WO2015165356A1 - 一种鉴权信息的传输方法及终端 - Google Patents

一种鉴权信息的传输方法及终端 Download PDF

Info

Publication number
WO2015165356A1
WO2015165356A1 PCT/CN2015/077255 CN2015077255W WO2015165356A1 WO 2015165356 A1 WO2015165356 A1 WO 2015165356A1 CN 2015077255 W CN2015077255 W CN 2015077255W WO 2015165356 A1 WO2015165356 A1 WO 2015165356A1
Authority
WO
WIPO (PCT)
Prior art keywords
interference signal
base station
interference
signal parameter
terminal
Prior art date
Application number
PCT/CN2015/077255
Other languages
English (en)
French (fr)
Inventor
丁昱
拉盖施
高秋彬
Original Assignee
电信科学技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院 filed Critical 电信科学技术研究院
Publication of WO2015165356A1 publication Critical patent/WO2015165356A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic

Definitions

  • the present application relates to the field of communications technologies, and in particular, to an interference signal measurement method and related equipment.
  • the terminal measures the downlink channel based on the downlink measurement pilot to obtain channel state information.
  • the terminal performs downlink channel measurement, it needs to measure the useful signal and the interference signal.
  • the terminal measures the interference signal on the CRS (Cell-specific reference signal); in the transmission mode 10, the terminal is in the CSI-IMR (CSI Interference Measurement Resource) The interference signal is measured on the measurement resource. After obtaining the channel state information by using the downlink channel measurement, the terminal feeds back the channel state information to the base station.
  • CRS Cell-specific reference signal
  • CSI-IMR CSI Interference Measurement Resource
  • the transmission mode 10 is a newly added transmission mode in the LTE-A, and is mainly used to support multi-cell cooperative communication to improve cell edge users.
  • the terminal is configured with one or more CSI-RS (channel state information reference signals) and one or more CSI-IMRs, one CSI (Channel State Information) process associated with one CSI-RS and one CSI-IMR, the terminal measures the useful signal on the CSI-RS and measures the interference signal on the corresponding CSI-IMR.
  • the interference signal measurement in the downlink channel measurement only the signal resource for measuring the interference signal is specified.
  • the interference signal measurement is performed on the CRS or on the CSI-RS or the CSI-IMR, but the terminal only depends on the signal.
  • the accuracy of the resource measurement interference signal is low, and the accuracy of the channel state information fed back by the terminal is also difficult to ensure, and it is difficult to effectively eliminate the interference based on the measured interference signal.
  • the present application provides an interference signal measurement method and related equipment for improving the accuracy of interference signal measurement in downlink channel measurement.
  • An interference signal measurement method includes:
  • the interference signal is measured on the downlink measurement pilot based on the downlink channel transmission or the resource capable of measuring interference according to the interference signal parameter.
  • a method of notifying interference signal parameters comprising:
  • Transmitting the interference signal parameter to the terminal and the terminal measures the interference signal on the downlink measurement pilot based on the downlink channel transmission or the measurable interference resource according to the interference signal parameter.
  • a terminal comprising:
  • a receiving module configured to receive an interference signal parameter sent by the first base station
  • a processing module configured to measure the interference signal on the downlink measurement pilot based on the downlink channel transmission or the measurable interference resource according to the interference signal parameter.
  • a base station comprising:
  • a sending module configured to send the interference signal parameter to the terminal, where the terminal measures the interference signal on the downlink measurement pilot based on the downlink channel transmission or the measurable interference resource according to the interference signal parameter.
  • the base station notifies the terminal of the interference signal parameter, and the terminal measures the interference signal according to the interference signal parameter on the downlink measurement pilot transmitted on the downlink channel or the measurable interference resource, thereby improving the interference.
  • the accuracy of the signal measurement is a technical solution.
  • FIG. 1 is a schematic flowchart of a method for measuring interference signals in an embodiment of the present application
  • 2a is a schematic diagram of a CRS resource block
  • Figure 2b is a schematic diagram of a CSI-IMR resource block
  • FIG. 3 is a schematic flowchart of a method for a base station to notify an interference signal parameter in an embodiment of the present application
  • FIG. 4 is a schematic diagram of an interference signal and a useful signal in an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a terminal in an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a base station in an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of another terminal in the embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of another base station according to an embodiment of the present application.
  • the first base station is defined as a base station serving the terminal
  • the second base station is defined as a base station causing interference to the terminal in the coverage area of the first base station.
  • the detailed method for the terminal to perform interference signal measurement is as follows:
  • Step 101 The terminal receives an interference signal parameter sent by the first base station.
  • the first base station notifies the terminal of the interference signal parameter by using the high layer signaling, and the high layer signaling only needs to be able to carry the interference signal parameter.
  • the terminal receives the RRC (Radio Resource Control) signaling of the first base station, and acquires the interference signal parameter carried in the RRC signaling.
  • RRC Radio Resource Control
  • the interference signal parameter is obtained by the first base station from a second base station that causes interference to the cell covered by the first base station.
  • the first base station associates one CSI-RS and one CSI-IMR through RRC signaling configuration, and configures one or more interference signal parameters in the CSI-IMR in the RRC signaling. And sending the RRC to the terminal, where the terminal configures a CSI process according to the RRC signaling and acquires an interference signal parameter.
  • Step 102 Measure the interference signal on the downlink measurement pilot based on the downlink channel transmission or the measurable interference resource according to the interference signal parameter.
  • an interference signal is measured on a resource that can measure interference, and the resource of the measurable interference can be at least CSI-IMR.
  • the interference signal parameter is a parameter that can affect the characteristics of the interference signal.
  • the interference signal parameter includes a transmission mode of the interference signal, a modulation order, a code rate, a precoding vector (PMI), a rank (RI), a transmission power, a multicast broadcast single frequency network MBSFN subframe pattern, and a cell-specific reference symbol.
  • CP cyclic prefix
  • the synchronization indication is information used to indicate whether the interfering cell is synchronized with the target cell.
  • the interference signal parameter is obtained by the first base station from the second base station that causes interference to the cell covered by the first base station. Got it.
  • the first base station acquires the interference signal parameter from the second base station by using the X2 interface, that is, the base stations exchange the semi-static signaling to ensure the interference signal parameter sent by the second base station and the interference received by the interfered UE.
  • the signal parameters are the same, ensuring the accuracy of the interference signal measurement.
  • the interference signal is measured based on CRS or CSI-IMR for different transmission modes. Specifically, for the transmission mode 1 to the transmission mode 9 in the LTE, the interference signal is measured based on the CRS; for the transmission mode 10, the interference signal is measured based on the CSI-IMR, and FIG. 2a is a schematic diagram of the resource block occupied by the CRS, as shown in FIG. 2b. Schematic diagram of resource blocks occupied by CSI-IMR.
  • the second base station sends random data that is processed by using the same interference signal parameter, thereby further ensuring accuracy of the interference signal measurement.
  • the second base station sends the random data processed by using the same interference signal parameter based on the PDSCH. .
  • the second base station sends random data processed by using the same interference signal parameter based on the PDSCH or the CSI-IMR. .
  • the transmission mode 1 is a single antenna port transmission, and is mainly applied to a single antenna transmission;
  • the transmission mode 2 is a transmission diversity mode, which is suitable for a case where the cell edge channel is relatively complicated and has a large interference, and is sometimes used for high-speed transmission. In the case, the diversity can provide diversity gain;
  • the transmission mode 3 is a large delay diversity mode, which is suitable for the case of high-speed mobile terminal;
  • the transmission mode 4 is a closed-loop spatial multiplexing mode, which is suitable for occasions with good channel conditions, and is used for providing high data.
  • transmission mode 5 is a multi-user multiple input multiple output (Multi-User MIMO, MU-MIMO) transmission mode, mainly used to increase the capacity of the cell;
  • transmission mode 7 is a single stream beamforming mode of port 5, mainly used for cell edge, which can effectively resist interference;
  • transmission mode 8 is a dual stream beamforming mode. Can be used at the cell edge or in other scenarios;
  • Transmission Mode 9 is a newly added mode in the Advanced Long Term Evolution (LTE-A) system. It can support up to eight transport layer, mainly in order to enhance the data transmission rate.
  • LTE-A Advanced Long Term Evolution
  • the channel state information is determined according to the interference signal and the useful signal, and the channel state information is sent to the first base station, where the first base station sends the downlink according to the channel state information.
  • the data processed based on the interference signal parameters is transmitted by the second base station. Therefore, the interference signal parameter used when acquiring channel state information and the interference signal used by the interference signal during downlink data transmission The number parameters are consistent to improve channel transmission quality.
  • the second base station When the first base station sends the downlink data, the second base station sends the data processed according to the interference signal parameter, and the interference signal parameter is the same as the interference signal parameter sent by the first base station to the terminal.
  • the channel state information includes any one or a combination of a rank, a precoding vector (PMI), and a channel quality indicator (CQI).
  • PMI precoding vector
  • CQI channel quality indicator
  • the detailed method for the first base station to notify the interference signal parameter is as follows:
  • Step 301 The first base station acquires an interference signal parameter.
  • the first base station obtains an interference signal parameter from the second base station that causes interference to the cell covered by the base station.
  • the first base station acquires an interference signal parameter from the second base station by using an X2 interface.
  • the interference signal parameter is a parameter that can affect the characteristics of the interference signal
  • the specific interference signal parameters are the same as those in the first embodiment, and are not described herein again.
  • Step 302 The first base station sends an interference signal parameter to the terminal, and the terminal measures the interference signal on the downlink measurement pilot based on the downlink channel transmission or the measurable interference resource according to the interference signal parameter.
  • the first base station notifies the terminal of the interference signal parameter by using the high layer signaling, and the high layer signaling only needs to be able to carry the interference signal parameter.
  • the first base station carries the interference signal parameter in the RRC signaling, and sends the RRC signaling to the terminal.
  • interference signals can be measured based on CRS or CSI-IMR.
  • the interference signal is measured based on the CRS; for the transmission mode 10, the interference signal is measured based on the CSI-IMR.
  • the interference signal is a signal processed by the second base station and processed according to the same interference signal parameter.
  • the second base station sends random data that is processed by using the interference signal parameter, thereby further ensuring the accuracy of the interference signal measurement.
  • the second base station sends the random data processed by using the same interference signal parameter based on the PDSCH. .
  • the second base station sends random data processed by using the same interference signal parameter based on the PDSCH or the CSI-IMR. .
  • the first base station receives channel state information returned by the terminal, where the channel state information is measured by the terminal according to the The interference signal and the measured useful signal are determined; and the downlink data is sent to the terminal according to the channel state information, and the signal processed by the interference signal parameter is sent by the second base station.
  • the second base station when the first base station sends the downlink data, the second base station sends a signal processed by the interference signal parameter, where the interference signal parameter is the same as the interference signal parameter sent by the base station to the terminal. Therefore, the interference signal parameter used when acquiring the channel state information is consistent with the interference signal parameter used by the interference signal during the downlink data transmission, and the channel transmission quality can be further improved.
  • the channel state information includes any one or a combination of rank, PMI, and CQI.
  • the transmission mode 10 is taken as an example for description.
  • the entire communication process can be divided into two phases: an interference signal measurement phase and a data downlink phase based on a physical downlink shared channel (PDSCH).
  • PDSCH physical downlink shared channel
  • UE1 in the cell 1 is the target UE, and the base station of the cell 2 is the interference source.
  • the UE1 receives the signaling sent by the base station in the cell 1, and acquires the modulation order QPSK of the interference signal carried in the signaling, and performs interference signal measurement according to the modulation order.
  • the base station in the cell 2 transmits QPSK-modulated data to the UE 2 in the cell 2 at the time when the UE 1 measures the interference signal. In the case where no UE in the cell 2 needs the base station to transmit data, the base station in the cell 2 transmits the random data modulated by the QPSK.
  • the modulation order used by the UE1 to measure the interference signal is the same as the modulation order used by the cell 2 for the interference signal generated by the UE1, the accuracy of the interference signal measurement can be improved, and the channel state information determined based on the measured interference signal can be improved. Feedback quality.
  • the base station in the cell 1 transmits the downlink data to the UE1 based on the PDSCH
  • the channel state information fed back by the UE1 is used, and the base station in the cell 2 transmits the data modulated by the QPSK to the UE in the cell to the UE, so that the UE1 feeds back the modulation of the time interference signal.
  • the order of interference and the modulation order of the interference signal are the same when UE1 actually receives the downlink signal.
  • the method of this particular embodiment can be used to interfere with other parameters of the signal, such as code rate, rank, precoding vector, transmit power, and the like.
  • the channel quality can be improved.
  • UE1 in cell 1 performs interference signal measurement, assuming that the interference signal on the CSI-IMR meets a certain attribute, and the specific attribute is configured by the network, for example, through RRC signaling, the special attribute is notified by The interference signal parameter representation to UE1.
  • the terminal mainly includes:
  • the receiving module 501 is configured to receive an interference signal parameter sent by the first base station
  • the processing module 502 is configured to measure the interference signal on the downlink measurement pilot based on the downlink channel transmission or the measurable interference resource according to the interference signal parameter.
  • the receiving module 501 is specifically configured to:
  • the interference signal parameter is obtained by the first base station from the second base station that causes interference to the cell covered by the base station.
  • the interference signal is a signal processed by the second base station based on the interference signal parameter.
  • processing module 502 is further configured to:
  • the interference signal parameter is a parameter that can affect the characteristics of the interference signal
  • the specific interference signal parameter is the same as that described in the first embodiment, and details are not described herein again.
  • a base station is provided in the fourth embodiment of the present application.
  • the base station mainly includes:
  • the sending module 602 is configured to send an interference signal parameter to the terminal, and the terminal measures the interference signal on the downlink measurement pilot based on the downlink channel transmission or the measurable interference resource according to the interference signal parameter.
  • the sending module 602 is specifically configured to:
  • the interference signal parameter is carried in the RRC signaling, and the RRC signaling is sent to the terminal.
  • the obtaining module 601 is specifically configured to:
  • the interference signal parameter is obtained by the second base station that causes interference to the cell covered by the base station.
  • the obtaining module 601 is specifically configured to:
  • the interference signal parameters are acquired from the second base station through the X2 interface.
  • the method further includes a receiving module 603, configured to:
  • the sending module 602 is further configured to:
  • the downlink data is transmitted to the terminal according to the channel state information, and the signal processed based on the interference signal parameter is transmitted by the second base station.
  • the interference signal parameter is a parameter that can affect the characteristics of the interference signal, and the specific list of interference signals
  • the number parameters are the same as those in the first embodiment, and are not described herein again.
  • another terminal in the embodiment of the present application includes:
  • the processor 701 is configured to read a program in the memory 704 and perform the following process:
  • the interference signal parameter sent by the first base station is received by the transceiver 702; the interference signal is measured on the downlink measurement pilot based on the downlink channel transmission or the measurable interference resource according to the interference signal parameter.
  • the transceiver 702 is configured to receive and transmit data under the control of the processor 701.
  • the processor 701 is specifically configured to:
  • the interference signal parameter is obtained by the first base station from the second base station that causes interference to the cell covered by the base station.
  • the interference signal is a signal processed by the second base station based on the interference signal parameter.
  • processor 701 is further configured to:
  • the interference signal parameter is a parameter that can affect the characteristics of the interference signal
  • the specific interference signal parameter is the same as that described in the first embodiment, and details are not described herein again.
  • bus 700 which may include any number of interconnected buses and bridges, will include one or more processors and memory 704 represented by general purpose processor 701. The various circuits of the memory are linked together.
  • the bus 700 can also link various other circuits, such as peripherals, voltage regulators, and power management circuits, as is known in the art and, therefore, will not be further described herein.
  • Bus interface 703 provides an interface between bus 700 and transceiver 702.
  • Transceiver 702 can be an element or a plurality of elements, such as multiple receivers and transmitters, providing means for communicating with various other devices on a transmission medium. For example, transceiver 702 receives external data from other devices. The transceiver 702 is configured to send the processed data of the processor 701 to other devices.
  • a user interface 705 can also be provided, such as a keypad, display, speaker, microphone, joystick.
  • the processor 701 is responsible for managing the bus 700 and the usual processing, running a general purpose operating system as described above.
  • the memory 704 can be used to store data used by the processor 701 in performing operations.
  • the processor 701 may be a CPU (Central Embedded Device), an ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable Gate Array), or a CPLD (Complex Programmable Logic Device). , complex programmable logic devices).
  • CPU Central Embedded Device
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • CPLD Complex Programmable Logic Device
  • another base station in this embodiment of the present application includes:
  • the processor 801 is configured to read a program in the memory 804 and perform the following process:
  • the transceiver 802 Acquiring the interference signal parameter; transmitting, by the transceiver 802, the interference signal parameter to the terminal, and the terminal measures the interference signal on the downlink measurement pilot based on the downlink channel transmission or the measurable interference resource according to the interference signal parameter.
  • the transceiver 802 is configured to receive and transmit data under the control of the processor 801.
  • the processor 801 is specifically configured to:
  • the interference signal parameter is carried in the RRC signaling, and the RRC signaling is sent to the terminal.
  • the processor 801 is specifically configured to:
  • the interference signal parameter is obtained by the second base station that causes interference to the cell covered by the base station.
  • the processor 801 is specifically configured to:
  • the interference signal parameters are acquired from the second base station through the X2 interface.
  • the processor 801 is further configured to:
  • the transceiver 802 Receiving, by the transceiver 802, channel state information returned by the terminal, the channel state information is determined by the terminal according to the measured interference signal and the measured useful signal; and the downlink data is sent to the terminal according to the channel state information, and the interference signal is sent by the second base station.
  • the signal after the parameter processing.
  • the interference signal parameter is a parameter that can affect the characteristics of the interference signal
  • the specific interference signal parameter is the same as that described in the first embodiment, and details are not described herein again.
  • bus 800 may include any number of interconnected buses and bridges, and bus 800 will include one or more processors represented by processor 801 and memory represented by memory 804. The various circuits are linked together.
  • the bus 800 can also link various other circuits, such as peripherals, voltage regulators, and power management circuits, as is known in the art, and therefore, will not be further described herein.
  • Bus interface 803 provides an interface between bus 800 and transceiver 802.
  • Transceiver 802 can be an element or a plurality of elements, such as multiple receivers and transmitters, providing means for communicating with various other devices on a transmission medium.
  • the data processed by the processor 801 is transmitted over the wireless medium via the antenna 805. Further, the antenna 805 also receives the data and transmits the data to the processor 801.
  • the processor 801 is responsible for managing the bus 800 and the usual processing, and can also provide various functions including timing, peripheral interfaces, voltage regulation, power management, and other control functions.
  • the memory 804 can be used to store data used by the processor 801 when performing operations.
  • the processor 801 can be a CPU, an ASIC, an FPGA, or a CPLD.
  • the base station notifies the terminal of the interference signal parameter, and the terminal measures the interference signal according to the interference signal parameter on the downlink measurement pilot transmitted on the downlink channel, thereby improving the accuracy of the interference signal measurement.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种干扰信号测量方法及相关设备,用以提高下行信道测量时对干扰信号测量的准确性。该方法包括:接收第一基站发送的干扰信号参数;根据所述干扰信号参数在基于下行信道传输的下行测量导频上或可测量干扰的资源上测量干扰信号。

Description

一种鉴权信息的传输方法及终端
本申请要求在2014年4月30日提交中国专利局、申请号为201410182435.2、申请名称为“干扰信号测量方法及相关设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种干扰信号测量方法及相关设备。
背景技术
在LTE(Long Term Evolution,长期演进)***中,终端基于下行测量导频对下行信道进行测量,以获取信道状态信息。终端在进行下行信道测量时,需要测量有用信号和干扰信号。
在传输模式1~传输模式9中,终端在CRS(Cell-specific reference signal,公共参考信号)上测量干扰信号;在传输模式10中,终端在CSI-IMR(CSI Interference Measurement Resource,公共参考信号干扰测量资源)上测量干扰信号。终端通过下行信道测量获得信道状态信息后,向基站反馈该信道状态信息。
其中,传输模式10是LTE-A中新增加的一种传输模式,主要是用以支持多小区协作通信,以改善小区边缘用户。以传输模式10为例,终端配置有一个以上CSI-RS(channel state information reference signal,信道状态信息参考信号)以及一个以上CSI-IMR,一个CSI(信道状态信息)进程关联一个CSI-RS以及一个CSI-IMR,终端在CSI-RS上测量有用信号,在相应的CSI-IMR上测量干扰信号。
现有技术中,针对下行信道测量中的干扰信号测量,仅规定了测量干扰信号的信号资源,例如,干扰信号测量在CRS上进行或者CSI-RS或者CSI-IMR上进行,但是终端仅根据信号资源测量干扰信号的准确性较低,终端反馈的信道状态信息的准确性也难以保证,基于测量的干扰信号也难以有效消除干扰。
发明内容
本申请提供一种干扰信号测量方法及相关设备,用以提高下行信道测量时对干扰信号测量的准确性。
本申请实施例提供的具体技术方案如下:
一种干扰信号测量方法,包括:
接收第一基站发送的干扰信号参数;
根据所述干扰信号参数在基于下行信道传输的下行测量导频上或可测量干扰的资源上测量干扰信号。
一种通知干扰信号参数的方法,包括:
获取干扰信号参数;
向终端发送所述干扰信号参数,由所述终端根据所述干扰信号参数在基于下行信道传输的下行测量导频上或可测量干扰的资源上测量干扰信号。
一种终端,包括:
接收模块,用于接收第一基站发送的干扰信号参数;
处理模块,用于根据所述干扰信号参数在基于下行信道传输的下行测量导频上或可测量干扰的资源上测量干扰信号。
一种基站,包括:
获取模块,用于获取干扰信号参数;
发送模块,用于向终端发送所述干扰信号参数,由所述终端根据所述干扰信号参数在基于下行信道传输的下行测量导频上或可测量干扰的资源上测量干扰信号。
基于上述技术方案,本申请实施例中,由基站向终端通知干扰信号参数,终端在基于下行信道传输的下行测量导频上或可测量干扰的资源上根据干扰信号参数测量干扰信号,提高了干扰信号测量的准确性。
附图说明
图1为本申请实施例中干扰信号测量的方法流程示意图;
图2a为CRS资源块示意图;
图2b为CSI-IMR资源块示意图;
图3为本申请实施例中基站通知干扰信号参数的方法流程示意图;
图4为本申请实施例中干扰信号和有用信号示意图;
图5为本申请实施例中终端结构示意图;
图6为本申请实施例中基站结构示意图;
图7为本申请实施例中另一种终端结构示意图;
图8为本申请实施例中另一种基站结构示意图。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步 地详细描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本申请保护的范围。
以下实施例中,第一基站定义为为终端提供服务的基站,第二基站定义为对第一基站覆盖小区中的终端造成干扰的基站。
本申请第一实施例中,如图1所示,终端进行干扰信号测量的详细方法流程如下:
步骤101:终端接收第一基站发送的干扰信号参数。
实际应用中,第一基站通过高层信令通知终端干扰信号参数,该高层信令仅需要能够携带干扰信号参数即可。
可选的,终端接收第一基站的RRC(Radio Resource Control,无线资源控制)信令,获取RRC信令中携带的干扰信号参数。
可选的,干扰信号参数由第一基站从对该第一基站覆盖的小区造成干扰的第二基站获得。
具体地,以传输模式10为例,第一基站通过RRC信令配置关联一个CSI-RS和一个CSI-IMR,在该RRC信令中配置CSI-IMR的同时也配置一个或多个干扰信号参数,将该RRC发送给终端,由终端根据该RRC信令配置一个CSI进程以及获取干扰信号参数。
步骤102:根据干扰信号参数在基于下行信道传输的下行测量导频上或可测量干扰的资源上测量干扰信号。
具体地,对于传输模式10,在可测量干扰的资源上测量干扰信号,该可测量干扰的资源至少可以为CSI-IMR。
可选的,干扰信号参数为能够对干扰信号的特征造成影响的参数。
具体地,干扰信号参数包括干扰信号的传输模式、调制阶数、码率、预编码向量(PMI)、秩(RI)、发送功率、多播广播单频网MBSFN子帧图案、小区专属参考符号端口数、小区标识、用于加扰干扰小区的解调参考信号DMRS、QCL(准共站址)信息、资源分配颗粒度、资源分配类型、集中式或分布式虚拟资源块VRB、控制信令格式指示信号、***带宽、同步指示、用于指示干扰信号是否存在的指示信息、循环前缀(CP)的长度以及功率比值信息中的任意一种或一种以上的组合。
本领域技术人员应该明白,此处仅为列举,能够对干扰信号的特征造成影响的所有参数均在本申请实施例的保护范围之内,本申请并不以此为限。
其中,同步指示为用于指示干扰小区是否与目标小区同步的信息。
可选的,干扰信号参数由第一基站从对第一基站覆盖的小区造成干扰的第二基站获 得。
可选的,第一基站通过X2接口从第二基站获取干扰信号参数,即基站之间通过半静态信令进行交互,以保证第二基站发送的干扰信号参数与被干扰的UE接收到的干扰信号参数相同,保证干扰信号测量的准确性。
其中,针对不同的传输模式,基于CRS或者CSI-IMR测量干扰信号。具体地,对于LTE中的传输模式1~传输模式9,基于CRS测量干扰信号;对于传输模式10,基于CSI-IMR测量干扰信号,图2a所示为CRS占用的资源块示意图,图2b所示为CSI-IMR占用的资源块示意图。
可选的,若第二基站所管辖的区域内不存在需要第二基站发送数据的终端,则该第二基站发送采用同一干扰信号参数进行处理的随机数据,从而进一步保证干扰信号测量的准确性。
具体地,对于传输模式1~传输模式9,若第二基站所管辖的区域内不存在需要第二基站发送数据的终端,则该第二基站基于PDSCH发送采用同一干扰信号参数进行处理的随机数据。
具体地,对于传输模式10,若第二基站所管辖的区域内不存在需要第二基站发送数据的终端,则该第二基站基于PDSCH或CSI-IMR发送采用同一干扰信号参数进行处理的随机数据。
其中,传输模式1为单天线端口传输,主要应用于单天线传输的场合;传输模式2为发送分集模式,适合于小区边缘信道情况比较复杂、干扰较大的情况,有时也用于高速传输的情况,分集能够提供分集增益;传输模式3为大延迟分集模式,适用于终端高速移动的情况;传输模式4为闭环空间复用模式,适合于信道条件较好的场合,用于提供高的数据率传输;传输模式5为多用户多输入多输出(Multi User MIMO,MU-MIMO)传输模式,主要用来提高小区的容量;传输模式6为秩为1(Rank=1)的传输模式,主要适合于小区边缘的情况;传输模式7为端口(Port)5的单流波束赋形(Beamforming)模式,主要用于小区边缘,能够有效对抗干扰;传输模式8为双流波束赋形(Beamforming)模式,可以用于小区边缘也可以应用于其他场景;传输模式9为先进的长期演进(LTE-A)***中新增加的一种模式,可以支持最大到8层的传输,主要为了提升数据传输速率。
可选的,在终端测量获得干扰信号以及测量获得有用信号后,根据该干扰信号以及有用信号确定信道状态信息,并将信道状态信息发送给第一基站,由第一基站根据信道状态信息发送下行数据的同时,由第二基站发送基于干扰信号参数处理后的数据。从而使得获取信道状态信息时所采用的干扰信号参数,与下行数据传输时的干扰信号所采用的干扰信 号参数一致,以提高信道传输质量。
其中,在第一基站发送下行数据时,由第二基站发送基于干扰信号参数处理后的数据,该干扰信号参数与第一基站发送给终端的干扰信号参数相同。
其中,信道状态信息包括秩、预编码向量(PMI)和信道质量指示(CQI)中的任意一种或组合。
基于同一发明构思,本申请第二实施例中,如图3所示,第一基站通知干扰信号参数的详细方法流程如下:
步骤301:第一基站获取干扰信号参数。
可选的,第一基站从对该基站覆盖的小区造成干扰的第二基站获得干扰信号参数。
可选的,第一基站通过X2接口从第二基站获取干扰信号参数。
可选的,干扰信号参数为能够对干扰信号的特征造成影响的参数,具体列举的干扰信号参数与第一实施例中的描述相同,此处不再赘述。
步骤302:第一基站向终端发送干扰信号参数,由终端根据干扰信号参数在基于下行信道传输的下行测量导频上或可测量干扰的资源上测量干扰信号。
实际应用中,第一基站通过高层信令通知终端干扰信号参数,该高层信令仅需要能够携带干扰信号参数即可。
可选的,第一基站在RRC信令中携带干扰信号参数,向终端发送该RRC信令。
其中,针对不同的传输模式,可以基于CRS或者CSI-IMR测量干扰信号。具体地,对于LTE中的传输模式1~传输模式9,基于CRS测量干扰信号;对于传输模式10,基于CSI-IMR测量干扰信号。
其中,干扰信号为第二基站发送的基于同一干扰信号参数处理后的信号。
可选的,若第二基站所管辖的区域内不存在需要第二基站发送数据的终端,则该第二基站发送采用干扰信号参数进行处理的随机数据,从而进一步保证干扰信号测量的准确性。
具体地,对于传输模式1~传输模式9,若第二基站所管辖的区域内不存在需要第二基站发送数据的终端,则该第二基站基于PDSCH发送采用同一干扰信号参数进行处理的随机数据。
具体地,对于传输模式10,若第二基站所管辖的区域内不存在需要第二基站发送数据的终端,则该第二基站基于PDSCH或CSI-IMR发送采用同一干扰信号参数进行处理的随机数据。
可选的,第一基站接收终端返回的信道状态信息,该信道状态信息由终端根据测量的 干扰信号以及测量的有用信号确定;并根据信道状态信息向终端发送下行数据,同时由第二基站发送采用干扰信号参数处理后的信号。
可选的,在第一基站发送下行数据时,第二基站发送采用干扰信号参数处理的信号,该干扰信号参数与基站发送给终端的干扰信号参数相同。从而使得获取信道状态信息时所采用的干扰信号参数,与下行数据传输时的干扰信号所采用的干扰信号参数一致,可以进一步提高信道传输质量。
其中,信道状态信息包括秩、PMI和CQI中的任意一种或组合。
以下通过一个具体实施例对干扰信号测量的过程进行详细说明。
该具体实施例中,以传输模式10为例进行说明,整个通信过程可以分为两个阶段:干扰信号测量阶段以及基于物理下行共享信道(PDSCH)的数据传输阶段。
如图4所示,小区(Cell)1中的UE1为目标UE,而小区2的基站为干扰源。
进行干扰信号测量的具体过程如下:
UE1接收到小区1中的基站发送的信令,并获取该信令中携带的干扰信号的调制阶数QPSK,根据该调制阶数进行干扰信号测量。小区2中的基站在UE1测量干扰信号时刻向小区2中的UE2发送采用QPSK调制的数据。在小区2中没有UE需要基站发送数据的情况下,小区2中的基站发送由QPSK进行调制的随机数据。由于UE1测量干扰信号时刻采用的调制阶数与小区2对UE1产生的干扰信号所采用的调制阶数相同,能够提高干扰信号测量的准确度,进而提升基于测量的干扰信号确定的信道状态信息的反馈质量。
进行数据传输的具体过程如下:
小区1中的基站基于PDSCH向UE1发送下行数据时,采用UE1反馈的信道状态信息,同时小区2中的基站向所属小区下的UE发送采用QPSK进行调制的数据,使得UE1反馈时刻干扰信号的调制阶数和UE1真正接收下行信号时干扰信号的调制阶数相同。
该具体实施例的方法可以用于干扰信号的其他参数,如码率、秩、预编码向量、发送功率等。
该具体实施例中,干扰信号测量时与基站发送下行信号时干扰信号参数相同可以提高信道质量。该具体实施例中,小区1中的UE1在进行干扰信号测量时,假设CSI-IMR上的干扰信号符合某种特定属性,该特定属性由网络配置,比如通过RRC信令,该特殊属性由通知给UE1的干扰信号参数表征。
基于同一发明构思,本申请第三实施例中提供了一种终端,该终端的具体实施可参见第一、第二实施例中终端侧的描述,重复之处不再赘述,如图5所示,该终端主要包括:
接收模块501,用于接收第一基站发送的干扰信号参数;
处理模块502,用于根据干扰信号参数在基于下行信道传输的下行测量导频上或可测量干扰的资源上测量干扰信号。
可选的,接收模块501具体用于:
接收第一基站的RRC信令,获取RRC信令中携带的干扰信号参数。
可选的,干扰信号参数由第一基站从对该基站覆盖的小区造成干扰的第二基站获得。
可选的,干扰信号为第二基站发送的基于干扰信号参数处理后的信号。
可选的,处理模块502还用于:
根据干扰信号以及测量的有用信号确定信道状态信息,并将信道状态信息发送给第一基站,由该第一基站根据信道状态信息发送下行数据的同时,由第二基站发送基于干扰信号参数处理后的信号。
可选的,干扰信号参数为能够对干扰信号的特征造成影响的参数,具体列表的干扰信号参数与第一实施例中的描述相同,此处不再赘述。
基于同一发明构思,本申请第四实施例中提供了一种基站,该基站的具体实施可参见上述第一、第二实施例中第一基站侧的描述,重复之处不再赘述,如图6所示,该基站主要包括:
获取模块601,用于获取干扰信号参数;
发送模块602,用于向终端发送干扰信号参数,由终端根据该干扰信号参数在基于下行信道传输的下行测量导频上或可测量干扰的资源上测量干扰信号。
可选的,发送模块602具体用于:
在RRC信令中携带干扰信号参数,向终端发送该RRC信令。
可选的,获取模块601具体用于:
从对该基站覆盖的小区造成干扰的第二基站获得干扰信号参数。
可选的,获取模块601具体用于:
通过X2接口从第二基站获取干扰信号参数。
可选的,还包括接收模块603,用于:
接收终端返回的信道状态信息,该信道状态信息由终端根据测量的干扰信号以及测量的有用信号确定;
相应地,发送模块602还用于:
根据信道状态信息向终端发送下行数据的同时,由第二基站发送基于干扰信号参数处理后的信号。
可选的,干扰信号参数为能够对干扰信号的特征造成影响的参数,具体列表的干扰信 号参数与第一实施例中的描述相同,此处不再赘述。
如图7所示,本申请实施例中另一种终端,包括:
处理器701,用于读取存储器704中的程序,执行下列过程:
通过收发机702接收第一基站发送的干扰信号参数;根据干扰信号参数在基于下行信道传输的下行测量导频上或可测量干扰的资源上测量干扰信号。
收发机702,用于在处理器701的控制下接收和发送数据。
可选的,处理器701具体用于:
接收第一基站的RRC信令,获取RRC信令中携带的干扰信号参数。
可选的,干扰信号参数由第一基站从对该基站覆盖的小区造成干扰的第二基站获得。
可选的,干扰信号为第二基站发送的基于干扰信号参数处理后的信号。
可选的,处理器701还用于:
根据干扰信号以及测量的有用信号确定信道状态信息,并将信道状态信息发送给第一基站,由该第一基站根据信道状态信息发送下行数据的同时,由第二基站发送基于干扰信号参数处理后的信号。
可选的,干扰信号参数为能够对干扰信号的特征造成影响的参数,具体列表的干扰信号参数与第一实施例中的描述相同,此处不再赘述。
在图7中,总线架构(用总线700来代表),总线700可以包括任意数量的互联的总线和桥,总线700将包括由通用处理器701代表的一个或多个处理器和存储器704代表的存储器的各种电路链接在一起。总线700还可以将诸如***设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口703在总线700和收发机702之间提供接口。收发机702可以是一个元件,也可以是多个元件,比如多个接收器和发送器,提供用于在传输介质上与各种其他装置通信的单元。例如:收发机702从其他设备接收外部数据。收发机702用于将处理器701处理后的数据发送给其他设备。取决于计算***的性质,还可以提供用户接口705,例如小键盘、显示器、扬声器、麦克风、操纵杆。
处理器701负责管理总线700和通常的处理,如前述所述运行通用操作***。而存储器704可以被用于存储处理器701在执行操作时所使用的数据。
可选的,处理器701可以是CPU(中央处埋器)、ASIC(Application Specific Integrated Circuit,专用集成电路)、FPGA(Field-Programmable Gate Array,现场可编程门阵列)或CPLD(Complex Programmable Logic Device,复杂可编程逻辑器件)。
如图8所示,本申请实施例中另一种基站包括:
处理器801,用于读取存储器804中的程序,执行下列过程:
获取干扰信号参数;通过收发机802向终端发送干扰信号参数,由终端根据该干扰信号参数在基于下行信道传输的下行测量导频上或可测量干扰的资源上测量干扰信号。
收发机802,用于在处理器801的控制下接收和发送数据。
可选的,处理器801具体用于:
在RRC信令中携带干扰信号参数,向终端发送该RRC信令。
可选的,处理器801具体用于:
从对该基站覆盖的小区造成干扰的第二基站获得干扰信号参数。
可选的,处理器801具体用于:
通过X2接口从第二基站获取干扰信号参数。
可选的,处理器801还用于:
通过收发机802接收终端返回的信道状态信息,该信道状态信息由终端根据测量的干扰信号以及测量的有用信号确定;根据信道状态信息向终端发送下行数据的同时,由第二基站发送基于干扰信号参数处理后的信号。
可选的,干扰信号参数为能够对干扰信号的特征造成影响的参数,具体列表的干扰信号参数与第一实施例中的描述相同,此处不再赘述。
在图8中,总线架构(用总线800来代表),总线800可以包括任意数量的互联的总线和桥,总线800将包括由处理器801代表的一个或多个处理器和存储器804代表的存储器的各种电路链接在一起。总线800还可以将诸如***设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口803在总线800和收发机802之间提供接口。收发机802可以是一个元件,也可以是多个元件,比如多个接收器和发送器,提供用于在传输介质上与各种其他装置通信的单元。经处理器801处理的数据通过天线805在无线介质上进行传输,进一步,天线805还接收数据并将数据传送给处理器801。
处理器801负责管理总线800和通常的处理,还可以提供各种功能,包括定时,***接口,电压调节、电源管理以及其他控制功能。而存储器804可以被用于存储处理器801在执行操作时所使用的数据。
可选的,处理器801可以是CPU、ASIC、FPGA或CPLD。
基于上述技术方案,本申请实施例中,由基站向终端通知干扰信号参数,终端在基于下行信道传输的下行测量导频上根据干扰信号参数测量干扰信号,提高了干扰信号测量的准确性。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (24)

  1. 一种干扰信号测量方法,其特征在于,包括:
    接收第一基站发送的干扰信号参数;
    根据所述干扰信号参数在基于下行信道传输的下行测量导频上或可测量干扰的资源上测量干扰信号。
  2. 如权利要求1所述的方法,其特征在于,接收第一基站发送的干扰信号参数,包括:
    接收所述第一基站的无线资源控制RRC信令,获取所述RRC信令中携带的干扰信号参数。
  3. 如权利要求1所述的方法,其特征在于,所述干扰信号参数由所述第一基站从对所述第一基站覆盖的小区造成干扰的第二基站获得。
  4. 如权利要求3所述的方法,其特征在于,所述干扰信号为所述第二基站发送的基于所述干扰信号参数处理后的信号。
  5. 如权利要求4所述的方法,其特征在于,所述方法还包括:
    根据所述干扰信号以及测量的有用信号确定信道状态信息,并将所述信道状态信息发送给所述第一基站,由所述第一基站根据所述信道状态信息发送下行数据,以及由所述第二基站发送基于所述干扰信号参数处理后的信号。
  6. 如权利要求1-5任一项所述的方法,其特征在于,所述干扰信号参数包括:
    干扰信号的传输模式、调制阶数、码率、预编码向量、秩、发送功率、多播广播单频网MBSFN子帧图案、小区专属参考符号端口数、小区标识、用于加扰干扰小区的解调参考信号DMRS、准共站址QCL信息、资源分配颗粒度、资源分配类型、集中式或分布式虚拟资源块VRB、控制信令格式指示信号、***带宽、同步指示、用于指示干扰信号是否存在的指示信息、循环前缀CP的长度以及功率比值信息中的任意一种或一种以上的组合。
  7. 一种通知干扰信号参数的方法,其特征在于,包括:
    获取干扰信号参数;
    向终端发送所述干扰信号参数,由所述终端根据所述干扰信号参数在基于下行信道传输的下行测量导频上或可测量干扰的资源上测量干扰信号。
  8. 如权利要求7所述的方法,其特征在于,向终端发送所述干扰信号参数,包括:
    在无线资源控制RRC信令中携带所述干扰信号参数,向所述终端发送所述RRC信令。
  9. 如权利要求8所述的方法,其特征在于,获取干扰信号参数,包括:
    从对第一基站覆盖的小区造成干扰的第二基站获得所述干扰信号参数。
  10. 如权利要求9所述的方法,其特征在于,从对第一基站覆盖的小区造成干扰的第二基站获得所述干扰信号参数,包括:
    通过X2接口从所述第二基站获取所述干扰信号参数。
  11. 如权利要求9所述的方法,其特征在于,所述方法还包括:
    接收所述终端返回的信道状态信息,所述信道状态信息由所述终端根据测量的所述干扰信号以及测量的有用信号确定;
    根据所述信道状态信息向所述终端发送下行数据,以及由所述第二基站发送基于所述干扰信号参数处理后的信号。
  12. 如权利要求7-11任一项所述的方法,其特征在于,所述干扰信号参数包括:
    干扰信号的传输模式、调制阶数、码率、预编码向量、秩、发送功率、多播广播单频网MBSFN子帧图案、小区专属参考符号端口数、小区标识、用于加扰干扰小区的解调参考信号DMRS、准共站址QCL信息、资源分配颗粒度、资源分配类型、集中式或分布式虚拟资源块VRB、控制信令格式指示信号、***带宽、同步指示、用于指示干扰信号是否存在的指示信息、循环前缀CP的长度以及功率比值信息中的任意一种或一种以上的组合。
  13. 一种终端,其特征在于,包括:
    接收模块,用于接收第一基站发送的干扰信号参数;
    处理模块,用于根据所述干扰信号参数在基于下行信道传输的下行测量导频上或可测量干扰的资源上测量干扰信号。
  14. 如权利要求13所述的终端,其特征在于,所述接收模块具体用于:
    接收所述第一基站的无线资源控制RRC信令,获取所述RRC信令中携带的干扰信号参数。
  15. 如权利要求13所述的终端,其特征在于,所述干扰信号参数由所述第一基站从对所述第一基站覆盖的小区造成干扰的第二基站获得。
  16. 如权利要求15所述的终端,其特征在于,所述干扰信号为所述第二基站发送的基于所述干扰信号参数处理后的信号。
  17. 如权利要求16所述的终端,其特征在于,所述处理模块还用于:
    根据所述干扰信号以及测量的有用信号确定信道状态信息,并将所述信道状态信息发送给所述第一基站,由所述第一基站根据所述信道状态信息发送下行数据,以及由所述第二基站发送基于所述干扰信号参数处理后的信号。
  18. 如权利要求13-17任一项所述的终端,其特征在于,所述干扰信号参数包括:
    干扰信号的传输模式、调制阶数、码率、预编码向量、秩、发送功率、多播广播单频 网MBSFN子帧图案、小区专属参考符号端口数、小区标识、用于加扰干扰小区的解调参考信号DMRS、准共站址QCL信息、资源分配颗粒度、资源分配类型、集中式或分布式虚拟资源块VRB、控制信令格式指示信号、***带宽、同步指示、用于指示干扰信号是否存在的指示信息、循环前缀CP的长度以及功率比值信息中的任意一种或一种以上的组合。
  19. 一种基站,其特征在于,包括:
    获取模块,用于获取干扰信号参数;
    发送模块,用于向终端发送所述干扰信号参数,由所述终端根据所述干扰信号参数在基于下行信道传输的下行测量导频上或可测量干扰的资源上测量干扰信号。
  20. 如权利要求19所述的基站,其特征在于,所述发送模块具体用于:
    在无线资源控制RRC信令中携带所述干扰信号参数,向所述终端发送所述RRC信令。
  21. 如权利要求20所述的基站,其特征在于,所述获取模块具体用于:
    从对所述基站覆盖的小区造成干扰的第二基站获得所述干扰信号参数。
  22. 如权利要求21所述的基站,其特征在于,所述获取模块具体用于:
    通过X2接口从所述第二基站获取所述干扰信号参数。
  23. 如权利要求21所述的基站,其特征在于,还包括接收模块,用于:
    接收所述终端返回的信道状态信息,所述信道状态信息由所述终端根据测量的所述干扰信号以及测量的有用信号确定;
    所述发送模块还用于:
    根据所述信道状态信息向所述终端发送下行数据,以及由所述第二基站发送基于所述干扰信号参数处理后的信号。
  24. 如权利要求19-23任一项所述的基站,其特征在于,所述干扰信号参数包括:
    干扰信号的传输模式、调制阶数、码率、预编码向量、秩、发送功率、多播广播单频网MBSFN子帧图案、小区专属参考符号端口数、小区标识、用于加扰干扰小区的解调参考信号DMRS、准共站址QCL信息、资源分配颗粒度、资源分配类型、集中式或分布式虚拟资源块VRB、控制信令格式指示信号、***带宽、同步指示、用于指示干扰信号是否存在的指示信息、循环前缀CP的长度以及功率比值信息中的任意一种或一种以上的组合。
PCT/CN2015/077255 2014-04-30 2015-04-23 一种鉴权信息的传输方法及终端 WO2015165356A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410182435.2A CN105025519B (zh) 2014-04-30 2014-04-30 干扰信号测量方法及相关设备
CN201410182435.2 2014-04-30

Publications (1)

Publication Number Publication Date
WO2015165356A1 true WO2015165356A1 (zh) 2015-11-05

Family

ID=54358165

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/077255 WO2015165356A1 (zh) 2014-04-30 2015-04-23 一种鉴权信息的传输方法及终端

Country Status (2)

Country Link
CN (1) CN105025519B (zh)
WO (1) WO2015165356A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111656856A (zh) * 2018-01-30 2020-09-11 华为技术有限公司 一种信号发送方法及相关设备

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107690148A (zh) * 2016-08-04 2018-02-13 中兴通讯股份有限公司 一种小区信号的干扰处理方法及装置
JP2019208085A (ja) 2016-09-29 2019-12-05 シャープ株式会社 端末装置、基地局装置、通信方法、および、集積回路
CN108282296B (zh) 2017-01-06 2024-03-01 华为技术有限公司 一种参考信号传输方法及装置
CN108934188B (zh) 2017-03-24 2021-02-05 华为技术有限公司 干扰测量方法及相关设备
US20200059951A1 (en) * 2017-03-24 2020-02-20 Telefonaktiebolaget Lm Ericsson (Publ) Systems and methods of indicating a transmitter configuration for a wireless device
CN109150771B (zh) * 2017-06-28 2021-05-28 展讯通信(上海)有限公司 用户终端、干扰小区盲检测方法及存储介质、电子设备
CN108111276B (zh) * 2017-08-11 2021-07-23 中兴通讯股份有限公司 参考信号的配置方法及装置
EP3637629B1 (en) * 2018-01-19 2021-04-14 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Channel state information (csi) measurement method, terminal device and network device
US11071133B2 (en) * 2018-03-05 2021-07-20 Qualcomm Incorporated Cross-link interference detection and mitigation
CN110545164B (zh) * 2018-05-28 2022-09-02 华为技术有限公司 用于通信***中干扰指示的方法及装置
CN110971440B (zh) * 2018-09-28 2023-04-18 海信集团有限公司 一种远程干扰管理方法
CN111835475B (zh) * 2019-04-19 2022-05-13 华为技术有限公司 发送和接收dmrs的方法和装置
CN114554520A (zh) * 2020-11-26 2022-05-27 维沃移动通信有限公司 干扰测量方法、装置、终端及网络侧设备
CN114553338A (zh) * 2022-02-25 2022-05-27 哲库科技(北京)有限公司 干扰信号确定方法、装置、电子设备和可读存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102149124A (zh) * 2011-04-22 2011-08-10 电信科学技术研究院 一种多点协作传输下的干扰测量方法及设备
CN102215505A (zh) * 2010-04-12 2011-10-12 中兴通讯股份有限公司 一种检测上行干扰源的方法及***
CN102368697A (zh) * 2011-09-30 2012-03-07 中兴通讯股份有限公司 干扰测量信令通知、干扰测量及反馈方法及其装置
WO2013020257A1 (en) * 2011-08-05 2013-02-14 Nec (China) Co., Ltd. Method and apparatus for indicating downlink channel measurement and method and apparatus performing downlink channel measurement in a relaying system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5830522B2 (ja) * 2010-03-29 2015-12-09 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおけるセル間干渉調整に対する測定方法及び装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102215505A (zh) * 2010-04-12 2011-10-12 中兴通讯股份有限公司 一种检测上行干扰源的方法及***
CN102149124A (zh) * 2011-04-22 2011-08-10 电信科学技术研究院 一种多点协作传输下的干扰测量方法及设备
WO2013020257A1 (en) * 2011-08-05 2013-02-14 Nec (China) Co., Ltd. Method and apparatus for indicating downlink channel measurement and method and apparatus performing downlink channel measurement in a relaying system
CN102368697A (zh) * 2011-09-30 2012-03-07 中兴通讯股份有限公司 干扰测量信令通知、干扰测量及反馈方法及其装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111656856A (zh) * 2018-01-30 2020-09-11 华为技术有限公司 一种信号发送方法及相关设备
US11394444B2 (en) 2018-01-30 2022-07-19 Huawei Technologies Co., Ltd. Signal sending method and related device

Also Published As

Publication number Publication date
CN105025519B (zh) 2019-06-14
CN105025519A (zh) 2015-11-04

Similar Documents

Publication Publication Date Title
WO2015165356A1 (zh) 一种鉴权信息的传输方法及终端
US11812459B2 (en) Wireless communication system using multiple transmission and reception points
CN110521135B (zh) 用于通信波束恢复的***和方法
US10972168B2 (en) User equipment and method for wireless communication
TWI583159B (zh) 用於多點協調操作中天線埠準協同定位傳訊的用戶設備及方法
JP7443319B2 (ja) Nzp csi-rsを用いたmu干渉測定のためのシグナリング
US10306589B2 (en) Hybrid reference signals for wireless communication
EP2774398B1 (en) Transmission point indication in coordinated multi-point system
CN106470096B (zh) 用于无线通信的基站侧和用户设备侧的装置及方法
WO2015158111A1 (zh) 一种下行数据速率匹配的方法和装置
US10194333B2 (en) Terminal apparatus, base station, and program
US20130310019A1 (en) Cell range extension for cooperative multipoint
SE1650746A1 (sv) Användarenhet och metod för signalering för kvasi-samlokaliserade antennportar vid CoMP-operationer
KR20180116461A (ko) 무선 네트워크들에서의 간섭 측정
WO2012136846A1 (en) Reference signal port discovery involving transmission points
WO2013131401A1 (zh) 信道状态信息的处理方法、基站和终端
EP4017176A1 (en) Method for indicating antenna panel state, and device
US20220094402A1 (en) Electronic apparatus, wireless communication method and computer-readable medium
WO2022024079A1 (en) Indication of tci states for aperiodic csi-rs with low configuration overhead
WO2017198142A1 (zh) 一种cqi确定方法、用户设备和基站
WO2022206504A1 (zh) Csi反馈方法、相关设备及可读存储介质
TWI687110B (zh) 在無線通信系統中用於傳輸參考信號的機制

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15786640

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15786640

Country of ref document: EP

Kind code of ref document: A1