WO2015183007A1 - Coating method using particle alignment - Google Patents

Coating method using particle alignment Download PDF

Info

Publication number
WO2015183007A1
WO2015183007A1 PCT/KR2015/005349 KR2015005349W WO2015183007A1 WO 2015183007 A1 WO2015183007 A1 WO 2015183007A1 KR 2015005349 W KR2015005349 W KR 2015005349W WO 2015183007 A1 WO2015183007 A1 WO 2015183007A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
polymer substrate
coating
adhesive
adhesive polymer
Prior art date
Application number
PCT/KR2015/005349
Other languages
French (fr)
Korean (ko)
Inventor
김재호
김효섭
오유곤
Original Assignee
아주대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 아주대학교 산학협력단 filed Critical 아주대학교 산학협력단
Publication of WO2015183007A1 publication Critical patent/WO2015183007A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C19/00Apparatus specially adapted for applying particulate materials to surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/02Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to macromolecular substances, e.g. rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only

Definitions

  • the present invention relates to a coating method using a particle alignment, and more particularly, to a coating method using a particle alignment capable of coating a plurality of fine particles at a single layer level at a high density using the particle alignment.
  • such coating techniques include memory devices, linear and nonlinear optical devices, photovoltaic devices, photo masks, deposition masks, chemical sensors, biochemical sensors, sensors for medical molecular detection, dye-sensitized solar cells, thin film solar cells, cell culture, It can be applied to the implant surface and the like.
  • LB method The Langmuir-Blodgett (LB) method (hereinafter referred to as "LB method”) is well known as a technique for aligning and coating fine particles on a substrate.
  • LB method a solution in which fine particles are dispersed in a solvent is floated on the surface of the water and then compressed by a physical method to form a thin film.
  • the technique using this LB method is disclosed in Korean Patent Publication No. 10-2006-2146.
  • the LB method temperature, humidity, and the like must be precisely controlled so that particles can be self-assembled in a solvent. It may also affect particle migration by the surface properties (eg, hydrophobicity, charge properties, surface roughness) of the particles on the substrate. As a result, the particles may aggregate together and may not be evenly applied on the substrate. That is, there may be many areas where the particles are not applied, and where the aggregated particles meet each other, grain boundaries may be formed and many defects may be located.
  • surface properties eg, hydrophobicity, charge properties, surface roughness
  • the present invention is to solve the problems of the prior art as described above, an object of the present invention is to provide a coating method using a particle alignment that can be evenly applied particles on a substrate by a simple method.
  • Another object of the present invention is to provide a coating method using particle alignment which can form a coating film in which a plurality of particles are aligned in a predetermined pattern by a simple method.
  • Still another object of the present invention is to provide a coating method using particle alignment which can form a coating film in which heterogeneous particles are aligned in a predetermined pattern by a simple method.
  • Coating method using a particle alignment for achieving the above object, (a) preparing an adhesive polymer substrate; (b) applying a plurality of particles onto the adhesive polymer substrate to form a coating layer by coating the plurality of recesses corresponding to the plurality of particles on the surface of the adhesive polymer substrate; (c) preparing an adhesive film having an adhesive layer on one surface, and printing a printing layer on the adhesive film to partially cover the adhesive layer; And (d) the adhesive film on which the printing layer is printed is contacted with the coating film, and is peeled off to remove some of the plurality of particles forming the coating film by adhering to a portion not covered by the printing layer of the adhesive layer. Thereby patterning the coating film.
  • the coating method using a particle alignment in accordance with another aspect of the present invention for achieving the above object, (a) preparing an adhesive polymer substrate; (b) applying a plurality of first particles to the adhesive polymer substrate to apply a pressure to form a first coating layer on the surface of the adhesive polymer substrate while forming a plurality of first recesses corresponding to the plurality of first particles, respectively; step; (c) preparing an adhesive film having an adhesive layer on one surface, and printing a printing layer on the adhesive film to partially cover the adhesive layer; (d) covering the first layer of some of the plurality of first particles forming the primary coating film by contacting and detaching the adhesive film on which the printing layer is printed to form the primary coating film with the printing layer of the adhesive layer.
  • Patterning the primary coating film by adhering to and removing the non-coated portion (e) applying a plurality of first particles on the surface of the adhesive polymer substrate by irradiating light toward the adhesive polymer substrate with a mask on which a mask pattern is formed, thereby exposing the plurality of agents on the surface of the adhesive polymer substrate; 1 increasing the adhesion of the particle-coated portion; And (f) coating a plurality of second recesses respectively corresponding to the plurality of second particles to the non-exposed portion by applying pressure to the plurality of second particles on the non-exposed portion to which the light of the adhesive polymer substrate is not irradiated. To form a secondary coating film.
  • a coating film is formed by applying pressure in a state in which dry particles are in direct contact with the adhesive polymer substrate without using a solvent on the adhesive polymer substrate, and a printing layer is printed on the adhesive layer.
  • the coated film may be patterned in various forms by removing some of the particles forming the coating film using the adhesive film.
  • the surface of the flexible adhesive polymer substrate with flexibility is deformed to surround a part of the particles under the influence of the surface tension.
  • recesses corresponding to the particles are formed on the surface of the adhesive polymer substrate, thereby improving bonding properties.
  • the reversible nature of the shape deformation of the adhesive polymer substrate surface facilitates two-dimensional movement of the particles in contact on the substrate so that the particle distribution can be easily rearranged.
  • Enhancement of particle adhesion through such shape modification lowers the dependence of the particle surface properties and the type of the polymer substrate so that particles of various surface properties can be coated in a single layer. Therefore, it is not necessary to control the environment such as temperature, humidity, and particle concentration required for self-assembly and spin coating when forming a coating film as in the prior art, and to easily coat particles having various surface properties in a wide range of environments and conditions. Can be.
  • the particles are electrically charged or easily hydrogen-bonded, even in the case of non-charged and hydrophobic materials, single-layer particle coating can be uniformly performed at high density, and the printed layer of various types has an adhesive layer printed thereon.
  • the adhesive film may be used to pattern in various forms.
  • the particles are evenly distributed on the adhesive polymer substrate by a simple method, thereby easily forming a coating layer having a high density, and the coating film is formed through printers such as various characters, patterns, marks, and photographs. It can be patterned into various pattern shapes that can be printed.
  • the coating method using the particle alignment according to the present invention is to pattern a coating layer consisting of a plurality of particles, to expose the adhesive polymer substrate using a mask to firmly adhere the patterned coating layer on the adhesive polymer substrate, and then to pattern new particles
  • a coating layer consisting of a plurality of particles
  • the various coating film formed can be transferred to another transfer substrate.
  • FIG. 1A to 1H illustrate step by step a coating method using particle alignment according to an embodiment of the present invention.
  • Figure 2 shows the step of transferring the coating film formed on the adhesive polymer substrate to another transfer substrate in the coating method using the particle alignment according to the present invention.
  • 3A-3E illustrate some steps of a coating method using particle alignment in accordance with another embodiment of the present invention.
  • FIG. 4 shows another embodiment in which a coating film is formed on a transfer substrate by using a coating method using particle alignment according to the present invention.
  • Figure 5 shows another embodiment of forming a secondary coating film on the adhesive polymer substrate in the coating method using the particle alignment according to the present invention.
  • FIG. 6 is a photograph showing a completed product formed by forming and transferring a pattern.
  • FIGS. 1A to 1H illustrate step by step coating methods using particle alignment according to an embodiment of the present invention.
  • the coating method using particle alignment according to an embodiment of the present invention will be described in detail. The explanation is as follows.
  • an adhesive polymer substrate 10 having a smooth surface is prepared.
  • the surface of the adhesive polymer substrate 10 may have a state in which a specific pattern or curve is not formed, and does not restrict the movement of the particles 20 (see FIG. 1C) forming the coating layer 22 (see FIG. 1C) thereon. Level of surface roughness and structure.
  • the adhesive polymer substrate 10 includes various adhesive polymer materials in which adhesion is present.
  • Adhesive polymers are generally distinguished from adhesives because they do not have commonly used adhesive properties. At least the adhesive polymer has an adhesive force lower than about 0.6 kg / inch (ASTM D 3330 evaluation) of the adhesive of the Scotch Magic Tape.
  • the adhesive polymer can maintain the shape of a solid state (substrate or film) at room temperature without a separate support.
  • the adhesive polymer material may be a silicone-based polymer material such as polydimethylsiloxane (PDMS), or a polymer for wrap, adhesion or sealing, including polyethylene (PE) or polyvinyl chloride (PVC).
  • PDMS polydimethylsiloxane
  • PVC polyvinyl chloride
  • a protective film containing a material, a film having a gloss easily deformable in surface shape, and the like can be used.
  • PDMS which is easily controlled in hardness and easily manufactured in various forms, may be used.
  • the polymer substrate 10 may be manufactured by coating an adhesive polymer on a base substrate or by attaching an adhesive polymer in a sheet or film form.
  • the surface of the adhesive polymer substrate 10 may be provided with a pattern of a three-dimensional three-dimensional structure.
  • the adhesive polymer material generally refers to an organic polymer material including silicon in a solid state or endowed with adhesion properties through plasticizer addition or surface treatment.
  • the adhesive polymer material is generally characterized by having a low surface tension and easy deformation of the form by the linear molecular structure.
  • the excellent adhesion of such an adhesive polymer material is due to the soft (flexible) surface material and low surface tension and the like that the surface deformation in the fine region is easy.
  • the low surface tension of the adhesive polymer material has the property of broadly adhering to the particles 20 to be attached (similar to the wetting of the solution), and the flexible surface is in close contact with the particles 20 to be attached. To lose. This results in an adhesive polymer that is easily removable on a solid surface without complementary bonding strength.
  • the surface tension of silicon-based polymer materials such as PDMS is about 20 to 23 dynes / cm, close to Teflon (18 dynes / cm), which is known as the lowest surface tension material.
  • the surface tension of silicon-based polymers such as PDMS is most organic polymers (35-50 dynes / cm), natural materials ( ⁇ , 73 dynes / cm), metals (eg silver (Ag, 890 dynes /) cm), aluminum (Al, 500 dynes / cm), inorganic oxides (eg, glass (1000 dynes / cm), iron oxide (1357 dynes / cm). Even in this case, a large amount of plasticizer is added to improve adhesion, and thus has a low surface tension.
  • the plurality of particles 20 are aligned to form the coating film 22 on the adhesive polymer substrate 10. do. This will be described in more detail as follows.
  • the plurality of particles 20 dried on the adhesive polymer substrate 10 is placed.
  • the particles dispersed in the solution are difficult to make direct contact with the adhesive polymer surface, so that the coating is not well made. Therefore, only a small amount of a solution or a volatile solvent less than the mass of the particles to be used may dry the particles during the coating operation to allow the coating operation.
  • the particles 20 may include various materials for forming the coating layer 22. That is, the particles 20 may include a polymer, an inorganic material, a metal, a magnetic material, a semiconductor, a biological material, and the like. In addition, a mixture of particles having different properties may be used as the particle 20.
  • Polymers that can be used as the particles 20 include polystyrene (PS), polymethyl methacrylate (PMMA), polyacrylate, polyvinyl chloride (PVC), polyalphastyrene, polybenzyl methacrylate, polyphenylmethacrylate. Acrylate, polydiphenyl methacrylate, polycyclohexyl methacrylate, styrene-acrylonitrile copolymer, styrene-methyl methacrylate copolymer and the like.
  • PS polystyrene
  • PMMA polymethyl methacrylate
  • PVC polyvinyl chloride
  • PVC polyalphastyrene
  • polybenzyl methacrylate polybenzyl methacrylate
  • polyphenylmethacrylate Acrylate, polydiphenyl methacrylate, polycyclohexyl methacrylate, styrene-acrylonitrile copolymer, styrene-methyl meth
  • Inorganic materials that can be used as the particles 20 include silicon oxide (for example, SiO 2 ), silver phosphate (for example, Ag 3 PO 4 ), titanium oxide (for example, TiO 2 ), iron oxide (for example , Fe 2 O 3 ), zinc oxide, cerium oxide, tin oxide, thallium oxide, barium oxide, aluminum oxide, yttrium oxide, zirconium oxide, copper oxide, nickel oxide and the like.
  • Metals that can be used as the particles 20 include gold, silver, copper, iron, platinum, aluminum, platinum, zinc, cerium, thallium, barium, yttrium, zirconium, tin, titanium, or alloys thereof. .
  • Semiconductors that can be used as the particles 20 include silicon, germanium, or compound semiconductors (eg, AlP, AlAs, AlSb, GaN, GaP, GaAs, GaSb, InP, InAs, InSb, etc.).
  • Biomaterials that can be used as the particles 20 include coatings on particles or surfaces of proteins, peptides, ribonucleic acid (RNA), deoxyribonucleic acid (DNA), polysaccharides, oligosaccharides, lipids, cells and complex materials thereof. Particles, and particles contained therein.
  • a polymer particle coated with an antibody binding protein called protein A may be used as the particle 20.
  • Particles 20 may have a symmetrical shape, asymmetrical shape, amorphous, porous shape.
  • the particles 20 may have a spherical shape, an ellipse shape, a hemispherical shape, a cube shape, a tetrahedron, a pentagonal surface, a hexahedron, an octahedron, a columnar shape, a horn shape, and the like.
  • spherical or elliptical is preferable as the form of the particle 20 compared with other forms.
  • Such particles 20 preferably have an average particle diameter of 10 nm to 100.
  • the average particle diameter is less than 10 nm, it may be in the form of being entirely wrapped by the adhesive polymer substrate 10 during coating, it may be difficult to coat the particles 20 to a single layer level.
  • the average particle diameter of the particles 20 is less than 10 nm, the particles may agglomerate with each other even in a dry state, and it may be difficult for the particles to individually move only by a rubbing force. If the average particle diameter of the particles 20 exceeds 100, the adhesion of the particles may appear weak.
  • the average particle diameter of the particles 20 may be more preferably 50nm to 50.
  • the present invention is not limited thereto, and the average particle diameter of the particles 20 may vary depending on a material constituting the particles 20 or a material constituting the adhesive polymer substrate 10.
  • the diameter of the particle 20 may be used as the particle diameter.
  • various measurement methods may be used. For example, average values of long and short axes may be used as particle diameters.
  • a pressure is applied on the plurality of particles 20 to form a coating film 22.
  • a method of applying pressure to the particles 20 a method of rubbing using a latex, a sponge, a hand, a rubber plate, a plastic plate, a material having a smooth surface, or the like may be used.
  • the present invention is not limited thereto, and pressure may be applied to the particles 20 by various methods.
  • the particles 20 when the particles 20 are placed on the surface of the adhesive polymer substrate 10 and then pressure is applied, the particles 20 in the pressure-applied portion are attached through the deformation of the adhesive polymer substrate 10. As a result, a plurality of recesses 12 corresponding to the particles 20 are formed in corresponding portions. Therefore, the particles 20 are aligned on the adhesive polymer substrate 10 in a state in which the particles 20 are wrapped in the recess 12.
  • the recess 12 is reversible as formed by the interaction between the particles and the substrate. That is, it may be extinguished and the position may be moved. For example, when the particles move in the rubbing process, the recesses 12 may disappear due to the elastic restoring force of the adhesive polymer substrate 10, or the positions of the recesses 12 may also be changed according to the movement of the particles 20. have. Due to this reversible action, the particles 20 can be evenly aligned ("reversible" here is a property generated by the flexibility and elastic restoring force of the surface of the adhesive polymer substrate during coating, so that the restoring force of the adhesive polymer substrate is changed over time). Broader meaning also includes weakening or extinction).
  • Particles 20 that are not bonded to the adhesive polymer substrate 10 are moved to an area where the particles 20 of the adhesive polymer substrate 10 are not coated by a rubbing force, and the like.
  • the recessed part 12 is formed by the 20.
  • the adhesive polymer substrate 10 and the particle 20 are bonded in the state in which the particle 20 is wrapped in the newly formed recess 12. Through this process, the coating film 22 having a single layer level is formed on the adhesive polymer substrate 10 at a high density.
  • the concave portion 12 may have a shape corresponding to the outer shape of the particle 20 to surround a part of the particle 20.
  • the recesses 12 may also have a spherical shape, and a portion of the particles 20 may be in close contact with the recesses 12.
  • the depth L1 of the recess 12 may vary depending on the hardness of the adhesive polymer substrate 10, the shape of the particles 20, the hardness, and environmental factors (eg, temperature). That is, as the hardness of the adhesive polymer substrate 10 increases, the depth L1 of the concave portion 12 may decrease, and as the temperature increases, the depth L1 of the concave portion 12 may increase.
  • grain 20 is 0.02-0.98.
  • the ratio L1 / D is less than 0.02, the binding force between the particles 20 and the adhesive polymer substrate 10 may not be sufficient, and when the ratio L1 / D exceeds 0.98, the particles 20 may be coated at a monolayer level. It can be difficult.
  • the ratio (L1 / D) is more preferably 0.05 to 0.6, more specifically, 0.08 to 0.4.
  • the particle 20 and the adhesive polymer substrate 10 may be better bonded.
  • the particles 20 bonded to the adhesive polymer substrate 10 may also move to an uncoated portion of the surrounding, so that the new particles 20 may be partially disposed in the hollow recesses 12 on the surface of the adhesive polymer substrate 10.
  • the coating layer 22 may be coated at a single layer level at a high density.
  • the particles 20 may be disposed such that each center has a hexagonal shape.
  • the particle 20 is non-spherical (for example, Ag 3 PO 4 ) it can be determined whether the level is a monolayer by a variety of methods. For example, when the ratio of the average value of the thickness of the coating film 22 to the average particle diameter of the top 10% of the particles 20 (that is, particles having a particle diameter of less than 10%) is 1.9 or less, the coating is performed at a single layer level. You can see that.
  • an adhesive film 30 having an adhesive layer 31 provided on one surface thereof is prepared, and the adhesive film 30 is partially covered with the printing layer 33.
  • various kinds of adhesive layers 31 having an adhesive force greater than that of the adhesive polymer substrate 10 may be provided on one surface thereof.
  • a method of printing the printing layer 33 on the adhesive layer 31 a method using a conventional printer may be used, whereby the printing layer 33 may be formed of toner or ink.
  • the print layer 33 may have various pattern shapes that can be printed through a printer such as letters, patterns, various marks, and photographs, and partially cover the adhesive layer 31. Therefore, in the portion where the print layer 33 is formed, the adhesive layer 31 is not exposed to the outside, and only the portion where the print layer 33 is not formed is exposed to the outside.
  • the adhesive layer 31 is formed on the adhesive film 30 on which the printing layer 33 is printed.
  • the surface was brought into contact with the coating film 22 so that the surface was in contact with the coating film 22.
  • the particles 20 in contact with the print layer 33 of the plurality of particles 20 constituting the coating film 22 remain on the adhesive polymer substrate 10 and the particles 20 in contact with the adhesive layer 31.
  • the surface of the adhesive polymer substrate 10 on which the coating film 22 is formed is exposed.
  • the adhesion of the exposed portion of the surface of the adhesive polymer substrate 10 is increased, the plurality of particles 20 forming the coating film 22 is firmly bonded on the adhesive polymer substrate 10 to pattern the coating film 22
  • the adhesive polymer substrate 10 may be stably attached.
  • the coating film 22 patterned on the adhesive polymer substrate 10 may be used in a state of being attached to the adhesive polymer substrate 10 as described above, or another substrate. It may be transferred to and used. That is, as shown in FIG. 2, after the patterned coating film 22 is formed on the adhesive polymer substrate 10, the transfer substrate 35 having the adhesive force greater than that of the adhesive polymer substrate 10 is patterned. By contacting and detaching the coating film 22, the patterned coating film 22 can be transferred to another transfer substrate 35.
  • the dry particles 20 are in direct contact with the adhesive polymer substrate 10 without using a solvent on the adhesive polymer substrate 10.
  • the coating can be uniformly made at a high density not only when the particles are chargeable materials, but also when they are non-chargeable (ie, near charge neutral) materials.
  • hydrophobic particles may be uniformly coated and patterned in various forms. As described above, according to the present invention, the particles 20 are evenly distributed on the adhesive polymer substrate 10 by a simple method to form a coating layer 22 having a high density, and patterned in various forms simply. have.
  • Figures 3a to 3e shows step by step coating method using a particle alignment according to another embodiment of the present invention.
  • the adhesive polymer substrate 10 is prepared to form a primary coating layer 22 including a plurality of first particles 20 on the adhesive polymer substrate 10.
  • some of the first particles 20 are removed from the plurality of first particles 20 forming the primary coating film 22 by using the adhesive film 30 on which the printing layer 33 is printed on the adhesive layer 31. Patterning the primary coating layer 22.
  • the specific method of forming the primary coating film 22 and the specific method of patterning the primary coating film 22 using the adhesive film 30 are as described above.
  • the adhesive polymer substrate 10 is irradiated with light applied to the mask 40 on which the mask pattern 41 is formed.
  • the area where the primary coating film 22 on the surface is formed is partially exposed.
  • the mask pattern 41 may be formed of the same pattern as the printing layer 33 printed on the adhesive film 30 to remove the first particles 20 to pattern the primary coating layer 22. .
  • the irradiated light is exposed through the gap between the plurality of first particles 20. (10) can be reached and the adhesive polymer substrate 10 can be exposed.
  • the first particles 20 are made of a material that can transmit light
  • the irradiated light may pass through the first particles 20 to reach the adhesive polymer substrate 10.
  • the light includes visible light, ultraviolet light, or the like.
  • the mask 40 when the mask 40 is disposed on the adhesive polymer substrate 10, light is irradiated onto the adhesive polymer substrate 10, and as shown in FIG. 3B, light is emitted on the surface of the adhesive polymer substrate 10.
  • the adhesion of the exposed exposure portion 14 is greater than that of the non-exposed portion 15 that is not irradiated with light. Therefore, the first particles 20 positioned in the exposed portion 14 may maintain a state of being attached to the adhesive polymer substrate 10 with a stronger bonding force than the first particles 20 disposed in the non-exposed portion 15.
  • the particle coating substrate 43 to which the primary coating film 22 patterned on the adhesive polymer substrate 10 is firmly attached can be made.
  • PDMS is known to damage the methyl portion of the chemical structure when exposed to ultraviolet rays, and thus, reactive groups are temporarily formed in the polymer.
  • Such functional groups have improved properties that can have adhesion with particles such as hydrogen bonds, compared to methyl groups, and chemical covalent bonds can be formed through dehydration condensation bonds.
  • the first particles 20 and the other second particles 24 are coated on the surface of the adhesive polymer substrate 10 coated with the plurality of first particles 20.
  • the method of coating the plurality of second particles 24 is the same as the method of coating the plurality of first particles 20 on the adhesive polymer substrate 10, and the specific method thereof is as follows.
  • a plurality of dried second particles 24 are mounted on the adhesive polymer substrate 10 on which the patterned primary coating layer 22 is formed.
  • the second particles 24 a polymer, an inorganic material, a metal, a magnetic material, a semiconductor, a biological material, or the like may be used, and the specific types thereof are the same as described above.
  • pressure is applied on the plurality of second particles 24 to coat the second particles 24 on the non-exposed part 15 where the first particles 20 are not disposed.
  • the method of applying pressure to the second particles 24 is the same as the method used to coat the first particles 20 as described above, and includes latex, sponges, hands, rubber plates, plastic plates, materials having a smooth surface, and the like. A method of rubbing using may be used.
  • the mechanism in which the plurality of second particles 24 are coated on the adhesive polymer substrate 10 is the same as that of the aforementioned first particles 20 is coated on the adhesive polymer substrate 10.
  • the second particles 24 when the second particles 24 are placed on the adhesive polymer substrate 10 and then pressure is applied, the second particles 24 in the portion to which the pressure is applied are attached through the deformation of the adhesive polymer substrate 10.
  • a plurality of second recesses 17 corresponding to the second particles 24 are formed in corresponding portions of the polymer substrate 10. Accordingly, while the second particles 24 are aligned with the non-exposed portions 15 of the adhesive polymer substrate 10 while the second particles 24 are wrapped in the second recessed portions 17, the non-exposed portions 15
  • a secondary coating film 25 composed of a plurality of second particles 24 is formed.
  • the second particles 24 are partially aligned with the adhesive polymer substrate 10 while the second particles 24 are partially accommodated in the empty first recesses 12 (see FIG. 1G) from which the first particles 20 are removed. And may be coated.
  • the transfer substrate 45 having the adhesive force greater than that of the non-exposed portion 15 of the adhesive polymer substrate 10 and smaller than the adhesive force of the exposed portion 14 is primary.
  • the secondary coating layer 25 may be transferred onto the transfer substrate 45 by being brought into contact with the coating layer 22 and the secondary coating layer 25.
  • the particle coating substrate 43, the patterned primary coating film 22 is firmly bonded on the adhesive polymer substrate 10 through exposure, the secondary coating film 25 It can be used as a mold that can be formed repeatedly. That is, after the second coating film 25 is transferred from the adhesive polymer substrate 10 to the other transfer substrate 45, the second coating film forming step and the second coating film transferring step as described above are repeatedly performed, thereby obtaining one particle.
  • the coating substrate 43 can be used to mass produce other particle coating substrates on which the secondary coating film is transferred onto the transfer substrate.
  • the secondary coating layer 25 formed on the adhesive polymer substrate 10 may be transferred to another substrate together with the primary coating layer 22. That is, after forming the primary coating film 22 and the secondary coating film 25 on the adhesive polymer substrate 10, the other transfer substrate 47 having a greater adhesion than the exposed portion 14 of the adhesive polymer substrate 10 After contacting and detaching the primary coating film 22 and the secondary coating film 25, as shown in Figure 4, the coating film in which the primary coating film 22 and the secondary coating film 25 combined in a specific pattern is different The transfer substrate 47 can be transferred.
  • the secondary coating layer 25 or the primary coating layer 22 is not transferred to another substrate. As shown in FIG. 3C, the primary coating layer 22 and the secondary coating layer 25 may be attached to the adhesive polymer substrate 10.
  • the coating method using the particle alignment by repeatedly performing the first coating film patterning step, the second coating film forming step, the transfer step and the like as described above, on the adhesive polymer substrate 10
  • Various types of particles can form various coating films, each arranged in a specific pattern, and can transfer the formed coating film to various other substrates.
  • the coating layer 22 formed by using the adhesive film 30 on which the printing layer 33 is printed is patterned, and the adhesive polymer is formed using the mask 40.
  • the adhesive polymer is formed using the mask 40.
  • various kinds of particles may be formed on the adhesive polymer substrate 10 by forming various coating films each arranged in a specific pattern.
  • FIG. 5 shows another embodiment in which the second particles 24 are coated on the adhesive polymer substrate 10 in the coating method using the particle alignment according to the present invention.
  • the recess is formed in the adhesive polymer substrate 10 by elastic deformation, when the particles accommodated in the recess are removed, the surface of the adhesive polymer substrate 10 disappears as shown in FIG. 3A. Can be returned to the smooth surface.
  • the plurality of second particles 24 are placed on the adhesive polymer substrate 10 and applied to the non-exposed portion.
  • the second particles 24 may be coated while forming the second recesses 17 corresponding to the second particles 24 in the 15.
  • the first Traces of the recesses 12 or the first recesses 12 may remain on the surface of the adhesive polymer substrate 10.
  • the newly coated second particles 24 are partially wrapped in the first recesses 12, as shown in FIG. 5B, or adhered at positions corresponding to the first recesses 12.
  • the polymer substrate 10 may be dug and attached to the adhesive polymer substrate 10.
  • An adhesive polymer substrate consisting of PDMS, formed of Silgard 184 (Dow Corning, USA) containing 10 wt% of a curing agent was prepared on a 3 mm glass plate.
  • the 750 nm SiO 2 particles were placed on the adhesive polymer substrate, and then the particles were coated on the surface of the adhesive polymer substrate by a single layer using a sponge wrapped with a latex film.
  • a 750 nm SiO 2 coating film was blown with nitrogen gas to remove particles in a portion where a multi layer was formed.
  • a file having a desired pattern is printed on a release paper by laser printing to form a pattern on the release paper, and then a roller having a 3M double-sided tape is formed on the release paper on a roller having the 3M double-sided tape attached to the release paper.
  • the pattern consisting of the toners was transferred.
  • the particles were removed on the adhesive polymer substrate prepared above by rubbing the roller having the 3M double-sided tape on which the toner pattern was transferred, except for the portion where the toner was patterned.
  • a resin containing an ultraviolet curable resin was placed on the adhesive polymer substrate on which the 750 nm SiO 2 coating layer pattern was formed, and then the resin was cured by covering the PET film and irradiating UV for 30 minutes.
  • the adhesive polymer substrate was removed to complete the manufacture of an embossed coating substrate in which the SiO 2 coating film coated on the PET film was transferred to a desired pattern shape.
  • Figure 6 is a photograph taken of the completed product formed by forming and transferring a pattern through a photo file, it can be seen that the particles can be arranged freely through the pattern formation after the particles are coated on the adhesive polymer substrate.
  • a coating layer composed of a plurality of particles is patterned, an adhesive polymer substrate is exposed using a mask, the patterned coating layer is firmly attached onto the adhesive polymer substrate, and then new particles are patterned coating layer.
  • the various types of particles can be easily formed on the adhesive polymer substrate, each of which is arranged in a specific pattern, and the various coating films formed can be transferred to another transfer substrate, which is industrially useful.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Laminated Bodies (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

The present invention relates to a coating method using particle alignment, capable of coating, at a high density, a plurality of fine particles in a single layer by using particle alignment. The coating method using particle alignment, according to the present invention, comprises the steps of: (a) preparing a tight adhesion-type polymer substrate; (b) forming a coating film by coating while forming, on the surface of the tight adhesion-type substrate, a plurality of concave parts which respectively correspond to each of the plurality of particles, by applying pressure to the plurality of particles; (c) preparing an adhesive film provided with an adhesive layer on one surface, and printing a print layer on the adhesive film so that the adhesive layer is partially covered by the print layer; and (d) patterning the coating film by adhering the adhesive film on which the printing layer has been printed and then removing the adhesive film, so as to remove a portion of particles from the plurality of particles by way of adhering to the portion of the adhesive layer that is not covered with the print layer.

Description

입자 정렬을 이용한 코팅 방법Coating Method Using Particle Alignment
본 발명은 입자 정렬을 이용한 코팅 방법 관한 것으로, 좀더 상세하게는, 입자 정렬을 이용하여 높은 밀도로 복수의 미세 입자를 단층 수준으로 코팅할 수 있는 입자 정렬을 이용한 코팅 방법 관한 것이다.The present invention relates to a coating method using a particle alignment, and more particularly, to a coating method using a particle alignment capable of coating a plurality of fine particles at a single layer level at a high density using the particle alignment.
나노미터 수준 또는 마이크로미터 수준의 미세 입자를 기재 위에 정렬하여 코팅하는 기술이 다양한 분야에서 요구되어 있다. 일례로, 이러한 코팅 기술은 기억 소자, 선형 및 비선형 광학 소자, 광전기 소자, 포토 마스크, 증착 마스크, 화학적 센서, 생화학적 센서, 의학적 분자 검출용 센서, 염료 감응 태양 전지, 박막 태양 전지, 세포 배양, 임플란트 표면 등에 적용될 수 있다.There is a need in the art for a technique of arranging and coating nanoparticle-level or micrometer-level fine particles on a substrate. In one example, such coating techniques include memory devices, linear and nonlinear optical devices, photovoltaic devices, photo masks, deposition masks, chemical sensors, biochemical sensors, sensors for medical molecular detection, dye-sensitized solar cells, thin film solar cells, cell culture, It can be applied to the implant surface and the like.
미세 입자를 기재 위에서 정렬하여 코팅하는 기술로는 랭뮤어-블로드젯(Langmuir-Blodgett, LB) 방법(이하 "LB 방법")이 잘 알려져 있다. LB 방법에서는 용매 내에 미세 입자를 분산시킨 용액을 수면 위에 띄운 후에 물리적인 방법으로 압축하여 박막을 형성한다. 이러한 LB 방법을 이용한 기술은 국내공개특허 제10-2006-2146호 등에 개시되어 있다.The Langmuir-Blodgett (LB) method (hereinafter referred to as "LB method") is well known as a technique for aligning and coating fine particles on a substrate. In the LB method, a solution in which fine particles are dispersed in a solvent is floated on the surface of the water and then compressed by a physical method to form a thin film. The technique using this LB method is disclosed in Korean Patent Publication No. 10-2006-2146.
그런데 LB 방법에서는 용매 내에서 입자들이 자기 조립될 수 있도록 온도, 습도 등을 정밀하게 조절하여야 한다. 또한 기재 위에서 입자들의 표면 특성(예를 들어, 소수성, 전하 특성, 표면 거칠기) 등에 의하여 입자 이동에 영향을 미칠 수 있다. 이에 따라 입자가 서로 뭉쳐서 기판 위에 고르게 도포되지 않을 수 있다. 즉, 입자가 도포되지 않은 영역이 많을 수 있고, 뭉쳐진 입자가 서로 만나는 곳에서는 결정립계(grain boundary)가 형성되어 많은 결함이 위치할 수 있다.However, in the LB method, temperature, humidity, and the like must be precisely controlled so that particles can be self-assembled in a solvent. It may also affect particle migration by the surface properties (eg, hydrophobicity, charge properties, surface roughness) of the particles on the substrate. As a result, the particles may aggregate together and may not be evenly applied on the substrate. That is, there may be many areas where the particles are not applied, and where the aggregated particles meet each other, grain boundaries may be formed and many defects may be located.
본 발명은 상술한 것과 같은 종래 기술의 문제를 해결하기 위한 것으로, 본 발명의 목적은 간단한 방법에 의하여 입자를 기판 위에 고르게 도포할 수 있는 입자 정렬을 이용한 코팅 방법을 제공하는 것이다.The present invention is to solve the problems of the prior art as described above, an object of the present invention is to provide a coating method using a particle alignment that can be evenly applied particles on a substrate by a simple method.
본 발명의 다른 목적은 간단한 방법에 의하여 복수의 입자가 일정한 패턴으로 정렬된 코팅막을 형성할 수 있는 입자 정렬을 이용한 코팅 방법을 제공하는 것이다.Another object of the present invention is to provide a coating method using particle alignment which can form a coating film in which a plurality of particles are aligned in a predetermined pattern by a simple method.
본 발명의 또 다른 목적은 간단한 방법에 의하여 이종의 입자들이 각각 일정한 패턴으로 정렬된 코팅막을 형성할 수 있는 입자 정렬을 이용한 코팅 방법을 제공하는 것이다.Still another object of the present invention is to provide a coating method using particle alignment which can form a coating film in which heterogeneous particles are aligned in a predetermined pattern by a simple method.
상기 목적을 달성하기 위한 본 발명의 일측면에 따른 입자 정렬을 이용한 코팅 방법은, (a) 밀착성 고분자 기판을 준비하는 준비 단계; (b) 상기 밀착성 고분자 기판 위에 복수의 입자를 압력을 가하여 상기 밀착성 고분자 기판 표면에 상기 복수의 입자에 각기 대응하는 복수의 오목부가 형성되도록 하면서 코팅하여 코팅막을 형성하는 단계; (c) 일면에 접착층이 마련된 접착 필름을 준비하고, 상기 접착층을 부분적으로 덮도록 상기 접착 필름에 인쇄층을 인쇄하는 단계; 및 (d) 상기 인쇄층이 인쇄된 상기 접착 필름을 상기 코팅막에 접촉시켰다 떼어내어, 상기 코팅막을 형성하는 상기 복수의 입자 중 일부 입자를 상기 접착층의 상기 인쇄층으로 덮이지 않은 부분에 접착시켜 제거함으로써 상기 코팅막을 패터닝하는 단계를 포함한다.Coating method using a particle alignment according to an aspect of the present invention for achieving the above object, (a) preparing an adhesive polymer substrate; (b) applying a plurality of particles onto the adhesive polymer substrate to form a coating layer by coating the plurality of recesses corresponding to the plurality of particles on the surface of the adhesive polymer substrate; (c) preparing an adhesive film having an adhesive layer on one surface, and printing a printing layer on the adhesive film to partially cover the adhesive layer; And (d) the adhesive film on which the printing layer is printed is contacted with the coating film, and is peeled off to remove some of the plurality of particles forming the coating film by adhering to a portion not covered by the printing layer of the adhesive layer. Thereby patterning the coating film.
한편, 상기 목적을 달성하기 위한 본 발명의 다른 측면에 따른 입자 정렬을 이용한 코팅 방법은, (a) 밀착성 고분자 기판을 준비하는 준비 단계; (b) 상기 밀착성 고분자 기판 위에 복수의 제 1 입자를 압력을 가하여 상기 밀착성 고분자 기판 표면에 상기 복수의 제 1 입자에 각기 대응하는 복수의 제 1 오목부가 형성되도록 하면서 코팅하여 1차 코팅막을 형성하는 단계; (c) 일면에 접착층이 마련된 접착 필름을 준비하고, 상기 접착층을 부분적으로 덮도록 상기 접착 필름에 인쇄층을 인쇄하는 단계; (d) 상기 인쇄층이 인쇄된 상기 접착 필름을 상기 1차 코팅막에 접촉시켰다 떼어내어 상기 1차 코팅막을 형성하는 상기 복수의 제 1 입자 중 일부의 제 1 입자를 상기 접착층의 상기 인쇄층으로 덮이지 않은 부분에 접착시켜 제거함으로써 상기 1차 코팅막을 패터닝하는 단계; (e) 마스크 패턴이 형성된 마스크를 대고 상기 밀착성 고분자 기판을 향해 빛을 조사하여 상기 밀착성 고분자 기판 표면의 상기 복수의 제 1 입자가 코팅된 부분을 노광함으로써, 상기 밀착성 고분자 기판 표면의 상기 복수의 제 1 입자가 코팅된 부분의 부착력을 증가시키는 단계; 및 (f) 상기 밀착성 고분자 기판의 빛이 조사되지 않은 비노광부 위에 복수의 제 2 입자를 압력을 가하여 상기 비노광부에 상기 복수의 제 2 입자에 각기 대응하는 복수의 제 2 오목부가 형성되도록 하면서 코팅하여 2차 코팅막을 형성하는 단계를 포함한다.On the other hand, the coating method using a particle alignment in accordance with another aspect of the present invention for achieving the above object, (a) preparing an adhesive polymer substrate; (b) applying a plurality of first particles to the adhesive polymer substrate to apply a pressure to form a first coating layer on the surface of the adhesive polymer substrate while forming a plurality of first recesses corresponding to the plurality of first particles, respectively; step; (c) preparing an adhesive film having an adhesive layer on one surface, and printing a printing layer on the adhesive film to partially cover the adhesive layer; (d) covering the first layer of some of the plurality of first particles forming the primary coating film by contacting and detaching the adhesive film on which the printing layer is printed to form the primary coating film with the printing layer of the adhesive layer. Patterning the primary coating film by adhering to and removing the non-coated portion; (e) applying a plurality of first particles on the surface of the adhesive polymer substrate by irradiating light toward the adhesive polymer substrate with a mask on which a mask pattern is formed, thereby exposing the plurality of agents on the surface of the adhesive polymer substrate; 1 increasing the adhesion of the particle-coated portion; And (f) coating a plurality of second recesses respectively corresponding to the plurality of second particles to the non-exposed portion by applying pressure to the plurality of second particles on the non-exposed portion to which the light of the adhesive polymer substrate is not irradiated. To form a secondary coating film.
본 발명에 의한 입자 정렬을 이용한 코팅 방법에서는 밀착성 고분자 기판 상에 용매를 사용하지 않고 건조 상태의 입자들이 밀착성 고분자 기판 위에 직접 접촉하도록 한 상태에서 압력을 가하여 코팅막을 형성하고, 접착층에 인쇄층이 인쇄된 접착 필름을 이용하여 코팅막을 형성하는 복수의 입자 중 일부 입자를 제거함으로써 코팅막을 다양한 형태로 패터닝할 수 있다. 밀착성 고분자 기판 위에 코팅막을 형성하는 과정에서, 밀착성 고분자 기판에 입자가 접촉하면, 유연성을 지닌 밀착성 고분자 기판의 표면이 표면 장력의 영향으로 입자의 일부를 감싸는 형태로 변형이 된다. 이에 따라 밀착성 고분자 기판의 표면 상에서 입자에 대응하는 오목부가 형성되어 결합 특성이 향상된다. 밀착성 고분자 기판 표면의 형태 변형의 가역적인 특성은 기판 상에 접촉된 입자들의 이차원적인 움직임을 용이하게 하여 입자의 분포가 쉽게 재배열될 수 있도록 한다.In the coating method using the particle alignment according to the present invention, a coating film is formed by applying pressure in a state in which dry particles are in direct contact with the adhesive polymer substrate without using a solvent on the adhesive polymer substrate, and a printing layer is printed on the adhesive layer. The coated film may be patterned in various forms by removing some of the particles forming the coating film using the adhesive film. In the process of forming a coating film on the adhesive polymer substrate, when the particles come in contact with the adhesive polymer substrate, the surface of the flexible adhesive polymer substrate with flexibility is deformed to surround a part of the particles under the influence of the surface tension. As a result, recesses corresponding to the particles are formed on the surface of the adhesive polymer substrate, thereby improving bonding properties. The reversible nature of the shape deformation of the adhesive polymer substrate surface facilitates two-dimensional movement of the particles in contact on the substrate so that the particle distribution can be easily rearranged.
이러한 형태 변형을 통한 입자 부착성의 향상은 입자 표면 특성 및 고분자 기판의 종류에 따른 의존성을 낮추어 다양한 표면 특성의 입자를 단층으로 코팅할 수 있도록 한다. 따라서 종래와 같이 코팅막 형성 시, 자기조립 및 스핀코팅 시에 요구되는 세밀한 온도, 습도, 입자농도 등의 환경 조절이 필요하지 않으며, 폭 넓은 환경 및 조건에서 다양한 표면 특성을 지닌 입자들을 용이하게 코팅할 수 있다. 입자가 전하성을 띄거나 수소결합이 용이한 물질인 경우뿐만 아니라, 비전하성 및 소수성인 물질인 경우에도 높은 밀도로 균일하게 단층 입자 코팅이 가능하고, 이를 다양한 형태의 인쇄층이 인쇄된 접착층을 갖는 접착 필름을 이용하여 다양한 형태로 패터닝할 수 있다.Enhancement of particle adhesion through such shape modification lowers the dependence of the particle surface properties and the type of the polymer substrate so that particles of various surface properties can be coated in a single layer. Therefore, it is not necessary to control the environment such as temperature, humidity, and particle concentration required for self-assembly and spin coating when forming a coating film as in the prior art, and to easily coat particles having various surface properties in a wide range of environments and conditions. Can be. In addition to the case where the particles are electrically charged or easily hydrogen-bonded, even in the case of non-charged and hydrophobic materials, single-layer particle coating can be uniformly performed at high density, and the printed layer of various types has an adhesive layer printed thereon. The adhesive film may be used to pattern in various forms.
이와 같이 본 발명에 따르면 단순한 방법에 의하여 밀착성 고분자 기판 위에 입자들이 고르게 분포되어 높은 밀도를 가지는 단층 수준의 코팅막을 손쉽게 형성할 수 있고, 코팅막을 다양한 문자나, 문양, 각종 마크, 사진 등 프린터를 통해 인쇄할 수 있는 다양한 패턴 형상으로 패터닝할 수 있다.As described above, according to the present invention, the particles are evenly distributed on the adhesive polymer substrate by a simple method, thereby easily forming a coating layer having a high density, and the coating film is formed through printers such as various characters, patterns, marks, and photographs. It can be patterned into various pattern shapes that can be printed.
또한 본 발명에 의한 입자 정렬을 이용한 코팅 방법은 복수의 입자로 이루어진 코팅층을 패터닝하고, 마스크를 이용하여 밀착성 고분자 기판을 노광하여 패터닝된 코팅층을 밀착성 고분자 기판 위에 단단히 부착시킨 후, 새로운 입자를 패터닝된 코팅층 사이에 코팅함으로써, 밀착성 고분자 기판 위에 여러 종류의 입자가 각각 특정한 패턴으로 정렬된 다양한 코팅막을 손쉽게 형성할 수 있고, 형성된 다양한 코팅막을 다른 전사 기판으로 전사할 수 있다. In addition, the coating method using the particle alignment according to the present invention is to pattern a coating layer consisting of a plurality of particles, to expose the adhesive polymer substrate using a mask to firmly adhere the patterned coating layer on the adhesive polymer substrate, and then to pattern new particles By coating between the coating layers, it is possible to easily form a variety of coating film, each sort of particles in a specific pattern on the adhesive polymer substrate, the various coating film formed can be transferred to another transfer substrate.
도 1a 내지 도 1h는 본 발명의 일실시예에 의한 입자 정렬을 이용한 코팅 방법을 단계별로 나타낸 것이다.1A to 1H illustrate step by step a coating method using particle alignment according to an embodiment of the present invention.
도 2는 본 발명에 의한 입자 정렬을 이용한 코팅 방법에 있어서 밀착성 고분자 기판에 형성된 코팅막을 다른 전사 기판으로 전사하는 단계를 나타낸 것이다.Figure 2 shows the step of transferring the coating film formed on the adhesive polymer substrate to another transfer substrate in the coating method using the particle alignment according to the present invention.
도 3a 내지 도 3e는 본 발명의 다른 실시예에 의한 입자 정렬을 이용한 코팅 방법의 일부 단계를 나타낸 것이다.3A-3E illustrate some steps of a coating method using particle alignment in accordance with another embodiment of the present invention.
도 4는 본 발명에 의한 입자 정렬을 이용한 코팅 방법을 이용하여 전사 기판에 코팅막을 형성한 다른 실시예를 나타낸 것이다.4 shows another embodiment in which a coating film is formed on a transfer substrate by using a coating method using particle alignment according to the present invention.
도 5는 본 발명에 의한 입자 정렬을 이용한 코팅 방법에서 밀착성 고분자 기판 위에 2차 코팅막을 형성하는 다른 실시예를 나타낸 것이다.Figure 5 shows another embodiment of forming a secondary coating film on the adhesive polymer substrate in the coating method using the particle alignment according to the present invention.
도 6은 패턴을 형성하고 전이시켜 만들어진 완성본을 나타내는 사진이다.6 is a photograph showing a completed product formed by forming and transferring a pattern.
< 도면 부호의 설명><Explanation of reference numerals>
10 : 밀착성 고분자 기판 12, 17 : 오목부10: adhesive polymer substrate 12, 17: recessed portion
14 : 노광부 15 : 비노광부14 exposure part 15 non-exposure part
20, 24 : 입자 22, 25 : 코팅막20, 24: particles 22, 25: coating film
30 : 접착 필름 31 : 접착층30: adhesive film 31: adhesive layer
33 : 인쇄층 35, 45, 47 : 전사 기판33: printed layer 35, 45, 47: transfer substrate
40 : 마스크 41 : 마스크 패턴40: mask 41: mask pattern
43 : 입자 코팅 기판43: Particle Coated Substrate
이하에서는 첨부된 도면을 참조하여, 본 발명에 의한 입자 정렬을 이용한 코팅 방법 대하여 상세히 설명한다. Hereinafter, with reference to the accompanying drawings, it will be described in detail a coating method using the particle alignment according to the present invention.
본 발명을 설명함에 있어서, 도면에 도시된 구성요소의 크기나 형상 등은 설명의 명료성과 편의를 위해 과장되거나 단순화되어 나타날 수 있다. 또한 본 발명의 구성 및 작용을 고려하여 특별히 정의된 용어들은 사용자, 운용자의 의도 또는 관례에 따라 달라질 수 있다. 이러한 용어들은 본 명세서 전반에 걸친 내용을 토대로 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야 한다.In describing the present invention, the size or shape of the components shown in the drawings may be exaggerated or simplified for clarity and convenience of description. In addition, terms that are specifically defined in consideration of the configuration and operation of the present invention may vary depending on the intention or custom of the user or operator. These terms should be interpreted as meanings and concepts corresponding to the technical spirit of the present invention based on the contents throughout the specification.
도 1a 내지 도 1h는 본 발명의 일실시예에 의한 입자 정렬을 이용한 코팅 방법을 단계별로 나타낸 것으로, 도 1a 내지 도 1h를 참조하여 본 발명의 일실시예에 의한 입자 정렬을 이용한 코팅 방법을 상세히 설명하면 다음과 같다.1A to 1H illustrate step by step coating methods using particle alignment according to an embodiment of the present invention. Referring to FIGS. 1A to 1H, the coating method using particle alignment according to an embodiment of the present invention will be described in detail. The explanation is as follows.
먼저, 도 1a에 도시한 바와 같이, 매끈한 표면(smooth surface)을 갖는 밀착성 고분자 기판(10)을 준비한다. 밀착성 고분자 기판(10)의 표면은 특정한 패턴이나 굴곡이 형성되지 않은 상태를 가질 수 있으며, 이 위에서 코팅막(22;도 1c 참조)을 형성하는 입자(20;도 1c 참조)의 이동을 제한하지 않는 수준의 표면 거칠기 및 구조를 가질 수 있다.First, as shown in FIG. 1A, an adhesive polymer substrate 10 having a smooth surface is prepared. The surface of the adhesive polymer substrate 10 may have a state in which a specific pattern or curve is not formed, and does not restrict the movement of the particles 20 (see FIG. 1C) forming the coating layer 22 (see FIG. 1C) thereon. Level of surface roughness and structure.
본 실시예에서 밀착성 고분자 기판(10)은 부착성이 존재하는 다양한 밀착성 고분자 물질을 포함한다. 밀착성 고분자는 일반적으로 통용되는 점착성을 갖지 않으므로 점착제와는 구별된다. 적어도 밀착성 고분자는 '스카치 매직 테이프'의 점착제가 갖는 점착력 약 0.6 kg/inch(ASTM D 3330 평가) 보다 낮은 값의 부착력을 갖는다. 또한 밀착성 고분자는 별도의 지지체 없이도 상온에서 고체상태(기판 또는 필름 등)의 형상을 유지할 수 있다.In this embodiment, the adhesive polymer substrate 10 includes various adhesive polymer materials in which adhesion is present. Adhesive polymers are generally distinguished from adhesives because they do not have commonly used adhesive properties. At least the adhesive polymer has an adhesive force lower than about 0.6 kg / inch (ASTM D 3330 evaluation) of the adhesive of the Scotch Magic Tape. In addition, the adhesive polymer can maintain the shape of a solid state (substrate or film) at room temperature without a separate support.
밀착성 고분자 물질로는 폴리디메틸실록산(polydimethylsiloxane, PDMS) 등의 실리콘 기반 고분자 물질이나, 폴리에틸렌(polyethylene, PE), 폴리비닐클로라이드(polyvinylchloride, PVC) 등을 포함하는 랩, 밀착 또는 밀봉을 목적으로 하는 고분자 물질을 포함하는 보호 필름, 표면형상의 변형이 용이한 광택을 지닌 필름 등이 사용될 수 있다. 특히, 밀착성 고분자로는 경도 조절이 용이하며 다양한 형태로 제조가 용이한 PDMS가 사용될 수 있다. 고분자 기판(10)은 베이스 기재에 밀착성 고분자를 코팅하여 제조되거나, 시트 또는 필름 형태의 밀착성 고분자가 부착되어 제조될 수 있다.The adhesive polymer material may be a silicone-based polymer material such as polydimethylsiloxane (PDMS), or a polymer for wrap, adhesion or sealing, including polyethylene (PE) or polyvinyl chloride (PVC). A protective film containing a material, a film having a gloss easily deformable in surface shape, and the like can be used. In particular, as the adhesive polymer, PDMS, which is easily controlled in hardness and easily manufactured in various forms, may be used. The polymer substrate 10 may be manufactured by coating an adhesive polymer on a base substrate or by attaching an adhesive polymer in a sheet or film form.
본 실시예에서, 밀착성 고분자 기판(10)의 표면에는 입체적인 3차원 구조의 패턴이 마련될 수 있다.In the present embodiment, the surface of the adhesive polymer substrate 10 may be provided with a pattern of a three-dimensional three-dimensional structure.
여기에서, 밀착성 고분자 물질은 일반적으로 고체 상태의 실리콘을 포함하거나, 가소제 첨가 또는 표면 처리를 통해 부착 특성이 부여된 유기 고분자 물질을 지칭하는 것이다. 여기에서, 밀착성 고분자 물질은 일반적으로 선형 분자구조에 의하여 형태의 변형이 용이하며 낮은 표면 장력을 가지는 것을 특징으로 한다. 이러한 밀착성 고분자 물질의 우수한 부착성은 미세 영역에서의 표면 변형이 용이한 부드러운(유연성) 표면 재질과 낮은 표면 장력 등에 기인한다. 밀착성 고분자 물질의 낮은 표면 장력은 부착하고자 하는 입자(20)에 넓게 활착하려는 특성을 가져오며(용액의 젖음 현상과 유사), 유연성을 지닌 표면은 부착하고자 하는 입자(20)와 빈틈없는 접촉이 이루어지도록 한다. 이를 통해 상보적인 결합력 없이 가역적으로 고체 표면에 탈부착이 용이한 부착성 폴리머의 특성을 지니게 된다.Here, the adhesive polymer material generally refers to an organic polymer material including silicon in a solid state or endowed with adhesion properties through plasticizer addition or surface treatment. Here, the adhesive polymer material is generally characterized by having a low surface tension and easy deformation of the form by the linear molecular structure. The excellent adhesion of such an adhesive polymer material is due to the soft (flexible) surface material and low surface tension and the like that the surface deformation in the fine region is easy. The low surface tension of the adhesive polymer material has the property of broadly adhering to the particles 20 to be attached (similar to the wetting of the solution), and the flexible surface is in close contact with the particles 20 to be attached. To lose. This results in an adhesive polymer that is easily removable on a solid surface without complementary bonding strength.
대표적인 밀착성 고분자 물질인 PDMS와 같은 실리콘 기반 고분자 물질의 표면 장력은 20 ~ 23 dynes/cm 정도로, 가장 낮은 표면 장력 물질로 알려진 Teflon(18dynes/cm)에 근접한다. 그리고 PDMS와 같은 실리콘 기반 고분자 물질의 표면 장력은 대부분의 유기 폴리머(35 ~ 50 dynes/cm), 천연재료인 면(綿, 73 dynes/cm), 금속(일례로, 은(Ag, 890 dynes/cm), 알루미늄(Al, 500 dynes/cm), 무기 산화물(일례로, 유리(1000 dynes/cm), 철 산화물(1357 dynes/cm)보다 낮은 값을 보인다. 또한 PE, PVC 등을 포함하는 랩과 같은 경우에도 부착성 향상을 위해 다량의 가소제가 첨가되어 낮은 표면 장력을 지니게 된다.The surface tension of silicon-based polymer materials such as PDMS, a typical adhesive polymer material, is about 20 to 23 dynes / cm, close to Teflon (18 dynes / cm), which is known as the lowest surface tension material. The surface tension of silicon-based polymers such as PDMS is most organic polymers (35-50 dynes / cm), natural materials (綿, 73 dynes / cm), metals (eg silver (Ag, 890 dynes /) cm), aluminum (Al, 500 dynes / cm), inorganic oxides (eg, glass (1000 dynes / cm), iron oxide (1357 dynes / cm). Even in this case, a large amount of plasticizer is added to improve adhesion, and thus has a low surface tension.
계속해서, 앞서 설명한 것과 같이 밀착성 고분자 기판(10)을 준비한 후, 도 1b 및 도 1c에 도시한 바와 같이, 복수의 입자(20)를 정렬하여 밀착성 고분자 기판(10) 위에 코팅막(22)을 형성한다. 이를 좀더 상세하게 설명하면 다음과 같다.Subsequently, after preparing the adhesive polymer substrate 10 as described above, as shown in FIGS. 1B and 1C, the plurality of particles 20 are aligned to form the coating film 22 on the adhesive polymer substrate 10. do. This will be described in more detail as follows.
먼저, 도 1b에 도시한 바와 같이, 밀착성 고분자 기판(10) 위에 건조된 복수의 입자(20)를 올린다. 본 실시예와 달리 용액 상에 분산되어 있는 입자는 밀착성 고분자 표면과 직접적인 접촉이 이루어지기 어려워서 코팅이 잘 이루어 지지 않는다. 따라서 사용하는 입자의 질량보다 적은 미량의 용액이나 휘발성 용매를 이용한 경우에만 코팅 작업 중 입자가 건조되어 코팅 작업이 가능할 수 있다.First, as shown in FIG. 1B, the plurality of particles 20 dried on the adhesive polymer substrate 10 is placed. Unlike the present embodiment, the particles dispersed in the solution are difficult to make direct contact with the adhesive polymer surface, so that the coating is not well made. Therefore, only a small amount of a solution or a volatile solvent less than the mass of the particles to be used may dry the particles during the coating operation to allow the coating operation.
본 실시예에서 입자(20)는 코팅막(22)을 형성하기 위한 다양한 물질을 포함할 수 있다. 즉, 입자(20)는 고분자, 무기물, 금속, 자성체, 반도체, 생체 물질 등을 포함할 수 있다. 또한 다른 성질을 갖는 입자들을 혼합된 것이 입자(20)로 이용될 수 있다.In the present embodiment, the particles 20 may include various materials for forming the coating layer 22. That is, the particles 20 may include a polymer, an inorganic material, a metal, a magnetic material, a semiconductor, a biological material, and the like. In addition, a mixture of particles having different properties may be used as the particle 20.
입자(20)로 이용될 수 있는 고분자로는 폴리스티렌(PS), 폴리메틸메타크릴레이트(PMMA), 폴리아크릴레이트, 폴리바이닐클로라이드(PVC), 폴리알파스티렌, 폴리벤질메타크릴레이트, 폴리페닐메타클릴레이트, 폴리다이페닐메타크릴레이트, 폴리사이클로헥실메타클릴레이트, 스틸렌-아크릴로니트릴 공중합체, 스틸렌-메틸메타크릴레이트 공중합체 등이 있다.Polymers that can be used as the particles 20 include polystyrene (PS), polymethyl methacrylate (PMMA), polyacrylate, polyvinyl chloride (PVC), polyalphastyrene, polybenzyl methacrylate, polyphenylmethacrylate. Acrylate, polydiphenyl methacrylate, polycyclohexyl methacrylate, styrene-acrylonitrile copolymer, styrene-methyl methacrylate copolymer and the like.
입자(20)로 이용될 수 있는 무기물로는, 실리콘 산화물(일례로, SiO2), 인산은(일례로, Ag3PO4), 티타늄 산화물(일례로, TiO2), 철 산화물 (일례로, Fe2O3), 아연 산화물, 세륨 산화물, 주석 산화물, 탈륨 산화물, 바륨 산화물, 알루미늄 산화물, 이트륨 산화물, 지르코늄 산화물, 구리산화물, 니켈 산화물 등이 있다.Inorganic materials that can be used as the particles 20 include silicon oxide (for example, SiO 2 ), silver phosphate (for example, Ag 3 PO 4 ), titanium oxide (for example, TiO 2 ), iron oxide (for example , Fe 2 O 3 ), zinc oxide, cerium oxide, tin oxide, thallium oxide, barium oxide, aluminum oxide, yttrium oxide, zirconium oxide, copper oxide, nickel oxide and the like.
입자(20)로 이용될 수 있는 금속으로는, 금, 은, 동, 철, 백금, 알루미늄, 백금, 아연, 세륨, 탈륨, 바륨, 이트륨, 지르코늄, 주석, 티타늄, 또는 이들의 합금 등이 있다.Metals that can be used as the particles 20 include gold, silver, copper, iron, platinum, aluminum, platinum, zinc, cerium, thallium, barium, yttrium, zirconium, tin, titanium, or alloys thereof. .
입자(20)로 이용될 수 있는 반도체로는, 실리콘, 게르마늄, 또는 화합물 반도체(일례로, AlP, AlAs, AlSb, GaN, GaP, GaAs, GaSb, InP, InAs, InSb 등) 등이 있다.Semiconductors that can be used as the particles 20 include silicon, germanium, or compound semiconductors (eg, AlP, AlAs, AlSb, GaN, GaP, GaAs, GaSb, InP, InAs, InSb, etc.).
입자(20)로 이용될 수 있는 생체 물질로는, 단백질, 펩티드, 리보핵산(RNA), 데옥시리보핵산(DNA), 다당류, 올리고당, 지질, 세포 및 이들의 복합체 물질들의 입자 또는 표면에 코팅된 입자, 내부에 포함한 입자 등이 있다. 일례로, protein A라는 항체 결합 단백질이 코팅된 폴리머 입자가 입자(20)로 사용될 수 있다.Biomaterials that can be used as the particles 20 include coatings on particles or surfaces of proteins, peptides, ribonucleic acid (RNA), deoxyribonucleic acid (DNA), polysaccharides, oligosaccharides, lipids, cells and complex materials thereof. Particles, and particles contained therein. For example, a polymer particle coated with an antibody binding protein called protein A may be used as the particle 20.
입자(20)는 대칭 형상, 비대칭 형상, 무정형, 다공성의 형상을 가질 수 있다. 일례로, 입자(20)는 구형, 타원형, 반구형, 큐브형, 사면체, 오면체, 육면체, 팔면체, 기둥형, 뿔형 등을 가질 수 있다. 이 중에서 입자(20)의 형태로는 구형 또는 타원형이 다른 형태에 비해 바람직하다. Particles 20 may have a symmetrical shape, asymmetrical shape, amorphous, porous shape. For example, the particles 20 may have a spherical shape, an ellipse shape, a hemispherical shape, a cube shape, a tetrahedron, a pentagonal surface, a hexahedron, an octahedron, a columnar shape, a horn shape, and the like. Among these, spherical or elliptical is preferable as the form of the particle 20 compared with other forms.
이러한 입자(20)는 평균 입경이 10nm 내지 100인 것이 바람직하다. 평균 입경이 10nm 미만일 경우에는, 코팅 시 밀착성 고분자 기판(10)에 의하여 전체적으로 감싸지는 형태가 될 수 있어 입자(20)를 단층 수준으로 코팅하는 것이 어려워질 수 있다. 또한 입자(20)의 평균 입경이 10nm미만인 경우에는 건조 상태에서도 입자들이 서로 응집할 수 있어, 문지르는 힘만으로는 입자가 개별적으로 이동하는 것이 어려울 수 있다. 입자(20)의 평균 입경이 100을 초과하는 경우에는 입자의 부착이 약하게 나타날 수 있다. 여기에서, 입자(20)의 평균 입경은 50nm 내지 50인 것이 좀 더 바람직할 수 있다. Such particles 20 preferably have an average particle diameter of 10 nm to 100. When the average particle diameter is less than 10 nm, it may be in the form of being entirely wrapped by the adhesive polymer substrate 10 during coating, it may be difficult to coat the particles 20 to a single layer level. In addition, when the average particle diameter of the particles 20 is less than 10 nm, the particles may agglomerate with each other even in a dry state, and it may be difficult for the particles to individually move only by a rubbing force. If the average particle diameter of the particles 20 exceeds 100, the adhesion of the particles may appear weak. Here, the average particle diameter of the particles 20 may be more preferably 50nm to 50.
그러나 본 발명이 이에 한정되는 것은 아니며 입자(20)의 평균 입경은 입자(20)를 구성하는 물질이나, 밀착성 고분자 기판(10)을 구성하는 물질 등에 따라 달라질 수 있다. 여기에서, 입자(20)가 구형인 경우에는 입자(20)의 지름이 입경으로 사용될 수 있다. 반면, 입자(20)가 구형이 아닐 경우에는 다양한 계측법이 사용될 수 있는데, 일례로, 장축과 단축의 평균값을 입경으로 사용할 수 있다.However, the present invention is not limited thereto, and the average particle diameter of the particles 20 may vary depending on a material constituting the particles 20 or a material constituting the adhesive polymer substrate 10. Here, when the particle 20 is spherical, the diameter of the particle 20 may be used as the particle diameter. On the other hand, when the particle 20 is not spherical, various measurement methods may be used. For example, average values of long and short axes may be used as particle diameters.
계속해서, 도 1c에 도시한 바와 같이, 복수의 입자(20) 위에서 압력을 가하여 코팅막(22)을 형성한다. 입자(20)에 압력을 가하는 방법으로는 라텍스, 스폰지, 손, 고무판, 플라스틱 판, 부드러운 표면을 가지는 재료 등을 이용하여 문지르는(rubbing) 방법이 사용될 수 있다. 그러나 본 발명이 이에 한정되는 것은 아니며 다양한 방법에 의하여 입자(20)에 압력을 가할 수 있다.Subsequently, as shown in FIG. 1C, a pressure is applied on the plurality of particles 20 to form a coating film 22. As a method of applying pressure to the particles 20, a method of rubbing using a latex, a sponge, a hand, a rubber plate, a plastic plate, a material having a smooth surface, or the like may be used. However, the present invention is not limited thereto, and pressure may be applied to the particles 20 by various methods.
본 실시예에서 밀착성 고분자 기판(10)의 표면 위에 입자들(20)을 올린 후에 압력을 가하면 압력이 가해진 부분의 입자들(20)이 밀착성 고분자 기판(10)의 변형을 통해 부착된다. 이에 의하여 해당 부분에 입자들(20)에 각기 대응하는 복수의 오목부(12)가 형성된다. 따라서 오목부(12)에 입자(20)가 감싸인 상태에서 밀착성 고분자 기판(10)에 입자들(20)이 정렬된다.In this embodiment, when the particles 20 are placed on the surface of the adhesive polymer substrate 10 and then pressure is applied, the particles 20 in the pressure-applied portion are attached through the deformation of the adhesive polymer substrate 10. As a result, a plurality of recesses 12 corresponding to the particles 20 are formed in corresponding portions. Therefore, the particles 20 are aligned on the adhesive polymer substrate 10 in a state in which the particles 20 are wrapped in the recess 12.
오목부(12)는 입자와 기판 간 상호작용에 의해 형성되는 것으로 가역적이다. 즉, 소멸될 수도 있으며, 위치가 이동될 수 있다. 일례로, 문지르는 과정에서 입자가 이동하게 되면 밀착성 고분자 기판(10)의 탄성 복원력에 의해 오목부(12)가 사라지거나, 입자(20)의 이동에 따라 오목부(12)도 위치가 변경될 수 있다. 이러한 가역적 작용에 의해 입자(20)가 고르게 정렬될 수 있다(여기서의 "가역적"은 코팅 시 밀착성 고분자 기판 표면의 유연성 및 탄성 복원력에 의해 발생되는 특성이므로, 밀착성 고분자 기판의 복원력이 시간이 지남에 따라 약해지거나 소멸되는 경우도 포함되는 넓은 의미이다).The recess 12 is reversible as formed by the interaction between the particles and the substrate. That is, it may be extinguished and the position may be moved. For example, when the particles move in the rubbing process, the recesses 12 may disappear due to the elastic restoring force of the adhesive polymer substrate 10, or the positions of the recesses 12 may also be changed according to the movement of the particles 20. have. Due to this reversible action, the particles 20 can be evenly aligned ("reversible" here is a property generated by the flexibility and elastic restoring force of the surface of the adhesive polymer substrate during coating, so that the restoring force of the adhesive polymer substrate is changed over time). Broader meaning also includes weakening or extinction).
밀착성 고분자 기판(10)과의 결합이 이루어지지 않은 입자들(20)은 문지르는 힘 등에 의하여 밀착성 고분자 기판(10)의 입자(20)가 코팅되지 않은 영역으로 이동하게 되고, 코팅되지 않은 부분에 입자(20)에 의하여 오목부(12)가 형성된다. 그리고 새로 형성된 오목부(12)에 입자(20)가 감싸인 상태에서 밀착성 고분자 기판(10)과 입자(20)의 결합이 이루어진다. 이러한 과정을 거쳐 밀착성 고분자 기판(10)에 높은 밀도로 단층 수준의 코팅막(22)이 형성된다. Particles 20 that are not bonded to the adhesive polymer substrate 10 are moved to an area where the particles 20 of the adhesive polymer substrate 10 are not coated by a rubbing force, and the like. The recessed part 12 is formed by the 20. In addition, the adhesive polymer substrate 10 and the particle 20 are bonded in the state in which the particle 20 is wrapped in the newly formed recess 12. Through this process, the coating film 22 having a single layer level is formed on the adhesive polymer substrate 10 at a high density.
여기에서, 오목부(12)는 입자(20)의 일부를 감싸도록 입자(20)의 외곽 형상에 대응하는 형상을 가질 수 있다. 예를 들어, 입자(20)가 구형인 경우에는 오목부(12)도 구면(球面) 형상을 가져 오목부(12)에 입자(20)의 일부분이 밀착될 수 있다. 그리고 오목부(12)의 깊이(L1)는 밀착성 고분자 기판(10)의 경도, 입자(20)의 형태, 경도, 환경 요인(일례로, 온도) 등에 따라 달라질 수 있다. 즉, 밀착성 고분자 기판(10)의 경도가 커질수록 오목부(12)의 깊이(L1)가 작아지고, 온도가 증가할수록 오목부(12)의 깊이(L1)가 커질 수 있다.Here, the concave portion 12 may have a shape corresponding to the outer shape of the particle 20 to surround a part of the particle 20. For example, when the particles 20 are spherical, the recesses 12 may also have a spherical shape, and a portion of the particles 20 may be in close contact with the recesses 12. The depth L1 of the recess 12 may vary depending on the hardness of the adhesive polymer substrate 10, the shape of the particles 20, the hardness, and environmental factors (eg, temperature). That is, as the hardness of the adhesive polymer substrate 10 increases, the depth L1 of the concave portion 12 may decrease, and as the temperature increases, the depth L1 of the concave portion 12 may increase.
입자(20)의 평균 입경(D)에 대한 오목부(12)의 깊이(L1)의 비율(침하율)(L1/D)은 0.02 ~ 0.98인 것이 바람직하다. 상기 비율(L1/D)이 0.02 미만인 경우에는 입자(20)와 밀착성 고분자 기판(10)과의 결합력이 충분하지 않을 수 있고, 0.98을 초과하는 경우에는 입자들(20)이 단층 수준으로 코팅되기 어려울 수 있다. 결합력 및 코팅 특성 등을 좀더 고려하면, 상기 비율(L1/D)은 0.05 ~ 0.6, 좀더 상세하게는, 0.08 ~ 0.4인 것이 더욱 바람직하다.It is preferable that the ratio (sedimentation rate) (L1 / D) of the depth L1 of the recessed part 12 with respect to the average particle diameter D of the particle | grain 20 is 0.02-0.98. When the ratio L1 / D is less than 0.02, the binding force between the particles 20 and the adhesive polymer substrate 10 may not be sufficient, and when the ratio L1 / D exceeds 0.98, the particles 20 may be coated at a monolayer level. It can be difficult. In consideration of the bonding force and coating properties, etc., the ratio (L1 / D) is more preferably 0.05 to 0.6, more specifically, 0.08 to 0.4.
본 실시예에서와 같이, 탄성 변형에 의하여 생긴 오목부(12)에 의하여 각각의 입자(20)의 일부분이 감싸지게 되면, 입자(20)와 밀착성 고분자 기판(10)이 좀더 잘 결합할 수 있다. 그리고 밀착성 고분자 기판(10)에 결합된 입자들(20)도 주변의 코팅되지 않은 부분으로 이동이 가능하여 새로운 입자(20)가 밀착성 고분자 기판(10)의 표면의 빈 오목부(12)에 부분적으로 수용될 수 있다. 이러한 재배열 특성에 따라 코팅막(22)이 높은 밀도로 단층 수준으로 코팅될 수 있다. 일례로, 입자들(20)은 각각의 중심이 육각형의 형상을 이루도록 배치될 수 있다.As in the present embodiment, when a part of each particle 20 is wrapped by the concave portion 12 generated by the elastic deformation, the particle 20 and the adhesive polymer substrate 10 may be better bonded. . In addition, the particles 20 bonded to the adhesive polymer substrate 10 may also move to an uncoated portion of the surrounding, so that the new particles 20 may be partially disposed in the hollow recesses 12 on the surface of the adhesive polymer substrate 10. Can be accommodated. According to such rearrangement characteristics, the coating layer 22 may be coated at a single layer level at a high density. In one example, the particles 20 may be disposed such that each center has a hexagonal shape.
한편, 입자(20)가 비구형일 경우(예를 들어, Ag3PO4)에는 다양한 방법에 의하여 단층 수준인지 여부를 판별할 수 있다. 일례로, 입자들(20) 중 상위 10% 입자들(즉, 입경이 10% 이내로 큰 입자들)의 평균 입경에 대한 코팅막(22) 두께의 평균값의 비율이 1.9 이하일 경우를 단층 수준으로 코팅된 것을 볼 수 있다.On the other hand, when the particle 20 is non-spherical (for example, Ag 3 PO 4 ) it can be determined whether the level is a monolayer by a variety of methods. For example, when the ratio of the average value of the thickness of the coating film 22 to the average particle diameter of the top 10% of the particles 20 (that is, particles having a particle diameter of less than 10%) is 1.9 or less, the coating is performed at a single layer level. You can see that.
계속해서, 도 1d 및 도 1e에 도시된 것과 같이, 일면에 접착층(31)이 마련된 접착 필름(30)을 준비하고, 접착층(31)이 부분적으로 인쇄층(33)으로 덮이도록 접착 필름(30)에 인쇄층(33)을 인쇄한다. 접착 필름(30)으로는 일면에 밀착성 고분자 기판(10)의 부착력보다 큰 부착력을 갖는 접착층(31)이 마련된 다양한 종류의 것이 이용될 수 있다. 그리고 접착층(31)에 인쇄층(33)을 인쇄하는 방법으로는 통상의 프린터를 이용하는 방법이 이용될 수 있으며, 이에 의해 인쇄층(33)은 토너나 잉크로 형성될 수 있다. 인쇄층(33)은 문자나, 문양, 각종 마크, 사진 등 프린터를 통해 인쇄할 수 있는 다양한 패턴 형상이 될 수 있으며, 접착층(31)을 부분적으로 덮는다. 따라서 인쇄층(33)이 형성된 부분은 접착층(31)이 외부로 드러나지 않고, 인쇄층(33)이 형성되지 않은 부분만 접착층(31)이 외부로 드러난다.Subsequently, as shown in FIGS. 1D and 1E, an adhesive film 30 having an adhesive layer 31 provided on one surface thereof is prepared, and the adhesive film 30 is partially covered with the printing layer 33. ) Is printed on the printed layer 33. As the adhesive film 30, various kinds of adhesive layers 31 having an adhesive force greater than that of the adhesive polymer substrate 10 may be provided on one surface thereof. As a method of printing the printing layer 33 on the adhesive layer 31, a method using a conventional printer may be used, whereby the printing layer 33 may be formed of toner or ink. The print layer 33 may have various pattern shapes that can be printed through a printer such as letters, patterns, various marks, and photographs, and partially cover the adhesive layer 31. Therefore, in the portion where the print layer 33 is formed, the adhesive layer 31 is not exposed to the outside, and only the portion where the print layer 33 is not formed is exposed to the outside.
계속해서, 접착 필름(30)에 인쇄층(33)을 형성한 후, 도 1f 및 도 1g에 도시된 것과 같이, 인쇄층(33)이 인쇄된 접착 필름(30)을 접착층(31)이 형성된 면이 코팅막(22)에 접하도록 코팅막(22)에 접촉시켰다 떼어낸다. 이때, 코팅막(22)을 구성하는 복수의 입자(20) 중에서 인쇄층(33)과 접촉하는 입자(20)는 밀착성 고분자 기판(10)에 그대로 남고, 접착층(31)과 접촉하는 입자(20)는 접착층(31)에 달라붙어 밀착성 고분자 기판(10)으로부터 제거된다. 따라서 밀착성 고분자 기판(10) 상의 코팅막(22)은 접착 필름(30)에 인쇄된 인쇄층(33)의 패턴과 반대되는 패턴으로 패터닝된다.Subsequently, after the printing layer 33 is formed on the adhesive film 30, as shown in FIGS. 1F and 1G, the adhesive layer 31 is formed on the adhesive film 30 on which the printing layer 33 is printed. The surface was brought into contact with the coating film 22 so that the surface was in contact with the coating film 22. At this time, the particles 20 in contact with the print layer 33 of the plurality of particles 20 constituting the coating film 22 remain on the adhesive polymer substrate 10 and the particles 20 in contact with the adhesive layer 31. Adheres to the adhesive layer 31 and is removed from the adhesive polymer substrate 10. Therefore, the coating film 22 on the adhesive polymer substrate 10 is patterned in a pattern opposite to that of the printing layer 33 printed on the adhesive film 30.
이렇게 코팅막(22)을 패터닝한 후, 도 1h에 도시된 것과 같이, 코팅막(22)이 형성된 밀착성 고분자 기판(10)의 표면을 노광시킨다. 이때, 밀착성 고분자 기판(10) 표면의 노광된 부분의 부착력이 증가하여 코팅막(22)을 형성하는 복수의 입자(20)가 밀착성 고분자 기판(10) 상에 단단히 결합되어 패터닝된 코팅막(22)이 밀착성 고분자 기판(10) 상에 안정적으로 부착된 상태를 유지할 수 있다.After the coating film 22 is patterned in this manner, as shown in FIG. 1H, the surface of the adhesive polymer substrate 10 on which the coating film 22 is formed is exposed. At this time, the adhesion of the exposed portion of the surface of the adhesive polymer substrate 10 is increased, the plurality of particles 20 forming the coating film 22 is firmly bonded on the adhesive polymer substrate 10 to pattern the coating film 22 The adhesive polymer substrate 10 may be stably attached.
본 발명에 의한 입자 정렬을 이용한 코팅 방법에 있어서, 밀착성 고분자 기판(10) 상에서 패터닝된 코팅막(22)은 상술한 것과 같이, 밀착성 고분자 기판(10)에 부착된 상태로 이용될 수도 있고, 다른 기판으로 전사되어 이용될 수도 있다. 즉, 도 2에 도시된 것과 같이, 밀착성 고분자 기판(10) 상에 패터닝된 코팅막(22)을 형성한 후, 밀착성 고분자 기판(10)의 부착력보다 큰 부착력을 갖는 전사 기판(35)을 패터닝된 코팅막(22)에 접촉시켰다 떼어냄으로써, 패터닝된 코팅막(22)을 다른 전사 기판(35)으로 전사할 수 있다.In the coating method using particle alignment according to the present invention, the coating film 22 patterned on the adhesive polymer substrate 10 may be used in a state of being attached to the adhesive polymer substrate 10 as described above, or another substrate. It may be transferred to and used. That is, as shown in FIG. 2, after the patterned coating film 22 is formed on the adhesive polymer substrate 10, the transfer substrate 35 having the adhesive force greater than that of the adhesive polymer substrate 10 is patterned. By contacting and detaching the coating film 22, the patterned coating film 22 can be transferred to another transfer substrate 35.
상술한 것과 같이, 본 발명에 의한 입자 정렬을 이용한 코팅 방법은 밀착성 고분자 기판(10) 상에 용매를 사용하지 않고 건조 상태의 입자들(20)이 밀착성 고분자 기판(10) 위에 직접 접촉하도록 한 상태에서 압력을 가하여 코팅막(22)을 형성하고, 접착층(31)에 인쇄층(33)이 인쇄된 접착 필름(30)을 이용하여 코팅막(22)을 형성하는 복수의 입자(20) 중 일부 입자(20)를 제거함으로써 코팅막(22)을 다양한 형태로 패터닝할 수 있다. 이에 따라 종래에 비해 코팅막 형성 시, 용매 내에서의 입자들의 자기 조립이 요구되지 않으므로 온도, 습도 등을 정밀하게 조절하지 않아도 되며 입자들의 표면 특성에 큰 영향을 받지 않는다. 즉, 입자가 전하성 물질인 경우뿐만 아니라, 비전하성(즉, 전하적으로 중성에 가까운) 물질인 경우에도 높은 밀도로 균일하게 코팅이 이루어질 수 있다. 또한 친수성 입자뿐만 아니라, 소수성 입자도 균일하게 코팅할 수 있고, 이를 다양한 형태로 패터닝할 수 있다. 이와 같이 본 발명에 따르면 단순한 방법에 의하여 밀착성 고분자 기판(10) 위에 입자들(20)을 고르게 분포시켜 높은 밀도를 가지는 단층 수준의 코팅막(22)을 형성하고, 이를 간단하게 다양한 형태로 패터닝할 수 있다.As described above, in the coating method using the particle alignment according to the present invention, the dry particles 20 are in direct contact with the adhesive polymer substrate 10 without using a solvent on the adhesive polymer substrate 10. Some of the particles 20 of the plurality of particles 20 forming the coating film 22 by applying pressure to form the coating film 22 using the adhesive film 30 on which the printing layer 33 is printed on the adhesive layer 31 ( By removing 20), the coating film 22 can be patterned in various forms. Accordingly, since the self-assembly of the particles in the solvent is not required when forming the coating film as compared with the related art, it is not necessary to precisely control the temperature, humidity, and the like, and does not significantly affect the surface properties of the particles. That is, the coating can be uniformly made at a high density not only when the particles are chargeable materials, but also when they are non-chargeable (ie, near charge neutral) materials. In addition to hydrophilic particles, hydrophobic particles may be uniformly coated and patterned in various forms. As described above, according to the present invention, the particles 20 are evenly distributed on the adhesive polymer substrate 10 by a simple method to form a coating layer 22 having a high density, and patterned in various forms simply. have.
한편, 도 3a 내지 도 3e는 본 발명의 다른 실시예에 의한 입자 정렬을 이용한 코팅 방법을 단계별로 나타낸 것이다.On the other hand, Figures 3a to 3e shows step by step coating method using a particle alignment according to another embodiment of the present invention.
본 발명의 다른 실시예에 의한 입자 정렬을 이용한 코팅 방법은, 밀착성 고분자 기판(10)을 준비하여 밀착성 고분자 기판(10) 위에 복수의 제 1 입자(20)로 이루어진 1차 코팅막(22)을 형성하고, 접착층(31)에 인쇄층(33)이 인쇄된 접착 필름(30)을 이용하여 1차 코팅막(22)을 형성하는 복수의 제 1 입자(20) 중에서 일부 제 1 입자(20)를 제거하여 1차 코팅막(22)을 패터닝하는 단계를 포함한다. 여기에서, 1차 코팅막(22)을 형성하는 구체적인 방법과, 1차 코팅막(22)을 접착 필름(30)을 이용하여 패터닝하는 구체적인 방법은 상술한 것과 같다.In the coating method using particle alignment according to another embodiment of the present invention, the adhesive polymer substrate 10 is prepared to form a primary coating layer 22 including a plurality of first particles 20 on the adhesive polymer substrate 10. In addition, some of the first particles 20 are removed from the plurality of first particles 20 forming the primary coating film 22 by using the adhesive film 30 on which the printing layer 33 is printed on the adhesive layer 31. Patterning the primary coating layer 22. Here, the specific method of forming the primary coating film 22 and the specific method of patterning the primary coating film 22 using the adhesive film 30 are as described above.
밀착성 고분자 기판(10)에 패터닝된 1차 코팅막(22)을 형성한 후, 도 3a에 도시된 것과 같이, 마스크 패턴(41)이 형성된 마스크(40)를 대고 빛을 조사하여 밀착성 고분자 기판(10) 표면의 1차 코팅막(22)이 형성된 영역을 부분적으로 노광시킨다. 여기에서, 마스크 패턴(41)은 일부의 제 1 입자(20)를 제거하여 1차 코팅막(22)을 패터닝하기 위해 접착 필름(30)에 인쇄되는 인쇄층(33)과 동일한 패턴으로 이루어질 수 있다.After the patterned primary coating layer 22 is formed on the adhesive polymer substrate 10, as shown in FIG. 3A, the adhesive polymer substrate 10 is irradiated with light applied to the mask 40 on which the mask pattern 41 is formed. The area where the primary coating film 22 on the surface is formed is partially exposed. Here, the mask pattern 41 may be formed of the same pattern as the printing layer 33 printed on the adhesive film 30 to remove the first particles 20 to pattern the primary coating layer 22. .
밀착성 고분자 기판(10)의 표면은 복수의 제 1 입자(20)로 이루어진 1차 코팅막(22)으로 덮여있지만, 조사되는 빛은 복수의 제 1 입자(20) 사이사이의 틈새를 통해 밀착성 고분자 기판(10)에 도달하여 밀착성 고분자 기판(10)을 노광시킬 수 있다. 그리고 제 1 입자(20)가 빛이 투과할 수 있는 물질로 이루어지는 경우에는, 조사되는 빛이 제 1 입자(20)를 투과하여 밀착성 고분자 기판(10)에 도달할 수 있다. 여기서, 빛은 가시광선, 자외선 등을 포함한다.Although the surface of the adhesive polymer substrate 10 is covered with the primary coating film 22 composed of the plurality of first particles 20, the irradiated light is exposed through the gap between the plurality of first particles 20. (10) can be reached and the adhesive polymer substrate 10 can be exposed. When the first particles 20 are made of a material that can transmit light, the irradiated light may pass through the first particles 20 to reach the adhesive polymer substrate 10. Here, the light includes visible light, ultraviolet light, or the like.
이와 같이, 마스크(40)를 밀착성 고분자 기판(10) 위에 배치한 상태에서 밀착성 고분자 기판(10)에 빛을 조사하면, 도 3b에 도시된 것과 같이, 밀착성 고분자 기판(10) 표면의 빛을 조사받은 노광부(14)의 부착력은 빛을 조사받지 못한 비노광부(15)의 부착력보다 커진다. 따라서 노광부(14)에 위치한 제 1 입자(20)는 비노광부(15)에 위치한 제 1 입자(20)에 비해 강한 결합력으로 밀착성 고분자 기판(10)에 부착된 상태를 유지할 수 있다. 이렇게 노광 단계를 수행함으로써, 밀착성 고분자 기판(10) 위에 패터닝된 1차 코팅막(22)이 단단히 부착된 입자 코팅 기판(43)을 만들 수 있다.As such, when the mask 40 is disposed on the adhesive polymer substrate 10, light is irradiated onto the adhesive polymer substrate 10, and as shown in FIG. 3B, light is emitted on the surface of the adhesive polymer substrate 10. The adhesion of the exposed exposure portion 14 is greater than that of the non-exposed portion 15 that is not irradiated with light. Therefore, the first particles 20 positioned in the exposed portion 14 may maintain a state of being attached to the adhesive polymer substrate 10 with a stronger bonding force than the first particles 20 disposed in the non-exposed portion 15. By performing the exposure step as described above, the particle coating substrate 43 to which the primary coating film 22 patterned on the adhesive polymer substrate 10 is firmly attached can be made.
부착력 향상에 대해 부연하자면, 일 예로 PDMS의 경우 자외선에 노출시에 화학 구조 중 메틸 부분의 손상이 이루어진다고 알려져 있으며, 이를 통해 일시적으로 반응성 기가 고분자에 형성된다. 이러한 기능기는 메틸기에 비하여 수소 결합 등의 입자와 부착력을 가질 수 있는 특성이 향상되며, 탈수 축합 결합등을 통해 화학적인 공유결합의 형성도 가능하게 된다.For example, PDMS is known to damage the methyl portion of the chemical structure when exposed to ultraviolet rays, and thus, reactive groups are temporarily formed in the polymer. Such functional groups have improved properties that can have adhesion with particles such as hydrogen bonds, compared to methyl groups, and chemical covalent bonds can be formed through dehydration condensation bonds.
계속해서, 도 3c에 도시된 것과 같이, 복수의 제 1 입자(20)가 코팅된 밀착성 고분자 기판(10)의 표면에 제 1 입자(20)와 다른 제 2 입자(24)를 코팅한다. 복수의 제 2 입자(24)를 코팅하는 방법은, 앞서 설명한 복수의 제 1 입자(20)를 밀착성 고분자 기판(10)에 코팅하는 방법과 같은 것으로, 그 구체적인 방법은 다음과 같다.Subsequently, as shown in FIG. 3C, the first particles 20 and the other second particles 24 are coated on the surface of the adhesive polymer substrate 10 coated with the plurality of first particles 20. The method of coating the plurality of second particles 24 is the same as the method of coating the plurality of first particles 20 on the adhesive polymer substrate 10, and the specific method thereof is as follows.
먼저, 패터닝된 1차 코팅막(22)이 형성된 밀착성 고분자 기판(10) 위에 건조된 복수의 제 2 입자(24)를 올린다. 제 2 입자(24)로는 고분자, 무기물, 금속, 자성체, 반도체, 생체 물질 등이 이용될 수 있으며, 이들 각각의 구체적인 종류는 상술한 것과 같다. 그리고 복수의 제 2 입자(24) 위에서 압력을 가하여 제 2 입자(24)를 제 1 입자(20)가 배치되지 않은 비노광부(15)에 코팅한다. 제 2 입자(24)에 압력을 가하는 방법은 앞서 설명한 것과 같이 제 1 입자(20)를 코팅할 때 사용하는 방법과 같은 것으로, 라텍스, 스폰지, 손, 고무판, 플라스틱 판, 부드러운 표면을 가지는 재료 등을 이용하여 문지르는 방법이 이용될 수 있다. 복수의 제 2 입자(24)가 밀착성 고분자 기판(10)에 코팅되는 메커니즘은 앞서 설명한 제 1 입자(20)가 밀착성 고분자 기판(10)에 코팅되는 원리와 같다.First, a plurality of dried second particles 24 are mounted on the adhesive polymer substrate 10 on which the patterned primary coating layer 22 is formed. As the second particles 24, a polymer, an inorganic material, a metal, a magnetic material, a semiconductor, a biological material, or the like may be used, and the specific types thereof are the same as described above. Then, pressure is applied on the plurality of second particles 24 to coat the second particles 24 on the non-exposed part 15 where the first particles 20 are not disposed. The method of applying pressure to the second particles 24 is the same as the method used to coat the first particles 20 as described above, and includes latex, sponges, hands, rubber plates, plastic plates, materials having a smooth surface, and the like. A method of rubbing using may be used. The mechanism in which the plurality of second particles 24 are coated on the adhesive polymer substrate 10 is the same as that of the aforementioned first particles 20 is coated on the adhesive polymer substrate 10.
즉, 밀착성 고분자 기판(10)의 위에 제 2 입자들(24)을 올린 후에 압력을 가하면 압력이 가해진 부분의 제 2 입자들(24)이 밀착성 고분자 기판(10)의 변형을 통해 부착되며, 밀착성 고분자 기판(10)의 해당 부분에 제 2 입자들(24)에 각기 대응하는 복수의 제 2 오목부(17)가 형성된다. 따라서 제 2 오목부(17)에 제 2 입자(24)가 감싸인 상태에서 밀착성 고분자 기판(10)의 비노광부(15)에 제 2 입자들(24)이 정렬되면서, 비노광부(15)에 복수의 제 2 입자(24)로 이루어진 2차 코팅막(25)이 형성된다. 물론, 제 1 입자(20)가 빠져나간 빈 제 1 오목부(12;도 1g 참조)에 제 2 입자(24)가 부분적으로 수용되면서 제 2 입자(24)가 밀착성 고분자 기판(10)에 정렬 및 코팅될 수도 있다.That is, when the second particles 24 are placed on the adhesive polymer substrate 10 and then pressure is applied, the second particles 24 in the portion to which the pressure is applied are attached through the deformation of the adhesive polymer substrate 10. A plurality of second recesses 17 corresponding to the second particles 24 are formed in corresponding portions of the polymer substrate 10. Accordingly, while the second particles 24 are aligned with the non-exposed portions 15 of the adhesive polymer substrate 10 while the second particles 24 are wrapped in the second recessed portions 17, the non-exposed portions 15 A secondary coating film 25 composed of a plurality of second particles 24 is formed. Of course, the second particles 24 are partially aligned with the adhesive polymer substrate 10 while the second particles 24 are partially accommodated in the empty first recesses 12 (see FIG. 1G) from which the first particles 20 are removed. And may be coated.
계속해서, 도 3d 및 도 3e에 도시된 것과 같이, 밀착성 고분자 기판(10)의 비노광부(15)의 부착력보다 크고 노광부(14)의 부착력보다 작은 부착력을 갖는 전사 기판(45)을 1차 코팅막(22) 및 2차 코팅막(25)에 접촉시켰다 떼어내면 2차 코팅막(25)을 전사 기판(45)으로 전사할 수 있다.Subsequently, as shown in FIGS. 3D and 3E, the transfer substrate 45 having the adhesive force greater than that of the non-exposed portion 15 of the adhesive polymer substrate 10 and smaller than the adhesive force of the exposed portion 14 is primary. The secondary coating layer 25 may be transferred onto the transfer substrate 45 by being brought into contact with the coating layer 22 and the secondary coating layer 25.
이러한 실시예에 의한 입자 정렬을 이용한 코팅 방법에 있어서, 패터닝된 1차 코팅막(22)이 노광을 통해 밀착성 고분자 기판(10) 상에 단단히 결합된 입자 코팅 기판(43)은 2차 코팅막(25)을 반복적으로 형성할 수 있는 몰드로 사용될 수 있다. 즉, 2차 코팅막(25)을 밀착성 고분자 기판(10)에서 다른 전사 기판(45)으로 전사한 후, 상술한 것과 같은 2차 코팅막 형성 단계 및 2차 코팅막 전사 단계를 반복 수행함으로써, 하나의 입자 코팅 기판(43)을 이용하여 2차 코팅막이 전사 기판 상에 전사된 다른 입자 코팅 기판을 대량으로 생산할 수 있다.In the coating method using the particle alignment according to this embodiment, the particle coating substrate 43, the patterned primary coating film 22 is firmly bonded on the adhesive polymer substrate 10 through exposure, the secondary coating film 25 It can be used as a mold that can be formed repeatedly. That is, after the second coating film 25 is transferred from the adhesive polymer substrate 10 to the other transfer substrate 45, the second coating film forming step and the second coating film transferring step as described above are repeatedly performed, thereby obtaining one particle. The coating substrate 43 can be used to mass produce other particle coating substrates on which the secondary coating film is transferred onto the transfer substrate.
다른 예로, 밀착성 고분자 기판(10) 위에 형성된 2차 코팅막(25)은 1차 코팅막(22)과 함께 다른 기판으로 전사되어 사용될 수도 있다. 즉, 밀착성 고분자 기판(10) 위에 1차 코팅막(22)과 2차 코팅막(25)을 형성한 후에, 밀착성 고분자 기판(10)의 노광부(14)보다 큰 부착력을 갖는 다른 전사 기판(47)을 1차 코팅막(22) 및 2차 코팅막(25) 위에 접촉시켰다 떼어내면, 도 4에 도시된 것과 같이, 1차 코팅막(22)과 2차 코팅막(25)이 특정 패턴으로 조합된 코팅막을 다른 전사 기판(47)으로 전사할 수 있다.As another example, the secondary coating layer 25 formed on the adhesive polymer substrate 10 may be transferred to another substrate together with the primary coating layer 22. That is, after forming the primary coating film 22 and the secondary coating film 25 on the adhesive polymer substrate 10, the other transfer substrate 47 having a greater adhesion than the exposed portion 14 of the adhesive polymer substrate 10 After contacting and detaching the primary coating film 22 and the secondary coating film 25, as shown in Figure 4, the coating film in which the primary coating film 22 and the secondary coating film 25 combined in a specific pattern is different The transfer substrate 47 can be transferred.
또 다른 예로, 밀착성 고분자 기판(10) 위에 1차 코팅막(22) 및 2차 코팅막(25)을 형성한 후에, 2차 코팅막(25) 또는 1차 코팅막(22)을 다른 기판으로 전사하지 않고, 도 3c에 도시된 형태 그대로 1차 코팅막(22) 및 2차 코팅막(25)을 밀착성 고분자 기판(10)에 부착한 상태로 이용할 수도 있다.As another example, after the primary coating layer 22 and the secondary coating layer 25 are formed on the adhesive polymer substrate 10, the secondary coating layer 25 or the primary coating layer 22 is not transferred to another substrate. As shown in FIG. 3C, the primary coating layer 22 and the secondary coating layer 25 may be attached to the adhesive polymer substrate 10.
이 밖에, 본 발명의 일실시예에 의한 입자 정렬을 이용한 코팅 방법은 앞서 설명한 것과 같은 1차 코팅막 패터닝 단계, 2차 코팅막 형성 단계, 전사 단계 등을 반복적으로 수행함으로써, 밀착성 고분자 기판(10) 위에 여러 종류의 입자가 각각 특정한 패턴으로 정렬된 다양한 코팅막을 형성할 수 있고, 형성된 코팅막을 다양한 다른 기판으로 전사할 수 있다.In addition, the coating method using the particle alignment according to an embodiment of the present invention by repeatedly performing the first coating film patterning step, the second coating film forming step, the transfer step and the like as described above, on the adhesive polymer substrate 10 Various types of particles can form various coating films, each arranged in a specific pattern, and can transfer the formed coating film to various other substrates.
이와 같이, 본 발명에 의한 입자 정렬을 이용한 코팅 방법은 인쇄층(33)이 인쇄된 접착 필름(30)을 이용하여 형성된 코팅막(22)을 패터닝하는 단계와, 마스크(40)를 이용하여 밀착성 고분자 기판(10)을 노광함으로써 밀착성 고분자 기판(10)의 부착력을 부분적으로 증가시키는 단계와, 패터닝된 코팅막(22) 사이에 새로운 입자(24)를 코팅하여 다른 코팅막(25)을 형성하는 단계 등을 반복적으로 수행함으로써, 밀착성 고분자 기판(10) 위에 여러 종류의 입자가 각각 특정한 패턴으로 정렬된 다양한 코팅막을 형성할 수 있다.As described above, in the coating method using the particle alignment according to the present invention, the coating layer 22 formed by using the adhesive film 30 on which the printing layer 33 is printed is patterned, and the adhesive polymer is formed using the mask 40. Partially increasing the adhesion of the adhesive polymer substrate 10 by exposing the substrate 10, coating new particles 24 between the patterned coating layer 22 to form another coating layer 25, and the like. By repeatedly performing, various kinds of particles may be formed on the adhesive polymer substrate 10 by forming various coating films each arranged in a specific pattern.
한편, 도 5는 상술한 본 발명에 의한 입자 정렬을 이용한 코팅 방법에 있어서, 제 2 입자(24)를 밀착성 고분자 기판(10)에 코팅하는 다른 실시예를 나타낸 것이다. 본 발명에 있어서, 탄성 변형에 의하여 밀착성 고분자 기판(10)에 오목부가 형성되므로, 오목부에 수용되었던 입자가 제거되면, 도 3a에 도시된 것과 같이 밀착성 고분자 기판(10)의 표면이 오목부가 소멸되어 매끈한면으로 복귀될 수 있다. 이렇게 제 1 입자(20)가 수용되었던 오목부가 가역적으로 소멸된 상태에서, 도 3c에 도시된 것과 같이, 복수의 제 2 입자(24)를 밀착성 고분자 기판(10) 위에 올리고 이에 압력을 가해 비노광부(15)에 제 2 입자(24)에 대응하는 제 2 오목부(17)를 형성하면서 제 2 입자(24)를 코팅할 수도 있다.Meanwhile, FIG. 5 shows another embodiment in which the second particles 24 are coated on the adhesive polymer substrate 10 in the coating method using the particle alignment according to the present invention. In the present invention, since the recess is formed in the adhesive polymer substrate 10 by elastic deformation, when the particles accommodated in the recess are removed, the surface of the adhesive polymer substrate 10 disappears as shown in FIG. 3A. Can be returned to the smooth surface. In this state in which the concave portion in which the first particles 20 are accommodated is reversibly dissipated, as shown in FIG. 3C, the plurality of second particles 24 are placed on the adhesive polymer substrate 10 and applied to the non-exposed portion. The second particles 24 may be coated while forming the second recesses 17 corresponding to the second particles 24 in the 15.
이에 반해, 도 5의 (a)에 나타낸 것과 같이, 1차 코팅막(22)이 형성된 후 오랜 시간이 지난 후에 제 1 입자(20)가 제 1 오목부(12)에서 제거된 경우에는, 제 1 오목부(12) 또는 제 1 오목부(12)의 흔적이 밀착성 고분자 기판(10)의 표면에 남아있을 수도 있다. 이 경우, 새로 코팅되는 제 2 입자(24)는 도 5의 (b)에 나타낸 것과 같이, 제 1 오목부(12)에 부분적으로 감싸지거나, 제 1 오목부(12)에 대응하는 위치에서 밀착성 고분자 기판(10)을 파고들어 밀착성 고분자 기판(10)에 부착될 수 있다.On the contrary, as shown in FIG. 5A, when the first particles 20 are removed from the first recesses 12 after a long time after the primary coating film 22 is formed, the first Traces of the recesses 12 or the first recesses 12 may remain on the surface of the adhesive polymer substrate 10. In this case, the newly coated second particles 24 are partially wrapped in the first recesses 12, as shown in FIG. 5B, or adhered at positions corresponding to the first recesses 12. The polymer substrate 10 may be dug and attached to the adhesive polymer substrate 10.
이하, 본 발명의 실험예를 참조하여 본 발명을 좀더 상세하게 설명한다. 이러한 실험예는 본 발명을 상세하게 설명하기 위하여 예시한 것일 뿐, 본 발명이 이에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to experimental examples of the present invention. These experimental examples are only illustrated to explain the present invention in detail, but the present invention is not limited thereto.
<실험예 1>Experimental Example 1
실가드(Sylgard) 184 (미국,다우코닝) 제품에 10wt%의 경화제를 포함하여 형성된 PDMS로 이루어진 밀착성 고분자 기판을 3mm 유리판 위에 준비하였다.An adhesive polymer substrate, consisting of PDMS, formed of Silgard 184 (Dow Corning, USA) containing 10 wt% of a curing agent was prepared on a 3 mm glass plate.
상기 밀착성 고분자 기판위해 750nm SiO2 입자를 올려놓은 후 라텍스 필름으로 감싼 스폰지를 이용하여 손으로 잡고 문질러서 밀착성 고분자 기판의 표면에 입자를 단층으로 코팅하였다. 단층 코팅을 위해 750nm SiO2 코팅막을 질소가스로 불어 멀티층이 형성되어 있는 부분의 입자를 제거하였다.The 750 nm SiO 2 particles were placed on the adhesive polymer substrate, and then the particles were coated on the surface of the adhesive polymer substrate by a single layer using a sponge wrapped with a latex film. For the single layer coating, a 750 nm SiO 2 coating film was blown with nitrogen gas to remove particles in a portion where a multi layer was formed.
한편, 원하는 패턴이 형성되있는 파일을 레이져 프린트로 이형지에 인쇄해 상기 이형지에 패턴을 형성한 후 3M 양면 테이프가 붙어있는 롤러를 상기 이형지에 밀어 상기 3M 양면 테이프가 붙어있는 롤러에 상기 이형지위에 형성되어있던 토너로 이루어진 패턴을 전이시켰다.On the other hand, a file having a desired pattern is printed on a release paper by laser printing to form a pattern on the release paper, and then a roller having a 3M double-sided tape is formed on the release paper on a roller having the 3M double-sided tape attached to the release paper. The pattern consisting of the toners was transferred.
그 후, 먼저 준비한 상기 밀착성 고분자 기판 위에 토너 패턴이 전이된 상기 3M 양면 테이프가 붙어있는 롤러를 문질러 토너가 패터닝 되어있는 부분을 제외하고 입자를 제거하였다.Thereafter, the particles were removed on the adhesive polymer substrate prepared above by rubbing the roller having the 3M double-sided tape on which the toner pattern was transferred, except for the portion where the toner was patterned.
상기 750nm SiO2 코팅막 패턴이 형성된 상기 밀착성 고분자 기판 상에 자외선 경화 수지를 포함하는 레진을 위치시킨 다음 PET 필름을 덮고 30분 동안 UV를 조사하여 레진을 경화시켰다.A resin containing an ultraviolet curable resin was placed on the adhesive polymer substrate on which the 750 nm SiO 2 coating layer pattern was formed, and then the resin was cured by covering the PET film and irradiating UV for 30 minutes.
그 뒤, 상기 밀착성 고분자 기판을 제거하여 상기 PET 필름에 코팅되어있는 SiO2 코팅막이 원하는 패턴형태로 전이된 양각형태의 코팅 기재의 제조를 완료하였다.Thereafter, the adhesive polymer substrate was removed to complete the manufacture of an embossed coating substrate in which the SiO 2 coating film coated on the PET film was transferred to a desired pattern shape.
도 6은 사진 파일을 통해 패턴을 형성하고 전이시켜 만들어진 완성본을 사진 찍은 것이며, 본 발명의 경우 입자가 밀착성 고분자 기판에 코팅된 후 패턴형성을 통해 자유롭게 입자를 배열할 수 있음을 알 수 있었다.Figure 6 is a photograph taken of the completed product formed by forming and transferring a pattern through a photo file, it can be seen that the particles can be arranged freely through the pattern formation after the particles are coated on the adhesive polymer substrate.
앞에서 설명되고 도면에 도시된 본 발명의 실시예는 본 발명의 기술적 사상을 한정하는 것으로 해석되어서는 안 된다. 본 발명의 보호범위는 특허청구범위에 기재된 사항에 의해서만 제한되고, 본 발명의 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상을 다양한 형태로 개량 및 변경하는 것이 가능하다. 따라서, 이러한 개량 및 변경은 해당 기술분야에서 통상의 지식을 가진 자에게 자명한 것인 한 본 발명의 보호범위에 속하게 될 것이다.Embodiments of the present invention described above and illustrated in the drawings should not be construed as limiting the technical spirit of the present invention. The protection scope of the present invention is limited only by the matters described in the claims, and those skilled in the art can improve and change the technical idea of the present invention in various forms. Accordingly, such improvements and modifications will fall within the protection scope of the present invention as long as it will be apparent to those skilled in the art.
본 발명에 의한 입자 정렬을 이용한 코팅 방법에서는 복수의 입자로 이루어진 코팅층을 패터닝하고, 마스크를 이용하여 밀착성 고분자 기판을 노광하여 패터닝된 코팅층을 밀착성 고분자 기판 위에 단단히 부착시킨 후, 새로운 입자를 패터닝된 코팅층 사이에 코팅함으로써, 밀착성 고분자 기판 위에 여러 종류의 입자가 각각 특정한 패턴으로 정렬된 다양한 코팅막을 손쉽게 형성할 수 있고, 형성된 다양한 코팅막을 다른 전사 기판으로 전사할 수 있어 산업적으로 유용하다.In the coating method using particle alignment according to the present invention, a coating layer composed of a plurality of particles is patterned, an adhesive polymer substrate is exposed using a mask, the patterned coating layer is firmly attached onto the adhesive polymer substrate, and then new particles are patterned coating layer. By coating in between, the various types of particles can be easily formed on the adhesive polymer substrate, each of which is arranged in a specific pattern, and the various coating films formed can be transferred to another transfer substrate, which is industrially useful.

Claims (18)

  1. (a) 부착성을 갖는 밀착성 고분자 기판 위에 복수의 입자를 압력을 가하여 상기 밀착성 고분자 기판 표면에 상기 복수의 입자에 각기 대응하는 복수의 오목부가 형성되도록 하면서 코팅하여 코팅막을 형성하는 단계;(a) applying a plurality of particles to the adhesive polymer substrate having adhesion to form a coating film while coating a plurality of recesses respectively corresponding to the plurality of particles on the surface of the adhesive polymer substrate;
    (b) 일면에 접착층이 마련된 접착 필름을 준비하고, 상기 접착층을 부분적으로 덮도록 상기 접착 필름에 인쇄층을 인쇄하는 단계; 및(b) preparing an adhesive film provided with an adhesive layer on one surface, and printing a printing layer on the adhesive film to partially cover the adhesive layer; And
    (c) 상기 인쇄층이 인쇄된 상기 접착 필름을 상기 코팅막에 접촉시켰다 떼어내어, 상기 코팅막을 형성하는 상기 복수의 입자 중 일부 입자를 상기 접착층의 상기 인쇄층으로 덮이지 않은 부분에 접착시켜 제거함으로써 상기 코팅막을 패터닝하는 단계;를 포함하는 입자 정렬을 이용한 코팅 방법.(c) the adhesive film on which the printing layer has been printed is brought into contact with the coating film, and detached by adhering some of the plurality of particles forming the coating film to a portion not covered by the printing layer of the adhesive layer. Patterning the coating film; Coating method using a particle alignment comprising a.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 (c) 단계 이후,After step (c),
    상기 코팅막이 형성된 상기 밀착성 고분자 기판을 노광시켜 상기 밀착성 고분자 기판과 패터닝된 상기 코팅막 사이의 결합력을 증가시키는 단계를 더 포함하는 것을 특징으로 하는 입자 정렬을 이용한 코팅 방법.Exposing the adhesive polymer substrate on which the coating film is formed, thereby increasing the bonding force between the adhesive polymer substrate and the patterned coating film.
  3. 제 1 항에 있어서,The method of claim 1,
    상기 (c) 단계 이후,After step (c),
    상기 밀착성 고분자 기판의 부착력보다 큰 부착력을 갖는 전사 기판에 패터닝된 상기 코팅막을 전사하는 단계를 더 포함하는 것을 특징으로 하는 입자 정렬을 이용한 코팅 방법.And transferring the patterned coating film to a transfer substrate having an adhesion greater than that of the adhesive polymer substrate.
  4. 제 1 항에 있어서,The method of claim 1,
    상기 (a) 단계에서 상기 복수의 입자를 문질러서 압력을 가하여 상기 밀착성 고분자 기판 위에 코팅하는 것을 특징으로 하는 입자 정렬을 이용한 코팅 방법.The coating method using the particle alignment, characterized in that the coating on the adhesive polymer substrate by applying a pressure rub the plurality of particles in the step (a).
  5. 제 1 항에 있어서,The method of claim 1,
    상기 밀착성 고분자 기판은 실리콘 기반 고분자 물질, 랩, 표면 보호용 필름, 표면형상의 변형이 용이한 광택을 지닌 필름 중에서 선택되는 것을 특징으로 하는 입자 정렬을 이용한 코팅 방법.The adhesive polymer substrate is a coating method using a particle alignment, characterized in that selected from a silicon-based polymer material, wraps, a film for protecting the surface, a film having a gloss easily deformed surface shape.
  6. 제 1 항에 있어서,The method of claim 1,
    상기 밀착성 고분자 기판은 폴리메틸실록산(polydimethylsiloxane, PDMS), 폴리에틸렌(polyethylene, PE), 폴리비닐클로라이드(polyvinylchloride, PVC) 중에서 적어도 하나의 물질을 포함하는 것을 특징으로 하는 입자 정렬을 이용한 코팅 방법.The adhesive polymer substrate is a coating method using a particle alignment, characterized in that it comprises at least one material of polydimethylsiloxane (PDMS), polyethylene (polyethylene, PE), polyvinyl chloride (PVC).
  7. 제 1 항에 있어서,The method of claim 1,
    상기 (a) 단계에서 상기 복수의 입자는 상기 밀착성 고분자 기판에 직접 접촉하는 것을 특징으로 하는 입자 정렬을 이용한 코팅 방법.The coating method using a particle alignment, characterized in that in the step (a) the plurality of particles are in direct contact with the adhesive polymer substrate.
  8. 제 1 항에 있어서,The method of claim 1,
    상기 (a) 단계에서 상기 코팅막은 상기 복수의 입자가 단층으로 코팅되어 이루어진 것을 특징으로 하는 입자 정렬을 이용한 코팅 방법.The coating method in the step (a) is a coating method using a particle alignment, characterized in that the plurality of particles are made of a single layer coating.
  9. 제 1 항에 있어서,The method of claim 1,
    상기 (a) 단계에서 상기 복수의 입자가 비구형일 경우에는, 상기 복수의 입자 중 입경이 상위 10% 입자의 평균 입경에 대한 상기 코팅막 두께의 평균값의 비율이 1.9 이하인 것을 특징으로 하는 입자 정렬을 이용한 코팅 방법.In the step (a), when the plurality of particles are non-spherical, the ratio of the average value of the thickness of the coating film to the average particle diameter of the upper 10% particles of the plurality of particles is 1.9 or less, using the particle alignment, Coating method.
  10. 제 1 항에 있어서,The method of claim 1,
    상기 (a) 단계에서 상기 입자의 평균 입경에 대한 상기 오목부의 깊이 비율이 0.02 ~ 0.98인 것을 특징으로 하는 입자 정렬을 이용한 코팅 방법.The coating method using the particle alignment, characterized in that the depth ratio of the concave portion to the average particle diameter of the particles in step (a) is 0.02 ~ 0.98.
  11. 제 1 항에 있어서,The method of claim 1,
    상기 복수의 입자의 평균 입경이 10nm 내지 100인 것을 특징으로 하는 입자 정렬을 이용한 코팅 방법.Coating method using a particle alignment, characterized in that the average particle diameter of the plurality of particles is 10nm to 100.
  12. 제 1 항에 있어서,The method of claim 1,
    상기 밀착성 고분자 기판에는, 상기 밀착성 고분자 기판의 변형에 의해 상기 복수의 입자에 각각 대응하도록 복수의 오목부가 함몰되게 마련되며, 상기 복수의 오목부는 가역적인 상태로 마련되는 것을 특징으로 하는 입자 정렬을 이용한 코팅방법.The adhesive polymer substrate is provided with a plurality of recesses recessed to correspond to the plurality of particles by deformation of the adhesive polymer substrate, and the plurality of recesses are provided in a reversible state. Coating method.
  13. 제 1 항에 있어서,The method of claim 1,
    상기 복수의 입자는 각각, 전하성 물질 및 비전하성 물질, 소수성 물질 및 친수성 물질 중 적어도 하나를 포함하는 것을 특징으로 하는 입자 코팅 기판.And wherein each of the plurality of particles comprises at least one of a chargeable material and a nonchargeable material, a hydrophobic material, and a hydrophilic material.
  14. 제 1 항에 있어서,The method of claim 1,
    상기 밀착성 고분자 기판의 표면에는 입체적인 3차원 구조의 패턴이 마련되는 것을 특징으로 하는 입자 코팅 기판.Particle-coated substrate, characterized in that the three-dimensional pattern of the three-dimensional structure is provided on the surface of the adhesive polymer substrate.
  15. (a) 밀착성 고분자 기판을 준비하는 준비 단계;(a) preparing an adhesive polymer substrate;
    (b) 상기 밀착성 고분자 기판 위에 복수의 제 1 입자를 압력을 가하여 상기 밀착성 고분자 기판 표면에 상기 복수의 제 1 입자에 각기 대응하는 복수의 제 1 오목부가 형성되도록 하면서 코팅하여 1차 코팅막을 형성하는 단계;(b) applying a plurality of first particles to the adhesive polymer substrate to apply a pressure to form a first coating layer on the surface of the adhesive polymer substrate while forming a plurality of first recesses corresponding to the plurality of first particles, respectively; step;
    (c) 일면에 접착층이 마련된 접착 필름을 준비하고, 상기 접착층을 부분적으로 덮도록 상기 접착 필름에 인쇄층을 인쇄하는 단계;(c) preparing an adhesive film having an adhesive layer on one surface, and printing a printing layer on the adhesive film to partially cover the adhesive layer;
    (d) 상기 인쇄층이 인쇄된 상기 접착 필름을 상기 1차 코팅막에 접촉시켰다 떼어내어 상기 1차 코팅막을 형성하는 상기 복수의 제 1 입자 중 일부의 제 1 입자를 상기 접착층의 상기 인쇄층으로 덮이지 않은 부분에 접착시켜 제거함으로써 상기 1차 코팅막을 패터닝하는 단계;(d) covering the first layer of some of the plurality of first particles forming the primary coating film by contacting and detaching the adhesive film on which the printing layer is printed to form the primary coating film with the printing layer of the adhesive layer. Patterning the primary coating film by adhering to and removing the non-coated portion;
    (e) 마스크 패턴이 형성된 마스크를 대고 상기 밀착성 고분자 기판을 향해 빛을 조사하여 상기 밀착성 고분자 기판 표면의 상기 복수의 제 1 입자가 코팅된 부분을 노광함으로써, 상기 밀착성 고분자 기판 표면의 상기 복수의 제 1 입자가 코팅된 부분의 부착력을 증가시키는 단계; 및(e) applying a plurality of first particles on the surface of the adhesive polymer substrate by irradiating light toward the adhesive polymer substrate with a mask on which a mask pattern is formed, thereby exposing the plurality of agents on the surface of the adhesive polymer substrate; 1 increasing the adhesion of the particle-coated portion; And
    (f) 상기 밀착성 고분자 기판의 빛이 조사되지 않은 비노광부 위에 복수의 제 2 입자를 압력을 가하여 상기 비노광부에 상기 복수의 제 2 입자에 각기 대응하는 복수의 제 2 오목부가 형성되도록 하면서 코팅하여 2차 코팅막을 형성하는 단계;를 포함하는 입자 정렬을 이용한 코팅 방법.(f) applying a plurality of second particles to the non-exposed portion to which the light of the adhesive polymer substrate is not irradiated, and coating the non-exposed portion to form a plurality of second recesses corresponding to the plurality of second particles, respectively; Forming a secondary coating film; coating method using a particle alignment comprising a.
  16. 제 15 항에 있어서,The method of claim 15,
    상기 (f) 단계 이후,After the step (f),
    상기 밀착성 고분자 기판의 상기 2차 코팅막이 형성된 부분을 노광시켜 상기 밀착성 고분자 기판과 상기 2차 코팅막 사이의 결합력을 증가시키는 단계를 더 포함하는 것을 특징으로 하는 입자 정렬을 이용한 코팅 방법.And exposing a portion of the adhesive polymer substrate on which the secondary coating layer is formed to increase the bonding force between the adhesive polymer substrate and the secondary coating layer.
  17. 제 15 항에 있어서,The method of claim 15,
    상기 (f) 단계 이후,After the step (f),
    상기 비노광부의 부착력보다 크고 상기 밀착성 고분자 기판의 빛이 조사된 노광부의 부착력보다 작은 부착력을 갖는 전사 기판에 상기 2차 코팅막을 전사하는 단계를 더 포함하는 것을 특징으로 하는 입자 정렬을 이용한 코팅 방법.And transferring the secondary coating film to a transfer substrate having an adhesive force greater than that of the non-exposed portion and having an adhesive force less than that of the exposed portion irradiated with light of the adhesive polymer substrate.
  18. 제 15 항에 있어서,The method of claim 15,
    상기 (f) 단계 이후,After the step (f),
    상기 밀착성 고분자 기판의 빛이 조사된 노광부의 부착력보다 큰 부착력을 갖는 전사 기판에 상기 1차 코팅막 및 상기 2차 코팅막을 전사하는 단계를 더 포함하는 것을 특징으로 하는 입자 정렬을 이용한 코팅 방법.And transferring the primary coating layer and the secondary coating layer to a transfer substrate having an adhesive force greater than that of the exposed portion irradiated with light of the adhesive polymer substrate.
PCT/KR2015/005349 2014-05-28 2015-05-28 Coating method using particle alignment WO2015183007A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0064339 2014-05-28
KR1020140064339A KR102264385B1 (en) 2014-05-28 2014-05-28 Coating method using particle alignment

Publications (1)

Publication Number Publication Date
WO2015183007A1 true WO2015183007A1 (en) 2015-12-03

Family

ID=54699271

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/005349 WO2015183007A1 (en) 2014-05-28 2015-05-28 Coating method using particle alignment

Country Status (2)

Country Link
KR (1) KR102264385B1 (en)
WO (1) WO2015183007A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114114755A (en) * 2021-12-03 2022-03-01 宁波长阳科技股份有限公司 Preparation method of reflecting film, reflecting film and application thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101950703B1 (en) * 2017-04-03 2019-02-22 한양대학교 산학협력단 Separators for Batteries Having Single-layered Coating of Polymeric Particles and Preparation Method Thereof
KR102481993B1 (en) * 2017-04-07 2022-12-29 아주대학교산학협력단 Method for forming fine pattern using conductive particles
KR102660136B1 (en) * 2022-05-24 2024-04-23 박성우 Method for printing having high durability to car seat

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050001111A (en) * 2003-06-27 2005-01-06 한국과학기술원 Fabrication Method of Patterned Polymer Film with Nanometer Scale
KR20090076568A (en) * 2008-01-09 2009-07-13 고려대학교 산학협력단 A method for manufacturing nanosphere typed template for nanoimprint, a method for forming nanosphere single layer pattern using the same and an application method using the nanosphere signle layer pattern
KR20120017917A (en) * 2010-08-20 2012-02-29 서강대학교산학협력단 Porous thin film having holes and producing method of the same
KR20120022876A (en) * 2009-04-09 2012-03-12 서강대학교산학협력단 Method for manufacturing printed product by aligning and printing fine particles
JP2013029739A (en) * 2011-07-29 2013-02-07 Fujifilm Corp Plate making method for flexographic printing plate

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4551625B2 (en) * 2003-03-31 2010-09-29 大日本印刷株式会社 Method for producing pattern forming body
JP4346017B2 (en) * 2003-12-12 2009-10-14 大日本印刷株式会社 Manufacturing method of microarray chip
US7875313B2 (en) * 2007-04-05 2011-01-25 E. I. Du Pont De Nemours And Company Method to form a pattern of functional material on a substrate using a mask material
TW200937043A (en) * 2008-02-29 2009-09-01 Eternal Chemical Co Ltd Brightness enhancement reflective film
KR101416625B1 (en) * 2012-06-11 2014-07-08 한국전기연구원 Manufacturing method of polymer mold for forming fine pattern, polymer mold manufactured by the same, and method for forming fine pattern using the smae

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050001111A (en) * 2003-06-27 2005-01-06 한국과학기술원 Fabrication Method of Patterned Polymer Film with Nanometer Scale
KR20090076568A (en) * 2008-01-09 2009-07-13 고려대학교 산학협력단 A method for manufacturing nanosphere typed template for nanoimprint, a method for forming nanosphere single layer pattern using the same and an application method using the nanosphere signle layer pattern
KR20120022876A (en) * 2009-04-09 2012-03-12 서강대학교산학협력단 Method for manufacturing printed product by aligning and printing fine particles
KR20120017917A (en) * 2010-08-20 2012-02-29 서강대학교산학협력단 Porous thin film having holes and producing method of the same
JP2013029739A (en) * 2011-07-29 2013-02-07 Fujifilm Corp Plate making method for flexographic printing plate

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MASUDA, Y. ET AL.: "Two-Dimensional Self-Assembly of Spherical Particles Using a Liquid Mold and Its Drying Process", LANGMUIR, vol. 19, no. 13, 23 June 2003 (2003-06-23), pages 5179 - 5183, XP055230208, ISSN: 0743-7463 *
PARK, C. ET AL.: "Quick, Large-Area Assembly of a Single-Crystal Monolayer of Spherical Particles by Unidirectional Rubbing", vol. 26, no. 27, 7 April 2014 (2014-04-07), pages 4633 - 4638, XP055230207, ISSN: 0935-9648 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114114755A (en) * 2021-12-03 2022-03-01 宁波长阳科技股份有限公司 Preparation method of reflecting film, reflecting film and application thereof
CN114114755B (en) * 2021-12-03 2024-04-02 宁波长阳科技股份有限公司 Method for producing a reflective film, reflective film and use thereof

Also Published As

Publication number Publication date
KR102264385B1 (en) 2021-06-16
KR20150137179A (en) 2015-12-09

Similar Documents

Publication Publication Date Title
WO2015183008A1 (en) Coating method using particle alignment
WO2015183007A1 (en) Coating method using particle alignment
WO2012023724A2 (en) Porous thin film having holes and a production method therefor
Yan et al. Microcontact printing of colloidal crystals
JP5668052B2 (en) Method for producing printed matter on which aligned fine particles are printed
CN101627336B (en) Method to form a pattern of functional material on a substrate using a stamp having a surface modifying material
WO2014171782A1 (en) Cell culture substrate
WO2014084590A1 (en) Coating method using particle alignment and particle coated substrate manufactured thereby
WO2017217619A1 (en) Temperature-sensitive smart adhesive pad
CN108831828A (en) It can be applied to the flexible electronic device and preparation method thereof on a variety of surfaces
WO2014025164A1 (en) Printed matter and method for manufacturing such printed matter
WO2012141484A2 (en) Bowl-shaped structure, method for manufacturing same, and bowl array
WO2015163596A1 (en) Coating method using particle alignment, and particle-coated substrate prepared thereby
WO2015156533A1 (en) Coating method using particle alignment and particle-coated substrate produced thereby
He et al. Bioinspired adhesive manufactured by projection microstereolithography 3D printing technology and its application
Jayadev et al. Adaptive wettability-enhanced surfaces ordered on molded etched substrates using shrink film
Kim et al. Enhanced directional adhesion behavior of mushroom-shaped microline arrays
TW201803944A (en) Laminated film
US20090015928A1 (en) Method for the deformation of surfaces and articles formed thereby
JPS61258742A (en) Method of forming surface protective layer and surface protective layer attached sheet used for said method
WO2012087075A2 (en) Method for forming fine pattern in large area using laser interference exposure, method for non-planar transfer of the fine pattern formed by the method, and article to which the fine pattern is transferred by the transfer method
WO2016085053A1 (en) Random mosaic identification code
WO2015182867A1 (en) Substrate partially exposing particles and method for manufacturing same
Hsu et al. Micro/nano-patterned metal transfer using UV-curable polymers
WO2017018831A1 (en) Photomask, laminate comprising photomask, photomask preparation method, and pattern forming method using photomask

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15799035

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15799035

Country of ref document: EP

Kind code of ref document: A1