WO2015178304A1 - 導電シート、タッチパネル装置、および、表示装置 - Google Patents

導電シート、タッチパネル装置、および、表示装置 Download PDF

Info

Publication number
WO2015178304A1
WO2015178304A1 PCT/JP2015/064012 JP2015064012W WO2015178304A1 WO 2015178304 A1 WO2015178304 A1 WO 2015178304A1 JP 2015064012 W JP2015064012 W JP 2015064012W WO 2015178304 A1 WO2015178304 A1 WO 2015178304A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive pattern
direction conductive
pattern
wiring pattern
touch panel
Prior art date
Application number
PCT/JP2015/064012
Other languages
English (en)
French (fr)
Inventor
洋樹 牧野
野間 幹弘
朋稔 辻岡
北川 大二
小川 裕之
杉田 靖博
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US15/312,129 priority Critical patent/US10175836B2/en
Publication of WO2015178304A1 publication Critical patent/WO2015178304A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04164Connections between sensors and controllers, e.g. routing lines between electrodes and connection pads
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04111Cross over in capacitive digitiser, i.e. details of structures for connecting electrodes of the sensing pattern where the connections cross each other, e.g. bridge structures comprising an insulating layer, or vias through substrate
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display

Definitions

  • the present invention relates to a conductive sheet (for example, a touch panel) used for a touch panel device, a display device with a touch panel, or the like.
  • a conductive sheet for example, a touch panel
  • the touch panel device is a device that can input information to the device by touching the touch panel surface with a finger or a pen.
  • capacitive touch panel devices with good detection sensitivity and excellent operability have been used in various devices.
  • a capacitive touch panel device that can accurately detect the coordinates of a finger or pen in contact with the touch panel surface is often used.
  • the capacitive touch panel device has a plurality of drive lines and a plurality of sense lines. Each drive line is provided with a plurality of X-axis direction sense electrodes, and each sense line is provided with a plurality of Y-axis direction sense electrodes.
  • a drive pulse signal is sequentially output to the drive line, and an electric field change between the X-axis direction sense electrode and the Y-axis direction sense electrode is detected.
  • a finger or a pen touches the touch panel surface. To detect the coordinates.
  • a display device with a touch panel in order to output a drive pulse to the sense electrode of the touch panel, an outer peripheral portion of a region where the touch panel is arranged so that a wiring pattern for electrical connection with the sense electrode of the touch panel is not conspicuous A region colored with black or the like is provided.
  • FIG. 15 shows a schematic configuration diagram of a touch panel device 900 realized by using the technique disclosed in Patent Document 1. As shown in FIG. 15, the X axis and the Y axis are set.
  • the touch panel device 900 includes a substrate 901, a touch panel TP9, and a terminal group 902.
  • the touch panel TP9 is provided with X-axis direction sense electrodes X91 to X94 and Y-axis direction sense electrodes Y91 to Y94.
  • the terminal group 95 includes X-axis direction sense electrodes X91 to X94, connected X-axis direction sense electrode terminals Tx91 to Tx94, and Y-axis direction sense electrodes Y91 to Y94, respectively.
  • the touch panel device 900 has a wiring pattern (from the connection point Cx91 to the connection point) for connecting the X-axis direction sense electrodes X91 to X94 and the X-axis direction sense electrode terminals Tx91 to Tx94.
  • connection point Cx91 The wiring pattern extending from the connection point Cx91 to the connection point Ce91 is electrically connected to the X-axis direction sense electrode X91 at the connection point Cx91, and at the connection point Ce91, the X-axis direction sense electrode terminal Tx91 and the substrate. They are connected via wiring provided on 901.
  • connection point Cx92 The wiring pattern extending from the connection point Cx92 to the connection point Ce92 is electrically connected to the X-axis direction sense electrode X92 at the connection point Cx92, and the X-axis direction sense electrode terminal Tx92 and the substrate at the connection point Ce92. They are connected via wiring provided on 901.
  • connection point Cx93 The wiring pattern extending from the connection point Cx93 to the connection point Ce93 is electrically connected to the X-axis direction sense electrode X93 at the connection point Cx93, and at the connection point Ce93, the X-axis direction sense electrode terminal Tx93 and the substrate. They are connected via wiring provided on 901.
  • connection point Cx94 The wiring pattern extending from the connection point Cx94 to the connection point Ce94 is electrically connected to the X-axis direction sense electrode X94 at the connection point Cx94, and at the connection point Ce94, the X-axis direction sense electrode terminal Tx94 and the substrate. They are connected via wiring provided on 901.
  • the wiring pattern extending from the connection point Cx91 to the connection point Ce91 is a boundary line on the wiring pattern side of the wiring pattern and the Y-axis direction sense electrode Y91 in a region close to the Y-axis direction sense electrode Y91.
  • the wiring pattern extending from the connection point Cx91 to the connection point Ce91 and the Y-axis direction sense electrode Y91 are long and substantially parallel in a state of being close to each other (with a region formed of an insulator (or dielectric) interposed therebetween).
  • the parasitic capacitance generated by the wiring pattern extending from the connection point Cx91 to the connection point Ce91 and the Y-axis direction sense electrode Y91 is increased.
  • the touch panel device 900 since the wiring pattern for connecting to the X-axis direction sense electrode is provided in the touch panel TP9, the dead space in the outer peripheral portion of the touch panel can be reduced.
  • the wiring pattern for connecting to the X-axis direction sense electrode is long and substantially parallel to the Y-axis direction sense electrode.
  • the parasitic capacitance to be increased.
  • a large noise caused by parasitic capacitance is generated in the sense signal from the X-axis direction sense electrode connected to the wiring pattern having a substantially parallel state and the sense signal from the Y-axis direction sense electrode adjacent to the wiring pattern.
  • Easy to be superimposed As a result, the performance deterioration of the touch panel is observed in which the response speed of the signal for detecting the touch position becomes slow. Therefore, in view of the above problems, the present invention has an object to realize a conductive sheet, a touch panel device, and a display device that can reduce the dead space in the outer peripheral portion of the touch panel and have high-precision touch panel sensitivity. To do.
  • the first configuration includes N (N: a natural number of 2 or more) X-direction conductive patterns, M (M: a natural number of 2 or more) Y-direction conductive patterns, and a terminal portion. And a wiring pattern.
  • Each of N (N: natural number of 2 or more) X-direction conductive patterns is an X-direction connection that electrically connects a plurality of X-direction electrode portions arranged in the first direction and adjacent X-direction electrode portions. Part.
  • Each of M (M: natural number of 2 or more) Y-direction conductive patterns electrically connects a plurality of Y-direction electrode portions arranged in a second direction intersecting the first direction and adjacent Y-direction electrode portions. And a Y-direction connecting portion connected to the.
  • the terminal portion includes a terminal for electrically connecting to each of the X direction conductive pattern and the Y direction conductive pattern.
  • the wiring pattern electrically connects the X direction conductive pattern and the terminal of the terminal portion corresponding to the X direction conductive pattern.
  • a region between the X direction electrode portion adjacent to one side in the first direction of the X direction electrode portion is defined as a Y direction conductive pattern region, and the other side of the X direction electrode portion in the first direction.
  • the area between the X direction electrode part adjacent to the wiring pattern area is a wiring pattern area
  • the Y direction conductive pattern is arranged in the Y direction conductive pattern area
  • the wiring pattern is arranged in the wiring pattern area.
  • the present invention it is possible to realize a conductive sheet, a touch panel device, and a display device having a highly accurate touch panel sensitivity while being able to reduce the dead space in the outer peripheral portion of the touch panel.
  • the schematic block diagram of the touchscreen TP which is an example of the electrically conductive sheet which concerns on 1st Embodiment.
  • the figure which expanded and expanded partially the area
  • FIG. The figure which expanded and showed connection area
  • region AR_X19 of FIG. The figure which expanded and showed area
  • FIG. 1 shows a schematic configuration diagram of a touch panel device 900 realized by using the technique disclosed in Patent Document 1.
  • FIG. 1 is a schematic configuration diagram (example) of a touch panel TP that is an example of a conductive sheet according to the first embodiment. Specifically, FIG. 1 is a plan view of the touch panel TP.
  • FIG. 2 is an enlarged view of a part of the area AR1 in the plan view of the touch panel TP in FIG.
  • FIG. 3 is a diagram schematically showing an enlarged partial area AR2 of the plan view of the touch panel TP of FIG.
  • the electrode portion, the connection portion, and the wiring pattern are drawn as a pattern having a polygonal shape.
  • the touch panel TP includes a substrate 1, X-direction conductive patterns X1 to X20 formed on the substrate 1, Y-direction conductive patterns Y1 to Y11 formed on the substrate 1, and a wiring pattern xa1. To xa10, xb1 to xb10, and a terminal portion 2.
  • the substrate 1 is made of a material having insulating properties and high light transmittance (for example, colorless and transparent resin, glass, plastic, PET (polyethylene terephthalate), etc.).
  • the thickness of the substrate 1 is preferably a thickness that can sufficiently transmit light from the display screen when the substrate 1 is disposed so as to cover the display screen.
  • the substrate 1 has a display area 11 and a wiring area 12 as shown in FIG.
  • the display area 11 is an area where X-direction conductive patterns X1 to X20, Y-direction conductive patterns Y1 to Y11, and wiring patterns xa1 to xa10 and xb1 to xb10 are formed.
  • the wiring region 12 includes the terminal portion 2, the wiring connecting the terminals of the terminal portion 2 and the Y-direction conductive patterns Y1 to Y11, and the terminals of the terminal portion 2 and the wiring patterns xa1 to xa10, xb1. This is a region where wirings connecting to xb10 are formed.
  • the wiring region 12 is colored, for example, black to prevent the wiring pattern in the wiring region 12 from being noticeable.
  • the X direction conductive patterns X 1 to X 20 are formed on the substrate 1.
  • the X direction conductive patterns X1 to X20 are formed of, for example, a conductor.
  • the X direction conductive patterns X1 to X20 are, for example, transparent electrodes (electrodes having high light transmittance) formed using indium tin oxide (ITO).
  • Each of the X-direction conductive patterns X1 to X20 includes a plurality of electrode portions (for example, X18a to X18d, X19a to X19d, and X20a to X20d shown in FIG. 2) and connection portions (for example, Xbr (18,1), Xbr (18,3), Xbr (19,1), Xbr (19,2), Xbr (19,3), Xbr (20,2)) shown in FIG. .
  • electrode portions for example, X18a to X18d, X19a to X19d, and X20a to X20d shown in FIG. 2
  • connection portions for example, Xbr (18,1), Xbr (18,3), Xbr (19,1), Xbr (19,2), Xbr (19,3), Xbr (20,2)
  • Each of the X-direction conductive patterns X1 to X20 has a plurality of electrode portions and a plurality of connection portions.
  • the plurality of electrode portions are arranged in a substantially straight line in the X-axis direction in plan view, and adjacent electrode portions As shown in FIG. 1 and FIG. 2, the two are connected via a connecting portion.
  • the electrode part is arranged on one side in the X-axis direction so that a Y-direction conductive pattern area, which is an area for arranging the Y-direction conductive pattern, between the adjacent electrode parts is secured.
  • the electrode part is arranged on the other side in the X-axis direction so as to secure a wiring pattern area which is an area for arranging a wiring pattern between adjacent electrode parts.
  • the electrode portion X19b has a Y-direction conductive pattern region (region where the Y-direction conductive pattern Y2 in FIG. 2 is disposed) on the X-axis positive direction side, and X
  • the wiring pattern area (area where the wiring patterns xa1 and xb1 in FIG. 2 are arranged) is arranged on the negative side of the axis.
  • the X direction conductive pattern and the Y direction conductive pattern are similarly arranged. That is, as shown in FIG. 3, the electrode portions of the X direction conductive patterns X17 to X20 are arranged so as to alternately sandwich the Y direction conductive pattern regions and the wiring pattern regions. That is, as shown in FIG. 3, the leftmost electrode portion and the second electrode portion from the left end of the X direction conductive patterns X17 to X20 are arranged so as to sandwich the Y direction conductive pattern Y1, and the X direction conductive pattern X17. The second electrode portion from the left end of X20 to the third electrode portion from the left end are arranged so as to sandwich the wiring patterns xa1 and xb1. As shown in FIG. 3, the other electrode portions are also arranged in the same pattern.
  • the position in the Y-axis direction of the connecting portion of the Y-direction conductive pattern region is different from the position in the Y-axis direction of the connecting portion in the wiring pattern region (in the case of FIG. 3,
  • the connecting portion of the X direction conductive pattern is arranged so that the distance between the two becomes the distance d1. Thereby, it can prevent appropriately that a connection part becomes a fixed pattern and it is visually observed unpleasantly (for example, generation
  • one row of the conductive portion in the X-axis direction (for example, the X-direction conductive pattern X19 shown in FIG. 2 or the X-direction conductive patterns X17 to X20 shown in FIG. 3) is formed. Composed. As shown in FIG. 1, a plurality of conductive portions in the X-axis direction configured as described above are arranged in the Y-axis direction.
  • the X direction conductive patterns X1 to X20 are electrically connected to the corresponding wiring patterns xa1 to xa10 and xb1 to xb10, respectively.
  • the wiring patterns xa1 to xa10 and xb1 to xb10 are electrically connected to the terminals of the corresponding terminal portions 2 through the wirings in the wiring region 12, respectively. This will be described with reference to FIGS.
  • FIG. 4 is a diagram schematically showing a part of the area AR2 of the touch panel TP and a part of the wiring area 12 of FIG.
  • FIG. 4 shows a part of the terminals of the terminal portion 2.
  • terminal numbers 1 to 13 are given as shown in FIG.
  • FIG. 5 is an enlarged view of the connection area ARc_X18 shown in FIGS. Specifically, FIG. 5 shows an enlarged view (upper view of FIG. 5) of the connection region ARc_X18 between the X-direction conductive pattern X18 and the wiring pattern xa4, and an AA cross-sectional view along the AA line of FIG. FIG.
  • an electrode part X18_y4b of the X direction conductive pattern X18 and an electrode part X18_y5a of the X direction conductive pattern X18 are formed on the substrate 1.
  • a wiring pattern xa4 and a wiring pattern xb4 are formed on the substrate 1.
  • the wiring pattern xa4 is disposed so as to be in contact with the electrode portion X18_y4b, and the wiring pattern xa4 is electrically connected to the electrode portion X18_y4b.
  • connection portion Xbr (18, 8) is arranged as shown in FIG. 5, one end portion is connected to the electrode portion X18_y4b, and the other end portion is connected to the electrode portion X18_y5a. Has been. Thereby, it electrically connects via electrode part X18_y4b, electrode part X18_y5a, and connection part Xbr (18, 8).
  • overcoat layers L1 and L2 made of an insulating material are formed.
  • the wiring pattern xb4, the wiring pattern xa4, the electrode portions X18_y4b, X18_y5a, and the connection portion Xbr (18, 8) are in an insulated state (not electrically connected).
  • the electrode portions X18_y4b, X18_y5a, and the wiring pattern xa4 are arranged, so that the electrode portions X18_y4b, X18_y5a, and the wiring pattern xa4 are electrically connected. That is, the wiring pattern xa4 is electrically connected to the X direction conductive pattern X18.
  • connection between other X-direction conductive patterns and the corresponding wiring patterns is the same as described above.
  • the X-direction conductive pattern and the corresponding wiring pattern are electrically connected with the same configuration as described above.
  • the terminal of terminal number 2 is connected to the wiring pattern xa1, and the wiring pattern xa1 is connected to the X-direction conductive pattern X17 as shown in FIG. That is, the terminal with the terminal number 2 is connected to the X direction conductive pattern X17 via the wiring pattern xa1. Therefore, a predetermined electric field can be generated in the X direction conductive pattern X17 by inputting a signal for driving the X direction conductive pattern X17 to the terminal of the terminal number 2.
  • the terminal of terminal number 3 is connected to the wiring pattern xb1, and the wiring pattern xb1 is connected to the X-direction conductive pattern X7, for example. That is, the terminal with terminal number 2 is connected to the X-direction conductive pattern X7 via the wiring pattern xb1. Therefore, a predetermined electric field can be generated in the X direction conductive pattern X7 by inputting a signal for driving the X direction conductive pattern X7 to the terminal of the terminal number 2.
  • the terminal of terminal number 5 is connected to the wiring pattern xa2, and the wiring pattern xa2 is connected to the X-direction conductive pattern X14, for example. That is, the terminal with the terminal number 5 is connected to the X-direction conductive pattern X14 via the wiring pattern xa2. Therefore, a predetermined electric field can be generated in the X direction conductive pattern X14 by inputting a signal for driving the X direction conductive pattern X14 to the terminal of the terminal number 5.
  • the terminal of terminal number 6 is connected to the wiring pattern xb2, and the wiring pattern xb2 is connected to, for example, the X-direction conductive pattern X4. That is, the terminal with the terminal number 6 is connected to the X direction conductive pattern X4 via the wiring pattern xb2. Therefore, a predetermined electric field can be generated in the X direction conductive pattern X4 by inputting a signal for driving the X direction conductive pattern X4 to the terminal of the terminal number 6.
  • the terminal of terminal number 8 is connected to the wiring pattern xa3, and the wiring pattern xa3 is connected to the X-direction conductive pattern X11, for example. That is, the terminal with terminal number 8 is connected to the X-direction conductive pattern X11 via the wiring pattern xa3. Therefore, by inputting a signal for driving the X-direction conductive pattern X11 to the terminal having the terminal number 8, a predetermined electric field can be generated in the X-direction conductive pattern X11.
  • the terminal of terminal number 9 is connected to the wiring pattern xb3, and the wiring pattern xb3 is connected to the X-direction conductive pattern X1, for example. That is, the terminal with terminal number 9 is connected to the X-direction conductive pattern X1 via the wiring pattern xb3. Therefore, a predetermined electric field can be generated in the X direction conductive pattern X1 by inputting a signal for driving the X direction conductive pattern X1 to the terminal of the terminal number 9.
  • the terminal of terminal number 11 is connected to the wiring pattern xa4, and the wiring pattern xa4 is connected to, for example, the X-direction conductive pattern X18. That is, the terminal with the terminal number 11 is connected to the X-direction conductive pattern X18 via the wiring pattern xa4. Therefore, a predetermined electric field can be generated in the X direction conductive pattern X18 by inputting a signal for driving the X direction conductive pattern X14 to the terminal of the terminal number 11.
  • the terminal of terminal number 12 is connected to the wiring pattern xb4, and the wiring pattern xb4 is connected to, for example, the X-direction conductive pattern X8. That is, the terminal with the terminal number 12 is connected to the X-direction conductive pattern X8 via the wiring pattern xb4. Therefore, a predetermined electric field can be generated in the X direction conductive pattern X8 by inputting a signal for driving the X direction conductive pattern X8 to the terminal of the terminal number 12.
  • the Y direction conductive patterns Y 1 to Y 11 are formed on the substrate 1.
  • the Y direction conductive patterns Y1 to Y11 are formed of, for example, a conductor.
  • the Y-direction conductive patterns Y1 to Y11 are, for example, transparent electrodes (electrodes with high light transmittance) formed using indium tin oxide (ITO).
  • Each of the Y-direction conductive patterns Y1 to Y11 has a plurality of electrode portions (for example, Y2a, Y2b, Y2c shown in FIG. 2) and connection portions (for example, Ybr (shown in FIG. 2) that connect adjacent electrode portions to each other. 19, 2) and Ybr (20, 2)).
  • electrode portions for example, Y2a, Y2b, Y2c shown in FIG. 2
  • connection portions for example, Ybr (shown in FIG. 2) that connect adjacent electrode portions to each other. 19, 2) and Ybr (20, 2)).
  • Each of the Y-direction conductive patterns Y1 to Y11 has a plurality of electrode portions and a plurality of connection portions.
  • the plurality of electrode portions are arranged in a substantially straight line in the Y-axis direction in plan view, and adjacent electrode portions As shown in FIG. 1 and FIG. 2, the two are connected via a connecting portion.
  • the electrode portion of the Y direction conductive pattern is disposed in the Y direction conductive pattern region between the electrode portions of the X direction conductive pattern. That is, the electrode part of the Y direction conductive pattern is arranged in a state of being separated from the wiring pattern as shown in FIGS. Thereby, generation
  • the Y-direction conductive pattern Y2 is a region sandwiched between the electrode portions X18b, X19b, X20b of the X-direction conductive pattern and the electrode portions X18c, X19c, X20c of the X-direction conductive pattern ( Y-direction conductive pattern region). That is, the distance between the Y direction conductive pattern Y2 and the wiring pattern xa1 or xb1 is sufficiently large, and the distance between the Y direction conductive pattern Y2 and the wiring pattern xa2 or xb2 is also sufficiently large.
  • one row of Y-axis direction conductive portions (for example, the Y-direction conductive pattern Y2 shown in FIG. 2 and the Y-direction conductive shown in FIG. 3). Patterns Y1 to Y5) are formed. A plurality of conductive portions in the Y-axis direction configured as described above are arranged in the X-axis direction as shown in FIG.
  • the terminal of terminal number 1 is connected to the Y-direction conductive pattern Y1.
  • the terminal with terminal number 4 is connected to the Y-direction conductive pattern Y2.
  • terminal of terminal number 7 is connected to the Y-direction conductive pattern Y3.
  • the terminal with terminal number 10 is connected to the Y-direction conductive pattern Y4.
  • the terminal with terminal number 13 is connected to the Y-direction conductive pattern Y5.
  • the Y-direction conductive patterns Y1 to Y11 are each connected to a receiving circuit (not shown) via corresponding terminals of the terminal portion 2.
  • the receiving circuit reads the current value (or voltage value) generated in each of the Y-direction conductive patterns Y1 to Y11, so that the electric field change on the touch panel TP surface can be detected.
  • the Y direction conductive patterns Y1 to Y11 are formed at positions where the distances from the wiring patterns xa1 to xa10 and xb1 to xb10 are sufficiently large.
  • the parasitic capacitance generated can be appropriately suppressed. Therefore, the sense signal acquired by the receiving circuit via the Y-direction conductive patterns Y1 to Y11 is a good signal without superposition of noise due to parasitic capacitance. Therefore, in the touch panel device using the touch panel TP, the electric field change on the touch panel TP surface can be detected with high accuracy. As a result, by using the touch panel TP, a touch panel device having highly accurate touch detection performance can be realized.
  • the wiring patterns xa1 to xa10 and xb1 to xb10 are formed on the substrate 1.
  • the wiring patterns xa1 to xa10 and xb1 to xb10 are made of, for example, a conductor.
  • the wiring patterns xa1 to xa10 and xb1 to xb10 are formed using, for example, indium tin oxide (ITO), and the light transmittance is preferably sufficiently high.
  • ITO indium tin oxide
  • the wiring patterns xa1 to xa10 and xb1 to xb10 are arranged in a wiring pattern region, which is a region sandwiched between electrode portions of the X direction conductive pattern.
  • the wiring patterns xa1 to xa10 and xb1 to xb10 are electrically connected to the corresponding X-direction conductive patterns by the same configuration as shown in FIG.
  • the terminal part 2 includes a plurality of terminals. Each terminal is formed on the substrate 1 and is disposed in the wiring region 2 as shown in FIG.
  • the terminals of the terminal portion 2 are connected to the Y direction conductive patterns Y1 to Y11, the X direction conductive patterns X1 to X20, and the wiring patterns xa1 to xa10 and xb1 to xb10 via wirings provided in the wiring region 2, respectively. Connected to
  • FIG. 6 is a diagram for explaining the connection between each terminal of the terminal portion 2 and the wiring patterns xa1 to xa10, xb1 to xb10, the X direction conductive patterns X1 to X20, and the Y direction conductive patterns Y1 to Y11. Connection diagram).
  • terminal numbers 1 to 31 are given to the respective terminals.
  • terminal numbers are assigned in ascending order from left to right in FIG. That is, the terminal at the left end is the terminal with the terminal number 1, and the terminal at the right end is the terminal with the terminal number 31.
  • connection positions of the wiring patterns xa1 to xa10, xb1 to xb10 and the X direction conductive patterns X1 to X20 are indicated by black circles.
  • the terminal with terminal number 2 indicates that it is connected to the X-direction conductive pattern X17.
  • the Y-direction conductive pattern is indicated by a thick line.
  • the Y-direction conductive patterns Y1 to Y11 are connected as follows.
  • terminal of terminal number 1 is connected to the Y-direction conductive pattern Y1.
  • the terminal with terminal number 4 is connected to the Y-direction conductive pattern Y2.
  • terminal of terminal number 7 is connected to the Y-direction conductive pattern Y3.
  • the terminal with terminal number 10 is connected to the Y-direction conductive pattern Y4.
  • the terminal with terminal number 13 is connected to the Y-direction conductive pattern Y5.
  • terminal of terminal number 16 is connected to the Y-direction conductive pattern Y6.
  • terminal of terminal number 19 is connected to the Y-direction conductive pattern Y7.
  • the terminal of terminal number 22 is connected to the Y-direction conductive pattern Y8.
  • the terminal with terminal number 25 is connected to the Y-direction conductive pattern Y9.
  • terminal of terminal number 28 is connected to the Y-direction conductive pattern Y10.
  • terminal of terminal number 31 is connected to the Y-direction conductive pattern Y11.
  • the X-direction conductive patterns X1 to X20 and the wiring patterns xa1 to xa10 and xb1 to xb10 are connected as follows.
  • the terminal of terminal number 2 is connected to the wiring pattern xa1, and the wiring pattern xa1 is connected to the X-direction conductive pattern X17.
  • the terminal of terminal number 3 is connected to the wiring pattern xb1, and the wiring pattern xb1 is connected to the X-direction conductive pattern X7.
  • the terminal of terminal number 5 is connected to the wiring pattern xa2, and the wiring pattern xa2 is connected to the X-direction conductive pattern X14.
  • the terminal of terminal number 6 is connected to the wiring pattern xb2, and the wiring pattern xb2 is connected to the X-direction conductive pattern X4.
  • the terminal of terminal number 8 is connected to the wiring pattern xa3, and the wiring pattern xa3 is connected to the X-direction conductive pattern X11.
  • the terminal of terminal number 9 is connected to the wiring pattern xb3, and the wiring pattern xb3 is connected to the X-direction conductive pattern X1.
  • the terminal of terminal number 11 is connected to the wiring pattern xa4, and the wiring pattern xa4 is connected to the X-direction conductive pattern X18.
  • the terminal of terminal number 12 is connected to the wiring pattern xb4, and the wiring pattern xb4 is connected to the X-direction conductive pattern X8.
  • the terminal of terminal number 14 is connected to the wiring pattern xa5, and the wiring pattern xa5 is connected to the X-direction conductive pattern X15.
  • the terminal of terminal number 15 is connected to the wiring pattern xb5, and the wiring pattern xb5 is connected to the X-direction conductive pattern X5.
  • the terminal of terminal number 17 is connected to the wiring pattern xa6, and the wiring pattern xa6 is connected to the X-direction conductive pattern X12.
  • the terminal of terminal number 18 is connected to the wiring pattern xb6, and the wiring pattern xb6 is connected to the X-direction conductive pattern X2.
  • the terminal of terminal number 20 is connected to the wiring pattern xa7, and the wiring pattern xa7 is connected to the X-direction conductive pattern X9.
  • the terminal of terminal number 21 is connected to the wiring pattern xb7, and the wiring pattern xb7 is connected to the X-direction conductive pattern X19.
  • the terminal of terminal number 23 is connected to the wiring pattern xa8, and the wiring pattern xa8 is connected to the X-direction conductive pattern X16.
  • the terminal of terminal number 24 is connected to the wiring pattern xb8, and the wiring pattern xb8 is connected to the X-direction conductive pattern X6.
  • the terminal of terminal number 26 is connected to the wiring pattern xa9, and the wiring pattern xa9 is connected to the X-direction conductive pattern X3.
  • the terminal of terminal number 27 is connected to the wiring pattern xb9, and the wiring pattern xb9 is connected to the X-direction conductive pattern X13.
  • the terminal of terminal number 29 is connected to the wiring pattern xa10, and the wiring pattern xa10 is connected to the X-direction conductive pattern X10.
  • the terminal of terminal number 30 is connected to the wiring pattern xb10, and the wiring pattern xb10 is connected to the X-direction conductive pattern X20.
  • connection points between the X-direction conductive pattern and the wiring pattern are arranged so as not to be close to each other. That is, on the touch panel TP, the connection points between the X-direction conductive pattern and the wiring pattern are arranged so that the connection points between the adjacent X-direction conductive patterns are located at a certain distance or more. Thereby, in the touch panel TP, one X-direction conductive pattern and wiring pattern are not easily affected by noise generated in the other X-direction conductive patterns and wiring patterns. As a result, by using the touch panel TP, a touch panel device having highly accurate touch detection performance can be realized.
  • connection points between the X-direction conductive pattern and the wiring pattern on the touch panel TP is not limited to that shown in FIG.
  • the connection points between the X direction conductive pattern and the wiring pattern may be arranged other than the arrangement shown in FIG. 6 so that the connection points between the X direction conductive pattern and the wiring pattern are not close to each other.
  • the Y-direction conductive pattern is disposed in the Y-direction conductive pattern region between the electrode portions of the X-direction conductive pattern in a state of being separated from the wiring pattern.
  • production of the parasitic capacitance by a Y direction conductive pattern and a wiring pattern can be suppressed appropriately.
  • the connection points between the X-direction conductive pattern and the wiring pattern are arranged in a separated state, so that one X-direction conductive pattern and the wiring pattern are replaced with another X-direction conductive pattern and wiring pattern. It is hard to be affected by noise generated in
  • the touch panel TP since the wiring pattern for connecting the X direction conductive pattern is arranged in the display area 11, the wiring area 12 that must be colored to make the wiring inconspicuous is narrowed. can do. That is, in the touch panel TP, the dead space in the outer peripheral portion of the display area 11 of the touch panel TP can be reduced.
  • a region (for example, region ARc_X18 in FIG. 4) that connects adjacent electrode portions of the X-direction conductive pattern and connects the X-direction conductive pattern and the wiring pattern in the wiring pattern region of the touch panel TP; (2) a region (for example, a region AR_X19 in FIG. 4) that connects adjacent electrode portions of the X-direction conductive pattern in the wiring pattern region of the touch panel TP; (3) a region (for example, region ARb_X19 in FIG.
  • FIG. 7 is an enlarged view of the area AR_X19 in FIG. Specifically, the upper diagram of FIG. 7 is an enlarged view of the area AR_X19, and the lower diagram of FIG. 7 is a BB cross-sectional view taken along the line BB of the upper diagram of FIG.
  • FIG. 8 is an enlarged view of the area ARb_X19 in FIG. Specifically, the upper diagram of FIG. 8 is an enlarged view of the area ARb_X19, and the lower diagram of FIG. 8 is a CC cross-sectional view taken along the line CC of the upper diagram of FIG.
  • FIG. 9 is an enlarged view showing a region where the terminal portion 2 of FIG. 4 is arranged.
  • the upper diagram of FIG. 9 is an enlarged view of a region where the terminal portion 2 is disposed
  • the lower diagram of FIG. 9 is a DD cross-sectional view taken along the line DD of FIG. is there.
  • a manufacturing method of TP (a manufacturing method of the region) will be described.
  • the electrode portions X18_y4b and X18_y5a of the X direction conductive pattern and the wiring patterns xa4 and xb4 are formed on the substrate 1 by a film forming process of a transparent electrode material (for example, ITO).
  • a transparent electrode material for example, ITO
  • the overcoat layer L2 is formed on the electrodes X18_y4b and X18_y5a of the X-direction conductive pattern and the connection parts (bridge parts) Xbr (18, 8) as shown in FIG. Next, a film is formed.
  • a manufacturing method of the touch panel TP (a manufacturing method of the region) explain.
  • the electrode portions X19_y4b and X19_y5a of the X-direction conductive pattern and the wiring patterns xa4 and xb4 are formed on the substrate 1 by a film forming process of a transparent electrode material (for example, ITO). At this time, as shown in FIG.
  • the wiring patterns xa4 and xb4 are arranged so as not to come into contact with other conductor portions.
  • an overcoat layer L1 is formed only on the wiring patterns xa4 and xb4 and around the wiring pattern.
  • a transparent electrode that becomes the connection portion (bridge portion) Xbr (19, 8) The material is deposited.
  • the overcoat layer L2 is formed on the electrode portions X18_y4b and X18_y5a of the X direction conductive pattern and the connection portions (bridge portions) Xbr (19, 8) as shown in FIG. Next, a film is formed.
  • a method for manufacturing the touch panel TP (a method for manufacturing the region) will be described for a region (for example, the region ARb_X19 in FIG. 4) that connects adjacent electrode portions of the X direction conductive pattern in the Y direction conductive pattern region.
  • the electrode portions X19_y5a and X19_y5b of the X direction conductive pattern and the Y direction conductive pattern Y5 are formed on the substrate 1 by a film forming process of a transparent electrode material (for example, ITO). At this time, as shown in FIG.
  • a transparent electrode material for example, ITO
  • the Y-direction conductive pattern Y5 is arranged so as not to come into contact with other conductor portions (electrode portions X19_y5a and X19_y5b of the X-direction conductive pattern).
  • an overcoat layer L1 is formed only on and around the Y-direction conductive pattern Y5.
  • a transparent electrode serving as a connection portion (bridge portion) Xbr (19, 9) The material is deposited.
  • the overcoat layer L2 is placed on the electrode portions X18_y5a and X18_y5b of the X-direction conductive pattern and the connection portions (bridge portions) Xbr (19, 9). Next, a film is formed.
  • ⁇ 4 Region of Terminal 2 (in the case of FIG. 9) >> Next, in the region for the Y direction conductive pattern in which the terminal portion 2 is disposed, the region for connecting the adjacent electrode portions in the X direction conductive pattern (for example, the region in which the terminal portion 2 in FIG. 4 is disposed).
  • a method for manufacturing the touch panel TP (a method for manufacturing the region) will be described with reference to FIG. (1) First, for example, a black layer (film) L_bk (colored layer L_bk) is formed on the substrate 1. Then, metal film formation (metal film formation) is performed on the colored layer L_bk to form external connection terminals (terminals T1 to T4 in FIG. 9).
  • a transparent electrode film forming step is performed, and a conductor portion to be a wiring (w1 to w4 in FIG. 9) for connecting to any of the X direction conductive pattern, the Y direction conductive pattern, and the wiring pattern, As shown in FIG. 9, it is formed on the external connection terminals (terminals T1 to T4). Accordingly, the external connection terminals (terminals T1 to T4) are electrically connected to the corresponding X direction conductive pattern, Y direction conductive pattern, or wiring pattern, respectively.
  • the terminal T1 is connected to the Y-direction conductive pattern Y1 via the wiring w1.
  • the terminal T2 is connected to the wiring pattern xa1 through the wiring w2.
  • the terminal T3 is connected to the wiring pattern xb1 through the wiring w3.
  • the terminal T4 is connected to the Y-direction conductive pattern Y2 via the wiring w4.
  • the touch panel TP can be manufactured by executing the above steps.
  • the wiring patterns xa1 to xa10, xb1 to xb10 are created in the same layer as the X direction conductive patterns X1 to X20 and the Y direction conductive patterns Y1 to Y11. There is no need to add a process step for forming xa10, xb1 to xb10. Therefore, the touch panel TP can be efficiently manufactured by the touch panel TP manufacturing method.
  • the position in the Y-axis direction connecting adjacent electrode portions of the X-direction conductive pattern in the wiring pattern region and the X direction in the Y-direction conductive pattern region are arranged so as not to coincide with each other (separated by a distance d1).
  • the position in the Y-axis direction connecting adjacent electrode portions of the X-direction conductive pattern in the wiring pattern region and the X-direction conductivity in the Y-direction conductive pattern region may correspond substantially.
  • the touch panel TP of this modification as shown in FIG. 10, the position in the Y-axis direction connecting adjacent electrode portions of the X-direction conductive pattern in the wiring pattern region and the X-direction conductivity in the Y-direction conductive pattern region. Since the positions where the adjacent electrode portions of the pattern are connected to each other are arranged so as to substantially coincide with each other, the manufacturing operation can be simplified.
  • the electrode part of the X direction conductive pattern and the wiring pattern are connected in the wiring pattern region using a through hole.
  • the touch panel TP of the present modification has the same configuration as that of the first embodiment in the X-direction conductive pattern in the wiring pattern region, the configuration of the wiring pattern, the X-directional conductive pattern in the Y-direction conductive pattern region, and the Y-direction conductive pattern. Different from the touch panel TP.
  • the touch panel TP of the present modification is the same as the touch panel TP of the first embodiment.
  • FIG. 11 is a diagram showing a part of the plan view of the touch panel TP of the present modification.
  • FIG. 3 schematically shows an enlarged partial area AR2 of the plan view of the touch panel TP of the first embodiment. It is a corresponding figure.
  • the electrode portion, the connection portion, and the wiring pattern are drawn as a pattern having a polygonal shape.
  • FIG. 12 is an enlarged view of the connection area ARc_X18 shown in FIG. Specifically, FIG. 12 shows an enlarged view (upper view of FIG. 12) of the connection region ARc_X18 between the X-direction conductive pattern X18 and the wiring pattern xa4, and an EE cross-sectional view taken along line EE of FIG. It is a lower figure of FIG.
  • the X-direction conductive pattern X18 is electrically connected to the wiring pattern xa4 by the conductor filled in the through hole TH1.
  • the wiring pattern xb4 is disposed at a position separated from the X-direction conductive pattern X18, the through hole TH1, and the wiring pattern xa4 by the overcoat layer L1 made of an insulating material.
  • the X direction conductive pattern X18, the through hole TH1, and the wiring pattern xa4 are in an insulated state (not electrically connected).
  • FIG. 13 is an enlarged view of the area AR_X19 shown in FIG. Specifically, FIG. 13 shows an enlarged view of the area AR_X19 in which the X-direction conductive pattern X19 and the wiring patterns xa4 and xb4 are arranged (upper view in FIG. 13), and F taken along line FF in FIG. -F is a cross-sectional view (lower view of FIG. 13).
  • the X-direction conductive pattern X18 is arranged at a position separated from the wiring patterns xa4 and xb4 by the overcoat layer L1 made of an insulating material. Therefore, the X-direction conductive pattern X18 is in an insulated state (not electrically connected) with the wiring patterns xa4 and xb4.
  • FIG. 14 is an enlarged view of the area ARb_X19 shown in FIG. Specifically, FIG. 14 shows an enlarged view of the area ARb_X19 in which the X-direction conductive pattern X19 and the Y-direction conductive pattern Y5 are arranged (upper view of FIG. 14), and G by the GG line of FIG. -G is a cross-sectional view (lower view of FIG. 14).
  • the X-direction conductive pattern X19 (electrode portions X19_y5a, X19_y5b) is electrically connected to the connection portion Xbr (19, 9) by the conductor filled in the through holes TH2, TH3.
  • the Y-direction conductive pattern Y5 is separated from the X-direction conductive pattern X19, the through holes TH2 and TH3, and the wiring pattern xa4 by the overcoat layer L1 made of an insulating material. Therefore, the wiring pattern xb4 is in an insulated state (not electrically connected) with the connection portion Xbr (19, 9).
  • An area (for example, area ARc_X18 in FIG. 11) that connects adjacent electrode portions of the X-direction conductive pattern and connects the X-direction conductive pattern and the wiring pattern in the wiring pattern area of the touch panel TP;
  • a region for example, the region AR_X19 in FIG. 11
  • a region for example, region ARb_X19 in FIG. 11
  • a method for manufacturing the touch panel TP will be described with reference to cross-sectional views in the respective drawings.
  • a manufacturing method of TP (a manufacturing method of the region) will be described. (1) First, wiring patterns xa4 and xb4 are formed on the substrate 1 in a film forming process of a transparent electrode material (for example, ITO). (2) Next, an overcoat layer L1 made of an insulating material is formed on the wiring patterns xa4 and xb4 and around the wiring pattern.
  • a through hole TH1 is provided on the wiring pattern xa4. That is, a hole is made at the position of the through hole TH1 by a photolithography process using a photomask.
  • the through hole TH1 is filled with a conductor (for example, ITO), and an X-direction conductive pattern X18 is formed on the overcoat layer L1. Thereby, the wiring pattern xa4 and the X direction conductive pattern X18 are electrically connected by the through hole TH1.
  • an overcoat layer L2 is formed on the electrode portion X18 of the X direction conductive pattern as shown in FIG.
  • a manufacturing method of the touch panel TP (a manufacturing method of the region) explain.
  • wiring patterns xa4 and xb4 are formed on the substrate 1 in a film forming process of a transparent electrode material (for example, ITO).
  • an overcoat layer L1 made of an insulating material is formed on the wiring patterns xa4 and xb4 and around the wiring pattern.
  • an X-direction conductive pattern X18 is formed on the overcoat layer L1.
  • an overcoat layer L2 is formed as a protective layer on the electrode portion X18 of the X-direction conductive pattern.
  • a method for manufacturing the touch panel TP (a method for manufacturing the region) will be described for a region (for example, the region ARb_X19 in FIG. 11) that connects adjacent electrode portions of the X direction conductive pattern in the Y direction conductive pattern region.
  • the connecting portion Xbr (19, 9) is formed on the substrate 1 by a film forming process of a transparent electrode material (for example, ITO).
  • an overcoat layer L1 made of an insulating material is formed on the connection portion Xbr (19, 9) and around the connection portion Xbr (19, 9).
  • connection portion Xbr (19, 9) holes are made in the positions of the through holes TH2 and TH3 by a photolithography process using a photomask.
  • the through holes TH2 and TH3 are filled with a conductor (for example, ITO), and further, an X-direction conductive pattern X19 (electrode portions X19_y5a and X19_y5b) is formed on the overcoat layer L1 as shown in FIG. And a Y-direction conductive pattern Y5.
  • a conductor for example, ITO
  • an overcoat layer L2 is formed on and around the electrode portion X19 of the X direction conductive pattern and on and around the Y direction conductive pattern Y5 as shown in FIG. Film.
  • the touch panel TP can be manufactured by executing the above steps.
  • the wiring patterns xa1 to xa10 and xb1 to xb10 are created at the same level as the connecting portions of the X direction conductive patterns X1 to X20. There is no need to add a process step for forming the. Therefore, the touch panel TP can be efficiently manufactured by the touch panel TP manufacturing method.
  • the number of X direction conductive patterns is “20” and the number of Y direction conductive patterns is “11” has been described.
  • / or the number of Y direction conductive patterns is not limited to the above, and may be other numbers.
  • the aspect ratio (aspect ratio) of the display area is not limited to that shown in FIG. 1, for example, and may be another aspect ratio (aspect ratio).
  • connection point of the X direction conductive pattern and wiring pattern in touch panel TP was set as shown in FIG. 6, it is limited to this. None happen.
  • the connection points between the X direction conductive pattern and the wiring pattern may be arranged other than the arrangement shown in FIG. 6 so that the connection points between the X direction conductive pattern and the wiring pattern are not close to each other.
  • the number of wiring patterns arranged in the wiring pattern region may be determined according to the number of X direction conductive patterns and / or the number of Y direction conductive patterns.
  • the number of X-direction conductive patterns is “20” and the number of Y-direction conductive patterns is “11”. Therefore, the number of wiring patterns arranged in the wiring pattern region is Although “2”, when the ratio of the number of X direction conductive patterns to the number of Y direction conductive patterns is 1: 1, the number of wiring patterns arranged in the wiring pattern region may be “1”. preferable.
  • the shape of the electrode part and the shape of the connection part (bridge part) of the X direction conductive pattern and / or the Y direction conductive pattern shown in the above-described embodiment are merely examples. It is not limited and may have other shapes.
  • the shape of the wiring pattern shown in the above-described embodiment is also an example, and the present invention is not limited thereto, and may have other shapes.
  • terminal arrangement for example, the arrangement shown in FIG. 6) of the terminal portion 2 shown in the above-described embodiment (including modifications) is an example, and other arrangements may be used. Further, one or a plurality of GND terminals may be disposed between the terminal of the X direction conductive pattern and the terminal of the Y direction conductive pattern.
  • the touch panel device may be realized by using the touch panel TP of the above-described embodiment (including the modification). Furthermore, a display device (for example, a liquid crystal display device) using the touch panel device may be realized.
  • a display device for example, a liquid crystal display device
  • a first invention includes N (N: a natural number of 2 or more) X-direction conductive patterns, M (M: a natural number of 2 or more) Y-direction conductive patterns, a terminal portion, and a wiring pattern. It is a conductive sheet.
  • Each of N (N: natural number of 2 or more) X-direction conductive patterns is an X-direction connection that electrically connects a plurality of X-direction electrode portions arranged in the first direction and adjacent X-direction electrode portions. Part.
  • Each of M (M: natural number of 2 or more) Y-direction conductive patterns electrically connects a plurality of Y-direction electrode portions arranged in a second direction intersecting the first direction and adjacent Y-direction electrode portions. And a Y-direction connecting portion connected to the.
  • the terminal portion includes a terminal for electrically connecting to each of the X direction conductive pattern and the Y direction conductive pattern.
  • the wiring pattern electrically connects the X direction conductive pattern and the terminal of the terminal portion corresponding to the X direction conductive pattern.
  • a region between the X direction electrode portion adjacent to one side in the first direction of the X direction electrode portion is defined as a Y direction conductive pattern region, and the other side of the X direction electrode portion in the first direction.
  • the area between the X direction electrode part adjacent to the wiring pattern area is a wiring pattern area
  • the Y direction conductive pattern is arranged in the Y direction conductive pattern area
  • the wiring pattern is arranged in the wiring pattern area.
  • the Y-direction conductive pattern is disposed in the Y-direction conductive pattern region between the X-direction electrode portions of the X-direction conductive pattern in a state of being separated from the wiring pattern.
  • a wiring pattern for connecting the X direction conductive pattern and the terminal portion is provided in the display region, that is, the region where the X direction conductive pattern and the Y direction conductive pattern are arranged. It is not necessary to provide a space for arranging only the pattern. Therefore, in this conductive sheet, the dead space of the outer peripheral part of the conductive sheet can be reduced.
  • 2nd invention is 1st invention, Comprising: X direction connection which connects X direction electrode part and X direction electrode part adjacent to the one side of the 1st direction of the said X direction electrode part in planar view A second connecting portion that is an X direction connecting portion that connects a position in the second direction of the first connecting portion that is a portion and an X direction electrode portion adjacent to the other side of the X direction electrode portion in the first direction.
  • the distance between the positions in the two directions is not less than a predetermined value.
  • this conductive sheet it is possible to appropriately prevent the X-direction connection portion from forming a constant pattern and being uncomfortablely viewed (for example, occurrence of moire).
  • 3rd invention is 1st or 2nd invention, Comprising: In planar view, the kth (k: natural number, k ⁇ N) X direction conductive pattern, and the wiring pattern corresponding to the said X direction conductive pattern And a k + 1th X-direction conductive pattern adjacent to the kth X-direction conductive pattern, a wiring pattern corresponding to the X-direction conductive pattern, The distance from the (k + 1) th connection point that is a connection point to which is electrically connected is equal to or greater than a predetermined value.
  • connection points between the X direction conductive pattern and the wiring pattern are arranged in a separated state, one X direction conductive pattern and the wiring pattern are replaced with another X direction conductive pattern and the wiring pattern. Not easily affected by generated noise.
  • this conductive sheet in, for example, a touch panel device, a touch panel device having a highly accurate touch detection performance can be realized.
  • the “predetermined value” is preferably, for example, a distance that is ⁇ times the distance between adjacent electrode portions (1 ⁇ ⁇ 100) or more.
  • a fourth invention is any one of the first to third inventions, further comprising a substrate, wherein the X-direction electrode portion, the X-direction connection portion, the Y-direction electrode portion, the Y-direction connection portion, and the wiring pattern are , Formed in the same layer on the substrate.
  • this conductive sheet when manufacturing this conductive sheet, there is no need to add a process step for forming a wiring pattern. As a result, this conductive sheet can be manufactured easily and inexpensively and efficiently.
  • the fifth invention is any one of the first to third inventions, further comprising a substrate, an insulating layer, and an overcoat layer.
  • the insulating layer is made of an insulating material and has a plurality of through holes.
  • the overcoat layer is made of an insulating material.
  • the X direction connection part and the wiring pattern are formed in the first layer which is the same layer on the substrate.
  • the insulating layer is formed on the first layer.
  • the X direction electrode part and the Y direction electrode part are formed on the insulating layer, and the X direction electrode part is electrically connected to the wiring pattern or the X direction connection part through a through hole at a predetermined position. Is done.
  • the sixth invention is a touch panel device including a conductive sheet according to any one of the first to fifth inventions and a drive unit.
  • the drive unit drives the conductive sheet.
  • the seventh invention is a display device comprising a display unit, a control unit, and a touch panel device according to the sixth invention.
  • the control unit controls the display unit.
  • the present invention can realize a conductive sheet, a touch panel device, and a display device that can reduce the dead space in the outer peripheral portion of the touch panel and have high precision touch panel sensitivity. Therefore, the present invention is useful in the touch panel related industrial field and can be implemented in this field.
  • TP touch panel 1 substrate 11 display area 12 wiring area 2 terminal portions X1 to X20 X direction conductive patterns Y1 to Y10 Y direction conductive patterns xa1 to xa10, xb1 to xb10 wiring pattern L1 overcoat layer (insulating layer) L2 overcoat layer

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Position Input By Displaying (AREA)

Abstract

タッチパネルの外周部のデッドスペースを減らすことができるとともに、高精度なタッチパネル感度を有するタッチパネルを実現させる。タッチパネル(TP)では、Y方向導電パターン(Y1~Y11)は、X方向導電パターン(X1~X20)の電極部の間のY方向導電パターン用領域に、配線パターン(xa1~xa10、xb1~x10)と離間された状態で配置されている。これにより、この導電シートでは、Y方向導電パターンと、配線パターンとによる寄生容量の発生を適切に抑制することができる。したがって、このタッチパネル(TP)を用いたタッチパネル装置等では、上記寄生容量により、センス信号に重畳されるノイズの発生を効果的に抑制することができ、高精度なタッチパネル感度を実現することができる。

Description

導電シート、タッチパネル装置、および、表示装置
 本発明は、タッチパネル装置やタッチパネル付き表示装置等に用いられる導電シート(例えば、タッチパネル)に関する。
 タッチパネル装置は、タッチパネル面に指やペンで触れることにより、機器に情報を入力することができる装置である。近年、検出感度が良く、操作性に優れた静電容量式のタッチパネル装置が、様々な機器に用いられている。特に、タッチパネル面において指やペンが接触している座標を精度よく検出することができる静電容量式のタッチパネル装置が多く用いられている。
 静電容量式のタッチパネル装置は、複数のドライブラインと、複数のセンスラインを有している。各ドライブラインには、複数のX軸方向センス電極が設けられており、各センスラインには、複数のY軸方向センス電極が設けられている。静電容量式のタッチパネル装置では、ドライブラインに、順番に、駆動パルス信号を出力し、X軸方向センス電極とY軸方向センス電極との間の電界変化を検出する。つまり、X軸方向センス電極とY軸方向センス電極との間の電界変化に対応した信号をセンスラインにおいて検出することで、静電容量式のタッチパネル装置では、タッチパネル面において指やペンが接触している座標を検出する。
 タッチパネル付き表示装置では、タッチパネルのセンス電極に駆動パルスを出力するために、タッチパネルのセンス電極と電気的に接続するための配線パターンが目立たないようにするために、タッチパネルを配置する領域の外周部に黒色等で着色した領域を設ける。この黒色等で塗装された領域の下に、タッチパネルのセンス電極と電気的に接続するための配線パターンを配置することで、当該配線パターンが目立たず、良好な外観のタッチパネル付き表示装置を実現することができる。
 このようなタッチパネル付き表示装置では、タッチパネルのセンス電極と接続される配線パターンを目立たなくするために、黒色等で塗装した領域を、タッチパネルの外周部に設ける必要がある。つまり、上記のようなタッチパネル付き表示装置では、タッチパネルの外周部にデッドスペースがあり、狭額縁のタッチパネル付き表示装置を実現することが困難である。
 タッチパネルの外周部のデッドスペースを減らすために、例えば、特許文献1(特開2012-150782号公報)に開示されているタッチパネル装置では、タッチパネルのセンス電極と電気的に接続する配線パターンをタッチパネル内に設けている。図15に、特許文献1に開示されている技術を用いて実現したタッチパネル装置900の概略構成図を示す。なお、図15に示すように、X軸およびY軸を設定する。
 図15に示すように、タッチパネル装置900は、基板901と、タッチパネルTP9と、端子群902とを備える。タッチパネルTP9には、X軸方向センス電極X91~X94と、Y軸方向センス電極Y91~Y94と、が設けられている。
 端子群95は、図15に示すように、X軸方向センス電極X91~X94と、それぞれ、接続されるX軸方向センス電極用端子Tx91~Tx94と、Y軸方向センス電極Y91~Y94と、それぞれ、接続されるY軸方向センス電極用端子Ty91~Ty94と、を備える。
 また、タッチパネル装置900には、図15に示すように、X軸方向センス電極X91~X94と、X軸方向センス電極用端子Tx91~Tx94とを接続するための配線パターン(接続点Cx91から接続点Ce91へ延びる配線パターン、接続点Cx92から接続点Ce92へ延びる配線パターン、接続点Cx93から接続点Ce93へ延びる配線パターン、および、接続点Cx94から接続点Ce94へ延びる配線パターン)が設けられている。
 接続点Cx91から接続点Ce91へ延びる配線パターンは、接続点Cx91において、X軸方向センス電極X91と電気的に接続されており、かつ、接続点Ce91において、X軸方向センス電極用端子Tx91と基板901上に設けられた配線を介して接続されている。
 接続点Cx92から接続点Ce92へ延びる配線パターンは、接続点Cx92において、X軸方向センス電極X92と電気的に接続されており、かつ、接続点Ce92において、X軸方向センス電極用端子Tx92と基板901上に設けられた配線を介して接続されている。
 接続点Cx93から接続点Ce93へ延びる配線パターンは、接続点Cx93において、X軸方向センス電極X93と電気的に接続されており、かつ、接続点Ce93において、X軸方向センス電極用端子Tx93と基板901上に設けられた配線を介して接続されている。
 接続点Cx94から接続点Ce94へ延びる配線パターンは、接続点Cx94において、X軸方向センス電極X94と電気的に接続されており、かつ、接続点Ce94において、X軸方向センス電極用端子Tx94と基板901上に設けられた配線を介して接続されている。
 図15から分かるように、接続点Cx91から接続点Ce91へ延びる配線パターンは、Y軸方向センス電極Y91と近接した領域に、当該配線パターンとY軸方向センス電極Y91の当該配線パターン側の境界線とが略平行となるように、設けられている。つまり、接続点Cx91から接続点Ce91へ延びる配線パターンと、Y軸方向センス電極Y91とが、(絶縁体(あるいは誘電体)で形成されている領域を挟んで)近接した状態で、長く略平行に設けられているので、接続点Cx91から接続点Ce91へ延びる配線パターンと、Y軸方向センス電極Y91とにより発生する寄生容量が大きくなる。
 また、(1)接続点Cx92から接続点Ce92へ延びる配線パターンと、Y軸方向センス電極Y92、(2)接続点Cx93から接続点Ce93へ延びる配線パターンと、Y軸方向センス電極Y93、(3)接続点Cx94から接続点Ce94へ延びる配線パターンと、Y軸方向センス電極Y94、においても同様の理由により、寄生容量が発生する。
 このように、タッチパネル装置900では、X軸方向センス電極と接続するための配線パターンがタッチパネルTP9内に設けられているので、タッチパネルの外周部のデッドスペースを減らすことができる。
 しかしながら、上記で説明したように、タッチパネル装置900では、X軸方向センス電極と接続するための配線パターンが、Y軸方向センス電極と、近接した状態で長く略平行に配置されているので、発生する寄生容量が大きくなる。特に、略平行状態が長い配線パターンに接続されているX軸方向センス電極からのセンス信号や、当該配線パターンに近接するY軸方向センス電極からのセンス信号に、寄生容量に起因する大きなノイズが重畳されやすい。その結果、タッチ位置を検出する信号の応答速度が遅くなるタッチパネルの性能低下がみられる。そこで、本発明は、上記問題点に鑑み、タッチパネルの外周部のデッドスペースを減らすことができるとともに、高精度なタッチパネル感度を有する導電シート、タッチパネル装置、および、表示装置を実現することを目的とする。
 上記課題を解決するために、第1の構成は、N個(N:2以上の自然数)のX方向導電パターンと、M個(M:2以上の自然数)のY方向導電パターンと、端子部と、配線パターンと、を備える導電シートである。
 N個(N:2以上の自然数)のX方向導電パターンは、それぞれ、第1方向に配置された複数のX方向電極部と、隣接するX方向電極部同士を電気的に接続するX方向接続部とを含む。
 M個(M:2以上の自然数)のY方向導電パターンは、それぞれ、第1方向と交差する第2方向に配置された複数のY方向電極部と、隣接するY方向電極部同士を電気的に接続するY方向接続部とを含む。
 端子部は、X方向導電パターン、および、Y方向導電パターンのそれぞれに電気的に接続するための端子を含む。
 配線パターンは、X方向導電パターンと、当該X方向導電パターンに対応する端子部の端子とを、電気的に接続する。
 そして、平面視において、X方向電極部の第1方向の一方側に隣接するX方向電極部との間の領域を、Y方向導電パターン用領域とし、X方向電極部の第1方向の他方側に隣接するX方向電極部との間の領域を、配線パターン用領域とすると、Y方向導電パターンは、Y方向導電パターン用領域に配置されており、配線パターンは、配線パターン用領域に配置されている。Y方向導電パターン用領域および配線パターン用領域は、第1方向において、隣接する2つのX方向電極部に挟まれた領域に、交互に、設けられている。
 本発明によれば、タッチパネルの外周部のデッドスペースを減らすことができるとともに、高精度なタッチパネル感度を有する導電シート、タッチパネル装置、および、表示装置、を実現することができる。
第1実施形態に係る導電シートの一例であるタッチパネルTPの概略構成図。 第1実施形態のタッチパネルTPの平面図の一部の領域AR1を拡大して示した図。 第1実施形態のタッチパネルTPの平面図の一部の領域AR2を拡大し、模式的に示した図。 第1実施形態タッチパネルTPの領域AR2の一部と、配線領域12の一部とを模式的に示した図。 図3、図4に示した接続領域ARc_X18を拡大して示した図。 端子部2の各端子と、配線パターンxa1~xa10、xb1~xb10、X方向導電パターンX1~X20、および、Y方向導電パターンY1~Y11との接続について、説明するための図。 図4の領域AR_X19を拡大して示した図。 図4の領域ARb_X19を拡大して示した図。 図4の端子部2が配置されている領域を拡大して示した図。 第1実施形態の第1変形例のタッチパネルTPの領域AR2を拡大して模式的に示した図。 第1実施形態の第1変形例の本変形例のタッチパネルTPの平面図の一部を示す図。 図11に示した接続領域ARc_X18を拡大して示した図。 図11に示した領域AR_X19を拡大して示した図。 図11に示した領域ARb_X19を拡大して示した図。 に、特許文献1に開示されている技術を用いて実現したタッチパネル装置900の概略構成図を示す。
 [第1実施形態]
 第1実施形態について、図面を参照しながら、以下、説明する。
 図1は、第1実施形態に係る導電シートの一例であるタッチパネルTPの概略構成図(一例)である。具体的には、図1は、タッチパネルTPの平面図である。
 図2は、図1のタッチパネルTPの平面図の一部の領域AR1を拡大して示した図である。
 なお、図1、図2において、図1および図2に示すように、X軸およびY軸を設定する。
 図3は、図1のタッチパネルTPの平面図の一部の領域AR2を拡大し、模式的に示した図である。図3では、説明便宜のため、電極部、接続部、および、配線パターンを多角形の形状を有するパターンとして描いている。
 図1に示すように、タッチパネルTPは、基板1と、基板1上に形成されたX方向導電パターンX1~X20と、基板1上に形成されたY方向導電パターンY1~Y11と、配線パターンxa1~xa10、xb1~xb10と、端子部2と、を備える。
 (1.1:基板1)
 基板1は、絶縁性を有し、光の透過率の高い材質(例えば、無色透明な樹脂、ガラス、プラスチック、PET(ポリエチレンテレフタレート)等)により形成されている。基板1の厚みは、例えば、基板1を、表示画面を覆うように配置した場合に、表示画面からの光を十分に透過させることができる程度の厚みであることが好ましい。
 基板1は、図1に示すように、表示領域11と、配線領域12とを有する。
 表示領域11は、図1に示すように、X方向導電パターンX1~X20と、Y方向導電パターンY1~Y11と、配線パターンxa1~xa10、xb1~xb10と、が形成される領域である。
 配線領域12は、図1に示すように、端子部2、端子部2の端子とY方向導電パターンY1~Y11とを接続する配線、および、端子部2の端子と配線パターンxa1~xa10、xb1~xb10とを接続する配線が形成される領域である。なお、配線領域12は、配線領域12内の配線パターンが目立つことを防止するために、例えば、黒色等に着色されている。
 (1.2:X方向導電パターン)
 X方向導電パターンX1~X20は、基板1上に形成されている。X方向導電パターンX1~X20は、例えば、導体により形成されている。X方向導電パターンX1~X20は、例えば、酸化インジウムスズ(ITO)を用いて形成される透明電極(光の透過率の高い電極)である。
 X方向導電パターンX1~X20は、それぞれ、複数の電極部(例えば、図2に示す、X18a~X18d、X19a~X19d、X20a~X20d)と、隣接する電極部同士を接続する接続部(例えば、図2に示すXbr(18,1)、Xbr(18,3)、Xbr(19,1)、Xbr(19,2)、Xbr(19,3)、Xbr(20,2))と、を含む。
 X方向導電パターンX1~X20のそれぞれは、複数の電極部と複数の接続部とを有している。X方向導電パターンX1~X20のそれぞれにおいて、複数の電極部は、図1および図2に示すように、平面視で、X軸方向に略一直線状に配列されており、そして、隣接する電極部同士は、図1および図2に示すように、接続部を介して接続されている。
 電極部は、X軸方向の一方側において、隣接する電極部との間にY方向導電パターンを配置するための領域であるY方向導電パターン用領域が確保されるように配置されている。
 また、電極部は、X軸方向の他方側において、隣接する電極部との間に配線パターンを配置するための領域である配線パターン用領域が確保されるように配置されている。
 例えば、電極部X19bは、図2に示すように、X軸正方向側に、Y方向導電パターン用領域(図2のY方向導電パターンY2が配置されている領域)が確保され、かつ、X軸負方向側に、配線パターン用領域(図2の配線パターンxa1、xb1が配置されている領域)が確保されるように配置されている。
 図3に示す領域AR2においても、同様に、X方向導電パターンと、Y方向導電パターンとが、配置されている。つまり、図3に示すように、X方向導電パターンX17~X20の各電極部は、Y方向導電パターン用領域と配線パターン用領域とを交互に挟むように配置されている。すなわち、図3に示すように、X方向導電パターンX17~X20の左端の電極部と左端から2番目の電極部は、Y方向導電パターンY1を挟むように配置されており、X方向導電パターンX17~X20の左端から2番目の電極部と左端から3番目の電極部は、配線パターンxa1、xb1とを挟むように配置されている。図3に示すように、他の電極部も、同様のパターンにより配置されている。
 なお、図3に示すように、Y方向導電パターン用領域の接続部のY軸方向の位置と、配線パターン用領域の接続部のY軸方向の位置とが異なるように(図3の場合、両者間の距離が距離d1となるように)、X方向導電パターンの接続部が、配置されている。これにより、接続部が一定のパターンとなって、不快に目視されること(例えば、モアレの発生)を適切に防止することができる。
 上記のように電極部および接続部を形成することで、1行のX軸方向の導電部(例えば、図2に示すX方向導電パターンX19や図3に示すX方向導電パターンX17~X20)が構成される。このように構成されたX軸方向の導電部は、図1に示すように、Y軸方向に複数配列されている。
 X方向導電パターンX1~X20は、それぞれ対応する配線パターンxa1~xa10、xb1~xb10と電気的に接続されている。そして、配線パターンxa1~xa10、xb1~xb10は、それぞれ対応する端子部2の端子に、配線領域12の配線を介して電気的に接続されている。これについて、図4、図5を用いて、説明する。
 図4は、図1のタッチパネルTPの領域AR2の一部と、配線領域12の一部とを模式的に示した図である。図4では、端子部2の端子の一部を示している。説明便宜のため、図4に示すように、端子番号1~13を付している。
 図5は、図3、図4に示した接続領域ARc_X18を拡大して示した図である。具体的には、図5は、X方向導電パターンX18と、配線パターンxa4との接続領域ARc_X18の拡大図(図5の上図)と、図5のA-A線によるA-A断面図(図5の下図)である。
 図5に示すように、基板1上に、X方向導電パターンX18の電極部X18_y4bと、X方向導電パターンX18の電極部X18_y5aとが形成されている。
 また、図5に示すように、基板1上に、配線パターンxa4と、配線パターンxb4とが形成されている。
 配線パターンxa4は、図5に示すように、電極部X18_y4bと接触するように配置されており、配線パターンxa4は、電極部X18_y4bと電気的に接続されている。
 また、接続部Xbr(18,8)は、図5に示すように、配置されており、一方の端部が、電極部X18_y4bと接続されており、他方の端部が、電極部X18_y5aと接続されている。これにより、電極部X18_y4bと、電極部X18_y5aと、接続部Xbr(18,8)を介して、電気的に接続される。
 なお、図5に示すように、絶縁体物質からなるオーバーコート層L1、L2が形成されており、配線パターンxb4と、配線パターンxa4、電極部X18_y4b、X18_y5a、および接続部Xbr(18,8)とが絶縁状態(電気的に接続されていない状態)となっている。
 上記のように、電極部X18_y4b、X18_y5a、および、配線パターンxa4が配置されることで、電極部X18_y4b、X18_y5a、および、配線パターンxa4が電気的に接続される。すなわち、配線パターンxa4は、X方向導電パターンX18と電気的に接続される。
 なお、他のX方向導電パターンと、それに対応する配線パターンとの接続についても上記と同様である。例えば、図3の接続領域ARc_X17についても、上記と同様の構成により、X方向導電パターンと、それに対応する配線パターンとが電気的に接続されている。
 次に、図4を用いて、X方向導電パターンと、端子部2との接続関係について説明する。
 図4に示すように、端子番号2の端子は、配線パターンxa1に接続されており、配線パターンxa1は、図3に示すように、X方向導電パターンX17に接続されている。つまり、端子番号2の端子は、配線パターンxa1を介して、X方向導電パターンX17に接続されている。したがって、端子番号2の端子に、X方向導電パターンX17を駆動するための信号を入力することで、X方向導電パターンX17に所定の電界を発生させることができる。
 端子番号3の端子は、配線パターンxb1に接続されており、配線パターンxb1は、例えば、X方向導電パターンX7に接続されている。つまり、端子番号2の端子は、配線パターンxb1を介して、X方向導電パターンX7に接続されている。したがって、端子番号2の端子に、X方向導電パターンX7を駆動するための信号を入力することで、X方向導電パターンX7に所定の電界を発生させることができる。
 端子番号5の端子は、配線パターンxa2に接続されており、配線パターンxa2は、例えば、X方向導電パターンX14に接続されている。つまり、端子番号5の端子は、配線パターンxa2を介して、X方向導電パターンX14に接続されている。したがって、端子番号5の端子に、X方向導電パターンX14を駆動するための信号を入力することで、X方向導電パターンX14に所定の電界を発生させることができる。
 端子番号6の端子は、配線パターンxb2に接続されており、配線パターンxb2は、例えば、X方向導電パターンX4に接続されている。つまり、端子番号6の端子は、配線パターンxb2を介して、X方向導電パターンX4に接続されている。したがって、端子番号6の端子に、X方向導電パターンX4を駆動するための信号を入力することで、X方向導電パターンX4に所定の電界を発生させることができる。
 端子番号8の端子は、配線パターンxa3に接続されており、配線パターンxa3は、例えば、X方向導電パターンX11に接続されている。つまり、端子番号8の端子は、配線パターンxa3を介して、X方向導電パターンX11に接続されている。したがって、端子番号8の端子に、X方向導電パターンX11を駆動するための信号を入力することで、X方向導電パターンX11に所定の電界を発生させることができる。
 端子番号9の端子は、配線パターンxb3に接続されており、配線パターンxb3は、例えば、X方向導電パターンX1に接続されている。つまり、端子番号9の端子は、配線パターンxb3を介して、X方向導電パターンX1に接続されている。したがって、端子番号9の端子に、X方向導電パターンX1を駆動するための信号を入力することで、X方向導電パターンX1に所定の電界を発生させることができる。
 端子番号11の端子は、配線パターンxa4に接続されており、配線パターンxa4は、例えば、X方向導電パターンX18に接続されている。つまり、端子番号11の端子は、配線パターンxa4を介して、X方向導電パターンX18に接続されている。したがって、端子番号11の端子に、X方向導電パターンX14を駆動するための信号を入力することで、X方向導電パターンX18に所定の電界を発生させることができる。
 端子番号12の端子は、配線パターンxb4に接続されており、配線パターンxb4は、例えば、X方向導電パターンX8に接続されている。つまり、端子番号12の端子は、配線パターンxb4を介して、X方向導電パターンX8に接続されている。したがって、端子番号12の端子に、X方向導電パターンX8を駆動するための信号を入力することで、X方向導電パターンX8に所定の電界を発生させることができる。
 (1.3:Y方向導電パターン)
 Y方向導電パターンY1~Y11は、基板1上に形成されている。Y方向導電パターンY1~Y11は、例えば、導体により形成されている。Y方向導電パターンY1~Y11は、例えば、酸化インジウムスズ(ITO)を用いて形成される透明電極(光の透過率の高い電極)である。
 Y方向導電パターンY1~Y11は、それぞれ、複数の電極部(例えば、図2に示す、Y2a、Y2b、Y2c)と、隣接する電極部同士を接続する接続部(例えば、図2に示すYbr(19,2)、Ybr(20,2))と、を含む。
 Y方向導電パターンY1~Y11のそれぞれは、複数の電極部と複数の接続部とを有している。Y方向導電パターンY1~Y11のそれぞれにおいて、複数の電極部は、図1および図2に示すように、平面視で、Y軸方向に略一直線状に配列されており、そして、隣接する電極部同士は、図1および図2に示すように、接続部を介して接続されている。
 Y方向導電パターンの電極部は、X方向導電パターンの電極部の間のY方向導電パターン用領域に配置されている。つまり、Y方向導電パターンの電極部は、図2、図3に示すように、配線パターンと離間された状態で配置されている。これにより、Y方向導電パターンと、配線パターンとによる寄生容量の発生を適切に抑制することができる。
 例えば、Y方向導電パターンY2は、図2に示すように、X方向導電パターンの電極部X18b、X19b、X20bと、X方向導電パターンの電極部X18c、X19c、X20cと、に挟まれた領域(Y方向導電パターン用領域)に配置されている。つまり、Y方向導電パターンY2と、配線パターンxa1またはxb1との距離は十分大きく、かつ、Y方向導電パターンY2と、配線パターンxa2またはxb2との距離も十分大きい。したがって、Y方向導電パターンY2と、配線パターンxa1またはxb1とにより発生する寄生容量は、ほとんどなく、かつ、Y方向導電パターンY2と、配線パターンxa2またはxb2とにより発生する寄生容量も、ほとんどない。
 上記のように、Y方向導電パターンの電極部および接続部を形成することで、1列のY軸方向の導電部(例えば、図2に示すY方向導電パターンY2、図3に示すY方向導電パターンY1~Y5)が構成される。このように構成されたY軸方向の導電部を、図1に示すように、X軸方向に複数配列されている。
 次に、図4を用いて、Y方向導電パターンと、端子部2との接続関係について説明する。
 図4に示すように、端子番号1の端子は、Y方向導電パターンY1に接続されている。
 端子番号4の端子は、Y方向導電パターンY2に接続されている。
 端子番号7の端子は、Y方向導電パターンY3に接続されている。
 端子番号10の端子は、Y方向導電パターンY4に接続されている。
 端子番号13の端子は、Y方向導電パターンY5に接続されている。
 なお、他のY方向導電パターンについても、同様に、対応する端子部2の端子に接続されている。
 そして、Y方向導電パターンY1~Y11は、それぞれ、端子部2の対応する端子を介して、受信回路(不図示)に接続される。受信回路が、Y方向導電パターンY1~Y11のそれぞれに発生した電流値(あるいは電圧値)等を読み取ることで、タッチパネルTP面上の電界変化を検出することができる。
 図1~図4に示すように、Y方向導電パターンY1~Y11は、配線パターンxa1~xa10、xb1~xb10との距離が十分大きい位置に形成されているので、Y方向導電パターンと配線パターンとにより発生する寄生容量を適切に抑制することができる。したがって、Y方向導電パターンY1~Y11を介して、受信回路で取得されるセンス信号は、寄生容量によるノイズが重畳されることなく良好な信号となる。したがって、タッチパネルTPを用いたタッチパネル装置では、タッチパネルTP面上の電界変化を高精度に検出することができる。その結果、タッチパネルTPを用いることで、高精度なタッチ検出性能を有するタッチパネル装置を実現することができる。
 (1.4:配線パターン)
 配線パターンxa1~xa10、xb1~xb10は、基板1上に形成されている。配線パターンxa1~xa10、xb1~xb10は、例えば、導体により形成されている。配線パターンxa1~xa10、xb1~xb10は、例えば、酸化インジウムスズ(ITO)を用いて形成され、その光の透過率は十分高いことが好ましい。
 配線パターンxa1~xa10、xb1~xb10は、図1、図2に示すように、X方向導電パターンの電極部に挟まれた領域である配線パターン用領域に配置されている。そして、配線パターンxa1~xa10、xb1~xb10は、それぞれ、対応するX方向導電パターンと、図5で示したのと同様の構成により、電気的に接続される。
 (1.5:端子部)
 端子部2は、複数の端子を含む。各端子は、基板1上に形成されており、図1に示すように、配線領域2に配置されている。
 端子部2の端子は、配線領域2に設けられた配線を介して、それぞれ、Y方向導電パターンY1~Y11、X方向導電パターンX1~X20、および、配線パターンxa1~xa10、xb1~xb10のいずれかに接続されている。
 なお、端子部2の端子に、GND端子(GNDと接続する端子)を設けるようにしてもよい。
 ここで、端子部2の各端子の接続について、図6を用いて、説明する。
 図6は、端子部2の各端子と、配線パターンxa1~xa10、xb1~xb10、X方向導電パターンX1~X20、および、Y方向導電パターンY1~Y11との接続について、説明するための図(結線図)である。
 図6では、端子部2の端子数は、「31」であり、図6に示すように、各端子には、端子番号1~31を付している。説明便宜のために、図6の左から右へ順番に端子番号を昇順で付している。つまり、左端の端子が端子番号1の端子であり、右端の端子が端子番号31の端子である。
 また、図6では、配線パターンxa1~xa10、xb1~xb10と、X方向導電パターンX1~X20の接続位置を黒丸で示している。例えば、端子番号2の端子は、X方向導電パターンX17と接続されていることを示している。
 また、図6において、Y方向導電パターンを太線で示している。
 図6に示すように、Y方向導電パターンY1~Y11は、以下のように接続されている。
 端子番号1の端子は、Y方向導電パターンY1に接続されている。
 端子番号4の端子は、Y方向導電パターンY2に接続されている。
 端子番号7の端子は、Y方向導電パターンY3に接続されている。
 端子番号10の端子は、Y方向導電パターンY4に接続されている。
 端子番号13の端子は、Y方向導電パターンY5に接続されている。
 端子番号16の端子は、Y方向導電パターンY6に接続されている。
 端子番号19の端子は、Y方向導電パターンY7に接続されている。
 端子番号22の端子は、Y方向導電パターンY8に接続されている。
 端子番号25の端子は、Y方向導電パターンY9に接続されている。
 端子番号28の端子は、Y方向導電パターンY10に接続されている。
 端子番号31の端子は、Y方向導電パターンY11に接続されている。
 また、図6に示すように、X方向導電パターンX1~X20、および、配線パターンxa1~xa10、xb1~xb10は、以下のように接続されている。
 端子番号2の端子は、配線パターンxa1と接続されており、配線パターンxa1は、X方向導電パターンX17と接続されている。
 端子番号3の端子は、配線パターンxb1と接続されており、配線パターンxb1は、X方向導電パターンX7と接続されている。
 端子番号5の端子は、配線パターンxa2と接続されており、配線パターンxa2は、X方向導電パターンX14と接続されている。
 端子番号6の端子は、配線パターンxb2と接続されており、配線パターンxb2は、X方向導電パターンX4と接続されている。
 端子番号8の端子は、配線パターンxa3と接続されており、配線パターンxa3は、X方向導電パターンX11と接続されている。
 端子番号9の端子は、配線パターンxb3と接続されており、配線パターンxb3は、X方向導電パターンX1と接続されている。
 端子番号11の端子は、配線パターンxa4と接続されており、配線パターンxa4は、X方向導電パターンX18と接続されている。
 端子番号12の端子は、配線パターンxb4と接続されており、配線パターンxb4は、X方向導電パターンX8と接続されている。
 端子番号14の端子は、配線パターンxa5と接続されており、配線パターンxa5は、X方向導電パターンX15と接続されている。
 端子番号15の端子は、配線パターンxb5と接続されており、配線パターンxb5は、X方向導電パターンX5と接続されている。
 端子番号17の端子は、配線パターンxa6と接続されており、配線パターンxa6は、X方向導電パターンX12と接続されている。
 端子番号18の端子は、配線パターンxb6と接続されており、配線パターンxb6は、X方向導電パターンX2と接続されている。
 端子番号20の端子は、配線パターンxa7と接続されており、配線パターンxa7は、X方向導電パターンX9と接続されている。
 端子番号21の端子は、配線パターンxb7と接続されており、配線パターンxb7は、X方向導電パターンX19と接続されている。
 端子番号23の端子は、配線パターンxa8と接続されており、配線パターンxa8は、X方向導電パターンX16と接続されている。
 端子番号24の端子は、配線パターンxb8と接続されており、配線パターンxb8は、X方向導電パターンX6と接続されている。
 端子番号26の端子は、配線パターンxa9と接続されており、配線パターンxa9は、X方向導電パターンX3と接続されている。
 端子番号27の端子は、配線パターンxb9と接続されており、配線パターンxb9は、X方向導電パターンX13と接続されている。
 端子番号29の端子は、配線パターンxa10と接続されており、配線パターンxa10は、X方向導電パターンX10と接続されている。
 端子番号30の端子は、配線パターンxb10と接続されており、配線パターンxb10は、X方向導電パターンX20と接続されている。
 このように、タッチパネルTPでは、X方向導電パターンと配線パターンとの接続点を近接しないように配置する。つまり、タッチパネルTPでは、隣接するX方向導電パターンの配線パターンとの接続点同士が、一定の距離以上離れた位置となるように、X方向導電パターンと配線パターンとの接続点が配置される。これにより、タッチパネルTPでは、1つのX方向導電パターンおよび配線パターンが、他のX方向導電パターンおよび配線パターンに発生したノイズの影響を受けにくくなる。その結果、タッチパネルTPを用いることで、高精度なタッチ検出性能を有するタッチパネル装置を実現することができる。
 なお、タッチパネルTPにおけるX方向導電パターンと配線パターンとの接続点の配置は、図6に示したものに限定されることはない。X方向導電パターンと配線パターンとの接続点が、近接しないように、X方向導電パターンと配線パターンとの接続点を、図6に示した配置以外の配置とするようにしてもよい。
 以上のように、タッチパネルTPでは、Y方向導電パターンは、X方向導電パターンの電極部の間のY方向導電パターン用領域に、配線パターンと離間された状態で配置されている。これにより、Y方向導電パターンと、配線パターンとによる寄生容量の発生を適切に抑制することができる。さらに、タッチパネルTPでは、X方向導電パターンと配線パターンとの接続点が、離間された状態で配置されているため、1つのX方向導電パターンおよび配線パターンが、他のX方向導電パターンおよび配線パターンに発生したノイズの影響を受けにくい。
 したがって、タッチパネルTPを用いることで、高精度なタッチ検出性能を有するタッチパネル装置を実現することができる。
 また、タッチパネルTPでは、図1に示すように、表示領域11内に、X方向導電パターンを接続するための配線パターンを配置したので、着色して配線を目立たなくしなければならない配線領域12を狭くすることができる。すなわち、タッチパネルTPでは、タッチパネルTPの表示領域11の外周部のデッドスペースを減らすことができる。
 ≪タッチパネルTPの製造方法≫
 次に、タッチパネルTPの製造方法について、図5、図7~図9を用いて、説明する。
 具体的には、
(1)タッチパネルTPの配線パターン用領域においてX方向導電パターンの隣接する電極部同士を接続し、かつ、X方向導電パターンと配線パターンとを接続する領域(例えば、図4の領域ARc_X18)と、
(2)タッチパネルTPの配線パターン用領域においてX方向導電パターンの隣接する電極部同士を接続する領域(例えば、図4の領域AR_X19)と、
(3)Y方向導電パターン用領域においてX方向導電パターンの隣接する電極部同士を接続する領域(例えば、図4の領域ARb_X19)と、
(4)端子部2が配置されている領域、
のそれぞれにおける断面図を用いて、タッチパネルTPの製造方法について、説明する。
 図7は、図4の領域AR_X19を拡大して示した図である。具体的には、図7の上図は、領域AR_X19の拡大図であり、図7の下図は、図7の上図のB-B線によるB-B断面図である。
 図8は、図4の領域ARb_X19を拡大して示した図である。具体的には、図8の上図は、領域ARb_X19の拡大図であり、図8の下図は、図8の上図のC-C線によるC-C断面図である。
 図9は、図4の端子部2が配置されている領域を拡大して示した図である。具体的には、図9の上図は、端子部2が配置されている領域の拡大図であり、図9の下図は、図9の上図のD-D線によるD-D断面図である。
 ≪1:領域ARc_X18(図5の場合)≫
 まず、タッチパネルTPの配線パターン用領域においてX方向導電パターンの隣接する電極部同士を接続し、かつ、X方向導電パターンと配線パターンとを接続する領域(例えば、図4の領域ARc_X18)について、タッチパネルTPの製造方法(当該領域の製造方法)について、説明する。
(1)まず、基板1上に透明電極材料(例えば、ITO)の成膜工程にて、X方向導電パターンの電極部X18_y4b、X18_y5aと、配線パターンxa4、xb4と、を形成させる。このとき、2本ある配線パターンxa4、xb4のうちどちらか一方(図5の場合、xa4)とX方向導電パターンX18の電極部とが接するようにすることで、X方向導電パターンの電極部と、配線パターンとが電気的に接続されるようにする。
(2)次に、フォトリソグラフィ工程にて、図5に示すように、配線パターンxa4、xb4上および、配線パターンの周囲のみに、オーバーコート層L1を成膜する。
(3)次に、図5に示すように、X方向導電パターンの電極部X18_y4b、X18_y5aの上およびオーバーコート層L1の上に、接続部(ブリッジ部)Xbr(18,8)となる透明電極材料を成膜する。
(4)最後に、保護層として、オーバーコート層L2を、図5に示すように、X方向導電パターンの電極部X18_y4b、X18_y5a、および、接続部(ブリッジ部)Xbr(18,8)の上に、成膜する。
 ≪2:領域AR_X19(図7の場合)≫
 次に、タッチパネルTPの配線パターン用領域においてX方向導電パターンの隣接する電極部同士を接続する領域(例えば、図4の領域AR_X19)について、タッチパネルTPの製造方法(当該領域の製造方法)について、説明する。
(1)まず、基板1上に透明電極材料(例えば、ITO)の成膜工程にて、X方向導電パターンの電極部X19_y4b、X19_y5aと、配線パターンxa4、xb4と、を形成させる。このとき、図7に示すように、配線パターンxa4、xb4は、いずれも他の導体部分と接触しないように配置する。
(2)次に、フォトリソグラフィ工程にて、図7に示すように、配線パターンxa4、xb4上および、配線パターンの周囲のみに、オーバーコート層L1を成膜する。
(3)次に、図7に示すように、X方向導電パターンの電極部X18_y4b、X18_y5aの上およびオーバーコート層L1の上に、接続部(ブリッジ部)Xbr(19,8)となる透明電極材料を成膜する。
(4)最後に、保護層として、オーバーコート層L2を、図7に示すように、X方向導電パターンの電極部X18_y4b、X18_y5a、および、接続部(ブリッジ部)Xbr(19,8)の上に、成膜する。
 ≪3:領域ARb_X19(図8の場合)≫
 次に、Y方向導電パターン用領域においてX方向導電パターンの隣接する電極部同士を接続する領域(例えば、図4の領域ARb_X19)について、タッチパネルTPの製造方法(当該領域の製造方法)について、説明する。
(1)まず、基板1上に透明電極材料(例えば、ITO)の成膜工程にて、X方向導電パターンの電極部X19_y5a、X19_y5bと、Y方向導電パターンY5と、を形成させる。このとき、図8に示すように、Y方向導電パターンY5は、他の導体部分(X方向導電パターンの電極部X19_y5a、X19_y5b)と接触しないように配置する。
(2)次に、フォトリソグラフィ工程にて、図8に示すように、Y方向導電パターンY5上および、その周囲のみに、オーバーコート層L1を成膜する。
(3)次に、図8に示すように、X方向導電パターンの電極部X18_y5a、X18_y5bの上およびオーバーコート層L1の上に、接続部(ブリッジ部)Xbr(19,9)となる透明電極材料を成膜する。
(4)最後に、保護層として、オーバーコート層L2を、図8に示すように、X方向導電パターンの電極部X18_y5a、X18_y5b、および、接続部(ブリッジ部)Xbr(19,9)の上に、成膜する。
 ≪4:端子部2の領域(図9の場合)≫
 次に、端子部2が配置されている領域Y方向導電パターン用領域においてX方向導電パターンの隣接する電極部同士を接続する領域(例えば、図4の端子部2が配置されている領域)について、タッチパネルTPの製造方法(当該領域の製造方法)について、図9を用いて、説明する。
(1)まず、基板1上に、例えば、黒色に着色した層(膜)L_bk(着色層L_bk)を形成させる。そして、その着色層L_bk上に、メタル成膜(金属成膜)を行い、外部接続端子(図9の端子T1~T4)を形成させる。
(2)次に、透明電極成膜工程を行い、X方向導電パターン、Y方向導電パターン、および、配線パターンのいずれかと接続するための配線(図9のw1~w4)となる導体部を、図9に示すように、外部接続端子(端子T1~T4)の上に形成させる。これにより、外部接続端子(端子T1~T4)は、それぞれ対応する、X方向導電パターン、Y方向導電パターン、あるいは、配線パターンと電気的に接続される。例えば、図9の場合、端子T1は、配線w1を介して、Y方向導電パターンY1に接続される。また、端子T2は、配線w2を介して、配線パターンxa1に接続される。また、端子T3は、配線w3を介して、配線パターンxb1に接続される。また、端子T4は、配線w4を介して、Y方向導電パターンY2に接続される。
 以上の工程を実行することにより、タッチパネルTPを製造することができる。
 上記のタッチパネルTPの製造方法では、配線パターンxa1~xa10、xb1~xb10が、X方向導電パターンX1~X20、Y方向導電パターンY1~Y11と同じ階層で作成されるため、別途、配線パターンxa1~xa10、xb1~xb10を形成させるためのプロセス工程を追加する必要がない。したがって、上記のタッチパネルTPの製造方法により、効率良くタッチパネルTPを製造することができる。
 ≪第1変形例≫
 次に、第1実施形態の第1変形例について、説明する。
 なお、本変形例において、上記第1実施形態と同様の部分については、同一符号を付し、詳細な説明を省略する。
 第1実施形態のタッチパネルTPでは、図3に示すように、配線パターン用領域においてX方向導電パターンの隣接する電極部同士を接続するY軸方向の位置と、Y方向導電パターン用領域においてX方向導電パターンの隣接する電極部同士を接続する位置とが、一致しないように(距離d1だけ離間されて)配置されていた。
 本変形例のタッチパネルTPでは、図10に示すように、配線パターン用領域においてX方向導電パターンの隣接する電極部同士を接続するY軸方向の位置と、Y方向導電パターン用領域においてX方向導電パターンの隣接する電極部同士を接続する位置とが、略一致するように配置されている。
 この点のみが、本変形例のタッチパネルTPでは、第1実施形態のタッチパネルTPと相違する。
 本変形例のタッチパネルTPでは、図10に示すように、配線パターン用領域においてX方向導電パターンの隣接する電極部同士を接続するY軸方向の位置と、Y方向導電パターン用領域においてX方向導電パターンの隣接する電極部同士を接続する位置とが、略一致するように配置されているので、製造作業を簡易化することができる。
 ≪第2変形例≫
 次に、第1実施形態の第2変形例について、説明する。
 なお、本変形例において、上記第1実施形態と同様の部分については、同一符号を付し、詳細な説明を省略する。
 本変形例のタッチパネルTPは、スルーホールを用いて、配線パターン用領域においてX方向導電パターンの電極部と、配線パターンとが接続されている。また、本変形例のタッチパネルTPは、配線パターン用領域のX方向導電パターン、配線パターンの構成、Y方向導電パターン用領域のX方向導電パターン、Y方向導電パターンの構成が、第1実施形態のタッチパネルTPと相違する。
 上記以外については、本変形例のタッチパネルTPは、第1実施形態のタッチパネルTPと同様である。
 図11は、本変形例のタッチパネルTPの平面図の一部を示す図であり、第1実施形態のタッチパネルTPの平面図の一部の領域AR2を拡大し、模式的に示した図3に対応する図である。なお、図11では、図3と同様に、説明便宜のため、電極部、接続部、および、配線パターンを多角形の形状を有するパターンとして描いている。
 図12は、図11に示した接続領域ARc_X18を拡大して示した図である。具体的には、図12は、X方向導電パターンX18と、配線パターンxa4との接続領域ARc_X18の拡大図(図12の上図)と、図12のE-E線によるE-E断面図(図12の下図)である。
 図12に示すように、接続領域ARc_X18において、X方向導電パターンX18は、スルーホールTH1に充填された導体により、配線パターンxa4と電気的に接続されている。なお、配線パターンxb4は、絶縁物質からなるオーバーコート層L1により、X方向導電パターンX18、スルーホールTH1、および、配線パターンxa4とは、離間された位置に配置されているので、配線パターンxb4は、X方向導電パターンX18、スルーホールTH1、および、配線パターンxa4と絶縁状態(電気的に接続されていない状態)となっている。
 図13は、図11に示した領域AR_X19を拡大して示した図である。具体的には、図13は、X方向導電パターンX19と、配線パターンxa4、xb4とが配置されている領域AR_X19の拡大図(図13の上図)と、図13のF-F線によるF-F断面図(図13の下図)である。
 図13に示すように、領域AR_X19において、X方向導電パターンX18は、絶縁物質からなるオーバーコート層L1により、配線パターンxa4、xb4とは、離間された位置に配置されている。したがって、X方向導電パターンX18は、配線パターンxa4、xb4と絶縁状態(電気的に接続されていない状態)となっている。
 図14は、図11に示した領域ARb_X19を拡大して示した図である。具体的には、図14は、X方向導電パターンX19と、Y方向導電パターンY5とが配置されている領域ARb_X19の拡大図(図14の上図)と、図14のG-G線によるG-G断面図(図14の下図)である。
 図14に示すように、領域ARb_X19において、X方向導電パターンX19(電極部X19_y5a、X19_y5b)は、スルーホールTH2、TH3に充填された導体により、接続部Xbr(19,9)と電気的に接続されている。なお、Y方向導電パターンY5は、図14に示すように、絶縁物質からなるオーバーコート層L1により、X方向導電パターンX19、スルーホールTH2、TH3、および、配線パターンxa4とは、離間された位置に配置されているので、配線パターンxb4は、接続部Xbr(19,9)と絶縁状態(電気的に接続されていない状態)となっている。
 ≪タッチパネルTPの製造方法≫
 次に、本変形例のタッチパネルTPの製造方法について、図12~図14を用いて、説明する。
 具体的には、
(1)タッチパネルTPの配線パターン用領域においてX方向導電パターンの隣接する電極部同士を接続し、かつ、X方向導電パターンと配線パターンとを接続する領域(例えば、図11の領域ARc_X18)と、
(2)タッチパネルTPの配線パターン用領域においてX方向導電パターンの隣接する電極部同士を接続する領域(例えば、図11の領域AR_X19)と、
(3)Y方向導電パターン用領域においてX方向導電パターンの隣接する電極部同士を接続する領域(例えば、図11の領域ARb_X19)、
のそれぞれにおける断面図を用いて、タッチパネルTPの製造方法について、説明する。
 ≪1:領域ARc_X18(図12の場合)≫
 まず、タッチパネルTPの配線パターン用領域においてX方向導電パターンの隣接する電極部同士を接続し、かつ、X方向導電パターンと配線パターンとを接続する領域(例えば、図11の領域ARc_X18)について、タッチパネルTPの製造方法(当該領域の製造方法)について、説明する。
(1)まず、基板1上に透明電極材料(例えば、ITO)の成膜工程にて、配線パターンxa4、xb4を形成させる。
(2)次に、配線パターンxa4、xb4上および、配線パターンの周囲に、絶縁物質からなるオーバーコート層L1を成膜する。このとき、配線パターンxa4上にスルーホールTH1を設けておく。つまり、スルーホールTH1の位置にフォトマスクを利用したフォトリソグラフィ工程により、穴を空けておく。
(3)次に、スルーホールTH1に導体(例えば、ITO)を充填し、さらに、オーバーコート層L1上に、X方向導電パターンX18を形成させる。これにより、スルーホールTH1により、配線パターンxa4とX方向導電パターンX18とが電気的に接続される。
(4)最後に、保護層として、オーバーコート層L2を、図12に示すように、X方向導電パターンの電極部X18の上に、成膜する。
 ≪2:領域AR_X19(図13の場合)≫
 次に、タッチパネルTPの配線パターン用領域においてX方向導電パターンの隣接する電極部同士を接続する領域(例えば、図11の領域AR_X19)について、タッチパネルTPの製造方法(当該領域の製造方法)について、説明する。
(1)まず、基板1上に透明電極材料(例えば、ITO)の成膜工程にて、配線パターンxa4、xb4を形成させる。
(2)次に、配線パターンxa4、xb4上および、配線パターンの周囲に、絶縁物質からなるオーバーコート層L1を成膜する。
(3)次に、オーバーコート層L1上に、X方向導電パターンX18を形成させる。
(4)最後に、保護層として、オーバーコート層L2を、図13に示すように、X方向導電パターンの電極部X18の上に、成膜する。
 ≪3:領域ARb_X19(図14の場合)≫
 次に、Y方向導電パターン用領域においてX方向導電パターンの隣接する電極部同士を接続する領域(例えば、図11の領域ARb_X19)について、タッチパネルTPの製造方法(当該領域の製造方法)について、説明する。
(1)まず、基板1上に透明電極材料(例えば、ITO)の成膜工程にて、接続部Xbr(19,9)を形成させる。
(2)次に、接続部Xbr(19,9)上および、接続部Xbr(19,9)の周囲に、絶縁物質からなるオーバーコート層L1を成膜する。このとき、接続部Xbr(19,9)上にスルーホールTH2およびTH3を設けておく。つまり、スルーホールTH2、TH3の位置にフォトマスクを利用したフォトリソグラフィ工程により、穴を空けておく。
(3)次に、スルーホールTH2、TH3に導体(例えば、ITO)を充填し、さらに、オーバーコート層L1上に、図14に示すように、X方向導電パターンX19(電極部X19_y5a、X19_y5b)と、Y方向導電パターンY5とを形成させる。これにより、スルーホールTH2を介して、X方向導電パターンX19の電極部X19_y5aと、接続部Xbr(19,9)とが電気的に接続され、さらに、スルーホールTH3を介して、X方向導電パターンX19の電極部X19_y5bと、接続部Xbr(19,9)とが電気的に接続される。
(4)最後に、保護層として、オーバーコート層L2を、図14に示すように、X方向導電パターンの電極部X19の上および周囲と、Y方向導電パターンY5の上および周囲とに、成膜する。
 なお、本変形例のタッチパネルTPの端子部2の領域の構成、製造方法については、第1実施形態と同様であるので、詳細な説明を省略する。
 以上の工程を実行することにより、タッチパネルTPを製造することができる。
 上記のタッチパネルTPの製造方法では、配線パターンxa1~xa10、xb1~xb10が、X方向導電パターンX1~X20の接続部と同じ階層で作成されるため、別途、配線パターンxa1~xa10、xb1~xb10を形成させるためのプロセス工程を追加する必要がない。したがって、上記のタッチパネルTPの製造方法により、効率良くタッチパネルTPを製造することができる。
 [他の実施形態]
 上記実施形態(変形例を含む。)では、X方向導電パターンの数が「20」であり、Y方向導電パターンの数が「11」である場合について、説明したが、X方向導電パターンの数、および/または、Y方向導電パターンの数は、上記に限定されることはなく、他の数であってもよい。また、表示領域の縦横比(アスペクト比)も、例えば、図1に示したものに限定されることはなく、他の縦横比(アスペクト比)であっても良い。
 また、上記実施形態(変形例を含む。)では、図6に示したように、タッチパネルTPにおけるX方向導電パターンと配線パターンとの接続点が設定される場合について説明したが、これに限定されることはない。X方向導電パターンと配線パターンとの接続点が、近接しないように、X方向導電パターンと配線パターンとの接続点を、図6に示した配置以外の配置とするようにしてもよい。
 さらに、X方向導電パターンの数、および/または、Y方向導電パターンの数に従い、配線パターン領域に配置する配線パターンの数を決定するようにしてもよい。上記実施形態(変形例を含む。)では、X方向導電パターンの数が「20」であり、Y方向導電パターンの数が「11」であるので、配線パターン領域に配置する配線パターンの数が「2」であったが、X方向導電パターンの数とY方向導電パターンの数との比率が1:1である場合、配線パターン領域に配置する配線パターンの数を「1」とすることが好ましい。
 また、上記実施形態(変形例を含む。)において示した、X方向導電パターンおよび/またはY方向導電パターンの、電極部の形状、接続部(ブリッジ部)の形状は、一例であり、これらに限定されることはなく、他の形状であってもよい。
 また、上記実施形態(変形例を含む。)において示した、配線パターンの形状等も一例であり、これらに限定されることはなく、他の形状であってもよい。
 また、上記実施形態(変形例を含む。)において示した端子部2の端子の配置(例えば、図6に示した配置)は、一例であり、他の配置であってもよい。また、X方向導電パターンの端子とY方向導電パターンの端子との間に、1または複数のGND端子を配置するようにしてもよい。
 また、上記実施形態(変形例を含む。)のタッチパネルTPを用いてタッチパネル装置を実現するようにしてもよい。さらに、当該タッチパネル装置を用いた表示装置(例えば、液晶表示装置)を実現するようにしてもよい。
 また、上記実施形態において、構成部材のうち、上記実施形態に必要な主要部材のみを簡略化して示している。したがって、上記実施形態において明示されなかった任意の構成部材を備えうる。また、上記実施形態および図面において、各部材の寸法は、必ずしも実際の寸法および寸法比率等を忠実に表しているわけではない。したがって、本発明の趣旨を逸脱しない範囲で寸法や寸法比率等の変更は可能である。
 なお、本発明の具体的な構成は、前述の実施形態に限られるものではなく、発明の要旨を逸脱しない範囲で種々の変更および修正が可能である。
 [付記]
 なお、本発明は、以下のようにも表現することができる。
 第1の発明は、N個(N:2以上の自然数)のX方向導電パターンと、M個(M:2以上の自然数)のY方向導電パターンと、端子部と、配線パターンと、を備える導電シートである。
 N個(N:2以上の自然数)のX方向導電パターンは、それぞれ、第1方向に配置された複数のX方向電極部と、隣接するX方向電極部同士を電気的に接続するX方向接続部とを含む。
 M個(M:2以上の自然数)のY方向導電パターンは、それぞれ、第1方向と交差する第2方向に配置された複数のY方向電極部と、隣接するY方向電極部同士を電気的に接続するY方向接続部とを含む。
 端子部は、X方向導電パターン、および、Y方向導電パターンのそれぞれに電気的に接続するための端子を含む。
 配線パターンは、X方向導電パターンと、当該X方向導電パターンに対応する端子部の端子とを、電気的に接続する。
 そして、平面視において、X方向電極部の第1方向の一方側に隣接するX方向電極部との間の領域を、Y方向導電パターン用領域とし、X方向電極部の第1方向の他方側に隣接するX方向電極部との間の領域を、配線パターン用領域とすると、Y方向導電パターンは、Y方向導電パターン用領域に配置されており、配線パターンは、配線パターン用領域に配置されている。Y方向導電パターン用領域および配線パターン用領域は、第1方向において、隣接する2つのX方向電極部に挟まれた領域に、交互に、設けられている。
 この導電シートでは、Y方向導電パターンは、X方向導電パターンのX方向電極部の間のY方向導電パターン用領域に、配線パターンと離間された状態で配置されている。これにより、この導電シートでは、Y方向導電パターンと、配線パターンとによる寄生容量の発生を適切に抑制することができる。したがって、この導電シートを用いたタッチパネル装置等では、上記寄生容量により、センス信号に重畳されるノイズの発生を効果的に抑制することができる。その結果、この導電シートを用いたタッチパネル装置等では、高精度なタッチパネル感度を実現することができる。
 また、この導電シートでは、表示領域、すなわち、X方向導電パターンおよびY方向導電パターンが配置される領域に、X方向導電パターンと端子部とを接続する配線パターンが設けられているので、当該配線パターンのみを配置させるためのスペースを設ける必要がない。したがって、この導電シートでは、導電シートの外周部のデッドスペースを減らすことができる。
 なお、「交差」とは、直交を含む概念である。
 第2の発明は、第1の発明であって、平面視において、X方向電極部と、当該X方向電極部の第1方向の一方側に隣接するX方向電極部とを接続するX方向接続部である第1接続部の第2方向の位置と、当該X方向電極部の第1方向の他方側に隣接するX方向電極部とを接続するX方向接続部である第2接続部の第2方向の位置との間の距離が、所定の値以上である。
 これにより、この導電シートでは、X方向接続部が一定のパターンとなって、不快に目視されること(例えば、モアレの発生)を適切に防止することができる。
 第3の発明は、第1または第2の発明であって、平面視において、第k番目(k:自然数、k<N)のX方向導電パターンと、当該X方向導電パターンに対応する配線パターンとが電気的に接続される接続点である第k接続点と、第k番目のX方向導電パターンに隣接する第k+1番目のX方向導電パターンと、当該X方向導電パターンに対応する配線パターンとが電気的に接続される接続点である第k+1接続点と、の距離が、所定の値以上である。
 この導電シートでは、X方向導電パターンと配線パターンとの接続点が、離間された状態で配置されているため、1つのX方向導電パターンおよび配線パターンが、他のX方向導電パターンおよび配線パターンに発生したノイズの影響を受けにくい。
 したがって、この導電シートを、例えば、タッチパネル装置に用いることで、高精度なタッチ検出性能を有するタッチパネル装置を実現することができる。
 なお、「所定の値」とは、例えば、隣接する電極部間の距離のα倍(1<α<100)の距離以上であることが好ましい。
 第4の発明は、第1から第3のいずれかの発明であって、基板をさらに備え、X方向電極部、X方向接続部、Y方向電極部、Y方向接続部、および、配線パターンは、基板上の同一層に形成される。
 これにより、この導電シートを製造する場合、配線パターンを形成させるためのプロセス工程を追加する必要がない。その結果、この導電シートを容易かつ安価に、効率良く製造することができる。
 第5の発明は、第1から第3のいずれかの発明であって、基板と、絶縁層と、オーバーコート層と、さらに備える。
 そして、絶縁層は、絶縁体物質からなり、複数のスルーホールを有する。
 オーバーコート層は、絶縁体物質からなる。
 そして、X方向接続部、および、配線パターンは、基板上の同一層である第一層に形成される。
 絶縁層は、第1層上に形成される。
 X方向電極部、および、Y方向電極部は、絶縁層上に形成されるともに、X方向電極部は、所定の位置のスルーホールを介して、配線パターンまたはX方向接続部と電気的に接続される。
 これにより、スルーホールを用いて、X方向電極部が、配線パターンまたはX方向接続部に接続された導電シートを実現することができる。
 第6の発明は、第1から第5のいずれかの発明である導電シートと、駆動部と、を備えるタッチパネル装置である。
 駆動部は、導電シートを駆動する。
 これにより、第1から第5のいずれかの発明である導電シートを用いたタッチパネル装置を実現することができる。
 第7の発明は、表示部と、制御部と、第6の発明であるタッチパネル装置と、を備える表示装置である。
 制御部は、表示部を制御する。
 これにより、第6の発明であるタッチパネル装置を用いた表示装置を実現することができる。
 本発明は、タッチパネルの外周部のデッドスペースを減らすことができるとともに、高精度なタッチパネル感度を有する導電シート、タッチパネル装置、および、表示装置を実現することができる。したがって、本発明は、タッチパネル関連産業分野において、有用であり、当該分野において実施することができる。
TP タッチパネル
1 基板
11 表示領域
12 配線領域
2 端子部
X1~X20 X方向導電パターン
Y1~Y10 Y方向導電パターン
xa1~xa10、xb1~xb10 配線パターン
L1 オーバーコート層(絶縁層)
L2 オーバーコート層

Claims (7)

  1.  それぞれ、第1方向に配置された複数のX方向電極部と、隣接する前記X方向電極部同士を電気的に接続するX方向接続部とを含む、N個(N:2以上の自然数)のX方向導電パターンと、
     それぞれ、第1方向と交差する第2方向に配置された複数のY方向電極部と、隣接する前記Y方向電極部同士を電気的に接続するY方向接続部とを含む、M個(M:2以上の自然数)のY方向導電パターンと、
     前記X方向導電パターン、および、前記Y方向導電パターンのそれぞれに電気的に接続するための端子を含む端子部と、
     前記X方向導電パターンと、当該X方向導電パターンに対応する前記端子部の端子とを、電気的に接続するための配線パターンと、
    を備え、
     平面視において、前記X方向電極部の第1方向の一方側に隣接する前記X方向電極部との間の領域を、Y方向導電パターン用領域とし、前記X方向電極部の第1方向の他方側に隣接する前記X方向電極部との間の領域を、配線パターン用領域とすると、
     前記Y方向導電パターンは、前記Y方向導電パターン用領域に配置されており、
     前記配線パターンは、前記配線パターン用領域に配置されており、
     前記Y方向導電パターン用領域および前記配線パターン用領域は、前記第1方向において、隣接する2つの前記X方向電極部に挟まれた領域に、交互に、設けられている、
     導電シート。
  2.  平面視において、前記X方向電極部と、当該X方向電極部の第1方向の一方側に隣接する前記X方向電極部とを接続する前記X方向接続部である第1接続部の前記第2方向の位置と、当該X方向電極部の第1方向の他方側に隣接する前記X方向電極部とを接続する前記X方向接続部である第2接続部の前記第2方向の位置との間の距離が、所定の値以上である、
     請求項1に記載の導電シート。
  3.  平面視において、第k番目(k:自然数、k<N)の前記X方向導電パターンと、当該X方向導電パターンに対応する前記配線パターンとが電気的に接続される接続点である第k接続点と、第k番目の前記X方向導電パターンに隣接する第k+1番目の前記X方向導電パターンと、当該X方向導電パターンに対応する前記配線パターンとが電気的に接続される接続点である第k+1接続点と、の距離が、所定の値以上である、
     請求項1又は2に記載の導電シート。
  4.  基板をさらに備え、
     前記X方向電極部、前記X方向接続部、前記Y方向電極部、前記Y方向接続部、および、前記配線パターンは、前記基板上の同一層に形成される、
     請求項1から3のいずれかに記載の導電シート。
  5.  基板と、
     絶縁体物質からなり、複数のスルーホールを有する絶縁層と、
     絶縁体物質からなるオーバーコート層と、
    をさらに備え、
     前記X方向接続部、および、前記配線パターンは、前記基板上の同一層である第一層に形成され、
     前記絶縁層は、前記第1層上に形成され、
     前記X方向電極部、および、前記Y方向電極部は、前記絶縁層上に形成されるともに、前記X方向電極部は、所定の位置の前記スルーホールを介して、前記配線パターンまたは前記X方向接続部と電気的に接続される、
     請求項1から3のいずれかに記載の導電シート。
  6.  請求項1から5のいずれかに記載の導電シートと、
     前記導電シートを駆動する駆動部と、
    を備えるタッチパネル装置。
  7.  表示部と、
     前記表示部を制御する制御部と、
     請求項6に記載のタッチパネル装置と、
    を備える表示装置。
PCT/JP2015/064012 2014-05-21 2015-05-15 導電シート、タッチパネル装置、および、表示装置 WO2015178304A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/312,129 US10175836B2 (en) 2014-05-21 2015-05-15 Conductive sheet, touch panel device, and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014105390 2014-05-21
JP2014-105390 2014-05-21

Publications (1)

Publication Number Publication Date
WO2015178304A1 true WO2015178304A1 (ja) 2015-11-26

Family

ID=54553976

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/064012 WO2015178304A1 (ja) 2014-05-21 2015-05-15 導電シート、タッチパネル装置、および、表示装置

Country Status (2)

Country Link
US (1) US10175836B2 (ja)
WO (1) WO2015178304A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016146153A (ja) * 2015-01-29 2016-08-12 アルプス電気株式会社 入力装置
CN107544697A (zh) * 2016-06-28 2018-01-05 南京瀚宇彩欣科技有限责任公司 内嵌式(in‑cell)触控显示面板

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5939766B2 (ja) * 2011-11-04 2016-06-22 株式会社ジャパンディスプレイ タッチパネル
CN205015875U (zh) * 2015-08-31 2016-02-03 敦泰电子有限公司 一种电子设备及其单层互容式触摸屏
CN106227386A (zh) * 2016-07-29 2016-12-14 京东方科技集团股份有限公司 一种触控面板及其制备方法、显示装置
CN107656646A (zh) * 2017-09-27 2018-02-02 上海天马微电子有限公司 触摸传感器及触摸显示面板
CN112925452A (zh) * 2019-12-06 2021-06-08 矽统科技股份有限公司 触控电极结构以及电容式触控***
TWI720722B (zh) * 2019-12-06 2021-03-01 矽統科技股份有限公司 觸控電極結構以及電容式觸控系統
KR20220093784A (ko) 2020-12-28 2022-07-05 엘지디스플레이 주식회사 터치 표시 장치

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007047990A (ja) * 2005-08-09 2007-02-22 Sony Corp 入力装置及びこれを用いた表示装置
JP2012150782A (ja) * 2011-01-18 2012-08-09 Samsung Mobile Display Co Ltd タッチスクリーンパネル

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI367437B (en) * 2007-09-29 2012-07-01 Au Optronics Corp Touch panel and manufacturing method thereof
US8487898B2 (en) * 2008-04-25 2013-07-16 Apple Inc. Ground guard for capacitive sensing
US8593410B2 (en) * 2009-04-10 2013-11-26 Apple Inc. Touch sensor panel design
TWI470505B (zh) * 2014-01-29 2015-01-21 Wistron Corp 觸控面板
KR102271114B1 (ko) * 2014-03-28 2021-06-30 삼성디스플레이 주식회사 터치 감지 패널

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007047990A (ja) * 2005-08-09 2007-02-22 Sony Corp 入力装置及びこれを用いた表示装置
JP2012150782A (ja) * 2011-01-18 2012-08-09 Samsung Mobile Display Co Ltd タッチスクリーンパネル

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016146153A (ja) * 2015-01-29 2016-08-12 アルプス電気株式会社 入力装置
CN107544697A (zh) * 2016-06-28 2018-01-05 南京瀚宇彩欣科技有限责任公司 内嵌式(in‑cell)触控显示面板

Also Published As

Publication number Publication date
US10175836B2 (en) 2019-01-08
US20170090625A1 (en) 2017-03-30

Similar Documents

Publication Publication Date Title
WO2015178304A1 (ja) 導電シート、タッチパネル装置、および、表示装置
CN102467284B (zh) 一种多触摸点的真坐标侦测装置及其侦测方法
JP5278759B2 (ja) 静電容量型入力装置
CN102375587B (zh) 侦测多触摸点的真坐标的触控面板及侦测方法
KR101093326B1 (ko) 터치 스크린 패널 및 그 제작방법
US20140267953A1 (en) Touch screen panel and method of manufacturing the same
WO2015045603A1 (ja) 導電シート、タッチパネル装置、表示装置、および、導電シート製造方法
JP6404091B2 (ja) タッチセンサー用基板
US8963856B2 (en) Touch sensing layer and manufacturing method thereof
KR20100070964A (ko) 정전용량방식 터치패널의 전극패턴구조
JP5813836B1 (ja) 静電容量式タッチパネル
EP2690534A2 (en) Touch screen panel and fabrication method thereof
JP3193151U (ja) タッチパネル
JP2015507231A (ja) 容量タッチデバイスのパターンとその製造方法
US9397660B2 (en) Touch panel
JP3144563U (ja) コンデンサ式タッチパッド
JP2014120038A (ja) タッチパネル及びそれを備える表示装置
JP2014157525A (ja) タッチパネル装置
JP6612123B2 (ja) 静電容量式入力装置
JP2016162305A (ja) タッチパネルおよびその製造方法
JP5611721B2 (ja) 指示体検出装置、位置検出センサおよび位置検出センサの製造方法
JP2013156949A (ja) タッチパネル
US9442616B2 (en) Touch screen, touch panel, and display device equipped therewith
KR20100126140A (ko) 정전용량방식 터치패널의 전극패턴구조
KR20150019571A (ko) 터치 패널 및 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15796691

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15312129

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15796691

Country of ref document: EP

Kind code of ref document: A1