WO2015192396A1 - 一种金属基/金刚石激光复合涂层及其制备方法 - Google Patents

一种金属基/金刚石激光复合涂层及其制备方法 Download PDF

Info

Publication number
WO2015192396A1
WO2015192396A1 PCT/CN2014/081337 CN2014081337W WO2015192396A1 WO 2015192396 A1 WO2015192396 A1 WO 2015192396A1 CN 2014081337 W CN2014081337 W CN 2014081337W WO 2015192396 A1 WO2015192396 A1 WO 2015192396A1
Authority
WO
WIPO (PCT)
Prior art keywords
diamond
powder
laser
composite coating
metal
Prior art date
Application number
PCT/CN2014/081337
Other languages
English (en)
French (fr)
Inventor
姚建华
李波
陈智君
张群莉
胡晓冬
董刚
吴国龙
王梁
科瓦连柯弗拉基米尔
Original Assignee
浙江工业大学
杭州博华激光技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江工业大学, 杭州博华激光技术有限公司 filed Critical 浙江工业大学
Priority to US15/301,718 priority Critical patent/US9945034B2/en
Publication of WO2015192396A1 publication Critical patent/WO2015192396A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/10Coating starting from inorganic powder by application of heat or pressure and heat with intermediate formation of a liquid phase in the layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B3/00Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring

Definitions

  • the invention relates to the field of surface modification of materials, in particular to a high hardness metal base/diamond composite coating and an efficient preparation method thereof.
  • the cermet has the advantages of metal and ceramics. It has low density, high hardness, good wear resistance and good thermal conductivity, and will not be brittle due to quenching or rapid heat.
  • the cermet has both metal toughness, high thermal conductivity and good thermal stability, and ceramic high temperature resistance. , corrosion resistance and wear resistance.
  • the generalized cermet also includes a refractory compound alloy, a cemented carbide, and a metal bonded diamond tool material.
  • cermet composite coatings Common methods for preparing cermet composite coatings include thermal spraying method, composite plating method, laser in-situ synthesis method, self-propagating combustion synthesis method, spray welding method and plasma surfacing method, etc., which have been successfully prepared by using supersonic flame spraying.
  • WC and Cr3C2 cermet composite coatings have been applied in many industrial fields.
  • the metal-based/diamond composite coating is prepared by thermal spraying, spray welding, plasma surfacing, laser cladding and self-propagating combustion synthesis, the solid phase diamond particles will interact with the high-temperature molten liquid metal to produce thermal decomposition. Dissolved, making it difficult for diamond particles to remain in the coating. Therefore, the metal-based/diamond composite coating cannot be efficiently produced.
  • the composite plating method and the electroless plating method avoid the high-temperature chemical reaction occurring in the above method, the diamond particles can be retained in the coating layer, and the volume of the diamond in the coating layer can be reached. 45%, but when the diamond volume content in the coating exceeds 25%, the interface bonding between the diamond and the binder phase is significantly deteriorated, and the wear resistance of the coating is difficult to be improved, and it is difficult to prepare a metal base having a thickness of more than 200 ⁇ m by using these methods. Diamond composite coating, and low production efficiency, complex process, environmental pollution, it is difficult to achieve industrialization.
  • the cold spray method developed in recent decades is a new type of spraying technology that relies on the low-temperature solid particles to collide with the matrix and undergo strong plastic deformation to form a coating. It avoids the components that may occur during the high-temperature deposition of thermal spraying. And changes in the structure of the structure, so it is suitable for the coating of temperature sensitive materials (such as nanomaterials, amorphous materials, etc.), easily oxidizable materials (such as aluminum, copper, titanium, etc.) and easy phase change materials (such as carbon-based composite materials) Layer preparation.
  • temperature sensitive materials such as nanomaterials, amorphous materials, etc.
  • easily oxidizable materials such as aluminum, copper, titanium, etc.
  • easy phase change materials such as carbon-based composite materials
  • the metal-based/diamond composite coating can be prepared by the cold spray method
  • the composite coating is mainly prepared by adding diamond to a soft metal matrix such as Al, and it is difficult to prepare a high hardness metal base/diamond.
  • the composite coating has a weak bond between the diamond particles and the metal matrix in the coating, and is easy to fall off.
  • the bonding mechanism between the cold spray coating and the substrate is mainly mechanical occlusion, the coating/substrate bonding force is poor, and the coating is easily peeled off.
  • various preparation methods of metal-based/diamond composite coatings currently have one or more of the following problems: (1) thin coating thickness; (2) low diamond content in the coating; (3) coating The combination of diamond and metal in the layer is easy to fall off; (4) the diamond particles in the coating are easily decomposed by heat; (5) the adhesion between the coating and the substrate is poor; (6) it is difficult to prepare a high hardness metal-based/diamond composite coating.
  • the invention aims at the above-mentioned deficiencies of the existing metal-based/diamond composite coating preparation technology, and provides a composite coating with a metal powder having a hardness of >50HRC as a diamond binder phase and an efficient preparation method thereof, and solves the prior art preparation.
  • the high hardness metal-based/diamond composite coating is thin, the diamond particles in the coating are easy to fall off, the diamond in the composite coating is easily decomposed, the diamond volume content in the coating is difficult to exceed 45%, and the coating and the substrate have poor adhesion.
  • a method for preparing a metal-based/diamond laser composite coating comprises the following steps:
  • the surface of the substrate is treated by pulsed laser texturing technology to improve the surface roughness; the high-hardness metal-based/diamond composite coating is synchronously deposited on the substrate subjected to pulsed laser texturing by continuous laser-assisted cold spraying.
  • the invention utilizes laser texturing technology, laser heat treatment technology and cold spray technology to efficiently prepare the high hardness metal base/diamond composite coating, and the composite coating is characterized in that the hardness of the high hardness metal base is >50HRC, and the thickness of the composite coating exceeds 1mm, the diamond volume content in the coating is greater than 45%.
  • the invention not only realizes the preparation of the composite coating with the high hardness metal powder as the diamond binder phase, but also improves the bonding strength between the composite coating and the substrate by the pulse laser texturing treatment, and finally prepares the stable and high quality high hardness metal.
  • Base/diamond composite high wear resistant coating and achieve integration, automation and high efficiency of substrate surface treatment and coating deposition preparation.
  • the high hardness metal powder is one or more of a nickel-based powder and a cobalt-based powder. Further preferably, the high hardness metal powder is Ni55 , Ni50, Ni60 or stellite20.
  • the ball milling method adopts planetary ball milling mixing, the ball-to-batch ratio is 30-100:1, the ball-milling speed is 200-600 r/min, and the ball milling time is 2-24. h, the ball milling atmosphere is nitrogen or argon.
  • the ball milling method uses vibrating ball milling mixing, the ball to material ratio is 30 to 100:1, the vibration frequency is 1200 r/min, and the ball milling time is 20 to 60. Min, the ball milling atmosphere is nitrogen or argon.
  • the reduction of the composite powder is carried out in a muffle furnace, the reducing atmosphere is hydrogen, and the reduction time is 30. Min, the reduction temperature is 200 to 400 °C.
  • the substrate is an iron-based material of any shape, and the substrate pretreatment method is ultrasonic surface cleaning or sandblasting roughening.
  • the pulsed laser spot is in front, the sprayed powder spot is behind, the interval between the two is less than 15 mm, the continuous laser spot is coincident with the sprayed powder spot, and the angle between the continuous laser beam and the cold spray nozzle is 20 ⁇ 30°, pulsed laser spot, continuous laser spot and sprayed powder spot keep moving synchronously, and the moving speed is 30 ⁇ 50mm/s.
  • the pulsed laser has an energy density of 104 to 108 W/cm 2 and a pulse width of 0.5 to 2 Ms, the wavelength is 1460 ⁇ 1610nm, the energy density of the semiconductor continuous laser is 3 ⁇ 5 ⁇ 105 W/cm2, the wavelength is 960 ⁇ 1064nm, the output power of the semiconductor continuous laser is adjusted in real time through the closed-loop feedback temperature control mode.
  • the deposition temperature is selected according to the melting point of the high hardness metal powder, which is lower than the melting point of the metal powder, so that it softens but does not melt. .
  • the cold spray process parameter is a carrier gas pressure of 2 to 3 MPa, and a carrier gas preheating temperature of 300 to 600 °C, the spraying distance is 15 ⁇ 40 mm, the powder feeding amount is 40-80 g/min, and the carrier gas is one of compressed air or nitrogen.
  • a metal-based/diamond laser composite coating adopts a high-hardness metal powder as a binder phase of a diamond composite coating; the thickness of the composite coating exceeds 1 mm, and the volume ratio of diamond in the coating exceeds 45%.
  • the high-hardness metal-based/diamond coating according to the present invention is prepared by a cold spray-based technique, retaining the characteristics of low-temperature deposition of cold spray, and avoids the problem that the diamond is easily decomposed and dissolved by the high-temperature deposition technique, which is remarkable. Increase the content of diamond in the coating;
  • the preparation method of the high hardness metal base/diamond coating according to the present invention is to simultaneously introduce laser irradiation in the process of cold spraying, and the heating effect of the laser softens the high hardness metal powder and the matrix material to achieve high hardness.
  • the invention introduces a laser in the process of cold spraying, and the softening effect of the laser on the high hardness metal powder greatly reduces the critical deposition speed and improves the deposition efficiency of the coating.
  • the thermal stress in the coating is small, and the residual stress in the coating is mainly compressive stress, and the coating is not easily cracked. Therefore, the softening effect of the integrated laser and the inherent characteristics of the cold spray achieve high-efficiency preparation of high hardness metal base/diamond, and the thickness of the coating is significantly increased;
  • the invention adopts pulse laser texturing technology instead of the traditional sand blasting technology to roughen the surface of the substrate, thereby avoiding the problem that the surface of the substrate is easily contaminated by impurities during the blasting treatment, thereby improving the high hardness metal base/ The bonding strength of the diamond composite coating to the substrate, the coating is not easily peeled off.
  • the integrated processing of surface roughness treatment and coating deposition of the substrate enhances the automation, integration and efficiency of the technology and equipment.
  • the technology of the present invention can quickly obtain a millimeter-scale high-hardness metal-based/diamond composite coating on a metal substrate, and the substrate has small thermal influence, and is suitable for repairing and strengthening of thin-walled parts with high precision requirements.
  • Figure 1 is a schematic view of a coating preparation method
  • Figure 3 is a macroscopic morphology of a 20 wt% diamond Ni60 based composite coating
  • Figure 4 is a microstructure of a 20 wt% diamond Ni60 based composite coating
  • Figure 5 is a picture of the combination of diamond and Ni60 in a Ni60 based/diamond composite coating
  • Figure 6 is a macroscopic morphology of a 40 wt% diamond Ni60 based composite coating
  • Figure 7 is a macroscopic morphology of a 20% by weight diamond Ni60 based laser cladding coating
  • Figure 8 is a cross-sectional microstructure of a 20 wt% diamond Ni60 based laser cladding coating.
  • Ni60 powder was used as the binder phase mixed with diamond particles.
  • the average particle size of Ni60 powder was 18 ⁇ m, and the diamond was selected to be -400 mesh.
  • the Ni60 powder and diamond powder were mixed in a planetary ball mill at a mass ratio of 4:1.
  • the ball-to-batch ratio was 30:1.
  • the ball milling speed is 500r/min and the mixing time is 2h.
  • the microscopic morphology of the composite powder after ball milling is shown in Figure 2; the substrate is 100 ⁇ 50 ⁇ 10mm.
  • laser texturing uses fiber laser, laser pulse energy density is 106W/cm2, pulse width is 1ms, wavelength is 1510nm; sprayed carrier gas is 3 MPa compressed nitrogen, carrier gas preheating temperature is 500 °C; closed-loop feedback temperature control mode to adjust semiconductor laser power, control temperature is 800 °C; texturing laser spot and spray area interval 5mm, spraying distance is 40mm, composite spraying moving speed 30mm/s.
  • the macroscopic morphology of the Ni60-based/diamond composite coating with 20wt% diamond content is shown in Fig. 3.
  • the thickness of the composite coating exceeds 1mm, and the coating is well bonded to the substrate.
  • the volume ratio of diamond in the coating exceeds 45%, the distribution of diamond particles is uniform, and the composite coating is dense and has no obvious pores, as shown in Fig. 4; due to the high scanning speed, the laser heating temperature is low, the diamond in the coating is not thermally decomposed, and the maximum The hardness and morphology of the diamond are maintained, and the diamond particles are well combined with the Ni60 matrix, as shown in FIG.
  • the Ni60 powder was selected as the binder phase mixed with the diamond particles.
  • the average particle size of the Ni60 powder was 18 ⁇ m, and the diamond was selected to be -400 mesh.
  • the Ni60 powder and the diamond powder were mixed in a vibrating ball mill at a mass ratio of 3:2, and the ball-to-batch ratio was 30: 1, the ball milling time is 60min, the vibration frequency is 800r/min; the substrate is made of 100 ⁇ 50 ⁇ 10mm stainless steel plate, and the high hardness metal base/diamond composite coating is prepared by laser texturing and laser assisted cold spraying technology;
  • the fiber laser is used, the laser pulse energy density is 106W/cm2, the pulse width is 1ms, the wavelength is 1510nm, and the sprayed carrier gas is 3 MPa compressed nitrogen, carrier gas preheating temperature is 550 °C; closed-loop feedback temperature control mode to adjust semiconductor laser power, control temperature is 800 °C; texturing laser spot and spray area interval 5mm, spraying distance 40mm, composite spraying
  • the macroscopic morphology of the 40wt% diamond content Ni60-based/diamond composite coating is shown in Figure 6.
  • the coating thickness exceeds 1mm and the coating is well bonded to the substrate.
  • the volume ratio of diamond in the coating is more than 45%, and the distribution is uniform; the composite coating is denser than cold spray, and there is no obvious porosity; due to the fast scanning speed, the laser heat accumulation is less, and the diamond in the coating does not thermally decompose, maximally Keep the hardness and shape of the diamond, and the coating has good wear resistance.
  • the stellite20 powder was selected as the binder phase and the diamond particles were mixed.
  • the average particle size of the stellite20 powder was 20 ⁇ m, and the diamond was selected to be -400 mesh.
  • the stellite20 powder and the diamond powder were mixed in a vibrating ball mill at a mass ratio of 4:1.
  • the ratio of the ball to the ball was 60: 1, the ball milling time is 60min, the vibration frequency is 1200r/min; the substrate is selected 45# steel bar; the high hardness metal base/diamond composite coating is prepared by laser texturing and laser assisted cold spraying technology; the laser texturing adopts the fiber laser
  • the laser pulse energy density is 106W/cm2, the pulse width is 1.5ms, the wavelength is 1640nm; the sprayed carrier gas is 3MPa compressed nitrogen, and the carrier gas preheating temperature is 600°C; the closed-loop feedback temperature control mode is used to adjust the semiconductor laser power and control the temperature. It is 900 °C; the laser spot is 10 mm apart from the spray area, the spray distance is 30 mm, and the composite spray speed is 30 mm/s.
  • the thickness of stellite20-based/diamond composite coating with 20wt% diamond content exceeds 1mm, the coating is well bonded to the substrate, the volume ratio of diamond in the coating is more than 45%, and the distribution is uniform; the composite coating is denser than the cold spray coating, no obvious Porosity and crack; due to the fast scanning speed, the laser heat accumulation is less, the diamond in the coating does not thermally decompose, and the hardness and morphology of the diamond are kept to the utmost.
  • the stellite20 powder was used as the binder phase mixed with the diamond particles.
  • the average particle size of the stellite20 powder was 20 ⁇ m, and the diamond was selected to be -400 mesh.
  • the stellite20 powder and the diamond powder were mixed in a planetary ball mill at a mass ratio of 3:2. The ratio of the ball to the ball was 40:1.
  • the control temperature is 900 ° C; the laser spot is 8 mm apart from the spray area, the spray distance is 30 mm, and the composite spray speed is 30 mm/s.
  • 40wt% diamond content of stellite20-based/diamond composite coating thickness exceeds 1mm, the coating is well bonded to the substrate, the diamond volume ratio in the coating is more than 45%, and the distribution is uniform; the composite coating is denser than the cold spray coating, no obvious Porosity and crack; due to the fast scanning speed, the laser heat accumulation is less, the diamond in the coating has no obvious thermal decomposition, and the hardness and morphology of the diamond are kept to a maximum.
  • the Ni50 powder is used as the binder phase mixed with the diamond particles.
  • the average particle size of the Ni50 powder is 20 ⁇ m, and the diamond is selected to be -400 mesh.
  • the Ni60 powder and the diamond powder are mixed in a planetary ball mill at a mass ratio of 7:3, and the ratio of the ball to the ball is 30:1.
  • ball milling time is 2 h, the speed is 400 r/min, to obtain a uniform mixed composite powder;
  • the substrate is selected from 100 ⁇ 50 ⁇ 10mm 2Cr13 steel plate;
  • the high hardness metal base/diamond composite coating is prepared by laser texturing and laser assisted cold spray technology;
  • Laser laser pulse energy density is 106W/cm2, pulse width is 1.5ms, wavelength is 1640nm;
  • carrier gas is 3MPa compressed nitrogen, carrier gas preheating temperature is 500 °C; closed-loop feedback temperature control mode is used to adjust semiconductor laser power, control temperature It is 800 °C;
  • the laser spot is 8 mm apart from the spray area, the spray distance is 30 mm, and the composite spray speed is 40 mm/s.
  • the 30wt% diamond content of the Ni50-based/diamond composite coating is more than 1mm thick, the coating is well bonded to the substrate, the diamond volume ratio in the coating is more than 45%, and the distribution is uniform; the composite coating is denser than the cold spray coating, and is not obvious. Porosity and crack; due to the fast scanning speed, the laser heat accumulation is less, the diamond in the coating has no obvious thermal decomposition, and the hardness and morphology of the diamond are kept to the utmost.
  • Ni60 powder was used as the binder phase mixed with diamond particles.
  • the average particle size of Ni60 powder was 18 ⁇ m, and the diamond was selected to be -400 mesh.
  • the Ni60 powder and diamond powder were mixed in a planetary ball mill at a mass ratio of 4:1. The ball-to-batch ratio was 30:1.
  • ball milling rate 100r / min, mixing time 0.5h
  • substrate selection 100 ⁇ 50 ⁇ 10mm 45# steel plate, surface using sandblasting technology to remove oil and rust treatment, sandblasting using 24 mesh white corundum, sandblasting pressure 0.8MPa
  • using laser cladding technology to prepare metal-based/diamond composite coating
  • process parameters laser power 1.2 kW, the cladding speed is 10mm/s, the powder feeding rate is 15g/min, and the welding process uses argon gas to protect the coaxial powder feeding.
  • the microstructure of the Ni60-based/diamond composite cladding coating of 20.wt% diamond content is shown in Fig. 7, and the surface morphology of the cladding coating is shown in Fig. 8.
  • diamond ablation and carbonization are serious during the cladding process, and the surface of the coating has obvious pores and looseness; compared with the coating of 20.wt% diamond content prepared by laser texturing and laser-assisted cold spray technology, cladding
  • the diamond content in the coating is significantly reduced, the diamond is ablated in the cladding pool and becomes spherical, and the diamond in the coating is severely carbonized.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

公开了一种金属基/金刚石激光复合涂层及其制备方法,首先选择合适粒径和形状的高硬度金属粉末和金刚石粉末,然后利用球磨法将高硬度金属粉末和金刚石粉末混合均匀,最后采用激光毛化技术、激光热处理技术、冷喷涂技术同步复合的方法,在基体上制备复合涂层。该复合涂层厚度超过1mm,涂层中的金刚石体积含量大于45%。既实现了以高硬度金属粉末作为金刚石粘结相的复合涂层的制备,又通过脉冲激光毛化处理提高了复合涂层与基体的结合强度,最终制备出稳定、优质的高硬度金属基/金刚石复合高耐磨涂层,并实现了基材表面处理与涂层沉积制备的集成化、自动化和高效化。

Description

一种金属基/金刚石激光复合涂层及其制备方法 技术领域
本发明涉及材料表面改性领域,具体涉及一种高硬度金属基/金刚石复合涂层及其高效制备方法。
背景技术
金属陶瓷兼有金属和陶瓷的优点,它密度小、硬度高、耐磨、导热性好,不会因为骤冷或骤热而脆裂。金属陶瓷既具有金属的韧性、高导热性和良好的热稳定性,又具有陶瓷的耐高温 、耐腐蚀和耐磨损等特性。主要有烧结铝(铝-氧化铝)、烧结铍(铍-氧化铍)、TD镍(镍-氧化钍)等。由一种或几种陶瓷相与金属相或合金所组成的复合材料,广义的金属陶瓷还包括难熔化合物合金、硬质合金、金属粘结的金刚石工具材料。
制备金属陶瓷复合涂层常用的方法有热喷涂法、复合镀法、激光原位合成法、自蔓延燃烧合成法、喷焊法及等离子堆焊法等,如利用超音速火焰喷涂已成功制备出WC系及Cr3C2系金属陶瓷复合涂层,并在诸多工业领域得到了应用。
金刚石作为自然界中硬度最高的物质,其作为金属陶瓷复合涂层的强化相已成为国内外的研究热点,各国学者在金属基/金刚石复合涂层的制备方面开展了大量的探索研究。
采用热喷涂、喷焊、等离子堆焊、激光熔覆及自蔓延燃烧合成等方法制备金属基/金刚石复合涂层时,固相金刚石颗粒会与高温熔融液态金属粘结相作用,产生热分解与溶解,使金刚石颗粒难以保留在涂层中。因此,无法有效地制备金属基/金刚石复合涂层。
复合电镀法和化学镀法虽然避免了上述方法中出现的高温化学反应,能够将金刚石颗粒保留在涂层中,且涂层中金刚石的体积含量可达 45%,但是当涂层中金刚石体积含量超过25%时,金刚石与粘结相的界面结合显著恶化,涂层的耐磨性难以提高,同时利用这些方法很难制备厚度超过200μm的金属基/金刚石复合涂层,而且制备效率低、工艺复杂、污染环境,很难实现工业化。
近几十年发展起来的冷喷涂法,是一种依靠低温固态颗粒高速碰撞基体后发生强烈塑性变形而沉积形成涂层的一种新型喷涂技术,避免了热喷涂高温沉积过程中可能发生的成分、组织结构的变化,因此适用于温度敏感材料(如纳米材料、非晶材料等)、易氧化材料(如铝、铜、钛等)和易相变材料(如碳基复合材料等)的涂层制备。虽然利用冷喷涂法可以制备金属基/金刚石复合涂层,但复合涂层主要是通过在硬度较软的金属基体(如Al)中添加金刚石的方法来制备,难以制备高硬度的金属基/金刚石复合涂层,且涂层中金刚石颗粒与金属基结合较弱,容易脱落。此外,冷喷涂涂层与基体的结合机制主要是机械咬合,涂层/基体结合力较差,涂层容易剥落。
综上所述,目前金属基/金刚石复合涂层的各种制备方法均存在以下一种或几种问题:(1)涂层厚度薄;(2)涂层中金刚石含量低;(3)涂层中金刚石与金属相结合差,容易脱落;(4)涂层中金刚石颗粒容易受热分解;(5)涂层与基体结合力差;(6)难以制备高硬度金属基/金刚石复合涂层。
技术问题
本发明针对现有的金属基/金刚石复合涂层制备技术存在的上述不足,提供一种采用硬度>50HRC的金属粉末作为金刚石粘结相的复合涂层及其高效制备方法,解决现有技术制备高硬度金属基/金刚石复合涂层厚度薄、涂层中金刚石颗粒容易脱落、复合涂层中金刚石容易分解、涂层中金刚石体积含量难以超过45%、涂层与基体结合力差等问题。
技术解决方案
一种金属基/金刚石激光复合涂层的制备方法,包括如下步骤:
1)利用球磨法将高硬度金属粉末和金刚石粉末混合均匀形成复合粉末;所述高硬度金属粉末的硬度>50HRC,高硬度金属粉末形状为球形或类球形,粉末粒度为10~20μm;金刚石粉末为不规则形状,粉末粒度为30~50μm;
2)将球磨好的复合粉末在还原炉中还原;
3)对基体进行预处理;
4)利用脉冲激光毛化技术对基体表面进行处理以提高表面粗糙度;采用连续激光辅助冷喷涂的方法在经过脉冲激光毛化处理的基体上同步沉积高硬度金属基/金刚石复合涂层。
本发明利用激光毛化技术、激光热处理技术、冷喷涂技术高效制备这种高硬度金属基/金刚石复合涂层,该复合涂层的特征在于高硬度金属基的硬度>50HRC,复合涂层厚度超过1mm,涂层中的金刚石体积含量大于45%。本发明既实现了以高硬度金属粉末作为金刚石粘结相的复合涂层的制备,又通过脉冲激光毛化处理提高了复合涂层与基体的结合强度,最终制备出稳定、优质的高硬度金属基/金刚石复合高耐磨涂层,并实现了基材表面处理与涂层沉积制备的集成化、自动化和高效化。
作为优选,所述高硬度金属粉末为镍基粉末、钴基粉末中的一种或多种。进一步优选,所述高硬度金属粉末为Ni55 、Ni50、Ni60或stellite20。
作为优选,所述步骤1)中,球磨法采用行星式球磨混合,球料比为30~100:1,球磨转速为200~600 r/min,球磨时间为2~24 h,球磨气氛为氮气或氩气。或者优选,所述步骤1)中,球磨法采用振动式球磨混合,球料比为30~100:1,振动频率为1200r/min,球磨时间为20~60 min,球磨气氛为氮气或氩气。
作为优选,所述步骤2)中,复合粉末的还原在马弗炉中进行,还原气氛为氢气,还原时间为30 min,还原温度为200~400°C。
所述基体为任意形状的铁基材料,基体预处理方法为超声波表面清洗或喷砂粗化。
作为优选,所述步骤4)中,脉冲激光光斑在前,喷涂粉斑在后,两者间隔小于15mm,连续激光光斑与喷涂粉斑重合,连续激光光束与冷喷涂喷嘴之间的夹角为20~30°,脉冲激光光斑、连续激光光斑、喷涂粉斑三者保持同步移动,移动速度为30~50mm/s。
进一步优选,脉冲激光的能量密度为为104~108 W/cm2,脉宽为0.5~2 ms,波长为1460~1610nm,半导体连续激光的能量密度为3~5×105 W/cm2,波长为960~1064nm,半导体连续激光的输出功率通过闭环反馈控温模式实时调整,沉积温度依据高硬度金属粉末的熔点来选择,低于金属粉末的熔点,使其软化但不熔化。
进一步优选,冷喷涂工艺参数为载气压力2~3 MPa,载气预热温度300~600 °C,喷涂距离15~40 mm,送粉量40~80 g/min,载气为压缩空气或氮气中的一种。
一种金属基/金刚石激光复合涂层,采用高硬度金属粉末作为金刚石复合涂层粘结相;复合涂层厚度超过1mm,涂层中金刚石体积比超过45%。
有益效果
本发明与现有技术相比,具有的有益技术效果如下:
(1)本发明涉及的高硬度金属基/金刚石涂层是采用基于冷喷涂的技术制备的,保留了冷喷涂低温沉积的特性,避免了高温沉积技术导致的金刚石容易分解和溶解的问题,显著提高了涂层中金刚石的含量;
(2)本发明涉及的高硬度金属基/金刚石涂层的制备方法是在冷喷涂的过程中同步引入激光辐照,激光的加热作用使高硬度金属粉末和基体材料得到软化,实现了高硬度金属基/金刚石复合涂层的有效沉积,而且由于高硬度金属粉末塑性变形较充分,其作为粘结相与金刚石颗粒结合良好,涂层中的金刚石颗粒不易脱落;
(3)本发明在冷喷涂的过程中引入激光,激光对高硬度金属粉末的软化作用,大大降低了其临界沉积速度,提高了涂层沉积效率。此外,由于冷喷涂技术的低温沉积特性,涂层中热应力较小,且涂层中的残余应力主要为压应力,涂层不易开裂。因此,综合激光的软化作用和冷喷涂的固有特性,实现了高硬度金属基/金刚石的高效制备,涂层厚度显著增加;
(4)本发明采用脉冲激光毛化技术代替传统的喷砂技术对基材表面进行粗化处理,避免了喷砂处理时基材表面容易被杂质污染的问题,从而提高了高硬度金属基/金刚石复合涂层与基体的结合强度,涂层不易剥落。此外,实现基材表面粗糙度处理和涂层沉积的一体化加工,提升了技术和设备的自动化、集成化和高效化。
(5)本发明涉及的技术可以快速在金属基体上获得毫米级的高硬度金属基/金刚石复合涂层,基体热影响小,适合于薄壁类、精度要求高的零件的修复和强化。
附图说明
图1为涂层制备方法示意图;
图2为Ni60粉末和金刚石粉末球磨混合后的SEM图片;
图3为添加20wt%金刚石Ni60基复合涂层宏观形貌;
图4为添加20wt%金刚石Ni60基复合涂层显微组织;
图5为Ni60基/金刚石复合涂层中金刚石与Ni60的结合图片;
图6为添加40wt%金刚石Ni60基复合涂层宏观形貌;
图7为添加20wt%金刚石Ni60基激光熔覆涂层宏观形貌;
图8为添加20wt%金刚石Ni60基激光熔覆涂层截面显微组织。
本发明的最佳实施方式
实施例1:
选用Ni60粉末作为粘结相与金刚石颗粒混合,Ni60粉末平均粒度为18μm,金刚石选用-400目;Ni60粉末和金刚石粉末以4:1质量比在行星式球磨机中混合,球料比为30:1,球磨速度500r/min,混合时间2h,球磨后复合粉末的微观形貌如图2所示;基材选用100×50×10mm 的45#钢板;利用激光毛化与激光辅助冷喷涂技术同步制备高硬度金属基/金刚石复合涂层;激光毛化采用光纤激光器,激光脉冲能量密度为106W/cm2,脉宽为1ms,波长为1510nm;喷涂载气为3 MPa压缩氮气,载气预热温度为500℃;采用闭环反馈控温模式调整半导体激光功率,控制温度为800℃;毛化处理激光光斑与喷涂区域间隔5mm,喷涂距离为40mm,复合喷涂移动速度30mm/s。
20wt%金刚石含量的Ni60基/金刚石复合涂层宏观形貌如图3所示,复合涂层厚度超过1mm,涂层与基体结合很好。涂层中金刚石体积比超过45%,金刚石颗粒分布均匀,复合涂层致密无明显的孔隙,如图4所示;由于扫描速度快,激光加热温度低,涂层中金刚石没有热分解,最大限度地保持金刚石的硬度及形貌,金刚石颗粒与Ni60基体相结合良好,如图5所示。
本发明的实施方式
实例2:
选用Ni60粉末为粘结相与金刚石颗粒混合,Ni60粉末平均粒度为18μm,金刚石选用-400目;Ni60粉末和金刚石粉末以3:2质量比在振动式球磨机中进行混合,球料比为30:1,球磨时间为60min,振动频率为800r/min;基材选用100×50×10mm的不锈钢板,利用激光毛化与激光辅助冷喷涂技术同步制备高硬度金属基/金刚石复合涂层;激光毛化采用光纤激光器,激光脉冲能量密度为106W/cm2,脉宽为1ms,波长为1510nm;喷涂载气为3 MPa压缩氮气,载气预热温度为550℃;采用闭环反馈控温模式调整半导体激光功率,控制温度为800℃;毛化处理激光光斑与喷涂区域间隔5mm,喷涂距离40mm,复合喷涂移动速度30mm/s。
40wt%金刚石含量的Ni60基/金刚石复合涂层宏观形貌如图6所示,涂层厚度超过1mm,涂层与基体结合很好。涂层中金刚石体积比超过45%,且分布均匀;复合涂层相比冷喷涂致密,没有明显的孔隙;由于扫描速度快,激光热量积累少,涂层中金刚石没有出现热分解,最大限度地保持金刚石的硬度及形貌,涂层耐磨性好。
实例3:
选用stellite20粉末为粘结相与金刚石颗粒混合,stellite20粉末平均粒度为20μm,金刚石选用-400目;stellite20粉末和金刚石粉末以4:1质量比在振动式球磨机中进行混合,球料比为60:1,球磨时间为60min,振动频率为1200r/min;基材选用45#钢棒;利用激光毛化与激光辅助冷喷涂技术同步制备高硬度金属基/金刚石复合涂层;激光毛化采用光纤激光器,激光脉冲能量密度为106W/cm2,脉宽为1.5ms,波长为1640nm;喷涂载气为3MPa压缩氮气,载气预热温度为600℃;采用闭环反馈控温模式调整半导体激光功率,控制温度为900℃;毛化处理激光光斑与喷涂区域间隔5mm,喷涂距离30mm,复合喷涂移动速30mm/s。
20wt%金刚石含量的stellite20基/金刚石复合涂层厚度超过1mm,涂层与基体结合很好,涂层中金刚石体积比超过45%,且分布均匀;复合涂层相比冷喷涂层致密,没有明显的孔隙和裂纹;由于扫描速度快,激光热量累积较少,涂层中金刚石没有出现热分解,最大限度地保持了金刚石的硬度及形貌。
实例4:
选用stellite20粉末为粘结相与金刚石颗粒混合,stellite20粉末平均粒度为20μm,金刚石选用-400目;stellite20粉末和金刚石粉末以3:2质量比在行星式球磨机中混合,球料比为40:1,球磨速度600r/min,混合时间1h;基材选用100×50×10mm的17-4PH钢板;利用激光毛化与激光辅助冷喷涂技术同步制备高硬度金属基/金刚石复合涂层;激光毛化采用光纤激光器,激光脉冲能量密度为106W/cm2,脉宽为1.5ms,波长为1640nm;喷涂载气为3MPa压缩氮气,载气预热温度为600℃;采用闭环反馈控温模式调整半导体激光功率,控制温度为900℃;毛化处理激光光斑与喷涂区域间隔8mm,喷涂距离30mm,复合喷涂移动速度30mm/s。
40wt%金刚石含量的stellite20基/金刚石复合涂层厚度超过1mm,涂层与基体结合很好,涂层中金刚石体积比超过45%,且分布均匀;复合涂层相比冷喷涂层致密,没有明显的孔隙和裂纹;由于扫描速度快,激光热量累积较少,涂层中金刚石没有明显的热分解,最大限度保持金刚石的硬度及形貌。
实例5:
选用Ni50粉末为粘结相与金刚石颗粒混合,Ni50粉末平均粒度为20μm,金刚石选用-400目;Ni60粉末和金刚石粉末以7:3质量比在行星式球磨机中混合,球料比为30:1,球磨时间为2 h,转速为400 r/min,获得混合均匀的复合粉末;基材选用100×50×10mm的2Cr13钢板;利用激光毛化与激光辅助冷喷涂技术同步制备高硬度金属基/金刚石复合涂层;激光毛化采用光纤激光器,激光脉冲能量密度为106W/cm2,脉宽为1.5ms,波长为1640nm;载气为3MPa压缩氮气,载气预热温度为500℃;采用闭环反馈控温模式调整半导体激光功率,控制温度为800℃;毛化处理激光光斑与喷涂区域间隔8mm,喷涂距离30mm,复合喷涂移动速度40mm/s。
30wt%金刚石含量的Ni50基/金刚石复合涂层厚度超过1mm,涂层与基体结合很好,涂层中金刚石体积比超过45%,且分布均匀;复合涂层相比冷喷涂层致密,没有明显的孔隙和裂纹;由于扫描速度快,激光热量累积较少,涂层中金刚石没有明显的热分解,最大限度地保持金刚石的硬度及形貌。
实例6(对比例):
选用Ni60粉末作为粘结相与金刚石颗粒混合,Ni60粉末平均粒度为18μm,金刚石选用-400目;Ni60粉末和金刚石粉末以4:1质量比在行星式球磨机中混合,球料比为30:1,球磨速率100r/min,混合时间0.5h;基材选用100×50×10mm 的45#钢板,表面利用喷砂技术除油除锈处理,喷砂使用24目白刚玉,喷砂压力0.8MPa;利用激光熔覆技术制备金属基/金刚石复合涂层;工艺参数为:激光功率1.2kW,熔覆速度10mm/s,送粉率15g/min,熔覆过程使用氩气保护同轴送粉熔覆。
20.wt%金刚石含量的Ni60基/金刚石复合熔覆涂层显微组织如图7所示,熔覆涂层表面形貌如图8所示。显然在熔覆过程中金刚石烧蚀和碳化严重,涂层表面有明显的孔洞且疏松;相比激光毛化与激光辅助冷喷涂技术同步复合制备的20.wt%金刚石含量的涂层,熔覆涂层中金刚石含量明显下降,金刚石在熔覆熔池中烧蚀成为球形,且涂层中金刚石碳化严重。
工业实用性
序列表自由内容

Claims (10)

  1. 一种金属基/金刚石激光复合涂层的制备方法,其特征在于,包括如下步骤:
    1)利用球磨法将高硬度金属粉末和金刚石粉末混合均匀形成复合粉末;所述高硬度金属粉末的硬度>50HRC,高硬度金属粉末形状为球形或类球形,粉末粒度为10~20μm;金刚石粉末为不规则形状,粉末粒度为30~50μm;
    2)将球磨好的复合粉末在还原炉中还原;
    3)对基体进行预处理;
    4)利用脉冲激光毛化技术对基体表面进行处理以提高表面粗糙度;采用连续激光辅助冷喷涂的方法在经过脉冲激光毛化处理的基体上同步沉积高硬度金属基/金刚石复合涂层。
  2. 根据权利要求1所述的一种金属基/金刚石激光复合涂层的制备方法,其特征在于,所述高硬度金属粉末为镍基粉末、钴基粉末中的一种或多种。
  3. 根据权利要求1所述的一种金属基/金刚石激光复合涂层的制备方法,其特征在于,所述步骤1)中,球磨法采用行星式球磨混合,球料比为30~100:1,球磨转速为200~600 r/min,球磨时间为2~24 h,球磨气氛为氮气或氩气。
  4. 根据权利要求1所述的一种金属基/金刚石激光复合涂层的制备方法,其特征在于,所述步骤1)中,球磨法采用振动式球磨混合,球料比为30~100:1,振动频率为1200r/min,球磨时间为20~60 min,球磨气氛为氮气或氩气。
  5. 根据权利要求1所述的一种金属基/金刚石激光复合涂层的制备方法,其特征在于,所述步骤2)中,复合粉末的还原在马弗炉中进行,还原气氛为氢气,还原时间为30 min,还原温度为200~400°C。
  6. 根据权利要求1所述的一种金属基/金刚石激光复合涂层的制备方法,其特征在于,所述基体为任意形状的铁基材料,基体预处理方法为超声波表面清洗。
  7. 根据权利要求1所述的一种金属基/金刚石激光复合涂层的制备方法,其特征在于,所述步骤4)中,脉冲激光光斑在前,喷涂粉斑在后,两者间隔小于15mm,连续激光光斑与喷涂粉斑重合,连续激光光束与冷喷涂喷嘴之间的夹角为20~30°,脉冲激光光斑、连续激光光斑、喷涂粉斑三者保持同步移动,移动速度为30~50mm/s。
  8. 根据权利要求7所述的一种金属基/金刚石激光复合涂层的制备方法,其特征在于,脉冲激光的能量密度为为104~108 W/cm2,脉宽为0.5~2 ms,波长为1460~1610nm,半导体连续激光的能量密度为3~5×105 W/cm2,波长为960~1064nm,半导体连续激光的输出功率通过闭环反馈控温模式实时调整,沉积温度依据高硬度金属粉末的熔点来选择,低于金属粉末的熔点,使其软化但不熔化。
  9. 根据权利要求7所述的一种金属基/金刚石激光复合涂层的制备方法,其特征在于,冷喷涂工艺参数为载气压力2~3 MPa,载气预热温度300~600 °C,喷涂距离15~40 mm,送粉量40~80 g/min,载气为压缩空气或氮气中的一种。
  10. 一种金属基/金刚石激光复合涂层,其特征在于:采用高硬度金属粉末作为金刚石复合涂层粘结相;复合涂层厚度超过1mm,涂层中金刚石体积比超过45%。
PCT/CN2014/081337 2014-06-18 2014-07-01 一种金属基/金刚石激光复合涂层及其制备方法 WO2015192396A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/301,718 US9945034B2 (en) 2014-06-18 2014-07-01 Metal-based/diamond laser composite coating and preparation method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410277492.9 2014-06-18
CN201410277492.9A CN104018156B (zh) 2014-06-18 2014-06-18 一种金属基/金刚石激光复合涂层及其制备方法

Publications (1)

Publication Number Publication Date
WO2015192396A1 true WO2015192396A1 (zh) 2015-12-23

Family

ID=51435140

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/081337 WO2015192396A1 (zh) 2014-06-18 2014-07-01 一种金属基/金刚石激光复合涂层及其制备方法

Country Status (3)

Country Link
US (1) US9945034B2 (zh)
CN (1) CN104018156B (zh)
WO (1) WO2015192396A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111015093A (zh) * 2019-11-27 2020-04-17 大连金山压缩机制造有限公司 主轴轴承用高可靠性复合密封环加工工艺
CN112458274A (zh) * 2020-10-27 2021-03-09 成都飞机工业(集团)有限责任公司 一种基于钛合金工件表面抗微动磨损涂层的制备方法
CN112626439A (zh) * 2020-11-24 2021-04-09 北京星航机电装备有限公司 一种曲面薄壁件等离子喷涂前处理方法及喷涂方法
CN114045482A (zh) * 2021-10-26 2022-02-15 江苏工程职业技术学院 一种在紫铜板上制备铜锌纳米复合涂层的方法
CN114908339A (zh) * 2022-04-24 2022-08-16 中国石油大学(华东) 一种激光织构化镍磷合金防泥包复合镀层的制备方法
CN115007848A (zh) * 2022-07-01 2022-09-06 长安大学 一种减缓铝铜连接体缝隙腐蚀的涂层及其制备方法和应用
CN115233208A (zh) * 2022-07-07 2022-10-25 国网宁夏电力有限公司超高压公司 基于超音速激光沉积的高压隔离开关表面修复方法及装置
CN115261845A (zh) * 2022-06-20 2022-11-01 安徽工程大学 一种金属零件金属熔覆修复方法
CN117265452A (zh) * 2023-11-22 2023-12-22 北京理工大学 一种水冷铜坩埚热屏蔽复合涂层及其制备方法

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104550955B (zh) * 2014-12-26 2017-03-08 浙江工业大学 一种用于螺杆激光组合制造的工艺方法
CN104671819B (zh) * 2015-02-12 2016-08-31 华中科技大学 一种陶瓷的激光连接方法
US10987735B2 (en) 2015-12-16 2021-04-27 6K Inc. Spheroidal titanium metallic powders with custom microstructures
CA3200272A1 (en) 2015-12-16 2017-06-22 6K Inc. Spheroidal dehydrogenated metals and metal alloy particles
US20170355018A1 (en) 2016-06-09 2017-12-14 Hamilton Sundstrand Corporation Powder deposition for additive manufacturing
CN107794526B (zh) * 2017-04-28 2019-06-14 西安交通大学 一种激光熔覆和冷喷同步复合的金属零件成形方法
EP3451376A1 (en) * 2017-09-04 2019-03-06 The Provost, Fellows, Foundation Scholars, and The Other Members of Board, of The College of The Holy and Undivided Trinity of Queen Elizabeth Thermal structures for dissipating heat and methods for manufacture thereof
CN108220957B (zh) * 2018-02-11 2020-02-07 青岛滨海学院 一种钛合金表面耐高温涂层及其制备方法
CN108330482B (zh) * 2018-04-08 2020-02-07 西安交通大学 一种实现激光熔覆和冷喷同步复合成形的喷嘴
CN108642488B (zh) * 2018-05-15 2020-10-20 中北大学 钛合金基体表面高硬耐磨涂层制备方法
WO2019246257A1 (en) 2018-06-19 2019-12-26 Amastan Technologies Inc. Process for producing spheroidized powder from feedstock materials
CN109338354B (zh) * 2018-09-30 2020-01-24 武汉大学 一种薄壁结构超快脉冲激光-冷喷涂表面加工方法
AU2020264446A1 (en) 2019-04-30 2021-11-18 6K Inc. Mechanically alloyed powder feedstock
AU2020266556A1 (en) 2019-04-30 2021-11-18 6K Inc. Lithium lanthanum zirconium oxide (LLZO) powder
CN110054184B (zh) * 2019-05-29 2021-03-26 上海梁为科技发展有限公司 一种提高金刚石复合片耐用寿命的方法及金刚石复合片
CN110143021A (zh) * 2019-05-29 2019-08-20 梁家昌 一种高品质金刚石复合片及其制备方法
CN110328364B (zh) * 2019-06-24 2020-11-24 华中科技大学 一种适用于陶瓷及其复合材料的增材制造方法及装置
CN111020556A (zh) * 2019-10-29 2020-04-17 惠州市荣裕鑫电子科技有限公司 一种超光滑高硬度复合涂层及制备方法
JP2023512391A (ja) 2019-11-18 2023-03-27 シックスケー インコーポレイテッド 球形粉体用の特異な供給原料及び製造方法
US11590568B2 (en) 2019-12-19 2023-02-28 6K Inc. Process for producing spheroidized powder from feedstock materials
CN110983328A (zh) * 2019-12-27 2020-04-10 浙江工业大学 一种激光复合冷喷涂高速沉积方法及冷喷涂设备
CN111005017A (zh) * 2019-12-27 2020-04-14 浙江工业大学 一种激光复合冷喷涂原位氮化强化方法及冷喷涂装置
CN111005022B (zh) * 2019-12-31 2020-10-20 南京中科煜宸激光技术有限公司 利用三激光协同制备铍青铜铜辊表面高硬度铁基涂层的方法
CN111250900B (zh) * 2020-02-24 2022-11-01 江西恒大高新技术股份有限公司 一种改性Inconel625粉末堆焊涂层的制备方法
CN111421141B (zh) * 2020-04-20 2022-05-24 浙江工业大学 一种定向高导热金刚石/金属基复合材料的制备方法
CN111378965A (zh) * 2020-04-20 2020-07-07 浙江工业大学 超音速激光沉积制备石墨增强的减磨导热导电涂层的方法
CN116034496A (zh) 2020-06-25 2023-04-28 6K有限公司 微观复合合金结构
CN111889676B (zh) * 2020-08-06 2021-10-19 哈尔滨工业大学 一种增材制造工艺制备金刚石铜基复合材料的方法
CN111958113B (zh) * 2020-09-17 2022-04-22 哈尔滨工业大学(威海) 一种Cu元素-表面微织构复合调控作用下的铝/钢激光焊接方法
KR20230073182A (ko) 2020-09-24 2023-05-25 6케이 인크. 플라즈마를 개시하기 위한 시스템, 디바이스 및 방법
JP2023548325A (ja) 2020-10-30 2023-11-16 シックスケー インコーポレイテッド 球状化金属粉末の合成のためのシステムおよび方法
CN114507827B (zh) * 2021-06-30 2022-10-28 季华实验室 一种铝基非晶复合材料的制备方法及铝基非晶复合材料
CN113927495B (zh) * 2021-10-20 2023-02-28 山东大学 一种自锐性金属结合剂金刚石磨料层制备工艺
CN114150308A (zh) * 2021-11-11 2022-03-08 佛山骏隆科技有限公司 一种金刚石薄膜的制备方法
CN114260576B (zh) * 2021-12-31 2023-11-24 东北电力大学 一种超声辅助空心钨极gta-激光同轴复合焊接***
CN114395761B (zh) * 2022-01-20 2024-05-31 中国石油大学(华东) 一种提高基体减摩耐磨性能的方法
CN115948679A (zh) * 2022-10-26 2023-04-11 合肥工业大学 一种基于不同品质金刚石的镍基复合材料及其制备方法
CN115747602B (zh) * 2022-11-16 2024-04-16 南京农业大学 一种高耐磨耕种机械触土刀具及其制备方法
CN115786910B (zh) * 2023-02-13 2023-05-12 太原理工大学 一种ZrH2增强钴基金刚石耐磨涂层的激光熔覆制备方法
CN116752131B (zh) * 2023-08-22 2023-10-31 中国科学院宁波材料技术与工程研究所 冷喷涂增材制造方法及应用
CN117286493B (zh) * 2023-11-27 2024-02-20 太原理工大学 一种激光熔覆镍铝基耐磨性涂层及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101484263A (zh) * 2006-07-24 2009-07-15 钴碳化钨硬质合金公司 用于加工纤维增强复合材料的钻头
CN102296289A (zh) * 2011-08-19 2011-12-28 九江学院 一种以金属间化合物为粘结相的金属陶瓷涂层的制备方法
DE102010047020A1 (de) * 2010-09-30 2012-04-05 Obeko Gmbh Verfahren zum Beschichten von Oberflächen
CN102821914A (zh) * 2010-12-30 2012-12-12 圣戈班磨料磨具有限公司 磨料物品及形成方法
CN103079766A (zh) * 2010-09-03 2013-05-01 圣戈班磨料磨具有限公司 粘结的磨料物品及形成方法
KR20130111758A (ko) * 2012-04-02 2013-10-11 한국생산기술연구원 다이아몬드 와이어쏘의 제조방법

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5304342A (en) * 1992-06-11 1994-04-19 Hall Jr H Tracy Carbide/metal composite material and a process therefor
US20060090593A1 (en) * 2004-11-03 2006-05-04 Junhai Liu Cold spray formation of thin metal coatings
JP4058448B2 (ja) * 2005-12-26 2008-03-12 宗春 沓名 レーザピーニング処理方法及びレーザ吸収粉体層シート
CN101153393B (zh) * 2006-09-27 2010-04-14 宝山钢铁股份有限公司 含有激光照射的冷气动力喷涂方法
CN102039384B (zh) * 2009-10-23 2013-09-25 宝山钢铁股份有限公司 高耐磨结晶器或结晶辊表面复合涂层的制造方法
CN101768714B (zh) * 2010-02-09 2012-08-15 江苏大学 热障涂层激光复合等离子喷涂制备方法
CN101962768A (zh) * 2010-09-18 2011-02-02 黄锦 多工艺复合制备金属表面涂层技术
GB201118698D0 (en) * 2011-10-28 2011-12-14 Laser Fusion Technologies Ltd Deposition of coatings on subtrates
CN103469197B (zh) * 2013-07-18 2016-01-06 浙江工业大学 在硬基板上通过激光辅助冷喷涂获得硬质颗粒涂层的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101484263A (zh) * 2006-07-24 2009-07-15 钴碳化钨硬质合金公司 用于加工纤维增强复合材料的钻头
CN103079766A (zh) * 2010-09-03 2013-05-01 圣戈班磨料磨具有限公司 粘结的磨料物品及形成方法
DE102010047020A1 (de) * 2010-09-30 2012-04-05 Obeko Gmbh Verfahren zum Beschichten von Oberflächen
CN102821914A (zh) * 2010-12-30 2012-12-12 圣戈班磨料磨具有限公司 磨料物品及形成方法
CN102296289A (zh) * 2011-08-19 2011-12-28 九江学院 一种以金属间化合物为粘结相的金属陶瓷涂层的制备方法
KR20130111758A (ko) * 2012-04-02 2013-10-11 한국생산기술연구원 다이아몬드 와이어쏘의 제조방법

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111015093A (zh) * 2019-11-27 2020-04-17 大连金山压缩机制造有限公司 主轴轴承用高可靠性复合密封环加工工艺
CN112458274A (zh) * 2020-10-27 2021-03-09 成都飞机工业(集团)有限责任公司 一种基于钛合金工件表面抗微动磨损涂层的制备方法
CN112626439A (zh) * 2020-11-24 2021-04-09 北京星航机电装备有限公司 一种曲面薄壁件等离子喷涂前处理方法及喷涂方法
CN114045482B (zh) * 2021-10-26 2024-01-16 江苏工程职业技术学院 一种在紫铜板上制备铜锌纳米复合涂层的方法
CN114045482A (zh) * 2021-10-26 2022-02-15 江苏工程职业技术学院 一种在紫铜板上制备铜锌纳米复合涂层的方法
CN114908339A (zh) * 2022-04-24 2022-08-16 中国石油大学(华东) 一种激光织构化镍磷合金防泥包复合镀层的制备方法
CN115261845A (zh) * 2022-06-20 2022-11-01 安徽工程大学 一种金属零件金属熔覆修复方法
CN115007848A (zh) * 2022-07-01 2022-09-06 长安大学 一种减缓铝铜连接体缝隙腐蚀的涂层及其制备方法和应用
CN115007848B (zh) * 2022-07-01 2023-07-18 长安大学 一种减缓铝铜连接体缝隙腐蚀的涂层及其制备方法和应用
CN115233208A (zh) * 2022-07-07 2022-10-25 国网宁夏电力有限公司超高压公司 基于超音速激光沉积的高压隔离开关表面修复方法及装置
CN115233208B (zh) * 2022-07-07 2023-10-03 国网宁夏电力有限公司超高压公司 基于超音速激光沉积的高压隔离开关表面修复方法及装置
CN117265452A (zh) * 2023-11-22 2023-12-22 北京理工大学 一种水冷铜坩埚热屏蔽复合涂层及其制备方法
CN117265452B (zh) * 2023-11-22 2024-02-06 北京理工大学 一种水冷铜坩埚热屏蔽复合涂层及其制备方法

Also Published As

Publication number Publication date
US9945034B2 (en) 2018-04-17
US20170145568A1 (en) 2017-05-25
CN104018156A (zh) 2014-09-03
CN104018156B (zh) 2017-07-28

Similar Documents

Publication Publication Date Title
WO2015192396A1 (zh) 一种金属基/金刚石激光复合涂层及其制备方法
CN1269993C (zh) 多元合金涂层
CN111235511B (zh) 多元陶瓷复合涂层的制备方法
CN111992708A (zh) 一种制备高性能金刚石/铜复合材料的方法
CN103009704A (zh) 一种纳米/类柱状晶混合结构热障涂层及其制备方法
CN102191495A (zh) 激光感应复合熔注快速制备金属陶瓷涂层的方法
CN101748404A (zh) 具有微孔过渡层的涂层结构及制备方法
CN112708883B (zh) 超硬碳化硼陶瓷增强铁基合金复合耐磨涂层的制备方法
JP2020524217A (ja) 冷間噴霧を使用して鍛造構造を形成するためのプロセス
CN111269028A (zh) 氮化硅陶瓷表面金属化方法
CN111893419B (zh) 一种具有碳化硅/硅涂层的炭/炭保温筒及其制备方法
CN110592523A (zh) 一种提高热喷涂涂层与金属基材结合强度的方法
CN108842124A (zh) 一种激光熔覆修复和强化模具的方法
CN113529065B (zh) 一种基于冷喷涂高速沉积增材制造技术制备金属铱涂层的方法及装置
CN113151768A (zh) 一种喷气式发动机叶片用热障涂层及其制备方法
US6254938B1 (en) Spraying method for applying a porous coating to a substrate
CN113718247B (zh) 一种铜合金损伤件等离子熔覆修复方法
CN100540511C (zh) 一种复合阻碳涂层材料及其在基体上制备复合阻碳涂层的方法
CN105986219A (zh) 一种在金属表面制备硼化钛涂层的工艺方法
CN111005015A (zh) 一种钢表面冷喷涂/***体氮化复合制备梯度涂层的方法
CN106119663B (zh) 水泥回转窑上过渡带内表面用合金粉体、制备及其涂层
CN111270191B (zh) 一种提升钛合金基体高温蠕变性能的方法
CN114250458A (zh) 一种Cu/Ti3SiC2金属基陶瓷复合材料的冷喷涂制备方法
CN213309133U (zh) 一种烹饪器具
KR20080076431A (ko) 혼성 분사 공정을 이용한 다이아몬드 공구 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14894900

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15301718

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14894900

Country of ref document: EP

Kind code of ref document: A1