WO2015167069A1 - Ceramic-polymer composite particles, ceramic-polymer composite particle granular cluster, and method for preparing ceramic-polymer composite particles by using fluidized bed coating granulation process - Google Patents

Ceramic-polymer composite particles, ceramic-polymer composite particle granular cluster, and method for preparing ceramic-polymer composite particles by using fluidized bed coating granulation process Download PDF

Info

Publication number
WO2015167069A1
WO2015167069A1 PCT/KR2014/005044 KR2014005044W WO2015167069A1 WO 2015167069 A1 WO2015167069 A1 WO 2015167069A1 KR 2014005044 W KR2014005044 W KR 2014005044W WO 2015167069 A1 WO2015167069 A1 WO 2015167069A1
Authority
WO
WIPO (PCT)
Prior art keywords
ceramic
polymer composite
particles
fluidized bed
thermoplastic resin
Prior art date
Application number
PCT/KR2014/005044
Other languages
French (fr)
Korean (ko)
Inventor
송명훈
박진주
신영민
이원혁
황금철
이창규
Original Assignee
주식회사 대화알로이테크
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 대화알로이테크 filed Critical 주식회사 대화알로이테크
Publication of WO2015167069A1 publication Critical patent/WO2015167069A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F1/00Shielding characterised by the composition of the materials
    • G21F1/02Selection of uniform shielding materials
    • G21F1/06Ceramics; Glasses; Refractories

Definitions

  • the present invention relates to a method for producing ceramic-polymer composite particles using ceramic-polymer composite particles, ceramic-polymer composite particles granular clusters and fluidized bed coating granulation processes.
  • spent nuclear fuel generated by nuclear power plants generates a large amount of thermal neutrons, and used nuclear fuel is stored in temporary underwater storage in the power plant to prevent these thermal neutrons from being released to the outside.
  • spent fuel cannot be disposed of (reprocessed), and as the generation of spent fuel continues to increase due to the continuous increase in the use of power, the storage space is saturated and the problem of securing the storage space is a big issue. It is emerging.
  • the spent fuel storage container material should basically have excellent thermal neutron absorbing capacity, and the material having excellent corrosion resistance should be applied so as not to be damaged by corrosion.
  • neutron shielding / absorption metal composite materials are manufactured by adding tens of micron-sized boron or boron compounds to aluminum alloys or stainless steels, which are known as base metals.
  • base metals which are known as base metals.
  • the content of boron compounds exceeds a certain amount, hot workability, cold workability, toughness And there is a problem that the weldability and the like is sharply lowered.
  • stainless steel has little solubility of boron in the austenite phase, very small amounts of boron, such as about 2 wt%, may be added, and thus high shielding performance is difficult to be expected.
  • Direct coating of polymer-boron composite powder for neutron shielding which can be directly coated on the structure to maintain high neutron absorption and maintain mechanical strength as a structure to increase the boron content to improve shielding efficiency of spent fuel storage facilities. Technology is urgently needed.
  • the present invention has been made to solve the above problems, and an object of the present invention is to directly coat a structure to maintain high mechanical absorption as a structure while maintaining high neutron absorption for improving shielding efficiency of spent fuel storage facilities.
  • the present invention provides a method for producing ceramic-polymer composite particles using ceramic-polymer composite particles, ceramic-polymer composite particles granular clusters, and fluidized bed coating granulation processes.
  • a ceramic-polymer composite particle comprising ceramic particles and a thermoplastic resin.
  • the ceramic particles may include a radiation shielding material.
  • the radiation shielding material may include at least one selected from the group consisting of B 4 C, B 2 O 3 , BN, Gd 2 O 3 , GdC 2 , GdN, AlB 2 and TiB 2 .
  • the radiation shielding material is at least one selected from the group consisting of boron (B), gadolinium (Gd), silver (Ag) and cadmium (Cd), or carbides, oxides or nitrides of boron or gadolinium, or metal borides It may be to include.
  • thermoplastic resin may be organic solvent soluble.
  • the thermoplastic resin may include low density polyethylene (LDPE), linear low density polyethylene (LLDPE), polyethylene terephthalate (PET), polyetheretherketone (PEEK), poly (Poly) Propylene (polypropylene; PP), polystyrene (PS), polyamides (PA), polyester (PES), polyvinyl chloride (PVC), polyurethane (PU), polycarbonate (polycarbonate; PC), polyvinylidene chloride (PVDC), polytetrafluoroethylene (PTFE) and polyetherimide (PEI) may include at least one selected from the group consisting of. .
  • LDPE low density polyethylene
  • LLDPE linear low density polyethylene
  • PET polyethylene terephthalate
  • PEEK polyetheretherketone
  • PA polyamides
  • PET polyvinyl chloride
  • PVC polyurethane
  • PU polycarbonate
  • PVDC polyvinylidene chloride
  • PEI polytetrafluoroethylene
  • the ceramic-polymer composite particle is a core; And it may be to include a shell surrounding the core.
  • the core may include the ceramic particles
  • the shell may include the thermoplastic resin.
  • the core may be a single particle or a collection of particles.
  • the core particle may have a particle diameter of 0.1 to 100 ⁇ m, and the shell may have a thickness of 0.001 to 5 mm.
  • the ceramic particles may be 10% by weight to 90% by weight, and the thermoplastic resin may be 10% by weight to 90% by weight.
  • the ceramic-polymer composite particles may be spherical or polygonal in shape.
  • a ceramic-polymer composite particle granular cluster formed by agglomeration of the ceramic-polymer composite particles according to the first aspect.
  • the step of preparing a coating solution by dissolving or dispersing a thermoplastic resin in a solvent And coating the thermoplastic resin on the surface of the ceramic particles by spraying the coating solution into a fluidized bed coating equipment chamber in which ceramic particles are flowing.
  • the manufacturing method of the ceramic-polymer composite particle comprising the fluidized bed coating granulation process Provide a method.
  • the coating solution manufacturing step may be to dissolve the thermoplastic resin in a solvent heated to 60 °C or more.
  • the coating liquid is injected into the fluidized bed coating equipment chamber having an internal temperature of 30 °C to 300 °C at a pressure of 0.5 bar to 2.5 bar through a spray nozzle having a diameter of 0.6 mm to 1.5 mm It may be.
  • the flow of the ceramic particles may be upward in the reaction chamber, and the injection of the coating liquid may be downward in the reaction chamber.
  • Cooling and curing the thermoplastic resin coated on the surface of the ceramic particles may further include.
  • Granulating a plurality of the ceramic-polymer composite particles to form a ceramic-polymer composite particle granular cluster may further include.
  • a ceramic-polymer composite particle according to the first aspect produced by the method for producing a ceramic-polymer composite particle using the fluidized bed coating granulation process according to the third aspect.
  • the ceramic-polymer composite particles using the ceramic-polymer composite particles, the ceramic-polymer composite particles granular clusters and the fluidized bed coating granulation process of the present invention the agglomeration (agglomeration) is hardly generated by a simple method -Since the polymer composite particles can be produced, no post-processing such as grinding is required, and a uniform coating film can be obtained on the surface of the ceramic particles having excellent neutron absorption ability, so that the product properties are excellent and the process can be completed in a short time. It is economical. In addition, it can be directly coated on the structure to maintain a high neutron absorption performance while maintaining the mechanical strength as a structure to improve the shielding efficiency of spent fuel storage facilities.
  • FIG. 1 is a view schematically showing a ceramic-polymer composite particle according to an embodiment of the present invention.
  • FIG. 2 is a view schematically showing a ceramic-polymer composite particle according to another embodiment of the present invention.
  • FIG. 3 is a view schematically showing a ceramic-polymer composite particle according to another embodiment of the present invention.
  • FIG. 4 is a view schematically showing a ceramic-polymer composite particle according to another embodiment of the present invention.
  • FIG. 5 is a view schematically showing a ceramic-polymer composite particle granular cluster according to an embodiment of the present invention.
  • FIG. 6 is a view schematically illustrating a manufacturing process of a method of manufacturing ceramic-polymer composite particles using a fluidized bed coating granulation process according to an embodiment of the present invention.
  • FIG. 7 is a view showing a schematic diagram of a process of the fluidized bed coating granulation in the fluidized bed coating granulation equipment according to an embodiment of the present invention.
  • a ceramic-polymer composite particle comprising ceramic particles and a thermoplastic resin.
  • the ceramic-polymer composite particle 100 according to an embodiment of the present invention may include ceramic particles 110 and a thermoplastic resin 120.
  • the ceramic particles 110 may include a radiation shielding material.
  • the radiation shielding material may include at least one selected from the group consisting of B 4 C, B 2 O 3 , BN, Gd 2 O 3 , GdC 2 , GdN, AlB 2 and TiB 2 .
  • the radiation shielding material is at least one selected from the group consisting of boron (B), gadolinium (Gd), silver (Ag) and cadmium (Cd), or carbides, oxides or nitrides of boron or gadolinium, or metal borides It may be to include.
  • the isotopic content of B-10 in boron is preferably 19.9% or more, and the isotope content of Gd-157 in gadolinium is 16.65 when containing gadolinium. It is preferable that it is% or more.
  • the thermoplastic resin 120 may be organic solvent soluble.
  • the thermoplastic resin may include low density polyethylene (LDPE), linear low density polyethylene (LLDPE), polyethylene terephthalate (PET), polyetheretherketone (PEEK), poly (Poly) Propylene (polypropylene; PP), polystyrene (PS), polyamides (PA), polyester (PES), polyvinyl chloride (PVC), polyurethane (PU), polycarbonate (polycarbonate; PC), polyvinylidene chloride (PVDC), polytetrafluoroethylene (PTFE) and polyetherimide (PEI) may include at least one selected from the group consisting of. .
  • the ceramic-polymer composite particle 100 is a core; And a shell surrounding the core, wherein the core may include the ceramic particles 110 and the shell may include the thermoplastic resin 120.
  • the shell may be a single layer or may be a multilayer. When a multilayer shell is included, the thermoplastic resin of the same component may be sufficient, and the thermoplastic resin of a different component may respectively be sufficient.
  • the core may be a single particle, but as in FIGS. 2 and 4, the ceramic particles may be an aggregate.
  • the ceramic particles 110 may be 10 wt% to 90 wt%. When the ceramic particles are less than 10% by weight, the thermal neutron absorbing ability may be lowered, and when the ceramic particles are greater than 90% by weight, there may be a problem in bonding strength after application.
  • the thermoplastic resin 120 may be from 10% by weight to 90% by weight. If the thermoplastic resin is less than 10% by weight, the bonding strength may be reduced after application, and if the thermoplastic resin is more than 90% by weight, the thermal neutron absorbing ability may be deteriorated.
  • the ceramic-polymer composite particle 100 may be spherical as in FIGS. 1 and 2, but may be pentagonal as in FIGS. 3A and 4A, and As shown in (b) and (b) of FIG. 4, it may be hexagonal. Also, triangles, squares,... It may be a polygonal shape of n-square.
  • the ceramic-polymer composite particle 100 may be used as a radiation shielding coating material because of excellent radiation shielding performance.
  • a ceramic-polymer composite particle granular cluster formed by agglomeration of the ceramic-polymer composite particles according to the first aspect.
  • FIG. 5 is a view schematically showing a ceramic-polymer composite particle granular cluster according to an embodiment of the present invention. As shown in FIG. 5, the ceramic-polymer composite particles 100 may aggregate to form the ceramic-polymer composite particle granular cluster 200.
  • the ceramic-polymer composite particle granular cluster 200 may also be used as a radiation shielding coating material due to its excellent radiation shielding performance.
  • the step of preparing a coating solution by dissolving or dispersing a thermoplastic resin in a solvent And coating the thermoplastic resin on the surface of the ceramic particles by spraying the coating solution into a fluidized bed coating equipment chamber in which ceramic particles are flowing.
  • the manufacturing method of the ceramic-polymer composite particle comprising the fluidized bed coating granulation process Provide a method.
  • FIG. 6 is a view schematically illustrating a manufacturing process of a method of manufacturing ceramic-polymer composite particles using a fluidized bed coating granulation process according to an embodiment of the present invention.
  • a coating solution is prepared by dissolving or dispersing a thermoplastic resin in a solvent (S110).
  • the coating solution manufacturing step may be to dissolve the thermoplastic resin in a solvent heated to 60 °C or more.
  • the solvent is an organic solvent, for example, methanol, ethanol, acetone, benzaldehyde, benzene, benzyl alcohol, n-butyl alcohol, carbon tetrachloride, cyclohexane, ethyl acetate, n-hexane, isobutyl alcohol, isopropyl alcohol, methyl Ethyl ketone, n-octyl alcohol, n-propyl alcohol, toluene, xylene, pentachloroethane, 1,1,2,2-tetrachloroethane, trichloroethane, trichloroethylene, tetrachloroethylene, 1,4-di Oxane, dichloromethane, chloroform, ethyl bromide, ethyl chloride, dichloroethyl ether, dichloropropane, trichloroethane, 1,2-dichlorobenzene
  • the coating solution is sprayed into a fluidized bed coating equipment chamber in which ceramic particles are flowing to coat the thermoplastic resin on the surface of the ceramic particles (S120).
  • the ceramic particles may include a radiation shielding material.
  • the radiation shielding material may include at least one selected from the group consisting of B 4 C, B 2 O 3 , BN, Gd 2 O 3 , GdC 2 , GdN, AlB 2 and TiB 2 .
  • the radiation shielding material is at least one selected from the group consisting of boron (B), gadolinium (Gd), silver (Ag) and cadmium (Cd), or carbides, oxides or nitrides of boron or gadolinium, or metal borides It may be to include.
  • the isotopic content of B-10 in boron is preferably 19.9% or more, and the isotope content of Gd-157 in gadolinium is 16.65 when containing gadolinium. It is preferable that it is% or more.
  • the coating liquid was sprayed into the fluidized bed coating equipment chamber having an internal temperature of 30 ° C. to 300 ° C. through a spray nozzle having a diameter of 0.6 mm to 1.5 mm (a spray nozzle of 0.6 mm ⁇ (pie) to 1.5 mm ⁇ size) from 0.5 bar to 2.5. It may be sprayed at a pressure of bar.
  • FIG. 7 is a view showing a schematic diagram of a process of the fluidized bed coating granulation in the fluidized bed coating granulation equipment according to an embodiment of the present invention.
  • the flow of the ceramic particles may be upward in the reaction chamber, and the injection of the coating liquid may be downward in the reaction chamber.
  • the coating liquid is sprayed on the surface of the ceramic particles flowing in the upward direction maintained at an appropriate temperature, the solvent of the coating liquid in contact with the surface of the ceramic particles is volatilized to form a coating film on the surface of the ceramic particles.
  • the temperature inside the chamber is different depending on the solvent used, it is preferable to maintain at 30 to 300 °C.
  • the fluidized bed coating granulation process is a liquid spray coating method in which a coating liquid containing a thermoplastic resin is sprayed under optimum conditions while fluidizing the ceramic particles using a fluidized bed coating granulation equipment when coating the thermoplastic resin on the surface of the ceramic particles.
  • the solvent of the coating liquid is evaporated by the temperature of the fluidized bed coating granulation equipment chamber and the temperature of the ceramic particles so that the binder is uniformly coated on the surface of the ceramic particles. Therefore, the uniform coating of the binder on the surface of the ceramic particles improves the electrical insulating properties, stability and physicochemical surface properties of the flowability of the powder.
  • thermoplastic resin coated on the surface of the ceramic particles may be further cooled and cured (S130).
  • the cooling and coating processes may be repeated to form an outer portion of the ceramic-polymer composite particle as a shell of multiple layers.
  • a plurality of ceramic-polymer composite particles may be granulated to form ceramic-polymer composite particle granular clusters (S140).
  • Ceramic-polymer multiparticulate clusters can be directly coated on top of structures to maintain high mechanical absorption as well as high neutron absorption to improve shielding efficiency in spent fuel storage facilities.
  • a ceramic-polymer composite particle according to the first aspect produced by the method for producing a ceramic-polymer composite particle using the fluidized bed coating granulation process according to the third aspect.
  • Ceramic-polymer composite with little aggregation occurs by a simple method by the method of producing ceramic-polymer composite particles, ceramic-polymer composite particles, granular clusters and fluidized bed coating granulation process of the present invention Since the particles can be manufactured, no post-processing such as grinding is required, and a uniform coating film can be obtained on the surface of the ceramic particles having excellent neutron absorption ability, so that the characteristics of the product are excellent and the process can be completed in a short time. to be. In addition, it can be directly coated on the structure to maintain a high neutron absorption performance while maintaining the mechanical strength as a structure to improve the shielding efficiency of spent fuel storage facilities.
  • low density polyethylene (LDPE) as a thermoplastic resin and tetrachloroethylene (TCE) as an organic solvent were mixed and heated to 60 ° C to completely dissolve it.
  • B 4 C as ceramic particles was placed at the bottom of the chamber of the fluidized bed coating granulation equipment.
  • the B 4 C placed in the chamber was fluidized by the blown air. Since the coating completely dissolved in the TCE was sprayed at the same time as the injection into the fluidized bed coating granulation equipment through the milk pipe was gradually applied to the ceramic particles and coated.
  • Table 1 below shows each Example and Comparative Example conditions and the thermal neutron absorption cross-sectional coefficient of the ceramic-polymer composite particles.
  • the individual particles In order for the polymer to be uniformly applied to the B 4 C particles, the individual particles must be sufficiently coated.
  • the ceramic-polymer composite particles of Examples 1 and 2 were superior to the ceramic-polymer composite particles of Comparative Example 1.
  • the ceramic-polymer composite particles of Example 1 were larger in size of the individual particles, and the ceramic-polymer composite particles of Example 2 exhibited a state in which granules were advanced before coating was sufficiently performed. It can be seen that the ceramic-polymer composite particles are prepared under more preferable conditions.
  • thermal neutron absorption cross-sectional coefficient ( ⁇ th , cm -1 )
  • the thermal neutron absorption cross-sectional coefficients of Example 1 and Example 2 are 3.5 and 3.2, respectively, and it can be seen that the thermal neutron absorption ability is remarkably superior to Comparative Examples 1 to 4.

Abstract

The present invention relates to ceramic-polymer composite particles, a ceramic-polymer composite particle granular cluster, and a method for preparing ceramic-polymer composite particles by using a fluidized bed coating granulation process, and ceramic-polymer composite particles according to one embodiment of the present invention comprise ceramic particles and a thermoplastic resin.

Description

세라믹-폴리머 복합입자, 세라믹-폴리머 복합입자 과립형 클러스터 및 유동층 코팅과립화 공정을 이용한 세라믹-폴리머 복합입자의 제조 방법Ceramic-Polymer Composite Particles, Ceramic-Polymer Composite Particles Granular Clusters and Fluidized Bed Coating Granulation Process
본 발명은 세라믹-폴리머 복합입자, 세라믹-폴리머 복합입자 과립형 클러스터 및 유동층 코팅과립화 공정을 이용한 세라믹-폴리머 복합입자의 제조 방법에 관한 것이다.The present invention relates to a method for producing ceramic-polymer composite particles using ceramic-polymer composite particles, ceramic-polymer composite particles granular clusters and fluidized bed coating granulation processes.
현재 원자력 발전소에서 발생하는 사용후 핵연료는 많은 양의 열중성자가 발생되며 이러한 열중성자가 외부로 방출되는 것을 방지하기 위해 사용후 핵연료를 발전소 내의 임시 수중 저장고에서 보관하고 있는 실정이다. 또한, 국내의 경우 사용후 핵연료를 처분(재처리)할 수 없으며, 계속적인 전력 사용의 급증으로 사용후 핵연료의 발생량이 지속적으로 증가함에 따라 저장 공간이 포화되면서 저장 공간의 확보 문제가 큰 이슈로 대두되고 있다. 사용후 핵연료 저장 용기 소재는 기본적으로 우수한 열중성자 흡수능을 구비하고 있어야 하며, 부식에 의해 손상을 받지 않도록 우수한 부식저항성을 갖는 소재가 적용되어야 한다. 그 외에도 중성자에 대한 저항성, 기계적 안정도, 재질의 무게, 감속재의 소모성, 기체발생률 등에 있어서 문제가 발생하지 않아야 한다.At present, spent nuclear fuel generated by nuclear power plants generates a large amount of thermal neutrons, and used nuclear fuel is stored in temporary underwater storage in the power plant to prevent these thermal neutrons from being released to the outside. In addition, in Korea, spent fuel cannot be disposed of (reprocessed), and as the generation of spent fuel continues to increase due to the continuous increase in the use of power, the storage space is saturated and the problem of securing the storage space is a big issue. It is emerging. The spent fuel storage container material should basically have excellent thermal neutron absorbing capacity, and the material having excellent corrosion resistance should be applied so as not to be damaged by corrosion. In addition, there should be no problems in resistance to neutrons, mechanical stability, weight of materials, consumption of moderator, gas generation rate, etc.
일반적으로 중성자 차폐/흡수용 금속복합소재는 기지금속인 알루미늄합금이나 스테인리스강에 수십 마이크론 크기의 보론 또는 보론 화합물을 첨가하여 제조하는데, 보론 화합물의 함량이 일정량 이상이 되면 열간가공성, 냉간가공성, 인성 및 용접성 등이 급격하게 저하되는 문제점이 발생한다. 특히 스테인리스강의 경우 오스테나이트상 내의 보론의 용해도가 거의 없기 때문에 2 wt% 정도의 매우 소량의 보론이 첨가될 수밖에 없으며 이 때문에 높은 차폐성능을 기대하기 어려운 실정이다. 사용후 핵연료 저장 시설의 차폐 효율성 향상을 위해 보론의 함유량을 증가시켜 높은 중성자 흡수 성능을 보유함과 동시에 구조체로서의 기계적 강도를 유지할 수 있도록 구조체 위에 직접 코팅이 가능한 중성자 차폐용 폴리머-보론 복합분말 직접 코팅 기술이 개발이 절실히 필요하다.In general, neutron shielding / absorption metal composite materials are manufactured by adding tens of micron-sized boron or boron compounds to aluminum alloys or stainless steels, which are known as base metals. When the content of boron compounds exceeds a certain amount, hot workability, cold workability, toughness And there is a problem that the weldability and the like is sharply lowered. In particular, since stainless steel has little solubility of boron in the austenite phase, very small amounts of boron, such as about 2 wt%, may be added, and thus high shielding performance is difficult to be expected. Direct coating of polymer-boron composite powder for neutron shielding, which can be directly coated on the structure to maintain high neutron absorption and maintain mechanical strength as a structure to increase the boron content to improve shielding efficiency of spent fuel storage facilities. Technology is urgently needed.
본 발명은 상술한 문제점을 해결하기 위한 것으로, 본 발명의 목적은, 사용후 핵연료 저장 시설의 차폐 효율성 향상을 위해 높은 중성자 흡수 성능을 보유함과 동시에 구조체로서의 기계적 강도를 유지할 수 있도록 구조체 위에 직접 코팅이 가능한 세라믹-폴리머 복합입자, 세라믹-폴리머 복합입자 과립형 클러스터 및 유동층 코팅과립화 공정을 이용한 세라믹-폴리머 복합입자의 제조 방법을 제공하는 것이다.SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and an object of the present invention is to directly coat a structure to maintain high mechanical absorption as a structure while maintaining high neutron absorption for improving shielding efficiency of spent fuel storage facilities. The present invention provides a method for producing ceramic-polymer composite particles using ceramic-polymer composite particles, ceramic-polymer composite particles granular clusters, and fluidized bed coating granulation processes.
그러나, 본 발명이 해결하고자 하는 과제는 이상에서 언급한 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 통상의 기술자에게 명확하게 이해될 수 있을 것이다.However, the problem to be solved by the present invention is not limited to the above-mentioned problem, another task that is not mentioned will be clearly understood by those skilled in the art from the following description.
본 발명의 제1 측면에 따르면 세라믹 입자 및 열가소성 수지를 포함하는 세라믹-폴리머 복합입자를 제공한다.According to a first aspect of the present invention, there is provided a ceramic-polymer composite particle comprising ceramic particles and a thermoplastic resin.
상기 세라믹 입자는 방사선 차폐성 물질을 포함하는 것일 수 있다.The ceramic particles may include a radiation shielding material.
상기 방사선 차폐성 물질은, B4C, B2O3, BN, Gd2O3, GdC2, GdN, AlB2및 TiB2으로 이루어진 군에서 선택되는 적어도 어느 하나를 포함하는 것일 수 있다.The radiation shielding material may include at least one selected from the group consisting of B 4 C, B 2 O 3 , BN, Gd 2 O 3 , GdC 2 , GdN, AlB 2 and TiB 2 .
상기 방사선 차폐성 물질은, 붕소(B), 가돌리늄(Gd), 은(Ag) 및 카드뮴(Cd)으로 이루어진 군에서 선택되는 적어도 어느 하나, 또는, 붕소 또는 가돌리늄의 탄화물, 산화물 또는 질화물, 또는 붕화금속을 포함하는 것일 수 있다.The radiation shielding material is at least one selected from the group consisting of boron (B), gadolinium (Gd), silver (Ag) and cadmium (Cd), or carbides, oxides or nitrides of boron or gadolinium, or metal borides It may be to include.
상기 열가소성 수지는, 유기용매 용해성인 것일 수 있다.The thermoplastic resin may be organic solvent soluble.
상기 열가소성 수지는, 저밀도폴리에틸렌(low density poly ethylene; LDPE), 선형 저밀도폴리에틸렌(linear low density poly ethylene; LLDPE), 폴리에틸렌 테레프탈레이트(polyethylene terephthalate; PET), 폴리에테르에테르케톤(polyetheretherketone; PEEK), 폴리프로필렌(polypropylene; PP), 폴리스티렌(polystyrene; PS), 폴리아미드(polyamides; PA), 폴리에스테르(polyester; PES), 폴리염화비닐(polyvinyl chloride; PVC), 폴리우레탄(polyurethanes; PU), 폴리카보네이트(polycarbonate; PC), 폴리염화비닐리덴(polyvinylidene chloride; PVDC), 폴리테트라플루오르에틸렌(polytetrafluoroethylene; PTFE) 및 폴리에테르이미드(polyetherimide; PEI)로 이루어지는 군으로부터 선택되는 적어도 어느 하나를 포함하는 것일 수 있다.The thermoplastic resin may include low density polyethylene (LDPE), linear low density polyethylene (LLDPE), polyethylene terephthalate (PET), polyetheretherketone (PEEK), poly (Poly) Propylene (polypropylene; PP), polystyrene (PS), polyamides (PA), polyester (PES), polyvinyl chloride (PVC), polyurethane (PU), polycarbonate (polycarbonate; PC), polyvinylidene chloride (PVDC), polytetrafluoroethylene (PTFE) and polyetherimide (PEI) may include at least one selected from the group consisting of. .
상기 세라믹-폴리머 복합입자는 코어; 및 상기 코어를 감싸는 쉘을 포함하는 것일 수 있다.The ceramic-polymer composite particle is a core; And it may be to include a shell surrounding the core.
상기 코어는 상기 세라믹 입자를 포함하고, 상기 쉘은 상기 열가소성 수지를 포함하는 것일 수 있다.The core may include the ceramic particles, and the shell may include the thermoplastic resin.
상기 코어는 단일 입자 또는 입자들의 집합체인 것일 수 있다.The core may be a single particle or a collection of particles.
상기 코어 입자의 입경은 0.1 내지 100 ㎛이고, 상기 쉘의 두께는 0.001 내지 5 mm인 것일 수 있다.The core particle may have a particle diameter of 0.1 to 100 μm, and the shell may have a thickness of 0.001 to 5 mm.
상기 세라믹-폴리머 복합입자 중, 상기 세라믹 입자는 10 중량% 내지 90 중량%이고, 상기 열가소성 수지는 10 중량% 내지 90 중량%인 것일 수 있다.Among the ceramic-polymer composite particles, the ceramic particles may be 10% by weight to 90% by weight, and the thermoplastic resin may be 10% by weight to 90% by weight.
상기 세라믹-폴리머 복합입자는, 구형 또는 다각형 형상인 것일 수 있다.The ceramic-polymer composite particles may be spherical or polygonal in shape.
본 발명의 제2 측면에 따르면, 상기 제1 측면에 따른 세라믹-폴리머 복합입자들이 뭉쳐서 형성된 세라믹-폴리머 복합입자 과립형 클러스터를 제공한다.According to a second aspect of the present invention, there is provided a ceramic-polymer composite particle granular cluster formed by agglomeration of the ceramic-polymer composite particles according to the first aspect.
본 발명의 제3 측면에 따르면, 용매에 열가소성 수지를 용해 또는 분산시켜 코팅액을 제조하는 단계; 및 상기 코팅액을 세라믹 입자가 유동되고 있는 유동층 코팅 장비 챔버 내로 분사하여 상기 세라믹 입자의 표면 상에 상기 열가소성 수지를 코팅하는 단계;를 포함하는, 유동층 코팅과립화 공정을 이용한 세라믹-폴리머 복합입자의 제조 방법을 제공한다.According to a third aspect of the invention, the step of preparing a coating solution by dissolving or dispersing a thermoplastic resin in a solvent; And coating the thermoplastic resin on the surface of the ceramic particles by spraying the coating solution into a fluidized bed coating equipment chamber in which ceramic particles are flowing. The manufacturing method of the ceramic-polymer composite particle comprising the fluidized bed coating granulation process Provide a method.
상기 코팅액 제조 단계는, 상기 열가소성 수지를 60℃ 이상으로 가열된 용매에 용해시키는 것일 수 있다.The coating solution manufacturing step may be to dissolve the thermoplastic resin in a solvent heated to 60 ℃ or more.
상기 열가소성 수지의 코팅 단계는, 상기 코팅액은 내부온도가 30℃ 내지 300℃인 상기 유동층 코팅장비 챔버 내로 분사구의 직경이 0.6 mm 내지 1.5 mm 인 분무노즐을 통해 0.5 bar 내지 2.5 bar의 압력으로 분사되는 것일 수 있다.In the coating step of the thermoplastic resin, the coating liquid is injected into the fluidized bed coating equipment chamber having an internal temperature of 30 ℃ to 300 ℃ at a pressure of 0.5 bar to 2.5 bar through a spray nozzle having a diameter of 0.6 mm to 1.5 mm It may be.
상기 세라믹 입자의 유동은 상기 반응 챔버 내 상방향이고, 상기 코팅액의 분사는 상기 반응 챔버 내 하방향인 것일 수 있다.The flow of the ceramic particles may be upward in the reaction chamber, and the injection of the coating liquid may be downward in the reaction chamber.
상기 세라믹 입자의 표면 상에 코팅된 상기 열가소성 수지를 냉각하여 경화하는 단계;를 더 포함할 수 있다.Cooling and curing the thermoplastic resin coated on the surface of the ceramic particles; may further include.
복수의 상기 세라믹-폴리머 복합입자들이 과립화하여 세라믹-폴리머 복합입자 과립형 클러스터를 형성하는 단계;를 더 포함할 수 있다.Granulating a plurality of the ceramic-polymer composite particles to form a ceramic-polymer composite particle granular cluster; may further include.
본 발명의 제4 측면에 따르면, 상기 제3 측면에 따른 유동층 코팅과립화 공정을 이용한 세라믹-폴리머 복합입자의 제조 방법에 의해 제조된 제1측면에 따른 세라믹-폴리머 복합입자를 제공한다.According to the fourth aspect of the present invention, there is provided a ceramic-polymer composite particle according to the first aspect produced by the method for producing a ceramic-polymer composite particle using the fluidized bed coating granulation process according to the third aspect.
본 발명의 세라믹-폴리머 복합입자, 세라믹-폴리머 복합입자 과립형 클러스터 및 유동층 코팅과립화 공정을 이용한 세라믹-폴리머 복합입자의 제조 방법에 의하여, 간단한 방법으로 뭉침(agglomeration) 현상이 거의 발생하지 않는 세라믹-폴리머 복합입자를 제조할 수 있기 때문에 분쇄 등의 후공정이 필요하지 않고, 중성자 흡수 능력이 우수한 세라믹 입자의 표면에 균일한 코팅막을 얻을 수 있으므로 제품의 특성이 우수하며, 단시간에 공정을 완료할 수 있어 경제적이다. 또한, 사용후 핵연료 저장 시설의 차폐 효율성 향상을 위해 높은 중성자 흡수 성능을 보유함과 동시에 구조체로서의 기계적 강도를 유지할 수 있도록 구조체 위에 직접 코팅이 가능하다.The ceramic-polymer composite particles using the ceramic-polymer composite particles, the ceramic-polymer composite particles granular clusters and the fluidized bed coating granulation process of the present invention, the agglomeration (agglomeration) is hardly generated by a simple method -Since the polymer composite particles can be produced, no post-processing such as grinding is required, and a uniform coating film can be obtained on the surface of the ceramic particles having excellent neutron absorption ability, so that the product properties are excellent and the process can be completed in a short time. It is economical. In addition, it can be directly coated on the structure to maintain a high neutron absorption performance while maintaining the mechanical strength as a structure to improve the shielding efficiency of spent fuel storage facilities.
도 1은 본 발명의 일 실시예에 따른 세라믹-폴리머 복합입자를 개략적으로 도시한 도면이다.1 is a view schematically showing a ceramic-polymer composite particle according to an embodiment of the present invention.
도 2는 본 발명의 다른 실시예에 따른 세라믹-폴리머 복합입자를 개략적으로 도시한 도면이다.2 is a view schematically showing a ceramic-polymer composite particle according to another embodiment of the present invention.
도 3은 본 발명의 또 다른 실시예에 따른 세라믹-폴리머 복합입자를 개략적으로 도시한 도면이다.3 is a view schematically showing a ceramic-polymer composite particle according to another embodiment of the present invention.
도 4는 본 발명의 또 다른 실시예에 따른 세라믹-폴리머 복합입자를 개략적으로 도시한 도면이다.4 is a view schematically showing a ceramic-polymer composite particle according to another embodiment of the present invention.
도 5는 본 발명의 일 실시예에 따른 세라믹-폴리머 복합입자 과립형 클러스터를 개략적으로 도시한 도면이다.5 is a view schematically showing a ceramic-polymer composite particle granular cluster according to an embodiment of the present invention.
도 6은 본 발명의 일 실시예에 따른 유동층 코팅과립화 공정을 이용한 세라믹-폴리머 복합입자의 제조 방법의 제조 과정을 개략적으로 도시한 도면이다.FIG. 6 is a view schematically illustrating a manufacturing process of a method of manufacturing ceramic-polymer composite particles using a fluidized bed coating granulation process according to an embodiment of the present invention.
도 7은 본 발명의 일 실시예에 따른 유동층 코팅과립화 장비에서 유동층 코팅과립화가 일어나는 과정의 모식도를 도시한 도면이다.7 is a view showing a schematic diagram of a process of the fluidized bed coating granulation in the fluidized bed coating granulation equipment according to an embodiment of the present invention.
이하 첨부된 도면을 참조하여 본 발명의 실시예들을 상세히 설명한다. 본 발명을 설명함에 있어서, 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다. 또한, 본 명세서에서 사용되는 용어들은 본 발명의 바람직한 실시예를 적절히 표현하기 위해 사용된 용어들로서, 이는 사용자, 운용자의 의도 또는 본 발명이 속하는 분야의 관례 등에 따라 달라질 수 있다. 따라서, 본 용어들에 대한 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다. 각 도면에 제시된 동일한 참조 부호는 동일한 부재를 나타낸다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. In describing the present invention, when it is determined that detailed descriptions of related known functions or configurations may unnecessarily obscure the subject matter of the present invention, the detailed description thereof will be omitted. In addition, terms used in the present specification are terms used to properly express preferred embodiments of the present invention, which may vary according to user's or operator's intention or customs in the field to which the present invention belongs. Therefore, the definitions of the terms should be made based on the contents throughout the specification. Like reference numerals in the drawings denote like elements.
명세서 전체에서, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 아니라, 그 중간에 다른 소자를 사이에 두고 "전기적으로 연결"되어 있는 경우도 포함한다.Throughout the specification, when a part is "connected" to another part, this includes not only "directly connected" but also "electrically connected" with another element in between. .
명세서 전체에서, 어떤 부재가 다른 부재 "상에" 위치하고 있다고 할 때, 이는 어떤 부재가 다른 부재에 접해 있는 경우뿐 아니라 두 부재 사이에 또 다른 부재가 존재하는 경우도 포함한다.Throughout the specification, when a member is located "on" another member, this includes not only when one member is in contact with another member but also when another member is present between the two members.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.Throughout the specification, when a part is said to "include" a certain component, it means that it can further include other components, without excluding other components unless specifically stated otherwise.
이하, 본 발명의 세라믹-폴리머 복합입자, 세라믹-폴리머 복합입자 과립형 클러스터 및 유동층 코팅과립화 공정을 이용한 세라믹-폴리머 복합입자의 제조 방법에 대하여 실시예 및 도면을 참조하여 구체적으로 설명하도록 한다. 그러나, 본 발명이 이러한 실시예 및 도면에 제한되는 것은 아니다.Hereinafter, a method of manufacturing ceramic-polymer composite particles using the ceramic-polymer composite particle, ceramic-polymer composite particle granular cluster, and fluidized bed coating granulation process of the present invention will be described in detail with reference to Examples and drawings. However, the present invention is not limited to these embodiments and drawings.
본 발명의 제1 측면에 따르면 세라믹 입자 및 열가소성 수지를 포함하는 세라믹-폴리머 복합입자를 제공한다.According to a first aspect of the present invention, there is provided a ceramic-polymer composite particle comprising ceramic particles and a thermoplastic resin.
도 1은 본 발명의 일 실시예에 따른 세라믹-폴리머 복합입자를 개략적으로 도시한 도면이고, 도 2는 본 발명의 다른 실시예에 따른 세라믹-폴리머 복합입자를 개략적으로 도시한 도면이다. 도 3은 본 발명의 또 다른 실시예에 따른 세라믹-폴리머 복합입자를 개략적으로 도시한 도면이고, 도 4는 본 발명의 또 다른 실시예에 따른 세라믹-폴리머 복합입자를 개략적으로 도시한 도면이다. 도 1 내지 도 4를 참조하면, 본 발명의 일 실시예에 따른 세라믹-폴리머 복합입자(100)는 세라믹 입자(110) 및 열가소성 수지(120)를 포함할 수 있다. 1 is a view schematically showing a ceramic-polymer composite particle according to an embodiment of the present invention, Figure 2 is a view schematically showing a ceramic-polymer composite particle according to another embodiment of the present invention. 3 is a view schematically showing a ceramic-polymer composite particle according to another embodiment of the present invention, Figure 4 is a view schematically showing a ceramic-polymer composite particle according to another embodiment of the present invention. 1 to 4, the ceramic-polymer composite particle 100 according to an embodiment of the present invention may include ceramic particles 110 and a thermoplastic resin 120.
상기 세라믹 입자(110)는 방사선 차폐성 물질을 포함하는 것일 수 있다. 상기 방사선 차폐성 물질은, B4C, B2O3, BN, Gd2O3, GdC2, GdN, AlB2및 TiB2으로 이루어진 군에서 선택되는 적어도 어느 하나를 포함하는 것일 수 있다.The ceramic particles 110 may include a radiation shielding material. The radiation shielding material may include at least one selected from the group consisting of B 4 C, B 2 O 3 , BN, Gd 2 O 3 , GdC 2 , GdN, AlB 2 and TiB 2 .
상기 방사선 차폐성 물질은, 붕소(B), 가돌리늄(Gd), 은(Ag) 및 카드뮴(Cd)으로 이루어진 군에서 선택되는 적어도 어느 하나, 또는, 붕소 또는 가돌리늄의 탄화물, 산화물 또는 질화물, 또는 붕화금속을 포함하는 것일 수 있다.The radiation shielding material is at least one selected from the group consisting of boron (B), gadolinium (Gd), silver (Ag) and cadmium (Cd), or carbides, oxides or nitrides of boron or gadolinium, or metal borides It may be to include.
본원에서 사용되는 상기 방사선 차폐성 물질이 붕소를 함유할 경우, 붕소 중 B-10의 동위원소 함량이 19.9% 이상인 것이 바람직하고, 가돌리늄을 함유할 경우에는 상기 가돌리늄 중 Gd-157의 동위원소 함량은 16.65% 이상인 것이 바람직하다.When the radiation shielding material used herein contains boron, the isotopic content of B-10 in boron is preferably 19.9% or more, and the isotope content of Gd-157 in gadolinium is 16.65 when containing gadolinium. It is preferable that it is% or more.
상기 열가소성 수지(120)는, 유기용매 용해성인 것일 수 있다. 상기 열가소성 수지는, 저밀도폴리에틸렌(low density poly ethylene; LDPE), 선형 저밀도폴리에틸렌(linear low density poly ethylene; LLDPE), 폴리에틸렌 테레프탈레이트(polyethylene terephthalate; PET), 폴리에테르에테르케톤(polyetheretherketone; PEEK), 폴리프로필렌(polypropylene; PP), 폴리스티렌(polystyrene; PS), 폴리아미드(polyamides; PA), 폴리에스테르(polyester; PES), 폴리염화비닐(polyvinyl chloride; PVC), 폴리우레탄(polyurethanes; PU), 폴리카보네이트(polycarbonate; PC), 폴리염화비닐리덴(polyvinylidene chloride; PVDC), 폴리테트라플루오르에틸렌(polytetrafluoroethylene; PTFE) 및 폴리에테르이미드(polyetherimide; PEI)로 이루어지는 군으로부터 선택되는 적어도 어느 하나를 포함하는 것일 수 있다.The thermoplastic resin 120 may be organic solvent soluble. The thermoplastic resin may include low density polyethylene (LDPE), linear low density polyethylene (LLDPE), polyethylene terephthalate (PET), polyetheretherketone (PEEK), poly (Poly) Propylene (polypropylene; PP), polystyrene (PS), polyamides (PA), polyester (PES), polyvinyl chloride (PVC), polyurethane (PU), polycarbonate (polycarbonate; PC), polyvinylidene chloride (PVDC), polytetrafluoroethylene (PTFE) and polyetherimide (PEI) may include at least one selected from the group consisting of. .
상기 세라믹-폴리머 복합입자(100)는 코어; 및 상기 코어를 감싸는 쉘을 포함하는 것일 수 있으며, 상기 코어는 상기 세라믹 입자(110)를 포함하고, 상기 쉘은 상기 열가소성 수지(120)를 포함하는 것일 수 있다. 또한, 상기 쉘은 단일 층일 수도 있고, 다층일 수도 있다. 다층의 쉘을 포함하는 경우에는 같은 성분의 열가소성 수지일 수도 있고, 각각 다른 성분의 열가소성 수지일 수도 있다.The ceramic-polymer composite particle 100 is a core; And a shell surrounding the core, wherein the core may include the ceramic particles 110 and the shell may include the thermoplastic resin 120. In addition, the shell may be a single layer or may be a multilayer. When a multilayer shell is included, the thermoplastic resin of the same component may be sufficient, and the thermoplastic resin of a different component may respectively be sufficient.
상기 코어는 도 1 및 도 3에서와 같이, 세라믹 입자가 단일 입자일 수 있지만 도 2 및 도 4에서와 같이, 세라믹 입자가 집합체인 것일 수도 있다.As shown in FIGS. 1 and 3, the core may be a single particle, but as in FIGS. 2 and 4, the ceramic particles may be an aggregate.
상기 코어 입자의 입경은 0.1 내지 100 ㎛이고, 상기 쉘의 두께는 0.001 내지 5 mm인 것일 수 있다. 상기 코어 입자의 입경이 0.1㎛ 미만, 상기 쉘의 두께가 5 mm 초과인 경우 열중성자 흡수 성능이 낮고, 상기 코어 입자의 입경이 100 ㎛ 초과, 상기 쉘의 두께가 0.001 mm 미만인 경우 열중성자 흡수 성능이 전달되지 않을 수 있고, 부식에 의해 손상을 받을 수 있는 문제점을 가진다.The core particle may have a particle diameter of 0.1 to 100 μm, and the shell may have a thickness of 0.001 to 5 mm. Thermal neutron absorption performance is low when the particle diameter of the core particles is less than 0.1㎛, the thickness of the shell is more than 5mm, thermal neutron absorption performance when the particle diameter of the core particle is more than 100 ㎛, the thickness of the shell is less than 0.001 mm This may not be delivered and has the problem of being damaged by corrosion.
상기 세라믹-폴리머 복합입자(100) 중, 상기 세라믹 입자(110)는 10 중량% 내지 90 중량%일 수 있다. 상기 세라믹 입자가 10 중량% 미만인 경우 열중성자 흡수능이 저하될 수 있고, 90 중량% 초과인 경우 도포 후 접합강도에 문제점을 가질 수 있다.Among the ceramic-polymer composite particles 100, the ceramic particles 110 may be 10 wt% to 90 wt%. When the ceramic particles are less than 10% by weight, the thermal neutron absorbing ability may be lowered, and when the ceramic particles are greater than 90% by weight, there may be a problem in bonding strength after application.
상기 세라믹-폴리머 복합입자(100) 중, 상기 열가소성 수지(120)는 10 중량% 내지 90 중량%인 것일 수 있다. 상기 열가소성 수지가 10 중량% 미만인 경우 도포 후 접합강도가 저하될 수 있고, 90 중량% 초과인 경우 열중성자 흡수능이 떨어지는 문제점을 가질 수 있다.Of the ceramic-polymer composite particles 100, the thermoplastic resin 120 may be from 10% by weight to 90% by weight. If the thermoplastic resin is less than 10% by weight, the bonding strength may be reduced after application, and if the thermoplastic resin is more than 90% by weight, the thermal neutron absorbing ability may be deteriorated.
상기 세라믹-폴리머 복합입자(100)는, 도 1 및 도 2에서와 같이, 구형일 수도 있지만, 도 3의 (a) 및 도 4의 (a)에서와 같이, 오각형일 수 있고, 도 3의 (b) 및 도 4의 (b)에서와 같이, 육각형일 수 있다. 또한, 삼각형, 사각형, … , n각형의 다각형 형상인 것일 수도 있다. The ceramic-polymer composite particle 100 may be spherical as in FIGS. 1 and 2, but may be pentagonal as in FIGS. 3A and 4A, and As shown in (b) and (b) of FIG. 4, it may be hexagonal. Also, triangles, squares,… It may be a polygonal shape of n-square.
상기 세라믹-폴리머 복합입자(100)는 방사선 차폐성능이 우수하여 방사선 차폐코팅물질로서 사용될 수 있다.The ceramic-polymer composite particle 100 may be used as a radiation shielding coating material because of excellent radiation shielding performance.
본 발명의 제2 측면에 따르면, 상기 제1 측면에 따른 세라믹-폴리머 복합입자들이 뭉쳐서 형성된 세라믹-폴리머 복합입자 과립형 클러스터를 제공한다.According to a second aspect of the present invention, there is provided a ceramic-polymer composite particle granular cluster formed by agglomeration of the ceramic-polymer composite particles according to the first aspect.
도 5는 본 발명의 일 실시예에 따른 세라믹-폴리머 복합입자 과립형 클러스터를 개략적으로 도시한 도면이다. 도 5에 도시된 바와 같이, 세라믹-폴리머 복합입자(100)들이 뭉쳐서 세라믹-폴리머 복합입자 과립형 클러스터(200)를 형성할 수 있다.5 is a view schematically showing a ceramic-polymer composite particle granular cluster according to an embodiment of the present invention. As shown in FIG. 5, the ceramic-polymer composite particles 100 may aggregate to form the ceramic-polymer composite particle granular cluster 200.
상기 세라믹-폴리머 복합입자 과립형 클러스터(200) 또한 방사선 차폐성능이 우수하여 방사선 차폐코팅물질로서 사용될 수 있다.The ceramic-polymer composite particle granular cluster 200 may also be used as a radiation shielding coating material due to its excellent radiation shielding performance.
본 발명의 제3 측면에 따르면, 용매에 열가소성 수지를 용해 또는 분산시켜 코팅액을 제조하는 단계; 및 상기 코팅액을 세라믹 입자가 유동되고 있는 유동층 코팅 장비 챔버 내로 분사하여 상기 세라믹 입자의 표면 상에 상기 열가소성 수지를 코팅하는 단계;를 포함하는, 유동층 코팅과립화 공정을 이용한 세라믹-폴리머 복합입자의 제조 방법을 제공한다.According to a third aspect of the invention, the step of preparing a coating solution by dissolving or dispersing a thermoplastic resin in a solvent; And coating the thermoplastic resin on the surface of the ceramic particles by spraying the coating solution into a fluidized bed coating equipment chamber in which ceramic particles are flowing. The manufacturing method of the ceramic-polymer composite particle comprising the fluidized bed coating granulation process Provide a method.
도 6은 본 발명의 일 실시예에 따른 유동층 코팅과립화 공정을 이용한 세라믹-폴리머 복합입자의 제조 방법의 제조 과정을 개략적으로 도시한 도면이다. FIG. 6 is a view schematically illustrating a manufacturing process of a method of manufacturing ceramic-polymer composite particles using a fluidized bed coating granulation process according to an embodiment of the present invention.
먼저, 용매에 열가소성 수지를 용해 또는 분산시켜 코팅액을 제조한다 (S110).First, a coating solution is prepared by dissolving or dispersing a thermoplastic resin in a solvent (S110).
상기 코팅액 제조 단계는, 상기 열가소성 수지를 60℃ 이상으로 가열된 용매에 용해시키는 것일 수 있다.The coating solution manufacturing step may be to dissolve the thermoplastic resin in a solvent heated to 60 ℃ or more.
상기 용매는 유기용매로서, 예를 들어, 메탄올, 에탄올, 아세톤, 벤즈알데히드, 벤젠, 벤질 알코올, n-부틸알코올, 사염화탄소, 시클로헥산, 에틸아세테이트, n-헥산, 이소부틸알코올, 이소프로필알코올, 메틸에틸케톤, n-옥틸알코올, n-프로필알코올, 톨루엔, 크실렌, 펜타클로로에탄, 1,1,2,2-테트라클로로에탄, 트리클로로에탄, 트리클로로에틸렌, 테트라클로로에틸렌, 1,4-디옥산, 디클로로메탄, 클로로포름, 에틸브로마이드, 에틸클로라이드, 디클로로에틸에테르, 디클로로프로판, 트리클로로에탄, 1,2-디클로로벤젠, 프로필렌카보네이트, 이소프로필알콜, 2-메톡시에탄올, 2-부톡시에탄올, 1-부탄올, 1-펜탄올, 이소부탄올, 에틸헥산올, 1-옥탄올, 디에틸렌 글리콜 모노에틸 에테르, 디에틸렌 글리콜 모노부틸 에테르, 4-메틸-2-펜탄온, 사이클로헥산올, 옥탄올, 데칸올, 도데칸올, N-메틸-2-피롤리돈, 테트라하이드로퓨란, 니트로벤젠, 디메틸 설폭사이드, N,N-디메틸포름아미드 및 메틸에틸케톤으로 이루어지는 군으로부터 선택되는 적어도 어느 하나를 포함하는 것일 수 있다.The solvent is an organic solvent, for example, methanol, ethanol, acetone, benzaldehyde, benzene, benzyl alcohol, n-butyl alcohol, carbon tetrachloride, cyclohexane, ethyl acetate, n-hexane, isobutyl alcohol, isopropyl alcohol, methyl Ethyl ketone, n-octyl alcohol, n-propyl alcohol, toluene, xylene, pentachloroethane, 1,1,2,2-tetrachloroethane, trichloroethane, trichloroethylene, tetrachloroethylene, 1,4-di Oxane, dichloromethane, chloroform, ethyl bromide, ethyl chloride, dichloroethyl ether, dichloropropane, trichloroethane, 1,2-dichlorobenzene, propylenecarbonate, isopropyl alcohol, 2-methoxyethanol, 2-butoxyethanol, 1-butanol, 1-pentanol, isobutanol, ethylhexanol, 1-octanol, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, 4-methyl-2-pentanone, cyclohexanol, octanol , At least one selected from the group consisting of decanol, dodecanol, N-methyl-2-pyrrolidone, tetrahydrofuran, nitrobenzene, dimethyl sulfoxide, N, N-dimethylformamide and methyl ethyl ketone It may be.
이어서, 상기 코팅액을 세라믹 입자가 유동되고 있는 유동층 코팅 장비 챔버 내로 분사하여 상기 세라믹 입자의 표면 상에 상기 열가소성 수지를 코팅한다 (S120).Subsequently, the coating solution is sprayed into a fluidized bed coating equipment chamber in which ceramic particles are flowing to coat the thermoplastic resin on the surface of the ceramic particles (S120).
상기 세라믹 입자는 방사선 차폐성 물질을 포함하는 것일 수 있다. 상기 방사선 차폐성 물질은, B4C, B2O3, BN, Gd2O3, GdC2, GdN, AlB2및 TiB2으로 이루어진 군에서 선택되는 적어도 어느 하나를 포함하는 것일 수 있다.The ceramic particles may include a radiation shielding material. The radiation shielding material may include at least one selected from the group consisting of B 4 C, B 2 O 3 , BN, Gd 2 O 3 , GdC 2 , GdN, AlB 2 and TiB 2 .
상기 방사선 차폐성 물질은, 붕소(B), 가돌리늄(Gd), 은(Ag) 및 카드뮴(Cd)으로 이루어진 군에서 선택되는 적어도 어느 하나, 또는, 붕소 또는 가돌리늄의 탄화물, 산화물 또는 질화물, 또는 붕화금속을 포함하는 것일 수 있다.The radiation shielding material is at least one selected from the group consisting of boron (B), gadolinium (Gd), silver (Ag) and cadmium (Cd), or carbides, oxides or nitrides of boron or gadolinium, or metal borides It may be to include.
본원에서 사용되는 상기 방사선 차폐성 물질이 붕소를 함유할 경우, 붕소 중 B-10의 동위원소 함량이 19.9% 이상인 것이 바람직하고, 가돌리늄을 함유할 경우에는 상기 가돌리늄 중 Gd-157의 동위원소 함량은 16.65% 이상인 것이 바람직하다.When the radiation shielding material used herein contains boron, the isotopic content of B-10 in boron is preferably 19.9% or more, and the isotope content of Gd-157 in gadolinium is 16.65 when containing gadolinium. It is preferable that it is% or more.
상기 코팅액은 내부온도가 30℃ 내지 300℃인 상기 유동층 코팅장비 챔버 내로 분사구의 직경이 0.6 mm 내지 1.5 mm 인 분무노즐 (0.6 mmΦ(파이)내지 1.5 mmΦ 크기의 분무노즐)을 통해 0.5 bar 내지 2.5 bar의 압력으로 분사되는 것일 수 있다.The coating liquid was sprayed into the fluidized bed coating equipment chamber having an internal temperature of 30 ° C. to 300 ° C. through a spray nozzle having a diameter of 0.6 mm to 1.5 mm (a spray nozzle of 0.6 mm Φ (pie) to 1.5 mm Φ size) from 0.5 bar to 2.5. It may be sprayed at a pressure of bar.
상기 유동층 코팅장비 챔버의 내부온도가 30℃ 미만인 경우에는 유기용매를 사용하여도 휘발이 용이하지 않으며, 300℃ 초과인 경우에는 세라믹 입자의 특성이 저하되어 성형이 용이하지 않다.When the internal temperature of the fluidized bed coating equipment chamber is less than 30 ° C, volatilization is not easy even when using an organic solvent, and when it exceeds 300 ° C, the characteristics of ceramic particles are degraded and molding is not easy.
도 7은 본 발명의 일 실시예에 따른 유동층 코팅과립화 장비에서 유동층 코팅과립화가 일어나는 과정의 모식도를 도시한 도면이다.7 is a view showing a schematic diagram of a process of the fluidized bed coating granulation in the fluidized bed coating granulation equipment according to an embodiment of the present invention.
상기 세라믹 입자의 유동은 상기 반응 챔버 내 상방향이고, 상기 코팅액의 분사는 상기 반응 챔버 내 하방향인 것일 수 있다.The flow of the ceramic particles may be upward in the reaction chamber, and the injection of the coating liquid may be downward in the reaction chamber.
구체적으로, 상기 코팅액은 적정한 온도로 유지되고 있는 상방향으로 유동되는 세라믹 입자의 표면에 분사되고, 세라믹 입자의 표면에 접촉한 코팅액의 용매는 휘발되어 코팅막이 세라믹 입자의 표면에 형성된다. 이때, 용매의 원활한 휘발을 위하여, 챔버 내부 온도는 사용 용매에 따라 차이는 있으나, 30 내지 300℃로 유지하는 것이 바람직하다.Specifically, the coating liquid is sprayed on the surface of the ceramic particles flowing in the upward direction maintained at an appropriate temperature, the solvent of the coating liquid in contact with the surface of the ceramic particles is volatilized to form a coating film on the surface of the ceramic particles. At this time, in order to smooth volatilization of the solvent, the temperature inside the chamber is different depending on the solvent used, it is preferable to maintain at 30 to 300 ℃.
유동층 코팅과립화 공정은 세라믹 입자의 표면에 열가소성 수지를 코팅시, 유동층 코팅과립화 장비를 이용하여 세라믹 입자를 유동화시키면서, 열가소성 수지가 함유된 코팅액이 최적의 조건 하에서 분무되는 액상분무 코팅방법으로서, 상기 유동층 코팅과립화 장비 챔버의 온도 및 세라믹 입자의 온도에 의하여 코팅액의 용매가 증발되어 결합재가 세라믹 입자 표면에 균일하게 코팅된다. 따라서, 상기 세라믹 입자 표면에 결합재의 균일한 코팅은 전기적 절연성, 안정성 및 분말의 유동성의 물리화학적 표면특성이 개선된다.The fluidized bed coating granulation process is a liquid spray coating method in which a coating liquid containing a thermoplastic resin is sprayed under optimum conditions while fluidizing the ceramic particles using a fluidized bed coating granulation equipment when coating the thermoplastic resin on the surface of the ceramic particles. The solvent of the coating liquid is evaporated by the temperature of the fluidized bed coating granulation equipment chamber and the temperature of the ceramic particles so that the binder is uniformly coated on the surface of the ceramic particles. Therefore, the uniform coating of the binder on the surface of the ceramic particles improves the electrical insulating properties, stability and physicochemical surface properties of the flowability of the powder.
이어서, 상기 세라믹 입자의 표면 상에 코팅된 상기 열가소성 수지를 냉각하여 경화하는 단계 (S130)를 더 포함할 수 있다. 이때 냉각 및 코팅 공정을 반복하여 세라믹-폴리머 복합입자의 외곽 부분을 다수층의 쉘로 형성할 수도 있다.Subsequently, the thermoplastic resin coated on the surface of the ceramic particles may be further cooled and cured (S130). In this case, the cooling and coating processes may be repeated to form an outer portion of the ceramic-polymer composite particle as a shell of multiple layers.
이어서, 복수의 상기 세라믹-폴리머 복합입자들이 과립화하여 세라믹-폴리머 복합입자 과립형 클러스터를 형성하는 단계 (S140)를 더 포함할 수 있다. Subsequently, a plurality of ceramic-polymer composite particles may be granulated to form ceramic-polymer composite particle granular clusters (S140).
세라믹-폴리머 복합입자 과립형 클러스터는 사용후 핵연료 저장 시설의 차폐 효율성 향상을 위해 높은 중성자 흡수 성능을 보유함과 동시에 구조체로서의 기계적 강도를 유지할 수 있도록 구조체 위에 직접 코팅이 가능하다.Ceramic-polymer multiparticulate clusters can be directly coated on top of structures to maintain high mechanical absorption as well as high neutron absorption to improve shielding efficiency in spent fuel storage facilities.
본 발명의 제4 측면에 따르면, 상기 제3 측면에 따른 유동층 코팅과립화 공정을 이용한 세라믹-폴리머 복합입자의 제조 방법에 의해 제조된 제1측면에 따른 세라믹-폴리머 복합입자를 제공한다.According to the fourth aspect of the present invention, there is provided a ceramic-polymer composite particle according to the first aspect produced by the method for producing a ceramic-polymer composite particle using the fluidized bed coating granulation process according to the third aspect.
본 발명의 세라믹-폴리머 복합입자, 세라믹-폴리머 복합입자 과립형 클러스터 및 유동층 코팅과립화 공정을 이용한 세라믹-폴리머 복합입자의 제조 방법에 의하여, 간단한 방법으로 뭉침 현상이 거의 발생하지 않는 세라믹-폴리머 복합입자를 제조할 수 있기 때문에 분쇄 등의 후공정이 필요하지 않고, 중성자 흡수 능력이 우수한 세라믹 입자의 표면에 균일한 코팅막을 얻을 수 있으므로 제품의 특성이 우수하며, 단시간에 공정을 완료할 수 있어 경제적이다. 또한, 사용후 핵연료 저장 시설의 차폐 효율성 향상을 위해 높은 중성자 흡수 성능을 보유함과 동시에 구조체로서의 기계적 강도를 유지할 수 있도록 구조체 위에 직접 코팅이 가능하다.Ceramic-polymer composite with little aggregation occurs by a simple method by the method of producing ceramic-polymer composite particles, ceramic-polymer composite particles, granular clusters and fluidized bed coating granulation process of the present invention Since the particles can be manufactured, no post-processing such as grinding is required, and a uniform coating film can be obtained on the surface of the ceramic particles having excellent neutron absorption ability, so that the characteristics of the product are excellent and the process can be completed in a short time. to be. In addition, it can be directly coated on the structure to maintain a high neutron absorption performance while maintaining the mechanical strength as a structure to improve the shielding efficiency of spent fuel storage facilities.
이하, 하기 실시예 및 비교예를 참조하여 본 발명을 상세하게 설명하기로 한다. 그러나, 본 발명의 기술적 사상이 그에 의해 제한되거나 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail with reference to the following Examples and Comparative Examples. However, the technical spirit of the present invention is not limited or limited thereto.
[실시예]EXAMPLE
1차적으로 열가소성 수지로서 저밀도폴리에틸렌(LDPE) 및 유기용매로서 테트라클로로에틸렌(TCE)을 혼합하여, 60℃로 가열하여 완전히 용해시켰다. 세라믹 입자로서 B4C를 유동층 코팅과립화 장비의 챔버의 하부에 놓았다. 챔버에 놓여진 B4C는 불어 넣어지는 공기에 의해서 유동화되었다. 이후 TCE에 완전히 용해된 코팅물이 유관을 통해 유동층 코팅과립화 장비로 투입과 동시에 분사되어 세라믹 입자에 서서히 도포되어 코팅되었다. 하기 표 1에 각 실시예 및 비교예 조건 및 세라믹-폴리머 복합입자의 열중성자 흡수단면적계수를 나타내었다. First, low density polyethylene (LDPE) as a thermoplastic resin and tetrachloroethylene (TCE) as an organic solvent were mixed and heated to 60 ° C to completely dissolve it. B 4 C as ceramic particles was placed at the bottom of the chamber of the fluidized bed coating granulation equipment. The B 4 C placed in the chamber was fluidized by the blown air. Since the coating completely dissolved in the TCE was sprayed at the same time as the injection into the fluidized bed coating granulation equipment through the milk pipe was gradually applied to the ceramic particles and coated. Table 1 below shows each Example and Comparative Example conditions and the thermal neutron absorption cross-sectional coefficient of the ceramic-polymer composite particles.
표 1
챔버안B4C중량(g) 수지 용해 용액 스프레이타입 노즐온도(℃) 노즐압력(Kg/cm2) 에어유속(m/sec) 경과시간(분) 수지무게(중량%) 열중성자흡수단면적계수(Σth, cm-1)
TCE(ml) LDPE중량(g) 용매온도(℃)
실시예 1 800 4000 600 85 Bottom 60 1.5 2.4 300 60 3.5
실시예 2 800 4000 800 85 Bottom 100 1.5 3.5 300 70 3.2
비교예 1 800 3000 600 85 Bottom 70 1.5 2.7 300 25 2.5
비교예 2 1150 1000 150 85 Top 75 1.5 1.4 300 8.5 1.8
비교예 3 1150 1500 150 85 Top 75 1.5 14.6 300 11.5 1.7
비교예 4 300 1500 300 120 Top 70 1.5 3.3 300 5.0 0.9
Table 1
Chamber B 4 C Weight (g) Resin dissolution solution Spray type Nozzle temperature (℃) Nozzle Pressure (Kg / cm 2 ) Air flow rate (m / sec) Elapsed time (minutes) Resin weight (% by weight) Thermal neutron absorption means area coefficient (Σ th , cm -1 )
TCE (ml) LDPE Weight (g) Solvent temperature (℃)
Example 1 800 4000 600 85 Bottom 60 1.5 2.4 300 60 3.5
Example 2 800 4000 800 85 Bottom 100 1.5 3.5 300 70 3.2
Comparative Example 1 800 3000 600 85 Bottom 70 1.5 2.7 300 25 2.5
Comparative Example 2 1150 1000 150 85 Top 75 1.5 1.4 300 8.5 1.8
Comparative Example 3 1150 1500 150 85 Top 75 1.5 14.6 300 11.5 1.7
Comparative Example 4 300 1500 300 120 Top 70 1.5 3.3 300 5.0 0.9
폴리머가 B4C 입자에 균일하게 도포되기 위해서는 개별 입자들에 충분히 코팅이 이뤄져야 한다. 비교예 1의 세라믹-폴리머 복합입자에 비하여 실시예 1 및 실시예 2의 세라믹-폴리머 복합입자가 우수하였다. 특히, 실시예 1의 세라믹-폴리머 복합입자가 개별 입자들의 크기가 먼저 커진 것을 알 수 있었고, 실시예 2의 세라믹-폴리머 복합입자는 코팅이 충분히 이루어지기 전에 과립이 진행된 양상을 나타내어 실시예 1의 세라믹-폴리머 복합입자가 더 바람직한 조건으로 제조된 것을 알 수 있다.In order for the polymer to be uniformly applied to the B 4 C particles, the individual particles must be sufficiently coated. The ceramic-polymer composite particles of Examples 1 and 2 were superior to the ceramic-polymer composite particles of Comparative Example 1. In particular, it can be seen that the ceramic-polymer composite particles of Example 1 were larger in size of the individual particles, and the ceramic-polymer composite particles of Example 2 exhibited a state in which granules were advanced before coating was sufficiently performed. It can be seen that the ceramic-polymer composite particles are prepared under more preferable conditions.
열중성자 흡수단면적계수(Σth, cm-1)가 클수록 동일 B4C 함량 및 동일 용기 두께에서 더 높은 열중성자 흡수단면적계수을 가지고 3.0 Σth, cm-1이상이면 양호한 상태이다. 실시예 1 및 실시예 2의 열중성자 흡수단면적계수는 각각 3.5, 3.2로 열중성자 흡수능이 비교예 1 내지 4보다 눈에 띄게 우수한 것을 알 수 있다. The larger the thermal neutron absorption cross-sectional coefficient (Σ th , cm -1 ), the higher the thermal neutron absorption cross-sectional coefficient at the same B 4 C content and the same container thickness, and more than 3.0 Σ th , cm -1 is in good condition. The thermal neutron absorption cross-sectional coefficients of Example 1 and Example 2 are 3.5 and 3.2, respectively, and it can be seen that the thermal neutron absorption ability is remarkably superior to Comparative Examples 1 to 4.

Claims (20)

  1. 세라믹 입자 및 열가소성 수지를 포함하는 세라믹-폴리머 복합입자.Ceramic-polymer composite particles comprising ceramic particles and thermoplastic resins.
  2. 제1항에 있어서,The method of claim 1,
    상기 세라믹 입자는 방사선 차폐성 물질을 포함하는 것인, 세라믹-폴리머 복합입자.Wherein said ceramic particles comprise a radiation shielding material.
  3. 제1항에 있어서,The method of claim 1,
    상기 방사선 차폐성 물질은, B4C, B2O3, BN, Gd2O3, GdC2, GdN, AlB2 및 TiB2으로 이루어진 군에서 선택되는 적어도 어느 하나를 포함하는 것인, 세라믹-폴리머 복합입자.The radiation shielding material is a ceramic-polymer comprising at least one selected from the group consisting of B 4 C, B 2 O 3 , BN, Gd 2 O 3 , GdC 2 , GdN, AlB 2 and TiB 2 Multiparticulates.
  4. 제2항에 있어서,The method of claim 2,
    상기 방사선 차폐성 물질은, 붕소(B), 가돌리늄(Gd), 은(Ag) 및 카드뮴(Cd)으로 이루어진 군에서 선택되는 적어도 어느 하나, 또는, 붕소 또는 가돌리늄의 탄화물, 산화물 또는 질화물, 또는 붕화금속을 포함하는 것인, 세라믹-폴리머 복합입자.The radiation shielding material is at least one selected from the group consisting of boron (B), gadolinium (Gd), silver (Ag) and cadmium (Cd), or carbides, oxides or nitrides of boron or gadolinium, or metal borides To include, ceramic-polymer composite particles.
  5. 제1항에 있어서,The method of claim 1,
    상기 열가소성 수지는, 유기용매 용해성인 것인, 세라믹-폴리머 복합입자.The thermoplastic resin is an organic solvent soluble, ceramic-polymer composite particles.
  6. 제5항에 있어서,The method of claim 5,
    상기 열가소성 수지는, 저밀도폴리에틸렌(low density poly ethylene; LDPE), 선형 저밀도폴리에틸렌(linear low density poly ethylene; LLDPE), 폴리에틸렌 테레프탈레이트(polyethylene terephthalate; PET), 폴리에테르에테르케톤(polyetheretherketone; PEEK), 폴리프로필렌(polypropylene; PP), 폴리스티렌(polystyrene; PS), 폴리아미드(polyamides; PA), 폴리에스테르(polyester; PES), 폴리염화비닐(polyvinyl chloride; PVC), 폴리우레탄(polyurethanes; PU), 폴리카보네이트(polycarbonate; PC), 폴리염화비닐리덴(polyvinylidene chloride; PVDC), 폴리테트라플루오르에틸렌(polytetrafluoroethylene; PTFE) 및 폴리에테르이미드(polyetherimide; PEI)로 이루어지는 군으로부터 선택되는 적어도 어느 하나를 포함하는 것인, 세라믹-폴리머 복합입자.The thermoplastic resin may include low density polyethylene (LDPE), linear low density polyethylene (LLDPE), polyethylene terephthalate (PET), polyetheretherketone (PEEK), poly (Poly) Propylene (polypropylene; PP), polystyrene (PS), polyamides (PA), polyester (PES), polyvinyl chloride (PVC), polyurethane (PU), polycarbonate (polycarbonate; PC), polyvinylidene chloride (PVDC), polytetrafluoroethylene (polytetrafluoroethylene (PTFE), and at least one selected from the group consisting of polyetherimide (PEI), Ceramic-polymer composite particles.
  7. 제1항에 있어서,The method of claim 1,
    상기 세라믹-폴리머 복합입자는 코어; 및 상기 코어를 감싸는 쉘을 포함하는 것인, 세라믹-폴리머 복합입자.The ceramic-polymer composite particle is a core; And a shell surrounding the core.
  8. 제7항에 있어서,The method of claim 7, wherein
    상기 코어는 상기 세라믹 입자를 포함하고, 상기 쉘은 상기 열가소성 수지를 포함하는 것인, 세라믹-폴리머 복합입자.Wherein said core comprises said ceramic particles and said shell comprises said thermoplastic resin.
  9. 제7항에 있어서,The method of claim 7, wherein
    상기 코어는 단일 입자 또는 입자들의 집합체인 것인, 세라믹-폴리머 복합입자.Wherein the core is a single particle or a collection of particles.
  10. 제7항에 있어서,The method of claim 7, wherein
    상기 코어 입자의 입경은 0.1 내지 100 ㎛이고, 상기 쉘의 두께는 0.001 내지 5 mm인 것인, 세라믹-폴리머 복합입자.The particle diameter of the core particles is 0.1 to 100 ㎛, the thickness of the shell is 0.001 to 5 mm, ceramic-polymer composite particles.
  11. 제1항에 있어서,The method of claim 1,
    상기 세라믹-폴리머 복합입자 중, 상기 세라믹 입자는 10 중량% 내지 90 중량%이고, 상기 열가소성 수지는 10 중량% 내지 90 중량%인 것인, 세라믹-폴리머 복합입자.Of the ceramic-polymer composite particles, the ceramic particles are 10% by weight to 90% by weight, the thermoplastic resin is 10% by weight to 90% by weight, ceramic-polymer composite particles.
  12. 제1항에 있어서,The method of claim 1,
    상기 세라믹-폴리머 복합입자는, 구형 또는 다각형 형상인 것인, 세라믹-폴리머 복합입자.The ceramic-polymer composite particles are spherical or polygonal shape, ceramic-polymer composite particles.
  13. 청구항 제1항의 세라믹-폴리머 복합입자들이 뭉쳐서 형성된 세라믹-폴리머 복합입자 과립형 클러스터.The ceramic-polymer composite particle granular cluster of claim 1, wherein the ceramic-polymer composite particles are formed by agglomeration.
  14. 용매에 열가소성 수지를 용해 또는 분산시켜 코팅액을 제조하는 단계; 및Preparing a coating liquid by dissolving or dispersing a thermoplastic resin in a solvent; And
    상기 코팅액을 세라믹 입자가 유동되고 있는 유동층 코팅 장비 챔버 내로 분사하여 상기 세라믹 입자의 표면 상에 상기 열가소성 수지를 코팅하는 단계;Spraying the coating solution into a fluidized bed coating equipment chamber in which ceramic particles are flowing to coat the thermoplastic resin on the surface of the ceramic particles;
    를 포함하는, 유동층 코팅과립화 공정을 이용한 세라믹-폴리머 복합입자의 제조 방법.A method of producing a ceramic-polymer composite particle comprising a fluidized bed coating granulation process comprising a.
  15. 제14항에 있어서,The method of claim 14,
    상기 코팅액 제조 단계는, 상기 열가소성 수지를 60℃ 이상으로 가열된 용매에 용해시키는 것인, 유동층 코팅과립화 공정을 이용한 세라믹-폴리머 복합입자의 제조 방법.The coating solution manufacturing step is to dissolve the thermoplastic resin in a solvent heated to 60 ℃ or more, the method of producing a ceramic-polymer composite particle using a fluidized bed coating granulation process.
  16. 제14항에 있어서,The method of claim 14,
    상기 열가소성 수지의 코팅 단계는,The coating step of the thermoplastic resin,
    상기 코팅액은 내부온도가 30℃ 내지 300℃인 상기 유동층 코팅장비 챔버 내로 분사구의 직경이 0.6 mm 내지 1.5 mm 인 분무노즐을 통해 0.5 bar 내지 2.5 bar의 압력으로 분사되는 것인, 유동층 코팅과립화 공정을 이용한 세라믹-폴리머 복합입자의 제조 방법.The coating liquid is a fluidized bed coating granulation process that is sprayed at a pressure of 0.5 bar to 2.5 bar through a spray nozzle having a diameter of 0.6 mm to 1.5 mm into the fluidized bed coating equipment chamber having an internal temperature of 30 ℃ to 300 ℃ Method for producing a ceramic-polymer composite particle using.
  17. 제14항에 있어서,The method of claim 14,
    상기 세라믹 입자의 유동은 상기 반응 챔버 내 상방향이고, 상기 코팅액의 분사는 상기 반응 챔버 내 하방향인 것인, 유동층 코팅과립화 공정을 이용한 세라믹-폴리머 복합입자의 제조 방법.The flow of the ceramic particles is the upward direction in the reaction chamber, the injection of the coating liquid is a downward direction in the reaction chamber, a method for producing a ceramic-polymer composite particle using a fluidized bed coating granulation process.
  18. 제14항에 있어서,The method of claim 14,
    상기 세라믹 입자의 표면 상에 코팅된 상기 열가소성 수지를 냉각하여 경화하는 단계;Cooling and curing the thermoplastic resin coated on the surface of the ceramic particles;
    를 더 포함하는, 유동층 코팅과립화 공정을 이용한 세라믹-폴리머 복합입자의 제조 방법.Further comprising, a method for producing a ceramic-polymer composite particle using a fluidized bed coating granulation process.
  19. 제14항에 있어서,The method of claim 14,
    복수의 상기 세라믹-폴리머 복합입자들이 과립화하여 세라믹-폴리머 복합입자 과립형 클러스터를 형성하는 단계;Granulating a plurality of the ceramic-polymer composite particles to form a ceramic-polymer composite particle granular cluster;
    를 더 포함하는, 유동층 코팅과립화 공정을 이용한 세라믹-폴리머 복합입자의 제조 방법.Further comprising, a method for producing a ceramic-polymer composite particle using a fluidized bed coating granulation process.
  20. 제14항 내지 제19항의 유동층 코팅과립화 공정을 이용한 세라믹-폴리머 복합입자의 제조 방법에 의해 제조된 제1항의 세라믹-폴리머 복합입자.20. The ceramic-polymer composite particle of Claim 1 prepared by the manufacturing method of the ceramic-polymer composite particle using the fluidized-bed coating granulation process of Claims 14-19.
PCT/KR2014/005044 2014-04-30 2014-06-10 Ceramic-polymer composite particles, ceramic-polymer composite particle granular cluster, and method for preparing ceramic-polymer composite particles by using fluidized bed coating granulation process WO2015167069A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0052566 2014-04-30
KR20140052566 2014-04-30

Publications (1)

Publication Number Publication Date
WO2015167069A1 true WO2015167069A1 (en) 2015-11-05

Family

ID=54358781

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/005044 WO2015167069A1 (en) 2014-04-30 2014-06-10 Ceramic-polymer composite particles, ceramic-polymer composite particle granular cluster, and method for preparing ceramic-polymer composite particles by using fluidized bed coating granulation process

Country Status (1)

Country Link
WO (1) WO2015167069A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210388206A1 (en) * 2020-06-15 2021-12-16 Shpp Global Technologies B.V. Polymer-ceramic composite articles with low dissipation factor and high dielectric constant, and core-shell particle powders and processes for making such articles

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11228272A (en) * 1998-02-04 1999-08-24 Mitsubishi Chemical Corp Production of coated granular fertilizer
JP2008538136A (en) * 2004-12-20 2008-10-09 メリディアン リサーチ アンド ディベロップメント Radiation-sensitive protective article
KR20110074184A (en) * 2009-12-24 2011-06-30 서울대학교산학협력단 Method of preparing tio2/polymer core/shell nanoparticle via photopolymerization without using a initiator
KR20120070002A (en) * 2010-12-21 2012-06-29 한국원자력연구원 Fabrication method of hydrophobic polymer coated ceramic nano powder and ceramic nano powder thereby

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11228272A (en) * 1998-02-04 1999-08-24 Mitsubishi Chemical Corp Production of coated granular fertilizer
JP2008538136A (en) * 2004-12-20 2008-10-09 メリディアン リサーチ アンド ディベロップメント Radiation-sensitive protective article
KR20110074184A (en) * 2009-12-24 2011-06-30 서울대학교산학협력단 Method of preparing tio2/polymer core/shell nanoparticle via photopolymerization without using a initiator
KR20120070002A (en) * 2010-12-21 2012-06-29 한국원자력연구원 Fabrication method of hydrophobic polymer coated ceramic nano powder and ceramic nano powder thereby

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210388206A1 (en) * 2020-06-15 2021-12-16 Shpp Global Technologies B.V. Polymer-ceramic composite articles with low dissipation factor and high dielectric constant, and core-shell particle powders and processes for making such articles

Similar Documents

Publication Publication Date Title
Wang et al. Recent advances for microencapsulation of flame retardant
JP2015091669A (en) Improved-type composite material
US8986838B2 (en) Hollow carbon microparticle and method for producing same
US20060183013A1 (en) Fuel cell separator
JP4907537B2 (en) Method for powder coating of substrates
WO2011102615A2 (en) Flooring material
WO2015167069A1 (en) Ceramic-polymer composite particles, ceramic-polymer composite particle granular cluster, and method for preparing ceramic-polymer composite particles by using fluidized bed coating granulation process
EP3575366A1 (en) Material having high thermal conductivity and method for producing same
Kolb et al. Astrophysics and cosmology confront the 17-keV neutrino
TW201035996A (en) Highly conductive resin composition having carbon composite
CN104877464A (en) Composite nano silver particle conductive ink and preparation method and printing application thereof
CN104485157A (en) Graphene composite material and preparation method thereof
US11056409B2 (en) Composite material and a semiconductor container made of the same
CN107531883B (en) Resin composition, resin sheet, cured resin product, and resin substrate
CN114806082A (en) Light high-temperature-resistant heat-insulating neutron shielding composite material and preparation method thereof
US20020177030A1 (en) Fuel cell separator and method for manufacturing the same
US20030094232A1 (en) Method for producing prepreg, preprig, metal-clad laminate and printed wiring board
EP3644099B1 (en) Light to heat conversion layer, method for producing same, and donor sheet using said light to heat conversion layer
CN112646366A (en) Halogen-free environment-friendly flame-retardant master batch of long glass fiber reinforced nylon composite material and preparation method thereof
CN105623258B (en) A kind of heat conduction high temperature resistant nylon composite material and preparation method thereof
CN105237799B (en) The renovation process of waste or used plastics containing PBBs and PBDE
JP5882936B2 (en) Manufacturing method and apparatus for heat dissipation film
CN107286594A (en) Absorbing material and preparation method thereof
JPS6487307A (en) Polyimide powder and manufacture thereof
CN112940457B (en) Flame-retardant epoxy electromagnetic shielding material and preparation method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14890709

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14890709

Country of ref document: EP

Kind code of ref document: A1