WO2015178179A1 - 蒸留装置 - Google Patents

蒸留装置 Download PDF

Info

Publication number
WO2015178179A1
WO2015178179A1 PCT/JP2015/062845 JP2015062845W WO2015178179A1 WO 2015178179 A1 WO2015178179 A1 WO 2015178179A1 JP 2015062845 W JP2015062845 W JP 2015062845W WO 2015178179 A1 WO2015178179 A1 WO 2015178179A1
Authority
WO
WIPO (PCT)
Prior art keywords
output fluid
valve
working medium
circulation
distillation apparatus
Prior art date
Application number
PCT/JP2015/062845
Other languages
English (en)
French (fr)
Inventor
啓 岸本
圭一郎 泊
正剛 戸島
西村 真
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to RU2016144772A priority Critical patent/RU2657901C1/ru
Priority to CN201580021394.1A priority patent/CN106232197B/zh
Priority to US15/303,454 priority patent/US10272358B2/en
Publication of WO2015178179A1 publication Critical patent/WO2015178179A1/ja
Priority to SA516380144A priority patent/SA516380144B1/ar

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/42Regulation; Control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/007Energy recuperation; Heat pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/14Fractional distillation or use of a fractionation or rectification column
    • B01D3/32Other features of fractionating columns ; Constructional details of fractionating columns not provided for in groups B01D3/16 - B01D3/30
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/42Regulation; Control
    • B01D3/4211Regulation; Control of columns
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Definitions

  • the present invention relates to a distillation apparatus.
  • Patent Document 1 discloses a separation process module including a separator, a compressor, a heat exchanger, and a cooler.
  • the separator separates an input fluid including a first component and a second component different from the first component into a first output fluid including the first component and a second output fluid including the second component.
  • the compressor compresses the first output fluid separated by the separator.
  • the heat exchanger exchanges heat between the first output fluid compressed by the compressor and the second output fluid separated by the separator.
  • the cooler cools the first output fluid after heat exchange with the heat exchanger. The first output fluid flowing out from the cooler and the second output fluid flowing out from the heat exchanger are respectively returned to the separator.
  • the heat energy of the first output fluid flowing out from the separator is input to the heat exchanger, whereby the second output fluid flowing out from the separator is heated in the heat exchanger. That is, the effective use of the heat energy of the first output fluid reduces the heat energy required for heating the second output fluid (energy saving).
  • the first output fluid flowing out from the separator is compressed by a compressor and then introduced into a heat exchanger, thereby recovering the thermal energy of the first output fluid. ing. Therefore, when the first output fluid contains, as the first component, a component that is difficult to be directly compressed (for example, a component that becomes very unstable at high pressure or a component that swells the seal portion of the compressor). It is difficult to use the separation process module.
  • the thermal energy of the top vapor is input to the storage evaporator by using a heat pump. That is, in the distillation plant of Patent Document 2, the thermal energy of the fluid flowing out from the top of the column (separator) is indirectly recovered by using a heat pump without directly compressing the fluid with a compressor. .
  • Patent Document 3 the thermal energy of the top vapor is indirectly recovered by a distillation reboiler by using a heat pump using water as a medium.
  • Patent Document 3 describes that the load adjustment of the heat pump is performed by adjusting the opening of the compressor bypass valve and the inlet vane or by controlling the rotation speed of the compressor.
  • the object of the present invention is to effectively recover the thermal energy of the first output fluid even when the first output fluid flowing out of the separator contains a component that is difficult to be directly compressed. And it is providing the distillation apparatus which can collect
  • a distillation apparatus includes a separator that separates an input fluid including a first component and a second component into a first output fluid including the first component and a second output fluid including the second component.
  • a cooler for cooling the first output fluid flowing out from the separator, a heater for heating the second output fluid flowing out from the separator, and a working medium, Thermal energy received from the first output fluid by exchanging heat with the first output fluid in a cooler, and the second output fluid by exchanging heat with the second output fluid by the working medium in the heater.
  • a heat recovery circuit for supplying the heat medium to the heat recovery circuit, wherein the heat recovery circuit connects the cooler and the heater and circulates the working medium, and the cooler cools the first output fluid and heat.
  • a circulation amount adjusting unit, and the circulation amount adjusting unit includes the working medium stored in the storage unit so that the circulation amount increases or decreases in accordance with an increase or decrease in the flow rate of the first output fluid. The outflow amount to the circulation channel or the inflow amount to the storage part of the working medium circulating in the circulation channel is adjusted.
  • the distillation apparatus includes a separator 22, a cooler 24 that cools the first output fluid that flows out of the separator 22, and heating that heats the second output fluid that flows out of the separator 22. And a heat recovery circuit 30.
  • This distillation apparatus is an apparatus that can indirectly input the heat energy of the relatively low temperature first output fluid to the relatively high temperature second output fluid through the working medium.
  • the separator 22 separates the input fluid containing the first component and the second component different from the first component into the first output fluid containing the first component and the second output fluid containing the second component.
  • the first output fluid is a distillate vapor (distillate) containing a large amount of a component having a low boiling point (high volatility) as the first component.
  • the second output fluid is a bottomed liquid containing a lot of components having a boiling point higher than that of the first component (having volatility lower than that of the first component) as the second component.
  • the input fluid flows into the separator 22 through the input flow path 11.
  • the first output fluid flows into the cooler 24 through the output flow path 12, and the second output fluid flows into the heater 26 through the output flow path 15.
  • the cooler 24 cools the first output fluid by exchanging heat between the first output fluid and the working medium of the heat recovery circuit 30. A part of the first output fluid cooled by exchanging heat with the working medium in the cooler 24 is output to the outside through the output flow path 13, and the rest is supplied to the upper portion of the separator 22 through the recharging flow path 14. Returned.
  • the cooler 24 is configured so that a cooling medium (cooling water or the like) can be supplied into the cooler 24 from an external cooling source (not shown).
  • the cooler 24 has a coolant flow path 25 that can be connected to a coolant supply path (not shown) for supplying a coolant from a cooling source to the cooler 24.
  • the cooling medium flow path 25 has a connection portion 25a that can be connected to the cooling medium supply flow path. That is, in the present embodiment, the first output fluid can be cooled in the cooler 24 by both the working medium and the cooling medium. However, the cooling medium flow path 25 may be omitted.
  • the heater 26 heats the second output fluid by exchanging heat between the second output fluid and the working medium of the heat recovery circuit 30. A part of the second output fluid heated by exchanging heat with the working medium in the heater 26 is output to the outside through the output channel 16, and the rest is supplied to the lower part of the separator 22 through the re-input channel 17. Returned.
  • the heater 26 is configured to be able to supply a heating medium (such as steam) from an external heat source (not shown) into the heater 26.
  • the heater 26 has a heating medium channel 27 that can be connected to a heating medium supply channel (not shown) for supplying a heating medium from a heat source to the heater 26.
  • the heating medium flow path 27 has a connection portion 27a that can be connected to the heating medium supply flow path. That is, in the present embodiment, the second output fluid can be heated by both the working medium and the heating medium in the heater 26. However, the heating medium flow path 27 may be omitted.
  • the heat recovery circuit 30 uses the heat energy received by the working medium from the first output fluid by the heat exchange between the first output fluid and the working medium in the cooler 24 as the working medium and the second output fluid in the heater 26. This is a circuit to be given to the second output fluid by heat exchange with. That is, the heat recovery circuit 30 functions as a so-called heat pump that transfers heat from the relatively low temperature first output fluid to the relatively high temperature second output fluid via the working medium.
  • the heat recovery circuit 30 includes a circulation channel 32 through which the working medium circulates, a compressor 34 that compresses the working medium, and an expansion mechanism 36 that expands the working medium.
  • the circulation channel 32 connects the cooler 24, the compressor 34, the heater 26, and the expansion mechanism 36 in series in this order without being connected to the channel through which the first output fluid and the second output fluid flow.
  • a gas-liquid separator 37 is provided at a portion of the circulation channel 32 between the cooler 24 and the compressor 34. The gas-liquid separator 37 may be omitted.
  • the compressor 34 is provided in the circulation channel 32 at a site downstream of the cooler 24 and upstream of the heater 26.
  • the compressor 34 raises the temperature by compressing the gaseous working medium flowing out of the cooler 24.
  • the gaseous working medium that has flowed out of the compressor 34 flows into the heater 26 and becomes liquid by exchanging heat with the second output fluid in the heater 26.
  • the expansion mechanism 36 is provided in a portion of the circulation channel 32 that is downstream of the heater 26 and upstream of the cooler 24.
  • the expansion mechanism 36 decompresses the liquid working medium flowing out of the heater 26 by expanding it.
  • the liquid working medium that has flowed out of the expansion mechanism 36 flows into the cooler 24, and becomes gaseous by exchanging heat with the first output fluid in the cooler 24.
  • the heat energy of the first output fluid flowing out from the separator 22 is not directly input to the second output fluid by the first output fluid itself, but the circulation channel.
  • the second output fluid is indirectly charged through the working medium circulating in the fluid 32.
  • the thermal energy of the first output fluid is recovered by the working medium by heat exchange between the first output fluid and the working medium in the cooler 24, and then the working medium and the second in the heater 26. It is given to the second output fluid by heat exchange with the output fluid. That is, in this distillation apparatus, the first output fluid itself is not compressed by the compressor 34 as a heat energy transfer medium, but the working medium circulating in the circulation channel 32 is compressed by the compressor 34 as the transfer medium. The Therefore, even when the first output fluid contains a component that is difficult to be directly compressed as the first component, the thermal energy of the first output fluid can be effectively recovered through the working medium. (The heat energy supplied to the heater 26 can be reduced).
  • the heat recovery circuit 30 of the present embodiment further includes means for increasing / decreasing the total amount of the working medium circulating in the circulation passage 32 (hereinafter referred to as “circulation amount”) in accordance with the increase / decrease of the flow rate of the first output fluid.
  • circulation amount means for increasing / decreasing the total amount of the working medium circulating in the circulation passage 32 (hereinafter referred to as “circulation amount”) in accordance with the increase / decrease of the flow rate of the first output fluid. I have.
  • the heat recovery circuit 30 of the present embodiment includes a storage unit 40 connected to the circulation channel 32, a circulation amount adjustment unit 50 capable of adjusting the circulation amount of the working medium that circulates in the circulation channel 32, Is further provided.
  • the storage unit 40 includes a storage channel 42 connected to the circulation channel 32 and a tank 44 provided in the storage channel 42.
  • the storage flow path 42 is connected to the circulation flow path 32 so as to be parallel to a portion of the circulation flow path 32 where the liquid working medium flows.
  • the upstream end portion of the storage channel 42 is connected to a portion of the circulation channel 32 that is downstream of the heater 26 and upstream of the expansion mechanism 36.
  • the downstream end of the storage channel 42 is between the expansion mechanism 36 and the connection portion of the circulation channel 32 between the circulation channel 32 and the upstream end of the storage channel 42.
  • the storage channel 42 stores a liquid working medium condensed by exchanging heat with the second output fluid in the heater 26.
  • the tank 44 stores a liquid working medium.
  • the tank 44 is provided with a detector 44 a that can detect the amount of the working medium stored in the tank 44.
  • the liquid working medium separated by the gas-liquid separator 37 flows into the tank 44 through the flow path 38.
  • the circulation amount adjusting unit 50 increases or decreases the circulation amount of the circulation channel 32 in accordance with the increase or decrease of the flow rate of the first output fluid. Specifically, the circulation amount adjusting unit 50 moves to the circulation passage 32 of the working medium stored in the storage passage 42 and the tank 44 so that the circulation amount increases or decreases as the flow rate of the first output fluid increases or decreases. Or the inflow amount of the working medium circulating in the circulation passage 32 into the storage passage 42 and the tank 44 is adjusted.
  • the circulation amount adjusting unit 50 includes the flow rate sensor 18, the first on-off valve 51, the second on-off valve 52, the first pump 53, the second pump 54, and the control unit 55. ing.
  • the flow sensor 18 is a sensor that can detect the flow rate of the first output fluid.
  • the flow sensor 18 is provided in the output flow path 12 that connects the separator 22 and the cooler 24.
  • the flow rate sensor 18 includes both the output flow path 13 for outputting to the outside from the cooler 24 and the recharging flow path 14 for returning the first output fluid flowing out from the cooler 24 to the separator 22. May be provided. In this case, the flow rate of the first output fluid is calculated from the sum of these detection values.
  • the first on-off valve 51 is provided in a portion of the storage channel 42 upstream of the portion where the tank 44 is provided.
  • the second on-off valve 52 is provided in a part of the storage channel 42 on the downstream side of the part where the tank 44 is provided.
  • the first pump 53 is provided in a portion between the first on-off valve 51 and the tank 44 in the storage channel 42.
  • the first pump 53 pressurizes the liquid working medium to a predetermined pressure and sends it to the downstream side (tank 44 side) of the first pump 53 in the storage flow path 42. That is, the first pump 53 is a pump for causing the liquid working medium to flow from the circulation channel 32 into the storage channel 42 and the tank 44.
  • the first pump 53 may be provided in a portion of the storage channel 42 on the upstream side of the first on-off valve 51.
  • the second pump 54 is provided in a portion of the storage channel 42 between the tank 44 and the second on-off valve 52.
  • the second pump 54 pressurizes the liquid working medium to a predetermined pressure and sends it to the downstream side (second open / close valve 52 side) of the second pump 54 in the storage flow path 42. That is, the second pump 54 is a pump for causing the liquid working medium to flow out from the storage flow path 42 and the tank 44 to the circulation flow path 32.
  • the second pump 54 may be provided at a site on the downstream side of the second opening / closing valve 52 in the storage channel 42.
  • first pump 53 and the second pump 54 a centrifugal pump having an impeller as a rotor, a gear pump having a rotor composed of a pair of gears, or the like is used.
  • Each of the first pump 53 and the second pump 54 can be driven at an arbitrary rotational speed.
  • the controller 55 is connected to the flow sensor 18, the first on-off valve 51, the second on-off valve 52, the first pump 53, the second pump 54, the detector 44a, and the compressor 34.
  • the control unit 55 increases the circulation amount when the flow rate of the first output fluid (detected value of the flow rate sensor 18) increases, and decreases the circulation amount when the flow rate of the first output fluid decreases.
  • the opening / closing of the on-off valves 51, 52, the rotational speeds of the pumps 53, 54 and the rotational speed of the compressor 34 are adjusted.
  • control contents of the control unit 55 will be described with reference to FIG.
  • the control unit 55 detects the detection value of the flow rate sensor 18 (step ST11), and based on the detection value, the reference value (hereinafter referred to as the circulation amount) for circulating the circulation flow path 32. "Threshold value Q L-SV ”) is determined (step ST12).
  • the threshold value Q L-SV is set to such an amount that the working medium can recover as much heat energy as possible from the first output fluid in the cooler 24.
  • This threshold value Q L-SV exchanges the working medium with the first output fluid substantially only with latent heat in the cooler 24 (the working medium flows into the cooler 24 in a liquid state and is not overheated or slightly heated). It is preferable to set the amount of gas that has been superheated to the temperature of the cooler 24).
  • control unit 55 stores data of the optimum threshold value Q L-SV corresponding to the detection value of the flow sensor 18 in advance, and the control unit 55 refers to the data to detect the detection.
  • a threshold value Q L-SV corresponding to the value is determined.
  • control unit 55 determines the rotation speed of the compressor 34 so that the circulating amount of the working medium circulating in the circulation flow path 32 can be set to the threshold value Q L-SV (step ST13).
  • the control unit 55 determines the flow rate of the heating medium supplied from the outside to the heating medium flow path 27 in order to compensate for the shortage (step ST14).
  • the cooling amount of the first output fluid in the cooler 24 may be insufficient with only the amount of heat recovered from the cooler 24 via the working medium.
  • the control unit 55 determines the flow rate of the cooling medium supplied from the outside to the cooling medium flow path 25 in order to compensate for the shortage (step ST15).
  • control unit 55 detects the storage amount Q VS-PV of the working medium in the tank 44 from the detection value of the detector 44a, and from the total amount Q total of the working medium measured in advance, the storage amount Q VS- By subtracting PV , a current circulation amount Q L-PV that is a circulation amount of the working medium circulating through the circulation flow path 32 at that time is calculated (step ST16).
  • control unit 55 determines whether or not the current circulation amount Q L-PV of the circulation channel 32 is insufficient, that is, the value obtained by subtracting the storage amount Q VS-PV from the total amount Q total of the working medium is the threshold value Q L. -It is determined whether it is less than SV (step ST17).
  • step ST17 when the current circulation amount Q L-PV is insufficient (Yes in step ST17), the control unit 55 closes the first on-off valve 51, stops the first pump 53, and stops the second pump 54. And the second on-off valve 52 is opened (step ST18). Then, the liquid working medium stored in the storage flow path 42 and the tank 44 flows out to the circulation flow path 32, thereby increasing the circulation amount of the working medium in the circulation flow path 32. Then, it returns to step ST11.
  • Step ST17 if not insufficient current circulation amount Q L-PV, the control unit 55, the current circulation rate Q L-PV excess whether, i.e., the total amount Q total working medium It is determined whether or not a value obtained by subtracting the storage amount Q VS-PV from the threshold value Q L-SV is larger than the threshold value Q L-SV (step ST19).
  • step ST19 when the current circulation amount Q L-PV is excessive (Yes in step ST19), the control unit 55 opens the first on-off valve 51, adjusts the rotation speed of the first pump 53, and The pump 54 is stopped and the second on-off valve 52 is closed (step ST20). Then, the liquid working medium flows from the circulation flow path 32 into the storage flow path 42 and the tank 44, thereby reducing the circulation amount of the working medium in the circulation flow path 32. Then, it returns to step ST11.
  • step ST19 if the current circulation amount Q L-PV is not excessive (in the case of No in step ST19), that is, if the current circulation amount Q L-PV and the threshold value Q L-SV match, the process directly goes to step ST11. Return.
  • the thermal energy of the first output fluid is effectively adjusted according to the variation. It can be recovered. That is, since this apparatus has the storage part 40 (the storage flow path 42 and the tank 44) and the circulation amount adjustment part 50, the heat
  • the circulation amount increases / decreases in accordance with the increase / decrease of the flow rate of the first output fluid (detected value of the flow rate sensor 18)
  • the recovery efficiency of the thermal energy of the first output fluid is further improved.
  • the circulation amount is increased, that is, when the first on-off valve 51 is closed and the second on-off valve 52 is open
  • the working medium flows out from the storage passage 42 and the tank 44 to the circulation passage 32.
  • the second pump 54 is driven so as to be promoted.
  • the circulation amount is decreased, that is, when the first on-off valve 51 is open and the second on-off valve 52 is closed, the working medium flows from the circulation passage 32 into the storage passage 42 and the tank 44.
  • the first pump 53 is driven so as to be promoted.
  • the first pump 53 and the second pump 54 promote the outflow of the working medium from the storage unit 40 to the circulation channel 32 or the inflow of the working medium from the circulation channel 32 to the storage unit 40.
  • what is necessary is just to provide at least one among the 1st pump 53 and the 2nd pump 54, and the 2nd pump 54 is provided desirably.
  • the control unit 55 closes the first on-off valve 51 and opens the second on-off valve 52 when the circulation amount is smaller than the threshold value Q L-SV , and the circulation amount is the threshold value Q L- When larger than SV , the first on-off valve 51 is opened and the second on-off valve 52 is closed. For this reason, the circulation amount follows the threshold value Q L-SV determined as needed based on the detection value of the flow sensor 18. In the present embodiment, since the amount of the working medium that can recover as much heat energy as possible from the first output fluid is set as the threshold value Q L-SV , the recovery efficiency of the heat energy of the first output fluid is further increased. Get higher.
  • the flow rate of the working medium that can be stored increases. That is, a larger amount of working medium can be stored than when the gaseous working medium is stored in the storage unit 40.
  • the storage part 40 since the storage part 40 has the tank 44, more flexible follow-up to the fluctuation
  • the tank 44 may be omitted.
  • the heater 26 has a heating medium flow path 27. For this reason, even if the heating amount of the second output fluid in the heater 26 is insufficient only by the amount of heat input to the heater 26 through the working medium, the heating medium is supplied to the heater 26 from the outside. By doing so, the shortage can be compensated.
  • the cooler 24 has a cooling medium flow path 25. For this reason, even if only the amount of heat recovered from the cooler 24 via the working medium is insufficient to cool the first output fluid in the cooler 24, the cooling medium is supplied to the cooler 24 from the outside. By doing so, the shortage can be compensated.
  • a pressure sensor 32 a and a fifth on-off valve 33 provided in the circulation flow path 32, and a sixth on-off valve 39 provided in the flow path 38 connecting the gas-liquid separator 37 and the tank 44 are further provided.
  • the liquid level sensor 24 a detects the storage amount of the liquid working medium in the cooler 24.
  • the fifth on-off valve 33 is provided in the circulation channel 32 between the gas-liquid separator 37 and the compressor 34.
  • the pressure sensor 32 a is provided in the circulation channel 32 between the gas-liquid separator 37 and the fifth on-off valve 33.
  • the control contents of the control unit 55 when starting up (starting up) the heat recovery circuit 30 in the distillation apparatus of the present embodiment will be described with reference to FIG.
  • the compressor 34, the first pump 53, and the second pump 54 are stopped, and the fifth on-off valve 33 and the sixth on-off valve 39 are closed. Further, the third open / close valve 28 is opened in order to cool the first output fluid in the cooler 24.
  • the control unit 55 first reads the detection value Q TOP of the flow sensor 18 (step ST31), and determines whether or not the detection value Q TOP is larger than a preset operating value Q ST ( Step ST32).
  • the operating value Q ST is set to an amount that allows the heat recovery circuit 30 to operate, that is, an amount that allows the working medium to give the thermal energy received from the first output fluid to the second output fluid by driving the compressor 34. Is done.
  • Step ST32 If the detected value Q TOP is equal to or less than the operating value Q ST (No in Step ST32), the process returns to Step ST31, while the detected value Q TOP is larger than the operating value Q ST (Yes in Step ST32).
  • the control unit 55 closes the third on-off valve 28 (step ST33) and opens the sixth on-off valve 39 (step ST34).
  • the third on-off valve 28 is closed because the first output fluid can be cooled by the liquid working medium in the cooler 24.
  • the reason for opening the sixth open / close valve 39 is to introduce the liquid working medium accumulated in the gas-liquid separator 37 into the tank 44.
  • control unit 55 reads a detection value L2 of the liquid level sensor 24a (step ST35), and determines whether the detected value L2 is larger than the reference amount L ST set in advance (step ST36).
  • the reference amount LST is set to such an amount that a gaseous working medium in an amount that can stably rotate the compressor 34 (at the minimum rotation speed N MIN or more) can be obtained.
  • step ST36 of No when the detected value L2 is equal to or less than the reference amount L ST, the control unit 55, after opening the second shut-off valve 52 with adjusting the rotation speed of the second pump 54 (step ST37 ), The process returns to step ST35. Then, the liquid working medium flows out from the tank 44 to the circulation flow path 32, thereby increasing the amount of the liquid working medium in the cooler 24.
  • step ST36 when the detected value L2 is larger than the reference amount L ST (Yes in step ST36), the control unit 55, the second on-off valve 52 is closed to stop the second pump 54 (step ST37).
  • control unit 55 closes the sixth on-off valve 39 (step ST39).
  • the sixth on-off valve 39 is closed by shutting off the communication between the gas-liquid separator 37 and the tank 44 to remove the gaseous working medium between the cooler 24 and the fifth on-off valve 33 in the circulation flow path 32. This is to keep it in space.
  • control unit 55 reads a detection value P V of the pressure sensor 32a (step ST40), greater than the lower limit pressure P MIN that the detected value P V is set in advance, and whether less than the upper pressure P MAX Is determined (step ST41).
  • step ST41 when the detected value P V is lower than the lower limit pressure P MIN or higher than the upper limit pressure P MAX (in the case of No in step ST41), the process returns to step ST40.
  • the detected value P V is greater than the lower limit pressure P MIN and less than the upper limit pressure P MAX (Yes in step ST41)
  • the fifth on-off valve 33 is opened and the compressor 34 is driven (step ST42). ). Thereby, the heat recovery circuit 30 starts up. Thereafter, the process proceeds to step ST11.
  • control content of the control unit 55 when the heat recovery circuit 30 is lowered (stopped) will be described with reference to FIG.
  • the same contents as the control contents of the control unit 55 of the first embodiment are denoted by the same reference numerals as those of the first embodiment, and the description thereof is omitted.
  • Control unit 55 after determining the rotational speed N c of the compressor 34 (step ST13), a decision is made as to whether the rotational speed N c is larger than the lower limit rotation speed N MIN (step ST51).
  • the lower limit rotation speed N MIN is set to a lower limit value in a rotation speed range in which the compressor 34 can stably rotate.
  • step ST51 When the rotational speed N c is larger than the lower limit rotation speed N MIN (Yes in step ST51), the control unit 55 proceeds to step ST14. Since the control contents of steps ST14 to ST20 are the same as those of the first embodiment, description thereof is omitted.
  • step ST51 said when the rotation speed N c is less than the lower limit engine speed N MIN, the control unit 55 stops the compressor 34 (step ST52). Further, the control unit 55 determines the flow rate of the heating medium supplied to the heater 26, opens the fourth on-off valve 29 at the opening degree (step ST53), and determines the flow rate of the cooling medium supplied to the cooler 24. Then, the third on-off valve 28 is opened at the opening (step ST54).
  • control unit 55 drives the first pump 53 until the detection value L1 of the detector 44a reaches a preset upper limit value (step ST56). As a result, the heat recovery circuit 30 falls in a state where a predetermined amount of liquid working medium is stored in the tank 44.
  • the shutdown of the heat recovery circuit 30 described above may be performed manually.
  • the compressor 34 is stopped by operating an operation button (not shown) for manually operating the driving and stopping of the compressor 34.
  • the control content of the control unit 55 after the compressor 34 is stopped is the same as the above-described steps ST53 to ST56.
  • control unit 55 drives the compressor 34 when the detected value Q TOP of the flow sensor 18 becomes larger than the operating value Q ST, so the detected value Q TOP is the operating value.
  • automatically heat recovery circuit 30 rises when it becomes larger than Q ST (start). Therefore, the thermal energy possessed by the first output fluid can be recovered more effectively.
  • control unit 55 controls the compressor 34 when the detected value Q TOP becomes larger than the operating value Q ST and the detected value L2 of the liquid level sensor 24a becomes larger than the reference amount L ST.
  • To drive That is, the amount of the liquid working medium that evaporates by receiving thermal energy from the first output fluid in the cooler 24, that is, the amount of the gaseous working medium that evaporates in the cooler 24 and flows into the compressor 34.
  • the compressor 34 is driven after it is sufficiently secured. Therefore, the start-up of the heat recovery circuit 30 is stabilized.
  • the controller 55 stops the compressor 34 when the rotation speed N C of the compressor 34 becomes smaller than the lower limit rotation speed N MIN , the rotation speed N C is smaller than the lower limit rotation speed N MIN.
  • the heat recovery circuit 30 automatically falls (stops). Therefore, since the stable drive state of the compressor 34 is ensured, the drive in the unstable state of the heat recovery circuit 30 can be avoided.
  • the control unit 55 determines the threshold value Q L-SV corresponding to the detection value of the flow sensor 18 at any time by referring to data stored in the control unit 55.
  • the method for determining the threshold value Q L-SV is not limited to this.
  • certain settings based on the total amount Q total such fluctuation range and the working medium of the first output fluid may be set.
  • the control unit 55 closes the first on-off valve 51 and opens the second on-off valve 52, and when the detected value is smaller than the set value.
  • the first on-off valve 51 may be opened and the second on-off valve 52 may be closed.
  • the distillation apparatus of the above embodiment includes a separator that separates an input fluid including a first component and a second component into a first output fluid including the first component and a second output fluid including the second component; A cooler for cooling the first output fluid flowing out from the separator; a heater for heating the second output fluid flowing out from the separator; and a working medium, the working medium being the cooler
  • the working medium gives heat energy received from the first output fluid by exchanging heat with the first output fluid to the second output fluid by exchanging heat with the second output fluid by the heater.
  • a heat recovery circuit wherein the heat recovery circuit connects the cooler and the heater and circulates the working medium, and exchanges heat with the first output fluid by the cooler.
  • An amount adjustment unit, and the circulation amount adjustment unit includes the circulation flow of the working medium stored in the storage unit so that the circulation amount increases or decreases in accordance with an increase or decrease in the flow rate of the first output fluid.
  • the outflow amount to the path or the inflow amount to the storage part of the working medium circulating in the circulation flow path is adjusted.
  • the thermal energy of the first output fluid flowing out from the separator is not directly input to the second output fluid by the first output fluid itself, but via the working medium circulating in the circulation flow path. Indirectly into the second output fluid. Specifically, the thermal energy of the first output fluid is recovered by the working medium by heat exchange between the first output fluid and the working medium in the cooler, and then the working medium and the second output fluid in the heater. Heat exchange with the second output fluid. That is, in this apparatus, the first output fluid itself is not compressed by the compressor as a heat energy transfer medium, but the working medium circulating in the circulation channel is compressed by the compressor as the transfer medium. Therefore, even when the first output fluid contains a component that is difficult to be directly compressed as the first component, the thermal energy of the first output fluid can be effectively recovered through the working medium. (Reducing the heat energy supplied to the heater).
  • the thermal energy of the first output fluid can be effectively recovered according to the variation. That is, as the flow rate of the first output fluid increases or decreases, the thermal energy that can be recovered from the first output fluid also increases or decreases, but this device adjusts the amount of circulation and the reservoir that can store the liquid working medium. And the circulation amount adjusting unit that recovers the thermal energy of the first output fluid effectively in accordance with the fluctuation of the flow rate. More specifically, since the liquid working medium is stored in the storage unit, a larger amount of the working medium can be stored than when the gaseous working medium is stored in the storage unit. Therefore, it is possible to flexibly cope with large fluctuations in the flow rate of the first output fluid.
  • the storage section has a storage flow path connected to the circulation flow path so as to be parallel to a portion of the circulation flow path through which the liquid working medium flows, and the circulation flow path.
  • the amount adjustment unit includes: a first on-off valve provided in the storage channel; and a second on-off valve provided in a portion of the storage channel downstream of the portion where the first on-off valve is provided.
  • a flow rate sensor capable of detecting a flow rate of the first output fluid flowing into the cooler or a flow rate of the first output fluid flowing out of the cooler, and the first opening and closing according to a detection value of the flow rate sensor
  • a control unit that controls opening and closing of the valve and the second on-off valve, and the control unit closes the first on-off valve and closes the first on-off valve so that the circulation amount increases or decreases in accordance with the increase or decrease of the detection value.
  • opening the second on-off valve or opening the first on-off valve Preferably the second shut-off valve closed as well.
  • the circulation amount adjusting unit causes the liquid working medium to flow out from the storage channel to the circulation channel when the first on-off valve is closed and the second on-off valve is open. And an accelerating portion that promotes the inflow of the liquid working medium from the circulation channel to the storage channel when the first on-off valve is open and the second on-off valve is closed. It is preferable to provide.
  • the promotion unit causes the liquid working medium to flow out of the storage channel to the circulation channel. Promote.
  • the accelerating unit is configured to transfer the liquid working medium from the circulation passage to the storage passage. Promote inflow. For this reason, the amount of circulation smoothly increases and decreases according to the increase and decrease of the flow rate of the first output fluid. Therefore, the recovery efficiency of the thermal energy of the first output fluid is further increased.
  • control unit closes the first on-off valve and opens the second on-off valve when the circulation amount is smaller than a threshold value determined based on the detection value, and the circulation amount is It is preferable that the first on-off valve is opened and the second on-off valve is closed when larger than the threshold value.
  • the circulation amount follows the threshold value determined as needed based on the detection value of the flow sensor.
  • this threshold value the operation capable of recovering as much heat energy as possible from the first output fluid.
  • the recovery efficiency of the thermal energy of the first output fluid is further increased.
  • the storage section further includes a tank provided in a portion of the storage channel between the first on-off valve and the second on-off valve and storing the liquid working medium. It is preferable.
  • the heater has a heating medium flow path that can be connected to a heating medium supply flow path for supplying a heating medium to the heater.
  • the cooler has a coolant flow path that can be connected to a coolant supply flow path for supplying a coolant to the cooler.
  • control unit drives the compressor when a detection value of the flow sensor becomes larger than a preset operation value.
  • the heat recovery circuit automatically starts up (starts up) when the detection value of the flow sensor becomes larger than the operating value, so that the thermal energy of the first output fluid can be recovered more effectively. Can do.
  • the heat recovery circuit further includes a liquid level sensor capable of detecting a storage amount of the liquid working medium in the cooler, and the control unit has a detection value of the flow rate sensor that is greater than the operating value.
  • the compressor is driven when the detected value of the liquid level sensor becomes larger than a preset reference amount.
  • the amount of the liquid working medium that evaporates by receiving heat energy from the first output fluid in the cooler that is, the amount of the gaseous working medium that flows into the compressor after evaporating in the cooler. Since the compressor is driven after a sufficient amount is secured, the start of the heat recovery circuit is stabilized.
  • control unit stops the compressor when the rotation speed of the compressor becomes smaller than a preset lower limit rotation speed.
  • the heat recovery circuit automatically falls (stops) when the rotation speed of the compressor becomes lower than the lower limit rotation speed.
  • the lower limit rotation speed can be driven stably.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

 蒸留装置であって、分離器(22)と、冷却器(24)と、加熱器(26)と、熱回収回路(30)と、を備える。熱回収回路(30)は、循環流路(32)と、圧縮機(34)と、膨張機構(34)と、液状の作動媒体を貯留可能な貯留部(40)と、作動媒体の循環量を調整する循環量調整部(50)と、を有する。循環量調整部(50)は、第一出力流体の流量の増減に合わせて循環量が増減するように、貯留部(40)に貯留されている作動媒体の循環流路(32)への流出量又は循環流路(32)を循環している作動媒体の貯留部(40)への流入量を調整する。

Description

蒸留装置
 本発明は、蒸留装置に関する。
 従来、蒸留プロセスを用いる蒸留装置が知られている。例えば、特許文献1には、分離器と、圧縮機と、熱交換器と、冷却器と、を備える分離プロセスモジュールが開示されている。分離器は、第一成分及びこの第一成分とは異なる第二成分を含む入力流体を前記第一成分を含む第一出力流体と前記第二成分を含む第二出力流体とに分離する。圧縮機は、分離器で分離された第一出力流体を圧縮する。熱交換器は、圧縮機で圧縮された第一出力流体と分離器で分離された第二出力流体とを熱交換させる。冷却器は、熱交換器で熱交換した後の第一出力流体を冷却する。冷却器から流出した第一出力流体及び熱交換器から流出した第二出力流体は、それぞれ分離器に戻される。
 この分離プロセスモジュールでは、分離器から流出した第一出力流体の有する熱エネルギーが熱交換器に投入されることにより、当該熱交換器において分離器から流出した第二出力流体が加熱されている。すなわち、第一出力流体の熱エネルギーの有効利用により、第二出力流体の加熱に必要な熱エネルギーの削減(省エネルギー化)が図られている。
 特許文献1に記載された分離プロセスモジュールでは、分離器から流出した第一出力流体を圧縮機で圧縮してから熱交換器に導入することにより、当該第一出力流体の有する熱エネルギーを回収している。そのため、第一出力流体が、第一成分として、直接圧縮されることが困難な成分(例えば、高圧時に非常に不安定となる成分や、圧縮機のシール部を膨潤させる成分)を含む場合には、当該分離プロセスモジュールを用いることが困難である。
 特許文献2に記載された蒸留プラントでは、塔頂蒸気の有する熱エネルギーは、ヒートポンプを用いることによって貯留蒸発器へ投入されている。すなわち、特許文献2の蒸留プラントでは、コラム(分離器)の頂部から流出した流体の有する熱エネルギーは、当該流体を圧縮機で直接圧縮することなくヒートポンプを用いることによって間接的に回収されている。
 特許文献3に記載された蒸留装置では、塔頂蒸気の有する熱エネルギーは、水を媒体とするヒートポンプを用いることによって間接的に蒸留リボイラーで回収されている。また、この特許文献3には、コンプレッサーバイパス弁及びインレットベーンの開度の調整により、または、圧縮機の回転数制御により、ヒートポンプの負荷調整が行われることが記載されている。
 特許文献3に記載の蒸留装置では、ヒートポンプの負荷の調整が行われるものの、その調整量に限界がある。換言すれば、特許文献3に記載の蒸留装置では、分離器の頂部から流出した流体の流量の変動に柔軟に対応することが困難である。
特開2012-045449号公報 特開2000-051602号公報 特公平06-009641号公報
 本発明の目的は、分離器から流出した第一出力流体が直接圧縮されることが困難な成分を含む場合であっても、第一出力流体の熱エネルギーを有効に回収することが可能で、かつ、第一出力流体の流量に変動に合わせて当該第一出力流体の有する熱エネルギーを有効に回収することが可能な蒸留装置を提供することである。
 本発明の一局面に従う蒸留装置は、第一成分及び第二成分を含む入力流体を前記第一成分を含む第一出力流体と前記第二成分を含む第二出力流体とに分離する分離器と、前記分離器から流出した前記第一出力流体を冷却するための冷却器と、前記分離器から流出した前記第二出力流体を加熱するための加熱器と、作動媒体を含み当該作動媒体が前記冷却器で前記第一出力流体と熱交換することによって当該第一出力流体から受け取った熱エネルギーを、当該作動媒体が前記加熱器で前記第二出力流体と熱交換することによって当該第二出力流体に与える熱回収回路と、を備え、前記熱回収回路は、前記冷却器及び前記加熱器を接続しており前記作動媒体を循環させる循環流路と、前記冷却器で前記第一出力流体と熱交換することによって当該第一出力流体から前記熱エネルギーを受け取った後の作動媒体を圧縮する圧縮機と、前記加熱器で前記第二出力流体と熱交換することによって当該第二出力流体に前記熱エネルギーを与えた後の作動媒体を膨張させる膨張機構と、前記循環流路に接続されており液状の作動媒体を貯留可能な貯留部と、前記循環流路を循環している作動媒体の総量である循環量を調整する循環量調整部と、有し、前記循環量調整部は、前記第一出力流体の流量の増減に合わせて前記循環量が増減するように、前記貯留部に貯留されている作動媒体の前記循環流路への流出量又は前記循環流路を循環している作動媒体の前記貯留部への流入量を調整する。
本発明の第一実施形態の蒸留装置の構成の概略を示す図である。 図1の蒸留装置の制御部の制御内容を示すフローチャートである。 本発明の第二実施形態の蒸留装置の構成の概略を示す図である。 図3の蒸留装置における熱回収回路の立ち上げ時の制御部の制御内容を示すフローチャートである。 図3の蒸留装置における熱回収回路の立ち下げ時の制御部の制御内容を示すフローチャートである。
 以下、本発明を実施するための好ましい形態について、図面を参照しながら詳細に説明する。
 (第一実施形態)
 本発明の第一実施形態の蒸留装置について、図1及び図2を参照しながら説明する。
 図1に示されるように、この蒸留装置は、分離器22と、分離器22から流出した第一出力流体を冷却する冷却器24と、分離器22から流出した第二出力流体を加熱する加熱器26と、熱回収回路30と、を備えている。この蒸留装置は、相対的に低温の第一出力流体の有する熱エネルギーを、相対的に高温の第二出力流体に対して作動媒体を媒介として間接的に投入可能な装置である。
 分離器22は、第一成分及び第一成分とは異なる第二成分を含む入力流体を、第一成分を含む第一出力流体と第二成分を含む第二出力流体とに分離する。例えば、第一出力流体は、第一成分として沸点の低い(揮発性の高い)成分を多く含んだ留出蒸気(留出液)である。第二出力流体は、第二成分として第一成分の沸点よりも高い沸点を有する(第一成分の揮発性よりも低い揮発性を有する)成分を多く含んだ缶出液である。なお、入力流体は、入力流路11を通じて分離器22に流入する。第一出力流体は、出力流路12を通じて冷却器24に流入し、第二出力流体は、出力流路15を通じて加熱器26に流入する。
 冷却器24は、第一出力流体と熱回収回路30の作動媒体とを熱交換させることにより第一出力流体を冷却する。冷却器24内で作動媒体と熱交換することで冷却された第一出力流体の一部は、出力流路13を通じて外部に出力され、残りは、再投入流路14を通じて分離器22の上部に戻される。本実施形態では、冷却器24は、外部の冷却源(図示略)から冷却媒体(冷却水等)を当該冷却器24内に供給できるように構成されている。具体的に、冷却器24は、冷却源から冷却媒体を当該冷却器24に供給するための冷却媒体供給流路(図示略)と接続可能な冷却媒体流路25を有している。冷却媒体流路25は、冷却媒体供給流路に接続可能な接続部25aを有している。つまり、本実施形態では、第一出力流体は、冷却器24において作動媒体及び冷却媒体の双方によって冷却されることが可能となっている。ただし、冷却媒体流路25は省略されてもよい。
 加熱器26は、第二出力流体と熱回収回路30の作動媒体とを熱交換させることにより第二出力流体を加熱する。加熱器26内で作動媒体と熱交換することで加熱された第二出力流体の一部は、出力流路16を通じて外部に出力され、残りは、再投入流路17を通じて分離器22の下部に戻される。本実施形態では、加熱器26は、外部の熱源(図示略)から加熱媒体(蒸気等)を当該加熱器26内に供給できるように構成されている。具体的に、加熱器26は、熱源から加熱媒体を当該加熱器26に供給するための加熱媒体供給流路(図示略)と接続可能な加熱媒体流路27を有している。加熱媒体流路27は、加熱媒体供給流路に接続可能な接続部27aを有している。つまり、本実施形態では、第二出力流体は、加熱器26において作動媒体及び加熱媒体の双方によって加熱されることが可能となっている。ただし、加熱媒体流路27は省略されてもよい。
 熱回収回路30は、冷却器24での第一出力流体と作動媒体との熱交換によって当該作動媒体が第一出力流体から受け取った熱エネルギーを、加熱器26での作動媒体と第二出力流体との熱交換によって当該第二出力流体に与える回路である。つまり、熱回収回路30は、相対的に低温の第一出力流体から相対的に高温の第二出力流体に対し、作動媒体を介して熱を運ぶいわゆるヒートポンプとして機能する。具体的に、熱回収回路30は、作動媒体が循環する循環流路32と、作動媒体を圧縮する圧縮機34と、作動媒体を膨張させる膨張機構36とを有している。
 循環流路32は、第一出力流体及び第二出力流体が流れる流路に接続されることなく冷却器24、圧縮機34、加熱器26及び膨張機構36をこの順に直列に接続している。この循環流路32における冷却器24と圧縮機34との間の部位には、気液分離器37が設けられている。なお、気液分離器37は、省略されてもよい。
 圧縮機34は、循環流路32のうち冷却器24の下流側でかつ加熱器26の上流側の部位に設けられている。圧縮機34は、冷却器24から流出したガス状の作動媒体を圧縮することにより昇温させる。圧縮機34から流出したガス状の作動媒体は、加熱器26に流入し、当該加熱器26において第二出力流体と熱交換を行うことにより液状となる。
 膨張機構36は、循環流路32のうち加熱器26の下流側でかつ冷却器24の上流側の部位に設けられている。膨張機構36は、加熱器26から流出した液状の作動媒体を膨張させることにより減圧させる。膨張機構36から流出した液状の作動媒体は、冷却器24に流入し、当該冷却器24において第一出力流体と熱交換を行うことによりガス状となる。
 以上のように、本蒸留装置では、分離器22から流出した第一出力流体の有する熱エネルギーが、第一出力流体自身によって直接的に第二出力流体に投入されるのではなく、循環流路32を循環する作動媒体を介して間接的に第二出力流体に投入される。具体的に、第一出力流体の有する熱エネルギーは、冷却器24での第一出力流体と作動媒体との熱交換によって当該作動媒体によって回収された後、加熱器26での作動媒体と第二出力流体との熱交換によって当該第二出力流体に与えられる。すなわち、本蒸留装置では、第一出力流体そのものが熱エネルギーの授受媒介として圧縮機34で圧縮されるのではなく、循環流路32を循環する作動媒体が前記授受媒介として圧縮機34で圧縮される。よって、第一出力流体が、その第一成分として直接圧縮されることが困難な成分を含む場合であっても、当該第一出力流体の有する熱エネルギーを作動媒体を介して有効に回収すること(加熱器26に供給する熱エネルギーを削減すること)ができる。
 換言すれば、本蒸留装置では、循環流路32に対し、単一の圧縮機34及び膨張機構36が設けられるだけで第一出力流体の有する熱エネルギーの有効な回収が達成される。
 本実施形態の熱回収回路30は、第一出力流体の流量の増減に合わせて循環流路32を循環する作動媒体の総量(以下、「循環量」という。)を増減させるための手段をさらに備えている。本蒸留装置において、分離器22から流出する第一出力流体の流量が変動した場合、作動媒体が冷却器24において第一出力流体から回収可能な熱エネルギーも変動する。よって、第一出力流体の流量の増減に合わせて前記熱エネルギーの授受媒介である作動媒体の循環量を増減させることにより、第一出力流体の有する熱エネルギーをより有効に回収することが可能となる。具体的に、本実施形態の熱回収回路30は、循環流路32に接続された貯留部40と、循環流路32を循環する作動媒体の循環量を調整可能な循環量調整部50と、をさらに備えている。
 貯留部40は、循環流路32に接続された貯留流路42と、貯留流路42に設けられたタンク44とを有している。
 貯留流路42は、循環流路32のうち液状の作動媒体が流れている部位に対して並列となるように当該循環流路32に接続されている。具体的に、貯留流路42の上流側の端部は、循環流路32のうち加熱器26の下流側でかつ膨張機構36の上流側の部位に接続されている。一方、貯留流路42の下流側の端部は、循環流路32のうち当該循環流路32と貯留流路42の上流側の端部との接続部と、膨張機構36と、の間の部位に接続されている。すなわち、本実施形態では、貯留流路42には、加熱器26において第二出力流体と熱交換することによって凝縮した液状の作動媒体が貯留される。
 タンク44は、液状の作動媒体を貯留する。このタンク44には、当該タンク44内の作動媒体の貯留量を検出可能な検出器44aが設けられている。気液分離器37で分離された液状の作動媒体は、流路38を通じてタンク44に流入する。
 循環量調整部50は、第一出力流体の流量の増減に合わせて循環流路32の循環量を増減させる。具体的に、循環量調整部50は、第一出力流体の流量の増減に合わせて循環量が増減するように、貯留流路42及びタンク44に貯留されている作動媒体の循環流路32への流出量又は循環流路32を循環している作動媒体の貯留流路42及びタンク44への流入量を調整する。本実施形態では、循環量調整部50は、流量センサ18と、第一開閉弁51と、第二開閉弁52と、第一ポンプ53と、第二ポンプ54と、制御部55とを有している。
 流量センサ18は、第一出力流体の流量を検出可能なセンサである。本実施形態では、流量センサ18は、分離器22と冷却器24とを接続する出力流路12に設けられている。ただし、流量センサ18は、冷却器24から外部に出力するための出力流路13と、冷却器24から流出した第一出力流体を分離器22に戻すための再投入流路14と、の双方に設けられてもよい。この場合、これらの検出値の合計により第一出力流体の流量が算出される。
 第一開閉弁51は、貯留流路42のうちタンク44が設けられた部位よりも上流側の部位に設けられている。第二開閉弁52は、貯留流路42のうちタンク44が設けられた部位よりも下流側の部位に設けられている。これら第一開閉弁51及び第二開閉弁52がともに閉じられることにより、貯留流路42のうち第一開閉弁51及び第二開閉弁52の間の部位が循環流路32から遮断される。
 第一ポンプ53は、貯留流路42における第一開閉弁51とタンク44との間の部位に設けられている。第一ポンプ53は、液状の作動媒体を所定の圧力まで加圧して貯留流路42における当該第一ポンプ53の下流側(タンク44側)に送り出す。つまり、第一ポンプ53は、循環流路32から液状の作動媒体を貯留流路42及びタンク44に流入させるためのポンプである。なお、この第一ポンプ53は、貯留流路42における第一開閉弁51の上流側の部位に設けられてもよい。
 第二ポンプ54は、貯留流路42におけるタンク44と第二開閉弁52との間の部位に設けられている。第二ポンプ54は、液状の作動媒体を所定の圧力まで加圧して貯留流路42における当該第二ポンプ54の下流側(第二開閉弁52側)に送り出す。つまり、第二ポンプ54は、貯留流路42及びタンク44から液状の作動媒体を循環流路32に流出させるためのポンプである。なお、この第二ポンプ54は、貯留流路42における第二開閉弁52の下流側の部位に設けられてもよい。
 第一ポンプ53及び第二ポンプ54としては、インペラをロータとして備える遠心ポンプや、ロータが一対のギアからなるギアポンプ等が用いられる。これら第一ポンプ53及び第二ポンプ54は、それぞれ任意の回転数で駆動されることが可能に構成されている。
 制御部55は、流量センサ18、第一開閉弁51、第二開閉弁52、第一ポンプ53、第二ポンプ54、検出器44a及び圧縮機34に接続されている。制御部55は、第一出力流体の流量(流量センサ18の検出値)が増加した際に循環量を増加させるとともに第一出力流体の流量が減少した際に循環量を減少させるように、各開閉弁51,52の開閉、各ポンプ53,54の回転数及び圧縮機34の回転数を調整する。
 ここで、制御部55の制御内容を図2を参照しながら説明する。
 本蒸留装置が始動されると、制御部55は、流量センサ18の検出値を検出し(ステップST11)、その検出値に基づいて、循環流路32を循環させる循環量の基準値(以下、「閾値QL-SV」という。)を決定する(ステップST12)。閾値QL-SVは、作動媒体が冷却器24において第一出力流体からできるだけ多くの熱エネルギーを回収可能な量に設定される。この閾値QL-SVは、冷却器24において作動媒体が第一出力流体と実質的に潜熱のみの熱交換を行う(作動媒体が冷却器24に液状で流入し、かつ過熱されていないかわずかに過熱されたガス状で当該冷却器24から流出する)量に設定されることが好ましい。本実施形態では、制御部55には、流量センサ18の検出値に応じた最適な閾値QL-SVのデータが予め記憶されており、制御部55は、前記データを参照することによって前記検出値に応じた閾値QL-SVを決定する。
 引き続き、制御部55は、循環流路32を循環している作動媒体の循環量を閾値QL-SVとすることができるように圧縮機34の回転数を決定する(ステップST13)。
 ここで、作動媒体を介して加熱器26に投入される熱量のみでは当該加熱器26における第二出力流体の加熱量が不足する場合がある。この場合に、制御部55は、その不足分を補うために外部から加熱媒体流路27に供給する加熱媒体の流量を決定する(ステップST14)。同様に、作動媒体を介して冷却器24から回収される熱量のみでは当該冷却器24における第一出力流体の冷却量が不足する場合がある。この場合に、制御部55は、その不足分を補うために外部から冷却媒体流路25に供給する冷却媒体の流量を決定する(ステップST15)。
 次に、制御部55は、検出器44aの検出値からタンク44内の作動媒体の貯留量QVS-PVを検出するとともに、予め測定されている作動媒体の総量Qtotalから貯留量QVS-PVを引くことにより、その時点で循環流路32を循環している作動媒体の循環量である現循環量QL-PVを算出する(ステップST16)。
 その後、制御部55は、循環流路32の現循環量QL-PVが不足しているか否か、すなわち、作動媒体の総量Qtotalから貯留量QVS-PVを引いた値が閾値QL-SV未満か否かを判定する(ステップST17)。
 その結果、現循環量QL-PVが不足している場合(ステップST17でYesの場合)、制御部55は、第一開閉弁51を閉じ、第一ポンプ53を停止し、第二ポンプ54の回転数を調整するとともに、第二開閉弁52を開く(ステップST18)。そうすると、貯留流路42やタンク44に貯留されていた液状の作動媒体が循環流路32へ流出し、これにより循環流路32の作動媒体の循環量が増加する。その後、ステップST11に戻る。
 一方、現循環量QL-PVが不足していない場合(ステップST17でNoの場合)、制御部55は、現循環量QL-PVが過剰か否か、すなわち、作動媒体の総量Qtotalから貯留量QVS-PVを引いた値が閾値QL-SVよりも大きいか否かを判定する(ステップST19)。
 その結果、現循環量QL-PVが過剰である場合(ステップST19でYesの場合)、制御部55は、第一開閉弁51を開き、第一ポンプ53の回転数を調整し、第二ポンプ54を停止するとともに、第二開閉弁52を閉じる(ステップST20)。そうすると、循環流路32から貯留流路42やタンク44に液状の作動媒体が流入し、これにより循環流路32の作動媒体の循環量が減少する。その後、ステップST11に戻る。
 一方、現循環量QL-PVが過剰ではない場合(ステップST19でNoの場合)、すなわち、現循環量QL-PVと閾値QL-SVとが一致している場合、そのままステップST11に戻る。
 以上のように、本蒸留装置では、分離器22から流出した第一出力流体の流量に変動が生じた場合であっても、その変動に合わせて当該第一出力流体の有する熱エネルギーを有効に回収することができる。すなわち、本装置は、貯留部40(貯留流路42及びタンク44)と循環量調整部50とを有するので、第一出力流体の流量の増減に合わせて当該第一出力流体から回収可能な熱エネルギーが増減した場合であっても、第一出力流体の熱エネルギーがその流量の変動に合わせて有効に回収される。
 また、本実施形態では、第一出力流体の流量(流量センサ18の検出値)の増減に合わせて循環量が増減するので、第一出力流体の熱エネルギーの回収効率がさらに向上する。具体的に、循環量を増加させるとき、すなわち第一開閉弁51が閉じており第二開閉弁52が開いているとき、貯留流路42及びタンク44から循環流路32への作動媒体の流出が促進されるように第二ポンプ54が駆動される。逆に、循環量を減少させるとき、すなわち第一開閉弁51が開いており第二開閉弁52が閉じているとき、循環流路32から貯留流路42及びタンク44への作動媒体の流入が促進されるように第一ポンプ53が駆動される。このため、第一出力流体の流量の増減に合わせて循環量が増減する。よって、第一出力流体の熱エネルギーの回収効率が一層高くなる。すなわち、本実施形態では、第一ポンプ53及び第二ポンプ54が、貯留部40から循環流路32への作動媒体の流出または循環流路32から貯留部40への作動媒体の流入を促進させる「促進部」を構成する。なお、第一ポンプ53及び第二ポンプ54のうち少なくとも一方を備えていれば良く、望ましくは第二ポンプ54を備える。
 また、本実施形態では、制御部55は、循環量が前記閾値QL-SVよりも小さいときに第一開閉弁51を閉じるとともに第二開閉弁52を開き、循環量が前記閾値QL-SVよりも大きいときに第一開閉弁51を開くとともに第二開閉弁52を閉じる。このため、循環量は、流量センサ18の検出値に基づいて随時決定される閾値QL-SVに追従するようになる。本実施形態では、この閾値QL-SVとして、第一出力流体からできるだけ多くの熱エネルギーを回収可能な作動媒体の量が設定されているため、第一出力流体の熱エネルギーの回収効率が一層高くなる。
 また、本実施形態では、貯留部40に液状の作動媒体が貯留されるので、貯留可能な作動媒体の流量が多くなる。すなわち、貯留部40にガス状の作動媒体が貯留される場合よりも多量の作動媒体の貯留が可能となる。
 さらに、本実施形態では、貯留部40がタンク44を有するので、循環量の第一出力流体の変動へのより柔軟な追従、すなわち、第一出力流体の熱エネルギーの回収効率の一層の向上が可能となる。なお、タンク44は省略されてもよい。
 また、本実施形態では、加熱器26は、加熱媒体流路27を有している。このため、作動媒体を介して加熱器26に投入される熱量のみでは当該加熱器26における第二出力流体の加熱量が不足する場合であっても、この加熱器26に外部から加熱媒体を供給することによってその不足分を補うことができる。
 また、本実施形態では、冷却器24は、冷却媒体流路25を有している。このため、作動媒体を介して冷却器24から回収される熱量のみでは当該冷却器24における第一出力流体の冷却量が不足する場合であっても、この冷却器24に外部から冷却媒体を供給することによってその不足分を補うことができる。
 (第二実施形態)
 次に、本発明の第二実施形態の蒸留装置について、図3~図5を参照しながら説明する。なお、この第二実施形態では、第一実施形態と異なる部分についてのみ説明を行い、第一実施形態と同じ構造、作用及び効果の説明は省略する。
 本実施形態では、冷却器24に設けられた液面センサ24aと、冷却媒体流路25に設けられた第三開閉弁28と、加熱媒体流路27に設けられた第四開閉弁29と、循環流路32に設けられた圧力センサ32a及び第五開閉弁33と、気液分離器37とタンク44とを接続する流路38に設けられた第六開閉弁39と、をさらに備えている。液面センサ24aは、冷却器24内の液状の作動媒体の貯留量を検出する。第五開閉弁33は、循環流路32のうち気液分離器37と圧縮機34との間の部位に設けられている。圧力センサ32aは、循環流路32のうち気液分離器37と第五開閉弁33との間の部位に設けられている。
 次に、本実施形態の蒸留装置における熱回収回路30の立ち上げ時(起動時)の制御部55の制御内容について、図4を参照しながら説明する。熱回収回路30の立ち上げ前の状態では、圧縮機34、第一ポンプ53及び第二ポンプ54は、停止しており、第五開閉弁33及び第六開閉弁39は、閉じている。また、冷却器24において第一出力流体を冷却するために第三開閉弁28は開いている。
 この状態において、制御部55は、まず、流量センサ18の検出値QTOPを読み取り(ステップST31)、この検出値QTOPが予め設定された稼働値QSTよりも大きいか否かを判定する(ステップST32)。稼働値QSTは、熱回収回路30を稼働可能な量、すなわち、圧縮機34の駆動によって作動媒体が第一出力流体から受け取った熱エネルギーを第二出力流体に与えることが可能な量に設定される。
 そして、検出値QTOPが稼働値QST以下の場合(ステップST32でNoの場合)、ステップST31に戻る一方、検出値QTOPが稼働値QSTよりも大きい場合(ステップST32でYesの場合)、制御部55は、第三開閉弁28を閉じるとともに(ステップST33)、第六開閉弁39を開く(ステップST34)。第三開閉弁28を閉じるのは、冷却器24内の液状の作動媒体によって第一出力流体の冷却が可能となるからである。第六開閉弁39を開くのは、気液分離器37内に溜まっている液状の作動媒体をタンク44へ導入するためである。
 続いて、制御部55は、液面センサ24aの検出値L2を読み取り(ステップST35)、この検出値L2が予め設定された基準量LSTよりも大きいか否かを判定する(ステップST36)。基準量LSTは、圧縮機34を安定的に(下限回転数NMIN以上で)回転させることが可能な量のガス状の作動媒体が得られる量に設定される。
 そして、検出値L2が基準量LST以下の場合(ステップST36でNoの場合)、制御部55は、第二ポンプ54の回転数を調整するとともに第二開閉弁52を開いた後(ステップST37)、ステップST35に戻る。そうすると、タンク44から循環流路32に液状の作動媒体が流出し、これにより冷却器24内における液状の作動媒体量が増加する。
 一方、検出値L2が基準量LSTよりも大きい場合(ステップST36でYesの場合)、制御部55は、第二ポンプ54を停止するとともに第二開閉弁52を閉じる(ステップST37)。
 その後、制御部55は、第六開閉弁39を閉じる(ステップST39)。第六開閉弁39を閉じるのは、気液分離器37とタンク44との連通を遮断することによってガス状の作動媒体を循環流路32における冷却器24と第五開閉弁33との間の空間に留めるためである。
 次に、制御部55は、圧力センサ32aの検出値Pを読み取り(ステップST40)、この検出値Pが予め設定された下限圧PMINよりも大きく、かつ上限圧PMAX未満か否かを判定する(ステップST41)。
 その結果、検出値Pが下限圧PMIN以下、あるいは上限圧PMAX以上である場合(ステップST41でNoの場合)、ステップST40に戻る。一方、検出値Pが下限圧PMINよりも大きく、かつ上限圧PMAX未満である場合(ステップST41でYesの場合)、第五開閉弁33を開くとともに圧縮機34を駆動する(ステップST42)。これにより、熱回収回路30が立ち上がる。その後、ステップST11へ移る。
 続いて、熱回収回路30の立ち下げ時(停止時)の制御部55の制御内容について、図5を参照しながら説明する。以下、第一実施形態の制御部55の制御内容と同じ内容については、第一実施形態と同じ符号を付し、その説明を省略する。
 制御部55は、圧縮機34の回転数Nを決定した後(ステップST13)、この回転数Nが下限回転数NMINよりも大きいか否かを判定する(ステップST51)。下限回転数NMINは、圧縮機34が安定的に回転可能な回転数範囲のうちの下限値に設定される。
 そして、前記回転数Nが下限回転数NMINよりも大きい場合(ステップST51でYesの場合)、制御部55は、ステップST14に移る。ステップST14~ステップST20の制御内容は、第一実施形態のそれと同様であるので、その説明を省略する。
 一方、前記回転数Nが下限回転数NMIN以下である場合(ステップST51でNoの場合)、制御部55は、圧縮機34を停止する(ステップST52)。また、制御部55は、加熱器26に供給する加熱媒体の流量を決定し、第四開閉弁29をその開度で開くとともに(ステップST53)、冷却器24に供給する冷却媒体の流量を決定し、第三開閉弁28をその開度で開く(ステップST54)。
 その後、制御部55は、検出器44aの検出値L1が予め設定された上限値となるまで第一ポンプ53を駆動する(ステップST56)。これにより、タンク44に所定量の液状の作動媒体が貯留された状態で熱回収回路30が立ち下がる。
 以上に説明した熱回収回路30の立ち下げは、手動で行われてもよい。この場合、圧縮機34の駆動及び停止を手動で操作するための操作ボタン(図示略)の操作により圧縮機34が停止される。圧縮機34が停止した後の制御部55の制御内容は、上記のステップST53~ステップST56と同じである。
 以上のように、本実施形態では、制御部55は、流量センサ18の検出値QTOPが稼働値QSTよりも大きくなったときに圧縮機34を駆動するので、検出値QTOPが稼働値QSTよりも大きくなったときに自動的に熱回収回路30が立ち上がる(起動する)。よって、第一出力流体の有する熱エネルギーをより有効に回収することができる。
 より具体的には、制御部55は、検出値QTOPが稼働値QSTよりも大きくなり、かつ液面センサ24aの検出値L2が基準量LSTよりも大きくなったときに圧縮機34を駆動する。つまり、冷却器24内において第一出力流体から熱エネルギーを受け取ることによって蒸発する液状の作動媒体の量、すなわち冷却器24内で蒸発した後に圧縮機34に流入するガス状の作動媒体の量が十分に確保された後に圧縮機34が駆動される。よって、熱回収回路30の起動が安定する。
 また、制御部55は、圧縮機34の回転数Nが下限回転数NMINよりも小さくなったときに圧縮機34を停止するので、前記回転数Nが下限回転数NMINよりも小さくなったときに自動的に熱回収回路30が立ち下がる(停止する)。よって、圧縮機34の安定的な駆動状態が確保されるので、熱回収回路30の不安定な状態での駆動を回避することができる。
 なお、今回開示された実施形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施形態の説明ではなく特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。
 例えば、上記各実施形態では、制御部55は、当該制御部55に記憶されているデータを参照することによって流量センサ18の検出値に応じた閾値QL-SVを随時決定する例が示されたが、閾値QL-SVの決定方法はこれに限られない。例えば、閾値QL-SVとして、第一出力流体の変動範囲や作動媒体の総量Qtotal等に基づいて特定の設定値が設定されてもよい。この場合、制御部55は、流量センサ18の検出値が前記設定値よりも大きいときに第一開閉弁51を閉じるとともに第二開閉弁52を開き、前記検出値が前記設定値よりも小さいときに第一開閉弁51を開くとともに第二開閉弁52を閉じてもよい。
 ここで、上記実施形態について概説する。
 上記実施形態の蒸留装置は、第一成分及び第二成分を含む入力流体を前記第一成分を含む第一出力流体と前記第二成分を含む第二出力流体とに分離する分離器と、前記分離器から流出した前記第一出力流体を冷却するための冷却器と、前記分離器から流出した前記第二出力流体を加熱するための加熱器と、作動媒体を含み当該作動媒体が前記冷却器で前記第一出力流体と熱交換することによって当該第一出力流体から受け取った熱エネルギーを、当該作動媒体が前記加熱器で前記第二出力流体と熱交換することによって当該第二出力流体に与える熱回収回路と、を備え、前記熱回収回路は、前記冷却器及び前記加熱器を接続しており前記作動媒体を循環させる循環流路と、前記冷却器で前記第一出力流体と熱交換することによって当該第一出力流体から前記熱エネルギーを受け取った後の作動媒体を圧縮する圧縮機と、前記加熱器で前記第二出力流体と熱交換することによって当該第二出力流体に前記熱エネルギーを与えた後の作動媒体を膨張させる膨張機構と、前記循環流路に接続されており液状の作動媒体を貯留可能な貯留部と、前記循環流路を循環している作動媒体の総量である循環量を調整する循環量調整部と、有し、前記循環量調整部は、前記第一出力流体の流量の増減に合わせて前記循環量が増減するように、前記貯留部に貯留されている作動媒体の前記循環流路への流出量又は前記循環流路を循環している作動媒体の前記貯留部への流入量を調整する。
 本装置では、分離器から流出した第一出力流体の有する熱エネルギーが、第一出力流体自身によって直接的に第二出力流体に投入されるのではなく、循環流路を循環する作動媒体を介して間接的に第二出力流体に投入される。具体的に、第一出力流体の有する熱エネルギーは、冷却器での第一出力流体と作動媒体との熱交換によって当該作動媒体によって回収された後、加熱器での作動媒体と第二出力流体との熱交換によって当該第二出力流体に与えられる。すなわち、本装置では、第一出力流体そのものが熱エネルギーの授受媒介として圧縮機で圧縮されるのではなく、循環流路を循環する作動媒体が前記授受媒介として圧縮機で圧縮される。よって、第一出力流体が、その第一成分として直接圧縮されることが困難な成分を含む場合であっても、当該第一出力流体の有する熱エネルギーを作動媒体を介して有効に回収すること(加熱器に供給する熱エネルギーを削減すること)ができる。
 さらに、分離器から流出した第一出力流体の流量に変動が生じた場合であっても、その変動に合わせて当該第一出力流体の有する熱エネルギーを有効に回収することができる。すなわち、第一出力流体の流量の増減に合わせて、当該第一出力流体から回収可能な熱エネルギーも増減するが、本装置は、液状の作動媒体を貯留可能な貯留部と、循環量を調整する循環量調整部とを有するので、第一出力流体の熱エネルギーがその流量の変動に合わせて有効に回収される。より詳細には、貯留部には液状の作動媒体が貯留されるので、貯留部にガス状の作動媒体が貯留される場合よりも多量の作動媒体の貯留が可能となる。よって、第一出力流体の流量の大きな変動にも柔軟に対応することができる。
 この場合において、前記貯留部は、前記循環流路のうち前記液状の作動媒体が流れる部位に対して並列となるように当該循環流路に接続された貯留流路を有しており、前記循環量調整部は、前記貯留流路に設けられた第一開閉弁と、前記貯留流路のうち前記第一開閉弁が設けられた部位よりも下流側の部位に設けられた第二開閉弁と、前記冷却器に流入する前記第一出力流体の流量、または前記冷却器から流出した前記第一出力流体の流量を検出可能な流量センサと、前記流量センサの検出値に応じて前記第一開閉弁及び前記第二開閉弁の開閉を制御する制御部と、を含み、前記制御部は、前記検出値の増減に合わせて前記循環量が増減するように、前記第一開閉弁を閉じるとともに前記第二開閉弁を開く、または前記第一開閉弁を開くとともに前記第二開閉弁を閉じることが好ましい。
 このようにすれば、循環流路から貯留流路を遮断するための2つの開閉弁、第一出力流体の流量を検出する流量センサ及び各開閉弁の開閉を制御する制御部を設けるという簡単な構成により、第一出力流体の流量に合わせた循環量の調整が可能となる。
 この場合において、前記循環量調整部は、前記第一開閉弁が閉じており前記第二開閉弁が開いているときに前記貯留流路から前記循環流路への前記液状の作動媒体の流出を促進させ、かつ、前記第一開閉弁が開いており前記第二開閉弁が閉じているときに前記循環流路から前記貯留流路への前記液状の作動媒体の流入を促進させる促進部をさらに備えることが好ましい。
 このようにすれば、第一出力流体の流量(流量センサの検出値)の増減に合わせて循環量がスムーズに増減するので、第一出力流体の熱エネルギーの回収効率がさらに向上する。具体的に、循環量を増加させるとき、すなわち第一開閉弁が閉じており第二開閉弁が開いているとき、促進部は、貯留流路から循環流路への液状の作動媒体の流出を促進させる。逆に、循環量を減少させるとき、すなわち第一開閉弁が開いており前記第二開閉弁が閉じているとき、促進部は、循環流路から前記貯留流路への前記液状の作動媒体の流入を促進させる。このため、第一出力流体の流量の増減に合わせて循環量がスムーズに増減する。よって、第一出力流体の熱エネルギーの回収効率が一層高くなる。
 また、本装置において、前記制御部は、前記循環量が前記検出値に基づいて決定される閾値よりも小さいときに前記第一開閉弁を閉じるとともに前記第二開閉弁を開き、前記循環量が前記閾値よりも大きいときに前記第一開閉弁を開くとともに前記第二開閉弁を閉じることが好ましい。
 このようにすれば、循環量が、流量センサの検出値に基づいて随時決定される閾値に追従するようになるので、この閾値として、第一出力流体からできるだけ多くの熱エネルギーを回収可能な作動媒体の量が設定されることにより、第一出力流体の熱エネルギーの回収効率が一層高くなる。
 また、本装置において、前記貯留部は、前記貯留流路のうち前記第一開閉弁と前記第二開閉弁との間の部位に設けられており前記液状の作動媒体を貯留するタンクをさらに備えることが好ましい。
 このようにすれば、さらに多量の作動媒体の貯留が可能となるので、循環量の第一出力流体の変動へのより柔軟な追従、すなわち、第一出力流体の熱エネルギーの回収効率の一層の向上が可能となる。
 また、本装置において、前記加熱器は、当該加熱器に加熱媒体を供給するための加熱媒体供給流路と接続可能な加熱媒体流路を有していることが好ましい。
 このようにすれば、作動媒体を介して加熱器に投入される熱量のみでは当該加熱器における第二出力流体の加熱量が不足する場合であっても、この加熱器に外部から加熱媒体を供給することによってその不足分を補うことができる。
 また、本装置において、前記冷却器は、当該冷却器に冷却媒体を供給するための冷却媒体供給流路と接続可能な冷却媒体流路を有していることが好ましい。
 このようにすれば、作動媒体を介して冷却器から回収される熱量のみでは当該冷却器における第一出力流体の冷却量が不足する場合であっても、この冷却器に外部から冷却媒体を供給することによってその不足分を補うことができる。
 また、本装置において、前記制御部は、前記流量センサの検出値が予め設定された稼働値よりも大きくなったときに前記圧縮機を駆動することが好ましい。
 このようにすれば、流量センサの検出値が稼働値よりも大きくなったときに自動的に熱回収回路が立ち上がる(起動する)ので、第一出力流体の有する熱エネルギーをより有効に回収することができる。
 この場合において、前記熱回収回路は、前記冷却器内における前記液状の作動媒体の貯留量を検出可能な液面センサをさらに備え、前記制御部は、前記流量センサの検出値が前記稼働値よりも大きくなり、かつ前記液面センサの検出値が予め設定された基準量よりも大きくなったときに前記圧縮機を駆動することが好ましい。
 このようにすれば、冷却器内において第一出力流体から熱エネルギーを受け取ることによって蒸発する液状の作動媒体の量、すなわち冷却器内で蒸発した後に圧縮機に流入するガス状の作動媒体の量が十分に確保された後に圧縮機が駆動されるので、熱回収回路の起動が安定する。
 また、本装置において、前記制御部は、前記圧縮機の回転数が予め設定された下限回転数よりも小さくなったときに当該圧縮機を停止することが好ましい。
 このようにすれば、圧縮機の回転数が下限回転数よりも小さくなったときに自動的に熱回収回路が立ち下がる(停止する)ので、例えば、下限回転数を圧縮機の安定的な駆動状態の確保が困難となる回転数に設定することにより、熱回収回路の不安定な状態での駆動を回避することができる。

Claims (10)

  1.  第一成分及び第二成分を含む入力流体を前記第一成分を含む第一出力流体と前記第二成分を含む第二出力流体とに分離する分離器と、
     前記分離器から流出した前記第一出力流体を冷却するための冷却器と、
     前記分離器から流出した前記第二出力流体を加熱するための加熱器と、
     作動媒体を含み当該作動媒体が前記冷却器で前記第一出力流体と熱交換することによって当該第一出力流体から受け取った熱エネルギーを、当該作動媒体が前記加熱器で前記第二出力流体と熱交換することによって当該第二出力流体に与える熱回収回路と、を備え、
     前記熱回収回路は、前記冷却器及び前記加熱器を接続しており前記作動媒体を循環させる循環流路と、前記冷却器で前記第一出力流体と熱交換することによって当該第一出力流体から前記熱エネルギーを受け取った後の作動媒体を圧縮する圧縮機と、前記加熱器で前記第二出力流体と熱交換することによって当該第二出力流体に前記熱エネルギーを与えた後の作動媒体を膨張させる膨張機構と、前記循環流路に接続されており液状の作動媒体を貯留可能な貯留部と、前記循環流路を循環している作動媒体の総量である循環量を調整する循環量調整部と、を有し、
     前記循環量調整部は、前記第一出力流体の流量の増減に合わせて前記循環量が増減するように、前記貯留部に貯留されている作動媒体の前記循環流路への流出量又は前記循環流路を循環している作動媒体の前記貯留部への流入量を調整する蒸留装置。
  2.  請求項1に記載の蒸留装置において、
     前記貯留部は、前記循環流路のうち前記液状の作動媒体が流れる部位に対して並列となるように当該循環流路に接続された貯留流路を有しており、
     前記循環量調整部は、前記貯留流路に設けられた第一開閉弁と、前記貯留流路のうち前記第一開閉弁が設けられた部位よりも下流側の部位に設けられた第二開閉弁と、前記冷却器に流入する前記第一出力流体の流量、または前記冷却器から流出した前記第一出力流体の流量を検出可能な流量センサと、前記流量センサの検出値に応じて前記第一開閉弁及び前記第二開閉弁の開閉を制御する制御部と、を含み、
     前記制御部は、前記検出値の増減に合わせて前記循環量が増減するように、前記第一開閉弁を閉じるとともに前記第二開閉弁を開く、または前記第一開閉弁を開くとともに前記第二開閉弁を閉じる蒸留装置。
  3.  請求項2に記載の蒸留装置において、
     前記循環量調整部は、前記第一開閉弁が閉じており前記第二開閉弁が開いているときに前記貯留流路から前記循環流路への前記液状の作動媒体の流出を促進させ、かつ、前記第一開閉弁が開いており前記第二開閉弁が閉じているときに前記循環流路から前記貯留流路への前記液状の作動媒体の流入を促進させる促進部をさらに備える蒸留装置。
  4.  請求項2又は3に記載の蒸留装置において、
     前記制御部は、前記循環量が前記検出値に基づいて決定される閾値よりも小さいときに前記第一開閉弁を閉じるとともに前記第二開閉弁を開き、前記循環量が前記閾値よりも大きいときに前記第一開閉弁を開くとともに前記第二開閉弁を閉じる蒸留装置。
  5.  請求項2に記載の蒸留装置において、
     前記貯留部は、前記貯留流路のうち前記第一開閉弁と前記第二開閉弁との間の部位に設けられており前記液状の作動媒体を貯留するタンクをさらに備える蒸留装置。
  6.  請求項1に記載の蒸留装置において、
     前記加熱器は、当該加熱器に加熱媒体を供給するための加熱媒体供給流路と接続可能な加熱媒体流路を有している蒸留装置。
  7.  請求項1に記載の蒸留装置において、
     前記冷却器は、当該冷却器に冷却媒体を供給するための冷却媒体供給流路と接続可能な冷却媒体流路を有している蒸留装置。
  8.  請求項1に記載の蒸留装置において、
     前記制御部は、前記流量センサの検出値が予め設定された稼働値よりも大きくなったときに前記圧縮機を駆動する蒸留装置。
  9.  請求項8に記載の蒸留装置において、
     前記熱回収回路は、前記冷却器内における前記液状の作動媒体の貯留量を検出可能な液面センサをさらに備え、
     前記制御部は、前記流量センサの検出値が前記稼働値よりも大きくなり、かつ前記液面センサの検出値が予め設定された基準量よりも大きくなったときに前記圧縮機を駆動する蒸留装置。
  10.  請求項1に記載の蒸留装置において、
     前記制御部は、前記圧縮機の回転数が予め設定された下限回転数よりも小さくなったときに当該圧縮機を停止する蒸留装置。
PCT/JP2015/062845 2014-05-23 2015-04-28 蒸留装置 WO2015178179A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
RU2016144772A RU2657901C1 (ru) 2014-05-23 2015-04-28 Дистилляционное устройство
CN201580021394.1A CN106232197B (zh) 2014-05-23 2015-04-28 蒸馏装置
US15/303,454 US10272358B2 (en) 2014-05-23 2015-04-28 Distillation apparatus
SA516380144A SA516380144B1 (ar) 2014-05-23 2016-10-25 جهاز تقطير قادر على تجميع الطاقة الحرارية بفعالية لمائع المخرجات الأول

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014106827A JP6194280B2 (ja) 2014-05-23 2014-05-23 蒸留装置
JP2014-106827 2014-05-23

Publications (1)

Publication Number Publication Date
WO2015178179A1 true WO2015178179A1 (ja) 2015-11-26

Family

ID=54553853

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/062845 WO2015178179A1 (ja) 2014-05-23 2015-04-28 蒸留装置

Country Status (6)

Country Link
US (1) US10272358B2 (ja)
JP (1) JP6194280B2 (ja)
CN (1) CN106232197B (ja)
RU (1) RU2657901C1 (ja)
SA (1) SA516380144B1 (ja)
WO (1) WO2015178179A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6587932B2 (ja) * 2015-12-25 2019-10-09 ザ コカ・コーラ カンパニーThe Coca‐Cola Company 抽出液製造システム及び抽出液の製造方法
EP3338867B1 (de) * 2016-12-22 2019-09-25 GEA Wiegand GmbH Anlage und verfahren zum entalkoholisieren von alkoholhaltigen getränken
JP2019000807A (ja) * 2017-06-15 2019-01-10 三菱重工サーマルシステムズ株式会社 化学プラント、及び液体材料の蒸留方法
JP7205065B2 (ja) * 2018-02-28 2023-01-17 三菱ケミカルエンジニアリング株式会社 混合物の分離方法及び装置
EP3769830A1 (en) * 2019-07-22 2021-01-27 Sulzer Management AG Process for distilling a crude composition in a rectification plant including an indirect heat pump
EP3960280A1 (en) * 2020-08-24 2022-03-02 Linde GmbH Method and apparatus for separation of 13c16o from natural co
JP7506618B2 (ja) 2021-02-16 2024-06-26 木村化工機株式会社 蒸留装置
CN114195913B (zh) * 2021-12-23 2023-08-18 广东鲁众华新材料有限公司 一种提高碳五石油树脂闪蒸效果的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60206401A (ja) * 1984-03-30 1985-10-18 Daido Steel Co Ltd 蒸溜装置
JP2009136713A (ja) * 2007-12-03 2009-06-25 Stella Chemifa Corp 蒸留方法
JP2011196610A (ja) * 2010-03-19 2011-10-06 Panasonic Corp 冷凍サイクル装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3015525C2 (de) * 1980-04-23 1982-07-01 Langbein-Pfanhauser Werke Ag, 4040 Neuss Anlage zum Destillieren von Flüssigkeiten mit einer Wärmepumpe
JPH069641B2 (ja) * 1984-02-14 1994-02-09 協和醗酵工業株式会社 蒸留装置
US5197296A (en) * 1992-01-21 1993-03-30 Praxair Technology, Inc. Cryogenic rectification system for producing elevated pressure product
US5402647A (en) * 1994-03-25 1995-04-04 Praxair Technology, Inc. Cryogenic rectification system for producing elevated pressure nitrogen
RU2102103C1 (ru) * 1997-01-22 1998-01-20 Пильч Леонид Моисеевич Способ вакуумной перегонки жидкого продукта и установка для его осуществления
US6589395B1 (en) 1998-06-17 2003-07-08 Sulzer Chemtech Ag Distillation plant with a column and a heat pump
EP2300116B1 (en) * 2008-06-18 2019-02-06 Rosemount Incorporated method and device for the DETECTION OF DISTILLATION COLUMN FLOODING
JP5656057B2 (ja) * 2010-08-24 2015-01-21 Jx日鉱日石エネルギー株式会社 分離プロセスモジュール
RU2508148C1 (ru) * 2012-10-10 2014-02-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Воронежский государственный университет инженерных технологий" (ФГБОУ ВПО "ВГУИТ") Способ автоматического управления установкой для получения спирта с использованием теплового насоса

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60206401A (ja) * 1984-03-30 1985-10-18 Daido Steel Co Ltd 蒸溜装置
JP2009136713A (ja) * 2007-12-03 2009-06-25 Stella Chemifa Corp 蒸留方法
JP2011196610A (ja) * 2010-03-19 2011-10-06 Panasonic Corp 冷凍サイクル装置

Also Published As

Publication number Publication date
JP2015221411A (ja) 2015-12-10
RU2657901C1 (ru) 2018-06-18
JP6194280B2 (ja) 2017-09-06
SA516380144B1 (ar) 2020-10-25
CN106232197B (zh) 2018-09-25
CN106232197A (zh) 2016-12-14
US20170036138A1 (en) 2017-02-09
US10272358B2 (en) 2019-04-30

Similar Documents

Publication Publication Date Title
JP6194280B2 (ja) 蒸留装置
KR102360509B1 (ko) 열 에너지 회수 장치
KR101789873B1 (ko) 에너지 회수 장치 및 압축 장치 및 에너지 회수 방법
CN108699999B (zh) 排热回收装置以及双循环发电装置
KR101708109B1 (ko) 폐열 회수 장치 및 폐열 회수 방법
JP6297377B2 (ja) 吸収ヒートポンプ
US9321011B2 (en) Ethanol/water vapor permeation membrane separation process with heat and energy recovery via temperature and flow control
JP6335859B2 (ja) 熱エネルギー回収システム
JP2009236483A (ja) Co2冷媒を用いた給湯装置及びその運転方法
JP2008088892A (ja) 非共沸混合媒体サイクルシステム
JP5672977B2 (ja) ヒートポンプ及びその制御方法
JP6190330B2 (ja) 熱エネルギー回収装置
JP6158149B2 (ja) 蒸留装置
JP6647922B2 (ja) 熱エネルギー回収装置及びその起動方法
JP3003554B2 (ja) 吸収式ヒートポンプ
JP2014115030A (ja) ヒートポンプ給湯機
JP6379633B2 (ja) エンジン駆動式空気調和機
JP2019183649A (ja) 熱エネルギー回収装置
JP2013234790A (ja) 給水加温システム
JP2003329329A (ja) 三重効用吸収式冷凍機
JP2019100263A (ja) 熱エネルギー回収装置
JP2011190948A (ja) 冷凍サイクル装置および冷凍サイクル装置の制御方法
JP5387386B2 (ja) ヒートポンプ及びその制御方法
JP2005164161A (ja) 吸収式冷凍機及び吸収冷凍機の再生器内の溶液レベル制御方法
JP2013210119A (ja) 給水加温システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15796678

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15303454

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016144772

Country of ref document: RU

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 15796678

Country of ref document: EP

Kind code of ref document: A1