WO2015194590A1 - 半導体装置および半導体装置の製造方法 - Google Patents

半導体装置および半導体装置の製造方法 Download PDF

Info

Publication number
WO2015194590A1
WO2015194590A1 PCT/JP2015/067468 JP2015067468W WO2015194590A1 WO 2015194590 A1 WO2015194590 A1 WO 2015194590A1 JP 2015067468 W JP2015067468 W JP 2015067468W WO 2015194590 A1 WO2015194590 A1 WO 2015194590A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
surface side
insulating film
semiconductor device
oxide film
Prior art date
Application number
PCT/JP2015/067468
Other languages
English (en)
French (fr)
Inventor
恵理 小川
吉村 尚
Original Assignee
富士電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機株式会社 filed Critical 富士電機株式会社
Priority to CN201580002936.0A priority Critical patent/CN105814693B/zh
Priority to DE112015000204.9T priority patent/DE112015000204T5/de
Priority to JP2016529402A priority patent/JP6455514B2/ja
Publication of WO2015194590A1 publication Critical patent/WO2015194590A1/ja
Priority to US15/170,945 priority patent/US10050133B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7391Gated diode structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/02255Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by thermal treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02282Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/2636Bombardment with radiation with high-energy radiation for heating, e.g. electron beam heating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/30Semiconductor bodies ; Multistep manufacturing processes therefor characterised by physical imperfections; having polished or roughened surface
    • H01L29/32Semiconductor bodies ; Multistep manufacturing processes therefor characterised by physical imperfections; having polished or roughened surface the imperfections being within the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • H01L29/404Multiple field plate structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/517Insulating materials associated therewith the insulating material comprising a metallic compound, e.g. metal oxide, metal silicate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66083Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
    • H01L29/6609Diodes
    • H01L29/66128Planar diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • H01L29/7396Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions
    • H01L29/7397Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions and a gate structure lying on a slanted or vertical surface or formed in a groove, e.g. trench gate IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/8611Planar PN junction diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/868PIN diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/083Anode or cathode regions of thyristors or gated bipolar-mode devices
    • H01L29/0834Anode regions of thyristors or gated bipolar-mode devices, e.g. supplementary regions surrounding anode regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs

Definitions

  • the present invention relates to a power semiconductor device such as a semiconductor rectifier (hereinafter referred to as a diode) and an IGBT (insulated gate bipolar transistor).
  • a power semiconductor device such as a semiconductor rectifier (hereinafter referred to as a diode) and an IGBT (insulated gate bipolar transistor).
  • a free wheeling diode (FWD) for power is connected in anti-parallel with a switching element such as an IGBT, and it is important to improve the performance of the FWD as well as improving the performance of the switching element to increase the frequency of the inverter.
  • FWD free wheeling diode
  • FIG. 11 is a cross-sectional view showing the structure of a conventional, conventional power return diode.
  • the power diode is a diode having a p-intrinsic-n type (pin type) structure, and holds a high voltage in a high resistance intrinsic layer (i layer). This i layer is also referred to as n - drift layer 62. Since a power diode having a rated voltage of 600 V or more uses a wafer cut from an ingot of silicon or the like, an n-type semiconductor substrate (wafer) constitutes an n ⁇ drift layer 62. A p-anode layer 63 is formed on the surface side of the n ⁇ drift layer 62.
  • An anode electrode 65 for passing a main current is connected to the surface 64 of the p anode layer 63.
  • the p anode layer 63 and the anode electrode 65 are referred to as an active region because the main current flows.
  • field plate electrode 72 connected to p + guard ring 71 and p + guard ring 71 is formed so as to surround p anode layer 63.
  • a p-type or n-type channel stopper layer 73 and a stopper electrode 74 connected to the channel stopper layer 73 are formed at the chip outer peripheral end of the diode.
  • the portion surrounding the outer periphery of the active region is a region for relaxing the electric field when a reverse bias voltage is applied to the diode, and is called an edge termination region.
  • An interlayer insulating film 68 is formed on part of the surface of the diode to protect the surface of the semiconductor from exposure. Furthermore, although not shown, a protective film for protecting the surface, such as a polyimide film or a silicon nitride film, is also formed.
  • the n - other surface of the drift layer 62, n - a high concentration of n field stop layer 67 is formed than the drift layer 62.
  • the n field stop layer 67 has a function of suppressing the spread of the depletion layer.
  • an n + cathode layer 61 is formed in contact with the n field stop layer 67 as well.
  • a cathode electrode 66 is formed to be connected to the n + cathode layer 61.
  • the injection efficiency of the anode can be lowered to achieve soft recovery.
  • FIG. 1 of Patent Document 3 a diode with a pin structure in which a natural oxide film is sandwiched between a p-type polysilicon layer (corresponding to a p-type anode layer) and an n -- type semiconductor layer (corresponding to a drift layer). Is described.
  • Patent Document 3 Japanese Patent Application Publication No. 2009-218496
  • a semiconductor device provided with an insulating film layer provided on the surface side of a side region and having a thickness smaller than that of a natural oxide film, and a metal layer provided on the surface side of the insulating film layer.
  • the plurality of guard ring layers of the second conductivity type selectively formed on the surface side of the drift layer so as to surround the surface side region and separated from the surface side region are further provided.
  • the insulating film layer may be provided on the surface side.
  • the front side region may be an anode layer.
  • the surface side region may be a contact region of the second conductivity type between the plurality of gate electrodes.
  • the semiconductor device may further include an insulating film layer between an outer electrode provided in at least a part in the vicinity of the outer periphery of the semiconductor device and a metal electrode electrically connected to the plurality of gate electrodes.
  • the thickness of the insulating film layer may be 1 ⁇ or more and 6 ⁇ or less.
  • the insulating film layer may contain more Si—H bonds than the natural oxide film at the interface between the semiconductor substrate and the insulating film layer.
  • the insulating film layer may not contain nitrogen.
  • An insulating film layer forming step of forming an insulating film layer thinner than a natural oxide film on a surface of a semiconductor substrate exposed at an opening of a formed interlayer insulating film is provided.
  • the insulating film layer forming step may include exposing the exposed surface of the semiconductor substrate to a mixed solution of ammonia water, hydrogen peroxide solution, and pure water.
  • the thickness of the insulating film layer may be adjusted according to the concentration of ammonia water in the mixed solution.
  • the concentration of ammonia water in the mixed solution may be 1 ppm or more and 150000 ppm or less.
  • FIG. 1 is a cross-sectional view showing a layer configuration of a semiconductor device according to a first embodiment.
  • FIG. 5 is a flow diagram showing a manufacturing flow of the semiconductor device according to the first embodiment.
  • FIG. 5 is a characteristic diagram showing the relationship between the solution concentration and the oxide film thickness in the semiconductor device according to the first embodiment. It is a figure which shows the example which is the hybrid film which the insulating film layer 4 contains an aluminum oxide and a silicon oxide.
  • FIG. 3 is a characteristic diagram showing an internal state of the semiconductor device according to the first embodiment at the time of energization.
  • FIG. 6 is a characteristic diagram showing current and voltage waveforms at the time of reverse recovery for the semiconductor device according to the first embodiment.
  • FIG. 1 is a cross-sectional view showing a layer configuration of a semiconductor device according to a first embodiment.
  • FIG. 5 is a flow diagram showing a manufacturing flow of the semiconductor device according to the first embodiment.
  • FIG. 5 is a characteristic diagram showing the relationship between the solution
  • FIG. 6 is a characteristic diagram showing the relationship between the oxide film thickness and the electrical characteristics of the semiconductor device according to the first embodiment.
  • FIG. 7 is a cross-sectional view showing a layer configuration of a semiconductor device according to a second embodiment.
  • FIG. 16 is a schematic top view of the corner 110 of the semiconductor substrate 100 according to the fourth embodiment. It is a figure which shows the A1-A2 cross section of FIG. It is sectional drawing which shows the laminated constitution of the conventional semiconductor device.
  • n and p in the layer or region having n or p, it is meant that electrons or holes are majority carriers, respectively.
  • + and-attached to n and p mean that the impurity concentration is higher and the impurity concentration is lower than that of the layer or region to which it is not attached, respectively.
  • concentration indicates the concentration of a dopant exhibiting n-type or p-type conductivity unless otherwise specified, that is, the doping concentration.
  • the first conductivity type is described as n-type
  • the second conductivity type is described as p-type. However, this may be reversed to make the first conductivity type p-type and the second conductivity type n-type.
  • FIG. 1 is a cross sectional view showing a cross sectional structure of a semiconductor device according to a first embodiment of the present invention.
  • the semiconductor device is a pin diode in the first embodiment.
  • a silicon semiconductor substrate for example, a wafer cut out of a silicon ingot formed by CZ (Czochralski method), MCZ (Czochralski method with applied magnetic field), FZ (float zone method) or the like is used.
  • the specific resistance of the wafer is, for example, higher than 10 ⁇ cm, for example 55 to 90 ⁇ cm.
  • the thickness of the n ⁇ drift layer 2 may be, for example, 100 to 130 ⁇ m.
  • the semiconductor device includes an n ⁇ drift layer 2 as a drift layer of the first conductivity type, an oxide film layer 4 as an insulating film layer, and an anode electrode 5 as a metal layer.
  • the n ⁇ drift layer 2 is provided on a silicon semiconductor substrate of the first conductivity type.
  • the n - surface side of the drift layer 2, n - p-anode layer 3 as a surface side region of the second conductivity type having a high impurity concentration is provided than the drift layer 2.
  • a very thin oxide film 4 having a thickness of several angstroms is provided on the surface side of the p anode layer 3.
  • the thickness of the oxide film layer 4 is thinner than that of the native oxide film.
  • the oxide film layer 4 covers the entire p anode layer 3.
  • An anode electrode 5 is provided on the surface side of the p anode layer 3 with the oxide film layer 4 interposed therebetween.
  • the oxide film layer 4 separates the anode electrode 5 from the p-anode layer 3.
  • the thickness t of the oxide film layer 4 which is this separation distance determines the electrical characteristics of the diode.
  • the thickness t of the oxide film layer 4 is thinner than the thickness (20 ⁇ or more) of the native oxide film.
  • this oxide film layer 4 between the p anode layer 3 and the anode electrode 5
  • injection of carriers (holes) is suppressed more than in the conventional structure.
  • the depletion layer extends in the p anode layer 3 and the n ⁇ drift layer 2, so that the voltage is not shared by the oxide film layer 4. Therefore, no strong electric field is generated in oxide film layer 4. Therefore, dielectric breakdown of oxide film layer 4 does not occur.
  • the thickness t of the oxide film layer 4 will be described later.
  • the dopant of the p anode layer 3 is, for example, boron.
  • the total impurity concentration of boron may be 1 ⁇ 10 13 cm ⁇ 2 to 5 ⁇ 10 13 cm ⁇ 2 and the diffusion depth may be about 4 ⁇ m or less.
  • the anode electrode 5 and the p anode layer 3 become an active region for flowing a main current.
  • the semiconductor device of this example is formed selectively on the surface side of the n ⁇ drift layer 2 so as to surround the active region, and is formed of a plurality of guard ring layers of the second conductivity type formed apart from the p anode layer 3. As a plurality of p + guard ring layer 11 is provided.
  • Ap + guard ring layer 11 and a field plate electrode 12 are provided to surround the active region. Also, channel stopper layer 13 and stopper electrode 14 are provided to surround p + guard ring layer 11 and field plate electrode 12.
  • the area surrounding the active area is an edge termination area.
  • the oxide film layer 4 is also provided on the surface side of the plurality of p + guard ring layers 11.
  • the p + guard ring layer 11 and the field plate electrode 12 are separated by sandwiching the oxide film layer 4 similarly to the active region.
  • the channel stopper layer 13 and the stopper electrode 14 are separated by sandwiching the oxide film layer 4.
  • An interlayer insulating film is provided on the surface side of the semiconductor substrate, between the anode electrode 5 and the field plate electrode 12, between the field plate electrodes 12, and between the field plate electrode 12 and the stopper electrode 14. Eight is provided.
  • n + cathode layer 1 is provided on the back surface side of the silicon semiconductor substrate.
  • a cathode electrode 6 is provided on the back surface side of the n + cathode layer 1. The n + cathode layer 1 and the cathode electrode 6 are connected to each other.
  • an n field stop layer 7 is provided between the n + cathode layer 1 and the n ⁇ drift layer 2.
  • the n + cathode layer 1 may have a total impurity amount of phosphorus as a dopant of 1 ⁇ 10 15 cm ⁇ 2 to 1 ⁇ 10 16 cm ⁇ 2 .
  • the n + cathode layer 1 may have a thickness of 1 ⁇ m or less.
  • FIG. 2 is a flow chart showing the manufacturing flow of the semiconductor device of the present invention.
  • an n-type high specific resistance semiconductor substrate FZ wafer, CZ wafer, MCZ wafer, etc.
  • a thermal oxide film field oxide film or the like
  • the p anode layer 3 and the p + guard ring layer 11 as the surface side region are selectively formed.
  • an interlayer insulating film 8 is formed on the surface side of the semiconductor substrate. By selectively removing the interlayer insulating film 8, the opening of the interlayer insulating film 8 is selectively formed. Thereby, the interlayer insulating film 8 is selectively formed.
  • the underlying semiconductor substrate is exposed at the opening. This is referred to as the surface structure forming step (S1).
  • the surface of the semiconductor substrate exposed at the opening of the interlayer insulating film 8 selectively formed is ammonia water ([NH 4 + ] [OH ⁇ ] diluted aqueous solution, hereinafter described as NH 4 OH), peroxidation It is exposed to a mixed solution of hydrogen water (H 2 O 2 ) and pure water (H 2 O).
  • a resin carrier in which several tens of wafers are arranged, is dipped in the mixed solution. The immersion time may be a few seconds to a few minutes, for example 60 seconds to 120 seconds.
  • the temperature of the mixed solution is, for example, about room temperature (about 23 ° C.) to about 60 ° C.
  • the thin oxide film layer 4 can also be formed by exposing the wafer to a mixture of hydrochloric acid (HCl), hydrogen peroxide solution (H 2 O 2 ) and water (H 2 O).
  • the oxide film layer 4 thinner than the natural oxide film is formed on the exposed surface which is the surface side of the semiconductor substrate.
  • the step of exposing the exposed surface to the mixed solution needs to be performed before the natural oxide film is formed on the semiconductor substrate exposed at the opening. Thereby, the thickness of the oxide film layer 4 can be controlled to be smaller than that of the natural oxide film.
  • the step of forming the oxide film layer 4 on the surface side of the semiconductor substrate exposed in the opening as described above is referred to as an oxide film layer forming step (S2).
  • the thickness of the oxide film layer 4 is adjusted in accordance with the concentration of aqueous ammonia (NH 4 OH) in the mixed solution.
  • FIG. 3 is a characteristic diagram showing the correlation between the concentration (horizontal axis) of ammonia water in the mixed solution and the thickness t (vertical axis) of the oxide film layer 4 to be formed.
  • the natural oxide film on the surface of the semiconductor substrate was removed by hydrofluoric acid.
  • the oxide film layer 4 was formed by immersing the semiconductor substrate in a mixed solution of a predetermined concentration.
  • the thickness of the formed oxide film layer 4 was measured by X-ray photoelectron spectroscopy (Electron Spectroscopy for Chemical Analysis, ESCA).
  • the ESCA measurement device using the PHI Quantera SXM TM of Abubakku Phi Corporation.
  • the thickness of the oxide film layer 4 is 1 to 3 ⁇ at a concentration of 1 ppm of NH 4 OH, and increases to about 6 ⁇ when it is increased to 100 ppm. Further, at 1000 ppm, the thickness of the oxide film 4 to be formed is saturated and becomes about 6 ⁇ to 7 ⁇ .
  • the thickness of the natural oxide film is generally 10 ⁇ or more, for example, 20 ⁇ . Therefore, the oxide film layer 4 in the semiconductor device of the present invention is an oxide film layer whose thickness is controlled to be thinner than that of the natural oxide film. Therefore, the contact resistance between the anode electrode 5 and the p anode layer 3 can be reduced as compared to the case of using a natural oxide film.
  • the concentration of NH 4 OH is preferably 1 ppm or more and 150000 ppm (15%) or less, more preferably 10000 ppm (1%) or more and 50000 ppm (5%) or less to obtain the oxide film layer 4 having a predetermined thickness. Thereby, oxide film layer 4 of about 6 ⁇ can be stably formed. On the other hand, in order to make the oxide film layer 4 thinner, for example, it may be 1 ppm or more and 100 ppm or less.
  • FIG. 4 is a diagram showing an example in which the oxide film layer 4 is a mixed film containing aluminum oxide and silicon oxide.
  • the thin oxide film layer 4 formed by the above method may be not only SiO 2 but also a hybrid film containing AlO x and SiO x .
  • AlO x in the mixed film is shown by colored circles, and SiO x is shown by white circles.
  • the oxygen concentration of the oxide film layer 4 can be evaluated by energy dispersive X-ray spectroscopy (EDX). It may be confirmed by EDX that the oxide film layer 4 is different from the natural oxide film.
  • EDX energy dispersive X-ray spectroscopy
  • oxide film layer 4 is formed by the above method, oxidation and etching are repeated by the mixed solution on the surface of the silicon substrate as the semiconductor substrate. This causes the surface of the silicon substrate to be slightly roughened. In order to measure the surface roughness of the silicon substrate, a scanning tunneling microscope (STM) was used to evaluate the roughness of the formed oxide film layer 4.
  • STM scanning tunneling microscope
  • the roughness of the oxide film layer 4 formed was 10 to 30% of the film thickness.
  • the roughness of the native oxide is less than 10%, typically on the order of 1%. That is, the surface of the oxide film layer 4 formed by the above method becomes rougher than the surface of the natural oxide film.
  • the oxide film layer 4 is formed by repetition of oxidation and etching by the mixed solution.
  • the natural oxide film grows in the horizontal direction parallel to the surface of the silicon substrate, with the oxide film grown in the form of an island as a nucleus. Therefore, the surface of the oxide film layer 4 is considered to be rougher than the surface of the native oxide film.
  • the insulating film layer 4 contains more Si—H bonds at the interface between the oxide film layer 4 and the silicon substrate than the natural oxide film. Since the natural oxide film is formed by the reaction with air containing oxygen and nitrogen, it is considered that the natural oxide film contains more nitrogen than the insulating film layer 4.
  • the insulating film layer 4 may not contain nitrogen. In the present specification, not containing nitrogen may mean that the nitrogen content at the interface between the silicon substrate and the natural oxide film is smaller than 1 ⁇ 10 14 cm ⁇ 3 . Infrared reflection absorption spectrometry (IR-RAS) may be used to evaluate the chemical bonding state of the interface.
  • IR-RAS Infrared reflection absorption spectrometry
  • the above describes a batch process in which multiple wafers are immersed in the mixed solution.
  • single-wafer processing in which each sheet is exposed to the mixed solution.
  • single-wafer processing for example, one wafer is placed on a stage with the top surface facing the wafer, and the wafer is rotated at a predetermined rotation speed.
  • the mixed solution is dropped onto the rotating wafer, and the mixed solution is spread over the entire wafer to expose the opening of the interlayer insulating film 8 to the mixed solution (spin coating).
  • the processing conditions such as the time of exposure to the solution per sheet, the temperature and the like can be adjusted, and the variation in processing conditions among the wafers can be suppressed small.
  • the anode electrode 5 is selectively formed by sputtering or the like.
  • the metal of the anode electrode 5 is, for example, an alloy of aluminum (Al) and silicon (Si). If necessary, the metal film to be the electrode is sintered at a temperature of about 380 ° C. to 450 ° C.
  • a protective film may be formed of polyimide or the like. The above is referred to as a surface electrode forming step (S3).
  • the anode electrode 5 may use an alloy of aluminum (Al), silicon (Si) and copper (Cu) in addition to the above-mentioned metals. In that case, the mass ratio of Si in the alloy may be 1 to 2%, and the mass ratio of Cu may be 0.1% or more.
  • the back surface of the semiconductor substrate is ground and etched.
  • the thickness of the semiconductor substrate is reduced to about 50 ⁇ m to 200 ⁇ m.
  • the process of reducing the thickness of the semiconductor substrate is referred to as a grinding process (S5).
  • n field stop layer 7 and the n + cathode layer 1 are formed.
  • a cathode electrode containing aluminum (Al), titanium (Ti), nickel (Ni), gold (Au) or the like is formed by a sputtering method or the like. These steps are called back surface structure forming step (S6). Through the above steps, the semiconductor device of the present invention is formed.
  • FIG. 5 is a characteristic diagram showing the concentration distribution of holes and electrons when a forward bias is applied to the diode in the semiconductor device according to the first embodiment of the present invention.
  • the horizontal axis indicates the depth from the anode surface, and the left end is the anode and the right end is the cathode.
  • the vertical axis shows the density of holes. It can be seen that the carrier density on the anode side is smaller in the structure in which the oxide film layer 4 is deposited than in the conventional structure. Therefore, it can be said that carrier injection is suppressed by the oxide film layer 4.
  • FIG. 6 is a characteristic diagram comparing the current and voltage waveforms at the time of reverse recovery with the conventional example for the semiconductor device according to the first embodiment of the invention. It can be seen that the reverse recovery peak current (Irp) is reduced because the injection of holes is suppressed in the structure of the present invention compared to the conventional structure.
  • Irp reverse recovery peak current
  • FIG. 7 is a characteristic diagram showing the relationship between the thickness of the oxide film layer 4 and the electrical characteristics of the semiconductor device according to the first embodiment of the present invention.
  • the left axis shows the reverse recovery peak current (Irp).
  • the vertical axis of the broken line graph is the left axis.
  • the value on the left axis indicates a value obtained by normalizing the reverse recovery peak current when the diode is reversely recovered with the forward current as the rated current with the rated current.
  • the right axis shows the forward voltage drop (forward voltage, V F ) when the rated current flows.
  • the vertical axis of the solid line graph is the right axis.
  • the horizontal axis is the thickness of the oxide film layer 4.
  • the reverse recovery peak current of the broken line graph decreases as the thickness of the oxide layer 4 increases from 1 ⁇ to 4 ⁇ . On the other hand, when the thickness of the oxide film layer 4 exceeds 4 ⁇ , saturation occurs.
  • the forward voltage of the solid line graph is substantially flat in the range from 1 ⁇ to less than 6 ⁇ in thickness of the oxide film layer 4. On the other hand, when the thickness of the oxide film 4 exceeds 6 ⁇ , the forward voltage sharply increases.
  • the thickness of the oxide film layer 4 is preferably 1 ⁇ or more and 6 ⁇ or less, more preferably 2 ⁇ or more and 4 ⁇ or less.
  • the oxide film layer 4 is formed between the anode electrode 5 and the p anode layer 3 with a controlled thickness and a thickness smaller than that of the natural oxide film.
  • a semiconductor device capable of suppressing the injection of holes from the anode layer and reducing the reverse recovery peak current (Irp) with almost no change in the switching loss (Err), and a method of manufacturing the same.
  • FIG. 8 is a cross sectional view showing a layer structure of a semiconductor device according to a second embodiment of the present invention.
  • the difference between the semiconductor device of the second embodiment and the semiconductor device of the first embodiment is that the field plate electrode 12 in the edge termination region directly and annularly forms the p + guard ring layer 11 without sandwiching the oxide film layer 4. It is to connect electrically. By doing this, it becomes possible to transmit the potential further without delay in response to voltage application.
  • the thin oxide film layer 4 is not limited to only SiO 2 .
  • oxygen derived from the SiO 2 film may be taken into the Al film during heat treatment to form an AlO x film.
  • the AlO x film of 1 nm or less also has an effect of suppressing the injection of carriers. Therefore, the oxide film layer 4 may include an AlO x film having a thickness of 1 nm or less.
  • the oxide film layer 4 may include a film in which AlO x and SiO 2 are mixed and whose thickness is 1 nm or less.
  • FIG. 9 is a schematic top view of a corner 110 of a semiconductor device according to a fourth embodiment.
  • FIG. 9 is not a view showing the outermost surface of the corner 110.
  • FIG. 9 is a schematic diagram for explaining the positional relationship between the gate electrode 30 and the lower interconnection 31. As shown in FIG. In FIG. 9, the gate electrode 30 is shown by a broken line, and the lower wiring 31 is shown by a solid line.
  • Lower interconnection 31 has a portion extending parallel to an end parallel to the first direction of semiconductor substrate 100.
  • Lower interconnection 31 has a portion extending parallel to an end parallel to the second direction of semiconductor substrate 100.
  • Lower interconnection 31 is electrically connected to a contact metal provided on the surface side of lower interconnection 31 in contact portion 42.
  • the gate electrode 30 has a portion extending parallel to an end parallel to the first direction of the semiconductor substrate 100.
  • the gate electrode 30 has a U-shaped folded portion 40 when the semiconductor substrate 100 is viewed from the top.
  • the lower wiring 31 is provided on the surface side of the gate electrode 30.
  • the lower wire 31 is electrically connected to the gate electrode 30 at the U-shaped folded portion 40 of the gate electrode 30.
  • FIG. 10 is a view showing a cross section A1-A2 of FIG.
  • the semiconductor device of this example has a reverse conducting IGBT (RC-IGBT).
  • the semiconductor substrate 100 has a collector electrode 20, a p + collector layer 21, a field stop layer 22, and a drift layer 23 in order from the back surface side to the front surface side.
  • the semiconductor substrate 100 also has a p region 24 and a guard ring layer 26 on the surface side of the drift layer 23.
  • the p region 24 has ap base region 24a shallower than the trench-shaped gate electrode 30, and ap + well region 24b deeper than the p base region 24a.
  • an n ++ cathode layer 56 is formed in part.
  • the region where the n ++ cathode layer 56 is formed becomes a reverse conducting diode in which the p base region 24 a on the surface side functions as a p-type anode layer.
  • the reverse recovery operation of the reverse conducting diode becomes soft recovery.
  • the p region 24 is provided with a contact region of the second conductivity type as a surface side region.
  • the contact region of the second conductivity type is the p + contact 25.
  • the p + contact 25 is provided between the plurality of gate electrodes 30.
  • Gate electrode 30 is electrically separated from p region 24 by gate insulating film 32.
  • the gate electrode 30 in this example is a trench-shaped gate electrode.
  • the gate electrode 30 of this example has polysilicon.
  • the gate insulating film 32 in this example is an oxide film having a thickness of 1000 ⁇ .
  • An n + region 27 is provided between the gate insulating film 32 and the p + contact 25.
  • the lower wiring 31 is, for example, polysilicon. When the gate electrode 30 is viewed from above the semiconductor substrate 100, polysilicon forming the gate electrode 30 may be continuously connected to the upper wiring 34 at the U-shaped folded portion 40.
  • an interlayer insulating film 38 is provided on the surface side of the semiconductor substrate 100 relative to the gate electrode 30 and in contact with the gate electrode 30.
  • the semiconductor device of this embodiment is the surface side of the semiconductor substrate 100 than p + contact 25, and having an oxide film layer 4 in contact with the p + contact 25.
  • the oxide film layer 4 is an oxide film layer formed by the above-described mixed solution. Oxide film layer 4 has a thickness sufficiently thinner than interlayer insulating film 38.
  • An emitter electrode 39 is provided on the surface side of oxide film layer 4 and interlayer insulating film 38.
  • the emitter electrode 39 in this example is aluminum silicide (Al-Si).
  • the surface side of oxide film layer 4 is the surface of oxide film layer 4 on the opposite side to the surface on which oxide film layer 4 and p + contact 25 are in contact.
  • the semiconductor device of this example has a thermal oxide film 37 on the surface side of the semiconductor substrate 100 in the p region 24 (p + well region 24 b) in the vicinity of the guard ring layer 26.
  • the portion where thermal oxide film 37 and p region 24 are in contact is referred to as the back surface side of thermal oxide film 37.
  • the surface of the thermal oxide film 37 opposite to the back surface is referred to as the surface side of the thermal oxide film 37.
  • the semiconductor device of this example has a lower interconnection 31 as an electrode of a polysilicon film electrically connected to the plurality of gate electrodes 30 on the surface side of the thermal oxide film 37.
  • Lower interconnection 31 is formed above p + well region 24 b with thermal oxide film 37 interposed therebetween.
  • An interlayer insulating film 38 is provided on the surface side of the lower interconnection 31.
  • the semiconductor device of this example has the oxide film layer 4 in the opening of the interlayer insulating film 38. This oxide film layer 4 is also an oxide film layer formed by the above-mentioned mixed solution.
  • the portion where the oxide film layer 4 and the lower wiring 31 are in contact with each other is referred to as the back surface side of the oxide film layer 4.
  • the surface opposite to the back surface side of the oxide film layer 4 is referred to as the front surface side of the oxide film layer 4.
  • the semiconductor device of this example has an upper wire 34 as an outer metal electrode on the surface side of the oxide film layer 4.
  • the upper wiring 34 is an outer electrode provided on at least a part in the vicinity of the outer periphery of the semiconductor device.
  • the upper wiring 34 is, for example, Al-Si.
  • the oxide film layer 4 is also provided between the upper wiring 34 and the lower wiring 31.
  • the present invention is not limited to silicon, and can be applied to wide band gap semiconductors such as silicon carbide (SiC) and gallium nitride (GaN). That is, the object of the present invention can be achieved if there is an insulating film, particularly a silicon oxide film, whose thickness is controlled to be thinner than the natural oxide film as described above between the metal serving as the electrode and the semiconductor substrate.
  • SiC silicon carbide
  • GaN gallium nitride
  • contact portion 56 ... cathode layer, 61 ... n + cathode layer, 62 ... n - drift layer, 63 ... p anode layer, 64 ... surface, 65 ... anode electrode, 66 ⁇ ⁇ cathode electrode, 67 ⁇ ⁇ n field stop layer, 68 ⁇ ⁇ interlayer insulating film, 71 ⁇ ⁇ p + guard ring, 72 ⁇ ⁇ ⁇ field plate electrode 73 ⁇ ⁇ ⁇ channel stopper layer, 74 ⁇ ⁇ stopper electrode, 100 ⁇ ⁇ Semiconductor substrate, 110 ⁇ ⁇ ⁇ corner

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Formation Of Insulating Films (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

 pinダイオードにおいて、低濃度アノード層および局所ライフタイム制御等を用いたソフトリカバリー手段の他に、新たなソフトリカバリーの手段を提供する。第1導電型の半導体基板に設けられた第1導電型のドリフト層と、ドリフト層の表面側に設けられた第2導電型の表面側領域と、表面側領域の表面側に設けられ、厚さが自然酸化膜よりも薄い絶縁膜層と、絶縁膜層の表面側に設けられた金属層とを備える半導体装置を提供する。

Description

半導体装置および半導体装置の製造方法
 本発明は、半導体整流素子(以下ダイオードという)およびIGBT(Insulated Gate Bipolar Transistor)などの電力用半導体装置に関する。
 近年、パワーエレクトロニクスの分野ではインバータを始めとする様々な電力変換装置が利用されている。インバータにはIGBT等のスイッチング素子と逆並列に、電力用の還流ダイオード(FWD)が接続されており、インバータの高周波化にはスイッチング素子の性能改善とともにFWDの性能改善も重要である。
 図11は、従来の典型的な電力用の還流ダイオードの構造を示す断面図である。電力用のダイオードは、p-intrinsic-n型(pin型)構造を有するダイオードであり、高抵抗のintrinsic層(i層)で高い電圧を保持する。このi層は、nドリフト層62とも呼ばれる。600V以上の定格電圧を有する電力用ダイオードは、シリコン等のインゴットから切り出したウェハーを用いるので、n型の半導体基板(ウェハー)がnドリフト層62を構成する。nドリフト層62の表面側には、pアノード層63が形成されている。このpアノード層63の表面64に、主電流を流すアノード電極65が接続している。pアノード層63とアノード電極65は、主電流を流すので活性領域と呼ばれる。一方、このpアノード層63を囲むように、pガードリング71とpガードリング71に接続するフィールドプレート電極72が形成されている。さらに、ダイオードのチップ外周端には、p型あるいはn型のチャンネルストッパー層73と、チャンネルストッパー層73に接続するストッパー電極74が形成されている。以上のように活性領域の外周を囲む部分は、ダイオードに逆バイアス電圧が印加されたときに電界を緩和するための領域であり、エッジ終端領域と呼ばれる。なお、ダイオードの表面の一部には、層間絶縁膜68が形成され、半導体表面が露出しないように保護されている。さらに図示しないが、ポリイミド膜あるいはシリコン窒化膜といった、表面を保護するための保護膜も形成される。nドリフト層62の他方の表面には、nドリフト層62よりも高濃度のnフィールドストップ層67が形成される。このnフィールドストップ層67は、空乏層の広がりを抑制する機能を有する。さらに半導体基板の他方の表面には、nカソード層61がnフィールドストップ層67とも接するように形成されている。nカソード層61に接続するように、カソード電極66が形成される。
 FWDの性能改善として、順電圧(Vf)や逆回復電荷(Qrr)の低減による損失低減の他に、逆回復電流(Irr)のピーク値である逆回復ピーク電流(Irp)低減によるソフトリカバリー化が挙げられる。逆回復ピーク電流(Irp)は、アノードの注入効率を小さくすることで低減できる。特許文献1の図3等に示されているのは、MPS(Merged Pin Schottky)と呼ばれる構造を持つダイオードで、ショットキー接合とpn接合を併設することにより、漏れ電流の増加を抑えつつアノードからのホールの注入を抑制し、ソフトリカバリーとする。pin構造のダイオードにおいて、単純にp型アノード層の濃度を下げることでも同様の効果が得られる。例えば、特許文献2の図1等には、pin構造のダイオードにおいて、p型アノード層の最表面に格子欠陥を多く有する欠陥層を形成し、注入効率を低減する技術が記載されている。
 また表面側にヘリウムやプロトンのような軽イオンを打ち込んで、n型ドリフト層のアノード側のライフタイムを選択的に下げることによっても、アノードの注入効率を下げ、ソフトリカバリーとすることができる。
 さらに特許文献3の図1等には、p型ポリシリコン層(p型アノード層に相当)とn型半導体層(ドリフト層に相当)との間に自然酸化膜を挟んだpin構造のダイオードが記載されている。
 しかしながら、pinダイオードにおいて、アノード層を極端に低濃度化した場合、高電圧印加時にp層が空乏化してアノード電極にパンチスルーし、漏れ電流が増加するリスクがある。また上記パンチスルーを生じないような設計を行った場合でも、プロセスにおける欠陥や組み立て時の微小クラックといった外乱に対する耐性は低下する。
 また軽イオン照射による局所ライフタイムを行った場合、同様に漏れ電流が増加するリスクがあるのと、照射設備が非常に高価であるため、素子のコストアップにつながる問題がある。
 さらに、特許文献3に記載のダイオードの場合、逆バイアス電圧が印加されると、p型ポリシリコン層とn型半導体層との間の自然酸化膜に最も強い電界が発生するので、自然酸化膜が絶縁破壊を生じる可能性が高くなる。
 [先行技術文献]
 [特許文献]
 [特許文献1]特開平7-226521号公報
 [特許文献2]特開2003-224281号公報
 [特許文献3]特開2009-218496号公報
 半導体装置では、自然酸化膜を用いることが望ましくない場合がある。例えば、pinダイオードにおいては、自然酸化膜を用いると上記の絶縁破壊の問題がある。pinダイオードにおいては、前述のリスクが極力生じないようにソフトリカバリーとすることが望ましい。
 本発明の第1の態様においては、第1導電型の半導体基板に設けられた第1導電型のドリフト層と、ドリフト層の表面側に設けられた第2導電型の表面側領域と、表面側領域の表面側に設けられ、厚さが自然酸化膜よりも薄い絶縁膜層と、絶縁膜層の表面側に設けられた金属層とを備える半導体装置を提供する。
 表面側領域を取り囲むように、ドリフト層の表面側に選択的に形成され、表面側領域と離間して形成された第2導電型の複数のガードリング層をさらに備え、複数のガードリング層の表面側に前記絶縁膜層が設けられてもよい。表面側領域はアノード層であってよい。
 表面側領域は、複数のゲート電極間における第2導電型のコンタクト領域であってよい。半導体装置の外周近傍の少なくとも一部に設けられる外側電極と複数のゲート電極に電気的に接続する金属電極との間に、絶縁膜層をさらに有してよい。絶縁膜層の厚さは、1Å以上6Å以下であってもよい。
 絶縁膜層は、半導体基板と絶縁膜層との界面において、自然酸化膜よりもSi‐H結合を多く含んでよい。絶縁膜層は窒素を含有しなくてよい。
 本発明の第2の態様においては、第1導電型の半導体基板の表面側に、表面側領域、熱酸化膜、および層間絶縁膜をそれぞれ選択的に形成する表面構造形成工程と、選択的に形成された層間絶縁膜の開口部において露出する半導体基板の表面に、自然酸化膜よりも薄い絶縁膜層を形成する絶縁膜層形成工程とを備える半導体装置の製造方法を提供する。
 絶縁膜層形成工程は、露出する半導体基板の表面を、アンモニア水、過酸化水素水、および純水の混合溶液に晒すことを含んでよい。混合溶液におけるアンモニア水の濃度に応じて、絶縁膜層の厚さを調整してもよい。混合溶液におけるアンモニア水の濃度は、1ppm以上150000ppm以下であってもよい。
実施の形態1にかかる半導体装置の層構成を示す断面図である。 実施の形態1にかかる半導体装置の製造フローを示すフロー図である。 実施の形態1にかかる半導体装置について、溶液濃度と酸化膜厚さとの関係を示す特性図である。 絶縁膜層4がアルミニウム酸化物とシリコン酸化物とを含む混成膜である例を示す図である。 実施の形態1にかかる半導体装置について、通電時における内部状態を示す特性図である。 実施の形態1にかかる半導体装置について、逆回復時における電流および電圧波形を示す特性図である。 実施の形態1にかかる半導体装置について、酸化膜厚さと電気的特性との関係を示す特性図である。 実施の形態2にかかる半導体装置の層構成を示す断面図である。 実施の形態4にかかる半導体基板100の角部110の上面模式図である。 図9のA1-A2断面を示す図である。 従来の半導体装置の層構成を示す断面図である。
 以下に添付図面を参照して、この発明にかかる半導体装置および半導体装置の製造方法の好適な実施の形態を詳細に説明する。本明細書および添付図面においては、nまたはpを冠記した層や領域では、それぞれ電子または正孔が多数キャリアであることを意味する。また、nやpに付す+および-は、それぞれそれが付されていない層や領域よりも高不純物濃度および低不純物濃度であることを意味する。なお、以下の実施の形態の説明および添付図面において、同様の構成には同一の符号を付し、重複する説明を省略する。以下の説明における「濃度」とは、特に断らない場合はn型あるいはp型の導電性を示すドーパントの濃度、すなわちドーピング濃度のことを示す。本明細書においては、第1導電型をn型とし、第2導電型をp型として記載する。しかし、これを逆にして第1導電型をp型とし、第2導電型をn型としてもよい。
 なお、以下では、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。
 (実施の形態1)図1は、本発明の実施の形態1にかかる半導体装置の断面構造を示す断面図である。半導体装置は、本実施の形態1では、pinダイオードとした。シリコン半導体基板は、例えばCZ(チョクラルスキー法)、MCZ(磁場を印加したチョクラルスキー法)、FZ(フロートゾーン法)等で形成されたシリコンインゴットからの切り出しウェハーを用いる。ウェハーの比抵抗は、例えば10Ωcmよりも高く、例えば55~90Ωcmである。n-ドリフト層2の厚さは、例えば100~130μmであってもよい。
 半導体装置は、第1導電型のドリフト層としてのnドリフト層2と、絶縁膜層としての酸化膜層4と、金属層としてのアノード電極5とを備える。nドリフト層2は、第1導電型のシリコン半導体基板に設けられる。n-ドリフト層2の表面側に、n-ドリフト層2よりも高不純物濃度の第2導電型の表面側領域としてのpアノード層3が設けられる。
 pアノード層3の表面側には、厚さが数Åの極めて薄い酸化膜層4が設けられる。酸化膜層4の厚さは、自然酸化膜よりも薄い。酸化膜層4は、pアノード層3全体を覆っている。
 この酸化膜層4を挟んで、pアノード層3の表面側にアノード電極5が設けられる。酸化膜層4により、アノード電極5はpアノード層3から離間する。この離間距離となる酸化膜層4の厚さtは、ダイオードの電気的特性を決める。
 酸化膜層4の厚さtは、自然酸化膜の厚さ(20Å以上)よりも薄いことが特徴である。この酸化膜層4を、pアノード層3とアノード電極5の間に形成することによって、従来構造よりもキャリア(ホール)の注入を抑制する。また、ダイオードに逆バイアス電圧を印加したときに、空乏層はpアノード層3およびnドリフト層2内を広がるので、酸化膜層4には電圧は分担されない。それゆえ、酸化膜層4には強い電界が発生しない。よって、酸化膜層4の絶縁破壊は生じない。なお、酸化膜層4の厚さtについては後述する。
 pアノード層3のドーパントは、例えばボロンである。ボロンの総不純物濃度は1×1013cm-2~5×1013cm-2であってよく、拡散深さは約4μm以下であってよい。
 アノード電極5およびpアノード層3は、主電流を流す活性領域となる。本例の半導体装置は、活性領域を取り囲むように、nドリフト層2の表面側に選択的に形成され、pアノード層3と離間して形成された第2導電型の複数のガードリング層としての複数のpガードリング層11を備える。
 活性領域を取り囲むように、pガードリング層11およびフィールドプレート電極12が設けられる。また、pガードリング層11およびフィールドプレート電極12を取り囲むように、チャンネルストッパー層13およびストッパー電極14が設けられる。この活性領域を取り囲む領域は、エッジ終端領域である。
 複数のpガードリング層11の表面側においても、酸化膜層4が設けられる。pガードリング層11およびフィールドプレート電極12は、活性領域と同様に、酸化膜層4を挟んで離間している。チャンネルストッパー層13とストッパー電極14の間も同様に、酸化膜層4を挟んで離間している。なお、半導体基板の表面側であって、アノード電極5とフィールドプレート電極12との間、フィールドプレート電極12同士の間、および、フィールドプレート電極12とストッパー電極14との間には、層間絶縁膜8が設けられる。
 シリコン半導体基板の裏面側には、nカソード層1が設けられる。nカソード層1の裏面側にはカソード電極6が設けられる。nカソード層1とカソード電極6とは、互いに接続している。
 本例では、nカソード層1とnドリフト層2との間に、nフィールドストップ層7が設けられる。nカソード層1は、ドーパントとなるリンの総不純物量が1×1015cm-2~1×1016cm-2であってよい。また、nカソード層1は、厚さが1μm以下であってよい。次に、本発明の半導体装置について、その製造方法を説明する。
 図2は、本発明の半導体装置の製造フローを示すフロー図である。第1導電型の半導体基板には、n型で高比抵抗の半導体基板(FZウェハー、CZウェハー、MCZウェハー等)を用いる。半導体基板の鏡面仕上げされた表面側に、熱酸化膜(フィールド酸化膜等)を形成する。また、半導体基板の表面側に、表面側領域としてのpアノード層3およびpガードリング層11をそれぞれ選択的に形成する。さらに、半導体基板の表面側に、層間絶縁膜8を形成する。層間絶縁膜8を選択的に除去することによって、層間絶縁膜8の開口部を選択的に形成する。これにより、層間絶縁膜8を選択的に形成する。当該開口部では下地の半導体基板を露出させる。ここまでを、表面構造形成工程(S1)とする。
 続いて、選択的に形成された層間絶縁膜8の開口部において露出する半導体基板の表面を、アンモニア水([NH ][OH]希釈水溶液、以下NHOHと記載)、過酸化水素水(H)および純水(HO)の混合溶液に晒す。具体的には、例えばウェハーを数十枚単位で並べた樹脂製のキャリアを、前記混合溶液に浸す。浸す時間は、数秒~数分であってよく、例えば60秒~120秒である。混合溶液の温度は、例えば室温(23℃程度)~60℃程度である。また塩酸(HCl)、過酸化水素水(H)、及び水(HO)の混合液にウェハーを晒すことによっても、薄い酸化膜層4を形成することができる。
 この混合溶液に浸す過程で、自然酸化膜よりも薄い酸化膜層4が、半導体基板の表面側である露出面に形成される。露出面を混合溶液に晒す工程は、開口部で露出した半導体基板上に自然酸化膜が形成されないうちに、行う必要がある。これにより、酸化膜層4の厚さは、自然酸化膜と比べて薄くなるように制御された厚さとすることができる。以下、このように、開口部で露出した半導体基板の表面側に酸化膜層4を形成する工程を、酸化膜層形成工程(S2)とする。
 上記の混合溶液をPSG(Phosphosilicate Glass)またはBPSG(Boron Phosphosilicate Glass)等の厚い酸化膜の表面に晒したとしても、酸化のスピードがエッチングのスピードよりも遅いので、酸化膜は形成されない。また、PSGまたはBPSG等の厚い酸化膜においては、膜厚が厚いので、[OH]が半導体基板の表面まで到達できない。それゆえ、シリコンと[OH]との酸化反応も起こらない。よって、PSGまたはBPSG等の厚い酸化膜に対しては、酸化膜形成工程(S2)によって酸化膜層4は形成されない。
 酸化膜層4の厚さは、混合溶液におけるアンモニア水(NHOH)の濃度に応じて調整する。図3は、混合溶液におけるアンモニア水の濃度(横軸)と、形成される酸化膜層4の厚さt(縦軸)との相関を示す特性図である。
 本例では、まず、半導体基板の表面の自然酸化膜を弗酸により除去した。その後、所定濃度の混合溶液に半導体基板を浸すことにより、酸化膜層4を形成した。形成した酸化膜層4の厚さは、X線光電子分光法(Electron Spectroscopy for Chemical Analysis、ESCA)により測定した。ESCA測定装置には、アブバック・ファイ株式会社のPHI Quantera SXMTMを用いた。
 酸化膜層4の厚みは、NHOHの濃度が1ppmのオーダーでは1~3Åであり、100ppmに増加すると、約6Åまで増加する。また、1000ppmにおいて、形成される酸化膜層4の厚さは飽和し、6Å~7Å程度となる。これに対して、自然酸化膜の厚みは、一般的には10Å以上、例えば20Åである。よって、本発明の半導体装置における酸化膜層4は、厚さが自然酸化膜と比べて薄く制御された酸化膜層である。それゆえ、自然酸化膜を用いる場合と比較して、アノード電極5とpアノード層3とのコンタクト抵抗を低減することができる。
 所定の厚さの酸化膜層4とするべく、NHOHの濃度は、1ppm以上150000ppm(15%)以下が好ましく、より好ましくは10000ppm(1%)以上50000ppm(5%)以下が良い。これにより、およそ6Åの酸化膜層4を安定的に形成することができる。一方、さらに薄い酸化膜層4とするには、例えば1ppm以上100ppm以下としてもよい。
 図4は、酸化膜層4がアルミニウム酸化物とシリコン酸化物とを含む混成膜である例を示す図である。なお、図4では、酸化膜層4近傍を拡大して示し他の部分を省略している。上記の方法により形成された薄い酸化膜層4は、SiOだけではなく、AlOおよびSiOを含む混成膜であってよい。混成膜におけるAlOを色を付けた丸で示し、SiOを白丸で示す。この酸化膜層4の酸素濃度は、エネルギー分散型X線分光法(Energy Dispersive X-ray Spectroscopy:EDX)により評価することができる。EDXにより、酸化膜層4が自然酸化膜と異なることを確認してもよい。
 上記の方法により酸化膜層4を形成する場合、半導体基板としてのシリコン基板の表面では、混合溶液により酸化とエッチングとが繰り返される。これにより、シリコン基板の表面はわずかに荒れる。シリコン基板の表面荒れを測定するべく、形成された酸化膜層4のラフネスを評価するべく、走査型トンネル顕微鏡(Scanning Tunneling Microscope:STM)を用いた。
 形成した酸化膜層4のラフネスは、膜厚の10~30%であった。これに対して、自然酸化膜のラフネスは、10%未満、典型的には1%のオーダーとなる。つまり、上記の方法で形成された酸化膜層4の表面は、自然酸化膜の表面よりも粗くなる。上述の様に、酸化膜層4は、混合溶液による酸化およびエッチングの繰り返しにより形成される。これに対して、自然酸化膜は、島状に成長した酸化膜を核として、シリコン基板の表面と平行な方向である水平方向に成長すると考えられる。それゆえ、酸化膜層4の表面は、自然酸化膜の表面よりも粗くなると考えられる。
 また、混合溶液はアンモニア水(NHOH)を含むので、絶縁膜層4は酸化膜層4とシリコン基板との界面において、自然酸化膜よりも多くのSi‐H結合を含む。なお、自然酸化膜は酸素および窒素を含む空気との反応により形成されるので、自然酸化膜は絶縁膜層4よりも多くの窒素を含有すると考えられる。絶縁膜層4は窒素を含有しないとしてよい。本明細書において窒素を含有しないとは、シリコン基板と自然酸化膜との界面における窒素含有量が1×1014cm-3よりも小さいとしてよい。界面の化学結合状態を評価するためには、赤外反射吸収法(Infrared Reflection Absorption Spectrometry:IR-RAS)を用いてよい。
 上記では複数枚のウェハーを混合溶液に浸すバッチ式処理について記載している。しかし、1枚ごとに混合溶液に晒す枚葉式処理をしてもよい。枚葉式処理では、例えば、ウェハー1枚を表面が上面になるようにステージに載せ、ウェハーを所定の回転速度で回転させる。回転しているウェハーに混合溶液を滴下させ、混合溶液をウェハー全体に広げることにより、層間絶縁膜8の開口部を混合溶液に晒す(スピン塗布)。枚葉式処理の場合は、1枚あたりの溶液に晒す時間、温度等の処理条件を調整でき、かつウェハー間の処理条件のバラつきを小さく抑えることができる。
 続いて、酸化膜層4に自然酸化膜が形成されないうちに、スパッタ等によりアノード電極5を選択的に形成する。アノード電極5の金属は、例えばアルミニウム(Al)とシリコン(Si)の合金等である。必要に応じて、電極となる金属膜を、380℃~450℃程度の温度でシンタリングする。また、ポリイミド等により保護膜を形成してもよい。以上を、表面電極形成工程(S3)とする。また、アノード電極5は上記の金属以外にもアルミニウム(Al)、シリコン(Si)および銅(Cu)の合金を用いてもよい。その場合、合金におけるSiの質量比率は1~2%、Cuの質量比率は0.1%以上としてよい。
 続いて、半導体基板の表面側または裏面側から、電子線を照射する。これにより、ライフタイム制御のための格子欠陥を半導体基板中に導入する。その後、必要に応じてアニール処理を行う。この工程を、ライフタイム制御工程(S4)とする。
 続いて、半導体基板の裏面を研削・エッチングする。これにより、半導体基板を50μm~200μm程度の厚さまで減厚する。この半導体基板を減厚する工程を、研削工程(S5)とする。
 続いて、研削した半導体基板の裏面から、水素、リン等を注入する。これにより、nフィールドストップ層7およびnカソード層1を形成する。続いて、アルミニウム(Al)、チタン(Ti)、ニッケル(Ni)または金(Au)などを含むカソード電極をスパッタ法等で形成する。これらの工程を、裏面構造形成工程(S6)とする。以上の工程により、本発明の半導体装置を形成する。
 (実施例)図5は、本発明の実施の形態1にかかる半導体装置について、ダイオードに順バイアスを印加した通電時における、正孔および電子の濃度分布を示す特性図である。横軸はアノード表面からの深さを示しており、左端がアノード、右端がカソードである。縦軸は正孔の密度を示している。酸化膜層4が堆積された構造の方が、従来構造よりもアノード側のキャリア密度が減少していることが分かる。よって、酸化膜層4によってキャリアの注入が抑制されていると言える。
 図6は、発明の実施の形態1にかかる半導体装置について、逆回復時における電流および電圧波形を、従来例と比較した特性図である。従来構造に比べ、本発明構造ではホールの注入が抑制されているので、逆回復ピーク電流(Irp)が低減していることがわかる。
 図7は、本発明の実施の形態1にかかる半導体装置について、酸化膜層4の厚さと電気的特性との関係を示す特性図である。縦軸のうち、左軸は逆回復ピーク電流(Irp)を示す。破線グラフの縦軸は、左軸である。左軸の値は、順方向電流を定格電流として、ダイオードを逆回復させたときの逆回復ピーク電流を定格電流で規格化した値を示す。右軸は定格電流を流したときにおける順方向電圧降下(順電圧、V)を示す。実線グラフの縦軸は、右軸である。横軸は、酸化膜層4の厚さである。
 破線グラフの逆回復ピーク電流は、酸化膜層4の厚さが1Åから4Åに増加するに従って減少する。これに対して、酸化膜層4の厚さが4Åを超えると飽和する。実線グラフの順電圧は、酸化膜層4の厚さが1Åから6Å未満まではほぼ平坦である。これに対して、酸化膜層4の厚さが6Åを超えると順電圧が急増する。これは、酸化膜層4の厚さが6Åを超えると、キャリア(電子または正孔)が酸化膜層4をトンネルすることができなくなり、nドリフト層2で電導度変調がしなくなったことを意味する。よって、酸化膜層4の厚さは、1Å以上6Å以下がよく、より好ましくは2Å以上4Å以下がよい。
 以上のように、アノード電極5とpアノード層3との間に、制御された厚さで自然酸化膜よりも薄い厚さの酸化膜層4を形成する。これにより、アノード層からのホールの注入を抑制し、スイッチング損失(Err)をほとんど変えずに逆回復ピーク電流(Irp)低減を可能とする半導体装置とその製造方法を提供することが可能である。
 (実施の形態2)図8は、本発明の実施の形態2にかかる半導体装置の層構造を示す断面図である。実施の形態2の半導体装置と実施の形態1の半導体装置との相違点は、エッジ終端領域のフィールドプレート電極12が、酸化膜層4を挟まずに直接、且つ環状にp+ガードリング層11と電気的に接続することである。このようにすることで、電圧印加に応答して一層、遅延なく電位を伝達できるようになる。
 (実施の形態3)薄い酸化膜層4は、SiOのみに限定されない。Al膜のアノード電極5を形成する際、熱処理においてAl膜にSiO膜に由来する酸素が取り込まれてAlO膜が生成していることもある。その場合、1nm以下のAlO膜も同様にキャリアの注入を抑制する効果がある。それゆえ、酸化膜層4は、厚みが1nm以下のAlO膜を含んでもよい。更に、AlOとSiOが混在した場合も、厚さが1nm以下であれば、コンタクト抵抗の増加やErrの変化がほとんど起こらず、キャリアの注入抑制効果が得られる。それゆえ、酸化膜層4は、厚みが1nm以下である、AlOとSiOが混在した膜を含んでもよい。
 (実施の形態4)図9は、実施の形態4にかかる半導体装置の角部110の上面模式図である。なお、図9は角部110の最表面を示した図ではない。図9は、ゲート電極30と下部配線31との位置関係を説明するための便宜的な図である。図9では、破線によりゲート電極30を示し、下部配線31を実線で示す。
 下部配線31は、半導体基板100の第1方向に平行な端部と平行に延伸する部分を有する。また、下部配線31は、半導体基板100の第2方向に平行な端部と平行に延伸する部分を有する。下部配線31は、コンタクト部42において、下部配線31よりも表面側に設けられたコンタクト金属と電気的に接続する。
 ゲート電極30は、半導体基板100の第1方向に平行な端部と平行に延伸する部分を有する。ゲート電極30は、半導体基板100を上面視した場合に、U字状の折り返し部分40を有する。
 本例では、下部配線31は、ゲート電極30よりも表面側に設けられる。下部配線31は、ゲート電極30のU字状の折り返し部分40において、ゲート電極30と電気的接続する。
 図10は、図9のA1-A2断面を示す図である。本例の半導体装置は逆導通IGBT(RC-IGBT)を有する。半導体基板100は、裏面側から表面側の順に、コレクタ電極20、pのコレクタ層21、フィールドストップ層22およびドリフト層23を有する。また、半導体基板100は、ドリフト層23の表面側にp領域24およびガードリング層26を有する。p領域24は、トレンチ形状のゲート電極30よりも浅いpベース領域24aと、pベース領域24aよりも深いpウェル領域24bを有する。また、半導体基板100の裏面には、一部にn++のカソード層56が形成されている。このn++のカソード層56が形成された領域は、表面側のpベース領域24aがp型のアノード層として機能する逆導通ダイオードとなる。この逆導通ダイオードに、酸化膜層4が形成されることで、逆導通ダイオードの逆回復動作がソフトリカバリーとなる。
 p領域24には、表面側領域としての第2導電型のコンタクト領域が設けられる。本例では、当該第2導電型のコンタクト領域は、pコンタクト25である。pコンタクト25は、複数のゲート電極30の間に設けられる。ゲート電極30は、ゲート絶縁膜32により、p領域24から電気的に分離される。本例のゲート電極30は、トレンチ形状のゲート電極である。また、本例のゲート電極30はポリシリコンを有する。本例のゲート絶縁膜32は、厚さ1000Åの酸化膜である。ゲート絶縁膜32とpコンタクト25との間には、n領域27が設けられる。下部配線31は、例えばポリシリコンである。ゲート電極30は、半導体基板100を上面視した場合に、U字状の折り返し部分40で、ゲート電極30を形成するポリシリコンが連続的に上部配線34に接続されてもよい。
 本例の半導体装置は、ゲート電極30よりも半導体基板100の表面側であって、ゲート電極30に接して層間絶縁膜38を有する。ただし、本例の半導体装置は、pコンタクト25よりも半導体基板100の表面側であり、かつ、pコンタクト25に接する酸化膜層4を有する。酸化膜層4は、上述した混合溶液により形成される酸化膜層である。酸化膜層4は、層間絶縁膜38よりも十分に薄い厚みを有する。酸化膜層4および層間絶縁膜38の表面側には、エミッタ電極39が設けられる。本例のエミッタ電極39は、アルミニウムシリサイド(Al‐Si)である。なお、酸化膜層4の表面側とは、酸化膜層4とpコンタクト25とが接する面とは反対側の酸化膜層4の面である。
 本例の半導体装置は、ガードリング層26の近傍におけるp領域24(pウェル領域24b)において、半導体基板100の表面側に熱酸化膜37を有する。熱酸化膜37とp領域24とが接する部分を、熱酸化膜37の裏面側と称する。熱酸化膜37の裏面側とは反対側の面を、熱酸化膜37の表面側と称する。
 本例の半導体装置は、熱酸化膜37の表面側において、複数のゲート電極30に電気的に接続するポリシリコン膜の電極としての下部配線31を有する。下部配線31は、熱酸化膜37を挟んでpウェル領域24bの上方に形成される。下部配線31の表面側には、層間絶縁膜38が設けられる。本例の半導体装置は、層間絶縁膜38の開口部に酸化膜層4を有する。この酸化膜層4も、上述した混合溶液により形成される酸化膜層である。
 酸化膜層4と下部配線31とが接する部分を、酸化膜層4の裏面側と称する。酸化膜層4の裏面側とは反対側の面を、酸化膜層4の表面側と称する。本例の半導体装置は、酸化膜層4の表面側に、外側金属電極としての上部配線34を有する。上部配線34は、半導体装置の外周近傍の少なくとも一部に設けられる外側電極である。上部配線34は、例えばAl‐Siである。このように、酸化膜層4は、上部配線34と下部配線31との間にも設けられる。
 なお、半導体基板としてシリコンを中心に説明したが、シリコンに限るものではなく、シリコンカーバイド(SiC)、窒化ガリウム(GaN)等のワイドバンドギャップ半導体にも適用可能である。すなわち、電極となる金属と半導体基板との間に、上述のように厚さが自然酸化膜よりも薄く制御された絶縁膜、特にシリコン酸化膜があれば、本願の目的は達成できる。
 以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更又は改良を加えることが可能であることが当業者に明らかである。その様な変更又は改良を加えた形態も本発明の技術的範囲に含まれ得ることが、請求の範囲の記載から明らかである。
 請求の範囲、明細書、および図面中において示した装置、システム、プログラム、および方法における動作、手順、ステップ、および段階等の各処理の実行順序は、特段「より前に」、「先立って」等と明示しておらず、また、前の処理の出力を後の処理で用いるのでない限り、任意の順序で実現しうることに留意すべきである。請求の範囲、明細書、および図面中の動作フローに関して、便宜上「まず、」、「次に、」等を用いて説明したとしても、この順序で実施することが必須であることを意味するものではない。
 1・・nカソード層、2・・nドリフト層、3・・pアノード層、4・・酸化膜層、5・・アノード電極、6・・カソード電極、7・・nフィールドストップ層、8・・層間絶縁膜、11・・pガードリング層、12・・フィールドプレート電極、13・・チャンネルストッパー層、14・・ストッパー電極、20・・コレクタ電極、21・・コレクタ層、22・・フィールドストップ層、23・・ドリフト層、24・・p領域、24a・・pベース領域、24b・・pウェル領域、25・・pコンタクト、26・・ガードリング層、27・・n領域、30・・ゲート電極、31・・下部配線、32・・ゲート絶縁膜、34・・上部配線、37・・熱酸化膜、38・・層間絶縁膜、39・・エミッタ電極、40・・U字状の折り返し部分、42・・コンタクト部、56・・カソード層、61・・nカソード層、62・・nドリフト層、63・・pアノード層、64・・表面、65・・アノード電極、66・・カソード電極、67・・nフィールドストップ層、68・・層間絶縁膜、71・・pガードリング、72・・フィールドプレート電極、73・・チャンネルストッパー層、74・・ストッパー電極、100・・半導体基板、110・・角部

Claims (13)

  1.  第1導電型の半導体基板に設けられた第1導電型のドリフト層と、
     前記ドリフト層の表面側に設けられた第2導電型の表面側領域と、
     前記表面側領域の表面側に設けられ、厚さが自然酸化膜よりも薄い絶縁膜層と、
     前記絶縁膜層の表面側に設けられた金属層とを備える半導体装置。
  2.  前記表面側領域を取り囲むように、前記ドリフト層の表面側に選択的に形成され、前記表面側領域と離間して形成された第2導電型の複数のガードリング層をさらに備え、
     前記複数のガードリング層の表面側に前記絶縁膜層が設けられる請求項1に記載の半導体装置。
  3.  前記表面側領域はアノード層である、請求項1または2に記載の半導体装置。
  4.  前記表面側領域は、複数のゲート電極間における第2導電型のコンタクト領域である、請求項1または2に記載の半導体装置。
  5.  前記半導体装置の外周近傍の少なくとも一部に設けられる外側電極と前記複数のゲート電極に電気的に接続する金属電極との間に、前記絶縁膜層をさらに有する
     請求項4に記載の半導体装置。
  6.  前記絶縁膜層の厚さは、1Å以上6Å以下である、請求項1から5のいずれかまたは2に記載の半導体装置。
  7.  前記絶縁膜層は、前記半導体基板と前記絶縁膜層との界面において、自然酸化膜よりもSi‐H結合を多く含む、請求項1から6のいずれか一項に記載の半導体装置。
  8.  前記絶縁膜層は窒素を含有しない、請求項1から7のいずれか一項に記載の半導体装置。
  9.  前記絶縁膜層は、アルミニウム酸化物とシリコン酸化物とを含む混成膜である、請求項1から8のいずれか一項に記載の半導体装置。
  10.  第1導電型の半導体基板の表面側に、表面側領域、熱酸化膜、および層間絶縁膜をそれぞれ選択的に形成する表面構造形成工程と、
     選択的に形成された前記層間絶縁膜の開口部において露出する前記半導体基板の表面に、自然酸化膜よりも薄い絶縁膜層を形成する絶縁膜層形成工程と
    を備える半導体装置の製造方法。
  11.  前記絶縁膜層形成工程は、露出する前記半導体基板の表面を、アンモニア水、過酸化水素水、および純水の混合溶液に晒すことを含む請求項10の半導体装置の製造方法。
  12.  前記混合溶液におけるアンモニア水の濃度に応じて、前記絶縁膜層の厚さを調整する請求項11に記載の半導体装置の製造方法。
  13.  前記混合溶液におけるアンモニア水の濃度は、1ppm以上150000ppm以下である請求項12に記載の半導体装置の製造方法。
PCT/JP2015/067468 2014-06-18 2015-06-17 半導体装置および半導体装置の製造方法 WO2015194590A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201580002936.0A CN105814693B (zh) 2014-06-18 2015-06-17 半导体装置以及半导体装置的制造方法
DE112015000204.9T DE112015000204T5 (de) 2014-06-18 2015-06-17 Halbleitervorrichtung und Verfahren zum Herstellen einer Halbleitervorrichtung
JP2016529402A JP6455514B2 (ja) 2014-06-18 2015-06-17 半導体装置および半導体装置の製造方法
US15/170,945 US10050133B2 (en) 2014-06-18 2016-06-02 Application of thin insulating film layer in semiconductor device and method of manufacturing semiconductor device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014-125007 2014-06-18
JP2014125007 2014-06-18
JP2015-033862 2015-02-24
JP2015033862 2015-02-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/170,945 Continuation US10050133B2 (en) 2014-06-18 2016-06-02 Application of thin insulating film layer in semiconductor device and method of manufacturing semiconductor device

Publications (1)

Publication Number Publication Date
WO2015194590A1 true WO2015194590A1 (ja) 2015-12-23

Family

ID=54935570

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/067468 WO2015194590A1 (ja) 2014-06-18 2015-06-17 半導体装置および半導体装置の製造方法

Country Status (5)

Country Link
US (1) US10050133B2 (ja)
JP (1) JP6455514B2 (ja)
CN (1) CN105814693B (ja)
DE (1) DE112015000204T5 (ja)
WO (1) WO2015194590A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108269742A (zh) * 2016-12-30 2018-07-10 无锡昌德微电子股份有限公司 一种超快恢复二极管结构的实现方法
JP6854654B2 (ja) 2017-01-26 2021-04-07 ローム株式会社 半導体装置
JP7190256B2 (ja) * 2018-02-09 2022-12-15 ローム株式会社 半導体装置
KR102183959B1 (ko) * 2019-04-26 2020-11-27 홍익대학교 산학협력단 항복전압 특성이 개선된 쇼트키 장벽 다이오드 및 그 제조방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5465483A (en) * 1977-11-04 1979-05-26 Mitsubishi Electric Corp Semiconductor device and its manufacture
JPH01262672A (ja) * 1988-04-14 1989-10-19 Sanyo Electric Co Ltd Pinダイオード
JPH11162874A (ja) * 1997-12-01 1999-06-18 Shindengen Electric Mfg Co Ltd オーム性接合電極およびこれを用いた半導体装置
JP2000332243A (ja) * 1999-05-21 2000-11-30 Nissan Motor Co Ltd 半導体装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5845831B2 (ja) * 1975-06-06 1983-10-12 サンケンデンキ カブシキガイシヤ シヨツトキバリア半導体装置の製造方法
JPS6046038A (ja) * 1983-08-23 1985-03-12 Nec Corp 集積回路装置
JPS62160730A (ja) * 1986-01-09 1987-07-16 Fujitsu Ltd 半導体装置の製造方法
JP3737524B2 (ja) 1994-02-10 2006-01-18 新電元工業株式会社 整流用半導体装置
JP3287269B2 (ja) * 1997-06-02 2002-06-04 富士電機株式会社 ダイオードとその製造方法
JP4123913B2 (ja) 2001-11-26 2008-07-23 富士電機デバイステクノロジー株式会社 半導体装置の製造方法
US7393736B2 (en) * 2005-08-29 2008-07-01 Micron Technology, Inc. Atomic layer deposition of Zrx Hfy Sn1-x-y O2 films as high k gate dielectrics
EP2244297B1 (en) * 2008-02-12 2015-07-01 Mitsubishi Electric Corporation Silicon carbide semiconductor device
JP5341373B2 (ja) * 2008-03-12 2013-11-13 セミコンダクター・コンポーネンツ・インダストリーズ・リミテッド・ライアビリティ・カンパニー ダイオード
JP2010041000A (ja) 2008-08-08 2010-02-18 Sumco Corp 窒素ドープシリコンウェーハの製造方法及び該方法により得られる窒素ドープシリコンウェーハ
JP2011134910A (ja) * 2009-12-24 2011-07-07 Rohm Co Ltd SiC電界効果トランジスタ
CN102714226B (zh) * 2010-02-16 2015-02-11 株式会社三社电机制作所 Pin二极管
CN105957802A (zh) * 2010-05-21 2016-09-21 株式会社半导体能源研究所 半导体装置及其制造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5465483A (en) * 1977-11-04 1979-05-26 Mitsubishi Electric Corp Semiconductor device and its manufacture
JPH01262672A (ja) * 1988-04-14 1989-10-19 Sanyo Electric Co Ltd Pinダイオード
JPH11162874A (ja) * 1997-12-01 1999-06-18 Shindengen Electric Mfg Co Ltd オーム性接合電極およびこれを用いた半導体装置
JP2000332243A (ja) * 1999-05-21 2000-11-30 Nissan Motor Co Ltd 半導体装置

Also Published As

Publication number Publication date
JPWO2015194590A1 (ja) 2017-04-20
DE112015000204T5 (de) 2016-08-25
US10050133B2 (en) 2018-08-14
CN105814693B (zh) 2019-05-03
US20160300936A1 (en) 2016-10-13
JP6455514B2 (ja) 2019-01-23
CN105814693A (zh) 2016-07-27

Similar Documents

Publication Publication Date Title
US20210359087A1 (en) Method for Forming a Semiconductor Device and a Semiconductor Device
JP5525940B2 (ja) 半導体装置および半導体装置の製造方法
US10128230B2 (en) Semiconductor device
US10991821B2 (en) Semiconductor device and method of manufacturing semiconductor device
US9614106B2 (en) Semiconductor device
JP5606529B2 (ja) 電力用半導体装置
US9166017B2 (en) Method of manufacturing semiconductor device and semiconductor device
US9905684B2 (en) Semiconductor device having schottky junction between substrate and drain electrode
US9997603B2 (en) Semiconductor device and method of manufacturing semiconductor device
US10103229B2 (en) Semiconductor device and method of manufacturing semiconductor device
JP6911486B2 (ja) 炭化珪素半導体装置および炭化珪素半導体装置の製造方法
JP2009130266A (ja) 半導体基板および半導体装置、半導体装置の製造方法
JP6627359B2 (ja) 半導体装置および半導体装置の製造方法
US20180350900A1 (en) Silicon carbide semiconductor device and method of manufacturing silicon carbide semiconductor device
US10090379B2 (en) Hydrogen occlusion semiconductor device
WO2013146444A1 (ja) 炭化珪素半導体素子およびその製造方法
JP6455514B2 (ja) 半導体装置および半導体装置の製造方法
US10147792B2 (en) Semiconductor device and method of manufacturing semiconductor device
JP2003218354A (ja) 半導体装置およびその製造方法
JP7074173B2 (ja) 半導体装置および半導体装置の製造方法
US11502190B2 (en) Vertical power semiconductor device, semiconductor wafer or bare-die arrangement, carrier, and method of manufacturing a vertical power semiconductor device
JP2020047672A (ja) 炭化珪素半導体装置および炭化珪素半導体装置の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15810242

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016529402

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1120150002049

Country of ref document: DE

Ref document number: 112015000204

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15810242

Country of ref document: EP

Kind code of ref document: A1