WO2015186550A1 - RFeB系磁石及びRFeB系磁石の製造方法 - Google Patents

RFeB系磁石及びRFeB系磁石の製造方法 Download PDF

Info

Publication number
WO2015186550A1
WO2015186550A1 PCT/JP2015/064886 JP2015064886W WO2015186550A1 WO 2015186550 A1 WO2015186550 A1 WO 2015186550A1 JP 2015064886 W JP2015064886 W JP 2015064886W WO 2015186550 A1 WO2015186550 A1 WO 2015186550A1
Authority
WO
WIPO (PCT)
Prior art keywords
rfeb
sintered magnet
based sintered
rare earth
earth element
Prior art date
Application number
PCT/JP2015/064886
Other languages
English (en)
French (fr)
Inventor
徹彦 溝口
眞人 佐川
Original Assignee
インターメタリックス株式会社
大同特殊鋼株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by インターメタリックス株式会社, 大同特殊鋼株式会社 filed Critical インターメタリックス株式会社
Priority to CN201580030244.7A priority Critical patent/CN106463223A/zh
Priority to EP15803329.0A priority patent/EP3151252A4/en
Priority to US15/315,214 priority patent/US20170194094A1/en
Publication of WO2015186550A1 publication Critical patent/WO2015186550A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0293Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets diffusion of rare earth elements, e.g. Tb, Dy or Ho, into permanent magnets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C28/00Alloys based on a metal not provided for in groups C22C5/00 - C22C27/00
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/28Solid state diffusion of only metal elements or silicon into metallic material surfaces using solids, e.g. powders, pastes
    • C23C10/30Solid state diffusion of only metal elements or silicon into metallic material surfaces using solids, e.g. powders, pastes using a layer of powder or paste on the surface

Definitions

  • the present invention relates to an RFeB-based magnet containing R (rare earth element), Fe and B, and a method for producing the same.
  • the present invention provides a surface of main phase particles containing at least one of Nd and Pr (hereinafter, at least one of Nd and Pr is referred to as “light rare earth element R L ”) as a main rare earth element R.
  • at least one rare earth element of Dy, Tb and Ho hereinafter, at least one of Dy, Tb and Ho is referred to as “heavy rare earth element R H ”).
  • the present invention relates to an RFeB-based magnet that has been subjected to a grain boundary diffusion treatment for diffusing and a manufacturing method thereof.
  • the RFeB-based sintered magnet is a permanent magnet manufactured by orienting and sintering RFeB-based alloy powder. This RFeB-based sintered magnet was discovered by Sagawa et al. In 1982, but has high magnetic properties far surpassing the permanent magnets used so far, and is relatively abundant in rare earth, iron and boron. It has the feature that it can be manufactured from inexpensive raw materials.
  • RFeB-based sintered magnets are expected to increase in demand in the future, such as permanent magnets for motors of hybrid vehicles and electric vehicles.
  • automobiles must be assumed to be used under severe loads, and their motors must also be guaranteed to operate in a high temperature environment (eg 180 ° C.). Therefore, there is a demand for an RFeB-based sintered magnet having a high coercive force H cj that can suppress a decrease in magnetization (magnetic force) due to an increase in temperature.
  • H cj coercive force
  • the coercive force H cj increases as the content of the heavy rare earth element RH increases.
  • the maximum energy product (BH) max also decreases upon with remanence B r of RFeB sintered magnet as the content is often lower, it is expensive and rare, It is desirable to use as little as possible.
  • the coercive force H cj is a force that withstands the reversal of magnetization when a magnetic field opposite to the magnetization direction is applied to the magnet.
  • the heavy rare earth element R H is considered to have an effect of increasing the coercive force H cj by preventing this magnetization reversal. Looking at the magnetization reversal phenomenon in the magnet in detail, the reversal of magnetization first occurs in the vicinity of the grain boundary of the main phase particles, and then spreads from there to the inside of the main phase particles. Therefore, since it is effective to prevent magnetization reversal in the whole magnet first by preventing magnetization reversal at the grain boundary, heavy rare earth element R H is RFeB-based sintered in order to minimize the amount used. It is desirable to make it unevenly distributed in the vicinity of the surface of the main phase particles of the magnet (in the vicinity of the grain boundary) (less in the main phase particles but in the vicinity of the surface).
  • Patent Document 1 discloses an adhering material containing a powder of an alloy in which heavy rare earth element R H is one of constituent elements on the surface of a base material made of a sintered body of an NdFeB-based magnet using Nd as rare earth element R. It is described that a grain boundary diffusion treatment is performed in which the heavy rare earth element R H is diffused into the base material through the grain boundary of the base material by adhering and heating to a predetermined temperature. At that time, there is a rare earth-rich phase having a higher content of rare earth (Nd) than the main phase particles at the grain boundaries of the base material, and the rare earth-rich phase is melted by heating during the grain boundary diffusion treatment, The heavy rare earth element R H is easily diffused into the base material.
  • Nd rare earth-rich phase having a higher content of rare earth (Nd) than the main phase particles at the grain boundaries of the base material
  • Grain boundary diffusion treatment allows heavy rare earth elements RH to be unevenly distributed in the vicinity of the surface of the main phase particles of the RFeB-based sintered magnet, thereby suppressing a decrease in residual magnetic flux density Br and maximum energy product (BH) max. Meanwhile , an RFeB-based sintered magnet having a high coercive force H cj can be obtained.
  • the amount of carbon present as an impurity in the base material is smaller. This is because carbon is unevenly distributed in grain boundaries (especially, grain boundary triple points surrounded by three or more main phase grains) in the base material, so that the grain boundaries are melted during heating during grain boundary diffusion treatment. This is because the rare earth element RH is more easily diffused into the substrate as the amount of carbon in the substrate is smaller.
  • the coercive force of one magnet is not uniform in the magnet, and is locally It was found that there are high and low parts.
  • the minimum dimension portion that is, the dimension in the portion where the passing dimension of the substrate is minimum (that is, the RFeB-based sintering magnet).
  • the heavy rare earth element R H is sufficiently distributed over the grain boundaries and the entire surface of the main phase particles, so the coercive force is almost uniform. It was found that when the dimension exceeds 3 mm, the coercive force becomes non-uniform because the heavy rare earth element RH does not reach the grain boundary near the center of the minimum dimension part and the surface of the main phase particle sufficiently. If there is a part with low coercivity locally in this way, when using an RFeB-based sintered magnet, the part cannot withstand the reverse magnetic field and magnetization reversal occurs, resulting in RFeB-based. The average magnetization of the entire sintered magnet is lowered.
  • the problem to be solved by the present invention is to provide an RFeB-based sintered magnet that has a uniform and high coercive force over the entire magnet even when the thickness is relatively large, and a method for manufacturing the same. It is to be.
  • the RFeB-based sintered magnet according to the present invention passes through a grain boundary of a base material composed of a sintered body of an RFeB-based magnet containing light rare earth elements R L , Fe and B, which is at least one of Nd and Pr.
  • An RFeB-based sintered magnet in which a heavy rare earth element RH that is at least one rare earth element of Dy, Tb, and Ho is diffused in a base material,
  • the dimension in the minimum dimension part of the RFeB-based sintered magnet is larger than 3 mm,
  • the value obtained by dividing the amount of heavy rare earth element R H contained in the RFeB-based sintered magnet by the volume of the RFeB-based sintered magnet is 25 mg / cm 3 or more,
  • the difference between the local coercivity at the surface of the minimum dimension part and the local coercivity at the center of the minimum dimension part is 15% or less of the local coercivity at the surface.
  • local coercive force refers to the coercive force per unit volume in the RFeB sintered magnet.
  • the value obtained by dividing the amount of heavy rare earth element RH contained in the RFeB-based sintered magnet produced using the grain boundary diffusion treatment by the volume of the RFeB-based sintered magnet is 25 mg. / cm 3 or more.
  • RH can be spread over the entire grain boundary and main phase particle surface of the RFeB-based sintered magnet. Therefore, the local coercive force has a difference of 15% or less from the value on the surface at any position in the RFeB-based sintered magnet, and becomes nearly uniform over the entire RFeB-based sintered magnet.
  • the deposit containing the heavy rare earth element RH is used in the same manner as before in order to perform the treatment of diffusing the heavy rare earth element RH in the base material. Usually, however, the deposits after the treatment are removed. Accordingly, the dimensions and volume, and the amount of the heavy rare earth element RH contained in the RFeB-based sintered magnet are values only for the RFeB-based sintered magnet that does not include the adhering portion.
  • the RFeB-based sintered magnet manufacturing method a) It is composed of a sintered body of an RFeB-based magnet containing light rare earth elements R L , Fe and B, which is at least one of Nd and Pr, and the dimension in the minimum dimension part of the sintered body is larger than 3 mm.
  • a base material preparation step for preparing a base material b) Grain boundary diffusion in which a deposit containing a heavy rare earth element RH , which is at least one rare earth element of Dy, Tb, and Ho, is attached to the surface of the substrate, and then heated to a predetermined temperature.
  • the deposit amount of the heavy rare-earth element R H containing the heavy rare-earth element R H amounts RFeB-based sintered magnet containing the RFeB sintered magnet after the particle boundary diffusion treatment And a grain boundary diffusion step in which the value divided by the volume is 25 mg / cm 3 or more.
  • the amount of the heavy rare earth element R H contained in the deposit can be determined by a person skilled in the art by performing a simple preliminary experiment. In addition, when all of the heavy rare earth element R H in the deposit diffuses into the RFeB sintered magnet, the amount of the heavy rare earth element R H contained in the deposit is changed to the RFeB sintered magnet (or base material). The value divided by the volume may be 25 mg / cm 3 or more.
  • the carbon content in the base material is desirably 1000 ppm or less.
  • the grain boundary diffusion treatment is performed at a temperature lower than that during sintering and in a vacuum or in an inert gas, the carbon content after the grain boundary diffusion treatment is almost the same as that before the grain boundary diffusion treatment. This has been confirmed by experiments. That is, even in an RFeB sintered magnet manufactured from a base material having a carbon content of 1000 ppm or less, the carbon content is 1000 ppm or less.
  • the base material is filled with alloy powder containing light rare earth elements R L , Fe and B as raw materials, and the alloy powder is machined for molding.
  • the alloy powder is oriented by applying a magnetic field without applying a mechanical pressure, and sintered by heating without applying a mechanical pressure for molding while the alloy powder is accommodated in the mold. It is desirable to produce by this (refer patent document 2).
  • This method of producing an RFeB-based sintered magnet without applying mechanical pressure for molding is called a “PLP (Press-Less Process) method”. Since there is no need to use a press in the PLP method, the equipment can be made smaller than in the press method, and the entire equipment can be easily placed in an oxygen-free atmosphere.
  • the average particle size can be reduced (the total surface area of the particles in the entire alloy powder is increased).
  • the average particle size of the microcrystals in the sintered magnet to be manufactured is also reduced, so that it is difficult to form a magnetic domain whose magnetization is reversed when an external magnetic field is applied. The coercive force is further improved.
  • an RFeB-based sintered magnet having a uniform and high coercive force can be obtained throughout. Therefore, it is possible to prevent local magnetization reversal from occurring when the RFeB-based sintered magnet is used, thereby preventing magnetization from being lowered.
  • FIG. 1 Schematic which shows one Embodiment of the manufacturing method of the RFeB type sintered magnet which concerns on this invention.
  • the perspective view (a) which shows the example of the base material of a RFeB type sintered magnet, and the longitudinal cross-sectional view (b) of another example.
  • the graph which shows the result of having measured the local coercive force (coercive force of each RFeB type sintered magnet piece) in the RFeB type sintered magnet of an Example and a comparative example.
  • the graph which shows the relationship of the average value of the whole coercive force, the local coercive force in the surface, and the local coercive force in the whole in the RFeB type sintered magnet of an Example and a comparative example.
  • the graph which shows the result of having measured the whole coercive force in the RFeB type sintered magnet of the Example and comparative example from which the application quantity of a coating material (paste) differs.
  • the method of the present embodiment is roughly divided into two steps: a base material preparation step 11 and a grain boundary diffusion step 12.
  • a so-called pressing method including a step of producing a compact of the alloy powder by applying mechanical pressure to the raw material alloy powder may be used.
  • a so-called pressing method including a step of producing a compact of the alloy powder by applying mechanical pressure to the raw material alloy powder.
  • PLP method In order to obtain a higher coercive force, It is desirable to use the PLP method. Below, the example which produces a base material by PLP method is demonstrated.
  • the base material production process 11 by the PLP method is subdivided into an alloy powder production process 111, a filling process 112, an orientation process 113, and a sintering process 114 (FIG. 1).
  • an alloy lump containing light rare earth elements R L , Fe and B is pulverized to produce an alloy powder as a raw material for the RFeB-based sintered magnet.
  • SC alloy lump an alloy lump produced by a strip cast (SC) method (referred to as “SC alloy lump”).
  • SC alloy lump is produced by pouring a molten raw material onto a rotating drum and rapidly cooling, and a plate-like rare earth-rich phase is formed in the lump by this production method.
  • SC alloy lump is produced by pouring a molten raw material onto a rotating drum and rapidly cooling, and a plate-like rare earth-rich phase is formed in the lump by this production method.
  • the pulverization can be performed, for example, by the following two-stage process.
  • the SC alloy lump is exposed to a hydrogen gas atmosphere to occlude hydrogen molecules in the SC alloy lump, so that coarse crushing is performed by hydrogen cracking to embrittle the SC alloy lump.
  • the fine powder obtained by coarse pulverization is finely pulverized by a jet mill.
  • after hydrogen crushing it is heated to about 500 ° C. to remove hydrogen in the coarse powder (dehydrogenation heating), but for the reasons described later, the dehydrogenation heating is not performed for the sintering step. It is desirable to remove hydrogen by heating at.
  • the alloy powder obtained in the alloy powder production step 111 is filled in the mold in the filling step 112. And in the orientation process 113, the magnetic particles are applied to the alloy powder in the mold to orient the particles of the alloy powder in one direction. At that time, mechanical pressure for forming is not applied to the alloy powder.
  • the alloy powder is heated to a sintering temperature (for example, a temperature in the range of 900 to 1100 ° C.) while the alloy powder is accommodated in the mold without applying mechanical pressure for molding to the alloy powder.
  • a substrate is obtained (sintering step 114).
  • carbon present as an impurity in the alloy powder reacts with hydrogen remaining without being removed after hydrogen crushing to form CH 4 gas, so that both carbon and hydrogen are Removed.
  • a technique for removing carbon which is an impurity in this way is taken, and the carbon concentration remaining on the base material can be suppressed to 1000 ppm or less.
  • the base material thus obtained becomes a shape corresponding to the shape of the space in the mold by shrinking the alloy powder in the mold as it is during sintering.
  • the shrinkage rate during sintering depends on the volume filling rate of the alloy powder filled in the mold, for example, when the volume filling rate is about 50%, it is about 35% in the direction in which a magnetic field is applied in the orientation process. In the direction perpendicular to it, it is about 15%.
  • the grain boundary diffusion step 12 is subdivided into a heavy rare earth element-containing coating material preparation step 121, a coating step 122, and a coated substrate heating step 123 (FIG. 1).
  • the heavy rare earth element-containing coated material preparation step 121 may be performed in parallel with the base material preparation step 11 or before the base material preparation step 11.
  • a coating containing a heavy rare earth element R H is prepared.
  • the coated material has good contact with the base material, and even if a large amount of coated material is applied to the surface of the base material, it is difficult to leave the surface, and the powder containing the heavy rare earth element RH It is desirable to produce a heavy rare earth element-containing coating by mixing organic paste.
  • the paste-like coating material has good contact with the base material in this way, the advantage that the heavy rare earth element RH in the coating material easily diffuses into the base material in the coated base material heating step 123.
  • the coated material produced as described above is coated on the surface of the substrate.
  • the coating amount of the coated product is 25 mg / cm 3 or more when the amount of the heavy rare earth element RH contained in the RFeB sintered magnet after the grain boundary diffusion treatment is divided by the volume of the RFeB sintered magnet. This is determined by a preliminary experiment. When the entire amount of deposit heavy rare earth element R H in the coating diffuses into the RFeB sintered magnet due to the grain boundary diffusion treatment, the amount of heavy rare earth element R H in the coating is reduced to the RFeB sintered magnet. The value divided by the volume of is 25 mg / cm 3 or more. In this case, since the volume of the RFeB-based sintered magnet after the grain boundary diffusion treatment does not normally change from the volume of the base material, it may be defined by the volume of the base material instead of the volume of the RFeB-based sintered magnet.
  • the substrate coated with the coating is heated to a predetermined temperature (eg, 700 to 950 ° C.) in a vacuum or in an inert gas, so that the heavy rare earth element RH is granulated. Spread in the world. Thereafter, the applied material (adhered matter) remaining on the surface of the substrate is removed.
  • a predetermined temperature eg, 700 to 950 ° C.
  • the RFeB sintered magnet according to the present invention can be manufactured by the above manufacturing method.
  • SC alloy lump was used as the base material.
  • This SC alloy ingot has a composition of Nd: 25.9% by mass, Pr: 4.11% by mass, B: 0.96% by mass, Co: 0.89% by mass, Cu: 0.10% by mass, Al: 0.27% by mass, and Fe: balance. And does not contain heavy rare earth elements R H.
  • the SC alloy lump is pulverized by coarse pulverization by hydrogen pulverization and coarse pulverization by a jet mill so that the median particle diameter measured by the laser method is 3 ⁇ m. A powder was prepared. Note that dehydrogenation heating is not performed after the coarse pulverization and before the sintering step.
  • the obtained alloy powder was filled into a plurality of molds having a rectangular parallelepiped internal space and having different thicknesses of 5 mm or more.
  • the alloy powder for each mold was oriented in the orientation step 113 with a pulse magnetic field of 5 T or more, and then sintered at 980 ° C. in the sintering step 114.
  • a plurality of types of rectangular parallelepiped base materials 20 (FIG. 2 (a)) having thicknesses t of 3 mm, 6 mm, 8 mm, and 10 mm were produced.
  • the carbon content in the base material can be suppressed to 1000 ppm or less.
  • the carbon content of the produced substrate was measured and found to be 400 ppm.
  • the means for reducing the amount of carbon in the substrate may be due to a process change such as changing the type and / or addition amount of the additive or changing the sintering conditions.
  • the minimum dimension part 22 is prescribed
  • a powder of a Tb (R H ) -containing alloy having a composition of Tb: 92.0% by mass, Ni: 4.3% by mass, Al: 3.7% by mass; A paste (coating material) in which silicone grease was mixed at a mass ratio of 4: 1 was prepared.
  • the coating step 122 14 mg of this coated material was applied to the facing surface 21 (2 surfaces) per unit area (1 cm 2 ).
  • the coated substrate heating step 123 after heating at 900 ° C. for 10 hours, the temperature was lowered to 500 ° C. and maintained for 1.5 hours.
  • RFeB-based sintered magnets of this example and comparative example were respectively produced. Differences between this example and the comparative example will be described next.
  • Comparative Example 1 has a thin base material, and conventionally, the heavy rare earth element RH could be spread throughout the base material.
  • the amount of heavy rare earth element RH per unit volume contained in the RFeB-based sintered magnet is smaller than the range of the present invention.
  • the coercive force of the entire RFeB-based sintered magnet decreases as the amount of heavy rare earth element RH per unit volume decreases, all of the sufficiently high values exceeding 20 kOe were obtained. Moreover, the residual magnetic flux density is 0.09 to 0.24 kG (less than 2%) in any sample, and the residual magnetic flux density is hardly reduced by the presence of the heavy rare earth element RH. I understand that. As described above, the entire RFeB-based sintered magnet has sufficient magnetic properties regardless of the examples and comparative examples.
  • the local coercive force of the RFeB sintered magnets of these examples and comparative examples was measured by the following method. First, two RFeB-based sintered magnet thin plates 321 and 322 are cut out from the RFeB-based sintered magnet 31 so that a width perpendicular to the surface of the smallest dimension portion is 1 mm (FIG. )).
  • each of the two RFeB-based sintered magnet thin plates 321 and 322 is provided by shifting each region from which the RFeB-based sintered magnet piece 33 is cut out by 1 mm in the thickness direction, so that every 1 mm throughout the thickness direction.
  • the RFeB-based sintered magnet piece 33 can be obtained.
  • each RFeB-based sintered magnet piece 33 obtained in each Example and each Comparative Example in this way was measured using a high sensitivity VSM (vibrating sample magnetometer) manufactured by Tamagawa Seisakusho Co., Ltd. This is shown in the graph.
  • VSM vibrating sample magnetometer
  • each local coercive force in Example 1 was 24.35 kOe at a position 2 to 3 mm from one surface and 24.36 kOe at a position 3 to 4 mm. From these two values, the local coercive force at the position of 3 mm from one surface, which is the center of the minimum dimension portion, is estimated to be 24.35 kOe. Further, the RFeB sintered magnet of Example 1 has 25.37 kOe on one surface side and 25.42 kOe on the other surface side.
  • the difference between the local coercive force on the surface of the minimum dimension portion of the RFeB-based sintered magnet and the local coercive force at the center is 0.07 kOe compared to the surface on which the difference becomes larger. From this value, this difference is about 0.3% of the local coercivity at the surface, well below 15%.
  • the lowest local coercivity is 25.13 kOe at 1 to 2 mm and 4 to 5 mm from one surface, and the highest local coercivity is 25.42 kOe at the other surface.
  • Example 2 The same analysis as in Example 1 is performed in Example 2 as follows.
  • the local coercive force at the center of the smallest dimension part of the RFeB-based sintered magnet of Example 2 at a position 4 mm from one surface and at two front and rear positions is 22.08 kOe (position 3-4 mm from one surface) and 22.11 kOe. (4-5 mm), 25.36 kOe on one surface side and 25.18 kOe on the other surface side.
  • Comparative Example 2 is as follows.
  • Patent Document 1 a paste obtained by mixing a powder of TbNiAl alloy having the same composition as that of this example with silicone grease in the same ratio as that of this example is used to face a substrate having a thickness of 6 mm and 10 mm (two sides). ) Are each applied with 10 mg / cm 2 , followed by grain boundary diffusion treatment.
  • the value obtained by dividing the amount of heavy rare earth element R H contained in the paste by the volume of the base material is 24.5 mg / cm 3 for the base material having a thickness of 6 mm, and 14.7 mg / cm for the base material having a thickness of 10 mm. 3 Therefore, the RFeB-based sintered magnet and the manufacturing method thereof described in Patent Document 1 are not included in the scope of the present invention.
  • Example 3 An experiment was performed on a base material having a thickness of 8 mm and 10 mm, in which the amount of paste applied was larger than in Example 2 and Comparative Example 2 (Examples 3 to 5).
  • the conditions of these experiments are as shown in Table 3.
  • Tb is used as the heavy rare earth element RH
  • Dy or Ho may be used as the heavy rare earth element RH , and two or three of these three kinds may be used. You may mix and use.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

 本発明は、厚みが比較的大きい場合であっても、1個の磁石の全体に亘って均一で且つ高い保磁力を有するRFeB系焼結磁石を提供することを目的としている。Nd及びPrのうちの少なくとも1種である軽希土類元素RL, Fe及びBを含有するRFeB系磁石の焼結体から成る基材の粒界を通して該基材内に、Dy, Tb及びHoのうちの少なくとも1種の希土類元素である重希土類元素RHが拡散したRFeB系焼結磁石であって、前記RFeB系焼結磁石の最小寸法部における寸法が3mmよりも大きく、該RFeB系焼結磁石が含有する重希土類元素RHの量を該RFeB系焼結磁石の体積で除した値が25mg/cm3以上であり、前記最小寸法部の表面における局所保磁力と、前記最小寸法部の中央における局所保磁力の差が、該表面における局所保磁力の15%以下である。

Description

RFeB系磁石及びRFeB系磁石の製造方法
 本発明は、R(希土類元素)、Fe及びBを含有するRFeB系磁石及びその製造方法に関する。本発明は特に、Nd及びPrのうちの少なくとも1種(以下、Nd及びPrのうちの少なくとも1種を「軽希土類元素RL」と呼ぶ)を主たる希土類元素Rとして含有する主相粒子の表面付近に、該主相粒子の粒界を通して、Dy, Tb及びHoのうちの少なくとも1種の希土類元素(以下、Dy, Tb及びHoのうちの少なくとも1種を「重希土類元素RH」と呼ぶ)を拡散させる粒界拡散処理が施されたRFeB系磁石及びその製造方法に関する。
 RFeB系焼結磁石は、RFeB系合金の粉末を配向させ、焼結させることにより製造される永久磁石である。このRFeB系焼結磁石は、1982年に佐川らによって見出されたものであるが、それまでの永久磁石をはるかに凌駕する高い磁気特性を有し、希土類、鉄及び硼素という比較的豊富で廉価な原料から製造することができるという特長を有する。
 RFeB系焼結磁石は、ハイブリッド自動車や電気自動車のモータ用の永久磁石など、今後ますます需要が拡大することが予想されている。しかしながら、自動車は過酷な負荷の下での使用を想定しなければならず、そのモータについても高い温度環境(例えば180℃)下での動作を保証しなければならない。そのため、温度の上昇による磁化(磁力)の減少を抑えることができる、高い保磁力Hcjを有するRFeB系焼結磁石が求められている。RFeB系焼結磁石では、重希土類元素RHの含有量が多いほど、保磁力Hcjは高くなることが知られている。しかし、重希土類元素RHは、その含有量が多いほどRFeB系焼結磁石の残留磁束密度Brが低くなると共に最大エネルギー積(BH)maxも低くなるうえに、高価且つ希少であるため、使用量ができるだけ少ない方が望ましい。
 保磁力Hcjは、磁化の向きとは逆向きの磁界が磁石に印加されたときに磁化が反転することに耐える力である。重希土類元素RHは、この磁化反転を妨げることにより、保磁力Hcjを増大させる効果を持つと考えられている。磁石における磁化反転現象を詳しく見ると、磁化の反転は最初に主相粒子の粒界付近で発生し、そこから主相粒子の内部に拡がってゆくという特性を有する。従って、最初に粒界における磁化の反転を防ぐことが磁石全体における磁化反転の防止に効果的であることから、重希土類元素RHは、その使用量をできるだけ少なくするために、RFeB系焼結磁石の主相粒子の表面付近(粒界の近傍)に偏在させる(主相粒子の内部において少なく、表面付近において多く存在させる)ことが望ましい。
 特許文献1には、希土類元素RとしてNdを用いたNdFeB系磁石の焼結体から成る基材の表面に、重希土類元素RHが構成元素の1つである合金の粉末を含む付着物を付着させ、所定の温度に加熱することにより、重希土類元素RHを、基材の粒界を通して基材内に拡散させる粒界拡散処理を行うことが記載されている。その際、基材の粒界には主相粒子よりも希土類(Nd)の含有率が高い希土類リッチ相が存在し、その希土類リッチ相が粒界拡散処理の際の加熱によって溶融することにより、重希土類元素RHが基材内に拡散し易くなる。粒界拡散処理により、重希土類元素RHをRFeB系焼結磁石の主相粒子の表面付近に偏在させることができるため、残留磁束密度Br及び最大エネルギー積(BH)maxの低下が抑えられつつ、保磁力Hcjが高いRFeB系焼結磁石が得られる。
 また、特許文献1では、基材中に不純物として存在する炭素の量が少ない方がよいとされている。これは、基材中において炭素が粒界(特に、3個以上の主相粒子に囲まれた粒界三重点)中に偏在し、それによって粒界拡散処理の際の加熱時に粒界が溶融し難くなることから、基材中の炭素量が少ないほど重希土類元素RHが基材内に拡散し易くなるからである。
国際公開WO2013/100010号 特開2006-019521号公報
 本発明者が従来の粒界拡散処理の方法を用いて作製されたRFeB系焼結磁石を詳細に調べた結果、1個の磁石の保磁力は、その磁石中において均一なものではなく、局所的に高い部分と低い部分が存在することが分かった。詳しくは、従来の粒界拡散処理の方法を用いて作製されたRFeB系焼結磁石では、最小寸法部、すなわち基材の差し渡し寸法が最小である部分における該寸法(すなわち、該RFeB系焼結磁石の厚み)が3mm以下という比較的小さい場合には重希土類元素RHが粒界及び主相粒子の表面全体に十分に行き渡るため保磁力がほぼ均一であるのに対して、最小寸法部の寸法が3mmを超えると、重希土類元素RHが最小寸法部の中央付近の粒界及び主相粒子表面にまでは十分に行き渡らないため、保磁力が不均一になることを見いだした。このように局所的に保磁力が低い部分が存在すると、RFeB系焼結磁石の使用時に、当該部分において逆向きの磁界に耐えることができずに磁化反転が生じてしまい、その結果としてRFeB系焼結磁石全体での平均の磁化が低下してしまう。
 本発明が解決しようとする課題は、厚みが比較的大きい場合であっても、1個の磁石の全体に亘って均一で且つ高い保磁力を有するRFeB系焼結磁石、及びその製造方法を提供することである。
 本発明に係るRFeB系焼結磁石は、Nd及びPrのうちの少なくとも1種である軽希土類元素RL, Fe及びBを含有するRFeB系磁石の焼結体から成る基材の粒界を通して該基材内に、Dy, Tb及びHoのうちの少なくとも1種の希土類元素である重希土類元素RHが拡散したRFeB系焼結磁石であって、
 前記RFeB系焼結磁石の最小寸法部における寸法が3mmよりも大きく、
 該RFeB系焼結磁石が含有する重希土類元素RHの量を該RFeB系焼結磁石の体積で除した値が25mg/cm3以上であり、
 前記最小寸法部の表面における局所保磁力と、前記最小寸法部の中央における局所保磁力の差が、該表面における局所保磁力の15%以下である
ことを特徴とする。
 本発明において「局所保磁力」とは、RFeB系焼結磁石内における単位体積あたりの保磁力をいう。
 本発明に係るRFeB系焼結磁石では、粒界拡散処理を用いて作製されたRFeB系焼結磁石が含有する重希土類元素RHの量をRFeB系焼結磁石の体積で除した値を25mg/cm3以上とする。これにより、RFeB系焼結磁石の粒界及び主相粒子表面の全体にRHを行き亘らせることができる。そのため、局所保磁力はRFeB系焼結磁石内のどの位置においても表面における値との差が15%以下となり、RFeB系焼結磁石全体に亘って均一に近くなる。
 なお、本発明に係るRFeB系焼結磁石を作製する際に、基材内に重希土類元素RHを拡散させる処理を行うために従来と同様に重希土類元素RHを含有する付着物を用いることができるが、通常、当該処理後の付着物は除去される。従って、前記寸法及び体積、並びに該RFeB系焼結磁石が含有する重希土類元素RHの量は、いずれも、該付着物の部分を含まない、RFeB系焼結磁石のみについての値である。
 本発明に係るRFeB系焼結磁石製造方法は、
 a) Nd及びPrのうちの少なくとも1種である軽希土類元素RL, Fe及びBを含有するRFeB系磁石の焼結体から成り、該焼結体の最小寸法部における寸法が3mmよりも大きい基材を作製する基材作製工程と、
 b) 前記基材の表面に、Dy, Tb及びHoのうちの少なくとも1種の希土類元素である重希土類元素RHを含有する付着物を付着させたうえで、所定温度に加熱する粒界拡散処理を行う工程であって、前記付着物が含有する重希土類元素RHの量が、該粒界拡散処理後にRFeB系焼結磁石が含有する重希土類元素RHの量をRFeB系焼結磁石の体積で除した値が25mg/cm3以上となる量である粒界拡散工程と
を有することを特徴とする。この方法により、本発明に係るRFeB系焼結磁石を製造することができる。
 前記付着物が含有する重希土類元素RHの量は、当業者が簡単な予備実験を行うことにより、定めることができる。また、付着物中の重希土類元素RHが全てRFeB系焼結磁石内に拡散する場合には、当該付着物が含有する重希土類元素RHの量をRFeB系焼結磁石(あるいは基材)の体積で除した値が25mg/cm3以上となるようにすればよい。
 本発明に係るRFeB系焼結磁石製造方法において、前記基材における炭素の含有量は1000ppm以下であることが望ましい。これにより、粒界拡散工程において重希土類元素RHがRFeB系焼結磁石の粒界及び主相粒子の表面に拡散する際に、炭素が阻害することを防止することができる。なお、粒界拡散処理は焼結時よりも低い温度、且つ真空中又は不活性ガス中で行うため、粒界拡散処理の後の炭素含有量は粒界拡散処理の前とほとんど変わらない。このことは、実験によっても確認されている。すなわち、炭素の含有量が1000ppm以下である基材から作製されたRFeB系焼結磁石においても、炭素の含有量は1000ppm以下となる。
 本発明に係るRFeB系焼結磁石製造方法において、前記基材は、原料である軽希土類元素RL、Fe及びBを含有する合金粉末をモールドに充填し、該合金粉末に成形のための機械的圧力を印加することなく磁界を印加することで該合金粉末を配向し、該合金粉末を該モールドに収容したまま、成形のための機械的圧力を印加することなく加熱することで焼結することにより作製することが望ましい(特許文献2参照)。このように成形のための機械的圧力を印加することなくRFeB系焼結磁石を作製する方法を「PLP(Press-Less Process)法」と呼ぶ。PLP法ではプレス機を使用する必要が無いため、プレス法よりも設備を小型化することができ、設備全体を無酸素雰囲気中に配置することが容易である。従って、プレス法よりも、焼結磁石の製造中に合金粉末の粒子が酸化し難くなるため、平均粒径を小さく(合金粉末全体での粒子の表面積の合計を大きく)することができる。このように合金粉末の平均粒径を小さくすると、製造される焼結磁石内の微結晶の平均粒径も小さくなるため、外部磁界が印加されたときに磁化が反転した磁区が形成され難くなり、保磁力が一層向上する。
 本発明により、全体に亘って均一で且つ高い保磁力を有するRFeB系焼結磁石を得ることができる。そのため、RFeB系焼結磁石の使用時に局所的に磁化反転が生じることを防止し、それにより磁化が低下することを防止することができる。
本発明に係るRFeB系焼結磁石の製造方法の一実施形態を示す概略図。 RFeB系焼結磁石の基材の例を示す斜視図(a)、及び別の例の縦断面図(b)。 RFeB系焼結磁石における局所保磁力を測定するために、RFeB系焼結磁石片を切り出す方法を説明する図。 実施例及び比較例のRFeB系焼結磁石における局所保磁力(各RFeB系焼結磁石片の保磁力)を測定した結果を示すグラフ。 実施例及び比較例のRFeB系焼結磁石における、全体の保磁力、表面における局所保磁力、及び全体における局所保磁力の平均値の関係を示すグラフ。 塗布物(ペースト)の塗布量が異なる実施例及び比較例のRFeB系焼結磁石における全体の保磁力を測定した結果を示すグラフ。
 本発明に係るRFeB系焼結磁石及びその製造方法の実施形態を、図1~図6を用いて説明する。
 まず、図1を用いて、RFeB系焼結磁石の製造方法の実施例を説明する。本実施例の方法は、大きく分けると、基材作製工程11と粒界拡散工程12の2つの工程を有する。
 基材作製工程11では、原料の合金粉末に機械的圧力を加えることによって合金粉末の成形体を作製する工程を含む、いわゆるプレス法を用いてもよいが、より高い保磁力を得るために、PLP法を用いることが望ましい。以下では、PLP法により基材を作製する例を説明する。
 PLP法による基材作製工程11は、合金粉末作製工程111、充填工程112、配向工程113、焼結工程114に細分される(図1)。
 合金粉末作製工程111では、軽希土類元素RL、Fe及びBを含有する合金塊を粉砕することにより、RFeB系焼結磁石の原料である合金粉末を作製する。ここで、合金塊には、ストリップキャスト(SC)法により作製されたもの(「SC合金塊」と呼ぶ)を用いることが望ましい。SC合金塊は、原料の溶湯を回転ドラム上に注いで急冷することにより作製されるものであり、この作製方法によって塊内に板状の希土類リッチ相が形成される。このSC合金塊を粉砕することにより、主相の粉末粒子の表面に希土類リッチ相の微粉が付着した合金粉末が得られる。粉砕は、例えば以下の2段階の工程で行うことができる。1段階目では、SC合金塊を水素ガス雰囲気に晒すことで水素分子をSC合金塊に吸蔵させることにより、SC合金塊を脆化させる水素解砕による粗粉砕を行い、2段階目では、該粗粉砕により得られる粗粉をジェットミルで粉砕する微粉砕を行う。なお、一般的には、水素解砕後に、粗粉中の水素を除去するために500℃程度に加熱する(脱水素加熱)が、後述の理由により、脱水素加熱は行わずに焼結工程における加熱によって水素を除去することが望ましい。
 合金粉末作製工程111において得られた合金粉末を、充填工程112においてモールドに充填する。そして、配向工程113において、モールド内の合金粉末に磁界を印加することにより、合金粉末の粒子を1方向に配向する。その際、合金粉末には、成形のための機械的圧力は印加しない。
 その後、合金粉末に成形のための機械的圧力を印加することなく、モールド内に合金粉末を収容したままで、焼結温度(例えば900~1100℃の範囲内の温度)に加熱することにより、基材が得られる(焼結工程114)。この加熱による昇温の際に、合金粉末中に不純物として存在する炭素と、水素解砕後に除去されることなく残留する水素が反応してCH4ガスとなることにより、炭素及び水素の双方が除去される。特許文献1においても、このように不純物である炭素を除去する手法が取られており、基材に残留する炭素濃度を1000ppm以下に抑えることができるとされている。
 こうして得られる基材は、モールド内の合金粉末が焼結時にそのまま収縮することにより、モールド内の空間形状に対応する形状となる。焼結時の収縮率はモールド内に充填された合金粉末の体積充填率にも依存するが、例えば体積充填率が50%程度の場合には、配向工程において磁界を印加した方向では約35%、それに直交する方向では約15%となる。これらの収縮率を考慮してモールド内の空間の寸法を定めることにより、最小寸法部の寸法(厚み)が3mm以上である基材を得ることができる。
 粒界拡散工程12は、重希土類元素含有塗布物作製工程121、塗布工程122、塗布済基材加熱工程123に細分される(図1)。このうち重希土類元素含有塗布物作製工程121は、基材作製工程11と並行して、又は基材作製工程11よりも前に実施してもよい。
 重希土類元素含有塗布物作製工程121では、重希土類元素RHを含有する塗布物を作製する。塗布物には、基材との接触性が良好であり、基材の表面に多量の塗布物を塗布しても該表面から離脱し難いという点において、重希土類元素RHを含有する粉末と有機物のペーストを混合することにより重希土類元素含有塗布物を作製することが望ましい。また、このようにペースト状の塗布物が基材と良好な接触性を有することにより、塗布済基材加熱工程123において塗布物内の重希土類元素RHが基材内に拡散しやすいという利点もある。重希土類元素RHを含有する粉末には、重希土類元素RHの単体金属の粉末、重希土類元素RHを含有する合金又は金属間化合物、あるいはそれらと他の金属の粉末を混合したもの等を用いることができる。
 塗布工程122では、上記のように作製した塗布物を基材の表面に塗布する。その際、塗布物の塗布量は、粒界拡散処理後にRFeB系焼結磁石が含有する重希土類元素RHの量を該RFeB系焼結磁石の体積で除した値が25mg/cm3以上となるように、予備実験により定めておく。粒界拡散処理によって塗布物内の付着物重希土類元素RHの全量がRFeB系焼結磁石内に拡散する場合には、塗布物内の重希土類元素RHの量が、RFeB系焼結磁石の体積で除した値が25mg/cm3以上となるようにする。この場合、粒界拡散処理後のRFeB系焼結磁石の体積は通常、基材の体積から変化しないため、RFeB系焼結磁石の体積の代わりに基材の体積で規定してもよい。
 そして、塗布済基材加熱工程123では、塗布物を塗布した基材を真空中又は不活性ガス中で所定の温度(例えば700~950℃)に加熱することにより、重希土類元素RHを粒界内に拡散させる。その後、基材の表面に残留した塗布物(付着物)を除去する。
 以上の製造方法により、本発明に係るRFeB系焼結磁石を作製することができる。
 次に、実際に作製した本発明に係るRFeB系焼結磁石の例、及び作製したRFeB系焼結磁石に対する実験結果を説明する。
 本実施例では、基材の材料にはSC合金塊を用いた。このSC合金塊は、Nd:25.9質量%、Pr:4.11質量%、B:0.96質量%、Co:0.89質量%、Cu:0.10質量%、Al:0.27質量%、Fe:残部、という組成を有し、重希土類元素RHを含有していない。合金粉末作製工程111では、このSC合金塊を、水素解砕による粗粉砕及びジェットミルによる粗粉砕によって、レーザ法で測定される粒径の中央値が3μmとなるように粉砕することにより、合金粉末を作製した。なお、粗粉砕の後、焼結工程までの間に、脱水素加熱は行っていない。
 得られた合金粉末を、充填工程112において、直方体の内部空間を有し、5mm以上の異なる厚みを有する複数のモールドにそれぞれ充填した。そして、各モールドについて合金粉末を、配向工程113において5T以上のパルス磁界で配向した後、焼結工程114において980℃で焼結した。これにより、厚みtがそれぞれ3mm、6mm、8mm及び10mmである複数種の直方体の基材20(図2(a))を作製した。本実施例では上記のように脱水素加熱を行うことなく焼結工程を行ったため、基材内の炭素含有量が1000ppm以下に抑えられる。作製した基材の炭素含有量を測定したところ、400ppmであった。なお、基材中の炭素量を低下させる手段は、添加剤の種類及び/又は添加量を変更する、焼結条件を変更する等の工程変更等によるものであってもよい。
 基材20は直方体であるため、面間距離が最も小さい1組の対面21の面上の任意の位置で最小寸法部22が規定される。なお、図2(b)に示すように、曲面の表面21Aを有する基材20Aでは、特定の位置で最小寸法部22Aが規定される。なお、ここでは最小寸法部について基材を対象として説明したが、最終製品であるRFeB系焼結磁石においても同様に最小寸法部を規定することができる。
 粒界拡散工程12では、重希土類元素含有塗布物作製工程121において、Tb:92.0質量%、Ni:4.3質量%、Al:3.7質量%、という組成を有するTb(RH)含有合金の粉末とシリコーングリースを、質量比4:1で混合したペースト(塗布物)を作製した。そして、塗布工程122においてこの塗布物を、対面21(2面)にそれぞれ、単位面積(1cm2)あたり14mg塗布した。そして、塗布済基材加熱工程123において、900℃で10時間加熱した後、温度を500℃に下げて1.5時間維持した。これにより、本実施例及び比較例のRFeB系焼結磁石をそれぞれ作製した。本実施例と比較例の相違は、次に述べる。
 各基材の厚みtをdmm=(0.1d)cmとすると、基材の単位体積(1cm3)あたりの重希土類元素RHの量は、14mg/cm2×2×0.8(塗布物中の合金の質量比)×0.92(合金中のTbの質量比)/((0.1d)cm)=(206.08/d)mg/cm3となる。従って、各基材の厚みtと、単位体積あたりの重希土類元素RHの量は表1の通りである。
Figure JPOXMLDOC01-appb-T000001
 表1において、比較例1は基材が薄く、それによって従来から重希土類元素RHを基材内の全体に行き渡らせることができていたものである。比較例2は、RFeB系焼結磁石が含有する単位体積あたりの重希土類元素RHの量が本発明の範囲よりも小さいものである。
 得られた各試料に対して、RFeB系焼結磁石の全体の保磁力Hcj及び残留磁束密度Brを、日本電磁測器株式会社製PBH-1000型装置を用いて測定した結果を表2に示す。また、表2の括弧内には、各試料で用いた基材における保磁力Hcj及び残留磁束密度Brを合わせて示す。
Figure JPOXMLDOC01-appb-T000002
 RFeB系焼結磁石の全体の保磁力は、単位体積あたりの重希土類元素RHの量が少なくなるほど小さくなるものの、いずれも20kOeを超えるという十分に高い値が得られた。また、残留磁束密度は、いずれの試料においても基材の値との差が0.09~0.24kG(2%未満)であり、重希土類元素RHの存在による残留磁束密度の低下がほとんど生じていないことがわかる。以上のように、RFeB系焼結磁石の全体では、実施例、比較例を問わず、十分な磁気特性が得られている。
 これら実施例及び比較例のRFeB系焼結磁石につき、以下の方法により、局所保磁力を測定した。まず、RFeB系焼結磁石31から、最小寸法部の表面に垂直な面を切断面として、幅が1mmとなるように2枚のRFeB系焼結磁石薄板321及び322を切り出す(図3(a))。次に、第1のRFeB系焼結磁石薄板321から、RFeB系焼結磁石31の最小寸法部の一方の表面から1mmまで、2mm~3mmの範囲、4mm~5mmの範囲(比較例1を除く)、6mm~7mmの範囲(実施例2及び比較例2のみ)、及び8mm~9mmの範囲(比較例2のみ)の各範囲内から、1辺1mmの立方体状のRFeB系焼結磁石片33を切り出す(図3(b))。一方、第2のRFeB系焼結磁石薄板322からは、前記一方の表面から1mm~2mmの範囲、3mm~4mmの範囲(比較例1を除く)、5mm~6mmの範囲(比較例1を除く)、7mm~8mmの範囲(実施例2及び比較例2のみ)、及び9mm~10mmの範囲(比較例2のみ)の各範囲内から、1辺1mmの立方体状のRFeB系焼結磁石片33を切り出す(図3(b))。従って、2枚のRFeB系焼結磁石薄板321及び322において、RFeB系焼結磁石片33を切り出す各領域は、RFeB系焼結磁石31の厚み方向に1mm分だけ間を空けて設けられる。このように空けられた部分を刃物の厚みによる切り代とすることにより、各RFeB系焼結磁石片33に切り代が掛からないようにすることができる。また、2枚のRFeB系焼結磁石薄板321及び322同士ではRFeB系焼結磁石片33を切り出す各領域が厚み方向に1mmずつずらして設けられているため、厚み方向の全体に亘って1mmおきにRFeB系焼結磁石片33を得ることができる。
 こうして各実施例及び各比較例において得られた各RFeB系焼結磁石片33の保磁力を、株式会社玉川製作所製・高感度VSM(振動試料型磁力計)を用いて測定した結果を図4のグラフに示す。
 このグラフより、実施例1における各局所保磁力は、一方の表面から2~3mmの位置では24.35kOe、3~4mmの位置では24.36kOeとなった。これら2つの値から、最小寸法部の中央である、一方の表面から3mmの位置における局所保磁力は24.35kOeと見積もられる。また、実施例1のRFeB系焼結磁石の一方の表面側では25.37kOe、他方の表面側では25.42kOeである。従って、RFeB系焼結磁石の最小寸法部の表面における局所保磁力と中央における局所保磁力の差は、当該差が大きくなる方の表面と比較して0.07kOeである。この値から、この差は表面における局所保磁力の約0.3%となり、15%よりも十分に低くなる。なお、実施例1において最も低い局所保磁力は一方の表面から1~2mm及び4~5mmにおける25.13kOe、最も高い局所保磁力は前記他方の表面における25.42kOeである。最も高い局所保磁力と最も低い局所保磁力の差は、最も高い局所保磁力の((25.42-25.13)/25.42)×100=1.14…となり、約1.1%である。
 実施例1と同様の分析を実施例2で行うと以下の通りである。実施例2のRFeB系焼結磁石における最小寸法部の中央である、一方の表面から4mmの位置の前後2カ所における局所保磁力は22.08kOe(一方の表面から3~4mmの位置)及び22.11kOe(4~5mm)であり、一方の表面側では25.36kOe、他方の表面側では25.18kOeである。従って、RFeB系焼結磁石の最小寸法部の表面における局所保磁力と中央における局所保磁力の差は最大で(25.36-22.08)=3.28kOeとなる。この差は、表面における局所保磁力の(3.28/25.36)×100=12.93…、すなわち約12.9%である。
 それに対して比較例2では以下のようになる。比較例2のRFeB系焼結磁石における最小寸法部の中央である、一方の表面から5mmの位置の前後2カ所における局所保磁力は18.66kOe(一方の表面から4~5mmの位置)及び18.46kOe(5~6mm)であり、一方の表面側では22.20kOe、他方の表面側では22.78kOeである。従って、RFeB系焼結磁石の最小寸法部の表面における局所保磁力と中央における局所保磁力の差は最小でも(22.20-18.66)=3.54kOeとなる。この差は、表面における局所保磁力の(3.54/22.20)×100=15.94…、すなわち約15.9%である。従って、比較例2のRFeB系焼結磁石は、本発明の範囲に含まれない。
 なお、特許文献1では、本実施例と同じ組成を有するTbNiAl合金の粉末を、本実施例と同じ比率でシリコーングリースと混合したペーストを、厚みが6mm及び10mmである基材の対面(2面)にそれぞれ10mg/cm2塗布したうえで粒界拡散処理を行っている。この場合、ペーストに含まれる重希土類元素RHの量を基材の体積で除した値は、厚みが6mmの基材では24.5mg/cm3、厚みが10mmである基材では14.7mg/cm3となる。従って、特許文献1に記載のRFeB系焼結磁石及びその製造方法は、本発明の範囲には含まれない。
 実施例1及び2、並びに比較例1及び2の各試料につき、全体の保磁力、測定した全ての局所保磁力の平均値、及び試料表面の局所保磁力(2面の平均値)を図5のグラフに示す。このグラフより、実施例1及び2、並びに比較例1では、局所保磁力の平均値が全体の保磁力とほぼ同じ値を有するといえる。それに対して、基材の厚みが最も厚い比較例2の試料では、局所保磁力の平均値が全体の保磁力よりも低いことがわかる。この結果は、実施例1及び2(並びに他の例よりも基材が薄い比較例1)の方が比較例2よりも局所保磁力の均一性が高いことを意味している。
 次に、厚みが8mm及び10mmである基材に対して、上記実施例2及び比較例2よりもペーストの塗布量を多くした実験を行った(実施例3~5)。それら実験の条件は表3の通りである。
Figure JPOXMLDOC01-appb-T000003
 実施例1~5及び比較例2につき、RFeB系焼結磁石の全体の保磁力を測定した結果を図6のグラフに示す。最も厚い10mmの基材を用いた場合であっても、基材の単位体積あたりの重希土類元素RHの量が25mg/cm3を超えるようにペーストの塗布量を増加させること(実施例5)により、それよりも薄い基材を用いた場合と同程度に全体の保磁力を高めることができる。また、厚みが8mmの基材を用いた実施例2、3及び4を比較すると、ペーストの塗布量が増加するほど、全体の保磁力が高くなることがわかる。
 上記実施例では、重希土類元素RHとしてTbを用いた例を示したが、重希土類元素RHにはDyやHoを用いてもよいし、それら3種のうちの2種又は3種を混合して用いてもよい。
11…基材作製工程
111…合金粉末作製工程
112…充填工程
113…配向工程
114…焼結工程
12…粒界拡散工程
121…重希土類元素含有塗布物作製工程
122…塗布工程
123…塗布済基材加熱工程
20、20A…基材
21、21A…面間距離が最も小さい対面
22、22A…最小寸法部
31…RFeB系焼結磁石
321、322…RFeB系焼結磁石薄板
33…RFeB系焼結磁石片

Claims (5)

  1.  Nd及びPrのうちの少なくとも1種である軽希土類元素RL, Fe及びBを含有するRFeB系磁石の焼結体から成る基材の粒界を通して該基材内に、Dy, Tb及びHoのうちの少なくとも1種の希土類元素である重希土類元素RHが拡散したRFeB系焼結磁石であって、
     前記RFeB系焼結磁石の最小寸法部における寸法が3mmよりも大きく、
     該RFeB系焼結磁石が含有する重希土類元素RHの量を該RFeB系焼結磁石の体積で除した値が25mg/cm3以上であり、
     前記最小寸法部の表面における局所保磁力と、前記最小寸法部の中央における局所保磁力の差が、該表面における局所保磁力の15%以下である
    ことを特徴とするRFeB系焼結磁石。
  2.  炭素の含有量が1000ppm以下であることを特徴とする請求項1に記載のRFeB系焼結磁石。
  3.  a) Nd及びPrのうちの少なくとも1種である軽希土類元素RL, Fe及びBを含有するRFeB系磁石の焼結体から成り、該焼結体の最小寸法部における寸法が3mmよりも大きい基材を作製する基材作製工程と、
     b) 前記基材の表面に、Dy, Tb及びHoのうちの少なくとも1種の希土類元素である重希土類元素RHを含有する付着物を付着させたうえで、所定温度に加熱する粒界拡散処理を行う工程であって、前記付着物が含有する重希土類元素RHの量が、該粒界拡散処理後にRFeB系焼結磁石が含有する重希土類元素RHの量をRFeB系焼結磁石の体積で除した値が25mg/cm3以上となる量である粒界拡散工程と
    を有することを特徴とするRFeB系焼結磁石製造方法。
  4.  前記基材における炭素の含有量が1000ppm以下であることを特徴とする請求項3に記載のRFeB系焼結磁石製造方法。
  5.  前記基材を、原料である軽希土類元素RL、Fe及びBを含有する合金粉末をモールドに充填し、該合金粉末に成形のための機械的圧力を印加することなく磁界を印加することで該合金粉末を配向し、該合金粉末を該モールドに収容したまま、成形のための機械的圧力を印加することなく加熱することで焼結することにより作製することを特徴とする請求項3又は4に記載のRFeB系焼結磁石製造方法。
PCT/JP2015/064886 2014-06-02 2015-05-25 RFeB系磁石及びRFeB系磁石の製造方法 WO2015186550A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580030244.7A CN106463223A (zh) 2014-06-02 2015-05-25 RFeB系磁体及RFeB系磁体的制造方法
EP15803329.0A EP3151252A4 (en) 2014-06-02 2015-05-25 RFeB-BASED MAGNET AND PROCESS FOR PRODUCING RFeB-BASED MAGNET
US15/315,214 US20170194094A1 (en) 2014-06-02 2015-05-25 RFeB SYSTEM MAGNET AND METHOD FOR PRODUCING RFeB SYSTEM MAGNET

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-113868 2014-06-02
JP2014113868A JP2015228431A (ja) 2014-06-02 2014-06-02 RFeB系磁石及びRFeB系磁石の製造方法

Publications (1)

Publication Number Publication Date
WO2015186550A1 true WO2015186550A1 (ja) 2015-12-10

Family

ID=54766624

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/064886 WO2015186550A1 (ja) 2014-06-02 2015-05-25 RFeB系磁石及びRFeB系磁石の製造方法

Country Status (5)

Country Link
US (1) US20170194094A1 (ja)
EP (1) EP3151252A4 (ja)
JP (1) JP2015228431A (ja)
CN (1) CN106463223A (ja)
WO (1) WO2015186550A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11232890B2 (en) * 2018-11-06 2022-01-25 Daido Steel Co., Ltd. RFeB sintered magnet and method for producing same
CN109935462B (zh) * 2019-03-12 2022-02-11 宁波雄海稀土速凝技术有限公司 晶界扩散重稀土钕铁硼磁体的制备方法及其钕铁硼磁体
CN112908672B (zh) * 2020-01-21 2024-02-09 福建省金龙稀土股份有限公司 一种R-Fe-B系稀土烧结磁体的晶界扩散处理方法
JP2021158353A (ja) * 2020-03-25 2021-10-07 Tdk株式会社 希土類永久磁石及びこれを備える回転電機
CN111653404B (zh) * 2020-05-27 2022-11-15 烟台正海磁性材料股份有限公司 一种钕铁硼磁体及其制备方法和应用
CN111968813B (zh) * 2020-07-10 2023-11-07 瑞声科技(南京)有限公司 NdFeB系磁粉、NdFeB系烧结磁体及制备方法
CN118280672A (zh) * 2022-12-30 2024-07-02 烟台正海磁性材料股份有限公司 大尺寸R-Fe-B烧结磁体及其制备方法和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009170541A (ja) * 2008-01-11 2009-07-30 Inter Metallics Kk NdFeB焼結磁石の製造方法及びNdFeB焼結磁石
WO2013100008A1 (ja) * 2011-12-27 2013-07-04 インターメタリックス株式会社 NdFeB系焼結磁石及び該NdFeB系焼結磁石の製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62132302A (ja) * 1985-12-04 1987-06-15 Sumitomo Metal Mining Co Ltd 希土類−鉄−ホウ素系合金粉末及びその製法
WO2010063143A1 (en) * 2008-12-01 2010-06-10 Zhejiang University Modified nd-fe-b permanent magnet with high corrosion resistance
CN102483979B (zh) * 2009-07-10 2016-06-08 因太金属株式会社 NdFeB烧结磁铁的制造方法
JP2011258935A (ja) * 2010-05-14 2011-12-22 Shin Etsu Chem Co Ltd R−t−b系希土類焼結磁石
JP5284394B2 (ja) * 2011-03-10 2013-09-11 株式会社豊田中央研究所 希土類磁石およびその製造方法
EP2800108B1 (en) * 2011-12-27 2018-04-11 Intermetallics Co., Ltd. Sintered neodymium magnet
CN103617884A (zh) * 2013-12-11 2014-03-05 北京科技大学 一种烧结NdFeB磁体的重稀土附着方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009170541A (ja) * 2008-01-11 2009-07-30 Inter Metallics Kk NdFeB焼結磁石の製造方法及びNdFeB焼結磁石
WO2013100008A1 (ja) * 2011-12-27 2013-07-04 インターメタリックス株式会社 NdFeB系焼結磁石及び該NdFeB系焼結磁石の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3151252A4 *

Also Published As

Publication number Publication date
JP2015228431A (ja) 2015-12-17
EP3151252A4 (en) 2017-07-05
US20170194094A1 (en) 2017-07-06
EP3151252A1 (en) 2017-04-05
CN106463223A (zh) 2017-02-22

Similar Documents

Publication Publication Date Title
WO2015186550A1 (ja) RFeB系磁石及びRFeB系磁石の製造方法
EP3330984B1 (en) Method for producing r-t-b system sintered magnet
TWI673730B (zh) R-Fe-B系燒結磁石及其製造方法
JP6005768B2 (ja) NdFeB焼結磁石及びその製造方法
JP4831074B2 (ja) R−Fe−B系希土類焼結磁石およびその製造方法
JP6202722B2 (ja) R−t−b系希土類焼結磁石、r−t−b系希土類焼結磁石の製造方法
JP3960966B2 (ja) 耐熱性希土類磁石の製造方法
JP6051892B2 (ja) R−t−b系焼結磁石の製造方法
JP6488976B2 (ja) R−t−b系焼結磁石
KR101338663B1 (ko) NdFeB계 소결 자석 및 상기 NdFeB계 소결 자석의 제조 방법
JP5363314B2 (ja) NdFeB系焼結磁石製造方法
JP7211691B2 (ja) Nd-Fe-B系焼結磁性体の製造方法
CN104051101A (zh) 一种稀土永磁体及其制备方法
JP6221233B2 (ja) R−t−b系焼結磁石およびその製造方法
KR101485281B1 (ko) NdFeB계 소결 자석
JP5643355B2 (ja) NdFeB焼結磁石の製造方法
JP2019062153A (ja) R−t−b系焼結磁石の製造方法
EP3330978A1 (en) Sintered body for forming rare earth magnet, and rare earth sintered magnet
JP2006179963A (ja) Nd−Fe−B系磁石
JP2019060008A (ja) 拡散源
JP2014192460A (ja) R−t−x系圧粉磁石の製造方法、及びr−t−x系圧粉磁石
JP7059995B2 (ja) R-t-b系焼結磁石
JP2019009421A (ja) RFeB系磁石及びRFeB系磁石の製造方法
JP2015035455A (ja) 焼結磁石用原料合金、希土類焼結磁石およびそれらの製造方法
JP2024078303A (ja) RFeB系磁石の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15803329

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15315214

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015803329

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015803329

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE