WO2015166549A1 - Ocular function measurement device - Google Patents

Ocular function measurement device Download PDF

Info

Publication number
WO2015166549A1
WO2015166549A1 PCT/JP2014/061938 JP2014061938W WO2015166549A1 WO 2015166549 A1 WO2015166549 A1 WO 2015166549A1 JP 2014061938 W JP2014061938 W JP 2014061938W WO 2015166549 A1 WO2015166549 A1 WO 2015166549A1
Authority
WO
WIPO (PCT)
Prior art keywords
pupil
retina
display device
subject
target
Prior art date
Application number
PCT/JP2014/061938
Other languages
French (fr)
Japanese (ja)
Inventor
史敬 須藤
伸司 木村
健三 山中
毅 大仲
Original Assignee
株式会社クリュートメディカルシステムズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クリュートメディカルシステムズ filed Critical 株式会社クリュートメディカルシステムズ
Priority to PCT/JP2014/061938 priority Critical patent/WO2015166549A1/en
Publication of WO2015166549A1 publication Critical patent/WO2015166549A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/02Subjective types, i.e. testing apparatus requiring the active assistance of the patient
    • A61B3/024Subjective types, i.e. testing apparatus requiring the active assistance of the patient for determining the visual field, e.g. perimeter types

Definitions

  • Patent Document 1 Japanese Patent Laid-Open No. 7-67833
  • Patent Document 2 Japanese Patent Laid-Open No. 2009-118881
  • Patent Document 3 Japanese Patent No. 5008540
  • Patent Document 4 JP-A-8-140933
  • Patent Document 5 Patent No. 4113005
  • Patent Document 6 Patent No. 3056753
  • Patent Document 1 is a general example of a perimeter using a flat-type target display device and an optical system.
  • the device described in Patent Document 2 includes a lamp output determining unit that measures the size of the pupil of the subject's eye and determines the output of the lamp based on the pupil area.
  • Patent Document 3 creates a correction amount database when correcting sensitivity values by measuring the sensitivity values when measuring various pupil diameters in advance for a large number of subjects, The correction amount is calculated by referring to the size of the pupil of the eye of the subject measured by the camera and the database.
  • Patent Document 4 uses a flat display for presenting the target, and adapts the stimulus target on the display device to a new position in accordance with the eye movement. The displacement of the eye image is used.
  • patent document 5 is another example which uses a flat display for presentation of a target, and adapts the stimulus target on a display device to a new position according to the eye movement. It uses image displacement. Further, the device described in Patent Document 6 is such that the field stop is moved to change the position of the visual target.
  • JP-A-7-67833 JP 2009-118881 A Japanese Patent No. 5008540 JP-A-8-140933 Japanese Patent No. 4113005 Japanese Patent No. 3056753
  • the above-described conventional apparatus has the following problems. That is, in the conventional device, even if the device side presents a stimulus target with a certain brightness and size, the size of the pupil varies from person to person, so the amount of light that passes through the pupil and reaches the retina is constant. Not.
  • perimeters use a method in which a stimulus target is presented under background light.
  • contrast with the background light is also a factor.
  • the sensitivity correction amount for the pupil diameter obtained by measuring variously the pupil diameter in advance is stored as a database, and the subject is examined.
  • a correction amount database is laborious and complicated processing is required.
  • An object of the present invention is to provide a visual function inspection device capable of correctly evaluating the sensitivity characteristics of the retina even if the size of the subject's pupil differs due to individual differences and / or miosis / mydriatic reaction.
  • the visual function measuring device further comprising: (3) The visual function measuring device according to (2), wherein the aperture displacement means includes a mechanical mechanism that mechanically changes the position of the aperture stop. (4) The visual function measuring device according to (1), wherein the aperture stop uses a spatial light modulator.
  • the aperture size was set so that the light beam diameter at the pupil position of the light transmitted from the target display device to the retina is smaller than the minimum pupil diameter assumed at the time of inspection at a position that is optically conjugate with the pupil.
  • FIG. 1 is a diagram showing an overall configuration of a visual function measuring device according to an embodiment of the present invention.
  • a visual function measuring device according to an embodiment of the present invention will be described with reference to FIG.
  • the visual function measuring device transmits a target display device 10 and an image displayed on the target display device 10 to the retina 21 of the eyeball 20 of the subject. And an aperture stop 40 provided at a position optically conjugate with the pupil 23 formed by the iris 22 of the eye of the subject.
  • the target display device 10 displays a desired target, for example, an arbitrary figure or symbol including a fixation target such as a cross or a stimulus target for visual field inspection, and is configured by a liquid crystal display device or the like. Is done.
  • the visual target display device 10 is connected to a control unit 11, and the control unit 11 is connected to a computer 72 and a monitor 73 via an interface 71. Therefore, the target display device 10 displays necessary targets, arbitrary types of symbols, and the like in accordance with instructions from the computer 72, and can freely control the position, color, brightness, movement, and the like of these display images. It has become.
  • the optical system 30 converges the light from the target display device 10 and passes it through the opening 41 of the aperture stop 40, and passes the light that has passed through the aperture stop 40 and the light coming from the opposite side.
  • a beam splitter 32 that reflects and travels in the direction of approximately 90 ° and enters the video camera 61 through the lens 61a, and cooperates with the lens 31 to transmit light from the target display device 10 to the eyeball 20 of the subject.
  • the beam splitter 32 allows the light from the index display device 10 to pass through, while reflecting the light from the retina 21 of the eyeball 20 of the subject that has passed through the lens 34 and the lens group 33 and guiding it to the beam splitter 62a.
  • a part of the light guided to the beam splitter 62a is reflected and guided to the video camera 62 for pupil observation.
  • Another part of the light guided to the beam splitter 62a is transmitted and guided to the video camera 61 for retinal image observation via the imaging lens 61a.
  • a video camera 61 for retinal image observation captures an image of the retina 21, and a video camera 62 for pupil observation captures an image of the pupil 23, and each image signal is transmitted to the computer 72 via the interface 71. Send to.
  • the computer 72 captures these image signals, detects the movement of the fundus of the subject, that is, the parallel movement or rotation in the image plane, and automatically tracks and compensates for the movement or rotation angle.
  • various irises, pupil images, pupil diameters, miosis / mydriasis, etc. can be obtained by various optometry and automatic optometry programs. The movement of the pupil and other pupils is analyzed, and various optometry processes can be performed.
  • a method for measuring eye movement for example, there is a method of applying a pattern matching method to a fundus image. For example, the following evaluation amount R (x, y, x *, y *) or / and C (x, y, x *, y *) is calculated.
  • the pupil center coordinates of the pupil image uses a video camera 62 for observing the pupil that captures an image of the pupil 23 of the eyeball 20 as the eye movement measuring means.
  • the eye movement is measured by calculating the eye rotation angle from the pupil center of gravity position with respect to the reference position in the pupil observation image by the calculation unit.
  • the measurement of the center of gravity of the pupil is performed by calculating the center of gravity of the contour detected by the arithmetic unit after detecting the contour of the pupil from the pupil image acquired by the imaging unit by the image processing means.
  • the subject look at a specific position, measure the center of gravity of the pupil at that time, correct the personal parameters, and measure / store the reference position.
  • the position shown to the subject is the front of the eye to be measured and any other single or plural positions
  • the reference position is the position of the center of gravity of the pupil on the observation image when the subject stares at the front.
  • the personal parameter is corrected based on the position of the center of gravity of the pupil when the position is stared and the reference position.
  • the mirror 35 reflects the light emitted from the light source 51 that emits infrared light or the like and passes through the lens 51a, and is converged by the lens 34 to illuminate the retina 21 of the eyeball 20 of the subject.
  • the control line of the light source 51 is connected to the interface 71 so that on / off, luminance, and the like are controlled based on a command from the computer 72.
  • the aperture stop 40 is provided at a position optically conjugate with the pupil 23 of the eyeball 20 of the subject. Then, the aperture diameter of the opening 41 is set so that the beam diameter of the light transmitted from the target display device 10 to the retina 21 is smaller than the minimum pupil diameter assumed at the time of the examination at the position of the pupil 23. It has been set. Here, since it is generally considered that the pupil diameter is 2 mm or less in the miosis state, it is desirable to set the “minimum pupil diameter assumed at the time of examination” to 2 mm or less.
  • the pupil diameter size decreases with age, and the average in the 70s is 2.7 mm in the normal state, 3.2 mm in the dark, the average in the 80s is 2.3 mm in the normal, and the average in the dark is 2. It is about 5 mm.
  • the aperture stop 40 may include a known aperture mechanism that can mechanically drive a large number of wings used in a photographic camera or the like to freely change the circular hole diameter of the opening 41.
  • a known spatial light modulator such as a liquid crystal panel may be used, and the size and position of the opening 41 may be changed by changing the transmittance distribution of the spatial light modulator itself.
  • the aperture stop 40 has a mechanism that can change the position and angle of the opening 41 with respect to the optical axis, and is driven and controlled by the drive unit 42.
  • the drive unit 42 has a control device that controls the above-described diaphragm mechanism, and also has a known mechanism that changes the position and angle of the opening 41 with respect to the optical axis by a stepping motor, a solenoid, and the like.
  • the hole diameter of the opening 41 can be changed, the position of the opening 41 can be moved, and the angle can be changed based on a command from the computer 72.
  • the lens group 33 includes a plurality of lenses 33a, 33b, 33c, etc., and a part of the lenses, for example, the lens 33b can be moved in the direction of the optical axis, thereby the pupil of the eyeball 20 of the subject. 23 and the aperture stop 40 can be set so as to have an optically conjugate positional relationship.
  • a light source device 52 for pupil illumination is provided in the vicinity of the lens 34.
  • the light source device 52 is in communication with a computer 72 through an interface 71, and is turned on / off or controlled by a command from the computer 72.
  • a response switch 80 is provided in the vicinity of the subject.
  • This response switch 80 can also send a signal to the computer 72 through the interface 71. That is, for example, when the subject operates the button 81 of the response switch 80 when he / she can visually recognize the stimulus target, the computer 72 receives the visual signal and performs predetermined processing, for example, a part of the sensitivity map of the retina. The creation process is performed.
  • Static quantitative visual field inspection is the following inspection. In other words, if you place a target at one point in the field of view and gradually increase its brightness, it will become visible when it reaches a certain brightness, so the value corresponding to the brightness when it becomes visible In this test, retinal sensitivity at a point is used, the same measurement is performed for each point in the field of view, the difference in retinal sensitivity in the field of view is quantitatively examined, and a map is created.
  • the objective test is performed as follows. That is, the visual target for visual field inspection is displayed on the visual target display device 10 in accordance with an instruction from the computer 72.
  • the subject looks at the target with the eyeball 20 facing the target.
  • the target display device 10 gradually increases the brightness of the target point corresponding to the point to be measured in the visual field. Then, when it becomes a certain brightness, it becomes visible to the subject.
  • a change in pupil diameter that changes in accordance with the brightness is detected by the computer 72 through image analysis through the video camera 62, a predetermined process is performed, and a value corresponding to the brightness of the target point at that time is determined as the retina of that point. Sensitivity above. Then, the same measurement is automatically performed one after another for each point in the field of view, the difference in sensitivity on the retina in the field of view is quantitatively examined, and a sensitivity map on the retina is automatically created. .
  • the diameter of the pupil 23 of the eyeball 20 of the subject changes. Therefore, when the diameter of the light beam from the target display device 10 is larger than the diameter of the pupil 23 or when a part of the light beam is vignetted by the pupil 23, the retina is caused by the change in the diameter of the pupil 23.
  • the total amount of light reaching 21 will also change. If the total amount of light reaching the retina 21 changes, the retina 21 changes the sensitivity in response to the change, and thus there is a possibility that a correct sensitivity test cannot be performed.
  • the aperture stop 40 is provided at a position optically conjugate with the pupil 23 of the eyeball 20 of the subject.
  • the aperture diameter of the opening 41 is set so that the beam diameter of the light transmitted from the to the retina 21 is smaller than the normally assumed size of the pupil 23 at the position of the pupil 23.
  • FIG. 2 shows this state.
  • the diameter of the pupil 23 becomes smaller than the diameter of the luminous flux of the light from the target display device 10 and a part of the luminous flux is vignetted by the pupil 23. Thereby, even if the diameter of the pupil 23 changes, the total amount of light reaching the retina 21 does not change. As a result, a correct sensitivity inspection can always be performed.
  • FIG. 3 is an explanatory diagram showing this state, and it can be seen that the image formation position on the retina of the target image formed on the retina 21 is moved by the rotation of the eyeball 20. As a result, a position error occurs in the sensitivity map of the retina.
  • FIG. 4 is an explanatory view showing the situation.
  • the eyeball when the eyeball is rotated upward by 8 °, for example, if the movement is not compensated, the image of the target image formed on the retina 21 moves with the movement. This will cause inspection errors. Therefore, in order to prevent this, conventionally, the movement of the image formed on the retina 21 is detected by, for example, a camera corresponding to the video camera 61 and presented to the target display device 10 so as to compensate for it. The position of the target being moved is moved.
  • the target image formed on the retina 21 does not move, and the risk of error due to the target image can be prevented.
  • the target image formed on the retina 21 can be prevented from moving, but the light beam L that is emitted from the target display apparatus 10 and converged by the lens system 30 and guided to the eyeball 20 moves. It is not taken into consideration until it ends.
  • the position of the iris is moved by the movement of the eyeball 20 or the like, and a part of the light beam L may be vignetted by the iris 22 as shown in FIG. It has been found.
  • the movement of the image formed on the retina 21 is detected by the video camera 61 and simultaneously the position of the target presented on the target display device 10 is moved so as to compensate for it.
  • the aperture stop 40 is moved in a direction orthogonal to the optical axis.
  • the movement of the aperture stop 40 is a movement that moves the position of the light beam L at the position of the pupil 23 in accordance with the rotation of the eyeball 20 so that a part of the light beam L is not vignetted by the iris 22.
  • FIG. 5 is a diagram illustrating a state in which the aperture stop 40 is moved in accordance with the movement of the target of the target display device 10. By moving the aperture stop 40 in a direction perpendicular to the optical axis, the position of the pupil 23 is illustrated. The position of the light beam L is moved so that part of the light beam L is not vignetted by the iris 22. Hereinafter, this point will be described more specifically.
  • the focal plane of the lens 34 on the visual target display device 10 side and the focal plane of the lens group 33 on the eyeball 20 side are arranged so as to substantially coincide with each other.
  • the focal plane on the visual target display device 10 side of the lens group 33 and the focal plane on the eyeball 20 side of the lens 31 are arranged so as to substantially coincide with each other.
  • the aperture stop 40 is disposed so as to substantially coincide with the focal plane of the lens group 33 on the visual target display device 10 side and the focal plane of the lens 31 on the eyeball 20 side.
  • the target display device 10 is arranged so that the display surface thereof coincides with the focal plane of the lens 31 on the target display device 10 side.
  • the lens 34 and the lens group 33 act as a telescope with a magnification of 1/2.
  • the pupil 23 of the eyeball 20 is adjusted to be positioned on the focal plane of the lens 34 on the eyeball 20 side.
  • the position of the eyeball 20 may be adjusted, for example, to a position assumed when the pupil observation video camera 62 is focused on the iris 22.
  • y f3 ⁇ tan ( ⁇ / 2) holds for the object height y from the optical axis in the target display device 10 and the viewing angle ⁇ .
  • the size of the aperture stop 40 is set to ⁇ 3 mm, an image of the aperture stop with ⁇ 1.5 mm is generated at the position of the pupil 23.
  • the refractive power of the cornea is not converted.
  • the size of the pupil 23 is about a minimum ⁇ 2 mm, so that the light beam L is guided into the eyeball 20 without being affected by the pupil diameter.
  • the present invention is not limited to this, and other measurement errors may occur due to changes in the size of the pupil. It can also be applied to a visual function measuring device.
  • the present invention can be applied to dynamic quantitative visual field inspection (Goldman visual field inspection), fundus visual field inspection (microperimetry), electroretinography (ERG), and other inspections.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Ophthalmology & Optometry (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Eye Examination Apparatus (AREA)

Abstract

Provided is an ocular function examination device that is capable of accurately evaluating sensitivity characteristics of the retina, even for differing pupil sizes caused by variation between individuals and/or pupil contraction/dilation reactions. The ocular function measurement device comprises: a visual target display device; an optical system for transmitting an image displayed on the visual target display device to the retina in the eye of the subject; and an aperture stop provided at a position that is optically conjugated with the pupil in the eye of the subject and has an aperture size set such that the luminous flux diameter, at the pupil position, of light transmitted from the visual target display device to the retina is smaller than the predicted minimum pupil diameter during inspection.

Description

視覚機能計測装置Visual function measuring device
 本発明は、眼の視野等の視覚機能の検査に用いられる視覚機能計測装置に関する。 The present invention relates to a visual function measuring device used for inspection of visual functions such as the visual field of eyes.
 視覚機能計測装置としては、例えば、特許文献1(特開平7-67833号公報)、特許文献2(特開2009-118881号公報)、特許文献3(特許第5008540号公報)、特許文献4(特開平8-140933号公報)、特許文献5(特許第4113005号公報)、特許文献6(特許第3056753号公報)等に記載の視野計が知られている。 As the visual function measuring device, for example, Patent Document 1 (Japanese Patent Laid-Open No. 7-67833), Patent Document 2 (Japanese Patent Laid-Open No. 2009-118881), Patent Document 3 (Japanese Patent No. 5008540), Patent Document 4 ( JP-A-8-140933), Patent Document 5 (Patent No. 4113005), Patent Document 6 (Patent No. 3056753), and the like are known.
 これら文献に記載の視野計は、概ね表示装置に表示する刺激視標の輝度と大きさに対する被検者の眼の応答を視覚機能の感度特性として測定するものである。このうち、特許文献1に記載のものは、平面型の視標表示装置と光学系とを用いた視野計の一般的な例である。また、特許文献2に記載のものは、被検者の眼の瞳孔の大きさを測定し、瞳孔面積に基づいて、ランプの出力を決定するランプ出力決定手段を備えるものである。 These perimeters generally measure the response of the subject's eye to the brightness and size of the stimulus target displayed on the display device as the sensitivity characteristic of the visual function. Among them, the one described in Patent Document 1 is a general example of a perimeter using a flat-type target display device and an optical system. The device described in Patent Document 2 includes a lamp output determining unit that measures the size of the pupil of the subject's eye and determines the output of the lamp based on the pupil area.
 特許文献3に記載のものは、予め瞳孔径を様々に変化させて測定した際の感度値を多数の被検者について測定して感度値を補正する際の補正量データベースを作成しておき、カメラにより測定される被検者の眼の瞳孔の大きさと、データベースを参照して補正量を演算するものである。 The one described in Patent Document 3 creates a correction amount database when correcting sensitivity values by measuring the sensitivity values when measuring various pupil diameters in advance for a large number of subjects, The correction amount is calculated by referring to the size of the pupil of the eye of the subject measured by the camera and the database.
 特許文献4に記載のものは、視標の呈示に平面ディスプレイを用い、眼球運動に合わせて表示装置上の刺激視標を新しい位置に適応させるようにしたもので、眼球運動を捉えるのに前眼部画像の変位を用いているものである。 The device described in Patent Document 4 uses a flat display for presenting the target, and adapts the stimulus target on the display device to a new position in accordance with the eye movement. The displacement of the eye image is used.
 特許文献5に記載のものは、視標の呈示に平面ディスプレイを用い、眼球運動に合わせて表示装置上の刺激視標を新しい位置に適応させる別の例であり、眼球運動を捉えるのに眼底画像の変位を用いているものである。さらに、特許文献6に記載のものは、視野絞りを動かして視標の位置を変えるようにしたものである。 The thing of patent document 5 is another example which uses a flat display for presentation of a target, and adapts the stimulus target on a display device to a new position according to the eye movement. It uses image displacement. Further, the device described in Patent Document 6 is such that the field stop is moved to change the position of the visual target.
特開平7-67833号公報JP-A-7-67833 特開2009-118881号公報JP 2009-118881 A 特許第5008540号公報Japanese Patent No. 5008540 特開平8-140933号公報JP-A-8-140933 特許第4113005号公報Japanese Patent No. 4113005 特許第3056753号公報Japanese Patent No. 3056753
 ところで、本発明者らの研究によれば、上述の従来の装置では、以下の問題のあることが判明した。すなわち、従来の装置では、装置側がある一定の輝度と大きさの刺激視標を呈示しているとしても、個人によって瞳孔の大きさが異なるため、瞳孔を通過して網膜へ到達する光量が一定とならない。 By the way, according to the study by the present inventors, it has been found that the above-described conventional apparatus has the following problems. That is, in the conventional device, even if the device side presents a stimulus target with a certain brightness and size, the size of the pupil varies from person to person, so the amount of light that passes through the pupil and reaches the retina is constant. Not.
 しかも、一般に刺激視標の輝度と大きさは常に一定ではなく検査中に変化させるので、刺激視標の光放射量に対する縮瞳/散瞳反応が起き、網膜に到達する光量へ影響を与えることになる。これらのことから従来の視覚機能検査装置では網膜の感度特性を正しく評価できていない虞がある。 In addition, since the brightness and size of the stimulus target are not always constant and change during the examination, a miosis / mydriatic reaction to the amount of light emitted from the stimulus target occurs, affecting the amount of light reaching the retina. become. For these reasons, there is a possibility that the sensitivity characteristic of the retina cannot be correctly evaluated by the conventional visual function inspection device.
 また、一般に視野計は背景光のもとで刺激視標を呈示する方法をとっており、刺激視標の絶対値の他に、背景光とのコントラストも要素となるため、瞳孔の大きさの影響を補正するのに単に瞳孔面積に比例した補正をすればよいというものではない。 In general, perimeters use a method in which a stimulus target is presented under background light. In addition to the absolute value of the stimulus target, contrast with the background light is also a factor. In order to correct the influence, it is not necessary to simply correct in proportion to the pupil area.
 さらに、一定の背景光の元で正確な測定結果を得るために、予め瞳孔径を様々に変化させて測定することで得た瞳孔径に対する感度補正量をデータベースとして記憶しておき、被検者の眼の瞳孔径と照らし合わせて補正演算する、といった方法が提案されているが、補正量データベース作成に労力を要し、また煩雑な処理が必要となるという問題がある。 Further, in order to obtain an accurate measurement result under a certain background light, the sensitivity correction amount for the pupil diameter obtained by measuring variously the pupil diameter in advance is stored as a database, and the subject is examined. However, there is a problem that a correction amount database is laborious and complicated processing is required.
 本発明の目的は、個人差および/または縮瞳/散瞳反応によって被検者の瞳孔の大きさが異なっても、網膜の感度特性を正しく評価できる視覚機能検査装置を提供することにある。 An object of the present invention is to provide a visual function inspection device capable of correctly evaluating the sensitivity characteristics of the retina even if the size of the subject's pupil differs due to individual differences and / or miosis / mydriatic reaction.
 上述の課題を解決するための手段は以下の通りである。
(1)
 視標表示装置と、
 前記視標表示装置に表示される像を被検者の眼の網膜へ伝達するための光学系と、
 前記被検者の眼の瞳孔と光学的に共役な位置に設けられた開口絞りであって、前記視標表示装置から網膜へ伝達される光の瞳孔位置における光束径を検査時に想定される最小瞳孔径よりも小さくなるように開口の大きさが設定された開口絞りと、を備えることを特徴とする視覚機能計測装置。
(2)
 前記被検者の眼球の運動を測定する測定手段と、
 前記測定手段で測定された眼球の運動に対応させて前記開口絞りの開口位置及び/又は角度を変化させる開口変位手段と、
を備えることを特徴とする(1)に記載の視覚機能計測装置。
(3)
 前記開口変位手段が、前記開口絞りの位置を機械的に変化させる機械的機構を備えたものであることを特徴とする(2)に記載の視覚機能計測装置。
(4)
 前記開口絞りが、空間光変調素子を用いたものであることを特徴とする(1)に記載の視覚機能計測装置。
Means for solving the above-described problems are as follows.
(1)
An optotype display device;
An optical system for transmitting an image displayed on the target display device to the retina of the eye of the subject;
An aperture stop provided at a position optically conjugate with the pupil of the eye of the subject, and a minimum diameter assumed at the time of examination of a light beam diameter at the pupil position of light transmitted from the target display device to the retina A visual function measuring device comprising: an aperture stop having an aperture size set to be smaller than a pupil diameter.
(2)
Measuring means for measuring the movement of the eyeball of the subject;
Aperture displacement means for changing the aperture position and / or angle of the aperture stop in accordance with the movement of the eyeball measured by the measurement means;
The visual function measuring device according to (1), further comprising:
(3)
The visual function measuring device according to (2), wherein the aperture displacement means includes a mechanical mechanism that mechanically changes the position of the aperture stop.
(4)
The visual function measuring device according to (1), wherein the aperture stop uses a spatial light modulator.
 瞳孔と光学的に概ね共役な位置に、視標表示装置から網膜へ伝達される光の瞳孔位置における光束径を検査時に想定される最小瞳孔径よりも小さくなるように開口の大きさを設定した開口絞りを備えるようにしたことにより、網膜に到達する視標および背景光の光量が個人差および/または縮瞳/散瞳反応による瞳孔の大きさの違いに依存しないようにすることできる。これによって、個人差および/または縮瞳/散瞳反応によって被検者の瞳孔の大きさが異なっても、網膜の感度特性を正しく評価することを可能にしている。 The aperture size was set so that the light beam diameter at the pupil position of the light transmitted from the target display device to the retina is smaller than the minimum pupil diameter assumed at the time of inspection at a position that is optically conjugate with the pupil. By providing the aperture stop, the amount of the target and the background light reaching the retina can be made independent of individual differences and / or differences in pupil size due to miosis / mydriatic reaction. This makes it possible to correctly evaluate the sensitivity characteristics of the retina even if the size of the subject's pupil differs due to individual differences and / or miosis / mydriatic response.
本発明の実施の形態にかかる視覚機能計測装置の全体構成を示す図である。It is a figure showing the whole visual function measuring device composition concerning an embodiment of the invention. 本発明の実施の形態にかかる視覚機能計測装置の説明図である。It is explanatory drawing of the visual function measuring device concerning embodiment of this invention. 本発明の実施の形態にかかる視覚機能計測装置の説明図である。It is explanatory drawing of the visual function measuring device concerning embodiment of this invention. 本発明の実施の形態にかかる視覚機能計測装置の説明図である。It is explanatory drawing of the visual function measuring device concerning embodiment of this invention. 本発明の実施の形態にかかる視覚機能計測装置の説明図である。It is explanatory drawing of the visual function measuring device concerning embodiment of this invention.
 図1は本発明の実施の形態にかかる視覚機能計測装置の全体構成を示す図である。以下、図1を参照にしながら本発明の実施の形態にかかる視覚機能計測装置を説明する。 FIG. 1 is a diagram showing an overall configuration of a visual function measuring device according to an embodiment of the present invention. Hereinafter, a visual function measuring device according to an embodiment of the present invention will be described with reference to FIG.
 図1に示されるように、本実施の形態にかかる視覚機能計測装置は、視標表示装置10と、視標表示装置10に表示される像を被検者の眼球20の網膜21に伝達するための光学系30と、前記被検者の眼の虹彩22によって形成される瞳孔23と光学的に共役な位置に設けられた開口絞り40とを有する。 As shown in FIG. 1, the visual function measuring device according to the present embodiment transmits a target display device 10 and an image displayed on the target display device 10 to the retina 21 of the eyeball 20 of the subject. And an aperture stop 40 provided at a position optically conjugate with the pupil 23 formed by the iris 22 of the eye of the subject.
 視標表示装置10は、所望の視標、例えば、十字形などの固視標や視野検査のための刺激視標を含む任意の図形や記号などを表示するもので、液晶表示装置などで構成される。視標表示装置10は、制御部11に接続され、制御部11はインターフェース71を介してコンピュータ72及びモニター73に接続されている。したがって、視標表示装置10は、コンピュータ72の指令に従って、必要な視標や任意の種類の記号などを表示し、また、それら表示像の位置や色、輝度、動きなどを自在に制御できるようになっている。 The target display device 10 displays a desired target, for example, an arbitrary figure or symbol including a fixation target such as a cross or a stimulus target for visual field inspection, and is configured by a liquid crystal display device or the like. Is done. The visual target display device 10 is connected to a control unit 11, and the control unit 11 is connected to a computer 72 and a monitor 73 via an interface 71. Therefore, the target display device 10 displays necessary targets, arbitrary types of symbols, and the like in accordance with instructions from the computer 72, and can freely control the position, color, brightness, movement, and the like of these display images. It has become.
 光学系30は、視標表示装置10からの光を収束させて開口絞り40の開口部41を通過させるためのレンズ31と、開口絞り40を通過した光を通過させるとともに反対側からくる光を反射してほぼ90°方向に進行させてレンズ61aを通じてビデオカメラ61に入射させるビームスプリッタ32と、前記レンズ31と協働して前記視標表示装置10からの光を被検者の眼球20に送るレンズ群33及びレンズ34と、開口絞り40及びレンズ群33を通過した視標表示装置10からの光を通過させる透過孔を有するミラー35とを備える。 The optical system 30 converges the light from the target display device 10 and passes it through the opening 41 of the aperture stop 40, and passes the light that has passed through the aperture stop 40 and the light coming from the opposite side. A beam splitter 32 that reflects and travels in the direction of approximately 90 ° and enters the video camera 61 through the lens 61a, and cooperates with the lens 31 to transmit light from the target display device 10 to the eyeball 20 of the subject. A lens group 33 and a lens 34 to be sent, and a mirror 35 having a transmission hole through which light from the target display device 10 that has passed through the aperture stop 40 and the lens group 33 pass.
 ビームスプリッタ32は、指標表示装置10からの光は通過させる一方で、レンズ34及びレンズ群33を通過してきた被検者の眼球20の網膜21からの光を反射してビームスプリッタ62aに導く。ビームスプリッタ62aに導かれた光の一部は反射されて瞳孔観察用のビデオカメラ62に導かれる。ビームスプリッタ62aに導かれた光の他の一部は透過して結像レンズ61aを介して網膜像観察用のビデオカメラ61に導かれる。 The beam splitter 32 allows the light from the index display device 10 to pass through, while reflecting the light from the retina 21 of the eyeball 20 of the subject that has passed through the lens 34 and the lens group 33 and guiding it to the beam splitter 62a. A part of the light guided to the beam splitter 62a is reflected and guided to the video camera 62 for pupil observation. Another part of the light guided to the beam splitter 62a is transmitted and guided to the video camera 61 for retinal image observation via the imaging lens 61a.
 網膜像観察用のビデオカメラ61は、網膜21の像を撮影し、また、瞳孔観察用のビデオカメラ62は、瞳孔23の像を撮影して、それぞれの画像信号をインターフェース71を介してコンピュータ72に送信する。コンピュータ72は、これらの画像信号を取り込み、被検者の眼底の動き、すなわち、画像平面内での平行移動や回転をオンラインで検出し、自動追跡して補償したり、移動量や回転角度を計測してその移動量や角度に応じて他の装置を制御したりするとともに、各種の自覚検眼や他覚検眼を行う自動検眼プログラムなどによって、虹彩像、瞳孔像、瞳孔径、縮瞳/散瞳その他の瞳孔の動きなどを解析し、各種検眼処理なども行なうことができるように構成されている。 A video camera 61 for retinal image observation captures an image of the retina 21, and a video camera 62 for pupil observation captures an image of the pupil 23, and each image signal is transmitted to the computer 72 via the interface 71. Send to. The computer 72 captures these image signals, detects the movement of the fundus of the subject, that is, the parallel movement or rotation in the image plane, and automatically tracks and compensates for the movement or rotation angle. In addition to measuring and controlling other devices according to the amount and angle of movement, various irises, pupil images, pupil diameters, miosis / mydriasis, etc. can be obtained by various optometry and automatic optometry programs. The movement of the pupil and other pupils is analyzed, and various optometry processes can be performed.
 眼球運動の測定の方法としては、例えば、眼底画像に対してパターンマッチング法を適用する方法などがある。これは、網膜像観察用のビデオカメラ61によって撮影される眼底画像に対し、演算処理手段によって例えば次の評価量R(x,y,x*,y*)または/およびC(x,y,x*,y*)を算出する。
Figure JPOXMLDOC01-appb-M000001
As a method for measuring eye movement, for example, there is a method of applying a pattern matching method to a fundus image. For example, the following evaluation amount R (x, y, x *, y *) or / and C (x, y, x *, y *) is calculated.
Figure JPOXMLDOC01-appb-M000001
 ここでF(x,y)は眼球運動前の網膜画像の座標(x,y)における輝度値、G(x*,y*)は眼球運動後の網膜画像の座標(x*,y*)における輝度値、FバーおよびGバーは運動前および運動後画像のマッチング領域内の輝度平均値である。運動前の網膜画像の一部をテンプレートとして運動後画像内をラスタスキャンさせ、Rを最小にする、または/およびCを最大にする位置を探し出し、移動量に換算する。 Here, F (x, y) is the luminance value at the coordinates (x, y) of the retina image before the eye movement, and G (x *, y *) is the coordinates (x *, y *) of the retina image after the eye movement. The luminance values at F, F bar and G bar are average luminance values in the matching area of the pre-exercise and post-exercise images. A portion of the retina image before exercise is used as a template to perform raster scan in the post-exercise image, find a position that minimizes R or / and maximizes C, and converts it to a movement amount.
 また、他の眼球運動の測定の方法としては、例えば、瞳孔画像の瞳孔中心座標を用いる方法がある。これは、眼球運動測定手段として、眼球20の瞳孔23の像を撮影する瞳孔観察用のビデオカメラ62を用いるものである。キャリブレーション実施後、瞳孔観察画像における基準位置に対する瞳孔重心位置から眼球回旋角度を演算部によって算出することで眼球運動の測定を行う。瞳孔重心位置の測定は,撮影部によって取得した瞳孔画像を画像処理手段によって瞳孔の輪郭を検出した後、演算部によって検出した輪郭の重心位置を算出することで行う。 Further, as another method for measuring eye movement, for example, there is a method using the pupil center coordinates of the pupil image. This uses a video camera 62 for observing the pupil that captures an image of the pupil 23 of the eyeball 20 as the eye movement measuring means. After the calibration is performed, the eye movement is measured by calculating the eye rotation angle from the pupil center of gravity position with respect to the reference position in the pupil observation image by the calculation unit. The measurement of the center of gravity of the pupil is performed by calculating the center of gravity of the contour detected by the arithmetic unit after detecting the contour of the pupil from the pupil image acquired by the imaging unit by the image processing means.
 キャリブレーションでは、被検者に特定位置を見てもらい、そのときの瞳孔重心位置を測定して個人パラメータの補正及び基準位置の測定・保存を行う。例えば被検者に見せる位置は被測定眼の正面とそれ以外の任意の単数または複数位置であり、基準位置は被検者が正面を凝視したときの観察画像上の瞳孔重心位置とし、その他の位置を凝視したときの瞳孔重心位置と基準位置とによって個人パラメータを補正する。 In calibration, have the subject look at a specific position, measure the center of gravity of the pupil at that time, correct the personal parameters, and measure / store the reference position. For example, the position shown to the subject is the front of the eye to be measured and any other single or plural positions, and the reference position is the position of the center of gravity of the pupil on the observation image when the subject stares at the front. The personal parameter is corrected based on the position of the center of gravity of the pupil when the position is stared and the reference position.
 ミラー35は、赤外光などを出射する光源51から出射してレンズ51aを通過した光を反射し、レンズ34によって収束させて被検者の眼球20の網膜21を照明するものである。光源51の制御ラインはインターフェース71に接続され、コンピュータ72の指令に基づいてオン・オフや輝度などが制御されるようになっている。 The mirror 35 reflects the light emitted from the light source 51 that emits infrared light or the like and passes through the lens 51a, and is converged by the lens 34 to illuminate the retina 21 of the eyeball 20 of the subject. The control line of the light source 51 is connected to the interface 71 so that on / off, luminance, and the like are controlled based on a command from the computer 72.
 開口絞り40は、被検者の眼球20の瞳孔23と光学的に共役な位置に設けられている。そして、視標表示装置10から網膜21へ伝達される光の光束径が、瞳孔23の位置においては検査時に想定される最小瞳孔径の大きさよりも小さくなるように、その開口部41の孔径を設定してあるものである。ここで、一般に縮瞳状態で瞳孔径が2mm以下になると病的と考えられているので、「検査時に想定される最小瞳孔径」としては、2mm以下に設定するのが望ましい。なお、瞳孔径サイズは加齢とともに小さくなり、70歳代の平均で平常時で2.7mm、暗所で3.2mm、80歳代の平均で平常時が2.3mm、暗所で2.5mm程度とされている。 The aperture stop 40 is provided at a position optically conjugate with the pupil 23 of the eyeball 20 of the subject. Then, the aperture diameter of the opening 41 is set so that the beam diameter of the light transmitted from the target display device 10 to the retina 21 is smaller than the minimum pupil diameter assumed at the time of the examination at the position of the pupil 23. It has been set. Here, since it is generally considered that the pupil diameter is 2 mm or less in the miosis state, it is desirable to set the “minimum pupil diameter assumed at the time of examination” to 2 mm or less. The pupil diameter size decreases with age, and the average in the 70s is 2.7 mm in the normal state, 3.2 mm in the dark, the average in the 80s is 2.3 mm in the normal, and the average in the dark is 2. It is about 5 mm.
 この開口絞り40は、写真カメラ等に用いられる多数の羽を機械的に駆動して開口部41の円形状の孔径を自在に変化させることができる周知の絞り機構を備えたものであってもよいし、液晶パネルなどの周知の空間光変調素子用い、空間光変調素子自体の透過率分布を変えることによって開口部41の大きさや位置を変えるようにしたものを用いてもよい。 The aperture stop 40 may include a known aperture mechanism that can mechanically drive a large number of wings used in a photographic camera or the like to freely change the circular hole diameter of the opening 41. Alternatively, a known spatial light modulator such as a liquid crystal panel may be used, and the size and position of the opening 41 may be changed by changing the transmittance distribution of the spatial light modulator itself.
 また、この開口絞り40は、開口部41の光軸に対する位置や角度も変化させることができる機構を有し、駆動部42によって駆動制御されるようになっている。駆動部42は、上述の絞り機構を制御する制御装置を有するとともに、ステッピングモータやソレノイド等によって開口部41の光軸に対する位置や角度を変化させる周知の機構も有するものであり、インターフェース71に接続されてコンピュータ72の指令に基づいて開口部41の孔径を変化させたり開口部41の位置を移動したり角度を変化させたりできるようになっている。 The aperture stop 40 has a mechanism that can change the position and angle of the opening 41 with respect to the optical axis, and is driven and controlled by the drive unit 42. The drive unit 42 has a control device that controls the above-described diaphragm mechanism, and also has a known mechanism that changes the position and angle of the opening 41 with respect to the optical axis by a stepping motor, a solenoid, and the like. Thus, the hole diameter of the opening 41 can be changed, the position of the opening 41 can be moved, and the angle can be changed based on a command from the computer 72.
 レンズ群33は、複数のレンズ33a、33b、33cなどで構成され、一部のレンズ、例えば、レンズ33bを光軸方向に移動できるように構成することなどによって、被検者の眼球20の瞳孔23と開口絞り40とを光学的に共役な位置関係になるように設定できるようになっている。なお、レンズ34の近傍には、瞳孔照明用の光源装置52が設けられている。この光源装置52は、その制御部がインターフェース71を通じてコンピュータ72に連絡され、コンピュータ72の指令によってオン・オフ制御や光量制御などがなされるようになっている。 The lens group 33 includes a plurality of lenses 33a, 33b, 33c, etc., and a part of the lenses, for example, the lens 33b can be moved in the direction of the optical axis, thereby the pupil of the eyeball 20 of the subject. 23 and the aperture stop 40 can be set so as to have an optically conjugate positional relationship. In the vicinity of the lens 34, a light source device 52 for pupil illumination is provided. The light source device 52 is in communication with a computer 72 through an interface 71, and is turned on / off or controlled by a command from the computer 72.
 また、被検者の近傍には、応答スイッチ80が設けられている。この応答スイッチ80も、インターフェース71を通じてコンピュータ72に信号を送ることができるようになっている。すなわち、被検者が、例えば、刺激視標を視認できたときに応答スイッチ80のボタン81を操作すると、コンピュータ72が視認信号を受けて所定の処理、例えば、網膜の感度マップの一部の作成処理などを行うものである。 Also, a response switch 80 is provided in the vicinity of the subject. This response switch 80 can also send a signal to the computer 72 through the interface 71. That is, for example, when the subject operates the button 81 of the response switch 80 when he / she can visually recognize the stimulus target, the computer 72 receives the visual signal and performs predetermined processing, for example, a part of the sensitivity map of the retina. The creation process is performed.
 上述の視覚機能計測装置によれば、動的量的視野検査(ゴールドマン視野検査)、静的量的視野検査、眼底視野検査(マイクロペリメトリー)、網膜電図検査(ERG)その他の検査を行うことが可能であるが、以下では、静的量的視野検査を行う場合について説明する。静的量的視野検査については、自覚式検査と他覚式検査があり、いずれの方式の検査も行うことができる。 According to the visual function measuring device described above, dynamic quantitative visual field inspection (Goldman visual field inspection), static quantitative visual field inspection, fundus visual field inspection (microperimetry), electroretinography (ERG) and other inspections are performed. In the following description, a case of performing a static quantitative visual field inspection will be described. As for the static quantitative visual field inspection, there are a subjective inspection and an objective inspection, and any type of inspection can be performed.
 静的量的視野検査は、次のような検査である。すなわち、視野内の一点に視標をおいて、その明るさを徐々に増していくと、ある明るさになると見えるようになるので、見えるようになったときの明るさに対応する値をその点における網膜感度とし、視野内の各点について同じ測定を行って、視野内の網膜感度の相違を量的に調べ、マップを作成することなどを行う検査である。 Static quantitative visual field inspection is the following inspection. In other words, if you place a target at one point in the field of view and gradually increase its brightness, it will become visible when it reaches a certain brightness, so the value corresponding to the brightness when it becomes visible In this test, retinal sensitivity at a point is used, the same measurement is performed for each point in the field of view, the difference in retinal sensitivity in the field of view is quantitatively examined, and a map is created.
 まず、自覚式検査は、次のようにして行われる。すなわち、コンピュータ72の指令により、視標表示装置10に視野検査用の視標が表示される。被検者は、眼球20をこの視標に向けてその視標を見る。視標表示装置10は、視野の測定すべき点に対応する視標の点の明るさを徐々に増していく。そうすると、ある明るさになると被検者に見えるようになるので、見えるようになったときに被検者が応答スイッチ80のボタン81を操作するようにする。これによって、コンピュータ72は、所定の処理をして、その時の視標の点の明るさに対応する値をその点の網膜の感度とする。そして、視野内の各点について同じ測定を行って、視野内の網膜感度の相違を量的に調べ、網膜の感度マップを作成していくものである。 First, the subjective examination is performed as follows. That is, the visual target for visual field inspection is displayed on the visual target display device 10 in accordance with an instruction from the computer 72. The subject looks at the target with the eyeball 20 facing the target. The target display device 10 gradually increases the brightness of the target point corresponding to the point to be measured in the visual field. Then, since it becomes visible to the subject at a certain brightness, the subject operates the button 81 of the response switch 80 when it becomes visible. As a result, the computer 72 performs a predetermined process, and sets the value corresponding to the brightness of the target point at that time as the sensitivity of the retina at that point. Then, the same measurement is performed for each point in the visual field, the difference in retinal sensitivity in the visual field is quantitatively examined, and a sensitivity map of the retina is created.
 他覚式検査は、次のようにして行われる。すなわち、コンピュータ72の指令により、視標表示装置10に視野検査用の視標が表示される。被検者は、眼球20をこの視標に向けてその視標を見る。視標表示装置10は、視野の測定すべき点に対応する視標の点の明るさを徐々に増していく。そうすると、ある明るさになると被検者に見えるようになる。明るさに応じて変化する瞳孔径の変化をビデオカメラ62を通じてコンピュータ72が画像解析によって検知し、所定の処理をして、その時の視標の点の明るさに対応する値をその点の網膜上の感度とする。そして、視野内の各点について同じ測定を自動的に次々と行って、視野内の網膜上の感度の相違を量的に調べ、網膜上の感度マップを自動的に作成していくものである。 The objective test is performed as follows. That is, the visual target for visual field inspection is displayed on the visual target display device 10 in accordance with an instruction from the computer 72. The subject looks at the target with the eyeball 20 facing the target. The target display device 10 gradually increases the brightness of the target point corresponding to the point to be measured in the visual field. Then, when it becomes a certain brightness, it becomes visible to the subject. A change in pupil diameter that changes in accordance with the brightness is detected by the computer 72 through image analysis through the video camera 62, a predetermined process is performed, and a value corresponding to the brightness of the target point at that time is determined as the retina of that point. Sensitivity above. Then, the same measurement is automatically performed one after another for each point in the field of view, the difference in sensitivity on the retina in the field of view is quantitatively examined, and a sensitivity map on the retina is automatically created. .
 上述の検査において、視標表示装置10によって表示される視標パターンが変化したり、明るさが変化すると、被検者の眼球20の瞳孔23の径が変化する。したがって、視標表示装置10からの光の光束の径が瞳孔23の径よりも大きかったり、上記光束の一部が瞳孔23によってケラレているような場合には、瞳孔23の径の変化によって網膜21に達する光の全体量も変化することになる。網膜21に達する光の全体量が変化すると、網膜21がその変化に反応して感度を変化させてしまうので、正しい感度検査ができなくなる虞れが生じてくる。 In the above examination, when the target pattern displayed by the target display device 10 changes or the brightness changes, the diameter of the pupil 23 of the eyeball 20 of the subject changes. Therefore, when the diameter of the light beam from the target display device 10 is larger than the diameter of the pupil 23 or when a part of the light beam is vignetted by the pupil 23, the retina is caused by the change in the diameter of the pupil 23. The total amount of light reaching 21 will also change. If the total amount of light reaching the retina 21 changes, the retina 21 changes the sensitivity in response to the change, and thus there is a possibility that a correct sensitivity test cannot be performed.
 しかしながら、本発明の実施の形態に係る上述の視覚機能計測装置においては、被検者の眼球20の瞳孔23と光学的に共役な位置に開口絞り40が設けられており、視標表示装置10から網膜21へ伝達される光の光束径が、瞳孔23の位置においては通常想定される瞳孔23の大きさよりも小さくなるように、その開口部41の孔径を設定してある。図2はこの様子を示したものであり、光束Lは、開口絞り40によって絞られたことによって、瞳孔23を通過するときは、検査中に想定される瞳孔径の変化の範囲においては、常に瞳孔23の内側を通過することになる。 However, in the above-described visual function measuring device according to the embodiment of the present invention, the aperture stop 40 is provided at a position optically conjugate with the pupil 23 of the eyeball 20 of the subject. The aperture diameter of the opening 41 is set so that the beam diameter of the light transmitted from the to the retina 21 is smaller than the normally assumed size of the pupil 23 at the position of the pupil 23. FIG. 2 shows this state. When the light beam L passes through the pupil 23 due to being narrowed by the aperture stop 40, it is always within the range of changes in the pupil diameter assumed during the examination. It passes through the inside of the pupil 23.
 したがって、視標表示装置10からの光の光束の径よりも瞳孔23の径のほうが小さくなってしまって上記光束の一部が瞳孔23によってケラレる、というようなことを防止することができる。これにより、瞳孔23の径が変化しても網膜21に達する光の全体量が変化することがない。その結果、常に、正しい感度検査を行うことが可能となる。 Therefore, it can be prevented that the diameter of the pupil 23 becomes smaller than the diameter of the luminous flux of the light from the target display device 10 and a part of the luminous flux is vignetted by the pupil 23. Thereby, even if the diameter of the pupil 23 changes, the total amount of light reaching the retina 21 does not change. As a result, a correct sensitivity inspection can always be performed.
 ところで、検眼の際には眼球20が動かないことが前提であるが、検査の際に視標が呈示されたり、あるいはその視標が変化したりしたような場合には、その変化に眼球が自然に反応してしまって、回転する場合がある。眼球20が回転すると、網膜21に結像する視標像の網膜上の結像位置がその分移動してしまうことになる。図3はその様子を示す説明図であり、眼球20の回転によって、網膜21に結像する視標像の網膜上の結像位置が移動していることがわかる。その結果、網膜の感度マップに位置誤差が生じてしまうことになる。 By the way, it is premised that the eyeball 20 does not move at the time of optometry, but when the target is presented or the target changes at the time of the examination, the eyeball is affected by the change. It may react naturally and rotate. When the eyeball 20 rotates, the image forming position on the retina of the target image formed on the retina 21 is moved correspondingly. FIG. 3 is an explanatory diagram showing this state, and it can be seen that the image formation position on the retina of the target image formed on the retina 21 is moved by the rotation of the eyeball 20. As a result, a position error occurs in the sensitivity map of the retina.
 これを防ぐために、従来の装置では、ビデオカメラ61に相当するカメラによって網膜像の動きを解析し、その眼球の動きを検知してその動きを補償するように、視標表示装置に表示された視標の位置を変化させることが行われている。図4はその様子を示す説明図である。 In order to prevent this, in the conventional apparatus, the movement of the retinal image is analyzed by a camera corresponding to the video camera 61, and the movement of the eyeball is detected and displayed on the target display apparatus so as to compensate for the movement. The position of the target is changed. FIG. 4 is an explanatory view showing the situation.
 図4に示されるように、眼球が例えば8°上向きに回転した場合、その動きを補償しない場合には、網膜21に結像されている視標の像がその動きに伴って移動することになり、検査の誤差を引き起こすことになる。したがって、それを防ぐために、従来は、網膜21に結像している像の移動を、例えば、ビデオカメラ61に相当するカメラによって検知し、それを補償するように、視標表示装置10に呈示されている視標の位置を移動させることが行われている。 As shown in FIG. 4, when the eyeball is rotated upward by 8 °, for example, if the movement is not compensated, the image of the target image formed on the retina 21 moves with the movement. This will cause inspection errors. Therefore, in order to prevent this, conventionally, the movement of the image formed on the retina 21 is detected by, for example, a camera corresponding to the video camera 61 and presented to the target display device 10 so as to compensate for it. The position of the target being moved is moved.
 これにより、眼球20が回転しても網膜21に結像した視標像が動かないようにしてそれによる誤差の虞を防止することはできる。しかしながら、従来の装置では、網膜21に結像した視標像が動かないようにはできるが、視標表示装置10から出てレンズ系30によって収束されて眼球20に導かれる光束Lが移動してしまうことまでは考慮にいれられていない。 Thereby, even if the eyeball 20 rotates, the target image formed on the retina 21 does not move, and the risk of error due to the target image can be prevented. However, in the conventional apparatus, the target image formed on the retina 21 can be prevented from moving, but the light beam L that is emitted from the target display apparatus 10 and converged by the lens system 30 and guided to the eyeball 20 moves. It is not taken into consideration until it ends.
 本発明者らの研究によれば、眼球20の回転等の動きによって、虹彩の位置が移動してしまい、図4に示されるように、光束Lの一部が虹彩22によってケラレる場合のあることが判明した。検討の結果、網膜21に結像している像の移動を、ビデオカメラ61によって検知し、それを補償するように、視標表示装置10に呈示されている視標の位置を移動させると同時に、開口絞り40を、光軸に直交する方向に移動させる。この開口絞り40の移動は、眼球20の回転に合わせて瞳孔23の位置における光束Lの位置を移動させて、光束Lの一部が虹彩22によってケラレることのないようにする移動である。 According to the study by the present inventors, the position of the iris is moved by the movement of the eyeball 20 or the like, and a part of the light beam L may be vignetted by the iris 22 as shown in FIG. It has been found. As a result of the examination, the movement of the image formed on the retina 21 is detected by the video camera 61 and simultaneously the position of the target presented on the target display device 10 is moved so as to compensate for it. The aperture stop 40 is moved in a direction orthogonal to the optical axis. The movement of the aperture stop 40 is a movement that moves the position of the light beam L at the position of the pupil 23 in accordance with the rotation of the eyeball 20 so that a part of the light beam L is not vignetted by the iris 22.
 図5は視標表示装置10の視標の移動に合わせて開口絞り40を移動した様子を示す説明であり、この開口絞り40を光軸に直交する方向に移動させることにより、瞳孔23の位置における光束Lの位置を移動させて、光束Lの一部が虹彩22によってケラレることのないようにするものである。以下、この点をより具体的に説明する。 FIG. 5 is a diagram illustrating a state in which the aperture stop 40 is moved in accordance with the movement of the target of the target display device 10. By moving the aperture stop 40 in a direction perpendicular to the optical axis, the position of the pupil 23 is illustrated. The position of the light beam L is moved so that part of the light beam L is not vignetted by the iris 22. Hereinafter, this point will be described more specifically.
 眼球20側から、レンズ34の焦点距離f1は、f1=20mmであり、レンズ群33の焦点距離f2は、f2=40mmであり、レンズ31の焦点距離f3は、f3=10mmであるとする。レンズ34の視標表示装置10側の焦点面と、レンズ群33の眼球20側焦点面とは略一致するように配置されてある。レンズ群33の視標表示装置10側の焦点面と、レンズ31の眼球20側の焦点面とは略一致するように配置されてある。開口絞り40は、レンズ群33の視標表示装置10側の焦点面およびレンズ31の眼球20側の焦点面に略一致するように配置されてある。 From the eyeball 20 side, the focal length f1 of the lens 34 is f1 = 20 mm, the focal length f2 of the lens group 33 is f2 = 40 mm, and the focal length f3 of the lens 31 is f3 = 10 mm. The focal plane of the lens 34 on the visual target display device 10 side and the focal plane of the lens group 33 on the eyeball 20 side are arranged so as to substantially coincide with each other. The focal plane on the visual target display device 10 side of the lens group 33 and the focal plane on the eyeball 20 side of the lens 31 are arranged so as to substantially coincide with each other. The aperture stop 40 is disposed so as to substantially coincide with the focal plane of the lens group 33 on the visual target display device 10 side and the focal plane of the lens 31 on the eyeball 20 side.
 視標表示装置10は、表示面がレンズ31の視標表示装置10側の焦点面と一致するように配置されてある。このとき、レンズ34とレンズ群33とで倍率1/2の望遠鏡として作用することになる。眼球20の瞳孔23は、レンズ34の眼球20側の焦点面に位置するよう調整される。眼球20の位置の調整は、例えば、瞳孔観察用のビデオカメラ62が虹彩22に合焦したときに想定される位置となるようすればよい。 The target display device 10 is arranged so that the display surface thereof coincides with the focal plane of the lens 31 on the target display device 10 side. At this time, the lens 34 and the lens group 33 act as a telescope with a magnification of 1/2. The pupil 23 of the eyeball 20 is adjusted to be positioned on the focal plane of the lens 34 on the eyeball 20 side. The position of the eyeball 20 may be adjusted, for example, to a position assumed when the pupil observation video camera 62 is focused on the iris 22.
 各レンズの収差が十分補正されているとすると、視標表示装置10における光軸からの物体高yと、視角θにはy=f3・tan(θ/2)が成り立つと見なせる。例えば、開口絞り40の大きさを、φ3mmに設定すると、瞳孔23の位置に、φ1.5mmの開口絞りの像が生成される。なお、簡単のために角膜の屈折力は換算していない。一般に、通常の照明下で瞳孔23の大きさは、最小φ2mm程度であるため、光束Lは瞳孔径の影響を受けることなく眼球20内へ導かれる。 If the aberration of each lens is sufficiently corrected, it can be considered that y = f3 · tan (θ / 2) holds for the object height y from the optical axis in the target display device 10 and the viewing angle θ. For example, if the size of the aperture stop 40 is set to φ3 mm, an image of the aperture stop with φ1.5 mm is generated at the position of the pupil 23. For simplicity, the refractive power of the cornea is not converted. In general, under normal illumination, the size of the pupil 23 is about a minimum φ2 mm, so that the light beam L is guided into the eyeball 20 without being affected by the pupil diameter.
 さらに、検査中に、眼球20が回転して瞳孔観察用ビデオカメラ62によって、瞳孔中心が1mm上方に移動したことが観察されたとする。このとき、開口絞り40の中心位置を2mm下方に動かすことで、眼球20の運動に伴う虹彩22によるケラレを防げることになる。 Furthermore, it is assumed that the eyeball 20 is rotated during the examination, and the pupil observation video camera 62 observes that the pupil center is moved upward by 1 mm. At this time, by moving the center position of the aperture stop 40 downward by 2 mm, vignetting due to the iris 22 accompanying the movement of the eyeball 20 can be prevented.
 以上の説明は、本発明を静的量的視野検査に適用する場合の例について述べたが、本発明はこれに限られるものではなく、瞳孔の大きさの変化によって測定誤差が生じうる他の視機能計測装置にも適用できる。例えば、動的量的視野検査(ゴールドマン視野検査)、眼底視野検査(マイクロペリメトリー)、網膜電図検査(ERG)その他の検査にも適用できることは勿論である。 Although the above description has described an example in which the present invention is applied to static quantitative visual field inspection, the present invention is not limited to this, and other measurement errors may occur due to changes in the size of the pupil. It can also be applied to a visual function measuring device. For example, the present invention can be applied to dynamic quantitative visual field inspection (Goldman visual field inspection), fundus visual field inspection (microperimetry), electroretinography (ERG), and other inspections.
10 視標表示装置
20 眼球
21 網膜
22 虹彩
23 瞳孔
30 光学系
31、34 レンズ
33 レンズ群
40 開口絞り
61 網膜観察用ビデオカメラ
62 瞳孔観察用ビデオカメラ
72 コンピュータ
DESCRIPTION OF SYMBOLS 10 Target display apparatus 20 Eyeball 21 Retina 22 Iris 23 Pupil 30 Optical system 31, 34 Lens 33 Lens group 40 Aperture stop 61 Retina observation video camera 62 Pupil observation video camera 72 Computer

Claims (4)

  1.  視標表示装置と、
     前記視標表示装置に表示される像を被検者の眼の網膜へ伝達するための光学系と、
     前記被検者の眼の瞳孔と光学的に共役な位置に設けられた開口絞りであって、前記視標表示装置から網膜へ伝達される光の瞳孔位置における光束径を検査時に想定される最小瞳孔径よりも小さくなるように開口の大きさが設定された開口絞りと、
    を備えることを特徴とする視覚機能計測装置。
    An optotype display device;
    An optical system for transmitting an image displayed on the target display device to the retina of the eye of the subject;
    An aperture stop provided at a position optically conjugate with the pupil of the eye of the subject, and a minimum diameter assumed at the time of examination of a light beam diameter at the pupil position of light transmitted from the target display device to the retina An aperture stop whose aperture size is set to be smaller than the pupil diameter;
    A visual function measuring device comprising:
  2.  前記被検者の眼球の運動を測定する測定手段と、
     前記測定手段で測定された眼球の運動に対応させて前記開口絞りの開口位置及び/又は角度を変化させる開口変位手段と、
    を備えることを特徴とする請求項1に記載の視覚機能計測装置。
    Measuring means for measuring the movement of the eyeball of the subject;
    Aperture displacement means for changing the aperture position and / or angle of the aperture stop in accordance with the movement of the eyeball measured by the measurement means;
    The visual function measuring device according to claim 1, comprising:
  3.  前記開口変位手段が、前記開口絞りの位置を機械的に変化させる機械的機構を備えたものであることを特徴とする請求項2に記載の視覚機能計測装置。 3. The visual function measuring device according to claim 2, wherein the aperture displacement means includes a mechanical mechanism that mechanically changes the position of the aperture stop.
  4.  前記開口絞りが、空間光変調素子を用いたものであることを特徴とする請求項1に記載の視覚機能計測装置。 2. The visual function measuring device according to claim 1, wherein the aperture stop uses a spatial light modulation element.
PCT/JP2014/061938 2014-04-30 2014-04-30 Ocular function measurement device WO2015166549A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/061938 WO2015166549A1 (en) 2014-04-30 2014-04-30 Ocular function measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/061938 WO2015166549A1 (en) 2014-04-30 2014-04-30 Ocular function measurement device

Publications (1)

Publication Number Publication Date
WO2015166549A1 true WO2015166549A1 (en) 2015-11-05

Family

ID=54358302

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/061938 WO2015166549A1 (en) 2014-04-30 2014-04-30 Ocular function measurement device

Country Status (1)

Country Link
WO (1) WO2015166549A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107361738A (en) * 2017-08-16 2017-11-21 苏州四海通仪器有限公司 A kind of optical stop system and Ophthalmologic apparatus for Ophthalmologic apparatus
CN109700427A (en) * 2019-02-28 2019-05-03 中国人民解放军第306医院 A kind of cornea contact electrode and working method that can measure pupil size simultaneously
US20200237214A1 (en) * 2017-09-21 2020-07-30 Verily Life Sciences Llc Retinal cameras having movable optical stops

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62211041A (en) * 1986-03-10 1987-09-17 キヤノン株式会社 Ophthalmic examination apparatus
US5046835A (en) * 1988-09-22 1991-09-10 Interzeag Ag Apparatus for testing visual functions of human eyes
JPH04141128A (en) * 1990-09-29 1992-05-14 Topcon Corp Ophthalmic measuring apparatus for refractive power
US20030053027A1 (en) * 2001-04-16 2003-03-20 Sarver Edwin J. Subjective refraction by meridional power matching
JP2004216118A (en) * 2002-12-24 2004-08-05 Matsushita Electric Works Ltd Perimeter
JP2009291409A (en) * 2008-06-05 2009-12-17 Nidek Co Ltd Apparatus for measuring refractive power of eye
JP2010518420A (en) * 2007-02-06 2010-05-27 バイエル・イノヴェイション・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Holographic storage device for reading a hologram stored in a holographic storage medium and method for realizing the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62211041A (en) * 1986-03-10 1987-09-17 キヤノン株式会社 Ophthalmic examination apparatus
US5046835A (en) * 1988-09-22 1991-09-10 Interzeag Ag Apparatus for testing visual functions of human eyes
JPH04141128A (en) * 1990-09-29 1992-05-14 Topcon Corp Ophthalmic measuring apparatus for refractive power
US20030053027A1 (en) * 2001-04-16 2003-03-20 Sarver Edwin J. Subjective refraction by meridional power matching
JP2004216118A (en) * 2002-12-24 2004-08-05 Matsushita Electric Works Ltd Perimeter
JP2010518420A (en) * 2007-02-06 2010-05-27 バイエル・イノヴェイション・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Holographic storage device for reading a hologram stored in a holographic storage medium and method for realizing the same
JP2009291409A (en) * 2008-06-05 2009-12-17 Nidek Co Ltd Apparatus for measuring refractive power of eye

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107361738A (en) * 2017-08-16 2017-11-21 苏州四海通仪器有限公司 A kind of optical stop system and Ophthalmologic apparatus for Ophthalmologic apparatus
CN107361738B (en) * 2017-08-16 2023-11-21 苏州四海通仪器有限公司 Diaphragm system for ophthalmic device and ophthalmic device
US20200237214A1 (en) * 2017-09-21 2020-07-30 Verily Life Sciences Llc Retinal cameras having movable optical stops
US11857260B2 (en) * 2017-09-21 2024-01-02 Verily Life Sciences Llc Retinal cameras having movable optical stops
CN109700427A (en) * 2019-02-28 2019-05-03 中国人民解放军第306医院 A kind of cornea contact electrode and working method that can measure pupil size simultaneously

Similar Documents

Publication Publication Date Title
JP7223491B2 (en) Subjective optometric device and subjective optometric program
JP5879826B2 (en) Fundus photographing device
JP5248926B2 (en) Eye refractive power measuring device
US10188282B2 (en) Subjective optometry apparatus
WO2006030658A1 (en) Diopsimeter
JP6853496B2 (en) Optometry device and optometry program
JP2018047049A (en) Subjective optometer and subjective optometric program
US20170202454A1 (en) Eye Examining System And Method For Eye Examination
JP3950876B2 (en) Fundus examination device
WO2015166549A1 (en) Ocular function measurement device
JP6062225B2 (en) Visual function measuring device
JP5008540B2 (en) Ophthalmic equipment
JP6003234B2 (en) Fundus photographing device
JP6060525B2 (en) Fundus examination device
JP2018038788A (en) Subjective optometer and subjective optometry program
JP2018038481A (en) Subjective optometer and subjective optometry program
JP5986491B2 (en) Visual function measuring device
WO2015166551A1 (en) Ocular function measurement device
KR20180027333A (en) Subjective optometric apparatus and subjective optometric program
JP2021180959A (en) Ophthalmologic apparatus and control method thereof
US20230013357A1 (en) Examination device and eye examination method
WO2023145638A1 (en) Ophthalmic device and ophthalmic program
JP7298134B2 (en) Optometry system
JP5196964B2 (en) Ophthalmic equipment
JP2022073154A (en) Optometer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14890559

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC. EPO FORM 1205A DATED 13.02.2017

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 14890559

Country of ref document: EP

Kind code of ref document: A1