WO2015182214A1 - Compressor - Google Patents

Compressor Download PDF

Info

Publication number
WO2015182214A1
WO2015182214A1 PCT/JP2015/057315 JP2015057315W WO2015182214A1 WO 2015182214 A1 WO2015182214 A1 WO 2015182214A1 JP 2015057315 W JP2015057315 W JP 2015057315W WO 2015182214 A1 WO2015182214 A1 WO 2015182214A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
bypass
main shaft
hole
slide member
Prior art date
Application number
PCT/JP2015/057315
Other languages
French (fr)
Japanese (ja)
Inventor
英彰 永田
下地 美保子
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2016523187A priority Critical patent/JP6180630B2/en
Publication of WO2015182214A1 publication Critical patent/WO2015182214A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation

Definitions

  • the present invention relates to a compressor used in, for example, a refrigeration air conditioner.
  • Patent Document 1 a scroll compressor that prevents excessive supply of oil to the compression mechanism, reduces oil consumption, and improves the volumetric efficiency of the compressor.
  • Patent Document 1 a main shaft in which an oil hole extending in the axial direction and a bypass hole for discharging oil passing through the oil hole to the outside of the main shaft are formed, and a centrifuge that is provided on the bypass hole and is generated by the rotational motion of the main shaft.
  • a scroll compressor including a slide valve that opens and closes a bypass hole by force is disclosed.
  • JP 2000-213480 (paragraph 0026-0029, FIG. 4)
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a compressor capable of accurately adjusting the amount of oil discharged from the bypass hole.
  • a compressor of the present invention is a compressor including a sealed container that stores oil in a lower part and a compression mechanism that is housed in the sealed container and compresses a working fluid, and is connected to the compression mechanism, An oil passage that extends in the axial direction through which the stored oil passes and a main shaft that is formed with a discharge hole that discharges oil passing through the oil passage, and oil that is attached to the main shaft and stored in a sealed container is supplied to the oil passage.
  • An oil pump and a bypass device that is fixed on the discharge hole of the main shaft and adjusts the amount of oil discharged from the discharge hole.
  • the bypass device has one side fixed on the main shaft discharge hole and the other side opened.
  • a housing in which a hollow part into which oil flows from the discharge hole and a bypass hole through which oil flows into the hollow part is formed, and is accommodated in the hollow part so as to be movable in the radial direction, and moves on the bypass hole.
  • a biasing member that is accommodated in the hollow portion and biases the slide member from the other side of the housing to the one side, and a fixed lid that is attached to the opening on the other side of the hollow portion of the housing and seals the hollow portion
  • the slide member is configured to partition the hollow portion into a first space on the main shaft side and a second space on the bias member side when the main shaft rotates in the radial direction due to centrifugal force when the main shaft rotates.
  • a pressure equalizing path connecting the first space and the second space is formed in the hollow portion of the housing.
  • the compressor of the present invention by providing a pressure equalization path that connects the first space and the second space of the hollow portion, the position of the slide member is not affected by the oil pressure applied from the main shaft side, and the main shaft rotates. Since it is determined according to the number, the amount of oil discharged from the discharge hole can be adjusted with high accuracy.
  • FIG. 3 is a cross-sectional view showing an AA cross section in the bypass device of FIG. 2.
  • FIG. 6 is a cross-sectional view showing another example of the AA cross section in the bypass device of FIG. 2.
  • It is a schematic diagram which shows the operation example of the bypass apparatus of FIG. It is a schematic diagram which shows the operation example of the bypass apparatus of FIG. It is a graph which shows the relationship between the rotation speed in the compressor of FIG.
  • FIG. 1 is a schematic longitudinal sectional view of a compressor according to Embodiment 1 of the present invention.
  • a compressor 1 in FIG. 1 is a so-called vertical scroll compressor, and compresses and discharges a working gas such as a refrigerant in a scroll-like compression chamber, for example.
  • the compressor 1 includes a sealed container 2, a main shaft 5, an oil pump 7, a motor 8, and a compression mechanism 10.
  • the sealed container 2 is formed in a cylindrical shape, for example, and has pressure resistance.
  • a suction pipe 2A for taking the working gas into the sealed container 2 is connected to the side surface of the sealed container 2, and a discharge pipe 2B for discharging the compressed working gas from the sealed container 2 is connected to the upper surface.
  • a frame 3 is fixed to the upper side of the sealed container 2, and a sub-frame 4 that holds the main shaft 5 is fixed to the lower side.
  • An oil sump 2 ⁇ / b> C for storing lubricating oil is formed at the bottom of the sealed container 2.
  • the main shaft 5 is rotatably supported by the frame 3 and the subframe 4 in the sealed container 2.
  • An upper portion of the main shaft 5 is rotatably supported on the frame 3 by a main bearing 3a such as a bearing, and a lower portion of the main shaft 5 is rotatably supported on the sub frame 4 by a sub bearing 4a such as a bearing.
  • an eccentric shaft portion 6 is attached to the upper end of the main shaft 5 in an eccentric state with respect to the main shaft 5.
  • an oil passage 5a through which oil flows is formed in the main shaft 5, and oil is supplied to each sliding portion such as the main bearing 3a and the sub bearing 4a through the oil passage 5a.
  • the oil pump 7 is attached to the lower end of the main shaft 5, and supplies oil stored in the oil sump 2 ⁇ / b> C of the sealed container 2 to the oil passage 5 a in the main shaft 5.
  • the oil pump 7 is composed of, for example, a rotary positive displacement pump.
  • the oil pump 7 operates as the main shaft 5 rotates, and the amount of oil supplied to the oil passage 5a increases as the rotation speed of the main shaft 5 increases. It has characteristics.
  • the motor 8 rotates the main shaft 5 and has a motor rotor 8A and a motor stator 8B.
  • the motor stator 8B is fixed to the sealed container 2, and the motor rotor 8A is fixed to the main shaft 5.
  • the main shaft 5 and the motor rotor 8A rotate with respect to the motor stator 8B.
  • the compression mechanism 10 compresses and discharges working gas such as refrigerant, and includes a swing scroll 11 and a fixed scroll 12.
  • the swing scroll 11 is supported by the frame 3 so as to be capable of revolving, and a cylindrical swing bearing 11 a is provided on the lower surface of the swing scroll 11.
  • the eccentric shaft portion 6 of the main shaft 5 is inserted into the rocking bearing 11 a, and the rocking scroll 11 performs a revolving motion by the rotation of the eccentric shaft portion 6.
  • An Oldham ring (not shown) is supported between the frame 3 and the orbiting scroll 11 so as to be swingable on the frame 3 in order to give a swinging motion while preventing the swinging scroll 11 from rotating. Is provided.
  • a slider 9 is provided between the main shaft 5 and the orbiting scroll 11, and the slider 9 has a direction in which the oscillation radius increases due to the force of the working gas and the centrifugal force acting on the orbiting scroll 11.
  • a variable crank mechanism for converting the rotation of the main shaft 5 into a revolving motion.
  • the fixed scroll 12 is arranged on the top of the swing scroll 11 and is fixed to the frame 3.
  • a discharge port 12a for discharging the working gas is formed at the center of the fixed scroll 12, and a check valve 14 for preventing a back flow of the compressed working gas is disposed on the discharge port 12a.
  • the check valve 14 has a movable range restricted by a valve presser 15, and the check valve 14 and the valve presser 15 are fixed to the fixed scroll 12 by a valve bolt 16.
  • a spiral body is formed on each of the upper surface of the swing scroll 11 and the lower surface of the fixed scroll 12, and the swing scroll 11 and the fixed scroll 12 are disposed so that the spiral bodies face each other.
  • a compression chamber is formed between the spiral portion of the fixed scroll 12 and the spiral portion of the orbiting scroll 11.
  • the compressor 1 has an oil return pipe 20 that connects the frame 3 and the lower part of the sealed container 2.
  • oil return pipe 20 oil flowing in a space (space in the frame) formed by the frame 3 and the swing scroll 11 flows toward the lower part of the sealed container 2.
  • the main shaft 5 is also provided with a first balancer 21 and a second balancer 22 that cancel out the imbalance caused by the orbiting scroll 11 and the slider 9.
  • the main shaft 5 rotates in the arrow R direction.
  • the eccentric shaft portion 6 is rotated by the rotation of the main shaft 5, and the swing scroll 11 performs swing motion (revolution motion).
  • the working gas is compressed in a compression chamber formed between the swing scroll 11 and the fixed scroll 12.
  • the working gas is taken into the sealed container 2 from the suction pipe 18, passes through a port (not shown) provided in the frame 3, and is taken into the compression chamber.
  • the compressed working gas pushes up the check valve 14 and is discharged from the discharge port 12a of the fixed scroll 12 into the space between the sealed containers 2, and then passes through the discharge pipe 2B and is discharged to the outside of the compressor 1. Is done.
  • the oil pump 7 operates to supply oil to the oil passage 5 a of the main shaft 5.
  • This oil passes from the oil passage 5 a to the sub bearing 4 a between the sub frame 4 and the main shaft 5, the main bearing 3 a between the frame 3 and the main shaft 5, and the rocking bearing 11 a between the rocking scroll 11 and the slider 9.
  • Each is refueled.
  • the oil supplied to the sub-bearing 4a lubricates the sub-bearing 4a and then returns to the lower part of the sealed container 2.
  • the oil supplied to the main bearing 3a lubricates the main bearing 3a, and then branches into a lower part and an upper part of the frame 3.
  • the oil that has flowed to the lower portion passes through a gap between the motor rotor 8A and the motor stator 8B and a passage (not shown) provided in the motor stator 8B, and is returned to the lower portion of the hermetic container 2.
  • the oil that has flowed to the top and the oil after lubricating the rocking bearing 11a flows into the space formed by the rocking scroll 11 and the frame 3 (the space in the frame 3), and most of the oil is returned to the oil. It passes through the tube 20 and is returned to the lower part of the sealed container 2.
  • the remaining part of the oil passes between the thrust surface of the orbiting scroll 11 and the frame 3, is taken into the compression chamber, and is then discharged to the outside of the compressor 1.
  • the oil in the frame is agitated by the rocking bearing 11 a of the rocking scroll 11.
  • the oil pump 7 is, for example, a rotary positive displacement pump, and the amount of oil supplied to the oil passage 5a increases as the rotational speed of the main shaft 5 increases. Therefore, the amount of oil supply becomes excessive when the compressor 1 rotates at a high speed, and as the amount of oil discharged to the outside of the compressor 1, that is, the amount of oil rising increases, the refrigerating capacity and performance may decrease. Therefore, the compressor 1 of FIG. 1 is provided with a bypass device 30 that discharges the oil passing through the oil passage 5a on the way and adjusts the supply amount of the oil.
  • FIG. 2 is a schematic cross-sectional view of the bypass device in the compressor of FIG. 1
  • FIG. 3 is a schematic view showing an example of a bypass hole of the bypass device of FIG. 2, and the bypass device 30 will be described with reference to FIGS. explain.
  • the main shaft 5 is formed with a discharge hole 5b for discharging oil from the oil passage 5a, for example, below the second balancer 22, and the bypass device 30 is fixed on the discharge hole 5b of the main shaft 5.
  • the bypass device 30 includes a housing 31, a slide member 40, and an urging member 41.
  • the housing 31 includes a holder 32 having a hollow portion 36 having one side 31x fixed to the main shaft 5 and the other side 31y closed by a fixing lid 33.
  • the holder 32 is formed in a disk shape, for example, and a hollow portion 36 extending in the radial direction (the arrow X direction in FIGS. 2 and 3) is formed in a part of the holder 32.
  • the hollow portion 36 has a shape in which one side 31x is fixed to the main shaft 5 and the other side 31y is opened.
  • An oil outlet 35 leading to the discharge hole 5b is formed on one side 31x, and a fixed lid 33 is attached to the other side 31y so as to seal the inside of the holder 32. Therefore, the oil passing through the oil passage 5 a from the discharge hole 5 b flows into the hollow portion 36 from the oil outlet 35.
  • the fixed lid 33 prevents oil having a pressure higher than the pressure of the sealed container 2 in the holder 32 from being discharged to the sealed container 2 from other than the bypass hole 37.
  • the slide member 40 is accommodated in the hollow portion 36 so as to be movable in the radial direction (arrow X direction in FIGS. 2 and 3), and functions as a valve that moves on the bypass hole 37 and adjusts the opening degree of the bypass hole 37. To do. Specifically, the slide member 40 is positioned on the bypass hole 37 in the initial state, and is in a state of closing the bypass hole 37. When the main shaft 5 rotates, the slide member 40 moves to the other side 31y (outside) of the hollow portion 36 by centrifugal force, and the opening area of the bypass hole 37 changes depending on the position of the slide member 40. Yes.
  • the urging member 41 is made of, for example, a coil spring and is accommodated in the hollow portion 36 in a state of being attached to the fixed lid 33.
  • the biasing member 41 biases the slide member 40 from the other side 31y of the housing 31 to the one side 31x when the main shaft 5 rotates.
  • FIG. 2 for example, the case where the slide member 40 is positioned at a position closing the oil outlet 35 and the bypass hole 37 in the state where the urging member 41 is in a natural length is illustrated.
  • the slide member 40 moves in the radial direction (in the direction of the arrow X1 in FIG. 2) by centrifugal force, and the hollow portion 36 is moved between the first space 36A on the main shaft 5 side and the biasing member 41 side. Partitioning into the second space 36B (see FIGS. 3 and 6).
  • a pressure equalizing path 38 that connects the first space 36A and the second space 36B is formed in the hollow portion 36 of the housing 31.
  • 4 is a cross-sectional view showing an AA cross section of the bypass device of FIG. As shown in FIG. 4, the pressure equalization path 38 is formed by a gap formed between the inner surface of the housing 31 (holder 32) and the outer surface of the slide member 40. This gap is caused by the difference between the outer diameter of the slide member 40 and the inner diameter of the holder 32.
  • the gap is not a narrow gap that keeps the sliding portion airtight with lubricating oil, but is preferably somewhat wider than such a narrow gap, for example, about 0.025 to 0.1 mm. If the gap is smaller than 0.025 mm, the oil cannot flow quickly through the gap, and the influence of the pressure change in the second space 36B and the pressure change from the main shaft 5 when the slide member 40 moves increases. If the gap is larger than 0.1 mm, even if the slide member 40 closes the bypass hole 37, more oil flows out of the bypass hole 37 through the gap. In FIG. 2, a gap is also formed at a portion of the slide member 40 that closes the oil outlet 35 to form a pressure equalizing path 38. Such a gap can be produced by forming fine irregularities and grooves on the surface of the slide member 40 or the surface on which the oil outlet 35 is formed.
  • FIG. 5 is a cross-sectional view showing another example of the AA cross section in the bypass device of FIG.
  • the pressure equalization path 38 is formed by a gap between the inner surface of the holder 32 and the outer surface of the slide member 40 and a groove provided at a position different from the bypass hole 37 on the holder 32 side. ing.
  • the slide member 40 between the first space 36 ⁇ / b> A and the second space 36 ⁇ / b> B even when the oil pressure on the first space 36 ⁇ / b> A side changes suddenly.
  • the pressure equalization can be reliably performed.
  • channel is provided in the holder 32 side, you may make it provide a groove
  • a groove communicating from the oil outlet 35 may be formed in a portion of the slide member 40 that closes the oil outlet 35.
  • the operation of the bypass device 30 during the operation of the compressor 1 will be described with reference to FIGS.
  • the main shaft 5 rotates in the arrow R direction.
  • the bypass device 30 rotates in the arrow R direction along with the rotation of the main shaft 5.
  • a centrifugal force acting radially outward acts on the slide member 40, and the slide member 40 radially outwards in the hollow portion 36 of the housing 31 (in the direction of arrow X1 in FIG. 2). Move towards.
  • the oil flowing into the hollow portion 36 flows from the first space 36A side through the pressure equalization path 38 to the second space 36B side.
  • the front surface and the rear surface of the slide member 40 have substantially the same pressure (equal pressure). Therefore, the position of the slide member 40 is not affected by the oil pressure, and the position of the slide member 40 is determined by the centrifugal force of the slide member 40 and the elastic force of the biasing member 41.
  • the centrifugal force Fcf acting on the slide member 40 is expressed by the following formula (1).
  • m is the mass of the slide member 40
  • r is the distance in the radial direction (arrow X direction) from the center of the main shaft 5 to the center of gravity of the slide member 40
  • is the angular velocity of the main shaft 5.
  • a force in the direction opposite to the centrifugal force Fcf from the urging member 41 to the main shaft 5 acts on the slide member 40.
  • the force acting from the urging member 41 is represented by the following formula (2).
  • Equation (1) k is a spring constant of the urging member 41, x is a deformation amount of the urging member 41, and is a moving distance of the slide member 40 in the radial direction (arrow X direction).
  • the position of the slide member 40 is determined under a condition in which the centrifugal force Fcf acting on the slide member 40 of Expression (1) and the force Fs acting on the biasing member 41 of Expression (2) are balanced.
  • the position of the slide member 40 is determined by the rotational speed ⁇ of the main shaft 5 without depending on the oil pressure of the oil flowing from the discharge hole 5b to the first space 36A.
  • the rotational speed ⁇ of the main shaft 5 at which oil draining is started can be arbitrarily adjusted.
  • the rotational speed ⁇ of the main shaft 5 at which oil drainage is started is arbitrarily set. Can be adjusted.
  • the oil drainage characteristic of the bypass device 30 can be arbitrarily set by the formation position of the bypass hole 37 and the size of the opening. For example, as the position where the bypass hole 37 is formed is closer to the main shaft 5, the rotational speed ⁇ at which drainage is started becomes smaller, and as the position where the bypass hole 37 is formed is farther from the main shaft 5, the rotational speed ⁇ 1 is started. Becomes bigger. Further, the smaller the opening of the bypass hole 37, the smaller the amount of oil drained, and the larger the opening of the bypass hole 37, the larger the amount of oil discharged.
  • FIG. 6 and 7 are schematic diagrams showing an operation example of the bypass device 30 of FIG. 2, and FIG. 8 is a graph showing the relationship between the rotational speed and the amount of oil supplied from the oil passage in the compressor of FIG.
  • FIG. 8 is a graph showing the relationship between the rotational speed and the amount of oil supplied from the oil passage in the compressor of FIG.
  • the period until the rotational speed ⁇ reaches the predetermined rotational speed ⁇ 1 is a period in which the slide member 40 is positioned on the bypass hole 37, and the bypass hole 37 does not communicate with the oil passage 5 a and is discharged from the bypass device 30. No oil is done. Accordingly, everything except the amount of oil supplied to the auxiliary bearing 4a by the oil pump 7 is supplied to the rocking bearing 11a and the main bearing 3a.
  • the first space 36A and the second space 36B in the hollow portion 36 communicate with each other through the pressure equalization path 38, so that the inside of the hollow portion 36
  • the position of the slide member 40 is determined by the rotational speed ⁇ without depending on the oil pressure.
  • the opening area of the bypass hole 37 can be accurately controlled by the rotational speed ⁇ , the oil can be supplied to each sliding portion without excess or deficiency according to the driving situation.
  • less oil is stirred in the space in the frame 3 and stirring loss is reduced.
  • the amount of oil passing between the thrust surface of the orbiting scroll 11 and the frame 3 is reduced, and the amount of oil discharged to the outside of the compressor 1 is also reduced, so that the amount of oil rising can be suppressed.
  • the oil discharge amount may vary depending on the state of the oil such as viscosity, for example, and it is difficult to adjust the oil discharge amount and the oil supply amount according to the rotational speed.
  • the pressure equalizing path 38 is provided as in the bypass device 30 of FIG. 2, the oil pressure applied to the main shaft 5 side of the slide member 40 and the oil pressure applied to the biasing member 41 side are the same. Therefore, since the opening area of the bypass hole 37 can be accurately controlled by the rotational speed ⁇ without depending on the oil pressure, the oil can be supplied to each sliding portion without excess or deficiency in accordance with the rotational speed ⁇ . .
  • FIG. FIG. 9 is a schematic diagram showing Embodiment 2 of the bypass device in the compressor of the present invention.
  • the bypass device will be described with reference to FIG. 9, parts having the same configuration as the bypass device 30 in FIG. 2 are denoted by the same reference numerals and description thereof is omitted. 9 differs from the bypass device 30 of FIG. 2 in the structure of the pressure equalization path 138.
  • the pressure equalizing path 138 is formed by a through hole provided in the slide member 40.
  • the opening area of the pressure equalization path 138 can be increased, even if the oil pressure changes rapidly, the oil pressure in the first space 36A and the second space 36B of the hollow portion 36 is substantially the same. Can be. Therefore, the opening area of the bypass hole 37 can be accurately controlled by the rotational speed ⁇ without depending on the oil pressure.
  • the slide member 40 blocks the bypass hole 37. In addition, it is possible to reduce the spilled oil.
  • FIG. 9 illustrates the case where the pressure equalizing path 138 is formed by a through hole provided in the slide member 40, it is formed from both the gap (see FIG. 2) and the above-described through hole. It may be.
  • FIG. 10 to 14 are schematic views showing bypass holes of the bypass device according to Embodiment 3 of the compressor of the present invention.
  • the bypass devices 230A to 230E will be described with reference to FIGS. 10 to FIG. 14, parts having the same configuration as the bypass device 30 of FIG. 3 are denoted by the same reference numerals and description thereof is omitted.
  • the bypass devices 230A to 230E shown in FIGS. 10 to 14 are different from the bypass device 30 shown in FIG. 3 in the shape and structure of the discharge holes.
  • the housing 231 is provided with two bypass holes 237a and 237b made of circular holes.
  • the two bypass holes 237a and 237b are arranged in the radial direction (arrow X direction) is illustrated, they may be arranged side by side in the circumferential direction.
  • the housing 231 is provided with three bypass holes 237c, 237d, and 237e formed of circular holes.
  • the present invention is not limited thereto, and four or more may be provided.
  • bypass hole 237f made of an elliptical hole is provided in the bypass device 230C of FIG. 12.
  • one bypass hole 237g made of a rectangular hole is provided in the bypass device 230D of FIG. 13
  • one bypass hole 237h made of a triangular hole is provided in the bypass device 230E of FIG. 14. It may be polygonal. Furthermore, a plurality of discharge holes of these shapes may be provided as shown in FIGS.
  • FIG. 15 is a graph showing the relationship between the rotational speed and the amount of oil supply in the compressor using the bypass device of FIGS.
  • the oil discharge amount OC increases as the rotational speed ⁇ increases, and the oil supply amount becomes constant. Thereby, the amount of oil rising at the time of high rotation can be suppressed reliably.
  • FIG. FIG. 16 is a schematic diagram showing Embodiment 4 of the bypass device in the compressor of the present invention.
  • the bypass device will be described with reference to FIG. In the bypass device of FIG. 16, parts having the same configuration as the bypass device of FIG. 2 are denoted by the same reference numerals and description thereof is omitted.
  • the bypass device 330 of FIG. 16 differs from the bypass device 30 of FIG. 2 in that the bypass device 330 functions as a second balancer.
  • the bypass device 330 has a function as a balancer, and the housing 31 has a shape in which the length of the radius is different in the circumferential direction.
  • the bypass device 330 cancels the imbalance caused by the orbiting scroll 11 and the slider 9 instead of the second balancer 22 in FIG.
  • the bypass device 30 can be provided in the compressor 1 with a small number of parts, and the cost and size can be reduced. Even in this case, similarly to the first embodiment, the opening area of the bypass hole 37 can be accurately controlled by the rotational speed ⁇ without depending on the oil pressure.
  • FIG. 17 and 18 are schematic views showing Embodiment 5 of the bypass device in the compressor of the present invention.
  • the bypass device will be described with reference to FIGS. 17 and 18. 17 and 18, parts having the same configuration as the bypass device of FIG. 2 are denoted by the same reference numerals and description thereof is omitted.
  • the bypass device 430 of FIGS. 17 and 18 is different from the bypass device 30 of FIG. 2 in the structure of pressure equalization paths 431 and 432.
  • the pressure equalization path 431 is also in communication with the first space 36A via the oil outlet 35, and substantially connects the first space 36A and the second space 36B.
  • the pressure equalization path 432 in FIG. 18 is formed inside the holder 32, and is a path that connects the discharge hole 5b and the second space 36B. In this case as well, the pressure equalizing path 431 is in communication with the first space 36A via the discharge hole 5b and the oil outlet 35, and substantially connects the first space 36A and the second space 36B. It has become. 17 and 18, as in the case of FIG. 5 described above, the difference between the outer diameter of the slide member 40 and the inner diameter of the holder 32 is made smaller than in the case of FIG. The oil that flows out may be reduced when the oil is blocked.
  • the opening area of the bypass hole 37 can be accurately controlled by the rotational speed ⁇ without depending on the oil pressure. Oil can be supplied to each sliding part without excess or deficiency.
  • FIG. FIG. 19 is a schematic diagram showing Embodiment 6 of the bypass device in the compressor of the present invention.
  • the bypass device will be described with reference to FIG. In the bypass device of FIG. 19, parts having the same configuration as the bypass device of FIG.
  • the bypass device 530 in FIG. 19 is different from the bypass device 30 in FIG. 2 in that a protrusion 531 is provided at the outlet of the bypass hole 37.
  • the housing 31 has a protruding portion 531 protruding from the lower end surface of the holder 32 at the outlet of the bypass hole 37. Then, when the bypass device 30 rotates, a large negative pressure is generated as compared with the case where the bypass hole 37 is not projected near the outlet of the bypass hole 37. By generating a large negative pressure, the bypass hole 37 can be reduced, and the size of the holder 32 can be reduced. That is, the cost and size of the bypass device 30 can be reduced. Even in the present embodiment, since the negative pressure generated at the outlet of the bypass hole 37 changes depending on the rotational speed ⁇ , the bypass hole 37 does not depend on the oil pressure as in the first embodiment. The opening area can be accurately controlled by the rotational speed ⁇ .
  • FIG. 1 illustrates the case where the compressor 1 is a scroll compressor, for example, a vane type compressor or a rotary type compressor may be used.
  • a so-called vertical compressor is illustrated in FIG. 1, it can also be applied to a horizontal compressor.
  • the fixed lid 33 is provided on the other side 31y of the hollow portion 36 is illustrated, the holder 32 and the fixed lid 33 may be integrally formed.
  • the oil is discharged according to the rotational speed ⁇ . If it adjusts, it will not be limited to the said height position, What is necessary is just to be provided in the upstream of the oil path 5a.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

A compressor is provided with a bypass device (30) which is affixed positioned over a discharge hole (5b) in a main shaft (5) and which regulates the amount of oil discharged from the discharge hole. This bypass device has: a housing (31) having formed therein a hollow section (36) into which oil flows from the discharge hole, the housing (31) also having a bypass hole (37) from which the oil having flowed into the hollow section is discharged; a slide member (40) moving over the bypass hole and adjusting the degree of opening of the bypass hole; and a pressing member (41) for pressing the slide member to one side of the housing from the other side thereof. When moved radially by centrifugal force during the rotation of the main shaft, the slide member divides the hollow section into a first space (36A) on the main shaft side and into a second space (36B) on the pressing member side, and a pressure equalization passage (38) for connecting the first space and the second space is formed in the hollow section of the housing.

Description

圧縮機Compressor
 本発明は、例えば冷凍空調装置に用いられる圧縮機に関するものである。 The present invention relates to a compressor used in, for example, a refrigeration air conditioner.
 従来から、圧縮機構への油の供給過多を防止し、油の消費量を減少させるとともに圧縮機の体積効率を向上させるスクロール圧縮機が提案されている(例えば特許文献1参照)。特許文献1には、軸方向に延びる油孔及び油孔を通過する油を主軸の外部に排出させるバイパス孔が形成された主軸と、バイパス孔上に設けられ、主軸の回転運動により発生する遠心力によりバイパス孔を開閉させるスライド弁とを備えたスクロール圧縮機が開示されている。 Conventionally, there has been proposed a scroll compressor that prevents excessive supply of oil to the compression mechanism, reduces oil consumption, and improves the volumetric efficiency of the compressor (see, for example, Patent Document 1). In Patent Document 1, a main shaft in which an oil hole extending in the axial direction and a bypass hole for discharging oil passing through the oil hole to the outside of the main shaft are formed, and a centrifuge that is provided on the bypass hole and is generated by the rotational motion of the main shaft. A scroll compressor including a slide valve that opens and closes a bypass hole by force is disclosed.
特開2000-213480号公報(段落0026-0029、図4)JP 2000-213480 (paragraph 0026-0029, FIG. 4)
 しかしながら、特許文献1のような油排出機構の場合、スライド弁は、遠心力のみならずバイパス孔から排出される油圧力の影響を受ける。スライド弁の開閉動作は回転数のみならず油圧力にも依存するため、バイパス孔から排出される油量の調整が難しいという課題がある。 However, in the case of the oil discharge mechanism as in Patent Document 1, the slide valve is affected not only by centrifugal force but also by the oil pressure discharged from the bypass hole. Since the opening / closing operation of the slide valve depends not only on the rotation speed but also on the oil pressure, there is a problem that it is difficult to adjust the amount of oil discharged from the bypass hole.
 本発明は、上記のような問題点を解決するためになされたものであり、バイパス孔から排出される油量を精度良く調整することができる圧縮機を提供することを目的としている。 The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a compressor capable of accurately adjusting the amount of oil discharged from the bypass hole.
 本発明の圧縮機は、下部に油を貯留する密閉容器と、密閉容器内に収容され、作動流体を圧縮する圧縮機構とを備えた圧縮機であって、圧縮機構に接続され、密閉容器に貯留された油が通る軸方向に延びた油通路及び油通路を通過する油を排出する排出孔が形成された主軸と、主軸に取り付けられ、密閉容器に貯留された油を油通路に供給する油ポンプと、主軸の排出孔上に固定され、排出孔から排出される排油量を調整するバイパス装置とを備え、バイパス装置は、一方側が主軸の排出孔上に固定され他方側が開口しており、排出孔から油が流入する中空部と、中空部に流入された油を排出するバイパス孔とが形成されたハウジングと、中空部内に径方向に移動自在に収容され、バイパス孔上を移動してバイパス孔の開度を調整するスライド部材と、中空部内に収容され、スライド部材をハウジングの他方側から一方側へ付勢する付勢部材と、ハウジングの中空部の他方側の開口に取り付けられ、中空部を密閉する固定蓋とを有し、スライド部材は、主軸の回転時に遠心力により付勢部材側に径方向に移動した際、中空部を主軸側の第1空間と付勢部材側の第2空間とに仕切るものであり、ハウジングの中空部には、第1空間と第2空間とを結ぶ均圧経路が形成されているものである。 A compressor of the present invention is a compressor including a sealed container that stores oil in a lower part and a compression mechanism that is housed in the sealed container and compresses a working fluid, and is connected to the compression mechanism, An oil passage that extends in the axial direction through which the stored oil passes and a main shaft that is formed with a discharge hole that discharges oil passing through the oil passage, and oil that is attached to the main shaft and stored in a sealed container is supplied to the oil passage. An oil pump and a bypass device that is fixed on the discharge hole of the main shaft and adjusts the amount of oil discharged from the discharge hole. The bypass device has one side fixed on the main shaft discharge hole and the other side opened. And a housing in which a hollow part into which oil flows from the discharge hole and a bypass hole through which oil flows into the hollow part is formed, and is accommodated in the hollow part so as to be movable in the radial direction, and moves on the bypass hole. To adjust the opening of the bypass hole A biasing member that is accommodated in the hollow portion and biases the slide member from the other side of the housing to the one side, and a fixed lid that is attached to the opening on the other side of the hollow portion of the housing and seals the hollow portion The slide member is configured to partition the hollow portion into a first space on the main shaft side and a second space on the bias member side when the main shaft rotates in the radial direction due to centrifugal force when the main shaft rotates. In addition, a pressure equalizing path connecting the first space and the second space is formed in the hollow portion of the housing.
 本発明の圧縮機によれば、中空部の第1空間と第2空間とを結ぶ均圧経路を設けることにより、スライド部材の位置は、主軸側から掛かる油圧力の影響を受けず主軸の回転数に応じて決定するため、排出孔からの油の排出量を精度良く調整することができる。 According to the compressor of the present invention, by providing a pressure equalization path that connects the first space and the second space of the hollow portion, the position of the slide member is not affected by the oil pressure applied from the main shaft side, and the main shaft rotates. Since it is determined according to the number, the amount of oil discharged from the discharge hole can be adjusted with high accuracy.
本発明の実施の形態1に係る圧縮機の縦断面模式図である。It is a longitudinal cross-sectional schematic diagram of the compressor which concerns on Embodiment 1 of this invention. 図1のスクロール圧縮機におけるバイパス装置の断面模式図である。It is a cross-sectional schematic diagram of the bypass apparatus in the scroll compressor of FIG. 図2のバイパス装置のバイパス孔の一例を示した模式図である。It is the schematic diagram which showed an example of the bypass hole of the bypass device of FIG. 図2のバイパス装置におけるA-A断面を示す断面図である。FIG. 3 is a cross-sectional view showing an AA cross section in the bypass device of FIG. 2. 図2のバイパス装置におけるA-A断面の別の一例を示す断面図である。FIG. 6 is a cross-sectional view showing another example of the AA cross section in the bypass device of FIG. 2. 図2のバイパス装置の動作例を示す模式図である。It is a schematic diagram which shows the operation example of the bypass apparatus of FIG. 図2のバイパス装置の動作例を示す模式図である。It is a schematic diagram which shows the operation example of the bypass apparatus of FIG. 図1の圧縮機における回転数と給油量との関係を示すグラフである。It is a graph which shows the relationship between the rotation speed in the compressor of FIG. 本発明の実施の形態2に係るバイパス装置の模式図である。It is a schematic diagram of the bypass device according to Embodiment 2 of the present invention. 本発明の圧縮機の実施の形態3に係るバイパス装置のバイパス孔を示した模式図である。It is the schematic diagram which showed the bypass hole of the bypass apparatus which concerns on Embodiment 3 of the compressor of this invention. 本発明の圧縮機の実施の形態3に係るバイパス装置のバイパス孔を示した模式図である。It is the schematic diagram which showed the bypass hole of the bypass apparatus which concerns on Embodiment 3 of the compressor of this invention. 本発明の圧縮機の実施の形態3に係るバイパス装置のバイパス孔を示した模式図である。It is the schematic diagram which showed the bypass hole of the bypass apparatus which concerns on Embodiment 3 of the compressor of this invention. 本発明の圧縮機の実施の形態3に係るバイパス装置のバイパス孔を示した模式図である。It is the schematic diagram which showed the bypass hole of the bypass apparatus which concerns on Embodiment 3 of the compressor of this invention. 本発明の圧縮機の実施の形態3に係るバイパス装置のバイパス孔を示した模式図である。It is the schematic diagram which showed the bypass hole of the bypass apparatus which concerns on Embodiment 3 of the compressor of this invention. 図10から図14のバイパス装置を用いた場合における圧縮機における回転数と給油量との関係を示すグラフである。It is a graph which shows the relationship between the rotation speed in a compressor at the time of using the bypass apparatus of FIGS. 10-14, and oil supply amount. 本発明の実施の形態4に係るバイパス装置の模式図である。It is a schematic diagram of the bypass device which concerns on Embodiment 4 of this invention. 本発明の実施の形態5に係るバイパス装置の模式図である。It is a schematic diagram of the bypass device which concerns on Embodiment 5 of this invention. 本発明の実施の形態5に係るバイパス装置の模式図である。It is a schematic diagram of the bypass device which concerns on Embodiment 5 of this invention. 本発明の実施の形態6に係るバイパス装置の模式図である。It is a schematic diagram of the bypass device which concerns on Embodiment 6 of this invention.
実施の形態1.
 以下、図面を参照しながら本発明の圧縮機について詳細に説明する。図1は本発明の実施の形態1に係る圧縮機の縦断面模式図である。図1の圧縮機1は、いわゆる縦型のスクロール圧縮機であって、例えば冷媒等の作動ガスをスクロール状の圧縮室において圧縮して吐出するものである。圧縮機1は、密閉容器2、主軸5、油ポンプ7、モータ8、圧縮機構10を備えている。
Embodiment 1 FIG.
Hereinafter, the compressor of the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic longitudinal sectional view of a compressor according to Embodiment 1 of the present invention. A compressor 1 in FIG. 1 is a so-called vertical scroll compressor, and compresses and discharges a working gas such as a refrigerant in a scroll-like compression chamber, for example. The compressor 1 includes a sealed container 2, a main shaft 5, an oil pump 7, a motor 8, and a compression mechanism 10.
 密閉容器2は、例えば円筒形状に形成されたものであって耐圧性を有している。密閉容器2の側面には作動ガスを密閉容器2内に取り込むための吸入配管2Aが接続されており、上面には圧縮した作動ガスを密閉容器2から吐き出す吐出配管2Bが接続されている。密閉容器2の上部側にはフレーム3が固定されており、下部側には主軸5を保持するサブフレーム4が固定されている。また、密閉容器2の底部には潤滑油を貯留する油溜め2Cが形成されている。 The sealed container 2 is formed in a cylindrical shape, for example, and has pressure resistance. A suction pipe 2A for taking the working gas into the sealed container 2 is connected to the side surface of the sealed container 2, and a discharge pipe 2B for discharging the compressed working gas from the sealed container 2 is connected to the upper surface. A frame 3 is fixed to the upper side of the sealed container 2, and a sub-frame 4 that holds the main shaft 5 is fixed to the lower side. An oil sump 2 </ b> C for storing lubricating oil is formed at the bottom of the sealed container 2.
 主軸5は、密閉容器2内においてフレーム3及びサブフレーム4に回転自在に支持されている。主軸5の上部は、ベアリング等の主軸受3aによりフレーム3に回転自在に支持されており、主軸5の下部は、ベアリング等の副軸受4aによりサブフレーム4に回転自在に支持されている。また、主軸5の上端には主軸5に対し偏心した状態で偏心軸部6が取付けられている。さらに、主軸5内には、油が流通する油通路5aが形成されており、油通路5aを介して主軸受3a及び副軸受4a等の各摺動部位に油が供給される。 The main shaft 5 is rotatably supported by the frame 3 and the subframe 4 in the sealed container 2. An upper portion of the main shaft 5 is rotatably supported on the frame 3 by a main bearing 3a such as a bearing, and a lower portion of the main shaft 5 is rotatably supported on the sub frame 4 by a sub bearing 4a such as a bearing. Further, an eccentric shaft portion 6 is attached to the upper end of the main shaft 5 in an eccentric state with respect to the main shaft 5. Further, an oil passage 5a through which oil flows is formed in the main shaft 5, and oil is supplied to each sliding portion such as the main bearing 3a and the sub bearing 4a through the oil passage 5a.
 油ポンプ7は、主軸5の下端に取り付けられており、主軸5内の油通路5aに密閉容器2の油溜め2Cに貯留された油を供給するものである。油ポンプ7は、例えば回転容積式ポンプからなっており、主軸5の回転とともに油ポンプ7が作動するとともに、主軸5の回転数が大きくなるにつれて油通路5aに供給する油量が多くなるような特性を有している。 The oil pump 7 is attached to the lower end of the main shaft 5, and supplies oil stored in the oil sump 2 </ b> C of the sealed container 2 to the oil passage 5 a in the main shaft 5. The oil pump 7 is composed of, for example, a rotary positive displacement pump. The oil pump 7 operates as the main shaft 5 rotates, and the amount of oil supplied to the oil passage 5a increases as the rotation speed of the main shaft 5 increases. It has characteristics.
 モータ8は、主軸5を回転駆動させるものであって、モータロータ8A及びモータステータ8Bを有している。モータステータ8Bは密閉容器2に固定されており、モータロータ8Aは主軸5に固定されている。そして、インバータ60から電力が供給されたとき、主軸5及びモータロータ8Aがモータステータ8Bに対し回転する。 The motor 8 rotates the main shaft 5 and has a motor rotor 8A and a motor stator 8B. The motor stator 8B is fixed to the sealed container 2, and the motor rotor 8A is fixed to the main shaft 5. When electric power is supplied from the inverter 60, the main shaft 5 and the motor rotor 8A rotate with respect to the motor stator 8B.
 圧縮機構10は、冷媒等の作動ガスを圧縮して吐出するものであって、揺動スクロール11及び固定スクロール12を備えている。揺動スクロール11は、フレーム3に公転運動可能に支持されており、揺動スクロール11の下面には筒状の揺動軸受11aが設けられている。揺動軸受11aには主軸5の偏心軸部6が挿入されており、偏心軸部6の回転により揺動スクロール11が公転運動を行う。なお、フレーム3と揺動スクロール11との間には、揺動スクロール11の自転を防止しながら揺動運動を与えるために、フレーム3に揺動自在に支持されたオルダムリング(図示せず)が設けられている。さらに、主軸5と揺動スクロール11との間にはスライダ9が設けられており、スライダ9は作動ガスの圧力による力と揺動スクロール11に作用する遠心力とにより揺動半径が大きくなる方向に移動し、主軸5の回転を公転運動に変換する可変クランク機構を構成している。 The compression mechanism 10 compresses and discharges working gas such as refrigerant, and includes a swing scroll 11 and a fixed scroll 12. The swing scroll 11 is supported by the frame 3 so as to be capable of revolving, and a cylindrical swing bearing 11 a is provided on the lower surface of the swing scroll 11. The eccentric shaft portion 6 of the main shaft 5 is inserted into the rocking bearing 11 a, and the rocking scroll 11 performs a revolving motion by the rotation of the eccentric shaft portion 6. An Oldham ring (not shown) is supported between the frame 3 and the orbiting scroll 11 so as to be swingable on the frame 3 in order to give a swinging motion while preventing the swinging scroll 11 from rotating. Is provided. Further, a slider 9 is provided between the main shaft 5 and the orbiting scroll 11, and the slider 9 has a direction in which the oscillation radius increases due to the force of the working gas and the centrifugal force acting on the orbiting scroll 11. And a variable crank mechanism for converting the rotation of the main shaft 5 into a revolving motion.
 固定スクロール12は、揺動スクロール11の上部に配置されたものであってフレーム3に固定されている。固定スクロール12の中心には作動ガスを吐出するための吐出口12aが形成されており、吐出口12a上には圧縮された作動ガスの逆流を防止する逆止弁14が配置されている。この逆止弁14は弁押さえ15により可動範囲を規制されており、逆止弁14及び弁押さえ15はそれらを弁ボルト16により固定スクロール12に固定されている。 The fixed scroll 12 is arranged on the top of the swing scroll 11 and is fixed to the frame 3. A discharge port 12a for discharging the working gas is formed at the center of the fixed scroll 12, and a check valve 14 for preventing a back flow of the compressed working gas is disposed on the discharge port 12a. The check valve 14 has a movable range restricted by a valve presser 15, and the check valve 14 and the valve presser 15 are fixed to the fixed scroll 12 by a valve bolt 16.
 揺動スクロール11の上面及び固定スクロール12の下面にはそれぞれ渦巻き体が形成されており、揺動スクロール11及び固定スクロール12は渦巻き体が向き合うように配置されている。そして、固定スクロール12の渦巻部および揺動スクロール11の渦巻部との間に圧縮室が形成される。 A spiral body is formed on each of the upper surface of the swing scroll 11 and the lower surface of the fixed scroll 12, and the swing scroll 11 and the fixed scroll 12 are disposed so that the spiral bodies face each other. A compression chamber is formed between the spiral portion of the fixed scroll 12 and the spiral portion of the orbiting scroll 11.
 さらに、圧縮機1は、フレーム3と密閉容器2の下部とを接続する油戻し管20を有している。油戻し管20には、フレーム3と揺動スクロール11とで形成される空間(フレーム内空間)に流れる油が密閉容器2の下部へ向かって流れる。また、主軸5には、揺動スクロール11及びスライダ9により生じるアンバランスを相殺する第1バランサ21と第2バランサ22が設けられている。 Furthermore, the compressor 1 has an oil return pipe 20 that connects the frame 3 and the lower part of the sealed container 2. In the oil return pipe 20, oil flowing in a space (space in the frame) formed by the frame 3 and the swing scroll 11 flows toward the lower part of the sealed container 2. The main shaft 5 is also provided with a first balancer 21 and a second balancer 22 that cancel out the imbalance caused by the orbiting scroll 11 and the slider 9.
 次に、図1を参照して圧縮機1の動作例について説明する。インバータ60からモータ8へ電力が供給されることにより主軸5が矢印R方向に回転する。すると、主軸5の回転により偏心軸部6が回転し、揺動スクロール11が揺動運動(公転運動)を行う。このとき、揺動スクロール11と固定スクロール12との間に形成された圧縮室で作動ガスが圧縮される。なお、作動ガスは吸入管18から密閉容器2内に取込まれ、フレーム3に設けられたポート(図示せず)を通過し圧縮室に取込まれる。そして、圧縮された作動ガスは逆止弁14を押し上げて固定スクロール12の吐出口12aから密閉容器2の間の空間に吐き出された後、吐出配管2Bを通過して圧縮機1の外部に吐出される。 Next, an operation example of the compressor 1 will be described with reference to FIG. When power is supplied from the inverter 60 to the motor 8, the main shaft 5 rotates in the arrow R direction. Then, the eccentric shaft portion 6 is rotated by the rotation of the main shaft 5, and the swing scroll 11 performs swing motion (revolution motion). At this time, the working gas is compressed in a compression chamber formed between the swing scroll 11 and the fixed scroll 12. The working gas is taken into the sealed container 2 from the suction pipe 18, passes through a port (not shown) provided in the frame 3, and is taken into the compression chamber. The compressed working gas pushes up the check valve 14 and is discharged from the discharge port 12a of the fixed scroll 12 into the space between the sealed containers 2, and then passes through the discharge pipe 2B and is discharged to the outside of the compressor 1. Is done.
 図1を参照して圧縮機1の動作時における油の流れについて説明する。まず、主軸5の回転に伴い油ポンプ7が作動し、主軸5の油通路5aに油が供給される。この油が油通路5aからサブフレーム4と主軸5との間の副軸受4a、フレーム3と主軸5との間の主軸受3a及び揺動スクロール11とスライダ9との間の揺動軸受11aにそれぞれ給油される。副軸受4aに給油された油は副軸受4aを潤滑した後、密閉容器2の下部に戻される。主軸受3aに給油された油は主軸受3aを潤滑した後、フレーム3の下部と上部とに分岐する。下部に流れた油はモータロータ8Aとモータステータ8Bとの間の隙間およびモータステータ8Bに設けられた通路(図示せず)を通り、密閉容器2下部に戻される。一方、上部に流れた油及び揺動軸受11aを潤滑した後の油は、揺動スクロール11とフレーム3とで形成される空間(フレーム3内の空間)に流れ、大部分の油は油戻し管20を通り、密閉容器2の下部に戻される。残りの一部の油は揺動スクロール11のスラスト面とフレーム3との間を通り、圧縮室に取込まれた後、圧縮機1の外部に吐出される。なお、フレーム内の油は揺動スクロール11の揺動軸受11aにより攪拌される。 The oil flow during the operation of the compressor 1 will be described with reference to FIG. First, as the main shaft 5 rotates, the oil pump 7 operates to supply oil to the oil passage 5 a of the main shaft 5. This oil passes from the oil passage 5 a to the sub bearing 4 a between the sub frame 4 and the main shaft 5, the main bearing 3 a between the frame 3 and the main shaft 5, and the rocking bearing 11 a between the rocking scroll 11 and the slider 9. Each is refueled. The oil supplied to the sub-bearing 4a lubricates the sub-bearing 4a and then returns to the lower part of the sealed container 2. The oil supplied to the main bearing 3a lubricates the main bearing 3a, and then branches into a lower part and an upper part of the frame 3. The oil that has flowed to the lower portion passes through a gap between the motor rotor 8A and the motor stator 8B and a passage (not shown) provided in the motor stator 8B, and is returned to the lower portion of the hermetic container 2. On the other hand, the oil that has flowed to the top and the oil after lubricating the rocking bearing 11a flows into the space formed by the rocking scroll 11 and the frame 3 (the space in the frame 3), and most of the oil is returned to the oil. It passes through the tube 20 and is returned to the lower part of the sealed container 2. The remaining part of the oil passes between the thrust surface of the orbiting scroll 11 and the frame 3, is taken into the compression chamber, and is then discharged to the outside of the compressor 1. The oil in the frame is agitated by the rocking bearing 11 a of the rocking scroll 11.
 上述のように、油ポンプ7は、例えば回転容積式ポンプであり、主軸5の回転数が大きくなるにつれて油通路5aに供給される油量は多くなる。したがって、圧縮機1の高回転時に給油量が過大となり、圧縮機1の外部に吐出される油量、つまり油上がり量の増加に伴い冷凍能力低下及び性能低下を招いてしまう場合がある。そこで、図1の圧縮機1には、油通路5aを通る油を途中で排出して油の供給量を調整するバイパス装置30が設けられている。 As described above, the oil pump 7 is, for example, a rotary positive displacement pump, and the amount of oil supplied to the oil passage 5a increases as the rotational speed of the main shaft 5 increases. Therefore, the amount of oil supply becomes excessive when the compressor 1 rotates at a high speed, and as the amount of oil discharged to the outside of the compressor 1, that is, the amount of oil rising increases, the refrigerating capacity and performance may decrease. Therefore, the compressor 1 of FIG. 1 is provided with a bypass device 30 that discharges the oil passing through the oil passage 5a on the way and adjusts the supply amount of the oil.
 図2は図1の圧縮機におけるバイパス装置の断面模式図、図3は図2のバイパス装置のバイパス孔の一例を示した模式図であり、図2及び図3を参照してバイパス装置30について説明する。図2において、主軸5には油通路5aから油を排出するための排出孔5bが例えば第2バランサ22の下部に形成されており、バイパス装置30は主軸5の排出孔5b上に固定されている。このバイパス装置30は、ハウジング31、スライド部材40、付勢部材41を備えている。 2 is a schematic cross-sectional view of the bypass device in the compressor of FIG. 1, FIG. 3 is a schematic view showing an example of a bypass hole of the bypass device of FIG. 2, and the bypass device 30 will be described with reference to FIGS. explain. In FIG. 2, the main shaft 5 is formed with a discharge hole 5b for discharging oil from the oil passage 5a, for example, below the second balancer 22, and the bypass device 30 is fixed on the discharge hole 5b of the main shaft 5. Yes. The bypass device 30 includes a housing 31, a slide member 40, and an urging member 41.
 ハウジング31は、一方側31xが主軸5に固定され他方側31yが固定蓋33により閉塞された中空部36を有するホルダ32からなっている。ホルダ32は、例えば円盤状に形成されており、その一部に径方向(図2及び図3の矢印X方向)に向かって延びる中空部36が形成されている。この中空部36は、一方側31xが主軸5に固定され他方側31yが開口した形状を有している。そして、一方側31xには排出孔5bに通じる油流出口35が形成されており、他方側31y側に固定蓋33がホルダ32内を密閉するように取り付けられている。したがって、中空部36には排出孔5bから油通路5aを通る油が油流出口35から流入されることになる。 The housing 31 includes a holder 32 having a hollow portion 36 having one side 31x fixed to the main shaft 5 and the other side 31y closed by a fixing lid 33. The holder 32 is formed in a disk shape, for example, and a hollow portion 36 extending in the radial direction (the arrow X direction in FIGS. 2 and 3) is formed in a part of the holder 32. The hollow portion 36 has a shape in which one side 31x is fixed to the main shaft 5 and the other side 31y is opened. An oil outlet 35 leading to the discharge hole 5b is formed on one side 31x, and a fixed lid 33 is attached to the other side 31y so as to seal the inside of the holder 32. Therefore, the oil passing through the oil passage 5 a from the discharge hole 5 b flows into the hollow portion 36 from the oil outlet 35.
 また、ホルダ32において、中空部36の下面側には、例えば断面円形状の貫通孔からなるバイパス孔37が形成されており、バイパス孔37は中空部36に流入した油を外部に排出する。なお、固定蓋33は、ホルダ32内の密閉容器2の圧力よりも高い圧力になった油がバイパス孔37以外から密閉容器2に排出されることを防止している。 Further, in the holder 32, a bypass hole 37 made of a through hole having a circular cross section, for example, is formed on the lower surface side of the hollow portion 36, and the bypass hole 37 discharges the oil flowing into the hollow portion 36 to the outside. The fixed lid 33 prevents oil having a pressure higher than the pressure of the sealed container 2 in the holder 32 from being discharged to the sealed container 2 from other than the bypass hole 37.
 スライド部材40は、中空部36内に径方向(図2及び図3の矢印X方向)に移動自在に収容され、バイパス孔37上を移動してバイパス孔37の開度を調整する弁として機能するものである。具体的には、スライド部材40は、初期状態においてバイパス孔37上に位置決めされており、バイパス孔37を閉塞した状態になっている。そして、主軸5が回転運動した際、スライド部材40は遠心力により中空部36の他方側31y(外側)に移動し、バイパス孔37の開口面積がスライド部材40の位置により変化するようになっている。 The slide member 40 is accommodated in the hollow portion 36 so as to be movable in the radial direction (arrow X direction in FIGS. 2 and 3), and functions as a valve that moves on the bypass hole 37 and adjusts the opening degree of the bypass hole 37. To do. Specifically, the slide member 40 is positioned on the bypass hole 37 in the initial state, and is in a state of closing the bypass hole 37. When the main shaft 5 rotates, the slide member 40 moves to the other side 31y (outside) of the hollow portion 36 by centrifugal force, and the opening area of the bypass hole 37 changes depending on the position of the slide member 40. Yes.
 付勢部材41は、例えばコイルスプリングからなっており、固定蓋33に取り付けられた状態で中空部36内に収容されている。付勢部材41は、主軸5が回転した際に、スライド部材40をハウジング31の他方側31yから一方側31xへ付勢するものである。なお、図2においては、例えば付勢部材41が自然長の状態において、スライド部材40が油流出口35及びバイパス孔37を塞ぐ位置に位置決めされている場合について例示している。 The urging member 41 is made of, for example, a coil spring and is accommodated in the hollow portion 36 in a state of being attached to the fixed lid 33. The biasing member 41 biases the slide member 40 from the other side 31y of the housing 31 to the one side 31x when the main shaft 5 rotates. In FIG. 2, for example, the case where the slide member 40 is positioned at a position closing the oil outlet 35 and the bypass hole 37 in the state where the urging member 41 is in a natural length is illustrated.
 ここで、主軸5が回転した際、スライド部材40は遠心力により径方向(図2の矢印X1方向)に移動し、中空部36を主軸5側の第1空間36Aと付勢部材41側の第2空間36Bとに仕切る(図3及び図6参照)。このとき、ハウジング31の中空部36内には、第1空間36Aと第2空間36Bとを結ぶ均圧経路38が形成されている。図4は、図2のバイパス装置におけるA-A断面を示す断面図である。図4に示すように、均圧経路38は、ハウジング31(ホルダ32)の内面とスライド部材40の外面との間に形成された隙間により形成されている。なお、この隙間は、スライド部材40の外径とホルダ32の内径の差によって生じるものである。 Here, when the main shaft 5 rotates, the slide member 40 moves in the radial direction (in the direction of the arrow X1 in FIG. 2) by centrifugal force, and the hollow portion 36 is moved between the first space 36A on the main shaft 5 side and the biasing member 41 side. Partitioning into the second space 36B (see FIGS. 3 and 6). At this time, a pressure equalizing path 38 that connects the first space 36A and the second space 36B is formed in the hollow portion 36 of the housing 31. 4 is a cross-sectional view showing an AA cross section of the bypass device of FIG. As shown in FIG. 4, the pressure equalization path 38 is formed by a gap formed between the inner surface of the housing 31 (holder 32) and the outer surface of the slide member 40. This gap is caused by the difference between the outer diameter of the slide member 40 and the inner diameter of the holder 32.
 なお、隙間は、この摺動部を潤滑油で気密を保つような狭い隙間ではなく、そのような狭い隙間よりある程度広いことが望ましく、たとえば0.025~0.1mm程度とすると良い。隙間が0.025mmより小さいと、油が隙間を速やかに流通できず、スライド部材40が移動した際の第2空間36Bの圧力変化と主軸5からの圧力変化の影響が大きくなる。隙間が0.1mmより大きいと、スライド部材40がバイパス孔37を塞いでいても、隙間を通じてバイパス孔37から流出する油が多くなってしまう。なお、図2においてスライド部材40の油流出口35を塞ぐ部分にも隙間が形成されて均圧経路38を形成するようにされる。そのような隙間はスライド部材40の表面または油流出口35が形成された表面に微細な凹凸、溝を形成することで作製できる。 Note that the gap is not a narrow gap that keeps the sliding portion airtight with lubricating oil, but is preferably somewhat wider than such a narrow gap, for example, about 0.025 to 0.1 mm. If the gap is smaller than 0.025 mm, the oil cannot flow quickly through the gap, and the influence of the pressure change in the second space 36B and the pressure change from the main shaft 5 when the slide member 40 moves increases. If the gap is larger than 0.1 mm, even if the slide member 40 closes the bypass hole 37, more oil flows out of the bypass hole 37 through the gap. In FIG. 2, a gap is also formed at a portion of the slide member 40 that closes the oil outlet 35 to form a pressure equalizing path 38. Such a gap can be produced by forming fine irregularities and grooves on the surface of the slide member 40 or the surface on which the oil outlet 35 is formed.
 図5は、図2のバイパス装置におけるA-A断面の別の一例を示す断面図である。図5に示すように、均圧経路38は、ホルダ32の内面とスライド部材40の外面との間に隙間と、ホルダ32側のバイパス孔37とは異なる位置に設けられた溝とにより形成されている。このように、均圧経路38の開口面積を大きくすることにより、第1空間36A側の油圧力が急激に変化した場合であっても、第1空間36Aと第2空間36Bとのスライド部材40の均圧を確実に行うことができる。なお、ホルダ32側に溝を設けた場合について例示しているが、スライド部材40側に溝を設けるようにしてもよい。 FIG. 5 is a cross-sectional view showing another example of the AA cross section in the bypass device of FIG. As shown in FIG. 5, the pressure equalization path 38 is formed by a gap between the inner surface of the holder 32 and the outer surface of the slide member 40 and a groove provided at a position different from the bypass hole 37 on the holder 32 side. ing. As described above, by increasing the opening area of the pressure equalization path 38, the slide member 40 between the first space 36 </ b> A and the second space 36 </ b> B even when the oil pressure on the first space 36 </ b> A side changes suddenly. The pressure equalization can be reliably performed. In addition, although illustrated about the case where a groove | channel is provided in the holder 32 side, you may make it provide a groove | channel in the slide member 40 side.
 これにより、バイパス孔37と連通しない位置に形成された溝によって均圧経路38の開口面積が十分確保されるので、図4の場合と比べてスライド部材40の外径とホルダ32の内径の差を小さくすることができ、スライド部材40がバイパス孔37を塞いでいる場合に、流出する油を少なくすることができる。なお、スライド部材40の油流出口35を塞ぐ部分に油流出口35から連通する溝が形成されるようにするとよい。 Thereby, since the opening area of the pressure equalizing path 38 is sufficiently secured by the groove formed at a position not communicating with the bypass hole 37, the difference between the outer diameter of the slide member 40 and the inner diameter of the holder 32 compared to the case of FIG. The oil flowing out can be reduced when the slide member 40 blocks the bypass hole 37. A groove communicating from the oil outlet 35 may be formed in a portion of the slide member 40 that closes the oil outlet 35.
 次に、図1から図5を参照して圧縮機1の運転中におけるバイパス装置30の動作について説明する。圧縮機1が運転を開始した際、主軸5が矢印R方向に回転する。そして、主軸5の回転と共にバイパス装置30が矢印R方向に回転する。すると、スライド部材40には径方向に外側(図2の矢印X1方向)への遠心力が働き、スライド部材40がハウジング31の中空部36内を径方向の外側(図2の矢印X1方向)へ向かって移動する。このとき、中空部36へ流入した油は第1空間36A側から均圧経路38を通過して第2空間36B側へ流れる。これにより、スライド部材40の前面と後面がほぼ同じ圧力(均圧)になる。したがって、スライド部材40の位置は油圧力の影響を受けず、スライド部材40の遠心力と付勢部材41による弾性力とによりスライド部材40の位置が決定される。 Next, the operation of the bypass device 30 during the operation of the compressor 1 will be described with reference to FIGS. When the compressor 1 starts operation, the main shaft 5 rotates in the arrow R direction. Then, the bypass device 30 rotates in the arrow R direction along with the rotation of the main shaft 5. Then, a centrifugal force acting radially outward (in the direction of arrow X1 in FIG. 2) acts on the slide member 40, and the slide member 40 radially outwards in the hollow portion 36 of the housing 31 (in the direction of arrow X1 in FIG. 2). Move towards. At this time, the oil flowing into the hollow portion 36 flows from the first space 36A side through the pressure equalization path 38 to the second space 36B side. Thereby, the front surface and the rear surface of the slide member 40 have substantially the same pressure (equal pressure). Therefore, the position of the slide member 40 is not affected by the oil pressure, and the position of the slide member 40 is determined by the centrifugal force of the slide member 40 and the elastic force of the biasing member 41.
 ここで、スライド部材40に作用する遠心力Fcfは下記式(1)で表される。なお、式(1)において、mはスライド部材40の質量、rは主軸5の中心からスライド部材40の重心までの径方向(矢印X方向)の距離、ωは主軸5の角速度である。 Here, the centrifugal force Fcf acting on the slide member 40 is expressed by the following formula (1). In equation (1), m is the mass of the slide member 40, r is the distance in the radial direction (arrow X direction) from the center of the main shaft 5 to the center of gravity of the slide member 40, and ω is the angular velocity of the main shaft 5.
  Fcf=m×r×ω ・・・(1) Fcf = m × r × ω 2 (1)
 一方、スライド部材40には付勢部材41から主軸5側への遠心力Fcfとは逆方向の力が作用する。付勢部材41から作用する力は下記式(2)で表される。なお、式(1)において、kは付勢部材41のばね定数、xは付勢部材41の変形量であって、スライド部材40の径方向(矢印X方向)の移動距離である。 On the other hand, a force in the direction opposite to the centrifugal force Fcf from the urging member 41 to the main shaft 5 acts on the slide member 40. The force acting from the urging member 41 is represented by the following formula (2). In Equation (1), k is a spring constant of the urging member 41, x is a deformation amount of the urging member 41, and is a moving distance of the slide member 40 in the radial direction (arrow X direction).
  Fs=k×x    ・・・(2) Fs = kxx (2)
 スライド部材40の位置は、式(1)のスライド部材40に作用する遠心力Fcfと、式(2)の付勢部材41から作用する力Fsとが釣合う条件で決定される。このように、圧縮機1の運転中において、スライド部材40の位置は、排出孔5bから第1空間36Aに流れる油の油圧力に依存せず、主軸5の回転数ωにより決定される。 The position of the slide member 40 is determined under a condition in which the centrifugal force Fcf acting on the slide member 40 of Expression (1) and the force Fs acting on the biasing member 41 of Expression (2) are balanced. Thus, during the operation of the compressor 1, the position of the slide member 40 is determined by the rotational speed ω of the main shaft 5 without depending on the oil pressure of the oil flowing from the discharge hole 5b to the first space 36A.
 なお、式(2)において、付勢部材41が自然長の状態でスライド部材40に取り付けられている場合について例示しているが、スライド部材40に予荷重を掛けた状態で取り付けられていてもよい。すなわち、付勢部材41は所定量だけ変形させた状態でホルダ32内に設置されており、スライド部材40に予荷重を作用させている。この場合、式(2)は下記式(3)のようになる。なお、式(3)において、x_preは、予荷重を与えるための付勢部材41の初期変形量である。 In addition, in Formula (2), although illustrated about the case where the biasing member 41 is attached to the slide member 40 in a natural length state, even if it is attached in a state where a preload is applied to the slide member 40 Good. That is, the urging member 41 is installed in the holder 32 in a state of being deformed by a predetermined amount, and a preload is applied to the slide member 40. In this case, the expression (2) becomes the following expression (3). In Expression (3), x_pre is an initial deformation amount of the urging member 41 for applying a preload.
  Fs = k×(x+x_pre)  ・・・(3) Fs = k × (x + x_pre) (3)
 このように、スライド部材40に予荷重を作用させることで、バイパス孔37と油通路5aとの連通が開始し排油が開始される主軸5の回転数ωを任意に調整することができる。なお、上述したスライド部材40に予荷重を作用させる場合のみならず、スライド部材40の質量m及び付勢部材41のばね定数kによっても排油が開始される主軸5の回転数ωを任意に調整することができる。 Thus, by applying a preload to the slide member 40, the communication between the bypass hole 37 and the oil passage 5a is started, and the rotational speed ω of the main shaft 5 at which oil draining is started can be arbitrarily adjusted. In addition, not only when applying a preload to the slide member 40 mentioned above, but also with the mass m of the slide member 40 and the spring constant k of the biasing member 41, the rotational speed ω of the main shaft 5 at which oil drainage is started is arbitrarily set. Can be adjusted.
 さらに、バイパス孔37の形成位置及び開口の大きさによってもバイパス装置30の排油特性を任意に設定することができる。例えば、バイパス孔37の形成位置が主軸5側に近くなるほど排油が開始される回転数ωは小さくなり、バイパス孔37の形成位置が主軸5側に遠くなるほど、排出が開始される回転数ω1は大きくなる。また、バイパス孔37の開口が小さいほど排油量は小さくなり、バイパス孔37の開口が大きいほど排油量は大きくなる。 Furthermore, the oil drainage characteristic of the bypass device 30 can be arbitrarily set by the formation position of the bypass hole 37 and the size of the opening. For example, as the position where the bypass hole 37 is formed is closer to the main shaft 5, the rotational speed ω at which drainage is started becomes smaller, and as the position where the bypass hole 37 is formed is farther from the main shaft 5, the rotational speed ω1 is started. Becomes bigger. Further, the smaller the opening of the bypass hole 37, the smaller the amount of oil drained, and the larger the opening of the bypass hole 37, the larger the amount of oil discharged.
 図6及び図7は図2のバイパス装置30の動作例を示す模式図、図8は図1の圧縮機における回転数と油通路からの給油量との関係を示すグラフであり、図2から図8を参照してバイパス装置30の動作例について説明する。まず、圧縮機1の運転開始時において、図2に示すように、スライド部材40は主軸5側に位置してバイパス孔37を覆っている。主軸5の回転数ωが大きくなるに従いスライド部材40に作用する遠心力Fcfが大きくなっていき、スライド部材40は主軸5から離れる方向(矢印X1方向)に移動していく。回転数ωが所定の回転数ω1になるまでの期間は、スライド部材40がバイパス孔37上に位置している期間であり、バイパス孔37が油通路5aに連通せず、バイパス装置30から排油は行われない。したがって、油ポンプ7で給油量の副軸受4aへの給油を除いた全てが揺動軸受11aと主軸受3aとに給油される。 6 and 7 are schematic diagrams showing an operation example of the bypass device 30 of FIG. 2, and FIG. 8 is a graph showing the relationship between the rotational speed and the amount of oil supplied from the oil passage in the compressor of FIG. An example of the operation of the bypass device 30 will be described with reference to FIG. First, as shown in FIG. 2, at the start of operation of the compressor 1, the slide member 40 is located on the main shaft 5 side and covers the bypass hole 37. As the rotational speed ω of the main shaft 5 increases, the centrifugal force Fcf acting on the slide member 40 increases, and the slide member 40 moves in a direction away from the main shaft 5 (arrow X1 direction). The period until the rotational speed ω reaches the predetermined rotational speed ω1 is a period in which the slide member 40 is positioned on the bypass hole 37, and the bypass hole 37 does not communicate with the oil passage 5 a and is discharged from the bypass device 30. No oil is done. Accordingly, everything except the amount of oil supplied to the auxiliary bearing 4a by the oil pump 7 is supplied to the rocking bearing 11a and the main bearing 3a.
 一方、回転数ωが所定の回転数ω1よりも大きくなったとき、スライド部材40の移動によりバイパス孔37の一部が開口する(図6参照)。すると、バイパス孔37が排出孔5bを介して主軸5の油通路5aに連通し、油がバイパス孔37から主軸5の外側に排油される。よって、油通路5aのうち排出孔5bよりも上側への給油量が減少し、排出孔5bよりも上部に位置する揺動軸受11a及び主軸受3aに給油される油が減少する。例えば図8において、回転数ω1よりも大きい回転数ω2のとき、排油量OC分の油がバイパス装置30から排出される。さらに、回転数ωが大きくなると、図7に示すように、スライド部材40が主軸5から離れる方向に移動し、バイパス孔37のすべてが開口する。すると、バイパス孔37のすべてが主軸5の油通路5aに通じて油の排出量が増加し、油通路5aからの給油量が減少する。 On the other hand, when the rotational speed ω becomes larger than the predetermined rotational speed ω1, a part of the bypass hole 37 is opened by the movement of the slide member 40 (see FIG. 6). Then, the bypass hole 37 communicates with the oil passage 5a of the main shaft 5 through the discharge hole 5b, and the oil is discharged from the bypass hole 37 to the outside of the main shaft 5. Therefore, the amount of oil supplied to the upper side of the oil passage 5a from the discharge hole 5b decreases, and the oil supplied to the rocking bearing 11a and the main bearing 3a located above the discharge hole 5b decreases. For example, in FIG. 8, when the rotational speed ω <b> 2 is larger than the rotational speed ω <b> 1, oil corresponding to the oil discharge amount OC is discharged from the bypass device 30. Further, when the rotational speed ω increases, the slide member 40 moves in a direction away from the main shaft 5 as shown in FIG. 7, and all of the bypass holes 37 are opened. Then, all of the bypass holes 37 lead to the oil passage 5a of the main shaft 5 and the amount of oil discharged increases, and the amount of oil supplied from the oil passage 5a decreases.
 上記実施の形態1によれば、給油量を調整するバイパス装置30において、中空部36内の第1空間36Aと第2空間36Bとが均圧経路38により通じていることにより、中空部36内におけるスライド部材40の位置は、油圧力には依存せず回転数ωによって定まることになる。このため、回転数ωによりバイパス孔37の開口面積を精度良く制御することができるため、駆動状況に応じて過不足なく油を各摺動部位に供給することができる。これにより、フレーム3内の空間で攪拌される油が少なくなり、攪拌損失が減少する。また、揺動スクロール11のスラスト面とフレーム3間を通る油も減少し、圧縮機1の外部へ吐出される油も減るため、油上がり量を抑制することができる。 According to the first embodiment, in the bypass device 30 that adjusts the amount of oil supply, the first space 36A and the second space 36B in the hollow portion 36 communicate with each other through the pressure equalization path 38, so that the inside of the hollow portion 36 The position of the slide member 40 is determined by the rotational speed ω without depending on the oil pressure. For this reason, since the opening area of the bypass hole 37 can be accurately controlled by the rotational speed ω, the oil can be supplied to each sliding portion without excess or deficiency according to the driving situation. As a result, less oil is stirred in the space in the frame 3 and stirring loss is reduced. Further, the amount of oil passing between the thrust surface of the orbiting scroll 11 and the frame 3 is reduced, and the amount of oil discharged to the outside of the compressor 1 is also reduced, so that the amount of oil rising can be suppressed.
 すなわち、従来のように、主軸の排出通路にボールバルブが弾性ベルトを用いて押し付けられている場合、主軸が回転した際にボールバルブには遠心力とともに排出通路からの油圧力が掛かる。したがって、排油量は、例えば粘性等の油の状態によって異なる場合があり、回転数に応じて排油量及び給油量の調整を行うことが難しい。一方、図2のバイパス装置30のように均圧経路38が設けられている場合、スライド部材40の主軸5側へ掛かる油圧力と付勢部材41側へ掛かる油圧力とが同一になる。よって、油圧力に依存することなくバイパス孔37の開口面積を回転数ωにより精度良く制御することができるため、回転数ωに合わせて過不足なく油を各摺動部位に供給することができる。 That is, when the ball valve is pressed against the discharge passage of the main shaft using an elastic belt as in the prior art, when the main shaft rotates, oil pressure from the discharge passage is applied to the ball valve together with centrifugal force. Therefore, the oil discharge amount may vary depending on the state of the oil such as viscosity, for example, and it is difficult to adjust the oil discharge amount and the oil supply amount according to the rotational speed. On the other hand, when the pressure equalizing path 38 is provided as in the bypass device 30 of FIG. 2, the oil pressure applied to the main shaft 5 side of the slide member 40 and the oil pressure applied to the biasing member 41 side are the same. Therefore, since the opening area of the bypass hole 37 can be accurately controlled by the rotational speed ω without depending on the oil pressure, the oil can be supplied to each sliding portion without excess or deficiency in accordance with the rotational speed ω. .
実施の形態2.
 図9は本発明の圧縮機におけるバイパス装置の実施の形態2を示す模式図であり、図9を参照してバイパス装置について説明する。なお、図9のバイパス装置130において図2のバイパス装置30と同一の構成を有する部位には同一の符号を付してその説明を省略する。図9のバイパス装置130が図2のバイパス装置30と異なる点は、均圧経路138の構造である。
Embodiment 2. FIG.
FIG. 9 is a schematic diagram showing Embodiment 2 of the bypass device in the compressor of the present invention. The bypass device will be described with reference to FIG. 9, parts having the same configuration as the bypass device 30 in FIG. 2 are denoted by the same reference numerals and description thereof is omitted. 9 differs from the bypass device 30 of FIG. 2 in the structure of the pressure equalization path 138.
 図9において、均圧経路138は、スライド部材40の内部に設けられた貫通穴により形成されている。これにより、均圧経路138の開口面積を大きくすることができるため、油の圧力が急激に変化しても、中空部36の第1空間36Aと第2空間36Bとの油の圧力をほぼ同一にすることができる。よって、油圧力に依存することなくバイパス孔37の開口面積を回転数ωにより精度良く制御することができる。この構造では、スライド部材40の外径とホルダ32の内径との間の摺動部を潤滑油で気密を保つような狭い隙間としてもよいため、スライド部材40がバイパス孔37を塞いでいる場合に、流出する油を少なくすることができる。またスライド部材40の油流出口35に隙間を形成する必要もない。なお、図9において、均圧経路138がスライド部材40に設けられた貫通穴により形成されている場合について例示しているが、隙間(図2参照)と上述した貫通穴との双方から形成されたものであってもよい。 9, the pressure equalizing path 138 is formed by a through hole provided in the slide member 40. Thereby, since the opening area of the pressure equalization path 138 can be increased, even if the oil pressure changes rapidly, the oil pressure in the first space 36A and the second space 36B of the hollow portion 36 is substantially the same. Can be. Therefore, the opening area of the bypass hole 37 can be accurately controlled by the rotational speed ω without depending on the oil pressure. In this structure, since the sliding portion between the outer diameter of the slide member 40 and the inner diameter of the holder 32 may be a narrow gap that keeps airtight with lubricating oil, the slide member 40 blocks the bypass hole 37. In addition, it is possible to reduce the spilled oil. Further, it is not necessary to form a gap at the oil outlet 35 of the slide member 40. 9 illustrates the case where the pressure equalizing path 138 is formed by a through hole provided in the slide member 40, it is formed from both the gap (see FIG. 2) and the above-described through hole. It may be.
実施の形態3.
 図10から図14は本発明の圧縮機の実施の形態3に係るバイパス装置のバイパス孔を示した模式図であり、図10から図14を参照してバイパス装置230A~230Eについて説明する。なお、図10から図14のバイパス装置230A~230Eにおいて図3のバイパス装置30と同一の構成を有する部位には同一の符号を付してその説明を省略する。図10から図14のバイパス装置230A~230Eが図3のバイパス装置30と異なる点は排出孔の形状及び構造である。
Embodiment 3 FIG.
10 to 14 are schematic views showing bypass holes of the bypass device according to Embodiment 3 of the compressor of the present invention. The bypass devices 230A to 230E will be described with reference to FIGS. 10 to FIG. 14, parts having the same configuration as the bypass device 30 of FIG. 3 are denoted by the same reference numerals and description thereof is omitted. The bypass devices 230A to 230E shown in FIGS. 10 to 14 are different from the bypass device 30 shown in FIG. 3 in the shape and structure of the discharge holes.
 図10のバイパス装置230Aにおいて、ハウジング231には円形孔からなる2つのバイパス孔237a、237bが設けられている。なお、2つのバイパス孔237a、237bが径方向(矢印X方向)に配列されている場合について例示しているが、円周方向に並んで配列されていてもよい。また、図11のバイパス装置230Bにおいて、ハウジング231には円形孔からなる3つのバイパス孔237c、237d、237eが設けられている。なお、図11のバイパス装置230Bにおいて、3つのバイパス孔237c、237d、237eが設けられている場合について例示しているが、これに限らず4つ以上設けられていてもよい。 In the bypass device 230A of FIG. 10, the housing 231 is provided with two bypass holes 237a and 237b made of circular holes. In addition, although the case where the two bypass holes 237a and 237b are arranged in the radial direction (arrow X direction) is illustrated, they may be arranged side by side in the circumferential direction. Further, in the bypass device 230B of FIG. 11, the housing 231 is provided with three bypass holes 237c, 237d, and 237e formed of circular holes. In addition, although the case where three bypass holes 237c, 237d, and 237e are provided is illustrated in the bypass device 230B of FIG. 11, the present invention is not limited thereto, and four or more may be provided.
 図12のバイパス装置230Cにおいて、楕円孔からなる1つのバイパス孔237fが設けられている。図13のバイパス装置230Dにおいて、矩形孔からなる1つのバイパス孔237gが設けられている。図14のバイパス装置230Eにおいて、三角形孔からなる1つのバイパス孔237hが設けられている。なお、多角形状であってもよい。さらに、これらの形状の排出孔が図10及び図11に示すように複数設けられていてもよい。 In the bypass device 230C of FIG. 12, one bypass hole 237f made of an elliptical hole is provided. In the bypass device 230D of FIG. 13, one bypass hole 237g made of a rectangular hole is provided. In the bypass device 230E of FIG. 14, one bypass hole 237h made of a triangular hole is provided. It may be polygonal. Furthermore, a plurality of discharge holes of these shapes may be provided as shown in FIGS.
 実施の形態3によれば、実施の形態1と同様、油圧力に依存することなくバイパス孔37の開口面積を回転数ωにより精度良く制御することができるとともに、さらにバイパス孔37の形状及び数に応じて任意の給油特性を得ることができる。例えば図15は図10から図14のバイパス装置を用いた圧縮機における回転数と給油量との関係を示すグラフである。図15において、回転数ωが所定の回転数ω1よりも大きい範囲では、回転数ωが大きくなるほど排油量OCが大きくなり、給油量が一定になっている。これにより、高回転時における油上がり量を確実に抑制することができる。 According to the third embodiment, as in the first embodiment, the opening area of the bypass hole 37 can be accurately controlled by the rotational speed ω without depending on the oil pressure, and the shape and number of the bypass hole 37 are further increased. Depending on the desired oiling characteristics can be obtained. For example, FIG. 15 is a graph showing the relationship between the rotational speed and the amount of oil supply in the compressor using the bypass device of FIGS. In FIG. 15, in the range where the rotational speed ω is larger than the predetermined rotational speed ω1, the oil discharge amount OC increases as the rotational speed ω increases, and the oil supply amount becomes constant. Thereby, the amount of oil rising at the time of high rotation can be suppressed reliably.
実施の形態4.
 図16は本発明の圧縮機におけるバイパス装置の実施の形態4を示す模式図であり、図16を参照してバイパス装置について説明する。なお、図16のバイパス装置において図2のバイパス装置と同一の構成を有する部位には同一の符号を付してその説明を省略する。図16のバイパス装置330が図2のバイパス装置30と異なる点は、バイパス装置330が第2バランサとして機能している点である。
Embodiment 4 FIG.
FIG. 16 is a schematic diagram showing Embodiment 4 of the bypass device in the compressor of the present invention. The bypass device will be described with reference to FIG. In the bypass device of FIG. 16, parts having the same configuration as the bypass device of FIG. 2 are denoted by the same reference numerals and description thereof is omitted. The bypass device 330 of FIG. 16 differs from the bypass device 30 of FIG. 2 in that the bypass device 330 functions as a second balancer.
 すなわち、図16において、バイパス装置330はバランサとしての機能を有するものであって、ハウジング31は円周方向において半径の長さが異なる形状を有している。そして、バイパス装置330は、図1における第2バランサ22の代わりに揺動スクロール11及びスライダ9により生じるアンバランスを相殺する。 That is, in FIG. 16, the bypass device 330 has a function as a balancer, and the housing 31 has a shape in which the length of the radius is different in the circumferential direction. The bypass device 330 cancels the imbalance caused by the orbiting scroll 11 and the slider 9 instead of the second balancer 22 in FIG.
 実施の形態4によれば、第2バランサ22を設ける必要がなくなるため、少ない部品でバイパス装置30を圧縮機1に備えることができ、低コスト化及び小型化ができる。また、この場合であっても、実施の形態1と同様、油圧力に依存することなくバイパス孔37の開口面積を回転数ωにより精度良く制御することができる。 According to the fourth embodiment, since it is not necessary to provide the second balancer 22, the bypass device 30 can be provided in the compressor 1 with a small number of parts, and the cost and size can be reduced. Even in this case, similarly to the first embodiment, the opening area of the bypass hole 37 can be accurately controlled by the rotational speed ω without depending on the oil pressure.
実施の形態5.
 図17及び図18は本発明の圧縮機におけるバイパス装置の実施の形態5を示す模式図であり、図17及び図18を参照してバイパス装置について説明する。なお、図17及び図18のバイパス装置において図2のバイパス装置と同一の構成を有する部位には同一の符号を付してその説明を省略する。図17及び図18のバイパス装置430が図2のバイパス装置30と異なる点は、均圧経路431、432の構造である。
Embodiment 5 FIG.
17 and 18 are schematic views showing Embodiment 5 of the bypass device in the compressor of the present invention. The bypass device will be described with reference to FIGS. 17 and 18. 17 and 18, parts having the same configuration as the bypass device of FIG. 2 are denoted by the same reference numerals and description thereof is omitted. The bypass device 430 of FIGS. 17 and 18 is different from the bypass device 30 of FIG. 2 in the structure of pressure equalization paths 431 and 432.
 図17の均圧経路431は、ホルダ32の内部に形成されており、油流出口35と第2空間36Bとを連通した経路になっている。このとき、均圧経路431は、油流出口35を介して第1空間36Aにも連通した状態になっており、実質的に第1空間36Aと第2空間36Bとを結んだものになっている。図18の均圧経路432は、ホルダ32の内部に形成されており、排出孔5bと第2空間36Bとを連通した経路になっている。この場合も、均圧経路431は、排出孔5b及び油流出口35を介して第1空間36Aにも連通した状態になっており、実質的に第1空間36Aと第2空間36Bとを結んだものになっている。なお、図17及び図18においても、上述した図5の場合と同様、図4の場合と比べてスライド部材40の外径とホルダ32の内径の差を小さくし、スライド部材40がバイパス孔37を塞いでいる場合に、流出する油を少なくするようにしてもよい。 17 is formed inside the holder 32, and is a path that connects the oil outlet 35 and the second space 36B. At this time, the pressure equalization path 431 is also in communication with the first space 36A via the oil outlet 35, and substantially connects the first space 36A and the second space 36B. Yes. The pressure equalization path 432 in FIG. 18 is formed inside the holder 32, and is a path that connects the discharge hole 5b and the second space 36B. In this case as well, the pressure equalizing path 431 is in communication with the first space 36A via the discharge hole 5b and the oil outlet 35, and substantially connects the first space 36A and the second space 36B. It has become. 17 and 18, as in the case of FIG. 5 described above, the difference between the outer diameter of the slide member 40 and the inner diameter of the holder 32 is made smaller than in the case of FIG. The oil that flows out may be reduced when the oil is blocked.
 図17や図18のようにバイパス装置430を構成しても、油圧力に依存することなくバイパス孔37の開口面積を回転数ωにより精度良く制御することができるため、回転数ωに合わせて過不足なく油を各摺動部位に供給することができる。 Even if the bypass device 430 is configured as shown in FIGS. 17 and 18, the opening area of the bypass hole 37 can be accurately controlled by the rotational speed ω without depending on the oil pressure. Oil can be supplied to each sliding part without excess or deficiency.
実施の形態6.
 図19は本発明の圧縮機におけるバイパス装置の実施の形態6を示す模式図であり、図19を参照してバイパス装置について説明する。なお、図19のバイパス装置において図2のバイパス装置と同一の構成を有する部位には同一の符号を付してその説明を省略する。図19のバイパス装置530が図2のバイパス装置30と異なる点は、バイパス孔37の出口に突出部531を有する点である。
Embodiment 6 FIG.
FIG. 19 is a schematic diagram showing Embodiment 6 of the bypass device in the compressor of the present invention. The bypass device will be described with reference to FIG. In the bypass device of FIG. 19, parts having the same configuration as the bypass device of FIG. The bypass device 530 in FIG. 19 is different from the bypass device 30 in FIG. 2 in that a protrusion 531 is provided at the outlet of the bypass hole 37.
 図19において、ハウジング31は、バイパス孔37の出口にホルダ32の下端面より突出した突出部531を有している。すると、バイパス装置30が回転した際、バイパス孔37の出口付近にバイパス孔37を突出させない場合と比較して大きな負圧が生じる。大きな負圧が生じることでバイパス孔37を小さくすることができ、ホルダ32のサイズを小さくできる。即ち、バイパス装置30の低コスト化および小型化ができる。また、本実施の形態であっても、バイパス孔37の出口で生じる負圧は回転数ωに依存して変化するため、実施の形態1と同様、油圧力に依存することなくバイパス孔37の開口面積を回転数ωにより精度よく制御することができる。 In FIG. 19, the housing 31 has a protruding portion 531 protruding from the lower end surface of the holder 32 at the outlet of the bypass hole 37. Then, when the bypass device 30 rotates, a large negative pressure is generated as compared with the case where the bypass hole 37 is not projected near the outlet of the bypass hole 37. By generating a large negative pressure, the bypass hole 37 can be reduced, and the size of the holder 32 can be reduced. That is, the cost and size of the bypass device 30 can be reduced. Even in the present embodiment, since the negative pressure generated at the outlet of the bypass hole 37 changes depending on the rotational speed ω, the bypass hole 37 does not depend on the oil pressure as in the first embodiment. The opening area can be accurately controlled by the rotational speed ω.
 本発明の実施形態は、上記実施形態に限定されない。たとえば、図1において、圧縮機1がスクロール圧縮機である場合について例示しているが、例えばベーン型の圧縮機であってもよいし、ロータリー型の圧縮機であってもよい。さらに、図1においていわゆる縦型の圧縮機について例示しているが、横型の圧縮機についても適用することができる。さらに、中空部36の他方側31yに固定蓋33が設けられている場合について例示しているが、ホルダ32と固定蓋33とが一体的に形成されたものであってもよい。 The embodiment of the present invention is not limited to the above embodiment. For example, although FIG. 1 illustrates the case where the compressor 1 is a scroll compressor, for example, a vane type compressor or a rotary type compressor may be used. Furthermore, although a so-called vertical compressor is illustrated in FIG. 1, it can also be applied to a horizontal compressor. Furthermore, although the case where the fixed lid 33 is provided on the other side 31y of the hollow portion 36 is illustrated, the holder 32 and the fixed lid 33 may be integrally formed.
 また、バイパス装置30、130、230A~230E、330が第2バランサ22の下側もしくは第2バランサ22の位置に設けられている場合について例示しているが、回転数ωに応じて排油の調整を行うものであれば当該高さ位置に限定されるものではなく、油通路5aの上流側に設けられていればよい。 In addition, although the case where the bypass devices 30, 130, 230A to 230E, 330 are provided below the second balancer 22 or at the position of the second balancer 22 is illustrated, the oil is discharged according to the rotational speed ω. If it adjusts, it will not be limited to the said height position, What is necessary is just to be provided in the upstream of the oil path 5a.
 1 圧縮機、2 密閉容器、2A 吸入配管、2B 吐出配管、2C 油溜め、3 フレーム、3a 主軸受、4 サブフレーム、4a 副軸受、5 主軸、5a 油通路、5b 排出孔、6 偏心軸部、7 油ポンプ、8 モータ、8A モータロータ、8B モータステータ、9 スライダ、10 圧縮機構、11 揺動スクロール、11a 揺動軸受、12 固定スクロール、12a 吐出口、14 逆止弁、15 弁押さえ、16 弁ボルト、18 吸入管、20 油戻し管、21 第1バランサ、22 第2バランサ、30、130、230A~230E、330、430、530 バイパス装置、31、231 ハウジング、31x 一方側、31y 他方側、32 ホルダ、33 固定蓋、35 油流出口、36 中空部、36A 第1空間、36B 第2空間、37 バイパス孔、38、431、432 均圧経路、40 スライド部材、41 付勢部材、60 インバータ、138 均圧経路、237a~237h バイパス孔、531 突出部、Fcf 遠心力、Fs 力、k 定数、m 質量、OC 排油量、ω、ω1、ω2 回転数。 1 compressor, 2 sealed container, 2A suction pipe, 2B discharge pipe, 2C oil sump, 3 frame, 3a main bearing, 4 subframe, 4a subbearing, 5 main shaft, 5a oil passage, 5b discharge hole, 6 eccentric shaft 7, oil pump, 8 motor, 8A motor rotor, 8B motor stator, 9 slider, 10 compression mechanism, 11 rocking scroll, 11a rocking bearing, 12 fixed scroll, 12a discharge port, 14 check valve, 15 valve presser, 16 Valve bolt, 18 suction pipe, 20 oil return pipe, 21 1st balancer, 22 2nd balancer, 30, 130, 230A-230E, 330, 430, 530 bypass device, 31,231 housing, 31x one side, 31y other side , 32 holder, 33 fixed lid, 35 oil outlet, 36 hollow part, 6A 1st space, 36B 2nd space, 37 bypass hole, 38, 431, 432 pressure equalization path, 40 slide member, 41 biasing member, 60 inverter, 138 pressure equalization path, 237a-237h bypass hole, 531 protrusion, Fcf centrifugal force, Fs force, k constant, m mass, OC oil drainage amount, ω, ω1, ω2 rotation speed.

Claims (12)

  1.  下部に油を貯留する密閉容器と、前記密閉容器内に収容され、作動流体を圧縮する圧縮機構とを備えた圧縮機であって、
     前記圧縮機構に接続され、前記密閉容器に貯留された油が通る軸方向に延びた油通路及び前記油通路を通過する油を排出する排出孔が形成された主軸と、
     前記主軸に取り付けられ、前記密閉容器に貯留された油を前記油通路に供給する油ポンプと、
     前記主軸の前記排出孔上に固定され、前記排出孔から排出される排油量を調整するバイパス装置と
     を備え、
     前記バイパス装置は、
     一方側が前記主軸の前記排出孔上に固定され他方側が開口しており、前記排出孔から油が流入する中空部と、前記中空部に流入された油を排出するバイパス孔とが形成されたハウジングと、
     前記中空部内に径方向に移動自在に収容され、前記バイパス孔上を移動して前記バイパス孔の開度を調整するスライド部材と、
     前記中空部内に収容され、前記スライド部材を前記ハウジングの他方側から一方側へ付勢する付勢部材と、
     前記ハウジングの前記中空部の他方側の開口に取り付けられ、前記中空部を密閉する固定蓋と
     を有し、
     前記スライド部材は、前記主軸の回転時に遠心力により前記付勢部材側に径方向に移動した際、前記中空部を前記主軸側の第1空間と前記付勢部材側の第2空間とに仕切るものであり、
     前記ハウジングの前記中空部には、前記第1空間と前記第2空間とを結ぶ均圧経路が形成されている圧縮機。
    A compressor including a hermetic container for storing oil in a lower part and a compression mechanism housed in the hermetic container and compressing a working fluid;
    A main shaft formed with an oil passage connected to the compression mechanism and extending in an axial direction through which oil stored in the sealed container passes, and a discharge hole for discharging oil passing through the oil passage;
    An oil pump attached to the main shaft and supplying oil stored in the sealed container to the oil passage;
    A bypass device fixed on the discharge hole of the main shaft and adjusting the amount of oil discharged from the discharge hole;
    The bypass device is:
    A housing in which one side is fixed on the discharge hole of the main shaft and the other side is open, and a hollow part through which oil flows from the discharge hole and a bypass hole through which oil flows into the hollow part are formed When,
    A slide member that is accommodated in the hollow portion so as to be movable in the radial direction, moves on the bypass hole, and adjusts the opening degree of the bypass hole;
    A biasing member housed in the hollow portion and biasing the slide member from the other side of the housing to one side;
    A fixed lid that is attached to an opening on the other side of the hollow portion of the housing and seals the hollow portion;
    The sliding member partitions the hollow portion into a first space on the main shaft side and a second space on the biasing member side when the slide member moves in the radial direction to the biasing member side by centrifugal force when the main shaft rotates. Is,
    A compressor in which a pressure equalizing path that connects the first space and the second space is formed in the hollow portion of the housing.
  2.  前記均圧経路は、前記ハウジングの内面と前記スライド部材の外面との間に形成された隙間により形成されている請求項1に記載の圧縮機。 The compressor according to claim 1, wherein the pressure equalization path is formed by a gap formed between an inner surface of the housing and an outer surface of the slide member.
  3.  前記均圧経路は、前記スライド部材に設けられた貫通穴により形成されている請求項1又は2に記載の圧縮機。 The compressor according to claim 1 or 2, wherein the pressure equalizing path is formed by a through hole provided in the slide member.
  4.  前記バイパス孔は、円形状に形成されている請求項1~3のいずれか1項に記載の圧縮機。 The compressor according to any one of claims 1 to 3, wherein the bypass hole is formed in a circular shape.
  5.  前記バイパス孔は、矩形状に形成されている請求項1~3のいずれか1項に記載の圧縮機。 The compressor according to any one of claims 1 to 3, wherein the bypass hole is formed in a rectangular shape.
  6.  前記バイパス孔は、複数形成されている請求項1~5のいずれか1項に記載の圧縮機。 The compressor according to any one of claims 1 to 5, wherein a plurality of the bypass holes are formed.
  7.  前記スライド部材は、前記付勢部材から前記主軸側に予荷重が付与された状態で前記ハウジング内に収容されている請求項1~6のいずれか1項に記載の圧縮機。 The compressor according to any one of claims 1 to 6, wherein the slide member is accommodated in the housing in a state in which a preload is applied from the biasing member to the main shaft side.
  8.  前記バイパス装置は、前記主軸が回転した際のアンバランスを相殺するバランサとして機能するものである請求項1~7のいずれか1項に記載の圧縮機。 The compressor according to any one of claims 1 to 7, wherein the bypass device functions as a balancer that cancels an unbalance when the main shaft rotates.
  9.  前記圧縮機構は、前記主軸に接続され揺動運動を行う揺動スクロールと、前記揺動スクロールに固定スクロールとを有するものである請求項1~8のいずれか1項に記載の圧縮機。 The compressor according to any one of claims 1 to 8, wherein the compression mechanism includes an orbiting scroll that is connected to the main shaft and performs an orbiting motion, and the orbiting scroll has a fixed scroll.
  10.  前記ハウジングには、前記排出孔に通じる油流出口が設けられており、
     前記均圧経路は、前記油流出口と前記第2空間とを連通した経路である請求項1~9のいずれか1項に記載の圧縮機。
    The housing is provided with an oil outlet that leads to the discharge hole,
    The compressor according to any one of claims 1 to 9, wherein the pressure equalization path is a path that connects the oil outlet and the second space.
  11.  前記均圧経路は、前記排出孔と前記第2空間とを連通した経路である請求項1~9のいずれか1項に記載の圧縮機。 The compressor according to any one of claims 1 to 9, wherein the pressure equalization path is a path that connects the discharge hole and the second space.
  12.  前記バイパス孔の出口には、前記ハウジングの下端面よりも突出した突出部が設けられている請求項1~11のいずれか1項に記載の圧縮機。 The compressor according to any one of claims 1 to 11, wherein a protrusion projecting from a lower end surface of the housing is provided at an outlet of the bypass hole.
PCT/JP2015/057315 2014-05-26 2015-03-12 Compressor WO2015182214A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016523187A JP6180630B2 (en) 2014-05-26 2015-03-12 Compressor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-107894 2014-05-26
JP2014107894 2014-05-26

Publications (1)

Publication Number Publication Date
WO2015182214A1 true WO2015182214A1 (en) 2015-12-03

Family

ID=54698556

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/057315 WO2015182214A1 (en) 2014-05-26 2015-03-12 Compressor

Country Status (2)

Country Link
JP (1) JP6180630B2 (en)
WO (1) WO2015182214A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020083309A1 (en) * 2018-10-24 2020-04-30 艾默生环境优化技术(苏州)有限公司 Oil supply mechanism of rotating machinery and rotating machinery having oil supply mechanism
WO2020083310A1 (en) * 2018-10-24 2020-04-30 艾默生环境优化技术(苏州)有限公司 Oil supply mechanism of rotary machine and rotary machine
CN111089056A (en) * 2018-10-24 2020-05-01 艾默生环境优化技术(苏州)有限公司 Oil supply mechanism for rotary machine and rotary machine having the same
CN111089057A (en) * 2018-10-24 2020-05-01 艾默生环境优化技术(苏州)有限公司 Oil supply mechanism for rotary machine and rotary machine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH056188U (en) * 1991-04-15 1993-01-29 三菱電機株式会社 Rotary compressor
JPH0733829B2 (en) * 1986-02-03 1995-04-12 松下電器産業株式会社 Scroll compressor
JPH0799151B2 (en) * 1988-06-22 1995-10-25 三菱電機株式会社 Scroll compressor
JP2003254263A (en) * 2002-03-04 2003-09-10 Daikin Ind Ltd Scroll compressor
US20090041603A1 (en) * 2007-08-02 2009-02-12 Danfoss Commercial Compressors Refrigerating compressor with variable-speed coils

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0733829B2 (en) * 1986-02-03 1995-04-12 松下電器産業株式会社 Scroll compressor
JPH0799151B2 (en) * 1988-06-22 1995-10-25 三菱電機株式会社 Scroll compressor
JPH056188U (en) * 1991-04-15 1993-01-29 三菱電機株式会社 Rotary compressor
JP2003254263A (en) * 2002-03-04 2003-09-10 Daikin Ind Ltd Scroll compressor
US20090041603A1 (en) * 2007-08-02 2009-02-12 Danfoss Commercial Compressors Refrigerating compressor with variable-speed coils

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020083309A1 (en) * 2018-10-24 2020-04-30 艾默生环境优化技术(苏州)有限公司 Oil supply mechanism of rotating machinery and rotating machinery having oil supply mechanism
WO2020083310A1 (en) * 2018-10-24 2020-04-30 艾默生环境优化技术(苏州)有限公司 Oil supply mechanism of rotary machine and rotary machine
CN111089056A (en) * 2018-10-24 2020-05-01 艾默生环境优化技术(苏州)有限公司 Oil supply mechanism for rotary machine and rotary machine having the same
CN111089057A (en) * 2018-10-24 2020-05-01 艾默生环境优化技术(苏州)有限公司 Oil supply mechanism for rotary machine and rotary machine
EP3872348A4 (en) * 2018-10-24 2022-08-10 Emerson Climate Technologies (Suzhou) Co., Ltd. Oil supply mechanism of rotating machinery and rotating machinery having oil supply mechanism
US11885335B2 (en) 2018-10-24 2024-01-30 Copeland Climate Technologies (Suzhou) Co. Ltd. Oil supply mechanism of rotating machinery and rotating machinery having oil supply mechanism

Also Published As

Publication number Publication date
JP6180630B2 (en) 2017-08-16
JPWO2015182214A1 (en) 2017-04-20

Similar Documents

Publication Publication Date Title
US10815994B2 (en) Mutual rotating scroll compressor
CN106062369B (en) Scroll compressor having a discharge port
JP5006444B2 (en) Compressor and oil supply structure thereof
JP6180630B2 (en) Compressor
JP6300829B2 (en) Rotary compressor
JP7075407B2 (en) Scroll compressor
JP2007138868A (en) Scroll compressor
JP6555543B2 (en) Scroll compressor
JP2008031920A (en) Rotary compressor
JP5455763B2 (en) Scroll compressor, refrigeration cycle equipment
JPS63109291A (en) Scroll compressor
WO2017158809A1 (en) Compressor
JP2008038616A (en) Rotary compressor
JP2020045778A (en) Compressor
JP7051005B2 (en) Compressor
JP2000027776A (en) Scroll type fluid machinery
CN106662105B (en) Scroll compressor having a discharge port
JP4726914B2 (en) Scroll fluid machinery
JP6972391B2 (en) Scroll compressor
JP7262010B2 (en) scroll compressor
KR102191566B1 (en) Scroll compressor improved oil separating efficiency
JP2989375B2 (en) Scroll type fluid machine
JP2014141887A (en) Scroll compressor
KR101201905B1 (en) Scroll compressor with function for adjusting oil supply quantity
JP2005344537A (en) Scroll compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15798921

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016523187

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15798921

Country of ref document: EP

Kind code of ref document: A1