WO2015174230A1 - 光学系、光学装置、光学系の製造方法 - Google Patents

光学系、光学装置、光学系の製造方法 Download PDF

Info

Publication number
WO2015174230A1
WO2015174230A1 PCT/JP2015/062243 JP2015062243W WO2015174230A1 WO 2015174230 A1 WO2015174230 A1 WO 2015174230A1 JP 2015062243 W JP2015062243 W JP 2015062243W WO 2015174230 A1 WO2015174230 A1 WO 2015174230A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens group
lens
optical system
object side
refractive power
Prior art date
Application number
PCT/JP2015/062243
Other languages
English (en)
French (fr)
Inventor
俊典 武
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2014099622A external-priority patent/JP6531351B2/ja
Priority claimed from JP2014099621A external-priority patent/JP6492416B2/ja
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Publication of WO2015174230A1 publication Critical patent/WO2015174230A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/02Telephoto objectives, i.e. systems of the type + - in which the distance from the front vertex to the image plane is less than the equivalent focal length

Definitions

  • the present invention relates to an optical system, an optical apparatus, and an optical system manufacturing method.
  • the conventional optical system having a small angle of view and a relatively small F-number as described above has a problem that it has not been sufficiently reduced in size and performance.
  • the present invention has been made in view of the above problems, and aims to provide an optical system, an optical device, and an optical system manufacturing method that are small in size and have excellent optical performance by correcting various aberrations. To do.
  • the first aspect of the present invention is: In order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a third lens group having a positive refractive power,
  • the first lens group includes a 1a lens group and a 1b lens group in order from the object side, An air space between the first lens group and the first lens group is the largest of the air spaces in the first lens group;
  • An optical system characterized by satisfying the following conditional expression is provided.
  • f focal length of the optical system
  • fF combined focal length TL1a of the first lens group and the second lens group: distance from the most object-side lens surface to the image-side lens surface in the 1a lens group
  • TL distance from the lens surface closest to the object side to the image plane in the optical system
  • the second aspect of the present invention is An optical apparatus having the optical system according to the first aspect of the present invention is provided.
  • the third aspect of the present invention is: A method of manufacturing an optical system having, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a third lens group having a positive refractive power.
  • the first lens group includes a 1a lens group and a 1b lens group in order from the object side, An air gap between the first lens group and the first lens group is the largest of the air gaps in the first lens group;
  • Provided is a method for manufacturing an optical system, characterized in that the optical system satisfies the following conditional expression.
  • f focal length of the optical system
  • fF combined focal length TL1a of the first lens group and the second lens group: distance from the most object-side lens surface to the image-side lens surface in the 1a lens group
  • TL distance from the lens surface closest to the object side to the image plane in the optical system
  • the fourth aspect of the present invention is In order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a third lens group having a positive refractive power,
  • the first lens group includes a 1a lens group and a 1b lens group in order from the object side, An air space between the first lens group and the first lens group is the largest of the air spaces in the first lens group;
  • a part of the third lens group moves as a shift lens group so as to include a component in a direction orthogonal to the optical axis;
  • the third lens group has at least one lens closer to the image side than the shift lens group;
  • An optical system characterized by satisfying the following conditional expression is provided.
  • the fifth aspect of the present invention is An optical apparatus comprising the optical system according to the fourth aspect of the present invention is provided.
  • the sixth aspect of the present invention is A method of manufacturing an optical system having, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a third lens group having a positive refractive power.
  • the first lens group includes a 1a lens group and a 1b lens group in order from the object side, An air gap between the first lens group and the first lens group is the largest of the air gaps in the first lens group; A part of the third lens group moves as a shift lens group so as to include a component in a direction orthogonal to the optical axis; The third lens group has at least one lens closer to the image side than the shift lens group; Provided is a method for manufacturing an optical system, characterized in that the optical system satisfies the following conditional expression.
  • an optical system an optical apparatus, and a method for manufacturing the optical system that are small in size, correct various aberrations, and have excellent optical performance.
  • FIG. 1 is a sectional view showing a lens arrangement at the time of focusing on an object at infinity of an optical system according to a first example common to the first and second embodiments of the present application.
  • 2A and 2B are graphs showing various aberrations when the optical system according to the first example of the present application is focused on an object at infinity and focused on a short distance object, respectively.
  • FIG. 3 is a coma aberration diagram when the lens is shifted during focusing on an object at infinity of the optical system according to the first example of the present application.
  • FIG. 4 is a cross-sectional view showing a lens arrangement at the time of focusing on an object at infinity of an optical system according to a second example common to the first and second embodiments of the present application.
  • FIG. 5A and 5B are graphs showing various aberrations when the optical system according to Example 2 of the present application is focused on an object at infinity and focused on a short distance object, respectively.
  • FIG. 6 is a coma aberration diagram when the lens is shifted at the time of focusing on an object at infinity of the optical system according to the second example of the present application.
  • FIG. 7 is a cross-sectional view showing a lens arrangement at the time of focusing on an object at infinity of an optical system according to a third example common to the first and second embodiments of the present application.
  • 8A and 8B are graphs showing various aberrations when the optical system according to Example 3 of the present application is focused on an object at infinity and focused on a short distance object, respectively.
  • FIG. 9 is a coma aberration diagram when the lens is shifted during focusing on an object at infinity of the optical system according to the third example of the present application.
  • FIG. 10 is a cross-sectional view showing a lens arrangement at the time of focusing on an object at infinity of an optical system according to a fourth example common to the first and second embodiments of the present application.
  • 11A and 11B are graphs showing various aberrations when the optical system according to Example 4 of the present application is focused on an object at infinity and focused on a short distance object, respectively.
  • FIG. 12 is a coma aberration diagram when the lens is shifted at the time of focusing on an object at infinity of the optical system according to the fourth example of the present application.
  • FIG. 10 is a cross-sectional view showing a lens arrangement at the time of focusing on an object at infinity of an optical system according to a fourth example common to the first and second embodiments of the present application.
  • 11A and 11B are graphs showing various aberrations
  • FIG. 13 is a diagram illustrating a configuration of a camera including the optical system according to the first and second embodiments of the present application.
  • FIG. 14 is a diagram showing an outline of the manufacturing method of the optical system according to the first embodiment of the present application.
  • FIG. 15 is a diagram showing an outline of a method for manufacturing an optical system according to the second embodiment of the present application.
  • the optical system according to the first embodiment of the present application includes, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a third lens having a positive refractive power.
  • the first lens group includes a 1a lens group and a 1b lens group in order from the object side, and an air interval between the 1a lens group and the 1b lens group is It is the largest air space in the first lens group, and satisfies the following conditional expressions (1-1) and (1-2).
  • f focal length of the optical system
  • fF combined focal length TL1a of the first lens group and the second lens group: light from the most object side lens surface to the most image side lens surface in the 1a lens group
  • the optical system according to the first embodiment of the present application includes, in order from the object side, the first lens group having a positive refractive power, the second lens group having a negative refractive power, and the positive refractive power.
  • a third lens group, and the first lens group includes, in order from the object side, a 1a lens group and a 1b lens group, and the first a lens group and the 1b lens group
  • the air interval is the largest among the air intervals in the first lens group.
  • Conditional expression (1-1) is an appropriate ratio of the focal length of the entire optical system according to the first embodiment of the present application and the combined focal length of the first lens group and the second lens group at the time of focusing on an object at infinity. Range is specified.
  • conditional expression (1-1) the optical system according to the first embodiment of the present application can satisfactorily correct coma and lateral chromatic aberration while achieving downsizing, and obtain excellent imaging performance. Can do.
  • the refractive powers of the first lens group and the second lens group become relatively large.
  • a large amount of coma aberration occurs between the first lens group and the second lens group, which is not preferable.
  • conditional expression (1-1) of the optical system according to the first embodiment of the present application when the corresponding value of the conditional expression (1-1) of the optical system according to the first embodiment of the present application is below the lower limit value, the refractive powers of the first lens group and the second lens group become relatively small. As a result, the lateral chromatic aberration generated in the first lens group and the second lens group cannot be sufficiently corrected, which is not preferable. In order to secure the effect of the present application, it is more preferable to set the lower limit value of conditional expression (1-1) to 0.001.
  • Conditional expression (1-2) defines an appropriate range of the ratio between the length along the optical axis of the 1a lens group and the total length of the optical system.
  • the lens weight increases. Therefore, in order to reduce the weight of the optical system according to the first embodiment of the present application, for example, when a glass material having a small refractive index is used for the negative lens in the first lens group, the curvature of field that occurs in the first lens group alone is reduced. This is not preferable because it cannot be corrected sufficiently.
  • the corresponding value of the conditional expression (1-2) of the optical system according to the first embodiment of the present application is lower than the lower limit value, it is not preferable because coma aberration occurs greatly in the first lens unit alone.
  • the optical system according to the first embodiment of the present application satisfies the following conditional expression (1-3).
  • f1a focal length of the 1a lens group
  • f1b focal length of the 1b lens group
  • Conditional expression (1-3) defines an appropriate range of the focal length ratio of the 1a lens group and the 1b lens group.
  • the optical system according to the first embodiment of the present application satisfactorily corrects the spherical aberration and the coma generated in the lens unit 1a by satisfying the conditional expression (1-3). Variation can be suppressed. Thereby, the optical system according to the first embodiment of the present application can suppress a decrease in optical performance during focusing while further improving performance.
  • the refractive power of the 1a lens group becomes relatively small, and the 1a lens group alone is generated. Spherical aberration and coma aberration cannot be corrected sufficiently.
  • the refractive power of the first-b lens group becomes relatively large and it becomes impossible to suppress the variation of spherical aberration at the time of focusing, it becomes impossible to obtain high optical performance.
  • conditional expression (1-3) of the optical system according to the first embodiment of the present application when the corresponding value of the conditional expression (1-3) of the optical system according to the first embodiment of the present application is below the lower limit value, the refractive power of the 1a lens group becomes relatively large, and the 1a lens group alone A large amount of spherical aberration and coma occur.
  • the optical system according to the first embodiment of the present application satisfies the following conditional expression (1-4). (1-4) ⁇ 3.75 ⁇ f1 / f2 ⁇ 3.25
  • f1 Focal length of the first lens group
  • f2 Focal length of the second lens group
  • Conditional expression (1-4) defines an appropriate range of the focal length ratio between the first lens group and the second lens group.
  • the refractive power of the first lens group becomes relatively small. For this reason, the total length of the optical system according to the first embodiment of the present application is increased. Further, the refractive power of the second lens group becomes relatively large. For this reason, fluctuations in coma cannot be suppressed during focusing, and high optical performance cannot be obtained.
  • the refractive power of the first lens group becomes relatively large, and the first lens group alone A large amount of spherical aberration occurs. Further, the refractive power of the second lens group becomes relatively small. For this reason, the amount of movement of the second lens group at the time of focusing becomes large.
  • the most image-side lens in the 1a lens group is a negative lens.
  • the first lens group in order to balance further performance enhancement and performance fluctuation at the time of focusing, is arranged in order from the object side, the first a lens group, and the first lens. It is desirable to have a 1b lens group having the largest air gap in the group separated from the 1a lens group.
  • the first-a lens group is configured from the most object-side lens in the first lens group to the negative lens disposed on the most object-side in the first lens group, thereby minimizing performance degradation. It is possible.
  • the negative lens arranged closest to the object side means a negative lens excluding the protective filter glass that is arranged closest to the object side.
  • the first lens group has at least one positive lens that satisfies the following conditional expression (1-5).
  • (1-5) 90 ⁇ dp
  • ⁇ dp Abbe number with respect to d-line (wavelength 587.6 nm) of the glass material of the at least one positive lens in the 1a lens group
  • Conditional expression (1-5) defines the Abbe number of the glass material of the positive lens in the 1a lens group.
  • the optical system according to the first embodiment of the present application can suppress occurrence of longitudinal chromatic aberration and lateral chromatic aberration in the first lens unit alone by satisfying conditional expression (1-5).
  • conditional expression (1-5) of the optical system according to the first embodiment of the present application When the corresponding value of the conditional expression (1-5) of the optical system according to the first embodiment of the present application is below the lower limit value, axial chromatic aberration and lateral chromatic aberration occur in the first lens unit alone, and optical performance deteriorates. Therefore, it is not preferable. In order to secure the effect of the present application, it is more preferable to set the lower limit value of conditional expression (1-5) to 93.
  • the first b lens group may include a cemented lens of a negative meniscus lens having a convex surface facing the object side and a positive lens in order from the object side. desirable.
  • the second lens group includes, in order from the object side, a negative lens having a concave surface facing the image side, and a cemented lens of a positive lens and a negative lens. It is desirable that With this configuration, coma aberration can be favorably corrected in the second lens group, and degradation in optical performance during focusing can be suppressed while further improving the performance of the optical system according to the first embodiment of the present application.
  • the first lens group has a protective filter glass on the most object side.
  • the protective filter glass is a lens having substantially no refractive power, and the focal length thereof is preferably 10 times or more the focal length of the optical system according to the first embodiment of the present application.
  • the optical system according to the first embodiment of the present application preferably has a negative meniscus shape in which the protective filter glass has a convex surface facing the object side. With this configuration, the ghost can be cut well.
  • it is desirable that the first lens group has a positive refractive power.
  • the first b lens group has a positive refractive power.
  • the optical apparatus according to the present application includes the optical system according to the first embodiment having the above-described configuration. As a result, it is possible to realize an optical device that is compact and has excellent optical performance by satisfactorily correcting various aberrations.
  • the optical system manufacturing method has, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a positive refractive power.
  • the air space between the first lens group and the first lens group is made the largest among the air spaces in the first lens group, and the optical system satisfies the following conditional expressions (1-1) and (1-2): It is characterized by doing so.
  • the optical system according to the second embodiment of the present application includes, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a third lens having a positive refractive power.
  • the first lens group includes a 1a lens group and a 1b lens group in order from the object side, and an air interval between the 1a lens group and the 1b lens group is
  • the third lens group is the largest of the air intervals in the first lens group, and a part of the third lens group moves as a shift lens group so as to include a component in a direction orthogonal to the optical axis, and the third lens group Further, it has at least one lens on the image side of the shift lens group, and satisfies the following conditional expressions (2-1) and (2-2).
  • the optical system according to the second embodiment of the present application has, in order from the object side, the first lens group having a positive refractive power, the second lens group having a negative refractive power, and the positive refractive power.
  • a third lens group, and the first lens group includes, in order from the object side, a 1a lens group and a 1b lens group, and the first a lens group and the 1b lens group
  • the air interval is the largest among the air intervals in the first lens group.
  • the optical system according to the second embodiment of the present application moves, that is, shifts the lens, so that a part of the third lens group includes a component in a direction orthogonal to the optical axis as a shift lens group.
  • Conditional expression (2-1) defines an appropriate range of the so-called blur coefficient, which is the amount of movement in the direction perpendicular to the optical axis of the image with respect to the amount of movement of the shift lens group in the direction perpendicular to the optical axis. It is.
  • conditional expression (2-1) the optical system according to the second embodiment of the present application can satisfactorily correct coma aberration while miniaturizing, and suppress deterioration in optical performance during lens shift. Can do.
  • Conditional expression (2-2) defines an appropriate range of the ratio between the length along the optical axis of the 1a lens group and the total length of the optical system.
  • the lens weight increases. Accordingly, in order to reduce the weight of the optical system according to the second embodiment of the present application, for example, when a glass material having a small refractive index is used for the negative lens in the first lens group, the curvature of field that occurs in the first lens group alone is reduced. This is not preferable because it cannot be corrected sufficiently. In order to secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (2-2) to 0.40. In order to secure the effect of the present application, it is more preferable to set the upper limit value of conditional expression (2-2) to 0.36.
  • conditional expression (2-2) of the optical system according to the second embodiment of the present application is lower than the lower limit value, it is not preferable because coma aberration occurs greatly in the first lens unit alone.
  • the shift lens group includes a positive lens, a negative lens, and a positive lens in order from the object side.
  • spherical aberration can be corrected well in the shift lens group, and spherical aberration can be corrected well in the entire third lens group.
  • the optical system according to the second embodiment of the present application can more effectively suppress a decrease in optical performance during lens shift while further improving performance.
  • the optical system according to the second embodiment of the present application satisfies the following conditional expression (2-3). (2-3) 0.00 ⁇
  • f focal length of the optical system
  • fF combined focal length of the first lens group and the second lens group
  • Conditional expression (2-3) is an appropriate ratio of the focal length of the entire optical system according to the second embodiment of the present application and the combined focal length of the first lens group and the second lens group at the time of focusing on an object at infinity. Range is specified.
  • conditional expression (2-3) the optical system according to the second embodiment of the present application can satisfactorily correct coma and lateral chromatic aberration while achieving downsizing, and obtain excellent imaging performance. Can do.
  • the refractive powers of the first lens group and the second lens group become relatively large.
  • a large amount of coma aberration occurs between the first lens group and the second lens group, which is not preferable.
  • the corresponding value of the conditional expression (2-3) of the optical system according to the second embodiment of the present application is below the lower limit value, the refractive powers of the first lens group and the second lens group become relatively small. As a result, the lateral chromatic aberration generated in the first lens group and the second lens group cannot be sufficiently corrected, which is not preferable. In order to secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (2-3) to 0.001.
  • the optical system according to the second embodiment of the present application satisfies the following conditional expression (2-4).
  • f1a focal length of the 1a lens group
  • f1b focal length of the 1b lens group
  • Conditional expression (2-4) defines an appropriate range of the focal length ratio of the 1a lens group and the 1b lens group.
  • the optical system according to the second embodiment of the present application satisfactorily corrects the spherical aberration and the coma generated in the lens unit 1a alone by satisfying conditional expression (2-4), and the spherical aberration at the time of focusing. Variation can be suppressed. Thereby, the optical system according to the second embodiment of the present application can suppress a decrease in optical performance during focusing while further improving performance.
  • conditional expression (2-4) of the optical system according to the second embodiment of the present application exceeds the upper limit value, the refractive power of the 1a lens group becomes relatively small, and the 1a lens group alone is generated. Spherical aberration and coma aberration cannot be corrected sufficiently.
  • the refractive power of the first-b lens group becomes relatively large and it becomes impossible to suppress the variation of spherical aberration at the time of focusing, it becomes impossible to obtain high optical performance.
  • conditional expression (2-4) of the optical system according to the second embodiment of the present application when the corresponding value of the conditional expression (2-4) of the optical system according to the second embodiment of the present application is less than the lower limit value, the refractive power of the 1a lens group becomes relatively large, and the 1a lens group alone A large amount of spherical aberration and coma occur.
  • the most image-side lens in the first-a lens group is a negative lens.
  • the first lens group is arranged in order from the object side, the first a lens group, and the first lens. It is desirable to have a 1b lens group having the largest air gap in the group separated from the 1a lens group.
  • the first-a lens group is configured from the most object-side lens in the first lens group to the negative lens disposed on the most object-side in the first lens group, thereby minimizing performance degradation. It is possible.
  • the negative lens arranged closest to the object side means a negative lens excluding the protective filter glass that is arranged closest to the object side.
  • the first-a lens group includes at least one positive lens that satisfies the following conditional expression (2-5).
  • (2-5) 90 ⁇ dp
  • ⁇ dp Abbe number with respect to d-line (wavelength 587.6 nm) of the glass material of the at least one positive lens in the 1a lens group
  • Conditional expression (2-5) defines the Abbe number of the glass material of the positive lens in the 1a lens group.
  • conditional expression (2-5) of the optical system according to the second embodiment of the present application When the corresponding value of the conditional expression (2-5) of the optical system according to the second embodiment of the present application is below the lower limit value, axial chromatic aberration and lateral chromatic aberration occur in the first lens unit alone, and optical performance deteriorates. Therefore, it is not preferable. In order to secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (2-5) to 93.
  • the second lens group includes, in order from the object side, a negative lens having a concave surface facing the image side, and a cemented lens of a positive lens and a negative lens. It is desirable that With this configuration, coma aberration can be favorably corrected in the second lens group, and degradation in optical performance during focusing can be suppressed while further improving the performance of the optical system according to the second embodiment of the present application.
  • the first lens group has a protective filter glass on the most object side.
  • the protective filter glass is a lens having substantially no refractive power, and the focal length thereof is preferably 10 times or more the focal length of the optical system according to the second embodiment of the present application.
  • the optical system according to the second embodiment of the present application preferably has a negative meniscus shape in which the protective filter glass has a convex surface facing the object side. With this configuration, the ghost can be cut well.
  • the first lens group has a positive refractive power.
  • it is desirable that the first b lens group has a positive refractive power.
  • the optical apparatus according to the present application includes the optical system according to the second embodiment having the above-described configuration. As a result, it is possible to realize an optical device that is compact and has excellent optical performance by satisfactorily correcting various aberrations.
  • the optical system manufacturing method has, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a positive refractive power.
  • the third lens group has at least one lens closer to the image side than the shift lens group, and the optical system has the following conditional expressions (2-1), (2 -2) is satisfied.
  • the optical system has the following conditional expressions (2-1), (2 -2) is satisfied.
  • FIG. 1 is a sectional view showing a lens arrangement at the time of focusing on an object at infinity of an optical system according to a first example common to the first and second embodiments of the present application.
  • the optical system according to this example includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a third lens group having a positive refractive power. And G3.
  • An aperture stop S is provided between the second lens group G2 and the third lens group G3, and a filter FL is provided between the third lens group G3 and the image plane I.
  • the first lens group G1 includes, in order from the object side, a first a lens group G1a having a positive refractive power and a first b lens group G1b having a positive refractive power.
  • the first-a lens group G1a includes, in order from the object side, a protective filter glass FLG, a biconvex positive lens L11, a biconvex positive lens L12, and a biconcave negative lens L13.
  • the protective filter glass FLG has a negative meniscus shape with a convex surface facing the object side, and has substantially no refractive power.
  • the first-b lens group G1b includes, in order from the object side, a cemented lens of a negative meniscus lens L14 having a convex surface facing the object side and a positive meniscus lens L15 having a convex surface facing the object side.
  • the second lens group G2 includes, in order from the object side, a biconcave negative lens L21, and a cemented lens of a positive meniscus lens L22 having a concave surface facing the object side and a biconcave negative lens L23.
  • the third lens group G3 has, in order from the object side, a biconvex positive lens L31, a negative meniscus lens L32 having a concave surface facing the object side, a biconvex positive lens L33, and a convex surface facing the object side. It consists of a cemented lens of a negative meniscus lens L34 and a biconvex positive lens L35, and a biconcave negative lens L36.
  • the second lens group G2 is moved to the image side along the optical axis, thereby focusing from an object at infinity to a near object.
  • the position of the aperture stop S is fixed.
  • the positive lens L31, the negative meniscus lens L32, and the positive lens L33 in the third lens group G3 are used as shift lens groups, that is, anti-vibration lens groups, so as to include components in a direction orthogonal to the optical axis. Anti-vibration is achieved by shifting.
  • an image sensor (not shown) constituted by a CCD, a CMOS, or the like is disposed. The same applies to each embodiment described later.
  • Table 1 below lists values of specifications of the optical system according to the present example.
  • f indicates the focal length
  • Bf indicates the back focus, that is, the distance on the optical axis between the filter FL and the image plane I.
  • m is the order of the optical surfaces counted from the object side
  • r is the radius of curvature
  • d is the surface interval (the interval between the nth surface (n is an integer) and the (n + 1) th surface)
  • nd is d.
  • the refractive index for the line (wavelength 587.6 nm) and ⁇ d indicate the Abbe number for the d line (wavelength 587.6 nm), respectively.
  • OP represents the object plane
  • variable represents the variable surface interval
  • S represents the aperture stop S
  • I represents the image plane I.
  • FNO is the F number
  • 2 ⁇ is the angle of view (unit is “°”)
  • Y is the image height
  • TL is the total length of the optical system according to the present embodiment, that is, from the first surface to the image surface I.
  • a distance on the optical axis, dn indicates a variable distance between the nth surface and the (n + 1) th surface.
  • D0 represents the distance from the object to the first surface.
  • indicates a photographing magnification, and the photographing magnification when focusing on a short-distance object is about ⁇ 1/30 times.
  • [Lens Group Data] indicates the start surface ST and focal length f of each lens group.
  • [Conditional Expression Corresponding Value] indicates the corresponding value of each conditional expression of the optical system according to the present example.
  • the focal length f, the radius of curvature r, and other length units listed in Table 1 are generally “mm”.
  • the optical system is not limited to this because an equivalent optical performance can be obtained even when proportionally enlarged or proportionally reduced.
  • symbol of Table 1 described above shall be similarly used also in the table
  • FIG. 3 is a coma aberration diagram when the lens is shifted at the time of focusing on an object at infinity of the optical system according to the first example of the present application.
  • the shift amount in the direction orthogonal to the optical axis of the shift lens group in FIG. 3 is 1.70 mm.
  • FNO represents an F number
  • NA represents a numerical aperture
  • Y represents an image height
  • d indicates the aberration at the d-line (wavelength 587.6 nm)
  • g indicates the aberration at the g-line (wavelength 435.8 nm).
  • the solid line indicates the sagittal image plane
  • the broken line indicates the meridional image plane.
  • the coma aberration diagram shows coma aberration at each image height Y. Note that the same reference numerals as in this embodiment are used in the aberration diagrams of each embodiment described later.
  • the optical system according to the present embodiment has excellent imaging performance by correcting various aberrations well when focusing on an object at infinity and focusing on a short distance object, and also excellent at the time of lens shift. It can be seen that the imaging performance is excellent.
  • FIG. 4 is a cross-sectional view showing a lens arrangement at the time of focusing on an object at infinity of an optical system according to a second example common to the first and second embodiments of the present application.
  • the optical system according to this example includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a third lens group having a positive refractive power. And G3.
  • An aperture stop S is provided between the second lens group G2 and the third lens group G3, and a filter FL is provided between the third lens group G3 and the image plane I.
  • the first lens group G1 includes, in order from the object side, a first a lens group G1a having a positive refractive power and a first b lens group G1b having a positive refractive power.
  • the first-a lens group G1a includes, in order from the object side, a protective filter glass FLG, a biconvex positive lens L11, a biconvex positive lens L12, and a biconcave negative lens L13.
  • the protective filter glass FLG has a negative meniscus shape with a convex surface facing the object side, and has substantially no refractive power.
  • the first-b lens group G1b includes, in order from the object side, a cemented lens of a negative meniscus lens L14 having a convex surface facing the object side and a positive meniscus lens L15 having a convex surface facing the object side.
  • the second lens group G2 includes, in order from the object side, a biconcave negative lens L21, and a cemented lens of a positive meniscus lens L22 having a concave surface facing the object side and a biconcave negative lens L23.
  • the third lens group G3 has, in order from the object side, a biconvex positive lens L31, a negative meniscus lens L32 having a concave surface facing the object side, a biconvex positive lens L33, and a convex surface facing the object side. It consists of a cemented lens of a negative meniscus lens L34 and a biconvex positive lens L35, and a biconcave negative lens L36.
  • the second lens group G2 is moved to the image side along the optical axis, thereby focusing from an object at infinity to a near object.
  • the position of the aperture stop S is fixed.
  • the positive lens L31, the negative meniscus lens L32, and the positive lens L33 in the third lens group G3 are shifted as a shift lens group so as to include a component in a direction orthogonal to the optical axis.
  • Table 2 below lists values of specifications of the optical system according to the present example.
  • FIGS. 5A and 5B are graphs showing various aberrations when the optical system according to Example 2 of the present application is focused on an object at infinity and focused on a short distance object, respectively.
  • FIG. 6 is a coma aberration diagram when the lens is shifted at the time of focusing on an object at infinity of the optical system according to the second example of the present application.
  • the shift amount in the direction orthogonal to the optical axis of the shift lens group in FIG. 6 is 1.60 mm.
  • the optical system according to the present embodiment has excellent imaging performance by correcting various aberrations well when focusing on an object at infinity and focusing on a short distance object, and also excellent at the time of lens shift. It can be seen that the imaging performance is excellent.
  • FIG. 7 is a cross-sectional view showing a lens arrangement at the time of focusing on an object at infinity of an optical system according to a third example common to the first and second embodiments of the present application.
  • the optical system according to this example includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a third lens group having a positive refractive power. And G3.
  • An aperture stop S is provided between the second lens group G2 and the third lens group G3, and a filter FL is provided between the third lens group G3 and the image plane I.
  • the first lens group G1 includes, in order from the object side, a first a lens group G1a having a positive refractive power and a first b lens group G1b having a positive refractive power.
  • the first-a lens group G1a includes, in order from the object side, a protective filter glass FLG, a biconvex positive lens L11, a biconvex positive lens L12, and a biconcave negative lens L13.
  • the protective filter glass FLG has a negative meniscus shape with a convex surface facing the object side, and has substantially no refractive power.
  • the first-b lens group G1b includes, in order from the object side, a cemented lens of a negative meniscus lens L14 having a convex surface facing the object side and a positive meniscus lens L15 having a convex surface facing the object side.
  • the second lens group G2 includes, in order from the object side, a biconcave negative lens L21, and a cemented lens of a positive meniscus lens L22 having a concave surface facing the object side and a biconcave negative lens L23.
  • the third lens group G3 has, in order from the object side, a biconvex positive lens L31, a negative meniscus lens L32 having a concave surface facing the object side, a biconvex positive lens L33, and a convex surface facing the object side. It consists of a cemented lens of a negative meniscus lens L34 and a biconvex positive lens L35, and a biconcave negative lens L36.
  • the second lens group G2 is moved to the image side along the optical axis, thereby focusing from an object at infinity to a near object.
  • the position of the aperture stop S is fixed.
  • the positive lens L31, the negative meniscus lens L32, and the positive lens L33 in the third lens group G3 are shifted as a shift lens group so as to include a component in a direction orthogonal to the optical axis.
  • Table 3 below lists values of specifications of the optical system according to the present example.
  • FIG. 8A and 8B are graphs showing various aberrations when the optical system according to Example 3 of the present application is focused on an object at infinity and focused on a short distance object, respectively.
  • FIG. 9 is a coma aberration diagram when the lens is shifted at the time of focusing on an object at infinity of the optical system according to the third example of the present application.
  • the shift amount in the direction orthogonal to the optical axis of the shift lens group in FIG. 9 is 1.60 mm.
  • the optical system according to the present embodiment has excellent imaging performance by correcting various aberrations well when focusing on an object at infinity and focusing on a short distance object, and also excellent at the time of lens shift. It can be seen that the imaging performance is excellent.
  • FIG. 10 is a cross-sectional view showing a lens arrangement at the time of focusing on an object at infinity of an optical system according to a fourth example common to the first and second embodiments of the present application.
  • the optical system according to this example includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a third lens group having a positive refractive power. And G3.
  • An aperture stop S is provided between the second lens group G2 and the third lens group G3, and a filter FL is provided between the third lens group G3 and the image plane I.
  • the first lens group G1 includes, in order from the object side, a first a lens group G1a having a positive refractive power and a first b lens group G1b having a positive refractive power.
  • the first-a lens group G1a includes, in order from the object side, a protective filter glass FLG, a biconvex positive lens L11, a biconvex positive lens L12, and a biconcave negative lens L13.
  • the protective filter glass FLG has a negative meniscus shape with a convex surface facing the object side, and has substantially no refractive power.
  • the first-b lens group G1b includes, in order from the object side, a cemented lens of a negative meniscus lens L14 having a convex surface facing the object side and a positive meniscus lens L15 having a convex surface facing the object side.
  • the second lens group G2 includes, in order from the object side, a biconcave negative lens L21, and a cemented lens of a positive meniscus lens L22 having a concave surface facing the object side and a biconcave negative lens L23.
  • the third lens group G3 has, in order from the object side, a biconvex positive lens L31, a negative meniscus lens L32 having a concave surface facing the object side, a biconvex positive lens L33, and a convex surface facing the object side. It consists of a cemented lens of a negative meniscus lens L34 and a biconvex positive lens L35, and a biconcave negative lens L36.
  • the second lens group G2 is moved to the image side along the optical axis, thereby focusing from an object at infinity to a near object.
  • the position of the aperture stop S is fixed.
  • the positive lens L31, the negative meniscus lens L32, and the positive lens L33 in the third lens group G3 are shifted as a shift lens group so as to include a component in a direction orthogonal to the optical axis.
  • Table 4 below lists values of specifications of the optical system according to the present example.
  • FIG. 11A and 11B are graphs showing various aberrations when the optical system according to Example 4 of the present application is focused on an object at infinity and focused on a short distance object, respectively.
  • FIG. 12 is a coma aberration diagram when the lens is shifted at the time of focusing on an object at infinity of the optical system according to the fourth example of the present application.
  • the shift amount in the direction orthogonal to the optical axis of the shift lens group in FIG. 12 is 1.60 mm. From each aberration diagram, the optical system according to the present embodiment has excellent imaging performance by correcting various aberrations well when focusing on an object at infinity and focusing on a short distance object, and also excellent at the time of lens shift. It can be seen that the imaging performance is excellent.
  • each of the above embodiments it is possible to realize an optical system having an angle of view of about 6 degrees, small and light, excellently correcting various aberrations and having excellent optical performance.
  • the optical system according to each of the above embodiments is downsized, the size of the lens barrel does not increase and the weight does not increase.
  • each said Example has shown one specific example of this invention, and this invention is not limited to these. The following contents can be appropriately adopted as long as the optical performance of the optical system according to the first and second embodiments of the present application is not impaired.
  • optical system can also be configured. Specifically, a configuration in which a lens or a lens group is added to the most object side or the most image side of the optical system according to the first and second embodiments of the present application may be used.
  • the optical system according to each of the above embodiments includes the protective filter glass on the most object side in the first lens group, the optical system may be configured without this.
  • the optical system according to the first and second embodiments of the present application is a part of a lens group, an entire lens group, or a plurality of lens groups in order to perform focusing from an object at infinity to an object at a short distance.
  • the focusing lens group may be moved in the optical axis direction.
  • Such a focusing lens group can be applied to autofocus, and is also suitable for driving by an autofocus motor such as an ultrasonic motor.
  • either the entire lens group or a part thereof is moved as a vibration-proof lens group so as to include a component in a direction perpendicular to the optical axis.
  • it can also be configured to perform vibration isolation by rotating (swinging) in the in-plane direction including the optical axis.
  • at least a part of the third lens group is an anti-vibration lens group.
  • the lens surface of the lens constituting the optical system according to the first and second embodiments of the present application may be a spherical surface, a flat surface, or an aspherical surface.
  • the lens surface is a spherical surface or a flat surface, it is preferable because lens processing and assembly adjustment are easy, and deterioration of optical performance due to errors in lens processing and assembly adjustment can be prevented. Further, even when the image plane is deviated, it is preferable because there is little deterioration in drawing performance.
  • the lens surface is aspherical, any of aspherical surface by grinding, glass mold aspherical surface in which glass is molded into an aspherical shape, or composite aspherical surface in which resin provided on the glass surface is formed in an aspherical shape Good.
  • the lens surface may be a diffractive surface, and the lens may be a gradient index lens (GRIN lens) or a plastic lens.
  • GRIN lens gradient index lens
  • the aperture stop be disposed in the vicinity of the object side of the third lens group. It is good also as a structure to substitute.
  • an antireflection film having a high transmittance in a wide wavelength region may be applied to the lens surfaces of the lenses constituting the optical systems according to the first and second embodiments of the present application. Thereby, flare and ghost can be reduced, and high optical performance with high contrast can be achieved.
  • FIG. 13 is a diagram illustrating a configuration of a camera including the optical system according to the first and second embodiments of the present application.
  • the camera 1 is a lens-interchangeable digital single-lens reflex camera provided with the optical system according to the first embodiment as the photographing lens 2.
  • light from an object (not shown) that is a subject is collected by the photographing lens 2 and imaged on the focusing screen 4 via the quick return mirror 3.
  • the light imaged on the focusing screen 4 is reflected in the pentaprism 5 a plurality of times and guided to the eyepiece lens 6.
  • the photographer can observe the subject image as an erect image through the eyepiece 6.
  • the quick return mirror 3 is retracted out of the optical path, and light from the subject (not shown) reaches the image sensor 7. Thereby, the light from the subject is picked up by the image pickup device 7 and recorded as a subject image in a memory (not shown). In this way, the photographer can shoot the subject with the camera 1.
  • the optical system according to the first example mounted on the camera 1 as the photographing lens 2 is small as described above, and has excellent optical performance by satisfactorily correcting various aberrations. That is, the camera 1 can achieve downsizing and high performance. Even if a camera having the optical system according to the second to fourth embodiments mounted as the taking lens 2 is configured, the same effect as the camera 1 can be obtained. Further, even when the optical system according to each of the above embodiments is mounted on a camera having a configuration that does not include the quick return mirror 3, the same effect as the camera 1 can be obtained.
  • FIG. 14 is a diagram showing an outline of the manufacturing method of the optical system according to the first embodiment of the present application.
  • the optical system manufacturing method according to the first embodiment of the present application shown in FIG. 14 includes, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a positive A method of manufacturing an optical system having a third lens group having refractive power, which includes the following steps S11 to S13.
  • Step S11 First to third lens groups are prepared, and the first lens group includes a 1a lens group and a 1b lens group in order from the object side. Then, each lens group is arranged in the lens barrel in order from the object side.
  • Step S12 The air interval between the 1a lens group and the 1b lens group is set to the maximum among the air intervals in the first lens group.
  • Step S13 The optical system is made to satisfy the following conditional expressions (1-1) and (1-2).
  • (1-1) 0.00 ⁇
  • f focal length of the optical system
  • fF combined focal length TL1a of the first lens group and the second lens group: distance TL from the most object side lens surface to the most image side lens surface in the 1a lens group
  • TL optical system The distance from the lens surface closest to the object to the image plane
  • FIG. 15 is a diagram showing an outline of a method for manufacturing an optical system according to the second embodiment of the present application.
  • the optical system manufacturing method according to the second embodiment of the present application shown in FIG. 15 includes, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a positive A method of manufacturing an optical system having a third lens group having refractive power, which includes the following steps S21 to S25.
  • Step S21 First to third lens groups are prepared, and the first lens group has a 1a lens group and a 1b lens group in order from the object side. Then, each lens group is arranged in the lens barrel in order from the object side.
  • Step S22 The air interval between the 1a lens group and the 1b lens group is set to the maximum among the air intervals in the first lens group.
  • Step S23 A known moving mechanism is provided in the lens barrel so that a part of the third lens group moves as a shift lens group so as to include a component in a direction orthogonal to the optical axis.
  • Step S25 The optical system is made to satisfy the following conditional expressions (2-1) and (2-2).
  • (2-1) 1.00 ⁇ r ⁇ (1- ⁇ s) ⁇ 1.50
  • (2-2) 0.16 ⁇ TL1a / TL ⁇ 0.45
  • ⁇ s lateral magnification of the shift lens group
  • ⁇ r lateral magnification of all lenses located on the image side of the shift lens group TL1a: distance from the most object-side lens surface to the most image-side lens surface in the 1a lens group TL: Distance from the lens surface closest to the object side to the image plane in the optical system

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

 物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3とを有し、第1レンズ群G1が、物体側から順に、第1aレンズ群G1aと、第1bレンズ群G1bとを有し、第1aレンズ群G1aと第1bレンズ群G1bとの空気間隔が、第1レンズ群G1中の空気間隔のうちで最大であり、所定の条件式を満足する。これにより、小型で、諸収差を良好に補正し優れた光学性能を有する光学系、光学装置及び光学系の製造方法を提供する。

Description

光学系、光学装置、光学系の製造方法
 本発明は、光学系、光学装置、光学系の製造方法に関する。
 従来、写真用カメラや電子スチルカメラ等には、画角が小さくFナンバーが比較的小さい光学系として、物体側から順に、正の屈折力を有する第1レンズ群と、開口絞りと、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群とを有するインナーフォーカス式の光学系が多く用いられている。例えば、特開2011-81064号公報を参照。
特開2011-81064号公報
 しかしながら、上述のような画角が小さくFナンバーが比較的小さい従来の光学系は、小型化と高性能化が十分に図られていないという問題があった。
 そこで本発明は上記問題点に鑑みてなされたものであり、小型で、諸収差を良好に補正し優れた光学性能を有する光学系、光学装置及び光学系の製造方法を提供することを目的とする。
 上記課題を解決するために本発明の第1態様は、
 物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群とを有し、
 前記第1レンズ群が、物体側から順に、第1aレンズ群と、第1bレンズ群とを有し、
 前記第1aレンズ群と前記第1bレンズ群との空気間隔が、前記第1レンズ群中の空気間隔のうちで最大であり、
 以下の条件式を満足することを特徴とする光学系を提供する。
0.00<|f/fF|<0.15
0.17<TL1a/TL<0.45
 ただし、
f:前記光学系の焦点距離
fF:前記第1レンズ群と前記第2レンズ群の合成焦点距離
TL1a:前記第1aレンズ群中の最も物体側のレンズ面から最も像側のレンズ面までの距離
TL:前記光学系中の最も物体側のレンズ面から像面までの距離
 また本発明の第2態様は、
 本発明の第1態様に係る光学系を有することを特徴とする光学装置を提供する。
 また本発明の第3態様は、
 物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群とを有する光学系の製造方法であって、
 前記第1レンズ群が、物体側から順に、第1aレンズ群と、第1bレンズ群とを有するようにし、
 前記第1aレンズ群と前記第1bレンズ群との空気間隔が、前記第1レンズ群中の空気間隔のうちで最大であるようにし、
 前記光学系が以下の条件式を満足するようにすることを特徴とする光学系の製造方法を提供する。
0.00<|f/fF|<0.15
0.17<TL1a/TL<0.45
 ただし、
f:前記光学系の焦点距離
fF:前記第1レンズ群と前記第2レンズ群の合成焦点距離
TL1a:前記第1aレンズ群中の最も物体側のレンズ面から最も像側のレンズ面までの距離
TL:前記光学系中の最も物体側のレンズ面から像面までの距離
 また本発明の第4態様は、
 物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群とを有し、
 前記第1レンズ群が、物体側から順に、第1aレンズ群と、第1bレンズ群とを有し、
 前記第1aレンズ群と前記第1bレンズ群との空気間隔が、前記第1レンズ群中の空気間隔のうちで最大であり、
 前記第3レンズ群の一部がシフトレンズ群として光軸と直交する方向の成分を含むように移動し、
 前記第3レンズ群が、前記シフトレンズ群よりも像側に少なくとも1つのレンズを有し、
 以下の条件式を満足することを特徴とする光学系を提供する。
1.00<βr×(1-βs)<1.50
0.16<TL1a/TL<0.45
 ただし、
βs:前記シフトレンズ群の横倍率
βr:前記シフトレンズ群よりも像側に位置する全てのレンズの横倍率
TL1a:前記第1aレンズ群中の最も物体側のレンズ面から最も像側のレンズ面までの距離
TL:前記光学系中の最も物体側のレンズ面から像面までの距離
 また本発明の第5態様は、
 本発明の第4態様に係る光学系を有することを特徴とする光学装置を提供する。
 また本発明の第6態様は、
 物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群とを有する光学系の製造方法であって、
 前記第1レンズ群が、物体側から順に、第1aレンズ群と、第1bレンズ群とを有するようにし、
 前記第1aレンズ群と前記第1bレンズ群との空気間隔が、前記第1レンズ群中の空気間隔のうちで最大であるようにし、
 前記第3レンズ群の一部がシフトレンズ群として光軸と直交する方向の成分を含むように移動するようにし、
 前記第3レンズ群が、前記シフトレンズ群よりも像側に少なくとも1つのレンズを有するようにし、
 前記光学系が以下の条件式を満足するようにすることを特徴とする光学系の製造方法を提供する。
1.00<βr×(1-βs)<1.50
0.16<TL1a/TL<0.45
 ただし、
βs:前記シフトレンズ群の横倍率
βr:前記シフトレンズ群よりも像側に位置する全てのレンズの横倍率
TL1a:前記第1aレンズ群中の最も物体側のレンズ面から最も像側のレンズ面までの距離
TL:前記光学系中の最も物体側のレンズ面から像面までの距離
 本発明の第1~第6態様によれば、小型で、諸収差を良好に補正し優れた光学性能を有する光学系、光学装置及び光学系の製造方法を提供することができる。
図1は、本願の第1、第2実施形態に共通の第1実施例に係る光学系の無限遠物体合焦時のレンズ配置を示す断面図である。 図2A、及び図2Bはそれぞれ、本願の第1実施例に係る光学系の無限遠物体合焦時、及び近距離物体合焦時の諸収差図である。 図3は、本願の第1実施例に係る光学系の無限遠物体合焦時にレンズシフトした際のコマ収差図である。 図4は、本願の第1、第2実施形態に共通の第2実施例に係る光学系の無限遠物体合焦時のレンズ配置を示す断面図である。 図5A、及び図5Bはそれぞれ、本願の第2実施例に係る光学系の無限遠物体合焦時、及び近距離物体合焦時の諸収差図である。 図6は、本願の第2実施例に係る光学系の無限遠物体合焦時にレンズシフトした際のコマ収差図である。 図7は、本願の第1、第2実施形態に共通の第3実施例に係る光学系の無限遠物体合焦時のレンズ配置を示す断面図である。 図8A、及び図8Bはそれぞれ、本願の第3実施例に係る光学系の無限遠物体合焦時、及び近距離物体合焦時の諸収差図である。 図9は、本願の第3実施例に係る光学系の無限遠物体合焦時にレンズシフトした際のコマ収差図である。 図10は、本願の第1、第2実施形態に共通の第4実施例に係る光学系の無限遠物体合焦時のレンズ配置を示す断面図である。 図11A、及び図11Bはそれぞれ、本願の第4実施例に係る光学系の無限遠物体合焦時、及び近距離物体合焦時の諸収差図である。 図12は、本願の第4実施例に係る光学系の無限遠物体合焦時にレンズシフトした際のコマ収差図である。 図13は、本願の第1、第2実施形態に係る光学系を備えたカメラの構成を示す図である。 図14は、本願の第1実施形態に係る光学系の製造方法の概略を示す図である。 図15は、本願の第2実施形態に係る光学系の製造方法の概略を示す図である。
 以下、本願の第1実施形態に係る光学系、光学装置及び光学系の製造方法について説明する。
 本願の第1実施形態に係る光学系は、物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群とを有し、前記第1レンズ群が、物体側から順に、第1aレンズ群と、第1bレンズ群とを有し、前記第1aレンズ群と前記第1bレンズ群との空気間隔が、前記第1レンズ群中の空気間隔のうちで最大であり、以下の条件式(1-1)、(1-2)を満足することを特徴とする。
(1-1) 0.00<|f/fF|<0.15
(1-2) 0.17<TL1a/TL<0.45
 ただし、
f:前記光学系の焦点距離
fF:前記第1レンズ群と前記第2レンズ群の合成焦点距離
TL1a:前記第1aレンズ群中の最も物体側のレンズ面から最も像側のレンズ面までの光軸上の距離、即ち前記第1aレンズ群の光軸に沿った長さ
TL:前記光学系中の最も物体側のレンズ面から像面までの光軸上の距離、即ち前記光学系の全長
 上記のように本願の第1実施形態に係る光学系は、物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群とを有し、前記第1レンズ群が、物体側から順に、第1aレンズ群と、第1bレンズ群とを有し、前記第1aレンズ群と前記第1bレンズ群との空気間隔が、前記第1レンズ群中の空気間隔のうちで最大である。この構成により、第1レンズ群全体において球面収差が補正され、所定の軸外収差の状態とすることができる。
 条件式(1-1)は、本願の第1実施形態に係る光学系全体の焦点距離と、無限遠物体合焦時の第1レンズ群と第2レンズ群の合成焦点距離との比の適切な範囲を規定するものである。本願の第1実施形態に係る光学系は、条件式(1-1)を満足することにより、小型化を図りながら、コマ収差と倍率色収差を良好に補正でき、優れた結像性能を得ることができる。
 本願の第1実施形態に係る光学系の条件式(1-1)の対応値が上限値を上回ると、第1レンズ群と第2レンズ群の屈折力が相対的に大きくなる。これにより、第1レンズ群と第2レンズ群でコマ収差が多大に発生してしまうため好ましくない。なお、本願の効果をより確実にするために、条件式(1-1)の上限値を0.10とすることがより好ましい。また、本願の効果をより確実にするために、条件式(1-1)の上限値を0.05とすることがより好ましい。
 一方、本願の第1実施形態に係る光学系の条件式(1-1)の対応値が下限値を下回ると、第1レンズ群と第2レンズ群の屈折力が相対的に小さくなる。これにより、第1レンズ群と第2レンズ群で発生する倍率色収差を十分に補正できなくなるため好ましくない。なお、本願の効果をより確実にするために、条件式(1-1)の下限値を0.001とすることがより好ましい。
 条件式(1-2)は、第1aレンズ群の光軸に沿った長さと光学系の全長との比の適切な範囲を規定するものである。本願の第1実施形態に係る光学系は、条件式(1-2)を満足することにより、小型軽量化を図りながら、コマ収差を良好に補正でき、優れた結像性能を得ることができる。
 本願の第1実施形態に係る光学系の条件式(1-2)の対応値が上限値を上回ると、レンズ重量が増大してしまう。そこで本願の第1実施形態に係る光学系の軽量化を図るために、例えば第1レンズ群中の負レンズに屈折率の小さな硝材を使用すると、第1aレンズ群単体で発生する像面湾曲を十分に補正できなくなるため好ましくない。なお、本願の効果をより確実にするために、条件式(1-2)の上限値を0.40とすることがより好ましい。また、本願の効果をより確実にするために、条件式(1-2)の上限値を0.36とすることがより好ましい。
 一方、本願の第1実施形態に係る光学系の条件式(1-2)の対応値が下限値を下回ると、第1aレンズ群単体でコマ収差が多大に発生してしまうため好ましくない。なお、本願の効果をより確実にするために、条件式(1-2)の下限値を0.18とすることがより好ましい。また、本願の効果をより確実にするために、条件式(1-2)の下限値を0.19とすることがより好ましい。
 以上の構成により、小型で、諸収差を良好に補正し優れた光学性能を有する光学系を実現することができる。
 なお、本願の第1実施形態に係る光学系は、前記第2レンズ群を光軸に沿って移動させることにより、無限遠物体から近距離物体への合焦を行うことが望ましい。
 また、本願の第1実施形態に係る光学系は、以下の条件式(1-3)を満足することが望ましい。
(1-3) 1.40<f1a/f1b<2.20
 ただし、
f1a:前記第1aレンズ群の焦点距離
f1b:前記第1bレンズ群の焦点距離
 条件式(1-3)は、第1aレンズ群と第1bレンズ群の焦点距離比の適切な範囲を規定するものである。本願の第1実施形態に係る光学系は、条件式(1-3)を満足することにより、第1aレンズ群単体で発生する球面収差とコマ収差を良好に補正し、合焦時に球面収差の変動を抑えることができる。これにより、本願の第1実施形態に係る光学系は、さらなる高性能化を図りながら、合焦時の光学性能の低下を抑えることができる。
 本願の第1実施形態に係る光学系の条件式(1-3)の対応値が上限値を上回ると、第1aレンズ群の屈折力が相対的に小さくなり、第1aレンズ群単体で発生する球面収差とコマ収差を十分に補正できなくなってしまう。また、第1bレンズ群の屈折力が相対的に大きくなり、合焦時に球面収差の変動を抑えることができなくなるため、高い光学性能を得ることができなくなってしまう。なお、本願の効果をより確実にするために、条件式(1-3)の上限値を2.10とすることがより好ましい。また、本願の効果をより確実にするために、条件式(1-3)の上限値を2.00とすることがより好ましい。
 一方、本願の第1実施形態に係る光学系の条件式(1-3)の対応値が下限値を下回ると、第1aレンズ群の屈折力が相対的に大きくなり、第1aレンズ群単体で球面収差とコマ収差が多大に発生してしまう。なお、本願の効果をより確実にするために、条件式(1-3)の下限値を1.50とすることがより好ましい。また、本願の効果をより確実にするために、条件式(1-3)の下限値を1.60とすることがより好ましい。
 また、本願の第1実施形態に係る光学系は、以下の条件式(1-4)を満足することが望ましい。
(1-4) -3.75<f1/f2<-3.25
 ただし、
f1:前記第1レンズ群の焦点距離
f2:前記第2レンズ群の焦点距離
 条件式(1-4)は、第1レンズ群と第2レンズ群の焦点距離比の適切な範囲を規定するものである。本願の第1実施形態に係る光学系は、条件式(1-4)を満足することにより、合焦時にコマ収差の変動を抑え、また第1レンズ群単体で球面収差が発生することを抑えることができる。これにより、本願の第1実施形態に係る光学系は、全長が大きくなることを防ぎながらさらなる高性能化を図ることができる。
 本願の第1実施形態に係る光学系の条件式(1-4)の対応値が上限値を上回ると、第1レンズ群の屈折力が相対的に小さくなる。このため、本願の第1実施形態に係る光学系の全長が大きくなってしまう。また、第2レンズ群の屈折力が相対的に大きくなる。このため、合焦時にコマ収差の変動を抑えることができなくなり、高い光学性能を得ることができなくなってしまう。なお、本願の効果をより確実にするために、条件式(1-4)の上限値を-3.30とすることがより好ましい。また、本願の効果をより確実にするために、条件式(1-4)の上限値を-3.35とすることがより好ましい。
 一方、本願の第1実施形態に係る光学系の条件式(1-4)の対応値が下限値を下回ると、第1レンズ群の屈折力が相対的に大きくなり、第1レンズ群単体で球面収差が多大に発生してしまう。また、第2レンズ群の屈折力が相対的に小さくなる。このため、合焦時の第2レンズ群の移動量が多大になってしまう。なお、本願の効果をより確実にするために、条件式(1-4)の下限値を-3.70とすることがより好ましい。また、本願の効果をより確実にするために、条件式(1-4)の下限値を-3.65とすることがより好ましい。
 また、本願の第1実施形態に係る光学系は、前記第1aレンズ群中の最も像側のレンズが、負レンズであることが望ましい。本願の第1実施形態に係る光学系においては、さらなる高性能化と合焦時の性能変動をバランスさせるために、第1レンズ群を、物体側より順に、第1aレンズ群と、第1レンズ群中で最も大きい空気間隔を第1aレンズ群に対して隔てた第1bレンズ群とを有するように構成することが望ましい。このような構成を採用することにより、第1レンズ群全体において球面収差が補正され、所定の軸外収差の状態とすることができる。また、第1aレンズ群は、第1レンズ群中の最も物体側のレンズから第1レンズ群中の最も物体側に配置される負レンズまでで構成することで、性能の低下を最低限に抑えることが可能である。なお、最も物体側に配置される負レンズとは、保護フィルタガラスを除いた負レンズのうちで最も物体側に配置されるものをいう。
 また、本願の第1実施形態に係る光学系は、前記第1aレンズ群が以下の条件式(1-5)を満足する少なくとも1枚の正レンズを有することが望ましい。
(1-5) 90<νdp
 ただし、
νdp:前記第1aレンズ群中の前記少なくとも1枚の正レンズの硝材のd線(波長587.6nm)に対するアッベ数
 条件式(1-5)は、第1aレンズ群中の正レンズの硝材のアッベ数を規定するものである。本願の第1実施形態に係る光学系は、条件式(1-5)を満足することにより、第1レンズ群単体で軸上色収差と倍率色収差が発生することを抑えることができる。
 本願の第1実施形態に係る光学系の条件式(1-5)の対応値が下限値を下回ると、第1レンズ群単体で軸上色収差と倍率色収差が発生し、光学性能が悪化してしまうため好ましくない。なお、本願の効果をより確実にするために、条件式(1-5)の下限値を93とすることがより好ましい。
 また、本願の第1実施形態に係る光学系は、前記第1bレンズ群が、物体側から順に、物体側に凸面を向けた負メニスカスレンズと正レンズとの接合レンズで構成されていることが望ましい。この構成により、第1bレンズ群において球面収差とコマ収差を良好に補正でき、本願の第1実施形態に係る光学系のさらなる高性能化を図りながら、合焦時の光学性能の低下を抑えることができる。
 また、本願の第1実施形態に係る光学系は、前記第2レンズ群が、物体側から順に、像側に凹面を向けた負レンズと、正レンズと負レンズとの接合レンズとで構成されていることが望ましい。この構成により、第2レンズ群においてコマ収差を良好に補正でき、本願の第1実施形態に係る光学系のさらなる高性能化を図りながら、合焦時の光学性能の低下を抑えることができる。
 なお、本願の第1実施形態に係る光学系は、前記第1aレンズ群が、最も物体側に保護フィルタガラスを有することが好ましい。保護フィルタガラスは、実質的に屈折力を有しないレンズであって、その焦点距離が本願の第1実施形態に係る光学系の焦点距離の10倍以上であることが好ましい。特に、本願の第1実施形態に係る光学系は、保護フィルタガラスが物体側に凸面を向けた負メニスカス形状であることが好ましい。この構成により、ゴーストを良好にカットすることができる。
 また、本願の第1実施形態に係る光学系は、前記第1aレンズ群が正の屈折力を有することが望ましい。
 また、本願の第1実施形態に係る光学系は、前記第1bレンズ群が正の屈折力を有することが望ましい。
 本願の光学装置は、上述した構成の第1実施形態に係る光学系を有することを特徴とする。これにより、小型で、諸収差を良好に補正し優れた光学性能を有する光学装置を実現することができる。
 本願の第1実施形態に係る光学系の製造方法は、物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群とを有する光学系の製造方法であって、前記第1レンズ群が、物体側から順に、第1aレンズ群と、第1bレンズ群とを有するようにし、前記第1aレンズ群と前記第1bレンズ群との空気間隔が、前記第1レンズ群中の空気間隔のうちで最大であるようにし、前記光学系が以下の条件式(1-1)、(1-2)を満足するようにすることを特徴とする。これにより、小型で、諸収差を良好に補正し優れた光学性能を有する光学系を製造することができる。
(1-1) 0.00<|f/fF|<0.15
(1-2) 0.17<TL1a/TL<0.45
 ただし、
f:前記光学系の焦点距離
fF:前記第1レンズ群と前記第2レンズ群の合成焦点距離
TL1a:前記第1aレンズ群中の最も物体側のレンズ面から最も像側のレンズ面までの距離
TL:前記光学系中の最も物体側のレンズ面から像面までの距離
 以下、本願の第2実施形態に係る光学系、光学装置及び光学系の製造方法について説明する。
 本願の第2実施形態に係る光学系は、物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群とを有し、前記第1レンズ群が、物体側から順に、第1aレンズ群と、第1bレンズ群とを有し、前記第1aレンズ群と前記第1bレンズ群との空気間隔が、前記第1レンズ群中の空気間隔のうちで最大であり、前記第3レンズ群の一部がシフトレンズ群として光軸と直交する方向の成分を含むように移動し、前記第3レンズ群が、前記シフトレンズ群よりも像側に少なくとも1つのレンズを有し、以下の条件式(2-1)、(2-2)を満足することを特徴とする。
(2-1) 1.00<βr×(1-βs)<1.50
(2-2) 0.16<TL1a/TL<0.45
 ただし、
βs:前記シフトレンズ群の横倍率
βr:前記シフトレンズ群よりも像側に位置する全てのレンズの横倍率
TL1a:前記第1aレンズ群中の最も物体側のレンズ面から最も像側のレンズ面までの距離、即ち前記第1aレンズ群の光軸に沿った長さ
TL:前記光学系中の最も物体側のレンズ面から像面までの距離、即ち前記光学系の全長
 上記のように本願の第2実施形態に係る光学系は、物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群とを有し、前記第1レンズ群が、物体側から順に、第1aレンズ群と、第1bレンズ群とを有し、前記第1aレンズ群と前記第1bレンズ群との空気間隔が、前記第1レンズ群中の空気間隔のうちで最大である。この構成により、第1レンズ群全体において球面収差が補正され、所定の軸外収差の状態とすることができる。
 また、上記のように本願の第2実施形態に係る光学系は、前記第3レンズ群の一部がシフトレンズ群として光軸と直交する方向の成分を含むように移動、即ちレンズシフトする。この構成により、手ぶれ等に起因する像ぶれの補正、即ち防振を行うことができる。
 条件式(2-1)は、シフトレンズ群の光軸と直交する方向への移動量に対する像の光軸と直交する方向への移動量である、所謂ブレ係数の適切な範囲を規定するものである。本願の第2実施形態に係る光学系は、条件式(2-1)を満足することにより、小型化を図りながら、コマ収差を良好に補正でき、レンズシフト時の光学性能の低下を抑えることができる。
 本願の第2実施形態に係る光学系の条件式(2-1)の対応値が上限値を上回ると、シフトレンズ群の移動量に対する像の移動量が相対的に大きくなり過ぎる。これにより、シフトレンズ群が微小量移動しただけで像が大きく移動してしまう。このため、シフトレンズ群の位置制御が困難になり、十分な防振精度を確保することができなくなってしまう。また、コマ収差が悪化してしまうため好ましくない。なお、本願の効果をより確実にするために、条件式(2-1)の上限値を1.45とすることがより好ましい。また、本願の効果をより確実にするために、条件式(2-1)の上限値を1.39とすることがより好ましい。また、本願の効果をより確実にするために、条件式(2-1)の上限値を1.35とすることがより好ましい。
 一方、本願の第2実施形態に係る光学系の条件式(2-1)の対応値が下限値を下回ると、シフトレンズ群の移動量に対する像の移動量が相対的に小さくなる。これにより、防振に必要なシフトレンズ群の移動量が極端に大きくなってしまう。このため、シフトレンズ群を移動させるための駆動機構が大型化し、レンズ径の小型化を図ることができなくなってしまう。また、コマ収差が悪化してしまうため好ましくない。なお、本願の効果をより確実にするために、条件式(2-1)の下限値を1.04とすることがより好ましい。また、本願の効果をより確実にするために、条件式(2-1)の下限値を1.08とすることがより好ましい。また、本願の効果をより確実にするために、条件式(2-1)の下限値を1.12とすることがより好ましい。
 条件式(2-2)は、第1aレンズ群の光軸に沿った長さと光学系の全長との比の適切な範囲を規定するものである。本願の第2実施形態に係る光学系は、条件式(2-2)を満足することにより、小型軽量化を図りながら、コマ収差を良好に補正でき、優れた結像性能を得ることができる。
 本願の第2実施形態に係る光学系の条件式(2-2)の対応値が上限値を上回ると、レンズ重量が増大してしまう。そこで本願の第2実施形態に係る光学系の軽量化を図るために、例えば第1レンズ群中の負レンズに屈折率の小さな硝材を使用すると、第1aレンズ群単体で発生する像面湾曲を十分に補正できなくなるため好ましくない。なお、本願の効果をより確実にするために、条件式(2-2)の上限値を0.40とすることがより好ましい。また、本願の効果をより確実にするために、条件式(2-2)の上限値を0.36とすることがより好ましい。
 一方、本願の第2実施形態に係る光学系の条件式(2-2)の対応値が下限値を下回ると、第1aレンズ群単体でコマ収差が多大に発生してしまうため好ましくない。なお、本願の効果をより確実にするために、条件式(2-2)の下限値を0.17とすることがより好ましい。また、本願の効果をより確実にするために、条件式(2-2)の下限値を0.18とすることがより好ましい。また、本願の効果をより確実にするために、条件式(2-2)の下限値を0.19とすることがより好ましい。
 以上の構成により、小型で、諸収差を良好に補正し優れた光学性能を有する光学系を実現することができる。
 なお、本願の第2実施形態に係る光学系は、前記第2レンズ群を光軸に沿って移動させることにより、無限遠物体から近距離物体への合焦を行うことが望ましい。
 また、本願の第2実施形態に係る光学系は、前記シフトレンズ群が、物体側から順に、正レンズと、負レンズと、正レンズとを有することが望ましい。この構成により、シフトレンズ群において球面収差を良好に補正することができ、第3レンズ群全体において球面収差を良好に補正することができる。これにより、本願の第2実施形態に係る光学系は、さらなる高性能化を図りながら、レンズシフト時の光学性能の低下をより良好に抑えることができる。
 また、本願の第2実施形態に係る光学系は、以下の条件式(2-3)を満足することが望ましい。
(2-3) 0.00<|f/fF|<0.15
 ただし、
f:前記光学系の焦点距離
fF:前記第1レンズ群と前記第2レンズ群の合成焦点距離
 条件式(2-3)は、本願の第2実施形態に係る光学系全体の焦点距離と、無限遠物体合焦時の第1レンズ群と第2レンズ群の合成焦点距離との比の適切な範囲を規定するものである。本願の第2実施形態に係る光学系は、条件式(2-3)を満足することにより、小型化を図りながら、コマ収差と倍率色収差を良好に補正でき、優れた結像性能を得ることができる。
 本願の第2実施形態に係る光学系の条件式(2-3)の対応値が上限値を上回ると、第1レンズ群と第2レンズ群の屈折力が相対的に大きくなる。これにより、第1レンズ群と第2レンズ群でコマ収差が多大に発生してしまうため好ましくない。なお、本願の効果をより確実にするために、条件式(2-3)の上限値を0.10とすることがより好ましい。また、本願の効果をより確実にするために、条件式(2-3)の上限値を0.05とすることがより好ましい。
 一方、本願の第2実施形態に係る光学系の条件式(2-3)の対応値が下限値を下回ると、第1レンズ群と第2レンズ群の屈折力が相対的に小さくなる。これにより、第1レンズ群と第2レンズ群で発生する倍率色収差を十分に補正できなくなるため好ましくない。なお、本願の効果をより確実にするために、条件式(2-3)の下限値を0.001とすることがより好ましい。
 また、本願の第2実施形態に係る光学系は、以下の条件式(2-4)を満足することが望ましい。
(2-4) 1.40<f1a/f1b<2.20
 ただし、
f1a:前記第1aレンズ群の焦点距離
f1b:前記第1bレンズ群の焦点距離
 条件式(2-4)は、第1aレンズ群と第1bレンズ群の焦点距離比の適切な範囲を規定するものである。本願の第2実施形態に係る光学系は、条件式(2-4)を満足することにより、第1aレンズ群単体で発生する球面収差とコマ収差を良好に補正し、合焦時に球面収差の変動を抑えることができる。これにより、本願の第2実施形態に係る光学系は、さらなる高性能化を図りながら、合焦時の光学性能の低下を抑えることができる。
 本願の第2実施形態に係る光学系の条件式(2-4)の対応値が上限値を上回ると、第1aレンズ群の屈折力が相対的に小さくなり、第1aレンズ群単体で発生する球面収差とコマ収差を十分に補正できなくなってしまう。また、第1bレンズ群の屈折力が相対的に大きくなり、合焦時に球面収差の変動を抑えることができなくなるため、高い光学性能を得ることができなくなってしまう。なお、本願の効果をより確実にするために、条件式(2-4)の上限値を2.10とすることがより好ましい。また、本願の効果をより確実にするために、条件式(2-4)の上限値を2.00とすることがより好ましい。
 一方、本願の第2実施形態に係る光学系の条件式(2-4)の対応値が下限値を下回ると、第1aレンズ群の屈折力が相対的に大きくなり、第1aレンズ群単体で球面収差とコマ収差が多大に発生してしまう。なお、本願の効果をより確実にするために、条件式(2-4)の下限値を1.50とすることがより好ましい。また、本願の効果をより確実にするために、条件式(2-4)の下限値を1.60とすることがより好ましい。
 また、本願の第2実施形態に係る光学系は、前記第1aレンズ群中の最も像側のレンズが、負レンズであることが望ましい。本願の第2実施形態に係る光学系においては、さらなる高性能化と合焦時の性能変動をバランスさせるために、第1レンズ群を、物体側より順に、第1aレンズ群と、第1レンズ群中で最も大きい空気間隔を第1aレンズ群に対して隔てた第1bレンズ群とを有するように構成することが望ましい。このような構成を採用することにより、第1レンズ群全体において球面収差が補正され、所定の軸外収差の状態とすることができる。また、第1aレンズ群は、第1レンズ群中の最も物体側のレンズから第1レンズ群中の最も物体側に配置される負レンズまでで構成することで、性能の低下を最低限に抑えることが可能である。なお、最も物体側に配置される負レンズとは、保護フィルタガラスを除いた負レンズのうちで最も物体側に配置されるものをいう。
 また、本願の第2実施形態に係る光学系は、前記第1aレンズ群が以下の条件式(2-5)を満足する少なくとも1枚の正レンズを有することが望ましい。
(2-5) 90<νdp
 ただし、
νdp:前記第1aレンズ群中の前記少なくとも1枚の正レンズの硝材のd線(波長587.6nm)に対するアッベ数
 条件式(2-5)は、第1aレンズ群中の正レンズの硝材のアッベ数を規定するものである。本願の第2実施形態に係る光学系は、条件式(2-5)を満足することにより、第1レンズ群単体で軸上色収差と倍率色収差が発生することを抑えることができる。
 本願の第2実施形態に係る光学系の条件式(2-5)の対応値が下限値を下回ると、第1レンズ群単体で軸上色収差と倍率色収差が発生し、光学性能が悪化してしまうため好ましくない。なお、本願の効果をより確実にするために、条件式(2-5)の下限値を93とすることがより好ましい。
 また、本願の第2実施形態に係る光学系は、前記第2レンズ群が、物体側から順に、像側に凹面を向けた負レンズと、正レンズと負レンズとの接合レンズとで構成されていることが望ましい。この構成により、第2レンズ群においてコマ収差を良好に補正でき、本願の第2実施形態に係る光学系のさらなる高性能化を図りながら、合焦時の光学性能の低下を抑えることができる。
 なお、本願の第2実施形態に係る光学系は、前記第1aレンズ群が、最も物体側に保護フィルタガラスを有することが好ましい。保護フィルタガラスは、実質的に屈折力を有しないレンズであって、その焦点距離が本願の第2実施形態に係る光学系の焦点距離の10倍以上であることが好ましい。特に、本願の第2実施形態に係る光学系は、保護フィルタガラスが物体側に凸面を向けた負メニスカス形状であることが好ましい。この構成により、ゴーストを良好にカットすることができる。
 また、本願の第2実施形態に係る光学系は、前記第1aレンズ群が正の屈折力を有することが望ましい。
 また、本願の第2実施形態に係る光学系は、前記第1bレンズ群が正の屈折力を有することが望ましい。
 本願の光学装置は、上述した構成の第2実施形態に係る光学系を有することを特徴とする。これにより、小型で、諸収差を良好に補正し優れた光学性能を有する光学装置を実現することができる。
 本願の第2実施形態に係る光学系の製造方法は、物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群とを有する光学系の製造方法であって、前記第1レンズ群が、物体側から順に、第1aレンズ群と、第1bレンズ群とを有するようにし、前記第1aレンズ群と前記第1bレンズ群との空気間隔が、前記第1レンズ群中の空気間隔のうちで最大であるようにし、前記第3レンズ群の一部がシフトレンズ群として光軸と直交する方向の成分を含むように移動するようにし、前記第3レンズ群が、前記シフトレンズ群よりも像側に少なくとも1つのレンズを有するようにし、前記光学系が以下の条件式(2-1)、(2-2)を満足するようにすることを特徴とする。これにより、小型で、諸収差を良好に補正し優れた光学性能を有する光学系を製造することができる。
(2-1) 1.00<βr×(1-βs)<1.50
(2-2) 0.16<TL1a/TL<0.45
 ただし、
βs:前記シフトレンズ群の横倍率
βr:前記シフトレンズ群よりも像側に位置する全てのレンズの横倍率
TL1a:前記第1aレンズ群中の最も物体側のレンズ面から最も像側のレンズ面までの距離
TL:前記光学系中の最も物体側のレンズ面から像面までの距離
 以下、本願の第1、第2実施形態の数値実施例に係る光学系を添付図面に基づいて説明する。なお、第1~第4実施例は第1、第2実施形態に共通する実施例である。
(第1実施例)
 図1は、本願の第1、第2実施形態に共通の第1実施例に係る光学系の無限遠物体合焦時のレンズ配置を示す断面図である。
 本実施例に係る光学系は、物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3とから構成されている。なお、第2レンズ群G2と第3レンズ群G3との間には開口絞りSが備えられており、第3レンズ群G3と像面Iとの間にはフィルタFLが備えられている。
 第1レンズ群G1は、物体側から順に、正の屈折力を有する第1aレンズ群G1aと、正の屈折力を有する第1bレンズ群G1bとから構成されている。
 第1aレンズ群G1aは、物体側から順に、保護フィルタガラスFLGと、両凸形状の正レンズL11と、両凸形状の正レンズL12と、両凹形状の負レンズL13とからなる。なお、保護フィルタガラスFLGは、物体側に凸面を向けた負メニスカス形状をしており、実質的に屈折力を有していない。
 第1bレンズ群G1bは、物体側から順に、物体側に凸面を向けた負メニスカスレンズL14と物体側に凸面を向けた正メニスカスレンズL15との接合レンズからなる。
 第2レンズ群G2は、物体側から順に、両凹形状の負レンズL21と、物体側に凹面を向けた正メニスカスレンズL22と両凹形状の負レンズL23との接合レンズとからなる。
 第3レンズ群G3は、物体側から順に、両凸形状の正レンズL31と、物体側に凹面を向けた負メニスカスレンズL32と、両凸形状の正レンズL33と、物体側に凸面を向けた負メニスカスレンズL34と両凸形状の正レンズL35との接合レンズと、両凹形状の負レンズL36とからなる。
 以上の構成の下、本実施例に係る光学系では、第2レンズ群G2を光軸に沿って像側へ移動させることにより、無限遠物体から近距離物体への合焦を行う。なおこのとき、開口絞りSの位置は固定である。
 本実施例に係る光学系では、第3レンズ群G3における正レンズL31と負メニスカスレンズL32と正レンズL33とをシフトレンズ群即ち防振レンズ群として光軸と直交する方向の成分を含むようにシフトさせることにより防振を行う。
 なお、像面I上には、CCDやCMOS等で構成された不図示の撮像素子が配置される。これは後述する各実施例においても同様である。
 以下の表1に、本実施例に係る光学系の諸元の値を掲げる。
 表1において、fは焦点距離、Bfはバックフォーカス、即ちフィルタFLと像面Iとの光軸上の距離を示す。
 [面データ]において、mは物体側から数えた光学面の順番、rは曲率半径、dは面間隔(第n面(nは整数)と第n+1面との間隔)、ndはd線(波長587.6nm)に対する屈折率、νdはd線(波長587.6nm)に対するアッベ数をそれぞれ示している。また、OPは物体面、可変は可変の面間隔、Sは開口絞りS、Iは像面Iをそれぞれ示している。なお、曲率半径r=∞は平面を示している。また、空気の屈折率nd=1.00000の記載は省略している。
 [各種データ]において、FNOはFナンバー、2ωは画角(単位は「°」)、Yは像高、TLは本実施例に係る光学系の全長、即ち第1面から像面Iまでの光軸上の距離、dnは第n面と第n+1面との可変の間隔をそれぞれ示す。なお、d0は物体から第1面までの距離を示す。βは撮影倍率を示し、近距離物体合焦時の撮影倍率は約-1/30倍である。
 [レンズ群データ]には、各レンズ群の始面STと焦点距離fを示す。
 [条件式対応値]には、本実施例に係る光学系の各条件式の対応値を示す。
 ここで、表1に掲載されている焦点距離f、曲率半径r及びその他の長さの単位は一般に「mm」が使われる。しかしながら光学系は、比例拡大又は比例縮小しても同等の光学性能が得られるため、これに限られるものではない。
 なお、以上に述べた表1の符号は、後述する各実施例の表においても同様に用いるものとする。
(表1)第1実施例
[面データ]
  m            r        d     nd     νd
 OP           ∞        ∞
 
   1        1200.3704    5.00   1.51680   63.88
   2        1199.7897    1.00
   3         186.6940   18.20   1.43385   95.25
   4       -1475.4824   50.00
   5         150.5065   19.70   1.43385   95.25
   6        -321.7891    4.16
   7        -287.2066    6.50   1.60562   43.49
   8         276.0459   78.94
   9          77.3942    4.50   1.64000   60.20
  10          45.9800   19.00   1.49782   82.57
  11        1076.6228    可変
 
  12        -431.5985    2.70   1.78800   47.35
  13          67.7298    5.93
  14         -94.1649    5.00   1.80518   25.45
  15         -43.8362    3.00   1.48749   70.31
  16         133.8558    可変
 
  17(S)        ∞       8.00
 
  18         145.9321    5.30   1.61272   58.54
  19        -116.0070    3.30
  20         -66.9628    1.10   1.80518   25.45
  21        -212.7352    7.28
  22         150.3310    4.70   1.65100   56.24
  23        -114.5004    5.03
  24         214.5485    1.30   1.78800   47.35
  25          38.0817    9.50   1.66446   35.87
  26        -246.0503    0.30
  27        -478.5749    1.30   1.78472   25.64
  28         190.6886   11.27
 
  29            ∞       2.00   1.51680   63.88
  30            ∞       Bf
 
  I            ∞
 
[各種データ]
f              391.58
FNO            2.95
2ω              6.27
Y               21.60
TL            399.64
Bf             75.103
 
             無限遠物体合焦時   近距離物体合焦時
f又はβ         391.583            -0.033
d0                 ∞           11820.843
d11              20.261            23.233
d16              20.257            17.285
Bf              75.103            75.110
 
[レンズ群データ]
        ST         f
G1         1        187.0910
G2        12        -53.4010
G3        18        111.8005
 
[条件式対応値]
f = 391.5830
TL = 399.6448
TL1a = 104.5673
f1a = 345.0413
f1b = 207.2034
fF = 188516.7995
βs = 0.0017
βr = 1.2201
(1-1) |f/fF| = 0.0021
(1-2) TL1a/TL = 0.2617
(1-3) f1a/f1b = 1.6652
(1-4) f1/f2 = -3.5035
(1-5) νdp = 95.25(L11), 95.25(L12)
(2-1) βr×(1-βs) = 1.2180
(2-2) TL1a/TL = 0.2617
(2-3) |f/fF| = 0.0021
(2-4) f1a/f1b = 1.6652
(2-5) νdp = 95.25(L11), 95.25(L12)
 
 図2A、及び図2Bはそれぞれ、本願の第1実施例に係る光学系の無限遠物体合焦時、及び近距離物体合焦時の諸収差図である。
 また、図3は、本願の第1実施例に係る光学系の無限遠物体合焦時にレンズシフトした際のコマ収差図である。なお、図3におけるシフトレンズ群の光軸と直交する方向へのシフト量は1.70mmである。
 各収差図において、FNOはFナンバー、NAは開口数、Yは像高をそれぞれ示す。dはd線(波長587.6nm)、gはg線(波長435.8nm)における収差をそれぞれ示す。非点収差図において、実線はサジタル像面、破線はメリディオナル像面をそれぞれ示す。コマ収差図は、各像高Yにおけるコマ収差を示す。なお、後述する各実施例の収差図においても、本実施例と同様の符号を用いる。
 各収差図より、本実施例に係る光学系は無限遠物体合焦時及び近距離物体合焦時に諸収差を良好に補正し優れた結像性能を有しており、さらにレンズシフト時にも優れた結像性能を有していることがわかる。
(第2実施例)
 図4は、本願の第1、第2実施形態に共通の第2実施例に係る光学系の無限遠物体合焦時のレンズ配置を示す断面図である。
 本実施例に係る光学系は、物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3とから構成されている。なお、第2レンズ群G2と第3レンズ群G3との間には開口絞りSが備えられており、第3レンズ群G3と像面Iとの間にはフィルタFLが備えられている。
 第1レンズ群G1は、物体側から順に、正の屈折力を有する第1aレンズ群G1aと、正の屈折力を有する第1bレンズ群G1bとから構成されている。
 第1aレンズ群G1aは、物体側から順に、保護フィルタガラスFLGと、両凸形状の正レンズL11と、両凸形状の正レンズL12と、両凹形状の負レンズL13とからなる。なお、保護フィルタガラスFLGは、物体側に凸面を向けた負メニスカス形状をしており、実質的に屈折力を有していない。
 第1bレンズ群G1bは、物体側から順に、物体側に凸面を向けた負メニスカスレンズL14と物体側に凸面を向けた正メニスカスレンズL15との接合レンズからなる。
 第2レンズ群G2は、物体側から順に、両凹形状の負レンズL21と、物体側に凹面を向けた正メニスカスレンズL22と両凹形状の負レンズL23との接合レンズとからなる。
 第3レンズ群G3は、物体側から順に、両凸形状の正レンズL31と、物体側に凹面を向けた負メニスカスレンズL32と、両凸形状の正レンズL33と、物体側に凸面を向けた負メニスカスレンズL34と両凸形状の正レンズL35との接合レンズと、両凹形状の負レンズL36とからなる。
 以上の構成の下、本実施例に係る光学系では、第2レンズ群G2を光軸に沿って像側へ移動させることにより、無限遠物体から近距離物体への合焦を行う。なおこのとき、開口絞りSの位置は固定である。
 本実施例に係る光学系では、第3レンズ群G3における正レンズL31と負メニスカスレンズL32と正レンズL33とをシフトレンズ群として光軸と直交する方向の成分を含むようにシフトさせることにより防振を行う。
 以下の表2に、本実施例に係る光学系の諸元の値を掲げる。
(表2)第2実施例
[面データ]
  m            r        d     nd     νd
 OP           ∞        ∞
 
   1        1200.3704    5.00   1.51680   63.88
   2        1199.7897    1.00
   3         186.6940   18.20   1.43385   95.25
   4       -1475.4824   50.00
   5         150.5065   19.70   1.43385   95.25
   6        -321.7890    4.16
   7        -287.2066    6.50   1.60562   43.49
   8         276.0459   78.94
   9          77.3942    4.50   1.64000   60.20
  10          45.9800   19.00   1.49782   82.57
  11        1076.6228    可変
 
  12        -431.5985    2.70   1.78800   47.35
  13          67.7298    5.93
  14         -94.1649    5.00   1.80518   25.45
  15         -43.8361    3.00   1.48749   70.31
  16         133.8558    可変
 
  17(S)        ∞       8.00
 
  18         145.9321    5.30   1.61272   58.54
  19        -116.0070    3.30
  20         -66.9628    1.10   1.80518   25.45
  21        -212.7352    7.28
  22         150.3310    4.70   1.65100   56.24
  23        -114.5004    5.03
  24         214.5485    1.30   1.78800   47.35
  25          38.0817    9.50   1.66446   35.87
  26        -246.0503    0.30
  27        -478.5749    1.30   1.78472   25.64
  28         190.6886   11.27
 
  29            ∞       2.00   1.51680   63.88
  30            ∞       Bf
 
  I            ∞
 
[各種データ]
f              391.58
FNO            2.88
2ω              6.27
Y               21.60
TL            399.66
Bf             76.149
 
             無限遠物体合焦時   近距離物体合焦時
f又はβ         391.583            -0.033
d0                 ∞           11770.185
d11              20.654            23.583
d16              18.741            15.857
Bf              76.149            76.153
 
[レンズ群データ]
        ST         f
G1         1        183.9628
G2        12        -53.6118
G3        18        114.8090
 
[条件式対応値]
f = 391.5834
TL = 399.6570
TL1a = 104.0000
f1a = 357.6700
f1b = 193.8819
fF = 10156.3897
βs = 0.0316
βr = 1.2207
(1-1) |f/fF| = 0.0386
(1-2) TL1a/TL = 0.2602
(1-3) f1a/f1b = 1.8448
(1-4) f1/f2 = -3.4314
(1-5) νdp = 95.25(L11), 95.25(L12)
(2-1) βr×(1-βs) = 1.1821
(2-2) TL1a/TL = 0.2602
(2-3) |f/fF| = 0.0386
(2-4) f1a/f1b = 1.8448
(2-5) νdp = 95.25(L11), 95.25(L12)
 
 図5A、及び図5Bはそれぞれ、本願の第2実施例に係る光学系の無限遠物体合焦時、及び近距離物体合焦時の諸収差図である。
 また、図6は、本願の第2実施例に係る光学系の無限遠物体合焦時にレンズシフトした際のコマ収差図である。なお、図6におけるシフトレンズ群の光軸と直交する方向へのシフト量は1.60mmである。
 各収差図より、本実施例に係る光学系は無限遠物体合焦時及び近距離物体合焦時に諸収差を良好に補正し優れた結像性能を有しており、さらにレンズシフト時にも優れた結像性能を有していることがわかる。
(第3実施例)
 図7は、本願の第1、第2実施形態に共通の第3実施例に係る光学系の無限遠物体合焦時のレンズ配置を示す断面図である。
 本実施例に係る光学系は、物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3とから構成されている。なお、第2レンズ群G2と第3レンズ群G3との間には開口絞りSが備えられており、第3レンズ群G3と像面Iとの間にはフィルタFLが備えられている。
 第1レンズ群G1は、物体側から順に、正の屈折力を有する第1aレンズ群G1aと、正の屈折力を有する第1bレンズ群G1bとから構成されている。
 第1aレンズ群G1aは、物体側から順に、保護フィルタガラスFLGと、両凸形状の正レンズL11と、両凸形状の正レンズL12と、両凹形状の負レンズL13とからなる。なお、保護フィルタガラスFLGは、物体側に凸面を向けた負メニスカス形状をしており、実質的に屈折力を有していない。
 第1bレンズ群G1bは、物体側から順に、物体側に凸面を向けた負メニスカスレンズL14と物体側に凸面を向けた正メニスカスレンズL15との接合レンズからなる。
 第2レンズ群G2は、物体側から順に、両凹形状の負レンズL21と、物体側に凹面を向けた正メニスカスレンズL22と両凹形状の負レンズL23との接合レンズとからなる。
 第3レンズ群G3は、物体側から順に、両凸形状の正レンズL31と、物体側に凹面を向けた負メニスカスレンズL32と、両凸形状の正レンズL33と、物体側に凸面を向けた負メニスカスレンズL34と両凸形状の正レンズL35との接合レンズと、両凹形状の負レンズL36とからなる。
 以上の構成の下、本実施例に係る光学系では、第2レンズ群G2を光軸に沿って像側へ移動させることにより、無限遠物体から近距離物体への合焦を行う。なおこのとき、開口絞りSの位置は固定である。
 本実施例に係る光学系では、第3レンズ群G3における正レンズL31と負メニスカスレンズL32と正レンズL33とをシフトレンズ群として光軸と直交する方向の成分を含むようにシフトさせることにより防振を行う。
 以下の表3に、本実施例に係る光学系の諸元の値を掲げる。
(表3)第3実施例
[面データ]
  m            r        d     nd     νd
 OP           ∞        ∞
 
   1        1200.3704    5.00   1.51680   63.88
   2        1199.7897    1.00
   3         223.3738   18.50   1.43385   95.25
   4        -600.3785   25.00
   5         167.8920   20.00   1.43385   95.25
   6        -382.1597    4.00
   7        -336.4465    6.50   1.69700   48.45
   8         381.6199  102.17
   9          83.7803    4.50   1.67003   47.14
  10          48.9944   19.00   1.49782   82.57
  11        -764.5336    可変
 
  12        -487.5473    2.70   1.75700   47.86
  13          76.6189    5.93
  14        -115.2678    5.00   1.84666   23.80
  15         -49.4799    3.00   1.48749   70.31
  16          74.5991    可変
 
  17(S)        ∞       8.00
 
  18         121.1970    5.30   1.62041   60.25
  19        -147.7851    3.30
  20         -55.4986    1.10   1.80518   25.45
  21        -112.1177    7.28
  22         872.5838    4.70   1.69680   55.52
  23         -76.8005    5.03
  24        -796.1438    1.30   1.80400   46.60
  25          50.2587    9.50   1.66446   35.87
  26         -89.2482    0.30
  27         -98.4391    1.30   1.78472   25.64
  28        -695.4003   11.27
 
  29            ∞       2.00   1.51680   63.88
  30            ∞       Bf
 
  I            ∞
 
[各種データ]
f              391.58
FNO            2.87
2ω              6.28
Y               21.60
TL            399.66
Bf             75.797
 
             無限遠物体合焦時   近距離物体合焦時
f又はβ         391.583            -0.033
d0                 ∞           11770.185
d11              22.044            24.928
d16              19.136            16.252
Bf              75.797            75.797
 
[レンズ群データ]
        ST         f
G1         1        183.9628
G2        12        -53.6118
G3        18        114.8090
 
[条件式対応値]
f = 391.5834
TL = 399.6570
TL1a = 80.0000
f1a = 357.6700
f1b = 193.8819
fF = 10156.3897
βs = 0.0296
βr = 1.3038
(1-1) |f/fF| = 0.0386
(1-2) TL1a/TL = 0.2002
(1-3) f1a/f1b = 1.8448
(1-4) f1/f2 = -3.4314
(1-5) νdp = 95.25(L11), 95.25(L12)
(2-1) βr×(1-βs) = 1.2653
(2-2) TL1a/TL = 0.2002
(2-3) |f/fF| = 0.0386
(2-4) f1a/f1b = 1.8448
(2-5) νdp = 95.25(L11), 95.25(L12)
 
 図8A、及び図8Bはそれぞれ、本願の第3実施例に係る光学系の無限遠物体合焦時、及び近距離物体合焦時の諸収差図である。
 また、図9は、本願の第3実施例に係る光学系の無限遠物体合焦時にレンズシフトした際のコマ収差図である。なお、図9におけるシフトレンズ群の光軸と直交する方向へのシフト量は1.60mmである。
 各収差図より、本実施例に係る光学系は無限遠物体合焦時及び近距離物体合焦時に諸収差を良好に補正し優れた結像性能を有しており、さらにレンズシフト時にも優れた結像性能を有していることがわかる。
(第4実施例)
 図10は、本願の第1、第2実施形態に共通の第4実施例に係る光学系の無限遠物体合焦時のレンズ配置を示す断面図である。
 本実施例に係る光学系は、物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3とから構成されている。なお、第2レンズ群G2と第3レンズ群G3との間には開口絞りSが備えられており、第3レンズ群G3と像面Iとの間にはフィルタFLが備えられている。
 第1レンズ群G1は、物体側から順に、正の屈折力を有する第1aレンズ群G1aと、正の屈折力を有する第1bレンズ群G1bとから構成されている。
 第1aレンズ群G1aは、物体側から順に、保護フィルタガラスFLGと、両凸形状の正レンズL11と、両凸形状の正レンズL12と、両凹形状の負レンズL13とからなる。なお、保護フィルタガラスFLGは、物体側に凸面を向けた負メニスカス形状をしており、実質的に屈折力を有していない。
 第1bレンズ群G1bは、物体側から順に、物体側に凸面を向けた負メニスカスレンズL14と物体側に凸面を向けた正メニスカスレンズL15との接合レンズからなる。
 第2レンズ群G2は、物体側から順に、両凹形状の負レンズL21と、物体側に凹面を向けた正メニスカスレンズL22と両凹形状の負レンズL23との接合レンズとからなる。
 第3レンズ群G3は、物体側から順に、両凸形状の正レンズL31と、物体側に凹面を向けた負メニスカスレンズL32と、両凸形状の正レンズL33と、物体側に凸面を向けた負メニスカスレンズL34と両凸形状の正レンズL35との接合レンズと、両凹形状の負レンズL36とからなる。
 以上の構成の下、本実施例に係る光学系では、第2レンズ群G2を光軸に沿って像側へ移動させることにより、無限遠物体から近距離物体への合焦を行う。なおこのとき、開口絞りSの位置は固定である。
 本実施例に係る光学系では、第3レンズ群G3における正レンズL31と負メニスカスレンズL32と正レンズL33とをシフトレンズ群として光軸と直交する方向の成分を含むようにシフトさせることにより防振を行う。
 以下の表4に、本実施例に係る光学系の諸元の値を掲げる。
(表4)第4実施例
[面データ]
  m            r        d     nd     νd
 OP           ∞        ∞
 
   1        1200.3704    5.00   1.51680   63.88
   2        1199.7897    1.00
   3         206.6161   20.00   1.43385   95.25
   4        -624.5543   75.00
   5         124.1080   18.00   1.43385   95.25
   6      -20844.1826    5.00
   7        -311.9285    6.65   1.71700   47.98
   8         393.0337   46.15
   9         107.5416    5.10   1.71700   47.98
  10          58.8090   21.50   1.45600   91.36
  11        -192.8096    可変
 
  12         529.0102    2.90   1.75700   47.86
  13          97.4254    6.40
  14        -121.8472    5.40   1.84666   23.80
  15         -51.3932    3.25   1.58267   46.48
  16          68.5829    可変
 
  17(S)        ∞       8.00
 
  18         126.0089    5.30   1.65160   58.57
  19        -191.1923    3.30
  20         -53.9080    1.10   1.80518   25.45
  21         -96.5427    7.28
  22        -289.4025    4.70   1.71999   50.27
  23         -67.2935    5.00
  24         307.8858    1.30   1.71300   53.96
  25          45.8112    9.60   1.66446   35.87
  26        -641.4964    0.30
  27        -272.4945    1.30   1.78472   25.64
  28         719.9258   11.38
 
  29            ∞       2.02   1.51680   63.88
  30            ∞       Bf
 
  I            ∞
 
[各種データ]
f              392.57
FNO            2.89
2ω              6.28
Y               21.60
TL            410.00
Bf             79.818
 
             無限遠物体合焦時   近距離物体合焦時
f又はβ         392.000            -0.033
d0                 ∞           11835.598
d11              23.793            27.136
d16              24.453            21.110
Bf              79.818            79.830
 
[レンズ群データ]
        ST         f
G1         1        198.4207
G2        12        -57.8250
G3        18        114.4060
 
[条件式対応値]
f = 392.5727
TL = 410.0000
TL1a = 130.6500
f1a = 366.4920
f1b = 219.5750
fF = 99999.0000
βs = 0.0000
βr = 1.1431
(1-1) |f/fF| = 0.0004
(1-2) TL1a/TL = 0.3187
(1-3) f1a/f1b = 1.6691
(1-4) f1/f2 = -3.4314
(1-5) νdp = 95.25(L11), 95.25(L12)
(2-1) βr×(1-βs) = 1.1431
(2-2) TL1a/TL = 0.3187
(2-3) |f/fF| = 0.0004
(2-4) f1a/f1b = 1.6691
(2-5) νdp = 95.25(L11), 95.25(L12)
 
 図11A、及び図11Bはそれぞれ、本願の第4実施例に係る光学系の無限遠物体合焦時、及び近距離物体合焦時の諸収差図である。
 また、図12は、本願の第4実施例に係る光学系の無限遠物体合焦時にレンズシフトした際のコマ収差図である。なお、図12におけるシフトレンズ群の光軸と直交する方向へのシフト量は1.60mmである。
 各収差図より、本実施例に係る光学系は無限遠物体合焦時及び近距離物体合焦時に諸収差を良好に補正し優れた結像性能を有しており、さらにレンズシフト時にも優れた結像性能を有していることがわかる。
 上記各実施例によれば、6度程度の画角を有し、小型軽量で、諸収差を良好に補正し優れた光学性能を有する光学系を実現することができる。特に、上記各実施例に係る光学系は、小型化が図られているため、鏡筒が大型化して重量が大きくなってしまうこともない。なお、上記各実施例は本願発明の一具体例を示しているものであり、本願発明はこれらに限定されるものではない。以下の内容は、本願の第1、第2実施形態に係る光学系の光学性能を損なわない範囲で適宜採用することが可能である。
 本願の第1、第2実施形態に係る光学系の数値実施例として3群構成のものを示したが、本願はこれに限られず、その他の群構成(例えば、4群や5群等)の光学系を構成することもできる。具体的には、本願の第1、第2実施形態に係る光学系の最も物体側や最も像側にレンズ又はレンズ群を追加した構成でも構わない。なお、上記各実施例に係る光学系は、第1レンズ群中の最も物体側に保護フィルタガラスを備えているが、これを備えない構成としてもよい。
 また、本願の第1、第2実施形態に係る光学系は、無限遠物体から近距離物体への合焦を行うために、レンズ群の一部、1つのレンズ群全体、或いは複数のレンズ群を合焦レンズ群として光軸方向へ移動させる構成としてもよい。特に、第2レンズ群の少なくとも一部を合焦レンズ群とすることが好ましい。斯かる合焦レンズ群は、オートフォーカスに適用することも可能であり、オートフォーカス用のモータ、例えば超音波モータ等による駆動にも適している。
 また、本願の第1、第2実施形態に係る光学系において、いずれかのレンズ群全体又はその一部を、防振レンズ群として光軸に対して垂直な方向の成分を含むように移動させ、又は光軸を含む面内方向へ回転移動(揺動)させることにより、防振を行う構成とすることもできる。特に、本願の第1、第2実施形態に係る光学系では第3レンズ群の少なくとも一部を防振レンズ群とすることが好ましい。
 また、本願の第1、第2実施形態に係る光学系を構成するレンズのレンズ面は、球面又は平面としてもよく、或いは非球面としてもよい。レンズ面が球面又は平面の場合、レンズ加工及び組立調整が容易になり、レンズ加工及び組立調整の誤差による光学性能の劣化を防ぐことができるため好ましい。また、像面がずれた場合でも描写性能の劣化が少ないため好ましい。レンズ面が非球面の場合、研削加工による非球面、ガラスを型で非球面形状に成型したガラスモールド非球面、又はガラス表面に設けた樹脂を非球面形状に形成した複合型非球面のいずれでもよい。また、レンズ面は回折面としてもよく、レンズを屈折率分布型レンズ(GRINレンズ)或いはプラスチックレンズとしてもよい。
 また、本願の第1、第2実施形態に係る光学系において開口絞りは第3レンズ群の物体側の近傍に配置されることが好ましく、開口絞りとして部材を設けずにレンズ枠でその役割を代用する構成としてもよい。
 また、本願の第1、第2実施形態に係る光学系を構成するレンズのレンズ面に、広い波長域で高い透過率を有する反射防止膜を施してもよい。これにより、フレアやゴーストを軽減し、高コントラストの高い光学性能を達成することができる。
 次に、本願の第1、第2実施形態に係る光学系を備えたカメラを図13に基づいて説明する。
 図13は、本願の第1、第2実施形態に係る光学系を備えたカメラの構成を示す図である。
 本カメラ1は、撮影レンズ2として上記第1実施例に係る光学系を備えたレンズ交換式のデジタル一眼レフカメラである。
 本カメラ1において、被写体である不図示の物体からの光は、撮影レンズ2で集光されて、クイックリターンミラー3を介して焦点板4に結像される。そして焦点板4に結像されたこの光は、ペンタプリズム5中で複数回反射されて接眼レンズ6へ導かれる。これにより撮影者は、被写体像を接眼レンズ6を介して正立像として観察することができる。
 また、撮影者によって不図示のレリーズボタンが押されると、クイックリターンミラー3が光路外へ退避し、不図示の被写体からの光は撮像素子7へ到達する。これにより被写体からの光は、当該撮像素子7によって撮像されて、被写体画像として不図示のメモリに記録される。このようにして、撮影者は本カメラ1による被写体の撮影を行うことができる。
 ここで、本カメラ1に撮影レンズ2として搭載した上記第1実施例に係る光学系は、上述のように小型で、諸収差を良好に補正し優れた光学性能を有している。即ち本カメラ1は、小型化と高性能化を実現することができる。なお、上記第2~第4実施例に係る光学系を撮影レンズ2として搭載したカメラを構成しても、上記カメラ1と同様の効果を奏することができる。また、クイックリターンミラー3を有しない構成のカメラに上記各実施例に係る光学系を搭載した場合でも、上記カメラ1と同様の効果を奏することができる。
 最後に、本願の第1、第2実施形態に係る光学系の製造方法の概略を図14、15に基づいて説明する。
 図14は、本願の第1実施形態に係る光学系の製造方法の概略を示す図である。
 図14に示す本願の第1実施形態に係る光学系の製造方法は、物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群とを有する光学系の製造方法であって、以下のステップS11~S13を含むものである。
 ステップS11:第1~第3レンズ群を準備し、第1レンズ群が、物体側から順に、第1aレンズ群と、第1bレンズ群とを有するようにする。そして、各レンズ群を鏡筒内に物体側から順に配置する。
 ステップS12:第1aレンズ群と第1bレンズ群との空気間隔が、第1レンズ群中の空気間隔のうちで最大であるようにする。
 ステップS13:光学系が以下の条件式(1-1)、(1-2)を満足するようにする。
(1-1) 0.00<|f/fF|<0.15
(1-2) 0.17<TL1a/TL<0.45
 ただし、
f:光学系の焦点距離
fF:第1レンズ群と第2レンズ群の合成焦点距離
TL1a:第1aレンズ群中の最も物体側のレンズ面から最も像側のレンズ面までの距離
TL:光学系中の最も物体側のレンズ面から像面までの距離
 斯かる本願の第1実施形態に係る光学系の製造方法によれば、小型で、諸収差を良好に補正し優れた光学性能を有する光学系を製造することができる。
 図15は、本願の第2実施形態に係る光学系の製造方法の概略を示す図である。
 図15に示す本願の第2実施形態に係る光学系の製造方法は、物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群とを有する光学系の製造方法であって、以下のステップS21~S25を含むものである。
 ステップS21:第1~第3レンズ群を準備し、第1レンズ群が、物体側から順に、第1aレンズ群と、第1bレンズ群とを有するようにする。そして、各レンズ群を鏡筒内に物体側から順に配置する。
 ステップS22:第1aレンズ群と第1bレンズ群との空気間隔が、第1レンズ群中の空気間隔のうちで最大であるようにする。
 ステップS23:公知の移動機構を鏡筒に設けることにより、第3レンズ群の一部がシフトレンズ群として光軸と直交する方向の成分を含むように移動するようにする。
 ステップS24:第3レンズ群が、シフトレンズ群よりも像側に少なくとも1つのレンズを有するようにする。
 ステップS25:光学系が以下の条件式(2-1)、(2-2)を満足するようにする。
(2-1) 1.00<βr×(1-βs)<1.50
(2-2) 0.16<TL1a/TL<0.45
 ただし、
βs:シフトレンズ群の横倍率
βr:シフトレンズ群よりも像側に位置する全てのレンズの横倍率
TL1a:第1aレンズ群中の最も物体側のレンズ面から最も像側のレンズ面までの距離
TL:光学系中の最も物体側のレンズ面から像面までの距離
 斯かる本願の第2実施形態に係る光学系の製造方法によれば、小型で、諸収差を良好に補正し優れた光学性能を有する光学系を製造することができる。

Claims (18)

  1.  物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群とを有し、
     前記第1レンズ群が、物体側から順に、第1aレンズ群と、第1bレンズ群とを有し、
     前記第1aレンズ群と前記第1bレンズ群との空気間隔が、前記第1レンズ群中の空気間隔のうちで最大であり、
     以下の条件式を満足することを特徴とする光学系。
    0.00<|f/fF|<0.15
    0.17<TL1a/TL<0.45
     ただし、
    f:前記光学系の焦点距離
    fF:前記第1レンズ群と前記第2レンズ群の合成焦点距離
    TL1a:前記第1aレンズ群中の最も物体側のレンズ面から最も像側のレンズ面までの距離
    TL:前記光学系中の最も物体側のレンズ面から像面までの距離
  2.  以下の条件式を満足することを特徴とする請求項1に記載の光学系。
    1.40<f1a/f1b<2.20
     ただし、
    f1a:前記第1aレンズ群の焦点距離
    f1b:前記第1bレンズ群の焦点距離
  3.  以下の条件式を満足することを特徴とする請求項1に記載の光学系。
    -3.75<f1/f2<-3.25
     ただし、
    f1:前記第1レンズ群の焦点距離
    f2:前記第2レンズ群の焦点距離
  4.  前記第1aレンズ群中の最も像側のレンズは、負レンズであることを特徴とする請求項1に記載の光学系。
  5.  前記第1aレンズ群が以下の条件式を満足する少なくとも1枚の正レンズを有することを特徴とする請求項1に記載の光学系。
    90<νdp
     ただし、
    νdp:前記第1aレンズ群中の前記少なくとも1枚の正レンズの硝材のd線に対するアッベ数
  6.  前記第1bレンズ群が、物体側から順に、物体側に凸面を向けた負メニスカスレンズと正レンズとの接合レンズで構成されていることを特徴とする請求項1に記載の光学系。
  7.  前記第2レンズ群が、物体側から順に、像側に凹面を向けた負レンズと、正レンズと負レンズとの接合レンズとで構成されていることを特徴とする請求項1に記載の光学系。
  8.  請求項1に記載の光学系を有することを特徴とする光学装置。
  9.  物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群とを有する光学系の製造方法であって、
     前記第1レンズ群が、物体側から順に、第1aレンズ群と、第1bレンズ群とを有するようにし、
     前記第1aレンズ群と前記第1bレンズ群との空気間隔が、前記第1レンズ群中の空気間隔のうちで最大であるようにし、
     前記光学系が以下の条件式を満足するようにすることを特徴とする光学系の製造方法。
    0.00<|f/fF|<0.15
    0.17<TL1a/TL<0.45
     ただし、
    f:前記光学系の焦点距離
    fF:前記第1レンズ群と前記第2レンズ群の合成焦点距離
    TL1a:前記第1aレンズ群中の最も物体側のレンズ面から最も像側のレンズ面までの距離
    TL:前記光学系中の最も物体側のレンズ面から像面までの距離
  10.  物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群とを有し、
     前記第1レンズ群が、物体側から順に、第1aレンズ群と、第1bレンズ群とを有し、
     前記第1aレンズ群と前記第1bレンズ群との空気間隔が、前記第1レンズ群中の空気間隔のうちで最大であり、
     前記第3レンズ群の一部がシフトレンズ群として光軸と直交する方向の成分を含むように移動し、
     前記第3レンズ群が、前記シフトレンズ群よりも像側に少なくとも1つのレンズを有し、
     以下の条件式を満足することを特徴とする光学系。
    1.00<βr×(1-βs)<1.50
    0.16<TL1a/TL<0.45
     ただし、
    βs:前記シフトレンズ群の横倍率
    βr:前記シフトレンズ群よりも像側に位置する全てのレンズの横倍率
    TL1a:前記第1aレンズ群中の最も物体側のレンズ面から最も像側のレンズ面までの距離
    TL:前記光学系中の最も物体側のレンズ面から像面までの距離
  11.  前記シフトレンズ群が、物体側から順に、正レンズと、負レンズと、正レンズとを有することを特徴とする請求項10に記載の光学系。
  12.  以下の条件式を満足することを特徴とする請求項10に記載の光学系。
    0.00<|f/fF|<0.15
     ただし、
    f:前記光学系の焦点距離
    fF:前記第1レンズ群と前記第2レンズ群の合成焦点距離
  13.  以下の条件式を満足することを特徴とする請求項10に記載の光学系。
    1.40<f1a/f1b<2.20
     ただし、
    f1a:前記第1aレンズ群の焦点距離
    f1b:前記第1bレンズ群の焦点距離
  14.  前記第1aレンズ群中の最も像側のレンズは、負レンズであることを特徴とする請求項10に記載の光学系。
  15.  前記第1aレンズ群が以下の条件式を満足する少なくとも1枚の正レンズを有することを特徴とする請求項10に記載の光学系。
    90<νdp
     ただし、
    νdp:前記第1aレンズ群中の前記少なくとも1枚の正レンズの硝材のd線に対するアッベ数
  16.  前記第2レンズ群が、物体側から順に、像側に凹面を向けた負レンズと、正レンズと負レンズとの接合レンズとで構成されていることを特徴とする請求項10に記載の光学系。
  17.  請求項10に記載の光学系を有することを特徴とする光学装置。
  18.  物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群とを有する光学系の製造方法であって、
     前記第1レンズ群が、物体側から順に、第1aレンズ群と、第1bレンズ群とを有するようにし、
     前記第1aレンズ群と前記第1bレンズ群との空気間隔が、前記第1レンズ群中の空気間隔のうちで最大であるようにし、
     前記第3レンズ群の一部がシフトレンズ群として光軸と直交する方向の成分を含むように移動するようにし、
     前記第3レンズ群が、前記シフトレンズ群よりも像側に少なくとも1つのレンズを有するようにし、
     前記光学系が以下の条件式を満足するようにすることを特徴とする光学系の製造方法。
    1.00<βr×(1-βs)<1.50
    0.16<TL1a/TL<0.45
     ただし、
    βs:前記シフトレンズ群の横倍率
    βr:前記シフトレンズ群よりも像側に位置する全てのレンズの横倍率
    TL1a:前記第1aレンズ群中の最も物体側のレンズ面から最も像側のレンズ面までの距離
    TL:前記光学系中の最も物体側のレンズ面から像面までの距離
PCT/JP2015/062243 2014-05-13 2015-04-22 光学系、光学装置、光学系の製造方法 WO2015174230A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014099622A JP6531351B2 (ja) 2014-05-13 2014-05-13 光学系、光学装置
JP2014099621A JP6492416B2 (ja) 2014-05-13 2014-05-13 光学系、光学装置
JP2014-099621 2014-05-13
JP2014-099622 2014-05-13

Publications (1)

Publication Number Publication Date
WO2015174230A1 true WO2015174230A1 (ja) 2015-11-19

Family

ID=54479774

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/062243 WO2015174230A1 (ja) 2014-05-13 2015-04-22 光学系、光学装置、光学系の製造方法

Country Status (1)

Country Link
WO (1) WO2015174230A1 (ja)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61182012A (ja) * 1985-02-07 1986-08-14 Minolta Camera Co Ltd 大口径比ズ−ムレンズ
JPH07270724A (ja) * 1994-03-29 1995-10-20 Nikon Corp 像位置補正光学系
JPH085906A (ja) * 1994-06-15 1996-01-12 Olympus Optical Co Ltd 望遠レンズ
JP2000162499A (ja) * 1998-11-27 2000-06-16 Fuji Xerox Co Ltd 結像レンズ系および記録光学装置
JP2005321574A (ja) * 2004-05-07 2005-11-17 Nikon Corp 大口径比内焦望遠レンズ
JP2005331851A (ja) * 2004-05-21 2005-12-02 Canon Inc フロントコンバータレンズ
JP2008241904A (ja) * 2007-03-26 2008-10-09 Nidec Copal Corp ズームレンズ
JP2009251398A (ja) * 2008-04-09 2009-10-29 Nikon Corp 撮影レンズ、この撮影レンズを備えた光学機器、及び、結像方法
JP2013161076A (ja) * 2012-02-03 2013-08-19 Sigma Corp インナーフォーカス式望遠レンズ
JP2013250293A (ja) * 2012-05-30 2013-12-12 Nikon Corp 撮影レンズ、光学機器、および撮影レンズの製造方法
JP2014038305A (ja) * 2012-07-20 2014-02-27 Panasonic Corp インナーフォーカスレンズ系、交換レンズ装置及びカメラシステム

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61182012A (ja) * 1985-02-07 1986-08-14 Minolta Camera Co Ltd 大口径比ズ−ムレンズ
JPH07270724A (ja) * 1994-03-29 1995-10-20 Nikon Corp 像位置補正光学系
JPH085906A (ja) * 1994-06-15 1996-01-12 Olympus Optical Co Ltd 望遠レンズ
JP2000162499A (ja) * 1998-11-27 2000-06-16 Fuji Xerox Co Ltd 結像レンズ系および記録光学装置
JP2005321574A (ja) * 2004-05-07 2005-11-17 Nikon Corp 大口径比内焦望遠レンズ
JP2005331851A (ja) * 2004-05-21 2005-12-02 Canon Inc フロントコンバータレンズ
JP2008241904A (ja) * 2007-03-26 2008-10-09 Nidec Copal Corp ズームレンズ
JP2009251398A (ja) * 2008-04-09 2009-10-29 Nikon Corp 撮影レンズ、この撮影レンズを備えた光学機器、及び、結像方法
JP2013161076A (ja) * 2012-02-03 2013-08-19 Sigma Corp インナーフォーカス式望遠レンズ
JP2013250293A (ja) * 2012-05-30 2013-12-12 Nikon Corp 撮影レンズ、光学機器、および撮影レンズの製造方法
JP2014038305A (ja) * 2012-07-20 2014-02-27 Panasonic Corp インナーフォーカスレンズ系、交換レンズ装置及びカメラシステム

Similar Documents

Publication Publication Date Title
JP5498259B2 (ja) 高変倍率ズームレンズ
JP5126668B2 (ja) 撮影レンズ、これを搭載する光学装置および像ブレ補正方法
JP2011175098A (ja) 変倍光学系、光学装置、変倍光学系の製造方法
JP5246226B2 (ja) 光学系、光学装置、光学系の製造方法
JP6531351B2 (ja) 光学系、光学装置
JP5861971B2 (ja) 高変倍率ズームレンズ
JP6344044B2 (ja) 光学系、光学装置
JP6331673B2 (ja) 光学系、光学装置
JP5958018B2 (ja) ズームレンズ、撮像装置
JP5545531B2 (ja) 撮影レンズ、この撮影レンズを有する光学機器、及び、撮影レンズの製造方法
JP5877515B2 (ja) 高変倍率ズームレンズ
WO2015136988A1 (ja) ズームレンズ、光学装置、ズームレンズの製造方法
JP6264916B2 (ja) 光学系、光学装置
JP6264915B2 (ja) 光学系、光学装置
JP6264914B2 (ja) 光学系、光学装置
JP5900764B2 (ja) 高変倍率ズームレンズ
JP6492416B2 (ja) 光学系、光学装置
WO2015174230A1 (ja) 光学系、光学装置、光学系の製造方法
JP5326433B2 (ja) 変倍光学系、及び、この変倍光学系を備えた光学機器
JP6405629B2 (ja) 光学系、光学装置
JP6405630B2 (ja) 光学系、光学装置
JP6364778B2 (ja) 光学系、光学装置
JP5877516B2 (ja) 高変倍率ズームレンズ
JP5861972B2 (ja) 高変倍率ズームレンズ
JP6543883B2 (ja) 光学系、光学装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15793318

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15793318

Country of ref document: EP

Kind code of ref document: A1