coolant piping.
또한, 제1인렛, 제1열교환기 및 제1아웃렛을 연결하는 경로를 형성하는 제1브라인 배관과, 제2인렛, 제2열교환기 및 제1브라인 배관을 연결하는 경로를 형성하는 제2브라인 배관과, 제1브라인 배관, 제2열교환기 및 제2아웃렛을 연결하는 경로를 형성하는 제3브라인 배관과, 제2인렛 측 제2브라인 배관과 제2아웃렛 측 제3브라인 배관 사이에 설치되는 제1바이패스 배관을 구비하며, 브라인이 흐르도록 구성된 브라인 배관을 포함한다.In addition, the first brine pipe forming a path connecting the first inlet, the first heat exchanger and the first outlet, and the second brine forming a path connecting the second inlet, the second heat exchanger and the first brine pipe A third brine pipe forming a path connecting the pipe, the first brine pipe, the second heat exchanger and the second outlet, and the second brine pipe on the second inlet side and the third brine pipe on the second outlet side. It includes a brine pipe having a first bypass pipe and configured to flow brine.
그리고 제1브라인 배관에 설치되며 제1브라인 배관과 제3브라인 배관을 연결하도록 구성된 제1삼방밸브와, 제1브라인 배관에 설치되며 제1브라인 배관과 제2브라인 배관을 연결하도록 구성된 제2삼방밸브와, 제2브라인 배관에 설치되며 제2브라인 배관과 제1바이패스 배관을 연결하도록 구성된 제3삼방밸브을 더 포함한다.And a first three way valve installed in the first brine pipe and configured to connect the first brine pipe and the third brine pipe, and a second three way installed in the first brine pipe and configured to connect the first brine pipe and the second brine pipe. The valve further includes a third three-way valve installed on the second brine pipe and configured to connect the second brine pipe and the first bypass pipe.
그리고 고온 가동 모드에서는 제1인렛을 통해서 유입된 브라인이 제1열교환기에서 냉각수와 열교환 후 제1아웃렛으로 배출되고, 제2인렛을 통해서 유입된 브라인이 제2아웃렛으로 바로 배출되도록 제1삼방밸브, 제2삼방밸브 및 제3삼방밸브를 제어하고, 저온 가동 모드에서는 제1인렛을 통해서 유입된 브라인이 제2열교환기에서 칠러에서 냉각된 브라인과 열교환 후 제2아웃렛으로 배출되고, 제2인렛을 통해서 유입된 냉각된 브라인이 제2열교환기에서 공정 설비에서 공급된 브라인과 열교환 후 제1아웃렛으로 배출되도록 제1삼방밸브, 제2삼방밸브 및 제3삼방밸브를 제어하도록 구성된 제어기를 포함한다.In the high temperature operation mode, the brine introduced through the first inlet is discharged to the first outlet after heat exchange with the coolant in the first heat exchanger, and the first three-way valve is discharged directly to the second outlet. And controlling the second three-way valve and the third three-way valve, and in the low temperature operation mode, the brine introduced through the first inlet is discharged to the second outlet after heat exchange with the brine cooled in the chiller in the second heat exchanger, and the second inlet. And a controller configured to control the first three-way valve, the second three-way valve, and the third three-way valve to allow the cooled brine introduced through the second heat exchanger to be discharged to the first outlet after heat exchange with the brine supplied from the process equipment in the second heat exchanger. .
상술한 브라인 온도 및 유량 제어용 부가 장치는 냉각수 배관에 설치된 냉각수 유량제어밸브를 더 포함하는 것이 바람직하다. 또한, 제2브라인 배관에 설치된 제1브라인 유량제어밸브를 더 포함하는 것이 바람직하다.It is preferable that the brine temperature and flow rate control device further includes a coolant flow rate control valve installed in the coolant pipe. In addition, it is preferable to further include a first brine flow control valve installed in the second brine pipe.
또한, 제1인렛 측 제1브라인 배관과 제2아웃렛 측 제3브라인 배관 사이에 설치되는 제2바이패스 배관과, 제2바이패스 배관에 설치된 제2브라인 유량제어밸브를 더 포함하는 것이 바람직하다. 여기서 제3브라인 배관에는 유량 센서가 설치되며, 제어기는 유량 센서로부터 브라인 유량 데이터 수신하여, 제2브라인 유량제어밸브를 제어하도록 구성되는 것이 바람직하다.The apparatus may further include a second bypass pipe provided between the first inlet side first brine pipe and the second outlet side third brine pipe, and a second brine flow rate control valve installed in the second bypass pipe. . Here, the third brine pipe is provided with a flow rate sensor, the controller is configured to receive the brine flow rate data from the flow rate sensor, to control the second brine flow rate control valve.
또한, 제1인렛, 제2인렛, 제1아웃렛, 제2아웃렛과 인접하는 브라인 배관에 각각 설치된 온도센서들을 더 포함하는 것이 바람직하다.In addition, the first inlet, the second inlet, the first outlet, it is preferable to further include temperature sensors respectively installed in the brine pipe adjacent to the second outlet.
또한, 제2열교환기와 제2아웃렛 사이의 제3브라인 배관에 설치된 브라인 저장탱크를 더 포함할 수 있다.The apparatus may further include a brine storage tank installed at a third brine pipe between the second heat exchanger and the second outlet.
본 발명에 따른 브라인 온도 및 유량 제어용 부가 장치는 고온 가동 모드에서는냉각수와의 열교환을 통해 브라인을 냉각한다. 따라서 불필요한 칠러의 냉매 사이클 가동에 따른 전력 소비를 줄일 수 있다. 또한, 냉각수와 열교환 시에도 냉각수의 유량을 제어함으로써, 반도체 공정 설비에서 요구되는 브라인의 온도를 유지하기 위한 히터 가동을 최소화할 수 있다.The apparatus for controlling brine temperature and flow rate according to the present invention cools the brine through heat exchange with coolant in the high temperature operation mode. Therefore, it is possible to reduce power consumption due to unnecessary chiller cycle operation. In addition, by controlling the flow rate of the cooling water during the heat exchange with the cooling water, it is possible to minimize the operation of the heater to maintain the temperature of the brine required in the semiconductor processing equipment.
또한, 본 발명에 따른 브라인 온도 및 유량 제어용 부가 장치는 종래의 반도체 공정 설비에 용이하게 설치할 수 있다.In addition, the brine temperature and flow rate control apparatus according to the present invention can be easily installed in a conventional semiconductor process equipment.
또한, 본 발명에 따른 브라인 온도 및 유량 제어용 부가 장치는 브라인의 온도 뿐 아니라 유량도 제어할 수 있다.In addition, the brine temperature and flow rate control additional device according to the present invention can control the flow rate as well as the temperature of the brine.
도 1은 본 발명에 따른 브라인 온도 및 유량 제어용 부가 장치를 냉동 칠러와 공정 설비 사이에 설치한 상태를 나타내는 구성도이다.BRIEF DESCRIPTION OF THE DRAWINGS It is a block diagram which shows the state which installed the brine temperature and flow control additional apparatus which concerns on this invention between a refrigeration chiller and a process facility.
도 2와 3은 도 1에 도시된 브라인 온도 및 유량 제어용 부가 장치의 계통도이다.2 and 3 are schematic diagrams of the brine temperature and flow rate control additional device shown in FIG.
도 4는 종래의 냉동 칠러의 계통도이다.4 is a system diagram of a conventional refrigeration chiller.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명한다. 다음에 소개되는 실시예는 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 예로서 제공되는 것이다. 따라서, 본 발명은 이하 설명되는 실시예에 한정되지 않고 다른 형태로 구체화될 수도 있다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. The following embodiments are provided as examples to ensure that the spirit of the present invention to those skilled in the art will fully convey. Accordingly, the invention is not limited to the embodiments described below and may be embodied in other forms.
도 1은 본 발명에 따른 브라인 온도 및 유량 제어용 부가 장치를 냉동 칠러와 공정 설비 사이에 설치한 상태를 나타내는 구성도이다. 도 2와 3은 도 1에 도시된 브라인 온도 및 유량 제어용 부가 장치의 계통도이다. BRIEF DESCRIPTION OF THE DRAWINGS It is a block diagram which shows the state which installed the brine temperature and flow control additional apparatus which concerns on this invention between a refrigeration chiller and a process facility. 2 and 3 are schematic diagrams of the brine temperature and flow rate control additional device shown in FIG.
도 1에 도시된 바와 같이, 공정 설비(1)를 순환한 브라인은 제1인렛(21)을 통해서 브라인 온도 및 유량 제어용 부가 장치(20)에 공급된다. 브라인 온도 및 유량 제어용 부가 장치(20)에 공급된 브라인은 제1아웃렛(22)을 통해서 칠러(10)에 공급된다. 칠러(10)를 통과한 브라인은 제2인렛(23)을 통해서 브라인 온도 및 유량 제어용 부가 장치(20)에 공급된다. 브라인 온도 및 유량 제어용 부가 장치(20)를 통과한 브라인은 제2아웃렛(24)를 통해서 다시 공정 설비(1)로 공급된다.As shown in FIG. 1, the brine circulating in the process facility 1 is supplied to the brine temperature and flow rate control additional device 20 through the first inlet 21. The brine supplied to the brine temperature and flow rate control additional device 20 is supplied to the chiller 10 through the first outlet 22. The brine having passed through the chiller 10 is supplied to the brine temperature and flow rate control additional device 20 through the second inlet 23. The brine having passed through the brine temperature and flow rate control additional device 20 is supplied back to the process equipment 1 through the second outlet 24.
공정 설비(1)와 브라인 온도 및 유량 제어용 부가 장치(20) 및 브라인 온도 및 유량 제어용 부가 장치(20)와 냉동 칠러(10)는 각각 통신회선(35, 37)으로 연결되어 있다. 공정 설비(1)에서 송신된 설정온도 값은 브라인 온도 및 유량 제어용 부가 장치(20)에 전달되고, 브라인 온도 및 유량 제어용 부가 장치(20)는 설정온도에 따라서 냉동 칠러(10)와 브라인 온도 및 유량 제어용 부가 장치(20)를 제어한다.The process facility 1, the brine temperature and flow rate control addition device 20, the brine temperature and flow rate control addition device 20, and the freezing chiller 10 are connected to each other via communication lines 35 and 37, respectively. The set temperature value transmitted from the process facility 1 is transmitted to the brine temperature and flow rate control additional device 20, and the brine temperature and flow rate control additional device 20 is based on the set temperature and the chiller chiller 10 and the brine temperature and The additional device 20 for flow rate control is controlled.
공정 설비(1)의 브라인 설정온도가 낮은 저온 가공 모드에서는 브라인 온도 및 유량 제어용 부가 장치(20)가 냉동 칠러(10)를 가동시키며, 설정온도가 높은 고온 가동 모드에서는 가동시키지 않는다.In the low temperature processing mode in which the brine set temperature of the process equipment 1 is low, the brine temperature and the flow rate control additional device 20 operate the freezing chiller 10, but do not operate in the high temperature operating mode in which the set temperature is high.
도 2와 3은 도 1에 도시된 브라인 온도 및 유량 제어용 부가 장치의 계통도이다. 이하에서는 도 2와 3을 참고하여, 좀 더 상세하게 설명한다.2 and 3 are schematic diagrams of the brine temperature and flow rate control additional device shown in FIG. Hereinafter, with reference to FIGS. 2 and 3 will be described in more detail.
도 2와 3에 도시된 바와 같이, 브라인 온도 및 유량 제어용 부가 장치(20)는 제1열교환기(25), 제2열교환기(26), 냉각수 배관(27), 브라인 배관(28), 브라인 저장탱크(29) 및 제어기(30)를 포함한다. As shown in FIGS. 2 and 3, the brine temperature and flow rate control additional device 20 includes a first heat exchanger 25, a second heat exchanger 26, a coolant pipe 27, a brine pipe 28, and brine. Storage tank 29 and controller 30 is included.
제1열교환기(25)에서는 냉각수와 공정 설비(1)에서 공급된 브라인 사이의 열교환이 일어난다. 제1열교환기(25)로는 코일식, 이중관식, 다관식 등 다양한 형태의 열교환기를 사용할 수 있다. In the first heat exchanger 25, heat exchange occurs between the cooling water and the brine supplied from the process equipment 1. As the first heat exchanger 25, various types of heat exchangers, such as a coil type, a double tube type, and a multi tube type, may be used.
제2열교환기(26)에서는 칠러(10)에 의해서 냉각된 브라인과 공정 설비(1)에서 공급된 브라인 사이의 열교환이 일어난다. 제2열교환기(26) 역시 다양한 형태의 열교환기를 사용할 수 있다.In the second heat exchanger 26, heat exchange occurs between the brine cooled by the chiller 10 and the brine supplied from the process equipment 1. The second heat exchanger 26 may also use various types of heat exchangers.
냉각수 배관(27)은 제1열교환기(25)에 23℃정도의 냉각수(PCW)를 공급하고, 공정 설비(1)에서 공급된 브라인과의 열교환이 완료된 냉각수를 회수하는 경로를 형성한다. 냉각수 배관(27)에는 냉각수의 유량을 제어할 수 있는 냉각수 유량제어밸브(34)가 설치된다. The cooling water pipe 27 supplies a cooling water PCW of about 23 ° C. to the first heat exchanger 25, and forms a path for recovering cooling water having completed heat exchange with brine supplied from the process equipment 1. The coolant pipe 27 is provided with a coolant flow control valve 34 capable of controlling the flow rate of the coolant.
브라인 배관(28)은 공정 설비(1)에서 공급된 브라인 및 칠러(10)에서 공급된 냉각된 브라인이 흐르는 경로를 형성한다. 브라인 배관(28)은 제1브라인 배관(28-1), 제2브라인 배관(28-2) 및 제3브라인 배관(28-3)을 포함한다. 제1브라인 배관(28-1)은 제1인렛(21), 제1열교환기(25) 및 제1아웃렛(22)을 연결하는 경로를 형성한다. 제1브라인 배관(28-1)에는 제1삼방밸브(31)와 제2삼방밸브(32)가 설치된다.The brine pipe 28 forms a path through which the brine supplied from the process equipment 1 and the cooled brine supplied from the chiller 10 flow. The brine pipe 28 includes a first brine pipe 28-1, a second brine pipe 28-2, and a third brine pipe 28-3. The first brine pipe 28-1 forms a path connecting the first inlet 21, the first heat exchanger 25, and the first outlet 22. The first three-way valve 31 and the second three-way valve 32 are installed in the first brine pipe 28-1.
제2브라인 배관(28-2)은 제2인렛(23), 제2열교환기(26) 및 제1브라인 배관(28-1)의 제2삼방밸브(32)를 연결하는 경로를 형성한다. 제2브라인 배관(28-2)에는 제3삼방밸브(33)가 설치된다. 또한, 칠러(10)에서 냉각된 브라인의 유량을 조절할 수 있는 제1브라인 유량제어밸브(38)가 설치된다. The second brine pipe 28-2 forms a path connecting the second inlet 23, the second heat exchanger 26, and the second three-way valve 32 of the first brine pipe 28-1. The third three-way valve 33 is installed in the second brine pipe 28-2. In addition, a first brine flow rate control valve 38 that adjusts the flow rate of the brine cooled by the chiller 10 is installed.
제3브라인 배관(28-3)은 제1삼방밸브(31), 제2열교환기(26) 및 제2아웃렛(24)을 연결하는 경로를 형성한다.The third brine pipe 28-3 forms a path connecting the first three-way valve 31, the second heat exchanger 26, and the second outlet 24.
또한, 브라인 배관(28)은 제2아웃렛(24) 측 제3브라인 배관(28-3)과 제2인렛(23) 측 제2브라인 배관(28-2) 사이에 설치되는 제1바이패스 배관(28-4)과 제1인렛(21) 측 제1브라인 배관(28-1)과 제2아웃렛(24) 측 제3브라인 배관(28-3) 사이에 설치되는 제2바이패스 배관(28-5)을 더 구비한다. 제2바이패스 배관(28-5)에는 제2브라인 유량제어밸브(39)가 설치된다. 제2브라인 유량제어밸브(39)가 많이 열릴수록 제2아웃렛(24)을 통해서 공정 설비(1)에 공급되는 브라인의 유량이 감소한다.The brine pipe 28 is a first bypass pipe provided between the third brine pipe 28-3 on the second outlet 24 side and the second brine pipe 28-2 on the second inlet 23 side. Second bypass piping 28 provided between the first brine pipe 28-1 on the side of the first inlet 21 and the third brine pipe 28-3 on the side of the second outlet 24. -5) is further provided. The second brine flow control valve 39 is installed in the second bypass pipe 28-5. The more the second brine flow rate control valve 39 is opened, the lower the flow rate of brine supplied to the process equipment 1 through the second outlet 24.
제1삼방밸브(31)는 공정 설비(1)에서 배출되어 제1인렛(21)을 통해서 브라인 온도 및 유량 제어용 부가 장치(20)에 유입된 브라인을 제1열교환기(25)와 연결된 제1브라인 배관(28-1) 또는 제2열교환기(26)와 연결된 제3브라인 배관(28-3)에 선택하여 공급하는 역할을 한다. 즉, 브라인을 제1열교환기(25)로 보낼 것인지, 제2열교환기(26)로 보낼 것인지 결정하는 역할을 한다.The first three-way valve 31 is discharged from the process equipment (1) and the brine introduced to the brine temperature and flow rate control additional device 20 through the first inlet 21 is connected to the first heat exchanger (25) It serves to select and supply to the brine pipe (28-1) or the third brine pipe (28-3) connected to the second heat exchanger (26). That is, it determines whether to send the brine to the first heat exchanger 25 or the second heat exchanger (26).
제2삼방밸브(32)는 제1열교환기(25) 또는 제2열교환기(26)를 거친 브라인을 제1아웃렛과 연결된 제1브라인 배관(28-1)에 전달하는 역할을 한다.The second three-way valve 32 serves to deliver the brine that passed through the first heat exchanger 25 or the second heat exchanger 26 to the first brine pipe 28-1 connected to the first outlet.
제3삼방밸브(33)는 칠러(10)에서 배출되어 제2인렛(23)을 통해서 브라인 온도 및 유량 제어용 부가 장치(20)에 유입된 브라인을 제2열교환기(26)와 연결된 제2브라인 배관(28-2) 또는 제2아웃렛(24)과 연결된 제2바이패스 배관(28-5)에 선택하여 공급하는 역할을 한다.The third three-way valve 33 is discharged from the chiller 10 and the brine introduced into the brine temperature and flow rate control additional device 20 through the second inlet 23 and the second brine connected to the second heat exchanger 26 It serves to select and supply to the second bypass pipe (28-5) connected to the pipe (28-2) or the second outlet (24).
또한, 제3브라인 배관(28-3)에는 펌프(41)와 브라인 저장 탱크(29)가 설치된다. 또한, 제3브라인 배관(28-3)의 제2아웃렛(24) 측에는 유량센서(40)가 설치된다.In addition, a pump 41 and a brine storage tank 29 are installed in the third brine pipe 28-3. In addition, the flow rate sensor 40 is installed on the second outlet 24 side of the third brine pipe 28-3.
제어기(30)는 제1인렛(21), 제2인렛(23), 제1아웃렛(22), 제2아웃렛(24)에 인접한 브라인 배관(28)에 설치된 온도센서(42)들로부터 브라인 온도 데이터를 수신하며, 유량센서(40)로부터 제2아웃렛(24)으로 배출되는 브라인 유량 데이터를 수신한다. 그리고 온도 데이터 및 공정 설비(1)의 설정온도를 바탕으로 냉각수 유량제어밸브(34), 제1브라인 유량제어밸브(38), 제2브라인 유량제어밸브(39), 제1삼방밸브(31), 제2삼방밸브(32) 및 제3삼방밸브(33)를 제어한다. 또한, 칠러(10)의 압축기 및 히터도 제어할 수 있다.The controller 30 controls the brine temperature from the temperature sensors 42 installed in the brine pipe 28 adjacent to the first inlet 21, the second inlet 23, the first outlet 22, and the second outlet 24. The data is received, and the brine flow rate data discharged from the flow rate sensor 40 to the second outlet 24 is received. The coolant flow control valve 34, the first brine flow control valve 38, the second brine flow control valve 39, and the first three-way valve 31 based on the temperature data and the set temperature of the process equipment 1. The second three-way valve 32 and the third three-way valve 33 is controlled. In addition, the compressor and the heater of the chiller 10 can also be controlled.
제어기(30)는 냉각수 유량제어밸브(34)를 제어하여 냉각수 배관(27)에 흐르는 냉각수의 유량을 조절함으로써, 제1열교환기(25)에서 배출되는 브라인의 온도를 조절할 수 있다. 또한, 제1브라인 유량제어밸브(38)를 제어하여 제2브라인 배관(28-2)에 흐르는, 칠러(10)에 의해서 냉각된 브라인의 유량을 조절함으로써, 제2열교환기(26)에서 배출되는 브라인의 온도를 조절할 수 있다. 또한, 제2브라인 유량제어밸브(39)를 제어하여 바이패스되는 브라인의 유량을 제어함으로써, 공정 설비(1)로 배출되는 브라인의 유량도 제어할 수 있다.The controller 30 may control the temperature of the brine discharged from the first heat exchanger 25 by controlling the cooling water flow rate control valve 34 to adjust the flow rate of the cooling water flowing in the cooling water pipe 27. In addition, by controlling the first brine flow rate control valve 38 to adjust the flow rate of the brine cooled by the chiller 10 flowing through the second brine pipe 28-2, the second heat exchanger 26 is discharged. You can adjust the temperature of the brine. In addition, by controlling the flow rate of the brine bypassed by controlling the second brine flow rate control valve 39, the flow rate of the brine discharged to the process facility 1 can also be controlled.
이하에서는 도 2를 참고하여, 설정온도가 높은 고온 가동 모드에서의 브라인 온도 및 유량 제어용 부가 장치(20)의 작용에 대해서 설명한다.Hereinafter, with reference to FIG. 2, the operation of the brine temperature and the flow rate control additional device 20 in the high temperature operating mode with a high set temperature will be described.
공정 설비(1)의 브라인 설정온도가 높은 경우, 즉, 칠러(10)의 냉각사이클을 가동하지 않고도, 설정된 온도의 브라인을 공정 설비(1) 공급할 수 있는 경우, 제어기(30)는 냉동 칠러(10)의 압축기를 오프한다. 공정 설비(1)에서 제1인렛(21)을 통해서 브라인 온도 및 유량 제어용 부가 장치(20)로 유입된 브라인은 제1브라인 배관(28-1)을 통해서 제1열교환기(25)로 유입된다. 그리고 제1열교환기(25)에서 냉각수와 열교환된 후 다시 제1브라인 배관(28-1)을 거쳐 제1아웃렛(22)을 통해 배출된 후 냉동 칠러(10)로 공급된다. 여기서 제어기(30)는 제1인렛(21) 및 제1아웃렛(22) 근처 제1브라인 배관(28-1)에 설치된 온도센서(42)들로부터 수신한 온도 데이터를 바탕으로 냉각수 유량제어밸브(34)를 제어하여, 브라인의 온도를 조절한다.When the brine set temperature of the process equipment 1 is high, that is, when the brine of the set temperature can be supplied to the process equipment 1 without starting the cooling cycle of the chiller 10, the controller 30 is a refrigeration chiller ( Turn off the compressor of 10). The brine introduced from the process equipment 1 to the brine temperature and flow rate control additional device 20 through the first inlet 21 flows into the first heat exchanger 25 through the first brine pipe 28-1. . After the heat exchange with the coolant in the first heat exchanger (25), it is discharged through the first outlet (22) via the first brine pipe (28-1) and then supplied to the freezing chiller (10). The controller 30 is a coolant flow control valve based on temperature data received from the temperature sensors 42 installed in the first brine pipe 28-1 near the first inlet 21 and the first outlet 22. 34) to adjust the temperature of the brine.
냉동 칠러(10)로 공급된 브라인은 냉동 칠러(10)를 통과한 후 제2인렛(23)을 통해서 브라인 온도 및 유량 제어용 부가 장치(20)에 다시 유입된다. 이때, 칠러(10)의 냉동사이클은 작동하지 않으므로, 브라인의 온도는 냉각수와의 열교환에 의해서 냉각된 상태에서 크게 변화하지 않는다. 그리고 제3삼방밸브(33), 제1바이패스 배관(28-4), 제2아웃렛(24)을 거쳐서 공정 설비(1)로 공급된다. 여기서 제어기(30)는 제3브라인 배관(28-3)의 제2아웃렛(24) 측에 설치되어 있는 유량센서(40)에서 측정된 유량 데이터를 수신하여 제2브라인 유량제어밸브(39)를 제어한다. 제어기(30)는 제2브라인 유량제어밸브(39)를 제어함으로써, 제2아웃렛(24)을 통해서 배출되는 브라인의 양을 조절한다. 제2아웃렛(24)을 통해서 배출되지 않은 브라인은 제2바이패스 배관(28-5)을 통해서, 제1브라인 배관(28-1)으로 공급된다.The brine supplied to the freezing chiller 10 passes through the freezing chiller 10 and then flows back into the brine temperature and flow rate control additional device 20 through the second inlet 23. At this time, since the refrigeration cycle of the chiller 10 does not operate, the temperature of the brine does not change significantly in the cooled state by heat exchange with the cooling water. The third three-way valve 33, the first bypass pipe 28-4, and the second outlet 24 are supplied to the process facility 1. Here, the controller 30 receives the flow rate data measured by the flow rate sensor 40 installed on the second outlet 24 side of the third brine pipe 28-3 to operate the second brine flow rate control valve 39. To control. The controller 30 controls the amount of brine discharged through the second outlet 24 by controlling the second brine flow rate control valve 39. The brine not discharged through the second outlet 24 is supplied to the first brine pipe 28-1 through the second bypass pipe 28-5.
정리하면, 고온 가동 모드에서 브라인 온도 및 유량 제어용 부가 장치(20)는 제1열교환기(25)에 공급되는 냉각수의 유량 및 제2바이패스 배관(28-5)을 통해서 흐르는 브라인의 양을 조절함으로써, 공정 설비(1)에 공급되는 브라인의 온도 및 유량을 조절한다.In summary, the brine temperature and flow rate control apparatus 20 in the high temperature operation mode adjusts the flow rate of the coolant supplied to the first heat exchanger 25 and the amount of brine flowing through the second bypass pipe 28-5. Thereby, the temperature and flow rate of the brine supplied to the process equipment 1 are adjusted.
이하에서는 도 3을 참고하여, 설정온도가 낮은 저온 가동 모드에서의 브라인 온도 및 유량 제어용 부가 장치(20)의 작용에 대해서 설명한다.Hereinafter, with reference to FIG. 3, the operation of the brine temperature and the flow rate control additional device 20 in the low temperature operating mode with a low set temperature will be described.
공정 설비(1)의 브라인 설정온도가 낮은 경우, 제어기(30)는 냉동 칠러(10)의 압축기를 작동시킨다. 공정 설비(1)에서 제1인렛(21)을 통해서 브라인 온도 및 유량 제어용 부가 장치(20)로 유입된 브라인은 제1브라인 배관(28-1)의 제1삼방밸브(31)를 거쳐 제3브라인 배관(28-3)으로 흐른다. 그리고 브라인은 제2열교환기(26)에서 냉동 칠러(10)에서 낮은 온도로 냉각된 브라인과 열교환을 하게 된다. 열교환이 끝나면 브라인 저장탱크(290에 저장된 후 다시 제3브라인 배관(28-3)을 따라서 흘러, 제2아웃렛(24)을 통해서 배출되어, 공정 설비(1)로 유입된다. 이때, 제어기(30)는 제2브라인 유량제어밸브(39)를 제어함으로써, 제2아웃렛(24)을 통해서 배출되는 브라인의 양을 조절한다.When the brine set temperature of the process equipment 1 is low, the controller 30 operates the compressor of the refrigeration chiller 10. The brine introduced from the process equipment 1 to the brine temperature and flow rate control additional device 20 through the first inlet 21 passes through the first three-way valve 31 of the first brine pipe 28-1. Flow into brine pipe 28-3. And the brine is heat exchanged with the brine cooled to a low temperature in the freezing chiller 10 in the second heat exchanger (26). After the heat exchange ends, stored in the brine storage tank 290 again flows along the third brine pipe (28-3), discharged through the second outlet 24, and flows into the process equipment 1. At this time, the controller 30 ) Controls the amount of brine discharged through the second outlet 24 by controlling the second brine flow rate control valve 39.
냉동 칠러(10)에서 제2인렛(23)을 통해서 브라인 온도 및 유량 제어용 부가 장치(20)로 유입된 차가운 브라인은 제2브라인 배관(28-2)의 제3삼방밸브(33)와 제1브라인 유량제어밸브(38)를 거친 후 제2열교환기(26)에 유입된다. 제2열교환기(26)에서 차가운 브라인은 공정 설비(1)로부터 유입된 브라인과 열교환을 한다. 그리고 제2브라인 배관(28-2)을 따라서 제2삼방밸브(32)로 간다. 제2삼방밸브(32)를 거친 브라인은 제1브라인 배관(28-1)을 거쳐 제1아웃렛(21)으로 배출된다. 배출된 브라인은 다시 냉동 칠러(10)로 유입된다. 제어기(30)는 제1브라인 유량제어밸브(38)를 제어함으로써, 차가운 브라인의 유량을 조절한다. 이를 통해서, 공정 설비(1)로 배출되는 브라인의 온도를 조절한다.The cold brine introduced into the brine temperature and flow rate control additional device 20 through the second inlet 23 from the freezing chiller 10 is the third three-way valve 33 and the first of the second brine pipe 28-2. After passing through the brine flow rate control valve 38, it is introduced into the second heat exchanger 26. The cold brine in the second heat exchanger 26 exchanges heat with the brine introduced from the process equipment 1. And it goes to the 2nd three-way valve 32 along the 2nd brine pipe 28-2. The brine having passed through the second three-way valve 32 is discharged to the first outlet 21 via the first brine pipe 28-1. The discharged brine is introduced into the freezing chiller 10 again. The controller 30 controls the first brine flow rate control valve 38 to adjust the flow rate of the cold brine. Through this, the temperature of the brine discharged to the process equipment (1) is adjusted.
정리하면, 저온 가동 모드에서 브라인 온도 및 유량 제어용 부가 장치(20)는 제2열교환기(26)에 공급되는 차가운 브라인의 유량 및 제2바이패스 배관(28-5)을 통해서 흐르는 브라인의 양을 조절함으로써, 공정 설비(1)에 공급되는 브라인의 온도 및 유량을 조절한다.In summary, the brine temperature and flow rate control additional device 20 in the low temperature operation mode measures the flow rate of the cold brine supplied to the second heat exchanger 26 and the amount of brine flowing through the second bypass pipe 28-5. By adjusting, the temperature and flow volume of the brine supplied to the process equipment 1 are adjusted.
고온 가동 모드에서는 공정 설비(1)를 순환하는 브라인이 브라인 온도 및 유량 제어용 부가 장치(20)와 칠러(10)를 모두 거쳐서 공정 설비(1)로 다시 유입된다. 그러나 저온 가동 모드에서는 공정 설비(1)를 순환하는 브라인은 브라인 온도 및 유량 제어용 부가 장치(20)에서 열교환 후 바로 공정 설비(1)로 유입되며, 칠러(10)를 순환하는 브라인은 브라인 온도 및 유량 제어용 부가 장치(20)에서 열교환 후 바로 칠러(10)로 다시 유입된다.In the high temperature operation mode, the brine circulating in the process equipment 1 flows back into the process equipment 1 through both the brine temperature and flow rate control addition device 20 and the chiller 10. However, in the low temperature operation mode, the brine circulating in the process equipment 1 flows into the process equipment 1 immediately after heat exchange from the brine temperature and flow rate control additional device 20, and the brine circulating in the chiller 10 is the brine temperature and After the heat exchange in the flow rate control addition device 20 immediately flows back into the chiller 10.
본 실시예는 저온 가동 모드에서 칠러(10)에 의해 냉각된 브라인이 제2열교환기(26)에서 공정 설비(1)로 공급되는 브라인의 온도 조절용으로 사용된다는 점에서 도 4에 도시된 종래의 방식과는 큰 차이가 있다. 본 실시예에서는 공정 설비(1)에 근접하여 설치된 부가 장치(20)에서의 열교환을 통해서 다시 브라인의 온도가 정밀하게 제어된다는 장점이 있다. 또한, 브라인의 온도뿐 아니라 유량도 제어된다는 장점이 있다.The embodiment shown in FIG. 4 in that the brine cooled by the chiller 10 in the low temperature operating mode is used for temperature control of the brine supplied from the second heat exchanger 26 to the process equipment 1. There is a big difference between the methods. In this embodiment, there is an advantage that the temperature of the brine is precisely controlled again through heat exchange in the additional device 20 installed close to the process facility 1. In addition, there is an advantage that the flow rate is controlled as well as the temperature of the brine.
이상에서 설명된 실시예는 본 발명의 바람직한 실시예를 설명한 것에 불과하고, 본 발명의 권리범위는 설명된 실시예에 한정되는 것은 아니며, 본 발명의 기술적 사상과 특허청구범위 내에서 이 분야의 당업자에 의하여 다양한 변경, 변형 또는 치환이 가능할 것이며, 그와 같은 실시예들은 본 발명의 범위에 속하는 것으로 이해되어야 한다.The embodiments described above are merely illustrative of the preferred embodiments of the present invention, the scope of the present invention is not limited to the described embodiments, those skilled in the art within the spirit and claims of the present invention It will be understood that various changes, modifications, or substitutions may be made thereto, and such embodiments are to be understood as being within the scope of the invention.
[부호의 설명][Description of the code]
1: 공정 설비 10: 칠러1: process equipment 10: chiller
20: 브라인 온도 및 유량 제어용 부가 장치20: additional device for brine temperature and flow control
21: 제1인렛 22: 제1아웃렛21: First Inlet 22: First Outlet
23: 제2인렛 24: 제2아웃렛23: Second Inlet 24: Second Outlet
25: 제1열교환기 26: 제2열교환기25: first heat exchanger 26: second heat exchanger
27: 냉각수 배관 28: 브라인 배관27: cooling water piping 28: brine piping
29: 브라인 저장 탱크 30: 제어기29: brine storage tank 30: controller
31: 제1삼방밸브 32: 제2삼방밸브31: first three-way valve 32: second three-way valve
33: 제3삼방밸브 34: 냉각수 유량제어 밸브33: third three-way valve 34: cooling water flow control valve
35, 37: 통신회선 38: 제1브라인 유량제어밸브35, 37: communication line 38: first brine flow control valve
39: 제2브라인 유량제어밸브 40: 유량센서39: second brine flow control valve 40: flow sensor
41: 펌프 42: 온도센서41: pump 42: temperature sensor

Claims (7)

  1. 공정온도 제어를 위해 브라인이 사용되는 공정 설비와 칠러 사이에 설치되는 장치로서,A device installed between the chiller and the chiller is used to control the process temperature,
    공정 설비를 순환한 브라인이 유입되는 통로인 제1인렛, 칠러를 통과한 브라인이 유입되는 통로인 제2인렛, 칠러에 공급되는 브라인이 배출되는 통로인 제1아웃렛, 공정 설비에 공급되는 브라인이 배출되는 통로인 제2아웃렛과,The first inlet, which is a passage through which the brine is circulated through the process equipment, the second inlet, which is a passage through which the brine passes through the chiller, the first outlet, which is a passage through which the brine supplied to the chiller is discharged, and the brine supplied to the process equipment is A second outlet that is a discharge passage;
    냉각수와 브라인 사이에 열교환이 일어나도록 구성된 제1열교환기와,A first heat exchanger configured to exchange heat between the coolant and the brine,
    칠러에 의해서 냉각된 브라인과 공정 설비에서 공급된 브라인 사이에 열교환이 일어나도록 구성된 제2열교환기와,A second heat exchanger configured to perform heat exchange between the brine cooled by the chiller and the brine supplied from the process equipment,
    제1열교환기에 냉각수를 공급하도록 구성된 냉각수 배관과,A cooling water pipe configured to supply cooling water to the first heat exchanger,
    제1인렛, 제1열교환기 및 제1아웃렛을 연결하는 경로를 형성하는 제1브라인 배관과, 제2인렛, 제2열교환기 및 제1브라인 배관을 연결하는 경로를 형성하는 제2브라인 배관과, 제1브라인 배관, 제2열교환기 및 제2아웃렛을 연결하는 경로를 형성하는 제3브라인 배관과, 제2인렛 측 제2브라인 배관과 제2아웃렛 측 제3브라인 배관 사이에 설치되는 제1바이패스 배관을 구비하며, 브라인이 흐르도록 구성된 브라인 배관과,A first brine pipe forming a path connecting the first inlet, the first heat exchanger and the first outlet, and a second brine pipe forming a path connecting the second inlet, the second heat exchanger and the first brine pipe; And a first brine pipe forming a path connecting the first brine pipe, the second heat exchanger, and the second outlet, and a first brine pipe installed between the second inlet side second brine pipe and the second outlet side third brine pipe. A brine pipe having a bypass pipe and configured to flow brine;
    제1브라인 배관에 설치되며 제1브라인 배관과 제3브라인 배관을 연결하도록 구성된 제1삼방밸브와, 제1브라인 배관에 설치되며 제1브라인 배관과 제2브라인 배관을 연결하도록 구성된 제2삼방밸브와, 제2브라인 배관에 설치되며 제2브라인 배관과 제1바이패스 배관을 연결하도록 구성된 제3삼방밸브와,A first three-way valve installed in the first brine pipe and configured to connect the first brine pipe and the third brine pipe, and a second three-way valve installed in the first brine pipe and configured to connect the first brine pipe and the second brine pipe. A third three-way valve installed in the second brine pipe and configured to connect the second brine pipe and the first bypass pipe;
    고온 가동 모드에서는 제1인렛을 통해서 유입된 브라인이 제1열교환기에서 냉각수와 열교환 후 제1아웃렛으로 배출되고, 제2인렛을 통해서 유입된 브라인이 제2아웃렛으로 바로 배출되도록 제1삼방밸브, 제2삼방밸브 및 제3삼방밸브를 제어하고, 저온 가동 모드에서는 제1인렛을 통해서 유입된 브라인이 제2열교환기에서 칠러에서 냉각된 브라인과 열교환 후 제2아웃렛으로 배출되고, 제2인렛을 통해서 유입된 냉각된 브라인이 제2열교환기에서 공정 설비에서 공급된 브라인과 열교환 후 제1아웃렛으로 배출되도록 제1삼방밸브, 제2삼방밸브 및 제3삼방밸브를 제어하도록 구성된 제어기를 포함하는 브라인 온도 및 유량 제어용 부가 장치.In the high temperature operating mode, the brine introduced through the first inlet is discharged to the first outlet after heat-exchanging with the coolant in the first heat exchanger, and the first three-way valve so that the brine introduced through the second inlet is discharged directly to the second outlet. The second three-way valve and the third three-way valve are controlled, and in the low temperature operation mode, the brine introduced through the first inlet is discharged to the second outlet after heat exchange with the brine cooled in the chiller in the second heat exchanger, and the second inlet is discharged. A brine including a controller configured to control the first three-way valve, the second three-way valve and the third three-way valve so that the cooled brine introduced through is discharged to the first outlet after heat exchange with the brine supplied from the process equipment in the second heat exchanger. Additional device for temperature and flow control.
  2. 제1항에 있어서,The method of claim 1,
    냉각수 배관에 설치된 냉각수 유량제어밸브를 더 포함하는 브라인 온도 및 유량 제어용 부가 장치.Apparatus for controlling brine temperature and flow rate further comprising a cooling water flow rate control valve installed in the cooling water pipe.
  3. 제1항에 있어서,The method of claim 1,
    제2브라인 배관에 설치된 제1브라인 유량제어밸브를 더 포함하는 브라인 온도 및 유량 제어용 부가 장치.Apparatus for controlling brine temperature and flow rate further comprising a first brine flow control valve installed on the second brine pipe.
  4. 제1항에 있어서,The method of claim 1,
    제1인렛 측 제1브라인 배관과 제2아웃렛 측 제3브라인 배관 사이에 설치되는 제2바이패스 배관과, 제2바이패스 배관에 설치된 제2브라인 유량제어밸브를 더 포함하는 브라인 온도 및 유량 제어용 부가 장치. For brine temperature and flow rate control further comprising a second bypass pipe installed between the first inlet side first brine pipe and the second outlet side third brine pipe, and a second brine flow control valve installed in the second bypass pipe. Additional devices.
  5. 제4항에 있어서,The method of claim 4, wherein
    제3브라인 배관에는 유량 센서가 설치되며,The flow rate sensor is installed in the third brine pipe,
    제어기는 유량 센서로부터 브라인 유량 데이터 수신하여, 제2브라인 유량제어밸브를 제어하도록 구성된 브라인 온도 및 유량 제어용 부가 장치.The controller is configured to receive brine flow rate data from the flow rate sensor and to control the second brine flow rate control valve.
  6. 제1항에 있어서,The method of claim 1,
    제1인렛, 제2인렛, 제1아웃렛, 제2아웃렛과 인접하는 브라인 배관에 각각 설치된 온도센서들을 더 포함하는 브라인 온도 및 유량 제어용 부가 장치.The apparatus for controlling brine temperature and flow rate further comprising temperature sensors respectively installed in the brine pipe adjacent to the first inlet, the second inlet, the first outlet, and the second outlet.
  7. 제1항에 있어서,The method of claim 1,
    제2열교환기와 제2아웃렛 사이의 제3브라인 배관에 설치된 브라인 저장탱크를 더 포함하는 브라인 온도 및 유량 제어용 부가 장치.The brine storage tank further comprises a brine storage tank installed in the third brine pipe between the second heat exchanger and the second outlet.
PCT/KR2015/006328 2014-06-26 2015-06-22 Attachment for controlling temperature and flow rate of brine WO2015199399A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0079090 2014-06-26
KR1020140079090A KR101438182B1 (en) 2014-06-26 2014-06-26 Attachment for controlling the flow rate and temperature of brine

Publications (1)

Publication Number Publication Date
WO2015199399A1 true WO2015199399A1 (en) 2015-12-30

Family

ID=51759490

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/006328 WO2015199399A1 (en) 2014-06-26 2015-06-22 Attachment for controlling temperature and flow rate of brine

Country Status (2)

Country Link
KR (1) KR101438182B1 (en)
WO (1) WO2015199399A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101948084B1 (en) * 2018-12-04 2019-02-14 홍석진 Water box system for semiconductor wafer manufacturing

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004014617A (en) * 2002-06-04 2004-01-15 Daikin Ind Ltd Semiconductor manufacturing apparatus
JP2006253454A (en) * 2005-03-11 2006-09-21 Tokyo Electron Ltd Temperature control system and substrate processor
KR20070048946A (en) * 2005-11-07 2007-05-10 유니셈 주식회사 Chiller apparatus for semiconductor process device
KR100754842B1 (en) * 2006-11-01 2007-09-04 (주)피티씨 Chiller apparatus for semiconductor equipment and method controlling the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004014617A (en) * 2002-06-04 2004-01-15 Daikin Ind Ltd Semiconductor manufacturing apparatus
JP2006253454A (en) * 2005-03-11 2006-09-21 Tokyo Electron Ltd Temperature control system and substrate processor
KR20070048946A (en) * 2005-11-07 2007-05-10 유니셈 주식회사 Chiller apparatus for semiconductor process device
KR100754842B1 (en) * 2006-11-01 2007-09-04 (주)피티씨 Chiller apparatus for semiconductor equipment and method controlling the same

Also Published As

Publication number Publication date
KR101438182B1 (en) 2014-09-05

Similar Documents

Publication Publication Date Title
KR101109730B1 (en) Chiller apparatus for semiconductor process and Method for controlling temperature in the same
KR101739369B1 (en) Temperature Control System for Chiller of Semiconductor Device
WO2005064659A1 (en) Temperature regulating method for substrate treating system and substrate treating system
US20130305758A1 (en) Refrigerating and air-conditioning apparatus
WO2019103283A1 (en) Hot water preheating and supercooling heat pump system using temperature stratification-type hot water tank
WO2017069457A1 (en) Supercritical carbon dioxide generating system
WO2023022545A1 (en) Highly efficient waste cold/warm heat recycling heat exchange device
CN106880291A (en) A kind of back-heating type temperature controllable boiler and its control method
WO2013055088A1 (en) Hot water supply device associated with heat pump
WO2013062287A1 (en) Regenerative air-conditioning apparatus
WO2015199399A1 (en) Attachment for controlling temperature and flow rate of brine
WO2020105855A1 (en) Fuel cell system comprising plurality of fuel cells
KR101543732B1 (en) Temperature control apparatus using heat exchanger for cooling performance improvement
KR101966137B1 (en) Heating and cooling system with heat pump
WO2014148704A1 (en) Hybrid air source heat pump system
WO2018048173A1 (en) Hybrid type air-condition and heat pump system
KR101484562B1 (en) Cooling Water Supply System using Heat Pump
WO2022025443A1 (en) Temperature control device using multi-stage refrigeration cycle and method for controlling temperature using same
WO2019001413A1 (en) Liquid temperature-control apparatus and method
CN108332327A (en) A kind of airhandling equipment
WO2017007198A1 (en) Fuel cell system
WO2020022837A1 (en) Refrigerant stabilization system and control method therefor
KR100927391B1 (en) Chiller device for semiconductor process equipment and its control method
WO2016208868A1 (en) Heating and hot-water supply device applied to district and central heating and control method therefor
JP2004150664A (en) Cooling device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15811462

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15811462

Country of ref document: EP

Kind code of ref document: A1