WO2015165016A1 - 一种mbsfn配置的方法及设备 - Google Patents

一种mbsfn配置的方法及设备 Download PDF

Info

Publication number
WO2015165016A1
WO2015165016A1 PCT/CN2014/076405 CN2014076405W WO2015165016A1 WO 2015165016 A1 WO2015165016 A1 WO 2015165016A1 CN 2014076405 W CN2014076405 W CN 2014076405W WO 2015165016 A1 WO2015165016 A1 WO 2015165016A1
Authority
WO
WIPO (PCT)
Prior art keywords
khz
frequency domain
subframe
configuration
mbsfn
Prior art date
Application number
PCT/CN2014/076405
Other languages
English (en)
French (fr)
Inventor
王婷
李元杰
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2014/076405 priority Critical patent/WO2015165016A1/zh
Priority to EP14891059.9A priority patent/EP3128795B1/en
Priority to KR1020167033124A priority patent/KR102027352B1/ko
Priority to JP2016565325A priority patent/JP2017518686A/ja
Priority to CN201480037950.XA priority patent/CN105379390B/zh
Publication of WO2015165016A1 publication Critical patent/WO2015165016A1/zh
Priority to US15/336,491 priority patent/US10536926B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/30Resource management for broadcast services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26025Numerology, i.e. varying one or more of symbol duration, subcarrier spacing, Fourier transform size, sampling rate or down-clocking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2605Symbol extensions, e.g. Zero Tail, Unique Word [UW]
    • H04L27/2607Cyclic extensions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/02Details
    • H04L12/16Arrangements for providing special services to substations
    • H04L12/18Arrangements for providing special services to substations for broadcast or conference, e.g. multicast
    • H04L12/189Arrangements for providing special services to substations for broadcast or conference, e.g. multicast in combination with wireless systems

Definitions

  • the present invention relates to the field of communications, and in particular, to a method and a device for configuring an MBSFN. Background technique
  • a radio frame has a structure in which: one radio frame includes 10 sub-frames, and each sub-frame contains two slots.
  • the time slots in 10 subframes are represented by numbers 0, 1, 2, ..., 18, 19, that is, when the 0th subframe is 0 by number 0 in a radio frame.
  • the slot is composed of slot 1 and the subframe 1 consists of slot 2 and slot 3, ..., subframe 9 consists of slot 18 and slot 19.
  • Orthogonal Frequency Division Multiplexing (OFDM) technology is used in downlink transmission of the LTE system.
  • OFDM technology a guard interval or Cyclic Prefix (CP) can be added before each OFDM symbol to eliminate inter-symbol interference caused by multipath of the signal.
  • CP Cyclic Prefix
  • LTE Long Term Evolution
  • the CP type is a normal CP
  • each time slot includes 7 OFDM symbols, where the OFDM symbol labels can be respectively recorded as 0 to 6
  • the time slots of the subframes of the corresponding radio frame include 6 OFDM symbols, wherein the OFDM symbol labels can be recorded as 0 to 5, respectively.
  • FIG. 1(a) is a schematic diagram of a PRB pair when the CP type is an extended CP, and each small lattice is 1 resource element (Resource), frequency.
  • the domain consists of 12 subcarriers, and the time domain occupies 1 subframe, that is, 2 slots, corresponding to 12 OFDM symbols.
  • one PRB pair includes 144 resource elements (Resources, REs). Each RE corresponds to one OFDM symbol in the time domain, and one subcarrier in the frequency domain is a small lattice in FIG. 1(a).
  • FIG. 1(b) is a schematic diagram of one PRB pair when the CP type is a normal CP, each small lattice is 1 RE, and the frequency domain is composed of 12 subcarriers.
  • the time domain occupies 1 subframe, that is, 2 slots, corresponding to 14 OFDM symbols.
  • one PRB pair includes 168 REs, where each RE corresponds to one time domain. OFDM symbols, one subcarrier in the frequency domain, which is a small lattice in Figure 1 (b).
  • a multimedia broadcast multicast service single frequency network (MBSFN) transmission method may be adopted.
  • the MBSFN data is simultaneously transmitted by the multi-channel strict time synchronization cell in the air interface, and the user equipment (User Equipment, UE) can receive the multiplexed signal.
  • the received multiplex transmission from multiple cells is equivalent to one transmission from a single cell, so that the transmission that may constitute inter-cell interference is converted into useful signal energy, thereby improving spectral efficiency and signal to interference and noise ratio ( Signal to Interference plus Noise Ratio, SINR), improve coverage.
  • SINR Signal to Interference plus Noise Ratio
  • MBSFN data is mapped to a Physical Mulitcast Channel (PMCH) for transmission. Since the channel of the MBSFN data is actually a combined channel from a plurality of cells, it is necessary for the UE to perform independent channel estimation when receiving the MBSFN data.
  • the current standard protocol does not allow frequency division multiplexing of the PMCH and the Physical Downlink Shared Channel (PDSCH), but allows PMCH and PDSCH time division. Multiplexing, that is, certain specific subframes can be designed as MBSFN subframes, which can be used to carry PMCH.
  • the standard protocol specifies that the MBSFN subframe uses the extended CP because the longer CP helps to reduce inter-symbol interference. Also, in order to improve the accuracy of channel estimation, the MBSFN reference signal pattern has also been modified. As shown in Figure 3, compared with non-MBSFN data transmission, the number of REs in the MBSFN reference signal pattern increases, and the frequency domain spacing is also tighter. Therefore, the base station and the user equipment complying with the standard protocol can successfully complete the MBSFN transmission by using the extended CP and the above MBSFN reference signal pattern.
  • LTE Long Term Evolution
  • CP short term evolution
  • a smaller subcarrier spacing is designed accordingly. Therefore, with the further development of MBSFN transmission, how to avoid the reduction of the wireless resource utilization of the system is still a problem worthy of further study.
  • the embodiment of the invention provides a method and a device for configuring an MBSFN, which can implement flexible configuration of the MBSFN and improve the utilization of the radio resources of the system.
  • the embodiment of the present invention adopts the following technical solutions:
  • a method for configuring a multimedia broadcast single frequency network MBSFN is provided, where the method includes:
  • the base station determines a subframe configuration of the MBSFN subframe for the 7-carrier physical multicast channel PMCH, where the subframe configuration includes: a cyclic prefix CP type, and/or, a reference signal pattern;
  • the base station sends MBSFN configuration information to the user equipment UE, where the MBSFN configuration information is used to indicate a subframe configuration of the MBSFN subframe.
  • the CP type includes: a normal CP, an extended CP, or another CP, and the lengths of the other CPs are different from the lengths of the normal CP and the extended CP.
  • the subframe configuration of the MBSFN subframe includes at least one configuration of configurations A and B:
  • the CP type is a normal CP or other CP
  • the reference signal pattern contains "a reference signal resource unit RE,” which is a positive integer less than 18.
  • the configuration B further includes:
  • the configuration B further includes:
  • represents the frequency domain interval between adjacent subcarriers, Indicates the number of the slot in which the reference signal RE is located in the radio frame, " S mGd2 indicates the operation of "s modulo 2, w indicates the number of the reference symbol, and ".
  • the method further includes:
  • the base station sends physical downlink shared channel (PDSCH) configuration information to the UE, where the PDSCH configuration information is used to indicate a transmission bandwidth of the PDSCH on the MBSFN subframe.
  • PDSCH physical downlink shared channel
  • the method further includes:
  • the base station Transmitting, by the base station, the OFDM symbol information of the PMCH to the UE, where the OFDM symbol information of the PMCH is used to indicate that the starting OFDM symbol of the PMCH on the MBSFN subframe is the The first OFDM symbol of the MBSFN subframe.
  • the method further includes:
  • the base station sends an enhanced physical downlink control channel EPDCCH configuration information to the UE, where the EPDCCH configuration information is used to indicate a transmission bandwidth of the EPDCCH on the MBSFN subframe.
  • the method further includes:
  • the base station sends antenna configuration information of the PMCH to the UE, where the antenna configuration information is used to indicate that the antenna transmission mode of the PMCH is a multi-antenna transmission mode in which the number of antenna ports is greater than 1.
  • the reference signal pattern adopts a frequency division multiplexing (FDM) mode or a time division multiplexing (TDM) mode.
  • FDM frequency division multiplexing
  • TDM time division multiplexing
  • the determining, by the base station, the subframe configuration of the MBS FN subframe for the 7-chip PMCH includes:
  • the base station uses a subframe configuration of a preset MBS FN subframe, and the subframe configuration of the preset MBS FN subframe is determined based on a deployment environment of the base station.
  • the base station determines a subframe configuration of the MBS FN subframe used to carry the physical multicast channel PMCH , including:
  • the base station receives the second MBSFN configuration information sent by the network device, and determines a subframe configuration of the MBSFN subframe according to the second MBS FN configuration information.
  • a second aspect provides a method for MBSFN configuration of a multimedia broadcast single frequency network, where the method includes:
  • the user equipment UE receives the MBS FN configuration information, where the MBS FN configuration information is used to indicate a subframe configuration of the MBS FN subframe of the 7-carrier physical multicast channel PMCH, where the subframe configuration includes: a cyclic prefix CP type, and / or, reference signal pattern;
  • the CP type includes: a normal CP, an extended CP, or another CP, and the lengths of the other CPs are different from the lengths of the normal CP and the extended CP.
  • the subframe configuration of the MBS FN subframe includes at least one configuration of configurations A and B:
  • the CP type is a normal CP or other CP
  • the reference signal pattern includes "a resource element reference signal RE", which is a positive integer less than 18.
  • the configuration B further includes:
  • the configuration B further includes:
  • the position of the reference signal RE in the reference signal pattern satisfies the following conditions:
  • ⁇ ⁇ represents the frequency domain interval between adjacent subcarriers, indicating the number of the slot in which the reference signal RE is located in the radio frame, " S mGd2 indicates the pair s mode 2 operation, w denotes the number of the reference symbol, and ".
  • the method further includes: combining the second aspect to the third possible implementation manner of the second aspect, the method further includes:
  • the UE receives physical downlink shared channel (PDSCH) configuration information, where the PDSCH configuration information is used to indicate a transmission bandwidth of the PDSCH on the MBSFN subframe; Determining, by the UE, a transmission bandwidth of the PDS CH on the MBSFN subframe according to the PDS CH configuration information.
  • PDSCH physical downlink shared channel
  • the method further includes: combining the second aspect to the fourth possible implementation manner of the second aspect, the method further includes:
  • the UE receives Orthogonal Frequency Division Multiplexing (OFDM) symbol information of the PMCH, where the OFDM symbol information is used to indicate that the starting OFDM symbol of the PMCH on the MBSFN subframe is the first of the MBS FN subframes.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the method further includes:
  • the UE receives the enhanced physical downlink control channel EPDCCH configuration information, where the EPDCCH configuration information is used to indicate the transmission bandwidth of the EDPCCH on the MBS FN subframe; and the UE determines, according to the EPDCCH configuration information, the The transmission bandwidth of the EPDCCH on the MBSFN subframe.
  • the method further includes: combining the second aspect to the sixth possible implementation manner of the second aspect, the method further includes:
  • the UE receives antenna configuration information of the PMCH, where the antenna configuration information is used to indicate that the antenna transmission mode of the PMCH is a multi-antenna transmission mode in which the number of antenna ports is greater than one; and the antenna configuration information of the UE in the PMCH And determining an antenna transmission mode of the PMCH.
  • the reference signal pattern adopts a frequency division multiplexing (FDM) mode or a time division multiplexing (TDM) mode.
  • FDM frequency division multiplexing
  • TDM time division multiplexing
  • a base station in a third aspect, includes: a determining unit, a sending unit, and the determining unit, configured to determine a subframe configuration of a multimedia broadcast single frequency network MBS FN subframe used to carry a physical multicast channel PMCH
  • the subframe configuration includes: a cyclic prefix CP type, and/or a reference signal pattern;
  • the sending unit is configured to send, to the user equipment UE, the MBS FN configuration information that is determined by the determining unit, where the MBSFN configuration information is used to indicate a subframe of the MBS FN subframe Configuration
  • the CP type includes: a normal CP, an extended CP, or another CP, and the lengths of the other CPs are different from the lengths of the normal CP and the extended CP.
  • the subframe configuration of the MBSFN subframe includes at least one configuration of configurations A and B:
  • the CP type is a normal CP or other CP
  • the reference signal pattern contains "a reference signal resource unit RE,” which is a positive integer less than 18.
  • the configuration B further includes:
  • the configuration B further includes:
  • ⁇ ⁇ denotes the frequency domain spacing between adjacent subcarriers
  • s denotes the number of the slot in which the reference signal RE is located in the radio frame
  • S mGd2 denotes the modulo 2 Operation
  • w denotes the number of the reference symbol
  • w denotes the offset of the frequency domain index
  • 4 denotes the number of the OFDM symbol in which the reference signal RE is located in the slot "s, - 1 , 0 ⁇ / 1 ⁇ JV s D y !
  • the sending unit is further configured to send, to the UE, physical downlink shared channel PDSCH configuration information, where the PDS CH configuration information is used to indicate a transmission bandwidth of the PDS CH on the MBS FN subframe.
  • the sending unit is further configured to send the OFDM symbol information of the PMCH to the UE, where the OFDM symbol information of the PMCH is used to indicate that the PMCH is on the MBS FN subframe.
  • the first OFDM symbol is the first OFDM symbol of the MBS FN subframe.
  • the sending unit is further configured to send the enhanced physical downlink control channel EPDCCH configuration information to the UE, where the EPDCCH configuration information is used to indicate a transmission bandwidth of the EPDCCH on the MBS FN subframe.
  • the transmitting unit is further configured to send the antenna configuration information of the PMCH to the UE, where the antenna configuration information is used to indicate that the antenna transmission mode of the PMCH is a multi-antenna transmission mode in which the number of antenna ports is greater than 1.
  • the reference signal pattern adopts a frequency division multiplexing FDM manner or a time division multiplexing TDM.
  • the determining unit is specifically configured to:
  • a subframe configuration using a preset MBS FN subframe, and a subframe of the preset MBS FN subframe The configuration is determined based on the deployment environment of the base station.
  • the determining unit is specifically configured to:
  • a user equipment UE includes: a receiving unit, a determining unit;
  • the receiving unit is configured to receive MBSFN configuration information of a multimedia broadcast single frequency network, where the MBSFN configuration information is used to indicate a subframe configuration of an MBSFN subframe that carries a physical multicast channel PMCH, where the subframe configuration includes: Prefix CP type, and/or, reference signal pattern;
  • the determining unit is configured to determine, according to the MBSFN configuration information received by the receiving unit, a subframe configuration of the MBSFN subframe;
  • the CP type includes: a normal CP, an extended CP, or another CP, and the lengths of the other CPs are different from the lengths of the normal CP and the extended CP.
  • the subframe configuration of the MBSFN subframe includes at least one configuration of configurations A and B:
  • the CP type is a normal CP or other CP
  • the reference signal pattern includes "a resource element reference signal RE,” which is a positive integer less than 18.
  • the configuration B further includes:
  • the configuration B further includes:
  • the position of the reference signal RE in the reference signal pattern satisfies the following conditions:
  • ⁇ ⁇ represents the frequency domain spacing between adjacent subcarriers, Indicates the number of the slot in which the reference signal RE is located in the radio frame, "s mGd2 indicates operation on modulo 2, w indicates the number of the reference symbol, and ". indicates the offset of the frequency domain index, A and indicates that the reference signal RE is located in the slot. number of OFDM symbols, / ⁇ / ⁇ ⁇ 3 ⁇ 4- 0 ⁇ ⁇ 3 ⁇ 4- 0 ⁇ / 2 ⁇ N b -!?”? 1,
  • / / i ⁇ RB ' represents the transmission bandwidth of the PMCH carried on the MBSFN subframe, represents the number of OFDM symbols in one slot, and represents the number of the starting OFDM symbol of the PMCH on the MBSFN subframe.
  • the receiving unit is further configured to receive physical downlink shared channel PDSCH configuration information, where the PDSCH configuration information is used to indicate a transmission bandwidth of the PDSCH on the MBSFN subframe, and the determining unit is further configured to: The PDSCH configuration information received by the receiving unit determines a transmission bandwidth of the PDSCH on the MBSFN subframe.
  • the receiving unit is further configured to receive orthogonal frequency division multiplexing OFDM symbol information of the PMCH, where the OFDM symbol information is used to indicate that the starting OFDM symbol of the PMCH on the MBSFN subframe is the MBSFN The first OFDM symbol of the subframe;
  • the determining unit is further configured to determine, according to the OFDM symbol information of the PMCH received by the receiving unit, a starting OFDM symbol of the PMCH on the MBS FN subframe.
  • the receiving unit is further configured to receive an enhanced physical downlink control channel EPDCCH configuration information, where the EPDCCH configuration information is used to indicate a transmission bandwidth of the EDPCCH on the MBS FN subframe;
  • the determining unit is further configured to determine, according to the EPDCCH configuration information received by the receiving unit, a transmission bandwidth of the EPDCCH on the MBSFN subframe.
  • the receiving unit is further configured to receive antenna configuration information of the PMCH, where the antenna configuration information is used to indicate that the antenna transmission mode of the PMCH is a multi-antenna transmission mode in which the number of antenna ports is greater than 1.
  • the determining unit is further configured to determine an antenna transmission manner of the PMCH according to antenna configuration information of the PMCH received by the receiving unit.
  • the reference signal pattern adopts a frequency division multiplexing FDM manner or a time division multiplexing TDM.
  • a method and a device for configuring an MBSFN because a base station can determine a subframe configuration of an MBS FN subframe for a 7-carrier PMCH, where the subframe configuration includes: a CP type, and/or a reference signal pattern And the base station sends MBS FN configuration information to the UE, where the MBS FN configuration information is used to indicate a subframe configuration of the MBS FN subframe, so that flexible configuration of the MBS FN subframe can be implemented; and because the MBS FN
  • the CP type in the subframe configuration may include: a normal CP, an extended CP, or other CPs, the lengths of the other CPs being different from the lengths of the normal CPs and the extended CPs, so that a reasonable subframe configuration may be selected as needed, further It can reduce overhead and improve the wireless resource utilization of the system.
  • 1(a) is a schematic structural diagram of a PRB pair when a CP type is an extended CP according to an embodiment of the present invention
  • 1(b) is a schematic structural diagram of a PRB pair when a CP type is a normal CP according to an embodiment of the present invention
  • FIG. 2 is a schematic flowchart of a method for configuring an MBSFN according to an embodiment of the present invention
  • FIG. 3 is a reference signal pattern of a prior art MBSFN subframe according to an embodiment of the present invention
  • FIG. 4 is a reference signal pattern 1 of an MBSFN subframe according to an embodiment of the present invention
  • FIG. 5 is a reference signal pattern 2 of an MBSFN subframe according to an embodiment of the present invention
  • FIG. 7 is a reference signal pattern 4 of an MBSFN subframe according to an embodiment of the present invention
  • FIG. 8 is a reference signal pattern 5 of an MBSFN subframe according to an embodiment of the present invention
  • FIG. 9 is a reference signal pattern 6 of an MBSFN subframe according to an embodiment of the present invention
  • FIG. 10 is a reference signal pattern 7 of an MBSFN subframe according to an embodiment of the present invention
  • FIG. FIG. 12 is a reference signal pattern 9 of an MBSFN subframe according to an embodiment of the present invention
  • FIG. 13 is a reference signal pattern 10 of an MBSFN subframe according to an embodiment of the present invention
  • FIG. 14 is a reference signal pattern 11 of an MBSFN subframe according to an embodiment of the present invention
  • FIG. 15 is a reference signal pattern 12 of an MBSFN subframe according to an embodiment of the present invention
  • FIG. 16 is provided according to an embodiment of the present invention.
  • one of FIG. 17 is a reference signal pattern of an MBSFN subframe according to an embodiment of the present invention
  • FIG. 18 is a reference signal pattern of an MBSFN subframe according to an embodiment of the present invention.
  • FIG. 19 is a reference signal pattern of an MBSFN subframe according to an embodiment of the present invention.
  • FIG. 20 is a reference signal pattern of an MBSFN subframe according to an embodiment of the present invention
  • FIG. The reference signal pattern of an MBSFN subframe provided by the example is eighteen
  • FIG. 2 is a reference signal pattern of an MBSFN subframe according to an embodiment of the present invention
  • FIG. 23 is a reference signal pattern of an MBSFN subframe according to an embodiment of the present invention
  • FIG. 25 is a reference signal pattern of an MBSFN subframe according to an embodiment of the present invention.
  • FIG. 26 is a reference of an MBSFN subframe according to an embodiment of the present invention.
  • FIG. 27 is a reference signal pattern of an MBSFN subframe according to an embodiment of the present invention;
  • FIG. 28 is a reference signal pattern of an MBSFN subframe according to an embodiment of the present invention.
  • FIG. 29 is a reference signal pattern of an MBSFN subframe according to an embodiment of the present invention.
  • FIG. 30 is a reference signal pattern of an MBSFN subframe according to an embodiment of the present invention.
  • FIG. 31 is a reference signal pattern of an MBSFN subframe according to an embodiment of the present invention.
  • FIG. 32 is a reference signal pattern of an MBSFN subframe according to an embodiment of the present invention.
  • FIG. 3 is a reference signal pattern of an MBSFN subframe according to an embodiment of the present invention
  • FIG. 34 is a reference signal pattern of an MBSFN subframe according to an embodiment of the present invention.
  • FIG. A reference signal pattern of an MBSFN subframe is shown in FIG. 36 is a reference signal pattern of an MBSFN subframe according to an embodiment of the present invention.
  • FIG. 37 is a reference signal pattern of an MBSFN subframe according to an embodiment of the present invention. Thirty-four;
  • FIG. 38 is a reference signal pattern of an MBSFN subframe according to an embodiment of the present invention;
  • FIG. 39 is a schematic diagram of a reference signal pattern of an MBSFN subframe according to an embodiment of the present invention.
  • FIG. 40 is a schematic flowchart of a method for configuring an MBS FN according to an embodiment of the present invention.
  • FIG. 42 is a schematic structural diagram of a UE according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic structural diagram of a base station according to an embodiment of the present disclosure.
  • FIG. 44 is a schematic structural diagram of a UE according to an embodiment of the present invention.
  • the words “first” and “second” are used to distinguish the same items or similar items whose functions and functions are substantially the same, in the field. The technician can understand the words “first”, “second”, etc. and limit the number and execution order.
  • An embodiment of the present invention provides a method for configuring an MBS FN. Specifically, as shown in FIG. 2, the method includes:
  • the base station determines a subframe configuration of the MBSFN subframe for the 7-load PMCH, where the subframe configuration includes: a CP type, and/or a reference signal pattern.
  • the CP type includes: a normal CP, an extended CP, or another CP, and the lengths of the other CPs are different from the lengths of the normal CP and the extended CP.
  • the base station first determines the subframe configuration of the MBS FN subframe for the 7-chip PMCH, which may be implemented in the following two manners: In a first possible implementation, the base station uses a subframe configuration of a preset MBSFN subframe, and the subframe configuration of the preset MBSFN subframe is determined based on a deployment environment of the base station.
  • the deployment environment of the base station may include: a deployment location of the base station, a measured channel characterization parameter, and the like, which are not specifically limited in this embodiment of the present invention. It is only stated that when the base station is in a determined deployment environment, the base station may use a subframe configuration of a preset MBSFN subframe, the subframe configuration being determined based on a deployment environment of the base station.
  • a preset subframe configuration of an MBSFN subframe for a hotspot scenario may be used, where the hotspot refers to a location where a wireless local area network access network service is provided in a public place, such as
  • the embodiment of the present invention does not specifically limit the airport, the large-scale exhibition, and the like.
  • the subframe configuration for the hotspot scenario will be described in the following sections, which are not described here.
  • the base station receives the second MBSFN configuration information sent by the network device, and determines the subframe configuration of the MBSFN subframe by using the second MBSFN configuration information.
  • the network device may include: a Multi-Cell/Multicast Coordination Entity (MCE), a gateway device, and the like, which are not specifically limited in this embodiment of the present invention.
  • MCE Multi-Cell/Multicast Coordination Entity
  • the MCE may send a multimedia broadcast multicast service (MBMS) to the base station through the M2 interface, where the MBMS configuration request includes the second MBSFN configuration information, and the base station receives the MBMS configuration request. Then, the second MBSFN configuration information is obtained from the MBMS configuration request, and the subframe configuration of the MBSFN subframe may be determined according to the second configuration information.
  • the base station may perform the MBMS configuration request response to the MCE after the subframe configuration information of the M B S F N subframe is completed, and the MBMS configuration request response may be sent to the MCE, which is not specifically limited in this embodiment of the present invention.
  • the second subframe configuration includes: a CP type, and/or a reference signal pattern.
  • the second subframe configuration may further include PMCH physical layer configuration information. This embodiment of the present invention does not specifically limit this.
  • the base station determines the subframe configuration of the MBSFN subframe for the 7-chip PMCH, it may also be combined with the first possible implementation manner and the second possible implementation manner, that is, the base station may use the preset Subframe configuration of the MBSFN subframe, transmitted by the receiving network device After the two MBSFN configuration information is updated, the subframe configuration of the preset MBSFN subframe is updated, which is not specifically limited in this embodiment of the present invention.
  • the second MBSFN configuration information in the network device may be determined by the network device according to a channel quality parameter that is detected by the UE in real time or periodically, and the channel quality parameter may include a reference signal received power (RSRP).
  • RSRP reference signal received power
  • the reference signal received quality (RSRQ), the channel quality indicator (CQI), the channel delay feature, the service quality requirement, and the like are not specifically limited in the embodiment of the present invention.
  • the CP type in the subframe configuration of the MBSFN subframe may be an extended CP specified in the standard protocol, or may be a normal CP or other CP, which is not specifically limited in the embodiment of the present invention.
  • the length of the other CP is different from the length of the normal CP and the extended CP.
  • the base station sends MBSFN configuration information to the UE, where the MBSFN configuration information is used to indicate a subframe configuration of the MBSFN subframe.
  • the MBSFN configuration information is sent to the UE, and the configuration of the MBSFN subframe is completed.
  • the MBSFN configuration information may be carried in a Radio Resource Control (RRC) signaling, and is carried in a System Information Block Type 13, SIB13.
  • RRC Radio Resource Control
  • the signaling type of the CP type can be as follows:
  • the base station may choose to send RRC signaling with the CP type to the UE, and carry the RRC signaling in the SIB13.
  • the signaling bearer of the reference signal pattern can be as follows:
  • a base station may be in multiple MBSFN areas, and obtain multiple MBSFN area channel configuration parameters, which are carried by S IB13 in an RRC signaling, and the S IB13 includes multiple mbsfn-ArealnfoList, and may also include multiple Signaling.
  • the above method a has a smaller reference signal signaling overhead than mode b.
  • the base station may determine a subframe configuration of the MBSFN subframe used to carry the PMCH, where the subframe configuration includes: a CP type, and/or a reference signal pattern, and then the base station And sending the MBSFN configuration information to the UE, where the MBSFN configuration information is used to indicate the subframe configuration of the MBSFN subframe, and thus the flexible configuration of the MBSFN subframe may be implemented; and the CP type in the MBSFN subframe configuration may include: A normal CP, an extended CP, or another CP, the length of the other CP is different from the length of the normal CP and the extended CP, so that a reasonable subframe configuration can be selected as needed, which further reduces overhead and improves system radio resources. Utilization rate.
  • the subframe configuration of the MBSFN subframe may include at least one configuration in the configurations A and B:
  • the CP type is a normal CP or other CP
  • the reference signal pattern contains "a reference signal resource unit RE,” which is a positive integer less than 18.
  • the MBSFN reference signal pattern is as shown in FIG. 3, where the reference signal RE is separated by 1 subcarrier in the frequency domain and 3 OFDM symbols in the time domain, and includes 18 reference signals RE.
  • the hotspot scenario has a small multipath transmission channel delay compared to other scenarios, which results in a larger coherence bandwidth of the PMCH in the hotspot scenario, and thus the reference signal RE multi-span subcarrier. It has little effect on the channel estimation.
  • the hotspot scenario has a low moving speed relative to other scenarios, this will result in a larger coherence time of the PMCH in the hotspot scenario, and thus the reference signal RE multi-span OFDM symbol does not affect the channel estimation. Big.
  • the reference signal diagram shown in Figure 3 is still used The case will result in unnecessary waste of resources and reduce the utilization of resources.
  • the CP length may be designed as a normal CP or other CP whose CP length is smaller than a normal CP length, and/or, in each PRB pair, the reference signal pattern includes "a" RE, "is a positive integer less than 18, which will reduce overhead and improve the system's wireless resource utilization.
  • the black padding module is the position of the reference signal RE, and the upper dotted line and the lower dotted line both represent the omission of the reference signal pattern corresponding to the resources of other PRBs on the PMCH bandwidth resource.
  • the meanings of the black filling module and the upper dotted line and the lower dotted line are the same as those of FIG. 3, and are collectively described herein, and will not be described again.
  • the number of reference signals RE on one PRB pair may be 18. It can also be n in the configuration B, which is not specifically limited in the embodiment of the present invention.
  • configuration B may further include:
  • indicating the frequency domain interval between adjacent subcarriers, indicating the number of the time slot in which the RE is located in the radio frame
  • s mQd2 indicates the operation of the modulo 2
  • w indicates the number of the reference symbol
  • ". Indicates the offset of the frequency domain index, ⁇ . , ⁇ ⁇ and 2 show the slot located RE 's number of OFDM symbols
  • the transmission bandwidth of the PMCH carried on the MBSFN subframe indicating OFDM in one slot
  • the number of symbols indicating the number of the starting OFDM symbol of the PMCH on the MBSFN subframe.
  • the possible PMCH signal pattern on the MBSFN sub-frame is as shown in FIG. 4 .
  • the possible PMCH signal pattern on the MBSFN sub-frame is as shown in Fig. 7.
  • the reference signal RE can be cyclically shifted in the time-frequency domain, or, according to the above positional relationship expression, ".
  • the value of z there may be other reference signal patterns corresponding to the combination, and the embodiments of the present invention are no longer listed here.
  • the possible CHCH signal pattern on the MBSFN sub-frame is as shown in Fig. 18.
  • the reference signal RE in the listed reference signal pattern can be performed on the time-frequency domain. Cyclic shift, or, according to the above positional relationship expression, ".
  • the reference signal RE in the listed reference signal pattern can be cyclically shifted in the time-frequency domain, or, according to the above positional relationship expression, Z.
  • the reference signal patterns corresponding to other combinations may also exist in the present embodiment, and the embodiments of the present invention are not enumerated here.
  • V symb 7 ⁇ 'J: exemplified, when ⁇ ⁇ O, Z .
  • When 6, the possible reference signal pattern of the PMCH on the MBSFN subframe is as shown in FIG.
  • the reference signal RE in the listed reference signal pattern can be cyclically shifted in the time-frequency domain, or, according to the above positional relationship expression, Z.
  • the reference signal patterns corresponding to other combinations may also exist in the present embodiment, and the embodiments of the present invention are not enumerated here.
  • the possible reference signal pattern of the PMCH on the MBSFN sub-frame is as shown in FIG. 21.
  • the possible reference signal pattern of the PMCH on the MBSFN sub-frame is as shown in Fig. 24.
  • the reference signal RE in the listed reference signal pattern can be performed in the time-frequency domain.
  • V symb 7 shells ' J:
  • the possible test signal pattern is as shown in FIG.
  • the PMCH possible-test signal pattern on the MBSFN sub-frame is as shown in Fig. 29.
  • the reference signal RE in the listed reference signal pattern can be looped in the time-frequency domain. Shift, or, according to the above positional relationship expression, ".
  • the possible reference signal pattern of the PMCH on the MBSFN sub-frame is as shown in Fig. 31.
  • the reference signal RE in the listed reference signal pattern can be used in the time-frequency domain.
  • the possible reference signal pattern of the PMCH on the MBSFN sub-frame is as shown in FIG. 33.
  • the reference signal RE in the listed reference signal pattern can be cyclically shifted in the time-frequency domain, or, according to In the above positional relationship expression, the value of "., z", in this case, there may be other reference signal patterns corresponding to the combination, which are not enumerated here.
  • the possible reference signal pattern of the PMCH on the MBSFN subframe is as shown in FIG.
  • the reference signal RE in the listed reference signal pattern can be followed in the time-frequency domain. Ring shift, or, according to the above positional relationship expression, Z.
  • the reference signal RE in the listed reference signal pattern can be cyclically shifted in the time-frequency domain, or, according to the above positional relationship expression, Z.
  • the reference signal patterns corresponding to other combinations may also exist in the present embodiment, and the embodiments of the present invention are not enumerated here.
  • the possible reference signal pattern of the PMCH on the M BSFN subframe is as shown in FIG.
  • the reference signal RE in the listed reference signal pattern may be cyclically shifted in the time-frequency domain, or according to the value of "., Z in the above positional relationship expression, there may be other combinations corresponding to The reference signal pattern, the embodiment of the present invention is no longer listed here.
  • the possible reference signal pattern of the PMCH on the M BSFN subframe is as shown in Fig. 39.
  • the reference signal RE in the listed reference signal pattern can be cyclically shifted in the time-frequency domain, or, according to the above positional relationship expression, ".
  • the value of Z there may be other reference signal patterns corresponding to the combination, and the embodiments of the present invention are not listed here.
  • the reference signal RE is located at different subcarriers and can bring the frequency diversity gain of the channel estimation (for example, FIG. 9 is larger than the frequency diversity gain of FIG. 10), and the reference signal RE is located at a time when different OFDM symbols can bring channel estimation.
  • the gain e.g., Figure 10 is greater than the time diversity gain of Figure 18
  • the reference signal RE being located in the same OFDM symbol may reduce the overhead of reference signal signaling and the complexity of UE detection (e.g., Figure 18).
  • the size of the frequency diversity gain and the time diversity gain are generally determined according to specific channel conditions and scenarios, which are not specifically limited in this embodiment of the present invention.
  • the method for configuring the MBSFN further includes: the base station transmitting PDSCH configuration information to the UE, where the PDSCH configuration information is used to indicate that the PDSCH is on the MBSFN subframe. Transmission bandwidth.
  • frequency division multiplexing of PMCH and PDSCH is not allowed in the current standard protocol, but PMCH and PDSCH are allowed to be time division multiplexed, that is, certain specific subframes may be designed as MBSFN subframes,
  • the MBSFN subframe can be used to carry the PMCH.
  • the base station further sends the PDSCH configuration information on the MBSFN subframe, where the PDSCH configuration information is used to indicate the transmission bandwidth of the PDSCH on the MBSFN subframe, that is, the bearer.
  • the PDSCH can be carried on the MBSFN subframe of the PMCH to implement frequency division multiplexing between the PDSCH and the PMCH, thereby improving flexible scheduling of resources.
  • the PDSCH configuration information may be carried in the RRC signaling and carried in the SIB13.
  • the base station may choose to send RRC signaling with a PDSCH transmission bandwidth resource location to the UE, and carry the RRC signaling in the SIB13.
  • the method for configuring the MBSFN according to the embodiment of the present invention further includes: the base station transmitting, by using the OFDM symbol information of the PMCH, the OFDM symbol information of the PMCH, where the PMCH is in the PMCH
  • the starting OFDM symbol on the MBSFN subframe is the first OFDM symbol of the MBSFN subframe.
  • the base station configures to transmit MBSFN data carried by the PMCH by using all OFDM symbols of the MBSFN subframe. This design maximizes the resource utilization of MBSFN subframes, which in turn improves system performance.
  • the OFDM symbol information of the PMCH may be carried in the RRC signaling and carried in the SIB13.
  • the base station may select to send RRC signaling with a starting position of the PMCH on the MBSFN subframe to the UE, and carry the signal in the SIB13, where the signaling parameter mbsf n-Area Inf oLi st
  • the non-MBSFNreg ionLeng th may take 0.
  • the number of the starting OFDM symbol of the PMCH on the MBSFN subframe is represented, and in the embodiment of the present invention, the PMCH is in the MBSFN sub-
  • the starting OFDM symbol on the frame may be the first OFDM symbol of the MBSFN subframe.
  • the label of the first OFDM symbol is 0. Therefore, the value of t is 0 at this time.
  • the starting OFDM symbol of the PMCH on the MBSFN subframe may also be similar to the configuration in the prior art, that is, the starting OFDM symbol of the PMCH on the MBSFN subframe is the MBSFN subframe.
  • the second OFDM symbol or the third OFDM symbol is not specifically limited in this embodiment of the present invention. If the starting OFDM symbol of the PMCH on the MBSFN subframe is the second OFDM symbol of the MBSFN subframe, in the reference signal pattern description of the foregoing embodiment, the value of t is 1; The starting OFDM symbol of the PMCH on the MBSFN subframe is the third OFDM symbol of the MBSFN subframe. In the reference signal pattern description of the foregoing embodiment, the value of t is 2.
  • the method for configuring the MBSFN further includes: the base station sending an enhanced physical downlink control channel (EPDCCH) to the UE,
  • EPDCCH enhanced physical downlink control channel
  • the EPDCCH configuration information is used to indicate a transmission bandwidth of the EPDCCH on the MBSFN subframe.
  • the base station sends EPDCCH configuration information on the MBSFN subframe, where the EPDCCH configuration information is used to indicate a transmission bandwidth of the EPDCCH on the MBSFN subframe, that is, the 7-carrier PMCH.
  • the EPDCCH can be carried on the MBSFN subframe, and the dynamic signaling can be transmitted by using the EPDCCH, which implements frequency division multiplexing between the EPDCCH and the PMCH, thereby improving the throughput of the MBSFN subframe.
  • the EPDCCH configuration information may be carried in the RRC signaling and carried in the SIB13.
  • the base station may choose to send RRC signaling with the EPDCCH transmission bandwidth resource location to the UE, and carry the RRC signaling in the SIB13.
  • the dynamic signaling may also be transmitted in other manners, which is not specifically limited in this embodiment of the present invention.
  • the method for configuring the MBSFN further includes: the base station transmitting antenna configuration information of the PMCH to the UE, where the antenna configuration information is used to indicate antenna transmission of the PMCH
  • the mode is a multi-antenna transmission mode in which the number of antenna ports is greater than 1.
  • the reference signal pattern may be a Frequency Division Multiplexing (FDM) method or a Time Division Multiplexing (TDM) method, or coded by an orthogonal code.
  • FDM Frequency Division Multiplexing
  • TDM Time Division Multiplexing
  • CDM Code Division Multiplexing
  • the base station can configure the PMCH antenna transmission mode to be greater than the number of antenna ports. Multi-antenna transmission mode of 1. This can bring about transmit diversity gain and spatial multiplexing gain, and reduce the impact of fading channels, which in turn can improve system performance.
  • the antenna configuration information may be carried in the RRC signaling and carried in the SIB13.
  • the base station may choose to send the antenna configuration to the UE.
  • the RRC signaling of the information is carried in the SIB 13.
  • the base station can transmit the broadcast signal and the reference signal on the MBSFN subframe.
  • the embodiment of the present invention does not specifically limit this.
  • the reference signal can be determined according to the reference signal pattern.
  • a specific reference signal pattern will be described here, assuming that the reference signal pattern is as shown in FIG. 4, that is, the position of the reference signal RE in the reference signal pattern satisfies the following relationship:
  • is the maximum transmission bandwidth of the downlink system, "is the number of reference signals RE on one OFDM symbol when the frequency domain is a PRB pair resource, and w represents the number of the reference symbol.
  • the initial value of the pseudo-random sequence is:
  • N D represents the MBSFN area ID of an MBSFN area.
  • the method for performing the reference signal transmission by using the multi-antenna transmission method may refer to the method for performing the reference signal transmission by using the multi-antenna transmission mode in the unicast, which is not described in detail in the embodiment of the present invention.
  • An embodiment of the present invention provides a method for configuring an MBSFN. As shown in FIG. 40, the method includes:
  • the UE receives the MBSFN configuration information, where the MBSFN configuration information is used to refer to A subframe configuration of an MBSFN subframe carrying a PMCH, the subframe configuration including: a CP type, and/or a reference signal pattern.
  • the CP type includes: a normal CP, an extended CP, or another CP, and the lengths of the other CPs are different from the lengths of the normal CP and the extended CP.
  • the UE first receives the MBSFN configuration information, where the configuration information is used to indicate the subframe configuration of the MBSFN subframe that carries the PMCH.
  • the MBSFN configuration information may be carried in the RRC signaling, and is carried in the SIB13.
  • RRC signaling For details, refer to the description of the MBSFN configuration information signaling bearer in the embodiment shown in FIG. 2, and details are not described herein again.
  • the CP type in the subframe configuration of the MBSFN subframe may be an extended CP specified in the standard protocol, or may be a normal CP or other CP, which is not specifically limited in the embodiment of the present invention.
  • the length of the other CP is different from the length of the normal CP and the extended CP.
  • the UE occupies the MBSFN configuration information, and determines a subframe configuration of the MBSFN subframe.
  • the subframe configuration of the MBSFN subframe is determined according to the MBSFN configuration information.
  • the UE receives the MBSFN configuration information, where the MBSFN configuration information is used to indicate the subframe configuration of the MBSFN subframe carrying the PMCH; and then the UE may reside in the MBSFN configuration information. Determining the subframe configuration of the MBSFN subframe, so that the flexible configuration of the MBSFN subframe can be implemented; and because the CP type in the MBSFN subframe configuration can include: a normal CP, an extended CP, or other CP, the other CP The length of the normal CP and the extended CP are different, so that a reasonable subframe configuration can be selected as needed, which further reduces overhead and improves the wireless resource utilization of the system.
  • the subframe configuration of the MBSFN subframe may include at least one configuration in the configurations A and B:
  • the CP type is a normal CP or other CP
  • Each physical resource block PRB pair, the reference signal pattern includes "a reference signal resource unit RE," being a positive integer less than 18.
  • the MBSFN reference signal pattern is as shown in FIG. 3, where the reference signal RE is separated by 1 subcarrier in the frequency domain and 3 OFDM symbols in the time domain, and includes 18 reference signals RE.
  • the hotspot scenario has a small multipath transmission channel delay compared to other scenarios, which results in a larger coherence bandwidth of the PMCH in the hotspot scenario, and thus the reference signal RE multi-span subcarrier. It has little effect on the channel estimation.
  • the hotspot scenario has a low moving speed relative to other scenarios, this will result in a larger coherence time of the PMCH in the hotspot scenario, and thus the reference signal RE multi-span OFDM symbol does not affect the channel estimation. Big.
  • the CP length may be designed as a normal CP or other CP whose CP length is smaller than a normal CP length, and/or, in each PRB pair, the reference signal pattern includes "a" RE, "is a positive integer less than 18, which will reduce overhead and improve resource utilization.
  • the number of reference signals RE on one PRB pair may be 18. It can also be n in the configuration B, which is not specifically limited in the embodiment of the present invention.
  • configuration B may further include:
  • the method for configuring an MBSFN further includes: receiving, by the UE, PDSCH configuration information, where the PDSCH configuration information is used to indicate a transmission bandwidth of the PDSCH on the MBSFN subframe;
  • frequency division multiplexing of PMCH and PDSCH is not allowed in the current standard protocol, but PMCH and PDSCH are allowed to be time division multiplexed, that is, certain specific subframes may be designed as MBSFN subframes,
  • the MBSFN subframe can be used to carry the PMCH.
  • the UE further receives the PDSCH configuration information, where the PDSCH configuration information is used to indicate the transmission bandwidth of the PDSCH on the MBSFN subframe, that is, the PDSCH may be carried on the MBSFN subframe carrying the PMCH.
  • a frequency division multiplexing between the PDSCH and the PMCH is implemented, thereby improving flexible scheduling of resources.
  • the method for configuring an MBSFN further includes: the UE receiving OFDM symbol information of the PMCH, where the OFDM symbol information is used to indicate that the PMCH is on the MBSFN subframe
  • the starting OFDM symbol is the first OFDM symbol of the MBSFN subframe
  • MBSFN subframe In the prior art MBSFN transmission method, dynamic control signaling needs to be transmitted in the MBSFN subframe. This will take up 1 or 2 OFDM symbols.
  • all OFDM symbols of the MBSFN subframe may be configured to transmit MBSFN data carried by the PMCH. This design maximizes the resource utilization of MBSFN subframes, which in turn improves system performance.
  • the method for configuring an MBSFN further includes: the UE receiving EPDCCH configuration information, where the EPDCCH configuration information is used to indicate a transmission bandwidth of the EDPCCH on the MBSFN subframe;
  • the MBSFN subframe needs to be transmitted.
  • State control signaling the UE receives the EPDCCH configuration information, where the EPDCCH configuration information is used to indicate the transmission bandwidth of the EDPCCH on the MBS FN subframe, that is, the MBS FN subframe carrying the PMCH can carry the EPDCCH.
  • the dynamic signaling may be transmitted by using the EPDCCH, and the frequency division multiplexing between the EPDCCH and the PMCH is implemented, thereby improving the throughput of the MBS FN subframe.
  • the dynamic signaling may also be transmitted in other manners, which is not specifically limited in this embodiment of the present invention.
  • the method for configuring the MBS FN further includes: the UE receiving antenna configuration information of the PMCH, where the antenna configuration information is used to indicate that the antenna transmission mode of the PMCH is an antenna The multi-antenna transmission mode in which the number of ports is greater than one; the antenna configuration information of the PMCH in the UE determines the antenna transmission mode of the PMCH.
  • the reference signal pattern adopts a frequency division multiplexing FDM method or a time division multiplexing TDM method, or a code division multiplexing CDM method by orthogonal code coding.
  • the single antenna port 4 can be used for signal transmission.
  • multiple antenna transmissions with the number of antenna ports greater than 1 can be configured.
  • the mode performs MBSFN transmission. This can result in transmit diversity gain and spatial multiplexing gain, reducing the effects of fading channels, which in turn can improve system performance.
  • the UE may obtain the channel quality characterization parameter after detecting the surrounding channel conditions in real time or periodically, and then send the channel quality parameter to the network device, where the network device determines the MBSFN configuration information according to the channel quality parameter.
  • the dynamic update of the configuration information of the MBS FN subframe carrying the PMCH by the base station is implemented, so that the resources on the MBSFN subframe are fully utilized.
  • the network device may include: an MCE, a gateway device, etc., the channel quality.
  • the parameters may include the RSRP, the RSRQ, the CQI, the channel delay feature, the service quality requirement, and the like, which are not specifically limited in this embodiment of the present invention.
  • the base station can receive the broadcast signal and the reference signal on the determined MBSFN subframe. This embodiment of the present invention does not specifically limit this.
  • the reference signal can be determined according to the reference signal pattern.
  • the reference signal pattern For a specific implementation, refer to the description of the embodiment shown in FIG. 2, and details are not described herein again.
  • the method for performing the reference signal analysis by using the multi-antenna transmission method may refer to the method for performing the reference signal analysis by using the multi-antenna transmission mode in the unicast, which is not described in detail in the embodiment of the present invention.
  • the embodiment of the present invention provides a base station 4100.
  • the base station 4100 includes: a determining unit 4101 and a sending unit 4102.
  • the determining unit 4101 is configured to determine a subframe configuration of an MBSFN subframe for the 7-bearing PMCH, where the subframe configuration includes: a cyclic prefix CP type, and/or a reference signal pattern.
  • the CP type includes: a normal CP, an extended CP, or another CP, and the lengths of the other CPs are different from the lengths of the normal CP and the extended CP.
  • the sending unit 4102 is configured to send, to the user equipment UE, the MBSFN configuration information determined by the determining unit 4101, where the MBSFN configuration information is used to indicate a subframe configuration of the MBSFN subframe.
  • determining the subframe configuration of the MBSFN subframe for the PMCH are provided by the determining unit 4101:
  • the determining unit 4101 is specifically configured to:
  • the subframe configuration of the preset MBSFN subframe is determined based on the deployment environment of the base station 4100.
  • the determining unit 4101 is specifically configured to:
  • the subframe configuration of the MBSFN subframe may include at least one configuration of configurations A and B: Configuration A: The CP type is a normal CP or other CP;
  • Each physical resource block PRB is aligned, and the reference signal pattern includes a "score-test signal resource unit RE,” which is a positive integer less than 18.
  • the configuration B may further include:
  • n 6 and the "reference signal REs are spaced 5, 3 or 1 subcarrier in the frequency domain; or
  • the configuration B further includes: if the reference signal RE is recorded as (0, k represents a frequency domain index, and Z represents a time domain index;
  • ⁇ RB denotes the transmission bandwidth of the PMCH carried on the MBSFN subframe, indicating the number of OFDM symbols in one slot, indicating that the PMCH is in the MBSFN sub The number of the starting OFDM symbol on the frame.
  • the sending unit 4102 is further configured to send physical downlink shared channel (PDSCH) configuration information to the UE, where the PDSCH configuration information is used to indicate a transmission bandwidth of the PDSCH on the MBSFN subframe.
  • PDSCH physical downlink shared channel
  • the sending unit 4102 is further configured to send orthogonal OFDM symbol information of the PMCH to the UE, where OFDM symbol information of the PMCH is used to indicate that the PMCH is in the MBSFN subframe. The starting OFDM symbol on the first OFDM symbol of the MBSFN subframe.
  • the sending unit 4102 is further configured to send the enhanced physical downlink control channel EPDCCH configuration information to the UE, where the EPDCCH configuration information is used to indicate a transmission bandwidth of the EPDCCH on the MBSFN subframe.
  • the sending unit 4102 is further configured to send the antenna configuration information of the PMCH to the UE, where the antenna configuration information is used to indicate that the antenna transmission mode of the PMCH is a multi-antenna transmission with an antenna port number greater than one. the way.
  • the reference signal pattern adopts a frequency division multiplexing FDM mode or a time division multiplexing TDM mode, or a code division multiplexing CDM mode by orthogonal code coding.
  • the method for performing the MBSFN configuration by the base station 4100 can refer to the description of the first embodiment, and details are not described herein again.
  • the base station 4100 of the present embodiment can be used to perform the method in the foregoing embodiment. Therefore, the technical effects that can be obtained by the base station 4100 can be referred to the description in the foregoing embodiment, and details are not described herein again.
  • the embodiment of the present invention provides a user equipment UE4200.
  • the UE 420G includes: a receiving unit 4201 and a determining unit 4202.
  • the receiving unit 4201 is configured to receive a multimedia broadcast single frequency network (MBSFN) configuration information, where the MBSFN configuration information is used to indicate a subframe configuration of an MBSFN subframe that carries a physical multicast channel (PMCH), where the subframe configuration includes: Cyclic prefix CP type, and / or, reference signal pattern.
  • MBSFN multimedia broadcast single frequency network
  • PMCH physical multicast channel
  • the CP type includes: a normal CP, an extended CP, or another CP, and the lengths of the other CPs are different from the lengths of the normal CP and the extended CP.
  • the determining unit 4202 is configured to determine a subframe configuration of the MBSFN subframe according to the MBSFN configuration information received by the receiving unit 4201.
  • subframe configuration of the MBSFN subframe may include the following in the configurations A and B. One less configuration:
  • the CP type is a normal CP or other CP
  • the reference signal pattern includes "a resource element reference signal RE,” which is a positive integer less than 18.
  • the configuration B may further include:
  • the configuration B further includes: if the reference signal RE is recorded as (0, k represents a frequency domain index, and Z represents a time domain index,
  • ⁇ RB represents the transmission bandwidth of the PMCH carried on the MBSFN subframe, indicating the number of OFDM symbols in one slot, indicating that the PMCH is in the MBSFN sub The number of the starting OFDM symbol on the frame.
  • the receiving unit 4201 is further configured to receive physical downlink shared channel PDSCH configuration information, where the PDSCH configuration information is used to indicate that the PDSCH is in the MBSFN subframe. Transmission bandwidth on.
  • the determining unit 4202 is further configured to determine, according to the PDSCH configuration information received by the receiving unit 4201, a transmission bandwidth of the PDSCH on the MBSFN subframe.
  • the receiving unit 4201 is further configured to receive orthogonal frequency division multiplexing OFDM symbol information of the PMCH, where the OFDM symbol information is used to indicate an initial OFDM symbol of the PMCH on the MBSFN subframe. Is the first OFDM symbol of the MBSFN subframe.
  • the determining unit 4202 is further configured to determine, according to the 0FDM symbol information of the PMCH received by the receiving unit 4201, a starting 0FDM symbol of the PMCH on the MBSFN subframe.
  • the receiving unit 4201 is further configured to receive enhanced physical downlink control channel EPDCCH configuration information, where the EPDCCH configuration information is used to indicate a transmission bandwidth of the EDPCCH on the MBSFN subframe.
  • the determining unit 4202 is further configured to determine, according to the EPDCCH configuration information received by the receiving unit 4201, a transmission bandwidth of the EPDCCH on the MBSFN subframe.
  • the receiving unit 4201 is further configured to receive antenna configuration information of the PMCH, where the antenna configuration information is used to indicate that the antenna transmission mode of the PMCH is a multi-antenna transmission mode in which the number of antenna ports is greater than 1.
  • the determining unit 4202 is further configured to determine an antenna transmission manner of the PMCH according to the antenna configuration information of the PMCH received by the receiving unit 4201.
  • the reference signal pattern adopts a frequency division multiplexing FDM mode or a time division multiplexing TDM mode, or a code division multiplexing CDM mode by orthogonal code coding.
  • the UE4200 of the present embodiment can be used to perform the method in the foregoing Embodiment 2. Therefore, the technical effects that can be obtained by the UE 4200 can also be referred to the description in the foregoing embodiment, and details are not described herein.
  • the embodiment of the present invention provides a base station.
  • the base station includes: a processor 4301 and a transmitter 4302.
  • the processor 4301 is configured to determine a subframe configuration of an MBSFN subframe for carrying a PMCH, where the subframe configuration includes: a cyclic prefix CP type, and/or a reference signal pattern.
  • the CP type includes: a normal CP, an extended CP, or another CP, and the lengths of the other CPs are different from the lengths of the normal CP and the extended CP.
  • the transmitter 4302 is configured to send, to the user equipment UE, the MBSFN configuration information that is determined by the processor 4301, where the MBSFN configuration information is used to indicate a subframe configuration of the MBSFN subframe.
  • processor configuration defined by the processor 4301 for the MBSFN subframe of the PMCH there are two possible implementations of the processor configuration defined by the processor 4301 for the MBSFN subframe of the PMCH:
  • the processor 4301 is specifically configured to:
  • the subframe configuration of the preset MBSFN subframe is determined based on the deployment environment of the base station 4300.
  • processor 4301 is specifically configured to:
  • the subframe configuration of the MBSFN subframe may include at least one configuration in the configurations A and B:
  • the CP type is a normal CP or other CP
  • the reference signal pattern contains "a reference signal resource unit RE,” which is a positive integer less than 18.
  • the configuration B may further include:
  • the transmitter 4302 is further configured to send the physical downlink shared channel (PDSCH) configuration information to the UE, where the PDSCH configuration information is used to indicate a transmission bandwidth of the PDSCH on the MBSFN subframe.
  • PDSCH physical downlink shared channel
  • the transmitter 4302 is further configured to send orthogonal frequency division multiplexing OFDM symbol information of the PMCH to the UE, where OFDM symbol information of the PMCH is used to indicate that the PMCH is in the MBSFN subframe.
  • OFDM symbol information of the PMCH is used to indicate that the PMCH is in the MBSFN subframe.
  • the transmitter 4302 is further configured to send an enhanced physical downlink control channel EPDCCH configuration information to the UE, where the EPDCCH configuration information is used to indicate a transmission bandwidth of the EPDCCH on the MBSFN subframe.
  • the transmission bandwidth of the PDSCH characterizes that the EDPCCH is frequency division multiplexed with the PMCH.
  • the transmitter 4302 is further configured to send the antenna configuration information of the PMCH to the UE, where the antenna configuration information is used to indicate that the antenna transmission mode of the PMCH is a multi-antenna transmission with an antenna port number greater than one. the way.
  • the reference signal pattern adopts a frequency division multiplexing FDM mode or a time division multiplexing TDM mode, or a code division multiplexing CDM mode by orthogonal code coding.
  • the method for performing the MBSFN configuration by the base station 4300 can refer to the description of the first embodiment, and details are not described herein again.
  • the base station 4300 of the present embodiment can be used to perform the method in the foregoing Embodiment 1. Therefore, the technical effects that can be obtained by the base station 4300 can be referred to the description in the foregoing embodiment, and details are not described herein again.
  • the embodiment of the present invention provides a user equipment UE4400.
  • the UE4400 includes: a receiver 4401 and a processor 4402.
  • the receiver 4401 is configured to receive MBSFN configuration information of a multimedia broadcast single frequency network, where the MBSFN configuration information is used to indicate a subframe configuration of an MBSFN subframe that carries a physical multicast channel PMCH, where the subframe configuration includes: Cyclic prefix CP type, and / or, reference signal pattern.
  • the CP type includes: a normal CP, an extended CP, or another CP, and the lengths of the other CPs are different from the lengths of the normal CP and the extended CP.
  • the processor 4402 is configured to determine, according to the MBSFN configuration information received by the receiver 4401, a subframe configuration of the MBSFN subframe.
  • the subframe configuration of the MBSFN subframe may include at least one configuration in the configurations A and B:
  • the CP type is a normal CP or other CP
  • the reference signal pattern includes "a resource element reference signal RE,” which is a positive integer less than 18.
  • the configuration B may further include:
  • the receiver 4401 is further configured to receive physical downlink shared channel PDSCH configuration information, where the PDSCH configuration information is used to indicate a transmission bandwidth of the PDSCH on the MBSFN subframe.
  • the processor 4402 is further configured to determine, according to the PDSCH configuration information received by the receiver 4401, a transmission bandwidth of the PDSCH on the MBSFN subframe.
  • the receiver 4401 is further configured to receive orthogonal frequency division multiplexing OFDM symbol information of the PMCH, where the OFDM symbol information is used to indicate a starting OFDM symbol of the PMCH on the MBSFN subframe. Is the first OFDM symbol of the MBSFN subframe.
  • the processor 4402 is further configured to determine, according to the OFDM symbol information of the PMCH received by the receiver 4401, a starting OFDM symbol of the PMCH on the MBSFN subframe. number.
  • the receiver 4401 is further configured to receive an enhanced physical downlink control channel EPDCCH configuration information, where the EPDCCH configuration information is used to indicate a transmission bandwidth of the EDPCCH on the MBSFN subframe.
  • EPDCCH configuration information is used to indicate a transmission bandwidth of the EDPCCH on the MBSFN subframe.
  • the processor 4402 is further configured to determine, according to the EPDCCH configuration information received by the receiver 4401, a transmission bandwidth of the EPDCCH on the MBSFN subframe.
  • the receiver 4401 is further configured to receive antenna configuration information of the PMCH, where the antenna configuration information is used to indicate that the antenna transmission mode of the PMCH is a multi-antenna transmission mode in which the number of antenna ports is greater than 1.
  • the processor 4402 is further configured to determine an antenna transmission mode of the PMCH according to the antenna configuration information of the PMCH received by the receiver 4401.
  • the reference signal pattern adopts a frequency division multiplexing FDM mode or a time division multiplexing TDM mode, or a code division multiplexing CDM mode by orthogonal code coding.
  • the method for performing the MBSFN configuration by using the UE4400 may refer to the description of the first embodiment, and details are not described herein again.
  • the UE4600 of the present embodiment can be used to perform the method in the foregoing Embodiment 2. Therefore, the technical effects that can be obtained can also be referred to the description in the foregoing embodiment, and details are not described herein.
  • the disclosed system, apparatus, and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the modules or units is only a logical function division.
  • there may be another division manner for example, multiple units or components may be used. Combined or can be integrated into another system, or some features can be ignored, or not executed.
  • Another The coupling or direct coupling or communication connection between the points shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in electrical, mechanical or other form.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium. Based on such understanding, the technical solution of the present invention may contribute to the prior art or all or part of the technical solution may be embodied in the form of a software product stored in a storage medium.
  • the instructions include a plurality of instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor (rooce ssor) to perform all or part of the steps of the methods of the various embodiments of the present invention.
  • the foregoing storage medium includes: a USB flash drive, a removable hard disk, a read-only memory (ROM, Read-Only Memory), a random access memory (RAM, Random Acce ss Memo ry), a magnetic disk or an optical disk, and the like.
  • the medium of the program code includes: a USB flash drive, a removable hard disk, a read-only memory (ROM, Read-Only Memory), a random access memory (RAM, Random Acce ss Memo ry), a magnetic disk or an optical disk, and the like.
  • the medium of the program code includes: a USB flash drive, a removable hard disk, a read-only memory (ROM, Read-Only Memory), a random access memory (RAM, Random Acce ss Memo ry), a magnetic disk or an optical disk, and the like.
  • the medium of the program code includes: a USB flash drive, a removable hard disk, a read-only memory (ROM, Read-Only Memory), a random access memory (RAM, Random Acce

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Multimedia (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供一种MBSFN配置的方法及设备,可以实现MBSFN 的灵活配置,提高***的无线资源利用率。所述方法包括:基站确定用于承载物理多播信道PMCH的MBSFN子帧的子帧配置,所述子帧配置包括:循环前缀CP类型,和/或,参考信号图案;所述基站向用户设备UE发送 MBSFN配置信息,所述MBSFN配置信息用于指示所述MBSFN子帧的子帧配置;其中,所述CP类型包括:正常CP、扩展CP或其他CP,所述其他CP 的长度不同于所述正常CP和扩展CP的长度。本发明适用于通信领域。

Description

一种 MBSFN配置的方法及设备
技术领域
本发明涉及通信领域, 尤其涉及一种 MBSFN配置的方法及设备。 背景技术
目前,长期演进( long term evolution, LTE )***中,无线帧( radio frame) 的结构为: 一个无线帧包含 10个子帧(subf rame) , 每个子帧包 含 2个时隙(slot)。 通常情况下, 10个子帧内的时隙按照 0号, 1号, 2 号, …, 18 号, 19 号的编号来表示, 也就是说, 在一个无线帧内 0 号子帧由 0号时隙和 1号时隙组成, 1号子帧由 2号时隙和 3号时隙组 成, …, 9号子帧由 18号时隙和 19号时隙组成。
LTE ***的下行链路传输中使用正交频分复用 ( Orthogonal Frequency Division Multiplexing, OFDM ) 技术。 在 OFDM技术中 , 每 个 OFDM符号之前可增加保护间隔或循环前缀 ( Cyclic Prefix, CP) 来 消除信号的多径带来的符号间干扰。 目前, LTE中定义了两种 CP类型: 一种是正常 CP, 另一种是扩展 CP。 当 CP类型为正常 CP时, 每个时隙 包含 7个 OFDM符号, 其中, OFDM符号标号可分别记为 0至 6; 当 CP类 型为扩展 CP时,对应的无线帧的子帧的时隙包含 6个 OFDM符号,其中, OFDM符号标号可分别记为 0至 5。
1 个物理资源块 ( Physical Resource Block, PRB ) 对在时域上占 用 1个子帧, 即 2个时隙, 在频域上由 12个子载波构成。 示例性的, 如图 1 (a)所示, 图 1 (a)为 CP类型为扩展 CP时 1个 PRB 对的结构示意 图, 每个小格子是 1 个资源单元 ( Resource Element, RE), 频率域上 由 12个子载波构成, 时域上占 1个子帧, 即 2个时隙, 对应 12个 OFDM 符号, 此时, 1个 PRB对包括 144个资源单元( Resource Element, RE )。 其中, 每个 RE对应时域上一个 OFDM符号, 频率域上一个子载波, 即为 图 1 (a)中的一个小格子。 示例性的, 如图 1 (b)所示, 图 1 (b)为 CP类型 为正常 CP时 1个 PRB对的示意图, 每个小格子是 1个 RE, 频率域上由 12 个子载波构成, 时域上占 1 个子帧, 即 2个时隙, 对应 14 个 OFDM 符号, 此时, 1个 PRB对包括 168个 RE, 其中, 每个 RE对应时域上一 个 OFDM符号, 频率域上一个子载波, 即为图 1 (b)中的一个小格子。
LTE ***中传输多媒体广播多播业务时, 可以采用多媒体广播单频 网络 ( Multimedia Broadcast multicast service Single Frequency Network, MBSFN ) 的传输方式。 在该传输方式下, MBSFN数据由多路严 格时间同步小区在空口中同时传输, 用户设备 (User Equipment, UE ) 可以接收到多路传输的信号。 对于 UE 而言, 接收到的来自多个小区的 多路传输相当于来自单个小区的一路传输, 使得原本可能构成小区间干 扰的传输转换为有用信号能量, 从而可以提高频谱效率和信干噪比 ( Signal to Interference plus Noise Ratio, SINR ), 提升覆盖性能。
现有技术中, MBSFN 数据会被映射到物理多播信道 ( Physical Mulitcast Channel, PMCH) 进行传输。 由于 MBSFN数据的信道实际上 是来自多个小区的组合信道, UE在接收 MBSFN数据时有必要进行独立的 信道估计。 在同一个子帧内, 为了避免 MBSFN参考信号与其他参考信号 混合, 目前的标准协议中不允许 PMCH 和物理下行共享信道 ( Physcial Downlink Shared Channel, PDSCH )的频分复用,但是允许 PMCH和 PDSCH 时分复用, 即某些特定子帧可被设计为 MBSFN子帧, 该 MBSFN子帧可用 于 载 PMCH。
由于多小区传输时延的差别通常大于单小区时延扩展, 标准协议中 规定了 MBSFN子帧使用扩展 CP,因为较长的 CP有助于减小符号间干扰。 并且, 为了改善信道估计的准确性, MBSFN参考信号图案也作了修改。 如图 3所示, 与非 MBSFN数据传输相比, MBSFN参考信号图案中 RE数目 增多, 频域间隔也更加紧密。 因此, 遵从标准协议的基站和用户设备, 采用扩展 CP和上述 MBSFN参考信号图案, 能够顺利完成 MBSFN传输。 此外, 为了迎合不同小区间信号间传输时延差别更大的部署场景, LTE 中还考虑使用比扩展 CP更长的 CP, 以尽可能地消除符号间干扰。 同时, 为了避免 CP 开销, 相应设计了更小的子载波间隔。 因此, 随着 MBSFN 传输的进一步发展, 如何避免***的无线资源利用率的降低, 仍然是值 得深入研究的问题。
发明内容
本发明实施例提供了一种 MBSFN 配置的方法及设备, 可以实现 MBSFN的灵活配置, 提高***的无线资源利用率。 为达到上述目的, 本发明的实施例采用如下技术方案: 第一方面, 提供一种多媒体广播单频网络 MBSFN配置的方法, 所述 方法包括:
基站确定用于 7 载物理多播信道 PMCH的 MBSFN子帧的子帧配置, 所述子帧配置包括: 循环前缀 CP类型, 和 /或, 参考信号图案;
所述基站向用户设备 UE发送 MBSFN配置信息, 所述 MBSFN配置信 息用于指示所述 MBSFN子帧的子帧配置;
其中, 所述 CP类型包括: 正常 CP、 扩展 CP或其他 CP, 所述其他 CP的长度不同于所述正常 CP和扩展 CP的长度。
在第一方面第一种可能的实现方式中, 结合第一方面, 所述 MBSFN 子帧的子帧配置包括配置 A、 B中的至少一种配置:
配置 A: 所述 CP类型为正常 CP或其他 CP;
配置 B: 每个物理资源块 PRB对中, 所述参考信号图案包含"个参 考信号资源单元 RE, "为小于 18的正整数。
在第一方面第二种可能的实现方式中, 结合第一方面第一种可能的 实现方式, 所述配置 B进一步包括:
"=6, 且所述 "个参考信号 RE在频域上间隔 5、 3或 1个子载波; 或者,
"=8, 且所述 "个参考信号 RE在频域上间隔 2个子载波; 或者,
"=9, 且所述 "个参考信号 RE在频域上间隔 3个子载波; 或者,
"=4,且所述 "个参考信号 RE在频域上间隔 5或 2个子载波;或者,
« = 12, 且所述 "个参考信号 RE在频域上间隔 1个子载波。
在第一方面第三种可能的实现方式中, 结合第一方面第二种可能的 实现方式, 所述配置 B进一步包括:
若参考信号 RE记为( 0, 表示频域索引, /表示时域索引; 当 "=6, 且所述 "个参考信号 RE在频域上间隔 5个子载波时:
kHz kHz
Figure imgf000004_0001
Q≤k0≤5 , — 5≤a0≤5, 0≤ +a0≤5, = (^,…^ 11'1^— 1. 或者, 当 n二 6, 且所述 "个参考信号 RE在频域上间隔 3个子载波时: if ns mod2 = 0 and Af = 15 kHz if ns mod2 = 1 and Af = 15 kHz
Figure imgf000005_0001
0≤ ≤3, — 3≤αθ≤3, 且 0≤ +αθ≤3. m = 0,1,...,3N™DL -1. 或者 当 " = 6, 且所述 "个参考信号 RE在频域上间隔 1个子载波时: k = 2m + k0 , / = /0 if «s mod2 = 0 and Δ = 15 kHz , 0 < ^0 < 1 , m = 0,l,...,6N«DL-l; 或者 当 "=8, 且所述 "个参考信号 RE在频域上间隔 2个子载波时: k0 if /≠ /j and Af = 15 kHz if ns mod2 = 0 and Af = 15 kHz
Figure imgf000005_0002
+β!。 if / = and " = 15 kHz if ns mod2 = 1 and Af = 15 kHz
Q≤k0≤2 , - 2≤"0≤2, 且0≤ +a0≤2. m = 0,1,...,4N™DL -1. 或者 当 " = 9, 且所述 "个参考信号 RE在频域上间隔 3个子载波时: modi = 0 and Af = 15 kHz mod 2 = 1 and Af = 15 kHz
Figure imgf000005_0003
0≤ ≤3, — 3≤αθ≤3, 且 0≤ +αθ≤3. m = 0,1,...,3N™DL -1. 或者 当 " = 4, 且所述 "个参考信号 RE在频域上间隔 5个子载波时: if ns mod2 = 0 and Af = 15 kHz if ns mod2 = 1 and Af = 15 kHz
Figure imgf000005_0004
Q≤k0≤5 , — 5≤a0≤5, 0≤ +a0≤5, = (^,…^ 11'1^ — 1. 或者, 当 " = 4, 且所述 "个参考信号 RE在频域上间隔 2个子载波时: k = 3m + k0 , / = /0 if «s mod2 = 0 and Δ = 15 kHz , Q≤k0≤2 , m = 0,l,...,4N«DL-l; 或者, 当 "=12 , 且所述 "个参考信号 RE在频域上间隔 1个子载波时: if ns modi = 0 and Af = 15 kHz if n mod2 = 1 and Af = 15 kHz
Figure imgf000005_0005
0≤ ≤1, — 1≤α0≤1 , 0≤ +α0≤1, = 0,1 ..,6ΛΪ ΗΊ— 1. 其中, Δ,表示相邻子载波之间的频域间隔, 表示参考信号 RE位 于无线帧中时隙的编号, "S mGd2表示对 "s模 2操作, w表示参考符号的 编号, 和"。表示频域索引的偏置, ^、 4和 表示参考信号 RE 位于时 隙 "s中 OFDM符号的编号, t≤!o≤N -1, 0 ≤ /i Wsymb — 1, 0≤/2≤Nsymb— 1, r . r ATPMCH,DL WOL 且 A</2, ^RB 表示所述 MBSFN子帧上承载的 PMCH的传输带宽, 表示一个时隙中 OFDM符号的数目, 表示所述 PMCH在所述 MBSFN子帧 上的起始 OFDM符号的编号。 在第一方面第四种可能的实现方式中, 结合第一方面至第一方面第 三种可能的实现方式, 所述方法还包括:
所述基站向所述 UE发送物理下行共享信道 PDSCH配置信息, 所述 PDSCH配置信息用于指示所述 PDSCH在所述 MBSFN子帧上的传输带宽。
在第一方面第五种可能的实现方式中, 结合第一方面至第一方面第 四种可能的实现方式, 所述方法还包括:
所述基站向所述 UE发送所述 PMCH的正交频分复用 OFDM符号信息, 所述 PMCH的 OFDM符号信息用于指示所述 PMCH在所述 MBSFN子帧上的 起始 OFDM符号为所述 MBSFN子帧的第一个 OFDM符号。
在第一方面第六种可能的实现方式中, 结合第一方面至第一方面第 五种可能的实现方式, 所述方法还包括:
所述基站向所述 UE 发送增强的物理下行控制信道 EPDCCH 配置信 息, 所述 EPDCCH配置信息用于指示所述 EPDCCH在所述 MBSFN子帧上的 传输带宽。
在第一方面第七种可能的实现方式中, 结合第一方面至第一方面第 六种可能的实现方式, 所述方法还包括:
所述基站向所述 UE发送所述 PMCH的天线配置信息, 所述天线配置 信息用于指示所述 PMCH 的天线传输方式为天线端口数大于 1 的多天线 传输方式。 在第一方面第八种可能的实现方式中, 结合第一方面第七种可能的 实现方式,所述多天线传输方式中,所述参考信号图案采用频分复用 FDM 方式或时分复用 TDM方式,或者通过正交码做码分的码分复用 CDM方式。
在第一方面第九种可能的实现方式中, 结合第一方面至第一方面第 八种可能的实现方式, 所述基站确定用于 7 载 PMCH 的 MBS FN子帧的子 帧配置, 包括:
所述基站使用预设的 MBS FN子帧的子帧配置, 所述预设的 MBS FN子 帧的子帧配置基于所述基站的部署环境确定。
在第一方面第十种可能的实现方式中, 结合第一方面至第一方面第 八种可能的实现方式, 所述基站确定用于承载物理多播信道 PMCH 的 MBS FN子帧的子帧配置, 包括:
所述基站接收网络设备发送的第二 MBSFN配置信息, 并根据所述第 二 MBS FN配置信息确定所述 MBSFN子帧的子帧配置。
第二方面, 提供一种多媒体广播单频网络 MBSFN配置的方法, 所述 方法包括:
用户设备 UE接收 MBS FN配置信息, 其中, 所述 MBS FN配置信息用 于指示 7 载物理多播信道 PMCH的 MBS FN子帧的子帧配置, 所述子帧配 置包括: 循环前缀 CP类型、 和 /或, 参考信号图案;
所述 UE 居所述 MBS FN配置信息, 确定所述 MBSFN子帧的子帧配 置;
其中, 所述 CP类型包括: 正常 CP、 扩展 CP或其他 CP , 所述其他 CP的长度不同于所述正常 CP和扩展 CP的长度。
在第二方面第一种可能的实现方式中, 结合第二方面, 所述 MBS FN 子帧的子帧配置包括配置 A、 B中的至少一种配置:
配置 A : 所述 CP类型为正常 CP或其他 CP ;
配置 B : 每个物理资源块 PRB对中, 所述参考信号图案包含"个资 源单元参考信号 RE , "为小于 1 8的正整数。
在第二方面第二种可能的实现方式中, 结合第二方面第一种可能的 实现方式, 所述配置 B进一步包括:
" = 6 , 且所述 "个参考信号 RE在频域上间隔 5、 3或 1个子载波; 或者,
" = 8, 且所述 "个参考信号 RE在频域上间隔 2个子载波; 或者,
"=9, 且所述 "个参考信号 RE在频域上间隔 3个子载波; 或者,
"=4,且所述 "个参考信号 RE在频域上间隔 5或 2个子载波;或者,
« = 12, 且所述 "个参考信号 RE在频域上间隔 1个子载波。
在第二方面第三种可能的实现方式中, 结合第二方面第二种可能的 实现方式, 所述配置 B进一步包括:
所述参考信号图案中参考信号 RE的位置满足如下条件:
若参考信号 RE记为( 0, 表示频域索引, /表示时域索引; 当 "=6, 且所述 "个参考信号 RE在频域上间隔 5个子载波时:
mod2 = 0 and Af = 15 kHz mod 2 = 1 and Af = 15 kHz
Figure imgf000008_0001
Q≤k0≤5 , —5≤a0≤5, 0≤k0+a0≤5 ^ = (^,…^ 11'1^— 1. 或者, 当 " = 6, 且所述 "个参考信号 RE在频域上间隔 3个子载波时:
if ns modi = 0 and Af = 15 kHz if ns mod2 = 1 and Af = 15 kHz
Figure imgf000008_0002
Q≤k0≤3, — 3≤αθ≤3, 且 0≤ +αθ≤3; m = 0,1,...,3N™DL -1. 或者, 当 " = 6, 且所述 "个参考信号 RE在频域上间隔 1个子载波时: k = 2m + k0 , / = /0 if ns mod2 = 0 and Δ = 15 kHz , 0 < ^ < 1 , m = 0,l,...,6N«DL-l; 或者 当 "=8, 且所述 "个参考信号 RE在频域上间隔 2个子载波时:
k0 if /≠ /j and Af = 15 kHz if ns mod2 = 0 and Af = 15 kHz
Figure imgf000008_0003
+β!。 if / = and " = 15 kHz if ns mod2 = 1 and Af = 15 kHz
Q≤k0≤2 , - 2≤"0≤2, 且0≤ 0+"0≤2. m = 0,l,...,4N™DL-l. 或者, 当 " = 9, 且所述 "个参考信号 RE在频域上间隔 3个子载波时: modi = 0 and Af = 15 kHz mod 2 = 1 and Af = 15 kHz
Figure imgf000009_0001
Q≤ ≤3, — 3≤αθ≤3, 且 0≤ +αθ≤3; m = 0,1,...,3N™DL -1. 或者, 当 " = 4, 且所述 "个参考信号 RE在频域上间隔 5个子载波时:
if ns mod2 = 0 and Af = 15 kHz if ns mod2 = 1 and Af = 15 kHz
Figure imgf000009_0002
Q≤k0≤5 , —5≤a0≤5, 0≤k0+a0≤5 ^ = (^,…^ 11'1^— 1. 或者, 当 " = 4, 且所述 "个参考信号 RE在频域上间隔 2个子载波时: k = 3m + k0 , / = /0 if «s mod2 = 0 and Δ = 15 kHz , 0≤k0≤2 , m = 0,l,...,4N«DL-l. 或者, 当 "=12 , 且所述 "个参考信号 RE在频域上间隔 1个子载波时: if ns modi = 0 and Af = 15 kHz
Figure imgf000009_0003
if / = /[ and Af = 15 kHz if ns mod2 = 1 and Af = 15 kHz
0≤ ≤1, — 1≤"0≤1 , 0≤ 0+"0≤1, 二。, ,…^^^31'1^— 1. 其中, Δ^表示相邻子载波之间的频域间隔, 表示参考信号 RE位 于无线帧中时隙的编号, "S mGd2表示对 "s模 2操作, w表示参考符号的 编号, 和"。表示频域索引的偏置, 4和 表示参考信号 RE 位于时 隙 "s中 OFDM符号的编号, /≤ o nb-l, 1,
Figure imgf000009_0004
且 / /2 , iVRB ' 表示所述 MBSFN子帧上承载的 PMCH的传输带宽, 表示一个时隙中 OFDM符号的数目, 表示所述 PMCH在所述 MBSFN子帧 上的起始 OFDM符号的编号。 在第二方面第四种可能的实现方式中, 结合第二方面至第二方面第 三种可能的实现方式, 所述方法还包括:
所述 UE接收物理下行共享信道 PDSCH配置信息, 所述 PDSCH配置 信息用于指示所述 PDSCH在所述 MBSFN子帧上的传输带宽; 所述 UE根据所述 PDS CH配置信息, 确定所述 PDS CH在所述 MBSFN 子帧上的传输带宽。
在第二方面第五种可能的实现方式中, 结合第二方面至第二方面第 四种可能的实现方式, 所述方法还包括:
所述 UE接收所述 PMCH的正交频分复用 OFDM符号信息, 所述 OFDM 符号信息用于指示所述 PMCH在所述 MBSFN子帧上的起始 OFDM符号为所 述 MBS FN子帧的第一个 OFDM符号;
所述 UE根据所述 PMCH 的 OFDM符号信息, 确定所述 PMCH在所述 MBS FN子帧上的起始 OFDM符号。
在第二方面第六种可能的实现方式中, 结合第二方面至第二方面第 五种可能的实现方式, 所述方法还包括:
所述 UE 接收增强的物理下行控制信道 EPDCCH 配置信息, 所述 EPDCCH配置信息用于指示所述 EDPCCH在所述 MBS FN子帧上的传输带宽; 所述 UE根据所述 EPDCCH配置信息,确定所述 EPDCCH在所述 MBSFN 子帧上的传输带宽。
在第二方面第七种可能的实现方式中, 结合第二方面至第二方面第 六种可能的实现方式, 所述方法还包括:
所述 U E接收所述 P M C H的天线配置信息, 所述天线配置信息用于指 示所述 PMCH的天线传输方式为天线端口数大于 1的多天线传输方式; 所述 UE 居所述 PMCH的天线配置信息, 确定所述 PMCH的天线传 输方式。
在第二方面第八种可能的实现方式中, 结合第二方面第七种可能的 实现方式,所述多天线传输方式中,所述参考信号图案采用频分复用 FDM 方式或时分复用 TDM方式,或者通过正交码做码分的码分复用 CDM方式。
第三方面, 提供一种基站, 所述基站包括: 确定单元、 发送单元; 所述确定单元, 用于确定用于承载物理多播信道 PMCH 的多媒体广 播单频网络 MBS FN 子帧的子帧配置, 所述子帧配置包括: 循环前缀 CP 类型, 和 /或, 参考信号图案;
所述发送单元, 用于向用户设备 UE发送所述确定单元确定的所述 MBS FN配置信息, 所述 MBSFN配置信息用于指示所述 MBS FN子帧的子帧 配置;
其中, 所述 CP类型包括: 正常 CP、 扩展 CP或其他 CP, 所述其他 CP的长度不同于所述正常 CP和扩展 CP的长度。
在第三方面第一种可能的实现方式中, 结合第三方面, 所述 MBSFN 子帧的子帧配置包括配置 A、 B中的至少一种配置:
配置 A: 所述 CP类型为正常 CP或其他 CP;
配置 B: 每个物理资源块 PRB对中, 所述参考信号图案包含"个参 考信号资源单元 RE, "为小于 18的正整数。
在第三方面第二种可能的实现方式中, 结合第三方面第一种可能的 实现方式, 所述配置 B进一步包括:
"=6, 且所述 "个参考信号 RE在频域上间隔 5、 3或 1个子载波; 或者,
"=8, 且所述 "个参考信号 RE在频域上间隔 2个子载波; 或者,
"=9, 且所述 "个参考信号 RE在频域上间隔 3个子载波; 或者,
"=4,且所述 "个参考信号 RE在频域上间隔 5或 2个子载波;或者,
« = 12, 且所述 "个参考信号 RE在频域上间隔 1个子载波。
在第三方面第三种可能的实现方式中, 结合第三方面第二种可能的 实现方式, 所述配置 B进一步包括:
若参考信号 RE记为( 0, 表示频域索引, 表示时域索引; 当 "=6, 且所述 "个参考信号 RE在频域上间隔 5个子载波时:
mod2 = 0 and Af = 15 kHz mod 2 = 1 and Af = 15 kHz
Figure imgf000011_0001
Q≤k0≤5 , —5≤a0≤5, 0≤k0+a0≤5 ^ = 0,1 ..,2N CH'DL— 1. 或者, 当 " = 6, 且所述 "个参考信号 RE在频域上间隔 3个子载波时:
if ns modi = 0 and Af = 15 kHz if ns mod2 = 1 and Af = 15 kHz
Figure imgf000011_0002
Q≤k0≤3, — 3≤αθ≤3, 且 0≤ +αθ≤3; m = 0,1,...,3N™DL -1. 或者, 当 n = 6, 且所述 "个参考信号 RE在频域上间隔 1个子载波时: k = 2m + k0 , / = /0 if ns mod2 = 0 and Δ = 15 kHz , 0 < ^ < 1 , m = 0,l,...,6N«DL-l; 或者 当 " = 8, 且所述 "个参考信号 RE在频域上间隔 2个子载波时:
k0 if /≠ /j and Af = 15 kHz if ns mod2 = 0 and Δ" = 15 kHz
Figure imgf000012_0001
+ii!。 if / = and " = 15 kHz if ns mod2 = 1 and Af = 15 kHz
Q≤k0≤2 , - 2≤a0≤2, 且0≤^+"0≤2. m = 0,1,...,4N™DL -1. 或者, 当 " = 9, 且所述 "个参考信号 RE在频域上间隔 3个子载波时:
modi = 0 and Af = 15 kHz mod 2 = 1 and Af = 15 kHz
Figure imgf000012_0002
Q≤k0≤3, — 3≤αθ≤3, 且 0≤ +αθ≤3; m = 0,1,...,3N™DL -1. 或者, 当 " = 4, 且所述 "个参考信号 RE在频域上间隔 5个子载波时:
if ns mod2 = 0 and Af = 15 kHz if ns mod2 = 1 and Af = 15 kHz
Figure imgf000012_0003
Q≤k0≤5 , —5≤a0≤5, 0≤k0+a0≤5 ^ = 0,1 ..,2N CH'DL— 1. 或者, 当 " = 4, 且所述 "个参考信号 RE在频域上间隔 2个子载波时: k = 3m + k0 , / = /0 if «s mod2 = 0 and Δ = 15 kHz , 0≤k0≤2 , m = 0,l,...,4N«DL-l. 或者, 当 "=12 , 且所述 "个参考信号 RE在频域上间隔 1个子载波时: if ns modi = 0 and Af = 15 kHz if ns mod2 = 1 and Af = 15 kHz
Figure imgf000012_0004
0≤ ≤1, — 1≤"0≤1 , 0≤ 0+"0≤1, 二。, ,…^ ^101'1^— 1. 其中, Δ^表示相邻子载波之间的频域间隔, "s表示参考信号 RE位 于无线帧中时隙的编号, "S mGd2表示对 模 2操作, w表示参考符号的 编号, 和"。表示频域索引的偏置, 4和 表示参考信号 RE 位于时 隙 "s中 OFDM符号的编号, -1, 0≤/1≤JVs D y!nb-l^ 0≤/2≤N b— 1, 且 / / iVRB ' 表示所述 MBS FN子帧上承载的 PMCH的传输带宽, 表示一个时隙中 OFDM符号的数目, 表示所述 PMCH在所述 MBS FN子帧 上的起始 OFDM符号的编号。 在第三方面第四种可能的实现方式中, 结合第三方面至第三方面第 三种可能的实现方式,
所述发送单元, 还用于向所述 UE发送物理下行共享信道 PDSCH配 置信息, 所述 PDS CH配置信息用于指示所述 PDS CH在所述 MBS FN子帧上 的传输带宽。
在第三方面第五种可能的实现方式中, 结合第三方面至第三方面第 四种可能的实现方式,
所述发送单元, 还用于向所述 UE 发送所述 PMCH 的正交频分复用 OFDM符号信息, 所述 PMCH的 OFDM符号信息用于指示所述 PMCH在所述 MBS FN子帧上的起始 OFDM符号为所述 MBS FN子帧的第一个 OFDM符号。
在第三方面第六种可能的实现方式中, 结合第三方面至第三方面第 五种可能的实现方式,
所述发送单元, 还用于向所述 UE 发送增强的物理下行控制信道 EPDCCH 配置信息, 所述 EPDCCH 配置信息用于指示所述 EPDCCH在所述 MBS FN子帧上的传输带宽。
在第三方面第七种可能的实现方式中, 结合第三方面至第三方面第 六种可能的实现方式,
所述发送单元, 还用于向所述 UE发送所述 PMCH的天线配置信息, 所述天线配置信息用于指示所述 PMCH 的天线传输方式为天线端口数大 于 1的多天线传输方式。
在第三方面第八种可能的实现方式中, 结合第三方面第七种可能的 实现方式,所述多天线传输方式中,所述参考信号图案采用频分复用 FDM 方式或时分复用 TDM方式,或者通过正交码做码分的码分复用 CDM方式。
在第三方面第九种可能的实现方式中, 结合第三方面至第三方面第 八种可能的实现方式, 所述确定单元具体用于:
使用预设的 MBS FN子帧的子帧配置, 所述预设的 MBS FN子帧的子帧 配置基于所述基站的部署环境确定。
在第三方面第十种可能的实现方式中, 结合第三方面至第三方面第 八种可能的实现方式, 所述确定单元具体用于:
接收网络设备发送的第二 MBSFN配置信息, 并根据所述第二 MBSFN 配置信息确定所述 MBSFN子帧的子帧配置。
第四方面, 提供一种用户设备 UE, 所述 UE包括: 接收单元、 确定 单元;
所述接收单元, 用于接收多媒体广播单频网络 MBSFN配置信息, 其 中, 所述 MBSFN配置信息用于指示 载物理多播信道 PMCH的 MBSFN子 帧的子帧配置, 所述子帧配置包括: 循环前缀 CP类型、 和 /或, 参考信 号图案;
所述确定单元,用于根据所述接收单元接收的所述 MBSFN配置信息, 确定所述 MBSFN子帧的子帧配置;
其中, 所述 CP类型包括: 正常 CP、 扩展 CP或其他 CP, 所述其他 CP的长度不同于所述正常 CP和扩展 CP的长度。
在第四方面第一种可能的实现方式中, 结合第四方面, 所述 MBSFN 子帧的子帧配置包括配置 A、 B中的至少一种配置:
配置 A: 所述 CP类型为正常 CP或其他 CP;
配置 B: 每个物理资源块 PRB对中, 所述参考信号图案包含"个资 源单元参考信号 RE, "为小于 18的正整数。
在第四方面第二种可能的实现方式中, 结合第四方面第一种可能的 实现方式, 所述配置 B进一步包括:
"=6, 且所述 "个参考信号 RE在频域上间隔 5、 3或 1个子载波; 或者,
"=8, 且所述 "个参考信号 RE在频域上间隔 2个子载波; 或者, "=9, 且所述 "个参考信号 RE在频域上间隔 3个子载波; 或者, "=4,且所述 "个参考信号 RE在频域上间隔 5或 2个子载波;或者, « = 12, 且所述 "个参考信号 RE在频域上间隔 1个子载波。
在第四方面第三种可能的实现方式中, 结合第四方面第二种可能的 实现方式, 所述配置 B进一步包括:
所述参考信号图案中参考信号 RE的位置满足如下条件:
若参考信号 RE记为( 0, 表示频域索引, 表示时域索引; 当 "=6, 且所述 "个参考信号 RE在频域上间隔 5个子载波时: mod2 = 0 and Af = 15 kHz mod 2 = 1 and Af = 15 kHz
Figure imgf000015_0001
Q≤k0≤5 , — 5≤"0≤5, 0≤ +"0≤5, = 0,l ..,2N CH'DL— 1. 或者, 当 " = 6, 且所述 "个参考信号 RE在频域上间隔 3个子载波时: if ns modi = 0 and Af = 15 kHz if ns mod2 = 1 and Af = 15 kHz
Figure imgf000015_0002
Q≤k0≤3, — 3≤"θ≤3, 且 0≤ + "。≤3; m = 0,l,...,3N™DL-l. 或者 当 "=6, 且所述 "个参考信号 RE在频域上间隔 1个子载波时: k = 2m + k0 , / = /0 if ns mod2 = 0 and Δ = 15 kHz , 0 < ^0 < 1 , m = 0,l,...,6N«DL-l; 或者 当 "=8, 且所述 "个参考信号 RE在频域上间隔 2个子载波时: k0 if /≠ /j and Af = 15 kHz if ns mod2 = 0 and Af = 15 kHz
Figure imgf000015_0003
+ii!。 if / = and " = 15 kHz if ns mod2 = 1 and Af = 15 kHz
Q≤k0≤2 , - 2≤"0≤2, 且0≤ +"0≤2. m = 0,l,...,4N™DL-l. 或者 当 " = 9, 且所述 "个参考信号 RE在频域上间隔 3个子载波时: modi = 0 and Af = 15 kHz mod 2 = 1 and Af = 15 kHz
Figure imgf000015_0004
Q≤k0≤3, — 3≤"θ≤3, 且 0≤ + "。≤3; m = 0,l,...,3N™DL-l. 或者 当 "=4, 且所述 "个参考信号 RE在频域上间隔 5个子载波时: if ns mod2 = 0 and Af = 15 kHz if ns mod2 = 1 and Af = 15 kHz
Figure imgf000015_0005
Q≤k0≤5 , — 5≤"0≤5, 0≤ +"0≤5, = 0,l ..,2N CH'DL— 1. 或者, 当 " = 4, 且所述 "个参考信号 RE在频域上间隔 2个子载波时: k = 3m + k0 / = /0 if «s mod2 = 0 and Δ = 15 kHz 0≤k0≤2 m = 0,l,...,4N«DL-l. 或者, 当 " = 12, 且所述 "个参考信号 RE在频域上间隔 1个子载波时: if ns modi = 0 and Af = 15 kHz
Figure imgf000016_0001
if / = /[ and Af = 15 kHz if ns mod2 = 1 and Af = 15 kHz
0≤ ≤1, — 1≤"0≤1, 0≤ +"0≤l, = 0,l"..,6N CHDL— 1. 其中, Δ^表示相邻子载波之间的频域间隔, 表示参考信号 RE位 于无线帧中时隙的编号, "smGd2表示对 模 2操作, w表示参考符号的 编号, 和 "。表示频域索引的偏置, 、 A和 表示参考信号 RE 位于时 隙 中 OFDM符号的编号, /≤/ο¾-!? 0≤ ≤¾-!? 0≤/2≤N b— 1,
且 / / i\RB ' 表示所述 MBSFN子帧上承载的 PMCH的传输带宽, 表示一个时隙中 OFDM符号的数目, 表示所述 PMCH在所述 MBSFN子帧 上的起始 OFDM符号的编号。 在第四方面第四种可能的实现方式中, 结合第四方面至第四方面第 三种可能的实现方式,
所述接收单元, 还用于接收物理下行共享信道 PDSCH配置信息, 所 述 PDSCH配置信息用于指示所述 PDSCH在所述 MBSFN子帧上的传输带宽; 所述确定单元, 还用于根据所述接收单元接收的所述 PDSCH配置信 息, 确定所述 PDSCH在所述 MBSFN子帧上的传输带宽。
在第四方面第五种可能的实现方式中, 结合第四方面至第四方面第 四种可能的实现方式,
所述接收单元, 还用于接收所述 PMCH的正交频分复用 OFDM符号信 息, 所述 OFDM符号信息用于指示所述 PMCH在所述 MBSFN子帧上的起始 OFDM符号为所述 MBSFN子帧的第一个 OFDM符号; 所述确定单元, 还用于根据所述接收单元接收的所述 PMCH的 OFDM 符号信息, 确定所述 PMCH在所述 MBS FN子帧上的起始 OFDM符号。
在第四方面第六种可能的实现方式中, 结合第四方面至第四方面第 五种可能的实现方式,
所述接收单元, 还用于接收增强的物理下行控制信道 EPDCCH 配置 信息, 所述 EPDCCH配置信息用于指示所述 EDPCCH在所述 MBS FN子帧上 的传输带宽;
所述确定单元, 还用于根据所述接收单元接收的所述 EPDCCH 配置 信息, 确定所述 EPDCCH在所述 MBSFN子帧上的传输带宽。
在第四方面第七种可能的实现方式中, 结合第四方面至第四方面第 六种可能的实现方式,
所述接收单元, 还用于接收所述 PMCH 的天线配置信息, 所述天线 配置信息用于指示所述 PMCH 的天线传输方式为天线端口数大于 1 的多 天线传输方式;
所述确定单元, 还用于根据所述接收单元接收的所述 PMCH 的天线 配置信息, 确定所述 PMCH的天线传输方式。
在第四方面第八种可能的实现方式中, 结合第四方面第七种可能的 实现方式,所述多天线传输方式中,所述参考信号图案采用频分复用 FDM 方式或时分复用 TDM方式,或者通过正交码做码分的码分复用 CDM方式。
基于本发明实施例提供的 MBSFN配置的方法及设备, 因为基站可以 确定用于 7 载 PMCH 的 MBS FN子帧的子帧配置, 所述子帧配置包括: CP 类型, 和 /或, 参考信号图案, 然后所述基站向 UE发送 MBS FN配置信息, 所述 MBS FN配置信息用于指示所述 MBS FN子帧的子帧配置, 因此可以实 现 MBS FN子帧的灵活配置; 并且由于所述 MBS FN子帧配置中的 CP类型 可以包括: 正常 CP、 扩展 CP或其他 CP , 所述其他 CP的长度不同于所 述正常 CP和扩展 CP的长度, 因此可以按需选择合理的子帧配置, 进一 步的可以减小开销, 提高***的无线资源利用率。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将 对实施例或现有技术描述中所需要使用的附图作简单地介绍, 显而易见 地, 下面描述中的附图仅仅是本发明的一些实施例, 对于本领域普通技 术人员来讲, 在不付出创造性劳动的前提下, 还可以根据这些附图获得 其他的附图。
图 1 (a)为本发明实施例提供的一种 CP类型为扩展 CP时 1个 PRB对 的结构示意图;
图 1 (b)为本发明实施例提供的一种 CP类型为正常 CP时 1个 PRB对 的结构示意图;
图 2为本发明实施例提供的一种 MBSFN配置的方法流程示意图; 图 3为本发明实施例提供的一种现有技术的 MBSFN子帧的参考信号 图案;
图 4为本发明实施例提供的一种 MBSFN子帧的参考信号图案一; 图 5为本发明实施例提供的一种 MBSFN子帧的参考信号图案二; 图 6为本发明实施例提供的一种 MBSFN子帧的参考信号图案三; 图 7为本发明实施例提供的一种 MBSFN子帧的参考信号图案四; 图 8为本发明实施例提供的一种 MBSFN子帧的参考信号图案五; 图 9为本发明实施例提供的一种 MBSFN子帧的参考信号图案六; 图 10为本发明实施例提供的一种 MBSFN子帧的参考信号图案七; 图 11为本发明实施例提供的一种 MBSFN子帧的参考信号图案八; 图 12为本发明实施例提供的一种 MBSFN子帧的参考信号图案九; 图 13为本发明实施例提供的一种 MBSFN子帧的参考信号图案十; 图 14为本发明实施例提供的一种 MBSFN子帧的参考信号图案十一; 图 15为本发明实施例提供的一种 MBSFN子帧的参考信号图案十二; 图 16为本发明实施例提供的一种 MBSFN子帧的参考信号图案十三; 图 17为本发明实施例提供的一种 MBSFN子帧的参考信号图案十四; 图 18为本发明实施例提供的一种 MBSFN子帧的参考信号图案十五; 图 19为本发明实施例提供的一种 MBSFN子帧的参考信号图案十六; 图 20为本发明实施例提供的一种 MBSFN子帧的参考信号图案十七; 图 21为本发明实施例提供的一种 MBSFN子帧的参考信号图案十八; 图 2 2为本发明实施例提供的一种 MBSFN子帧的参考信号图案十九; 图 2 3为本发明实施例提供的一种 MBSFN子帧的参考信号图案二十; 图 24为本发明实施例提供的一种 MBSFN子帧的参考信号图案二十 图 25为本发明实施例提供的一种 MBSFN子帧的参考信号图案二十 图 26为本发明实施例提供的一种 MBSFN子帧的参考信号图案二十 图 27为本发明实施例提供的一种 MBSFN子帧的参考信号图案二十 四;
图 28为本发明实施例提供的一种 MBSFN子帧的参考信号图案二十 五;
图 29为本发明实施例提供的一种 MBSFN子帧的参考信号图案二十 图 30为本发明实施例提供的一种 MBSFN子帧的参考信号图案二十 七;
图 31 为本发明实施例提供的一种 MBSFN子帧的参考信号图案二十 八;
图 32为本发明实施例提供的一种 MBSFN子帧的参考信号图案二十 九;
图 3 3为本发明实施例提供的一种 MBSFN子帧的参考信号图案三十; 图 34为本发明实施例提供的一种 MBSFN子帧的参考信号图案三十 图 35为本发明实施例提供的一种 MBSFN子帧的参考信号图案三十 图 36为本发明实施例提供的一种 MBSFN子帧的参考信号图案三十 图 37为本发明实施例提供的一种 MBSFN子帧的参考信号图案三十 四; 图 38为本发明实施例提供的一种 MBSFN子帧的参考信号图案三十 五;
图 39为本发明实施例提供的一种 MBSFN子帧的参考信号图案三十 图 4 0为本发明实施例提供的一种 MBS FN配置的方法流程示意图; 图 4 1为本发明实施例提供的一种基站结构示意图;
图 42为本发明实施例提供的一种 UE结构示意图;
图 4 3为本发明实施例提供的一种基站结构示意图;
图 44为本发明实施例提供的一种 UE结构示意图。
具体实施方式
下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案 进行清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实 施例, 而不是全部的实施例。 基于本发明中的实施例, 本领域普通技术 人员在没有做出创造性劳动前提下所获得的所有其他实施例, 都属于本 发明保护的范围。
为了便于清楚描述本发明实施例的技术方案,在本发明的实施 例中, 采用了 "第一"、 "第二" 等字样对功能和作用基本相同的相 同项或相似项进行区分,本领域技术人员可以理解"第一"、 "第二" 等字样并对不对数量和执行次序进行限定。
实施例一、
本发明实施例提供一种 MBS FN配置的方法, 具体如图 2所示, 所述 方法包括:
2 01、 基站确定用于 7 载 PMCH的 MBSFN子帧的子帧配置, 所述子帧 配置包括: CP类型、 和 /或, 参考信号图案。
其中, 所述 CP类型包括: 正常 CP、 扩展 CP或其他 CP , 所述其他 CP的长度不同于所述正常 CP和扩展 CP的长度。
具体的, 本发明实施例提供的 MBS FN配置的方法中, 基站首先确定 用于 7 载 PMCH 的 MBS FN子帧的子帧配置, 具体可以通过下述两种方式 实现: 第一种可能的实现方式中, 所述基站使用预设的 MBSFN子帧的子帧 配置,所述预设的 MBSFN子帧的子帧配置基于所述基站的部署环境确定。
需要说明的是, 所述基站的部署环境可能包括: 所述基站的部署地 点、 测量得到的信道表征参数等, 本发明实施例对此不作具体限定。 仅 说明当所述基站在确定的部署环境中时, 所述基站可以使用预设的 MBSFN子帧的子帧配置,该子帧配置是基于所述基站的部署环境确定的。
示例性的, 当基站部署在热点 ( Hotspot ) 场景时, 可以使用预设 的针对热点场景的 MBSFN子帧的子帧配置, 其中热点是指在公共场所提 供无线局域网接入网络服务的地点, 如机场、 大型展览会等, 本发明实 施例对此不作具体限定。 其中, 针对热点场景的子帧配置将在以下部分 进行阐述, 此处暂不描述。
第二种可能的实现方式中, 所述基站接收网络设备发送的第二 MBSFN配置信息, 并 居所述第二 MBSFN配置信息确定所述 MBSFN子帧 的子帧配置。
需要说明的是, 所述网络设备可以包括: 多小区 /多播协作实体 (Multicell/Multicast Coordination Entity, MCE)、 网关设备等, 本 发明实施例对此不作具体限定。
具体的, MCE 可以通过 M2 接口向基站发送多媒体广播多播业务 (Multimedia Broadcast multicast service, MBMS ) 酉己置请求, 所述 MBMS配置请求中包含第二 MBSFN配置信息, 所述基站接收到 MBMS配置 请求后, 从所述 MBMS配置请求中解出第二 MBSFN配置信息, 进而可以 根据所述第二配置信息确定所述 MBSFN子帧的子帧配置。 当然, 所述基 站在 居所述 M B S F N子帧的子帧配置信息, 完成所述 M B S F N子帧的子帧 配置之后, 还可能向 MCE发送 MBMS 配置请求响应, 本发明实施例对此 不作具体限定。 需要说明的是,本发明实施例中,所述第二子帧配置包括: CP类型, 和 /或, 参考信号图案, 当然, 所述第二子帧配置中还可能包含 PMCH物 理层配置信息, 本发明实施例对此不作具体限定。
可选的, 所述基站确定用于 7 载 PMCH的 MBSFN子帧的子帧配置时, 也可能结合第一种可能的实现方式以及第二种可能的实现方式, 即所述 基站可以使用预设的 MBSFN子帧的子帧配置, 在接收网络设备发送的第 二 MBSFN配置信息后, 更新所述预设的 MBSFN子帧的子帧配置, 本发明 实施例对此不作具体限定。
其中, 网络设备中的第二 MBSFN配置信息可能是所述网络设备根据 UE实时或周期性检测的信道质量参数确定的,所述信道质量参数可以包 括参考信号接收功率 ( Reference Signal Received Power , RSRP )、 参考信号接收质量 ( Reference Signal Received Quality, RSRQ )、 信 道质量指示 ( Channel Quality Indicator, CQI )、 信道时延特征、 业 务质量要求等, 本发明实施例对此不作具体限定。
具体的, 本发明实施例中, MBSFN子帧的子帧配置中的 CP类型可以 为标准协议中规定的扩展 CP , 也可以为正常 CP或其他 CP, 本发明实 施例对此不作具体限定。 其中, 所述其他 CP的长度不同于所述正常 CP 和扩展 CP的长度。
202、 基站向 UE发送 MBSFN配置信息, 所述 MBSFN配置信息用于指 示所述 MBSFN子帧的子帧配置。
具体的, 本发明实施例中, 在基站确定用于 载 PMCH 的 MBSFN子 帧的子帧类型配置之后, 将向 UE发送 MBSFN配置信息, 完成 MBSFN子 帧的配置。
其中, 所述 MBSFN 配置信息可以携带在无线资源控制协议 (Radio Resource Control, RRC) 信令中, 承载在***信息块类型 13 ( System Information Block Type 13, SIB13 ) 中。
示例性的, CP类型的信令承载方式可以如下:
基站在进行信令配置时,可以选择向 UE发送带有所述 CP类型的 RRC 信令, 承载在 SIB13中。
示例性的, 参考信号图案的信令承载方式可以如下:
1 ) 如果每个 MBSFN 区域都采用相同的参考信号图案, 有如下两种 方式可以实现:
a、 在 SIB13 中增加一个参考信号图案信令, 与 MBSFN 区域信息列 表 ( MBSFN - Area Information List, mbsf n-Arealnf oLi s t ) 并歹l; 或者,
b、 在 SIB13的每个 mbsfn-ArealnfoList 中都增加一个参考信号图 案信令。
需要说明的是, 一个基站可能处于多个 MBSFN 区域中, 获取多个 MBSFN区域信道配置参数,通过一个 RRC信令中的 S IB13进行承载, S IB13 中包含多个 mbsfn-ArealnfoList, 还可能包含多个信令。 显然, 上述方 式 a比方式 b的参考信号信令开销更小。
2 ) 如果每个 MBSFN 区域采用不相同的参考信号图案, 通过如下方 式可以实现:
在 SIB13 的 mbsfn-ArealnfoList 中增加一个参考信号图案信令, 与 MBSFN区域 ID相对应。
本发明实施例提供的 MBSFN配置的方法中, 基站可以确定用于承载 PMCH的 MBSFN子帧的子帧配置, 所述子帧配置包括: CP类型, 和 /或, 参考信号图案, 然后所述基站向 UE发送 MBSFN配置信息, 所述 MBSFN 配置信息用于指示所述 MBSFN子帧的子帧配置, 因此可以实现 MBSFN子 帧的灵活配置; 并且由于所述 MBSFN子帧配置中的 CP类型可以包括: 正常 CP、 扩展 CP或其他 CP, 所述其他 CP的长度不同于所述正常 CP和 扩展 CP 的长度, 因此可以按需选择合理的子帧配置, 进一步的可以减 小开销, 提高***的无线资源利用率。
进一步的, 所述 MBSFN子帧的子帧配置可以包括配置 A、 B 中的至 少一种配置:
配置 A: 所述 CP类型为正常 CP或其他 CP;
配置 B: 每个物理资源块 PRB对中, 所述参考信号图案包含"个参 考信号资源单元 RE, "为小于 18的正整数。
示例性的, 现有技术中, MBSFN参考信号图案如图 3所示, 其中, 参考信号 RE在频域上间隔 1个子载波, 时域上间隔 3个 OFDM符号, 共 包含 18个参考信号 RE。 然而, 当基站部署在热点场景时, 由于热点场 景相对于其它场景存在多径传输信道时延小的特点, 这将导致热点场景 下的 PMCH的相干带宽较大, 进而参考信号 RE多跨子载波对信道估计影 响不大; 并且, 由于热点场景相对于其它场景存在移动速度低的特点, 这将导致热点场景下的 PMCH 的相干时间较大, 进而参考信号 RE 多跨 OFDM符号对信道估计影响不大。 综上, 若仍采用图 3所示的参考信号图 案, 将导致不必要的资源浪费, 降低了资源的利用率。 因此针对热点场 景的 MBSFN子帧的子帧配置中, CP长度可以设计为正常 CP或者 CP长度 小于正常 CP长度的其他 CP, 和 /或, 每个 PRB对中, 所述参考信号图案 包含"个 RE, "为小于 18的正整数, 这样将减小开销, 提高***的无线 资源利用率。
需要说明的是, 在图 3所示的参考信号图案中, 黑色填充模块为参 考信号 RE的位置, 上部虚线和下部虚线均表征 PMCH带宽资源上的其它 PRB对资源对应的参考信号图案的省略, 后续参考信号图案中, 黑色填 充模块和上部虚线、 下部虚线的表征意义与图 3相同, 在此进行统一说 明, 以下将不再——赘述。
需要说明的是, 当所述子帧配置满足条件 A、 B 中的至少一种配置 时, 若所述子帧配置满足配置 A, 则 1个 PRB对上的参考信号 RE个数可 以为 18, 也可以为配置 B中的 n, 本发明实施例对此不作具体限定。
进一步的, 所述配置 B还可以包括:
"=6, 且所述 "个参考信号 RE在频域上间隔 5、 3或 1个子载波; 或者,
"=8, 且所述 "个参考信号 RE在频域上间隔 2个子载波; 或者, "=9, 且所述 "个参考信号 RE在频域上间隔 3个子载波; 或者, "=4,且所述 "个参考信号 RE在频域上间隔 5或 2个子载波;或者, « = 12, 且所述 "个参考信号 RE在频域上间隔 1个子载波。
特别的, 下面将结合上述配置 B给出本发明实施例提供的几种可能 的参考信号图案, 为了描述简洁, 首先给出相关符号的统一定义如下:
Δ,表示相邻子载波之间的频域间隔, 表示 RE位于无线帧中时隙的编 号, "smQd2表示对 模 2操作, w表示参考符号的编号, 和"。表示频 域索引的偏置, Ζ。、 Ζι和 2表示 RE 位于时隙 "s中 OFDM 符号的编号,
^≤ 0≤¾-1, 0≤/1<Ns Di-l? 0≤/2≤Ns D - 1, 且 / A^MCH'DL表示
所述 MBSFN子帧上承载的 PMCH的传输带宽, 表示一个时隙中 OFDM 符号的数目, 表示所述 PMCH在所述 MBSFN子帧上的起始 OFDM符号的 编号。
若参考信号 RE记为( 0, 表示频域索引, /表示时域索引: 则当 "=6, 且所述 "个参考信号 RE在频域上间隔 5个子载波时: ί 6m + k0 if /≠ /j and Δ/ = 15 kHz ί /0 if ns modi = 0 and Af = 15 kHz
[6m + k0+a0 if / = /[ and Af = 15 kHz I /j,/2 if ns mod 2 = 1 and Af = 15 kHz 其中, PMCH'DL
0≤ ^:。≤5, -5 < a0 < 5 , 0 < L + a0 < 5 , m = 0,1,...,2N, RB
DL
若所述 CP类型为扩展 CP, "symb=6 , 则:
2 if ns mod 2 = OandA/ =15 kHz
4 if ns mod 2 1 and Af -- 15 kHz
示例性的, 当 ^ =0 αο = 3 [0, 时, MBSFN 子帧上 PMCH可能的 -考信号图案如图 4所示。
^ j 2 if n mod 2 = OandA/ =15 kHz
示例性的, 当 =1 ο = 3 1。,4 if ηΆ mod 2 1 and Af -- 15 kHz时, MBSFN 子帧上 PMCH可能的 -考信号图案如图 5所示。
^ j 2 if n mod 2 = OandA/ =15 kHz
示例性的, 当 =3 ο = 0 θ,4 if ns mod 2 1 and Af -- 15 kHz时, MBSFN 子帧上 PMCH可能的 -考信号图案如图 6所示。
2 if ns mod 2 = OandA/ =15 kHz
-- 15 kHz
示例性的, 当 2, "o = o 0,4 if n mod 2 1 and Af 时, MBSFN 子帧上 PMCH可能的 -考信号图案如图 7所示。 当然, 所列的参考信号图案中的参考信号 RE 可进行时频域上的循 环移位, 或者, 根据上述位置关系表达式中 、 "。、 z的取值情况, 还可 能存在其它组合对应的参考信号图案, 本发明实施例在此不再——列 举。
DL
N,
若所述 CP类型为正常 CP, Vsymb = 7 I if ns mod 2 ^OandA/ =15 kHz 示例性的, 当 = 1 and Af -- :15 kHz
=0, "。 = 3, I0'5 if^mod2 时, MBSFN
示例性的, 当 。 =1 , "o = 3
Figure imgf000026_0001
时, MBSFN 子帧上 PMCH可能的. 考信号图案如图 9所示。
=15 kHz
示例性的, 当 :3 "0 = o
Figure imgf000026_0002
-- :15 kHz时, MBSFN 子帧上 PMCH可能的. 考信号图案如图 10所示 if ns mod2 = 0 and Af = 15 kHz
2 a0 if ns mod2 = 1 and Af = 15 kHz
示例性的, 当
Figure imgf000026_0003
时, MBSFN 子帧上 PMCH可能的 -考信号图案如图 11所示。 当然, 所列的参考信号图案中的参考信号 RE 可进行时频域上的循 环移位, 或者, 根据上述位置关系表达式中 、 "。、 z的取值情况, 该情 况下还可能存在其它组合对应的参考信号图案, 本发明实施例在此不再 ——列举。
当 n = 6, 且所述《个参考信号 RE在频域上间隔 3个子载波时: k0 if /≠ /j and Af = \5 kHz if ns modi = 0 and Af = 15 kHz
Figure imgf000026_0004
+ a0 if / = /, and Af = 15 kHz if n mod 2 = 1 and Af = 15 kHz 其中, PMCH'DL
0≤ ≤3, -3 < a0 < 3 , JL 0 < ^0 + a0 < 3 ; m = 0,1,...,3N, RB
DL
若所述 类型 N
CP 为扩展 CP, symb=6 , 则:
示例性的, 当 =3, "。=_2,
Figure imgf000026_0005
时, MBSFN 子帧上 PMCH可能的参考信号图案如图 12所示 ι |2 if ns modi = 0 and Af = 15 kHz
示例性的, 当 = 0, "。 = 2, I2 if"smod2 = landA/ = 15kHz时, MBSFN 子帧上 PMCH可能的参考信号图案如图 13所示
2 if ns mod2 = 0 and Af - :15 kHz
2 if ns modi = 1 and Af - 15 kHz
示例性的, 当 。 时, MBSFN 子帧上 PMCH可能的- 考信号图案如图 14所示 if ns mod 2 = 0 and Af :15 kHz
示例性的, 当 0, "o = o
Figure imgf000027_0001
if t mod 2 = 1 and Af 15 kHz时, MBSFN 子帧上 PMCH可能的 .考信号图案如图 15所示。 当然, 所列的参考信号图案中的参考信号 RE 可进行时频域上的循 环移位, 或者, 根据上述位置关系表达式中 、 "。、 z的取值情况, 该情 况下还可能存在其它组合对应的参考信号图案, 本发明实施例在此不再 ——列举。
DL
N,
若所述 CP类型为正常 CP, Vsymb = 7
[3 if n mod 2 OandA/: :15 kHz
示例性的, 当 I3 = 1 and Af -- 15 kHz
=1, "。 = 2, 时, MBSFN
[3 if ns mod 2 -- OandA/: :15 kHz
示例性的, 当 =1, "o = l, / 时, MBSFN if ns mod 2 = 1 and Af -- 15 kHz 子帧上 PMCH可能的; .考信号图案如图 17所示
[3 if ns mod 2 -- OandA/: :15 kHz
if ns mod 2 = 1 and Af -- 15 kHz
示例性的, 当 1, "o = o, 时, MBSFN 子帧上 PMCH可能的 考信号图案如图 18所示。 当然, 所列的参考信号图案中的参考信号 RE 可进行时频域上的循 环移位, 或者, 根据上述位置关系表达式中 、 "。、 z的取值情况, 该情 况下还可能存在其它组合对应的参考信号图案, 本发明实施例在此不再 ——列举。
当 n = 6, 且所述《个参考信号 RE在频域上间隔 1个子载波时: k = 2m + k0 / = /0 if ns modi = 0 and Af = 15 kHz 其 中 0< k < 1 m = 0,l,...,6N™DL-K 若所述 CP类型为扩展 CP, Vsymb = 6, 贝 'J: 示例性的, 当 =0, Z。 = 5时, MBSFN子帧上 PMCH可能的参考信号图 案如图 19所示。
当然, 所列的参考信号图案中的参考信号 RE 可进行时频域上的循 环移位, 或者, 根据上述位置关系表达式中 、 Z。的取值情况, 该情况 下还可能存在其它组合对应的参考信号图案, 本发明实施例在此不再一 一列举。 若所述 CP类型为正常 CP, Vsymb = 7贝' J: 示例性的, 当^ ^O, Z。 = 6时, MBSFN子帧上 PMCH可能的参考信号图 案如图 20所示。
当然, 所列的参考信号图案中的参考信号 RE 可进行时频域上的循 环移位, 或者, 根据上述位置关系表达式中 、 Z。的取值情况, 该情况 下还可能存在其它组合对应的参考信号图案, 本发明实施例在此不再一 一列举。
当 " = 8, 且所述《个参考信号 RE在频域上间隔 2个子载波时: k0 if /≠ /j and Af = 15 kHz if ns mod2 = 0 and Δ" = 15 kHz
Figure imgf000028_0001
+ii!。 if / = and " = 15 kHz if ns mod2 = 1 and Af = 15 kHz 其中, 0≤ ≤2, -2<a0<2, 且 0≤ ^ + "0≤2; m = 0,1,...,4N™DL -10 若所述 CP类型为扩展 CP, Vsymb = 6, 贝 'J:
I |2 if ns modi = 0 and Af 45 kHz
示例性的, 当^ ^ = 1, αο = 0, i2 if«s mod2 = landA/ 15 kHz时, MBSFN 子帧上 PMCH可能的参考信号图案如图 21所示。
, |3 if ns modi = 0 and Af = 15 kHz
示例性的, 当 =0, "。 = 1, "I3 if"smod2 = landA/ = 15kHz时, MBSFN 子帧上 PMCH可能的参考信号图案如图 22所示。 当然, 所列的参考信号图案中的参考信号 RE 可进行时频域上的循 环移位, 或者, 根据上述位置关系表达式中 、 "。、 z的取值情况, 该情 况下还可能存在其它组合对应的参考信号图案, 本发明实施例在此不再 ——列举。
DL
N.
若所述 CP类型为正常 CP, Vsymb = 7
I |3 if ns mod 2 0andA/ = 15kHz
示例性的, 当 =1, α = 0, i3 if"smod2 landA/ = 15kHz时, MBSFN 子帧上 PMCH可能的参考信号图案如图 23所示
I |3 if n& mod 2 0andA/ = 15kHz
示例性的, 当 。 landA/ = 15kHz
=0, "。 = 0, I3 11^2 时, MBSFN 子帧上 PMCH可能的参考信号图案如图 24所示。 当然, 所列的参考信号图案中的参考信号 RE 可进行时频域上的循 环移位, 或者, 根据上述位置关系表达式中 、 "。、 Z的取值情况, 该情 况下还可能存在其它组合对应的参考信号图案, 本发明实施例在此不再 ——列举。
当„ = 9, 且所述《个参考信号 RE在频域上间隔 3个子载波时: k0 if /≠ /j and Af = 15 kHz f /0 if ns mod2 = 0 and Δ/ = 15 kHz
Figure imgf000029_0001
+ a0 if / = /j and Af = 15 kHz [/j,/2 if ns mod 2 = 1 and Af = 15 kHz 其中, 0≤ ≤3, — 3≤"o≤3, 且 PMCH'DL
0≤ + "o≤3; m = 0,l,...,3N] RB
DL
若所述 CP类型为扩展 CP, "symb=6, 则:
I if ns mod 2 0andA/ = 15kHz
示例性的, 当^ = 0, αο = 0, I0'4 if"s m。d2 :landA/ = 15kHz时, MBSFN
示例性的, 当 。 = 0, "。 = 2,
Figure imgf000029_0002
时, MBSFN 子帧上 PMCH可能的参考信号图案如图 26所示。 当然, 所列的参考信号图案中的参考信号 RE 可进行时频域上的循 环移位, 或者, 根据上述位置关系表达式中 、 "。、 z的取值情况, 该情 况下还可能存在其它组合对应的参考信号图案, 本发明实施例在此不再 ——列举。
DL
N.
若所述 CP类型为正常 CP, Vsymb = 7贝' J:
=15 kHz
示例性的, 当 Q a0 -- :15 kHz
Figure imgf000030_0001
时, MBSFN 子帧上 PMCH可能的 -考信号图案如图 27所示
=15 kHz
Figure imgf000030_0002
:15 kHz
示例性的, 当 2 "0 = o -- 时, MBSFN 子帧上 PMCH可能的 考信号图案如图 28所示 ε
^ ί 2 if ns mod 2: ^OandA/ =15 kHz
0, 0,5 if nc mod 2 = 1 and Af -- :15 kHz
示例性的, 当 "o = 2, 时, MBSFN 子帧上 PMCH可能的 -考信号图案如图 29所示。 当然, 所列的参考信号图案中的参考信号 RE 可进行时频域上的循 环移位, 或者, 根据上述位置关系表达式中 、 "。、 z的取值情况, 该情 况下还可能存在其它组合对应的参考信号图案, 本发明实施例在此不再 ——列举。
当《 = 4, 且所述《个参考信号 RE在频域上间隔 5个子载波时: k0 if /≠ /j and Af = 15 kHz [/0 if ns mod2 = 0 and Δ/ = 15 kHz
Figure imgf000030_0003
+ a0 if / = /j and Af = 15 kHz if ns modi = 1 and Af = 15 kHz 其中, PMCH'DL
0≤ ≤5, -5 < a0 < 5 , 0 < ^0 + a0 < 5 , m = 0,1,...,2N, RB
DL
若所述 CP类型为扩展 CP, ^ = 6, 则: if ns modi = 0 and Af = 15 kHz
示例性的, 当 = 3, "。 = 0,
Figure imgf000030_0004
if"smod2 = landA/ = 15kHz时, MBSFN 子帧上 PMCH可能的参考信号图案如图 30所示
I |3 if ηΆ mod 2 = :0andA/ = 15kHz
示例性的, 当 。 = landA/ = 15kHz
=3, "。 = 0, I3 ifw^od^ 时, MBSFN 子帧上 PMCH可能的参考信号图案如图 31所示, 当然, 所列的参考信号图案中的参考信号 RE 可进行时频域上的循 环移位, 或者, 根据上述位置关系表达式中 、 "。、 Z的取值情况, 该情 况下还可能存在其它组合对应的参考信号图案: 本发明实施例在此不再 ——列举。
DL
若所述 CP类型为正常 CP, = 7则
I |3 if ns mod 2: :0andA/ = 15kHz
示例性的, 当 。 = landA/ = 15kHz
=3, "。 = 0, I3 ifw^od2 时, MBSFN 子帧上 PMCH可能的参考信号图案如图 32所示
1 |3 if "s mod 2 = 0andA/ = 15kHz
示例性的, 当 。 = [3 if ns mod 2: landA/ = 15kHz
2, α = ο, 时, MBSFN 子帧上 PMCH可能的参考信号图案如图 33所示 当然, 所列的参考信号图案中的参考信号 RE 可进行时频域上的循 环移位, 或者, 根据上述位置关系表达式中 、 "。、 z的取值情况, 该情 况下还可能存在其它组合对应的参考信号图案 本发明实施例在此不再 ——列举。
当 n = 4, 且所述《个参考信号 RE在频域上间隔 2个子载波时: k = 3m + k0 / = /0 if ns modi = 0 and Af = 15 kHz 其中, 'PMCH'DL
Q≤k0≤2, m = 0,l,...,4N RB
DL
若所述 CP类型为扩展 CP, ^ = 6, j^ : 示例性的, 当^ ¾ = 1 , Z。 = 5时, MBSFN子帧上 PMCH可能的参考信号图 案如图 34所示。
当然, 所列的参考信号图案中的参考信号 RE 可进行时频域上的循 环移位, 或者, 根据上述位置关系表达式中 、 Z。的取值情况, 该情况 下还可能存在其它组合对应的参考信号图案, 本发明实施例在此不再一 一列举。 若所述 CP类型为正常 CP, Vsymb = 7贝' J : 示例性的, 当 =1, Z。 = 6时, MBSFN子帧上 PMCH可能的参考信号图 案如图 35所示。
当然, 所列的参考信号图案中的参考信号 RE 可进行时频域上的循 环移位, 或者, 根据上述位置关系表达式中 、 Z。的取值情况, 该情况 下还可能存在其它组合对应的参考信号图案, 本发明实施例在此不再一 一列举。
当《 = 12 , 且所述《个参考信号 RE在频域上间隔 1个子载波时:
if /≠ /; and f = 15 kHz , |/0 if ns mod2 = 0 and Af = 15 kHz
Figure imgf000032_0001
if / = /j and Af = 15 kHz /j if ns mod2 = 1 and Af = 15 kHz 其中, 0≤^≤1, — l≤"o≤l , 0 < ^0 + a0 < 1 , m = 0,l,...,6N™DL -l o 若所述 CP类型为扩展 CP, Vsymb = 6, 贝 'J :
示例性的, 当 = 0, "。 = 0,
Figure imgf000032_0002
MBSFN
示例性的, 当 =0, "。 = 1,
Figure imgf000032_0003
MBSFN 子帧上 PMCH可能的参考信号图案如图 37所示。 当然, 所列的参考信号图案中的参考信号 RE 可进行时频域上的循 环移位, 或者, 根据上述位置关系表达式中 、 "。、 Z的取值情况, 还可 能存在其它组合对应的参考信号图案, 本发明实施例在此不再——列 举。 若所述 CP类型为正常 CP, Vsymb = 7贝' J : , |3 if ns mod2 = 0 and Af = 15 kHz 示例性的, 当 。 = 0 , "。 = 0 , i3 if ¾ mod2 = 1 and Δ/ = 15 kHz ^ ^ MBSFN 子帧上 PMCH可能的 ^ 考信号图案如图 38所示。 ι |3 if ns modi = 0 and Af = 15 kHz
示例性的, 当 = 0 , "。 = 1 , "I3 if "s mod2 = l and A/ = 15 kHz时, MB S F N 子帧上 PMCH可能的参考信号图案如图 39所示。 当然, 所列的参考信号图案中的参考信号 RE 可进行时频域上的循 环移位, 或者, 根据上述位置关系表达式中 、 "。、 Z的取值情况, 该情 况下还可能存在其它组合对应的参考信号图案, 本发明实施例在此不再 ——列举。
需要说明的是, 本发明实施例针对不同的参考信号 RE 个数分别示 例性的提供了几种对应的参考信号图案。其中,在满足信道时延条件下, CP长度越小, 资源利用率越高 (例如图 1 1比图 7的资源利用率高); 在 CP长度相同时, 对于相同的参考信号 RE个数, 可能对应不同的参考信 号图案, 而不同的参考信号图案可能具备不同的有效效果。
示例性的, 参考信号 RE 位于不同子载波可以带来信道估计的频率 分集增益 (例如图 9 比图 1 0的频率分集增益大), 参考信号 RE位于不 同的 OFDM符号可以带来信道估计的时间增益 (例如图 1 0比图 1 8的时 间分集增益大), 参考信号 RE位于同一 OFDM符号可能减小参考信号信 令的开销以及 UE检测的复杂度 (例如图 1 8 )。
其中, 频率分集增益与时间分集增益的大小一般根据具体信道状况 及场景确定, 本发明实施例对此不作具体限定。
进一步的,本发明实施例提供的一种 MBSFN配置的方法中,还包括: 所述基站向所述 UE发送 PDSCH配置信息, 所述 PDSCH配置信息用 于指示所述 PDSCH在所述 MBSFN子帧上的传输带宽。
具体的, 如背景技术中所述, 目前的标准协议中不允许 PMCH 和 PDSCH的频分复用, 但是允许 PMCH和 PDSCH时分复用, 即某些特定子帧 可被设计为 MBSFN子帧, 该 MBSFN子帧可用于承载 PMCH。 本发明实施例 中, 基站还在所述 MBSFN子帧上发送 PDSCH配置信息, 所述 PDSCH配置 信息用于指示所述 PDSCH在所述 MBSFN子帧上的传输带宽, 即所述承载 PMCH的 MBSFN子帧上可以承载 PDSCH, 实现所述 PDSCH与所述 PMCH之 间的频分复用, 因此提高了资源的灵活调度。
其中, 所述 PDSCH配置信息可以携带在 RRC信令中, 承载在 SIB13 中。 示例性的, 基站在进行信令配置时, 可以选择向 UE发送带有 PDSCH 传输带宽资源位置的 RRC信令, 承载在 SIB13中。
进一步的,本发明实施例提供的一种 MBSFN配置的方法中,还包括: 所述基站向所述 UE发送所述 PMCH的 OFDM符号信息, 所述 PMCH的 OFDM符号信息用于指示所述 PMCH在所述 MBSFN子帧上的起始 OFDM符号 为所述 MBSFN子帧的第一个 OFDM符号。
具体的, 现有技术的 MBSFN传输方法中, MBSFN子帧中需要传输动 态控制信令。 这会占用 1个或 2个 OFDM符号。 本发明实施例提供的一 种 MBSFN配置的方法中, 基站配置用所述 MBSFN子帧的所有 OFDM符号 传输 PMCH承载的 MBSFN数据。 这样的设计可以最大化 MBSFN子帧的资 源利用率, 进而提升***性能。
其中, 所述 PMCH的 OFDM符号信息可以携带在 RRC信令中, 承载在 SIB13中。 示例性的, 基站在进行信令配置时, 可以选择向 UE发送带有 PMCH在 MBSFN子帧上起始位置的 RRC信令, 承载在 SIB13中, 其中信令 参数 mbsf n-Area Inf oLi s t中的 non-MBSFNreg ionLeng th可取 0。
需要说明的是, 在上述实施例的参考信号图案描述中, 表示所述 PMCH在所述 MBSFN子帧上的起始 OFDM符号的编号,而本发明实施例中, 所述 PMCH在所述 MBSFN子帧上的起始 OFDM符号可以为所述 MBSFN子帧 的第一个 OFDM符号, 结合背景技术的内容可知, 第一个 OFDM符号的标 号为 0, 因此, t的取值此时为 0。
当然, 所述 PMCH在所述 MBSFN子帧上的起始 0FDM符号也可以同现 有技术中的配置类似, 即所述 PMCH在所述 MBSFN子帧上的起始 0FDM符 号为所述 MBSFN子帧的第二个 0FDM符号或者第三个 0FDM符号, 本发明 实施例对此不作具体限定。若所述 PMCH在所述 MBSFN子帧上的起始 0FDM 符号为所述 MBSFN子帧的第二个 0FDM符号, 则上述实施例的参考信号 图案描述中, t的取值为 1;若所述 PMCH在所述 MBSFN子帧上的起始 0FDM 符号为所述 MBSFN子帧的第三个 0FDM符号, 则上述实施例的参考信号 图案描述中, t的取值为 2。 进一步的,本发明实施例提供的一种 MBSFN配置的方法中,还包括: 所述基站向所述 UE 发送增强的物理下行控制信道 ( Enhanced physical downlink control channel , EPDCCH ) 酉己置信息、, 所述 EPDCCH 配置信息用于指示所述 EPDCCH在所述 MBSFN子帧上的传输带宽。
具体的, 现有技术的 MBSFN传输方法中, MBSFN子帧中需要传输动 态控制信令。 本发明实施提供中, 所述基站在所述 MBSFN 子帧上发送 EPDCCH 配置信息, 所述 EPDCCH 配置信息用于指示所述 EPDCCH在所述 MBSFN子帧上的传输带宽, 即所述 7 载 PMCH 的 MBSFN子帧上可以 载 EPDCCH, 动态信令可以采用 EPDCCH进行传输, 实现了所述 EPDCCH与所 述 PMCH之间的频分复用, 因此提高了 MBSFN子帧的吞吐量。
其中, 所述 EPDCCH配置信息可以携带在 RRC信令中, 承载在 SIB13 中。示例性的,基站在进行信令配置时,可以选择向 UE发送带有 EPDCCH 传输带宽资源位置的 RRC信令, 承载在 SIB13中。
当然, 动态信令也可以采用其它方式传输, 本发明实施例对此不作 具体限定。
进一步的,本发明实施例提供的一种 MBSFN配置的方法中,还包括: 所述基站向所述 UE发送所述 PMCH的天线配置信息, 所述天线配置 信息用于指示所述 PMCH 的天线传输方式为天线端口数大于 1 的多天线 传输方式。
特别的, 所述多天线传输方式中, 所述参考信号图案可以采用频分 复用 ( Frequency Division Multiplexing , FDM ) 方式或者时分复用 ( Time Division Multiplexing , TDM ) 方式, 或者通过正交码做码分 的码分复用 ( Code Division Multiplexing , CDM ) 方式。
具体的, 现有技术的 MBSFN传输方法中, 仅能采用单天线端口 4进 行信号传输, 本发明实施例提供的一种 MBSFN配置的方法中, 基站可以 配置 PMCH的天线传输方式为天线端口数大于 1 的多天线传输方式。 这 样可以带来发射分集增益和空间复用增益, 减小衰落信道的影响, 进而 可以提升***性能。
其中,所述天线配置信息可以携带在 RRC信令中,承载在 SIB13中。 示例性的, 基站在进行信令配置时, 可以选择向 UE发送带有天线配置 信息的 RRC信令, 承载在 SIB13中。
本领域普通技术人员可以理解, 基站在完成 MBSFN子帧的子帧配置 之后, 将可以在所述 MBSFN子帧上发送广播信号和参考信号。 本发明实 施例对此不作具体限定。
其中, 可以根据参考信号图案确定参考信号。 示例性的, 这里将结 合一个具体的参考信号图案进行阐述,假设该参考信号图案如图 4所示, 即该参考信号图案中的参考信号 RE位置满足如下关系:
| /0 if ns mod2 = 0 and Δ = 15 kHz
/;,^ if ns mod 2 = 1 and Af = 15 kHz
Figure imgf000036_0001
因为参考信号的生成序列为: r, (m) = -^(l-2-c(2m)) + j ^={\-2- c{2m + \)) ηι 其中, z表示时域索引; 是参考信号 RE位于无线帧中时隙的编号;
^^^为下行***的最大传输带宽, "为频域为一个 PRB 对资源时一个 OFDM符号上的参考信号 RE数目, w表示参考符号的编号。 伪随机序列 的初始值为:
09 (π ( , Λ , J , Λ (^, Λ rMBSFN , Λ , Λ rMBSFN
, , Λ rMBSFN 一 - 一 - 其中, ND 表示一个 MBSFN区域的 MBSFN区域 ID。
而参考信号序列映射为复值调制符号 ^的关系式如下:
45)= '), 其中, w' = w + („/2)(A ax'DL— A CH'DL), m = 0,l,...,"A CH'DL— 1。 因此, 根据参考信号图案可以获得每个参考信号 RE对应的复制调 制符号, 也即参考信号。
需要说明的是, 在发送参考信号时, 采用多天线传输方式进行参考 信号传输的方法可参考单播中采用多天线传输方式进行参考信号传输 的方法, 本发明实施例在此不再详细赘述。
实施例二、
本发明实施例提供一种 MBSFN配置的方法, 具体如图 40所示, 所 述方法包括:
4001、 UE接收 MBSFN配置信息, 其中, 所述 MBSFN配置信息用于指 示 载 PMCH的 MBSFN子帧的子帧配置, 所述子帧配置包括: CP类型、 和 /或, 参考信号图案。
其中, 所述 CP类型包括: 正常 CP、 扩展 CP或其他 CP, 所述其他 CP的长度不同于所述正常 CP和扩展 CP的长度。
具体的, 本发明实施例提供的 MBSFN 配置的方法中, UE 首先接收 MBSFN配置信息,所述配置信息用于指示承载 PMCH的 MBSFN子帧的子帧 配置。
其中, 所述 MBSFN配置信息可以携带在 RRC信令中, 承载在 SIB13 中, 具体可参考图 2所示的实施例中 MBSFN配置信息信令承载方式的描 述, 此处不再赘述。
具体的, 本发明实施例中, MBSFN子帧的子帧配置中的 CP类型可以 为标准协议中规定的扩展 CP , 也可以为正常 CP或其他 CP, 本发明实 施例对此不作具体限定。 其中, 所述其他 CP的长度不同于所述正常 CP 和扩展 CP的长度。
4002、 UE 居所述 MBSFN配置信息, 确定所述 MBSFN子帧的子帧配 置。
具体的, 本发明实施例中, 在 UE接收 MBSFN配置信息之后, 将根 据所述 MBSFN配置信息, 确定所述 MBSFN子帧的子帧配置。
本发明实施例提供的 MBSFN配置的方法中, UE接收 MBSFN配置信息 , 其中, 所述 MBSFN配置信息用于指示 载 PMCH的 MBSFN子帧的子帧配 置; 然后所述 UE可以 居所述 MBSFN配置信息, 确定所述 MBSFN子帧 的子帧配置,因此可以实现 MBSFN子帧的灵活配置;并且由于所述 MBSFN 子帧配置中的 CP类型可以包括: 正常 CP、 扩展 CP或其他 CP, 所述其 他 CP的长度不同于所述正常 CP和扩展 CP的长度, 因此可以按需选择 合理的子帧配置,进一步的可以减小开销,提高***的无线资源利用率。
进一步的, 所述 MBSFN子帧的子帧配置可以包括配置 A、 B 中的至 少一种配置:
配置 A: 所述 CP类型为正常 CP或其他 CP;
配置 B: 每个物理资源块 PRB对中, 所述参考信号图案包含"个参 考信号资源单元 RE, "为小于 18的正整数。 示例性的, 现有技术中, MBSFN参考信号图案如图 3所示, 其中, 参考信号 RE在频域上间隔 1个子载波, 时域上间隔 3个 OFDM符号, 共 包含 18个参考信号 RE。 然而, 当基站部署在热点场景时, 由于热点场 景相对于其它场景存在多径传输信道时延小的特点, 这将导致热点场景 下的 PMCH的相干带宽较大, 进而参考信号 RE多跨子载波对信道估计影 响不大; 并且, 由于热点场景相对于其它场景存在移动速度低的特点, 这将导致热点场景下的 PMCH 的相干时间较大, 进而参考信号 RE 多跨 OFDM符号对信道估计影响不大。 综上, 若仍采用图 3所示的参考信号图 案, 将导致不必要的资源浪费, 降低了资源的利用率。 因此针对热点场 景的 MBSFN子帧的子帧配置中, CP长度可以设计为正常 CP或者 CP长度 小于正常 CP长度的其他 CP, 和 /或, 每个 PRB对中, 所述参考信号图案 包含"个 RE, "为小于 18的正整数, 这样将减小开销, 提高资源的利用 率。
需要说明的是, 当所述子帧配置满足条件 A、 B 中的至少一种配置 时, 若所述子帧配置满足配置 A, 则 1个 PRB对上的参考信号 RE个数可 以为 18, 也可以为配置 B中的 n, 本发明实施例对此不作具体限定。
进一步的, 所述配置 B还可以包括:
"=6, 且所述 "个参考信号 RE在频域上间隔 5、 3或 1个子载波; 或者,
"=8, 且所述 "个参考信号 RE在频域上间隔 2个子载波; 或者,
"=9, 且所述 "个参考信号 RE在频域上间隔 3个子载波; 或者,
"=4,且所述 "个参考信号 RE在频域上间隔 5或 2个子载波;或者,
« = 12, 且所述 "个参考信号 RE在频域上间隔 1个子载波。
示例性的, 所述 MBSFN子帧的参考信号图案可参考如实施例一中所 述的 n=6,8,9,4,12 时分别对应的参考信号图案, 本发明实施例在此不 再赘述。
进一步的,本发明实施例提供的一种 MBSFN配置的方法中,还包括: 所述 UE接收 PDSCH配置信息, 所述 PDSCH配置信息用于指示所述 PDSCH在所述 MBSFN子帧上的传输带宽;
所述 UE根据所述 PDSCH配置信息, 确定所述 PDSCH在所述 MBSFN 子帧上的传输带宽。
具体的, 如背景技术中所述, 目前的标准协议中不允许 PMCH 和 PDSCH的频分复用, 但是允许 PMCH和 PDSCH时分复用, 即某些特定子帧 可被设计为 MBSFN子帧, 该 MBSFN子帧可用于承载 PMCH。 本发明实施例 中, 所述 UE还接收 PDSCH配置信息, 所述 PDSCH配置信息用于指示所 述 PDSCH在所述 MBSFN子帧上的传输带宽, 即所述承载 PMCH 的 MBSFN 子帧上可以 载 PDSCH, 实现所述 PDSCH与所述 PMCH之间的频分复用, 因此提高了资源的灵活调度。
其中,所述 PDSCH配置信息的信令承载方式可参考实施例一的描述, 此处不再赘述。
进一步的,本发明实施例提供的一种 MBSFN配置的方法中,还包括: 所述 UE接收所述 PMCH的 OFDM符号信息, 所述 OFDM符号信息用于 指示所述 PMCH在所述 MBSFN子帧上的起始 OFDM符号为所述 MBSFN子帧 的第一个 OFDM符号;
所述 UE根据所述 PMCH 的 OFDM符号信息, 确定所述 PMCH在所述 MBSFN子帧上的起始 OFDM符号。
具体的, 现有技术的 MBSFN传输方法中, MBSFN子帧中需要传输动 态控制信令。 这会占用 1个或 2个 OFDM符号。 本发明实施例提供的一 种 MBSFN配置的方法中, 可以配置所述 MBSFN子帧的所有 OFDM符号传 输 PMCH承载的 MBSFN数据。 这样的设计可以最大化 MBSFN子帧的资源 利用率, 进而提升***性能。
其中, 所述 PMCH的 OFDM符号信息的信令承载方式可参考实施例一 的描述, 此处不再赞述。 对应 PMCH在所述 MBSFN子帧上的起始 OFDM 符号的编号的取值情况可参考实施例一的描述, 此处不再赘述。
进一步的,本发明实施例提供的一种 MBSFN配置的方法中,还包括: 所述 UE接收 EPDCCH配置信息, 所述 EPDCCH配置信息用于指示所 述 EDPCCH在所述 MBSFN子帧上的传输带宽;
所述 UE根据所述 EPDCCH配置信息,确定所述 EPDCCH在所述 MBSFN 子帧上的传输带宽。
具体的, 现有技术的 MBSFN传输方法中, MBSFN子帧中需要传输动 态控制信令。本发明实施中,所述 UE接收 EPDCCH配置信息,所述 EPDCCH 配置信息用于指示所述 EDPCCH在所述 MBS FN子帧上的传输带宽, 即所 述承载 PMCH的 MBS FN子帧上可以承载 EPDCCH ,动态信令可以采用 EPDCCH 进行传输, 实现了所述 EPDCCH与所述 PMCH之间的频分复用, 因此提高 了 MBS FN子帧的吞吐量。
其中, 所述 EPDCCH 配置信息的信令承载方式可参考实施例一的描 述, 此处不再赘述。
当然, 动态信令也可以采用其它方式传输, 本发明实施例对此不作 具体限定。
进一步的,本发明实施例提供的一种 MBS FN配置的方法中,还包括: 所述 U E接收所述 P M C H的天线配置信息, 所述天线配置信息用于指 示所述 PMCH的天线传输方式为天线端口数大于 1的多天线传输方式; 所述 UE 居所述 PMCH的天线配置信息, 确定所述 PMCH的天线传 输方式。
特别的, 所述多天线传输方式中, 所述参考信号图案采用频分复用 FDM方式或时分复用 TDM方式, 或者通过正交码^^码分的码分复用 CDM 方式。
具体的, 现有技术的 MBS FN传输方法中, 仅能采用单天线端口 4进 行信号传输, 本发明实施例提供的一种 MBS FN配置的方法中, 可以配置 天线端口数大于 1的多天线传输方式进行 MBSFN传输。 这样可以带来发 射分集增益和空间复用增益, 减小衰落信道的影响, 进而可以提升*** 性能。
其中, 所述天线配置信息的信令承载方式可参考实施例一的描述, 此处不再赘述。
需要说明的是, UE可能实时或周期性的检测周围信道条件后获得信 道质量表征参数, 然后发送所述信道质量参数给网络设备, 由所述网络 设备根据所述信道质量参数, 确定 MBSFN 配置信息, 实现基站对承载 PMCH的 MBS FN子帧的配置信息的动态更新,进而使得 MBSFN子帧上的资 源尽得以充分利用。
其中, 所述网络设备可以包括: MCE、 网关设备等, 所述信道质量 参数可以包括 RSRP、 RSRQ、 CQI、 信道时延特征、 业务质量要求等, 本 发明实施例对此不作具体限定。
本领域普通技术人员可以理解, 基站在确定所述 MBSFN子帧的子帧 配置之后,将可以在所述确定的 MBSFN子帧上接收广播信号和参考信号。 本发明实施例对此不作具体限定。
其中, 可以根据参考信号图案确定参考信号。 具体实现方法可参考 图 2所示的实施例的描述, 此处不再赘述。
需要说明的是, 在接收参考信号时, 采用多天线传输方式进行参考 信号解析的方法可参考单播中采用多天线传输方式进行参考信号解析 的方法, 本发明实施例在此不再详细赘述。
实施例三、
本发明实施例提供一种基站 4100,具体如图 41所示,所述基站 4100 包括: 确定单元 4101、 发送单元 4102。
所述确定单元 4101, 用于确定用于 7 载 PMCH的 MBSFN子帧的子帧 配置, 所述子帧配置包括: 循环前缀 CP类型, 和 /或, 参考信号图案。
其中, 所述 CP类型包括: 正常 CP、 扩展 CP或其他 CP, 所述其他 CP的长度不同于所述正常 CP和扩展 CP的长度。
所述发送单元 4102, 用于向用户设备 UE 发送所述确定单元 4101 确定的所述 MBSFN配置信息, 所述 MBSFN配置信息用于指示所述 MBSFN 子帧的子帧配置。
优选的, 这里提供两种所述确定单元 4101确定用于 PMCH的 MBSFN 子帧的子帧配置的可能实现方式:
一种可能的实现方式中, 所述确定单元 4101具体用于:
使用预设的 MBSFN子帧的子帧配置, 所述预设的 MBSFN子帧的子帧 配置基于所述基站 4100的部署环境确定。
另一种可能的实现方式中, 所述确定单元 4101具体用于:
接收网络设备发送的第二 MBSFN配置信息, 并根据所述第二 MBSFN 配置信息确定所述 MBSFN子帧的子帧配置。
进一步的, 所述 MBSFN子帧的子帧配置可以包括配置 A、 B 中的至 少一种配置: 配置 A: 所述 CP类型为正常 CP或其他 CP;
配置 B: 每个物理资源块 PRB对中, 所述参考信号图案包含"个- 考信号资源单元 RE, "为小于 18的正整数。
其中, 所述配置 B进一步可以包括:
n = 6 且所述 "个参考信号 RE在频域上间隔 5、 3或 1个子载波; 或者,
« = 8 且所述 "个参考信号 RE在频域上间隔 2个子载波; 或者, n = 9 且所述 "个参考信号 RE在频域上间隔 3个子载波; 或者, "=4,且所述 "个参考信号 RE在频域上间隔 5或 2个子载波;或者, « = 12, 且所述 "个参考信号 RE在频域上间隔 1个子载波。
特别的, 所述配置 B进一步包括: 若参考信号 RE记为( 0, k表示 频域索引, Z表示时域索引;
当 "=6, 且所述 "个参考信号 RE在频域上间隔 5个子载波时:
mod2 = 0 and Af = 15 kHz mod 2 = 1 and Af = 15 kHz
Figure imgf000042_0001
Q≤kQ≤5 , — 5≤"0≤5, 0≤ +"0≤5, = 0,l ..,2N CH'DL— 1. 或者, 当 " = 6, 且所述 "个参考信号 RE在频域上间隔 3个子载波时:
if ns modi = 0 and Af = 15 kHz if ns mod2 = 1 and Af = 15 kHz
Figure imgf000042_0002
Q≤k0≤3, — 3≤"θ≤3, 且 0≤ + "。≤3; m = 0,l,...,3N™DL-l. 或者, 当 "=6, 且所述 "个参考信号 RE在频域上间隔 1个子载波时: k = 2m + k0 , / = /0 if ns mod2 = 0 and Δ = 15 kHz , 0 < ^0 < 1 , m = 0,l,...,6N«DL-l; 或者 当 "=8, 且所述 "个参考信号 RE在频域上间隔 2个子载波时:
k0 if /≠ /j and Af = 15 kHz if ns mod2 = 0 and Af = 15 kHz
Figure imgf000042_0003
+a。 if / = and /" = 15 kHz if ns mod2 = 1 and Δ/" = 15 kHz
Q≤k0≤2 , - 2≤"0≤2, 且0≤ +"0≤2. m = 0,l,...,4N™DL-l. 或者, 当 " = 9, 且所述 "个参考信号 RE在频域上间隔 3个子载波时:
modi = 0 and Af = 15 kHz mod 2 = 1 and Af = 15 kHz
Figure imgf000043_0001
0≤ ≤3, — 3≤αθ≤3, 且 0≤^+αθ≤3. m = 0,1,...,3N™DL -1. 或者, 当 " = 4, 且所述 "个参考信号 RE在频域上间隔 5个子载波时:
if ns mod2 = 0 and Af = 15 kHz if ns mod2 = 1 and Af = 15 kHz
Figure imgf000043_0002
Q≤k0≤5 , — 5≤a0≤5, 0≤ +a0≤5, = 0,1 ..,2N CH'DL— 1. 或者, 当 " = 4, 且所述 "个参考信号 RE在频域上间隔 2个子载波时: k = 3m + k0 , / = /0 if «s mod2 = 0 and Δ = 15 kHz , Q≤k0≤2 , m = 0,l,...,4N«DL-l. 或者, 当 "=12 , 且所述 "个参考信号 RE在频域上间隔 1个子载波时: if ns modi = 0 and Af = 15 kHz
Figure imgf000043_0003
if / = /[ and Af = 15 kHz if ns mod2 = 1 and Af = 15 kHz
0≤ ≤1, — 1≤α0≤1 , 0≤^+α0≤1, = 0,1"..,6N CH'DL— 1. 其中, 表示相邻子载波之间的频域间隔, 表示参考信号 RE位 于无线帧中时隙的编号, "s mGd2表示对 模 2操作, w表示参考符号的 编号, 和 "。表示频域索引的偏置, 、 A和 表示参考信号 RE 位于时 隙 中 OFDM符号的编号, -1, 0≤ /ι≤ Λΐ*—丄, 0≤/2≤N b— 1,
I . r ArPMCH,DL \fOL 且 A< 2, ^RB 表示所述 MBSFN子帧上承载的 PMCH的传输带宽, 表示一个时隙中 OFDM符号的数目, 表示所述 PMCH在所述 MBSFN子帧 上的起始 OFDM符号的编号。
进一步的, 所述发送单元 4102, 还用于向所述 UE发送物理下行共 享信道 PDSCH配置信息, 所述 PDSCH配置信息用于指示所述 PDSCH在所 述 MBSFN子帧上的传输带宽。 进一步的, 所述发送单元 4102, 还用于向所述 UE 发送所述 PMCH 的正交频分复用 OFDM符号信息, 所述 PMCH的 OFDM符号信息用于指示 所述 PMCH在所述 MBSFN子帧上的起始 OFDM符号为所述 MBSFN子帧的第 一个 OFDM符号。
进一步的, 所述发送单元 4102, 还用于向所述 UE发送增强的物理 下行控制信道 EPDCCH 配置信息, 所述 EPDCCH 配置信息用于指示所述 EPDCCH在所述 MBSFN子帧上的传输带宽。
进一步的, 所述发送单元 4102, 还用于向所述 UE 发送所述 PMCH 的天线配置信息, 所述天线配置信息用于指示所述 PMCH 的天线传输方 式为天线端口数大于 1的多天线传输方式。
优选的, 所述多天线传输方式中, 所述参考信号图案采用频分复用 FDM方式或时分复用 TDM方式, 或者通过正交码^^码分的码分复用 CDM 方式。
具体的, 通过所述基站 4100进行 MBSFN配置的方法可参考实施例 一的描述, 本发明实施例在此不再赘述。
由于本实施例的基站 4100 能够用于执行上述实施例一的方法, 因 此, 其所能获得的技术效果也可以参照上述实施例中的描述, 此处不再 赘述。
实施例四、
本发明实施例提供一种用户设备 UE4200, 具体如图 42所示, 所述 UE420G包括: 接收单元 4201、 确定单元 4202。
所述接收单元 4201, 用于接收多媒体广播单频网络 MBSFN 配置信 息,其中,所述 MBSFN配置信息用于指示 载物理多播信道 PMCH的 MBSFN 子帧的子帧配置, 所述子帧配置包括: 循环前缀 CP类型、 和 /或, 参考 信号图案。
其中, 所述 CP类型包括: 正常 CP、 扩展 CP或其他 CP, 所述其他 CP的长度不同于所述正常 CP和扩展 CP的长度。
所述确定单元 4202,用于根据所述接收单元 4201接收的所述 MBSFN 配置信息, 确定所述 MBSFN子帧的子帧配置。
进一步的, 所述 MBSFN子帧的子帧配置可以包括配置 A、 B 中的至 少一种配置:
配置 A: 所述 CP类型为正常 CP或其他 CP;
配置 B: 每个物理资源块 PRB对中, 所述参考信号图案包含"个资 源单元参考信号 RE, "为小于 18的正整数。
其中, 所述配置 B进一步可以包括:
"=6, 且所述 "个参考信号 RE在频域上间隔 5、 3或 1个子载波; 或者,
"=8, 且所述 "个参考信号 RE在频域上间隔 2个子载波; 或者,
"=9, 且所述 "个参考信号 RE在频域上间隔 3个子载波; 或者,
"=4,且所述 "个参考信号 RE在频域上间隔 5或 2个子载波;或者,
« = 12, 且所述 "个参考信号 RE在频域上间隔 1个子载波。
特别的, 所述配置 B进一步包括: 若参考信号 RE记为( 0, k表示 频域索引, Z表示时域索引,
当 "=6, 且所述 "个参考信号 RE在频域上间隔 5个子载波时:
mod2 = 0 and Af = 15 kHz mod 2 = 1 and Af = 15 kHz
Figure imgf000045_0001
Q≤k0≤5 , — 5≤a0≤5, 0≤ +a0≤5, = 0,1 ..,2N CH'DL— 1. 或者, 当 " = 6, 且所述 "个参考信号 RE在频域上间隔 3个子载波时:
if ns modi = 0 and Af = 15 kHz if ns mod2 = 1 and Af = 15 kHz
Figure imgf000045_0002
Q≤k0≤3 , — 3≤αθ≤3, 且 0≤ +a。≤3; =。 … ^^^ — 1; 或者, 当 " = 6, 且所述 "个参考信号 RE在频域上间隔 1个子载波时: k = 2m + k0 , / = /0 if ns mod2 = 0 and Δ = 15 kHz , 0 < ^0 < 1 , m = 0,l,...,6N«DL-l; 或者 当 "=8, 且所述 "个参考信号 RE在频域上间隔 2个子载波时:
if ns mod2 = 0 and Af = 15 kHz
Figure imgf000045_0003
+ a0 if / = /, and Af = 15 kHz if n mod2 = 1 and Δ/" = 15 kHz Q≤k0≤2 , - 2≤"0≤2, 且0≤ +"0≤2. m = 0,l,...,4N™DL-l. 或者, 当 " = 9, 且所述 "个参考信号 RE在频域上间隔 3个子载波时:
modi = 0 and Af = 15 kHz mod 2 = 1 and Af = 15 kHz
Figure imgf000046_0001
Q≤k0≤3, — 3≤"θ≤3, 且 0≤ + "。≤3; m = 0,l,...,3N™DL-l. 或者, 当 "=4, 且所述 "个参考信号 RE在频域上间隔 5个子载波时:
if ns mod2 = 0 and Af = 15 kHz if ns mod2 = 1 and Af = 15 kHz
Figure imgf000046_0002
Q≤k0≤5 , — 5≤"0≤5, 0≤ +"0≤5, = 0,l ..,2N CH'DL— 1. 或者, 当 " = 4, 且所述 "个参考信号 RE在频域上间隔 2个子载波时: k = 3m + k0 , / = /0 if «s mod2 = 0 and Δ = 15 kHz , Q≤k0≤2 , m = 0,l,...,4N«DL-l. 或者, 当 "=12 , 且所述 "个参考信号 RE在频域上间隔 1个子载波时: if ns modi = 0 and Af = 15 kHz if ns mod2 = 1 and Af = 15 kHz
Figure imgf000046_0003
0≤ ≤1, — 1≤"0≤1 , 0≤ +"0≤l, = 0,l"..,6N CHDL— 1. 其中, 表示相邻子载波之间的频域间隔, 表示参考信号 RE位 于无线帧中时隙的编号, "S mGd2表示对 模 2操作, w表示参考符号的 编号, 和"。表示频域索引的偏置, 4和 表示参考信号 RE 位于时 隙 "s中 OFDM符号的编号, / ≤ 0 -1, 1,
Figure imgf000046_0004
r . r ArPMCH,DL ATDL 且 A < /2, ^RB 表示所述 MBSFN子帧上承载的 PMCH的传输带宽, 表示一个时隙中 OFDM符号的数目, 表示所述 PMCH在所述 MBSFN子帧 上的起始 OFDM符号的编号。 进一步的,所述接收单元 4201,还用于接收物理下行共享信道 PDSCH 配置信息, 所述 PDSCH配置信息用于指示所述 PDSCH在所述 MBSFN子帧 上的传输带宽。
所述确定单元 4202, 还用于根据所述接收单元 4201 接收的所述 PDSCH配置信息, 确定所述 PDSCH在所述 MBSFN子帧上的传输带宽。
进一步的, 所述接收单元 4201, 还用于接收所述 PMCH的正交频分 复用 OFDM 符号信息, 所述 OFDM 符号信息用于指示所述 PMCH 在所述 MBSFN子帧上的起始 OFDM符号为所述 MBSFN子帧的第一个 OFDM符号。
所述确定单元 4202, 还用于根据所述接收单元 4201 接收的所述 PMCH的 0FDM符号信息,确定所述 PMCH在所述 MBSFN子帧上的起始 0FDM 符号。
进一步的, 所述接收单元 4201, 还用于接收增强的物理下行控制信 道 EPDCCH配置信息, 所述 EPDCCH配置信息用于指示所述 EDPCCH在所 述 MBSFN子帧上的传输带宽。
所述确定单元 4202, 还用于根据所述接收单元 4201 接收的所述 EPDCCH配置信息, 确定所述 EPDCCH在所述 MBSFN子帧上的传输带宽。
进一步的, 所述接收单元 4201, 还用于接收所述 PMCH的天线配置 信息, 所述天线配置信息用于指示所述 PMCH 的天线传输方式为天线端 口数大于 1的多天线传输方式;
所述确定单元 4202, 还用于根据所述接收单元 4201 接收的所述 PMCH的天线配置信息, 确定所述 PMCH的天线传输方式。
优选的, 所述多天线传输方式中, 所述参考信号图案采用频分复用 FDM方式或时分复用 TDM方式, 或者通过正交码^^码分的码分复用 CDM 方式。
具体的, 通过所述 UE4200进行 MBSFN配置的方法可参考实施例二 的描述, 本发明实施例在此不再赘述。
由于本实施例的 UE4200能够用于执行上述实施例二的方法, 因此, 其所能获得的技术效果也可以参照上述实施例中的描述, 此处不再赘 述。
实施例五、
本发明实施例提供一种基站, 具体如图 43 所示, 所述基站包括: 处理器 4301、 发送器 4302。 所述处理器 4301, 用于确定用于 载 PMCH的 MBSFN子帧的子帧配 置, 所述子帧配置包括: 循环前缀 CP类型, 和 /或, 参考信号图案。
其中, 所述 CP类型包括: 正常 CP、 扩展 CP或其他 CP, 所述其他 CP的长度不同于所述正常 CP和扩展 CP的长度。
所述发送器 4302,用于向用户设备 UE发送所述处理器 4301确定的 所述 MBSFN配置信息, 所述 MBSFN配置信息用于指示所述 MBSFN子帧的 子帧配置。
优选的, 这里提供两种所述处理器 4301确定用于 PMCH的 MBSFN子 帧的子帧配置的可能实现方式:
一种可能的实现方式中, 所述处理器 4301具体用于:
使用预设的 MBSFN子帧的子帧配置, 所述预设的 MBSFN子帧的子帧 配置基于所述基站 4300的部署环境确定。
另一种可能的实现方式中, 所述处理器 4301具体用于:
接收网络设备发送的第二 MBSFN配置信息, 并根据所述第二 MBSFN 配置信息确定所述 MBSFN子帧的子帧配置。
进一步的, 所述 MBSFN子帧的子帧配置可以包括配置 A、 B 中的至 少一种配置:
配置 A: 所述 CP类型为正常 CP或其他 CP;
配置 B: 每个物理资源块 PRB对中, 所述参考信号图案包含"个参 考信号资源单元 RE, "为小于 18的正整数。
其中, 所述配置 B进一步可以包括:
"=6, 且所述 "个参考信号 RE在频域上间隔 5、 3或 1个子载波; 或者,
"=8, 且所述 "个参考信号 RE在频域上间隔 2个子载波; 或者,
"=9, 且所述 "个参考信号 RE在频域上间隔 3个子载波; 或者,
"=4,且所述 "个参考信号 RE在频域上间隔 5或 2个子载波;或者,
« = 12, 且所述 "个参考信号 RE在频域上间隔 1个子载波。
特别的, 所述 MBSFN子帧的参考信号图案可参考如实施例一中所述 的 n=6,8,9,4, 12 时分别对应的参考信号图案, 本发明实施例在此不再 赘述。
进一步的, 所述发送器 4302 , 还用于向所述 UE发送物理下行共享 信道 PDSCH配置信息, 所述 PDSCH配置信息用于指示所述 PDSCH在所述 MBSFN子帧上的传输带宽。
进一步的, 所述发送器 4302 , 还用于向所述 UE发送所述 PMCH的正 交频分复用 OFDM符号信息, 所述 PMCH的 OFDM符号信息用于指示所述 PMCH在所述 MBSFN子帧上的起始 OFDM符号为所述 MBSFN子帧的第一个 OFDM符号。
进一步的, 所述发送器 4302 , 还用于向所述 UE发送增强的物理下 行控制信道 EPDCCH 配置信息, 所述 EPDCCH 配置信息用于指示所述 EPDCCH在所述 MBSFN子帧上的传输带宽,所述 PDSCH的传输带宽表征所 述 EDPCCH与所述 PMCH频分复用。
进一步的, 所述发送器 4302 , 还用于向所述 UE发送所述 PMCH的天 线配置信息, 所述天线配置信息用于指示所述 PMCH 的天线传输方式为 天线端口数大于 1的多天线传输方式。
优选的, 所述多天线传输方式中, 所述参考信号图案采用频分复用 FDM方式或时分复用 TDM方式, 或者通过正交码^^码分的码分复用 CDM 方式。
具体的, 通过所述基站 4300进行 MBSFN配置的方法可参考实施例 一的描述, 本发明实施例在此不再赘述。
由于本实施例的基站 4300 能够用于执行上述实施例一的方法, 因 此, 其所能获得的技术效果也可以参照上述实施例中的描述, 此处不再 赘述。
实施例六、
本发明实施例提供一种用户设备 UE4400 , 具体如图 44所示, 所述 UE4400包括: 接收器 4401、 处理器 4402。
所述接收器 4401 , 用于接收多媒体广播单频网络 MBSFN配置信息 , 其中, 所述 MBSFN配置信息用于指示 载物理多播信道 PMCH 的 MBSFN 子帧的子帧配置, 所述子帧配置包括: 循环前缀 CP类型、 和 /或, 参考 信号图案。 其中, 所述 CP类型包括: 正常 CP、 扩展 CP或其他 CP, 所述其他 CP的长度不同于所述正常 CP和扩展 CP的长度。
所述处理器 4402, 用于根据所述接收器 4401接收的所述 MBSFN配 置信息, 确定所述 MBSFN子帧的子帧配置。
进一步的, 所述 MBSFN子帧的子帧配置可以包括配置 A、 B 中的至 少一种配置:
配置 A: 所述 CP类型为正常 CP或其他 CP;
配置 B: 每个物理资源块 PRB对中, 所述参考信号图案包含"个资 源单元参考信号 RE, "为小于 18的正整数。
其中, 所述配置 B进一步可以包括:
"=6, 且所述 "个参考信号 RE在频域上间隔 5、 3或 1个子载波; 或者,
"=8, 且所述 "个参考信号 RE在频域上间隔 2个子载波; 或者,
"=9, 且所述 "个参考信号 RE在频域上间隔 3个子载波; 或者,
"=4,且所述 "个参考信号 RE在频域上间隔 5或 2个子载波;或者,
« = 12, 且所述 "个参考信号 RE在频域上间隔 1个子载波。
特别的, 所述 MBSFN子帧的参考信号图案可参考如实施例一中所述 的 n=6,8,9,4, 12 时分别对应的参考信号图案, 本发明实施例在此不再 赘述。
进一步的, 所述接收器 4401, 还用于接收物理下行共享信道 PDSCH 配置信息, 所述 PDSCH配置信息用于指示所述 PDSCH在所述 MBSFN子帧 上的传输带宽。
所述处理器 4402, 还用于根据所述接收器 4401接收的所述 PDSCH 配置信息, 确定所述 PDSCH在所述 MBSFN子帧上的传输带宽。
进一步的, 所述接收器 4401, 还用于接收所述 PMCH的正交频分复 用 OFDM符号信息,所述 OFDM符号信息用于指示所述 PMCH在所述 MBSFN 子帧上的起始 OFDM符号为所述 MBSFN子帧的第一个 OFDM符号。
所述处理器 4402, 还用于根据所述接收器 4401 接收的所述 PMCH 的 0FDM符号信息, 确定所述 PMCH在所述 MBSFN子帧上的起始 0FDM符 号。
进一步的, 所述接收器 4401 , 还用于接收增强的物理下行控制信道 EPDCCH 配置信息, 所述 EPDCCH 配置信息用于指示所述 EDPCCH在所述 MBSFN子帧上的传输带宽。
所述处理器 4402 , 还用于根据所述接收器 4401接收的所述 EPDCCH 配置信息, 确定所述 EPDCCH在所述 MBSFN子帧上的传输带宽。
进一步的, 所述接收器 4401 , 还用于接收所述 PMCH的天线配置信 息, 所述天线配置信息用于指示所述 PMCH 的天线传输方式为天线端口 数大于 1的多天线传输方式;
所述处理器 4402 , 还用于根据所述接收器 4401 接收的所述 PMCH 的天线配置信息, 确定所述 PMCH的天线传输方式。
优选的, 所述多天线传输方式中, 所述参考信号图案采用频分复用 FDM方式或时分复用 TDM方式, 或者通过正交码^^码分的码分复用 CDM 方式。
具体的, 通过所述 UE4400进行 MBSFN配置的方法可参考实施例一 的描述, 本发明实施例在此不再赘述。
由于本实施例的 UE4600能够用于执行上述实施例二的方法, 因此, 其所能获得的技术效果也可以参照上述实施例中的描述, 此处不再赘 述。
所属领域的技术人员可以清楚地了解到, 为描述的方便和简洁, 上 述描述的装置,仅以上述各功能模块的划分进行举例说明, 实际应用中, 可以根据需要而将上述功能分配由不同的功能模块完成, 即将装置的内 部结构划分成不同的功能模块, 以完成以上描述的全部或者部分功能。 上述描述的***、 装置和单元的具体工作过程, 可以参考前述方法实施 例中的对应过程, 在此不再赘述。
在本申请所提供的几个实施例中, 应该理解到, 所揭露的***, 装 置和方法, 可以通过其它的方式实现。 例如, 以上所描述的装置实施例 仅仅是示意性的, 例如, 所述模块或单元的划分, 仅仅为一种逻辑功能 划分, 实际实现时可以有另外的划分方式, 例如多个单元或组件可以结 合或者可以集成到另一个***, 或一些特征可以忽略, 或不执行。 另一 点, 所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过 一些接口, 装置或单元的间接耦合或通信连接, 可以是电性, 机械或其 它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开 的, 作为单元显示的部件可以是或者也可以不是物理单元, 即可以位于 一个地方, 或者也可以分布到多个网络单元上。 可以 居实际的需要选 择其中的部分或者全部单元来实现本实施例方案的目的。 另外, 在本发明各个实施例中的各功能单元可以集成在一个处理单 元中, 也可以是各个单元单独物理存在, 也可以两个或两个以上单元集 成在一个单元中。 上述集成的单元既可以采用硬件的形式实现, 也可以 采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产 品销售或使用时, 可以存储在一个计算机可读取存储介质中。 基于这样 的理解, 本发明的技术方案本质上或者说对现有技术做出贡献的部分或 者该技术方案的全部或部分可以以软件产品的形式体现出来, 该计算机 软件产品存储在一个存储介质中, 包括若干指令用以使得一台计算机设 备(可以是个人计算机,服务器,或者网络设备等)或处理器( r oce s s o r ) 执行本发明各个实施例所述方法的全部或部分步骤。 而前述的存储介质 包括: U盘、 移动硬盘、 只读存储器 (ROM , Read-On l y Memo ry ), 随机 存取存储器 (RAM , Random Acce s s Memo ry )、 磁碟或者光盘等各种可以 存储程序代码的介质。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不 局限于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围 内, 可轻易想到变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明的保护范围应以所述权利要求的保护范围为准。

Claims

权 利 要 求 书
1、 一种多媒体广播单频网络 MBSFN配置的方法, 其特征在于, 所 述方法包括:
基站确定用于 7 载物理多播信道 PMCH的 MBSFN子帧的子帧配置, 所述子帧配置包括: 循环前缀 CP类型, 和 /或, 参考信号图案;
所述基站向用户设备 UE发送 MBSFN配置信息, 所述 MBSFN配置 信息用于指示所述 MBSFN子帧的子帧配置;
其中, 所述 CP类型包括: 正常 CP、 扩展 CP或其他 CP , 所述其他 CP的长度不同于所述正常 CP和扩展 CP的长度。
2、 根据权利要求 1所述的方法, 其特征在于, 所述 MBSFN子帧的 子帧配置包括配置 A、 B中的至少一种配置:
配置 A: 所述 CP类型为正常 CP或其他 CP;
配置 B : 每个物理资源块 PRB对中, 所述参考信号图案包含"个参 考信号资源单元 RE , "为小于 18的正整数。
3、 根据权利要求 2所述的方法, 其特征在于, 所述配置 B进一步包 括:
n = 6 , 且所述《个参考信号 RE在频域上间隔 5、 3或 1个子载波; 或者,
« = 8 , 且所述《个参考信号 RE在频域上间隔 2个子载波; 或者, n = 9 , 且所述《个参考信号 RE在频域上间隔 3个子载波; 或者, n = 4 ,且所述《个参考信号 RE在频域上间隔 5或 2个子载波;或者, « = 12 , 且所述《个参考信号 RE在频域上间隔 1个子载波。
4、 根据权利要求 3所述的方法, 其特征在于, 所述配置 B进一步包 括:
若参考信号 RE记为 表示频域索引, /表示时域索引; 当" = 6 , 且所述《个参考信号 RE在频域上间隔 5个子载波时:
j /0 if ns mod2 = 0 and Af = 15 kHz [/1 5/2 if ns mod 2 = 1 and Af = 15 kHz
Figure imgf000053_0001
Q≤kQ≤5, -5≤a0≤5, 0≤k0+a0≤5 , m = 0,1,...,2N™DL -1; 或者, 当" =6, 且所述《个参考信号 RE在频域上间隔 3个子载波时: if ns modi = 0 and Δ/ = 15 kHz if ns mod2 = 1 and Af = 15 kHz
Figure imgf000054_0001
0<^0 <3, -3<a0 <3, JL0≤^0+a0<3; =。 … ^^^ — 1; 或者 当 =6, 且所述《个参考信号 RE在频域上间隔 1个子载波时: k = 2m + k0 , / = /0 if «s mod2 = 0 and Δ = 15 kHz , 0 < ^ < 1 , m = 0,l,...,6N™L-l; 或者
当" =8 , 且所述《个参考信号 RE在频域上间隔 2个子载波时: ί 3m + k0 if /≠ /; and Af = 15 kHz i/0 if ns mod2 = 0 and Af = 15 kHz k = < I = <
[3w + ;0+a。 if / = and /" = 15 kHz l{ if ns mod2 = 1 and Af = 15 kHz
0<^0 <2, -2<a0 <2, 且 0≤ +αθ≤2; =。 …^^ ^— 1; 或者 当" =9, 且所述《个参考信号 RE在频域上间隔 3个子载波时: modi = 0 and Af = 15 kHz mod 2 = 1 and Af = 15 kHz
Figure imgf000054_0002
0<^0 <3, -3<a0 <3, JL0≤^0+a0<3; =。 … ^^^ — 1; 或者 当 =4, 且所述《个参考信号 RE在频域上间隔 5个子载波时: if ns mod2 = 0 and Δ = 15 kHz if ns mod2 = 1 and Af = 15 kHz
Figure imgf000054_0003
Q≤kQ≤5, -5≤a0≤5, 0≤k0+a0≤5 , m = 0,1,...,2N™DL -1; 或者, 当 =4, 且所述《个参考信号 RE在频域上间隔 2个子载波时: k = 3m + k0 , / = /0 if ns mod2 = 0 and Δ = 15 kHz , Q≤k0≤2 , m = 0,l,...,4N™DL-l; 或者,
当 = 12 , 且所述《个参考信号 RE在频域上间隔 1个子载波时:
^ j 2m + k0 if /≠ /; and Af = 15 kHz , |/0 if ns modi = 0 and = 15 kHz
[2m + k0+ a0 if / = /j and Δ/" = 15 kHz |/j if ns mod2 = 1 and Δ/" = 15 kHz
0 < ^0 < 1 , - 1≤"0≤1 , 0≤ +"0≤l, m = 0,l,...,6N™DL-l; 其中, Δ/表示相邻子载波之间的频域间隔, 《s表示参考信号 RE 位 于无线帧中时隙的编号, 《s mod2表示对 模 2操作, 表示参考符号的 编号, 和 α。表示频域索引的偏置, /。、 4和/2表示参考信号 RE位于时隙 "s中 OFDM符号的编号, t≤l0≤N^m L b - 0≤/1 < Ns Di - l , 0≤/2≤Ns D - 1 , 且 / /^ ^^,^表示所述 MBSFN子帧上承载的 PMCH的传输带宽, NS D 表示一个时隙中 OFDM符号的数目 , 表示所述 PMCH在所述 MBSFN 子帧上的起始 OFDM符号的编号。
5、 根据权利要求 1-4任一项所述的方法, 其特征在于, 所述方法还 包括:
所述基站向所述 UE发送物理下行共享信道 PDSCH配置信息, 所述 PDSCH配置信息用于指示所述 PDSCH在所述 MBSFN子帧上的传输带 宽。
6、 根据权利要求 1-5任一项所述的方法, 其特征在于, 所述方法还 包括:
所述基站向所述 UE发送所述 PMCH的正交频分复用 OFDM符号信 息 , 所述 PMCH的 OFDM符号信息用于指示所述 PMCH在所述 MB SFN 子帧上的起始 OFDM符号为所述 MBSFN子帧的第一个 OFDM符号。
7、 根据权利要求 1-6任一项所述的方法, 其特征在于, 所述方法还 包括:
所述基站向所述 UE发送增强的物理下行控制信道 EPDCCH配置信 息, 所述 EPDCCH配置信息用于指示所述 EPDCCH在所述 MBSFN子帧 上的传输带宽。
8、 根据权利要求 1-7任一项所述的方法, 其特征在于, 所述方法还 包括:
所述基站向所述 UE发送所述 PMCH的天线配置信息, 所述天线配 置信息用于指示所述 PMCH的天线传输方式为天线端口数大于 1的多天 线传输方式。
9、 根据权利要求 8所述的方法, 其特征在于, 所述多天线传输方式 中, 所述参考信号图案采用频分复用 FDM方式或时分复用 TDM方式, 或者通过正交码 4故码分的码分复用 CDM方式。
10、 根据权利要求 1 -9任一项所述的方法, 其特征在于, 所述基站确 定用于承载 PMCH的 MBSFN子帧的子帧配置, 包括:
所述基站使用预设的 MBSFN子帧的子帧配置, 所述预设的 MBSFN 子帧的子帧配置基于所述基站的部署环境确定。
1 1、 根据权利要求 1 -9任一项所述的方法, 其特征在于, 所述基站确 定用于 载物理多播信道 PMCH的 MBSFN子帧的子帧配置, 包括: 所述基站接收网络设备发送的第二 MB SFN配置信息,并根据所述第 二 MBSFN配置信息确定所述 MBSFN子帧的子帧配置。
12、 一种多媒体广播单频网络 MBSFN配置的方法, 其特征在于, 所 述方法包括:
用户设备 UE接收 MBSFN配置信息, 其中, 所述 MBSFN配置信息 用于指示 载物理多播信道 PMCH的 MBSFN子帧的子帧配置, 所述子 帧配置包括: 循环前缀 CP类型、 和 /或, 参考信号图案;
所述 UE根据所述 MB SFN配置信息, 确定所述 MB SFN子帧的子帧 配置;
其中, 所述 CP类型包括: 正常 CP、 扩展 CP或其他 CP , 所述其他 CP的长度不同于所述正常 CP和扩展 CP的长度。
13、 根据权利要求 12所述的方法, 其特征在于, 所述 MBSFN子帧 的子帧配置包括配置 A、 B中的至少一种配置:
配置 A: 所述 CP类型为正常 CP或其他 CP;
配置 B : 每个物理资源块 PRB对中, 所述参考信号图案包含"个资 源单元参考信号 RE , "为小于 18的正整数。
14、 根据权利要求 13所述的方法, 其特征在于, 所述配置 B进一步 包括:
n = 6 , 且所述《个参考信号 RE在频域上间隔 5、 3或 1个子载波; 或者,
« = 8 , 且所述《个参考信号 RE在频域上间隔 2个子载波; 或者, n = 9 , 且所述《个参考信号 RE在频域上间隔 3个子载波; 或者, n = 4 ,且所述《个参考信号 RE在频域上间隔 5或 2个子载波;或者, « = 12, 且所述《个参考信号 RE在频域上间隔 1个子载波。
15、 根据权利要求 14所述的方法, 其特征在于, 所述配置 B进一步 包括:
所述参考信号图案中参考信号 RE的位置满足如下条件:
若参考信号 RE记为( ,/), 表示频域索引, /表示时域索引; 当 =6, 且所述《个参考信号 RE在频域上间隔 5个子载波时:
J 6m + k0 if /≠/( andA/ = 15 kHz ί /0 if ns modi = 0 and Δ/' = 15 kHz [6m + k0 +a0 if / = /( and Af = 15 kHz [ll,l2 if ns mod2 = 1 and Δ ' = 15 kHz
Q≤k0≤5, -5≤a0 <5, 0≤k0+a0≤5 , m = 0,1,...,2N™DL -1; 或者, 当 =6, 且所述《个参考信号 RE在频域上间隔 3个子载波时:
ί 4m + k0 if /≠/j andA = 15kHz ί/0 if /?s mod 2 = 0 and Δ = 15 kHz k = < ' I = < ·
[4m + k0 + if / = and Af = 15 kHz [ll if "s mod 2 = 1 and Af = 15 kHz
Q≤kQ≤3, -3<aQ≤3, H0≤k0+a0≤3; w =。 … ^^101'1^ — 1; 或者, 当" =6, 且所述《个参考信号 RE在频域上间隔 1个子载波时: k = 2m + kQ , / = /0 if «s mod2 = 0 and Δ = 15 kHz , 0 < ^≤ 1 , m = 0,l,...,6N™L-l; 或者
当„ = 8, 且所述《个参考信号 RE在频域上间隔 2个子载波时:
if n modi = 0 and Δ ' = 15 kHz
Figure imgf000057_0001
andA/ = 15kHz if ns modi = 1 and Δ = 15 kHz
Q≤kQ≤2, -2≤aQ <2, H0≤k0+a0≤2; w = (^,…^^01'1^ — 1; 或者, 当" =9, 且所述 "个参考信号 RE在频域上间隔 3个子载波时: k_ if /≠/j andA = 15kHz , ί /0 if /?s mod2 = 0 and Δ = 15 kHz
Figure imgf000057_0002
ίΐΙ = 1 and Δ/' = 15kHz [ [, 2 if «s mod2 = 1 and Δ = 15 kHz
Q≤kQ≤3, -3<aQ≤3, H0≤k0+a0≤3; w =。 … ^^101'1^ — 1; 或者, 当" =4, 且所述《个参考信号 RE在频域上间隔 5个子载波时:
/0 if n modi = 0 and Δ/ = 15 kHz /, if n mod2 = 1 and Af = 15 kHz
Figure imgf000057_0003
Q≤kQ≤5, -5≤a0≤5, 0≤k0+a0≤5 , m = 0,1,...,2N™DL -1; 或者, 当 =4, 且所述《个参考信号 RE在频域上间隔 2个子载波时: k = 3m + k0 , / = /0 if ns mod2 = 0 and Δ = 15 kHz , Q≤k0≤2 , m = 0,l,...,4N™DL-l; 或者, 当 = 12 , 且所述《个参考信号 RE在频域上间隔 1个子载波时:
if /≠ /; and Af = 15 kHz , |/0 if ns modi = 0 and Af = \5 kHz
Figure imgf000058_0001
if / = /j and Δ/" = 15 kHz /j if ns mod2 = 1 and Δ/" = 15 kHz
0 < ^0 < 1 , - 1≤"0≤1 , 0≤ +"0≤l, m = 0,l,...,6N™DL-l;
其中, Δ/表示相邻子载波之间的频域间隔, 《s表示参考信号 RE 位 于无线帧中时隙的编号, 《smod2表示对 模 2操作, 表示参考符号的 编号, 和 α。表示频域索引的偏置, /。、 4和/2表示参考信号 RE位于时隙 "s中 OFDM符号的编号, /0≤ -1, 0≤/1 <Ns D;b-l, 0≤/2≤Ns D -1, 且 / /^ ^^,^表示所述 MBSFN子帧上承载的 PMCH的传输带宽, NS D 表示一个时隙中 OFDM符号的数目 , 表示所述 PMCH在所述 MBSFN 子帧上的起始 OFDM符号的编号。
16、 根据权利要求 12-15任一项所述的方法, 其特征在于, 所述方法 还包括:
所述 UE接收物理下行共享信道 PDSCH配置信息, 所述 PDSCH配 置信息用于指示所述 PDSCH在所述 MBSFN子帧上的传输带宽;
所述 UE根据所述 PD S CH配置信息,确定所述 PD S CH在所述 MB SFN 子帧上的传输带宽。
17、 根据权利要求 12-16任一项所述的方法, 其特征在于, 所述方法 还包括:
所述 UE接收所述 PMCH 的正交频分复用 OFDM符号信息, 所述 OFDM 符号信息用于指示所述 PMCH 在所述 MBSFN 子帧上的起始 OFDM符号为所述 MBSFN子帧的第一个 OFDM符号;
所述 UE根据所述 PMCH的 OFDM符号信息,确定所述 PMCH在所 述 MBSFN子帧上的起始 OFDM符号。
18、 根据权利要求 12- 17任一项所述的方法, 其特征在于, 所述方法 还包括:
所述 UE 接收增强的物理下行控制信道 EPDCCH 配置信息, 所述 EPDCCH配置信息用于指示所述 EDPCCH在所述 MBSFN子帧上的传输 带宽;
所述 UE根据所述 EPDCCH配置信息, 确定所述 EPDCCH在所述 MBSFN子帧上的传输带宽。
19、 根据权利要求 12- 18任一项所述的方法, 其特征在于, 所述方法 还包括:
所述 UE接收所述 PMCH的天线配置信息, 所述天线配置信息用于 指示所述 PMCH的天线传输方式为天线端口数大于 1的多天线传输方式; 所述 UE 居所述 PMCH的天线配置信息, 确定所述 PMCH的天线 传输方式。
20、 根据权利要求 19所述的方法, 其特征在于, 所述多天线传输方 式中,所述参考信号图案采用频分复用 FDM方式或时分复用 TDM方式, 或者通过正交码 4故码分的码分复用 CDM方式。
21、 一种基站, 其特征在于, 所述基站包括: 确定单元、 发送单元; 所述确定单元, 用于确定用于 载物理多播信道 PMCH的多媒体广 播单频网络 MBSFN子帧的子帧配置, 所述子帧配置包括: 循环前缀 CP 类型, 和 /或, 参考信号图案;
所述发送单元, 用于向用户设备 UE 发送所述确定单元确定的所述 MBSFN配置信息, 所述 MBSFN配置信息用于指示所述 MBSFN子帧的 子帧配置;
其中, 所述 CP类型包括: 正常 CP、 扩展 CP或其他 CP , 所述其他 CP的长度不同于所述正常 CP和扩展 CP的长度。
22、 根据权利要求 21所述的基站, 其特征在于, 所述 MBSFN子帧 的子帧配置包括配置 A、 B中的至少一种配置:
配置 A: 所述 CP类型为正常 CP或其他 CP;
配置 B : 每个物理资源块 PRB对中, 所述参考信号图案包含"个参 考信号资源单元 RE, "为小于 18的正整数。
23、 根据权利要求 22所述的基站, 其特征在于, 所述配置 B进一步 包括:
n = 6, 且所述《个参考信号 RE在频域上间隔 5、 3或 1个子载波; 或者,
« = 8, 且所述《个参考信号 RE在频域上间隔 2个子载波; 或者, n = 9, 且所述《个参考信号 RE在频域上间隔 3个子载波; 或者, n = 4,且所述《个参考信号 RE在频域上间隔 5或 2个子载波;或者, « = 12, 且所述《个参考信号 RE在频域上间隔 1个子载波。
24、 根据权利要求 23所述的基站, 其特征在于, 所述配置 B进一步 包括:
若参考信号 RE记为 表示频域索引, /表示时域索引; 当" =6, 且所述《个参考信号 RE在频域上间隔 5个子载波时:
mod2 = 0 and Af = 15 kHz mod 2 = 1 and Af = 15 kHz
Figure imgf000060_0001
Q≤kQ≤5, -5≤a0≤5, 0≤k0+a0≤5 , m = 0,1,...,2N™DL -1; 或者, 当" =6, 且所述《个参考信号 RE在频域上间隔 3个子载波时:
if ns modi = 0 and Δ/ = 15 kHz if ns mod2 = 1 and Af = 15 kHz
Figure imgf000060_0002
0≤k0≤3, — 3≤"。≤3, 且 0≤^ + "。≤3; 二。,^…^^^101'1^— 1; 或者, 当 =6, 且所述《个参考信号 RE在频域上间隔 1个子载波时: k = 2m + k0 , / = /0 if «s mod2 = 0 and Δ = 15 kHz , 0 < ^0 < 1 , m = 0,l,...,6N™L-l; 或者
当" =8 , 且所述《个参考信号 RE在频域上间隔 2个子载波时:
k0 if /≠ /j and Af = 15 kHz if ns mod2 = 0 and Af = 15 kHz
Figure imgf000060_0003
+a。 if / = and /" = 15 kHz if ns mod2 = 1 and Af = 15 kHz
Q≤k0≤2, -2≤a0≤2, H0≤k0+a0≤2; m = 0,1,...,4N™DL -1; 或者, 当" =9, 且所述《个参考信号 RE在频域上间隔 3个子载波时: 4m + k0 if /≠ /j and Af if ns mod 2 = 0 and Af
4m + k0+ a0 if / = /; and Af
Figure imgf000061_0001
if n mod 2 = 1 and Af
0≤k0≤3, — 3≤"。≤3, 且 0≤^ + "。≤3; 二。,^…^^^101'1^— 1; 或者, 当 =4, 且所述《个参考信号 RE在频域上间隔 5个子载波时:
k0 if /≠ /; and f = 15 kHz 1。 if ns mod2 = 0 and Δ/" = 15 kHz
Figure imgf000061_0002
+ a0 if / = /j and Af = 15 kHz /j if ns mod 2 = 1 and Af = 15 kHz
0<^0<5, -5<α0<5, 0<^00<5, m = 0,1,...,2N™DL -1; 或者, 当 =4, 且所述《个参考信号 RE在频域上间隔 2个子载波时: k = 3m + k0 , / = /0 if «s mod2 = 0 and Δ = 15 kHz , 0≤k0≤2 , m = 0,l,...,4N™DL-l; 或者, 当 = 12, 且所述《个参考信号 RE在频域上间隔 1个子载波时:
if /≠ /j and Af = 15 kHz , |/0 if ns mod2 = 0 and Af = 15 kHz
Figure imgf000061_0003
if / = /j and Δ/" = 15 kHz l{ if ns mod2 = 1 and Δ/" = 15 kHz
0≤^0<1, - 1≤α0≤1, 0≤^00<1, m = 0,1,...,6N™CH'U -1 ;
其中, Δ/表示相邻子载波之间的频域间隔, 《s表示参考信号 RE 位 于无线帧中时隙的编号, 《smod2表示对 模 2操作, 表示参考符号的 编号, 和《。表示频域索引的偏置, /。、 /^W2表示参考信号 RE位于时隙 "s中 OFDM符号的编号, t≤l0≤N^m L b- 0≤/1<Ns Di-l, 0≤/2≤Ns D -1, 且 / /^ ^^,^表示所述 MBSFN子帧上承载的 PMCH的传输带宽, NS D 表示一个时隙中 OFDM符号的数目 , 表示所述 PMCH在所述 MBSFN 子帧上的起始 OFDM符号的编号。
25、 根据权利要求 21-24任一项所述的基站, 其特征在于,
所述发送单元, 还用于向所述 UE发送物理下行共享信道 PDSCH配 置信息, 所述 PDSCH配置信息用于指示所述 PDSCH在所述 MBSFN子 帧上的传输带宽。
26、 根据权利要求 21-25任一项所述的基站, 其特征在于,
所述发送单元, 还用于向所述 UE发送所述 PMCH的正交频分复用 OFDM符号信息, 所述 PMCH的 OFDM符号信息用于指示所述 PMCH 在所述 MBSFN子帧上的起始 OFDM符号为所述 MBSFN子帧的第一个 OFDM符号。
27、 根据权利要求 21-26任一项所述的基站, 其特征在于,
所述发送单元, 还用于向所述 UE 发送增强的物理下行控制信道 EPDCCH配置信息,所述 EPDCCH配置信息用于指示所述 EPDCCH在所 述 MBSFN子帧上的传输带宽。
28、 根据权利要求 21-27任一项所述的基站, 其特征在于, 所述天线配置信息用于指示所述 PMCH的天线传输方式为天线端口数大 于 1的多天线传输方式。
29、 根据权利要求 28所述的基站, 其特征在于, 所述多天线传输方 式中,所述参考信号图案采用频分复用 FDM方式或时分复用 TDM方式, 或者通过正交码 4故码分的码分复用 CDM方式。
30、 根据权利要求 21-29任一项所述的基站, 其特征在于, 所述确定 单元具体用于:
使用预设的 MBSFN子帧的子帧配置, 所述预设的 MBSFN子帧的子 帧配置基于所述基站的部署环境确定。
31、 根据权利要求 21-29任一项所述的基站, 其特征在于, 所述确定 单元具体用于:
接收网络设备发送的第二 MBSFN 配置信息, 并根据所述第二 MBSFN配置信息确定所述 MBSFN子帧的子帧配置。
32、 一种用户设备 UE , 其特征在于, 所述 UE包括: 接收单元、 确 定单元;
所述接收单元, 用于接收多媒体广播单频网络 MBSFN配置信息, 其 中, 所述 MBSFN配置信息用于指示承载物理多播信道 PMCH的 MBSFN 子帧的子帧配置, 所述子帧配置包括: 循环前缀 CP 类型、 和 /或, 参考 信号图案;
所述确定单元, 用于根据所述接收单元接收的所述 MBSFN 配置信 息, 确定所述 MBSFN子帧的子帧配置;
其中, 所述 CP类型包括: 正常 CP、 扩展 CP或其他 CP , 所述其他 CP的长度不同于所述正常 CP和扩展 CP的长度。
33、 根据权利要求 32所述的 UE, 其特征在于, 所述 MBSFN子帧的 子帧配置包括配置 A、 B中的至少一种配置:
配置 A: 所述 CP类型为正常 CP或其他 CP;
配置 B: 每个物理资源块 PRB对中, 所述参考信号图案包含"个资 源单元参考信号 RE, "为小于 18的正整数。
34、 根据权利要求 33所述的 UE, 其特征在于, 所述配置 B进一步 包括:
n = 6, 且所述《个参考信号 RE在频域上间隔 5、 3或 1个子载波; 或者,
« = 8, 且所述《个参考信号 RE在频域上间隔 2个子载波; 或者, n = 9, 且所述《个参考信号 RE在频域上间隔 3个子载波; 或者, n = 4,且所述《个参考信号 RE在频域上间隔 5或 2个子载波;或者, « = 12, 且所述《个参考信号 RE在频域上间隔 1个子载波。
35、 根据权利要求 34所述的 UE, 其特征在于, 所述配置 B进一步 包括:
所述参考信号图案中参考信号 RE的位置满足如下条件:
若参考信号 RE记为 表示频域索引, /表示时域索引; 当" =6, 且所述《个参考信号 RE在频域上间隔 5个子载波时:
mod2 = 0 and Af = 15 kHz mod 2 = 1 and Af = 15 kHz
Figure imgf000063_0001
Q≤kQ≤5, -5≤a0≤5, 0≤k0+a0≤5 , m = 0,1,...,2N™DL -1; 或者, 当" =6, 且所述《个参考信号 RE在频域上间隔 3个子载波时:
if ns modi = 0 and Δ/ = 15 kHz if ns mod2 = 1 and Af = 15 kHz
Figure imgf000063_0002
0<^0 <3, -3<a0 <3, JL0≤^0+a0<3; =。 … ^^^ — 1; 或者, 当 =6, 且所述《个参考信号 RE在频域上间隔 1个子载波时: k = 2m + k0 , / = /0 if «s mod2 = 0 and Δ = 15 kHz , 0 < ^0 < 1 , m = 0,l,...,6N™L-l; 或者
当" =8 , 且所述《个参考信号 RE在频域上间隔 2个子载波时:
k0 if /≠ /j and Af = 15 kHz if ns mod2 = 0 and f = 15 kHz
Figure imgf000064_0001
+a。 if / = and /" = 15 kHz if ns mod2 = 1 and Δ/" = 15 kHz
0<^0 <2, -2<a0 <2, 且 0≤ +αθ≤2; m = 0,1,...,4N™DL -1; 或者, 当" =9, 且所述《个参考信号 RE在频域上间隔 3个子载波时:
modi = 0 and Af = 15 kHz mod 2 = 1 and Af = 15 kHz
Figure imgf000064_0002
0≤k0≤3, — 3≤"。≤3, 且 0≤^ + "。≤3; 二。,^…^^^101'1^— 1; 或者, 当 =4, 且所述《个参考信号 RE在频域上间隔 5个子载波时:
if ns mod2 = 0 and Δ = 15 kHz if ns mod2 = 1 and Af = 15 kHz
Figure imgf000064_0003
0<^0 <5, —5≤a0≤5, 0≤/0+a0≤5 , m = 0,1,...,2N™DL -1; 或者, 当 =4, 且所述《个参考信号 RE在频域上间隔 2个子载波时: k = 3m + k0 , / = /0 if «s mod2 = 0 and Δ = 15 kHz , 0≤k0≤2 , m = 0,l,...,4N™DL-l; 或者,
当 = 12 , 且所述《个参考信号 RE在频域上间隔 1个子载波时:
^ j 2m + k0 if /≠ /; and Af = 15 kHz , |/0 if ns modi = 0 and = 15 kHz
[2m + k0+ a0 if / = /j and Δ/" = 15 kHz /j if ns mod2 = 1 and Δ/" = 15 kHz
0≤^0 <1, - 1≤α0≤1 , 0<^0+a0≤l, m = 0,1,...,6N™DL -1 ;
其中, Δ/表示相邻子载波之间的频域间隔, 《s表示参考信号 RE 位 于无线帧中时隙的编号, 《smod2表示对 模 2操作, 表示参考符号的 编号, 和 α。表示频域索引的偏置, /。、 4和/2表示参考信号 RE位于时隙 "s中 OFDM符号的编号, t≤l0≤N^m L b- 0≤/1 <Ns Di-l, 0≤/2≤Ns D -1, 且 / /^ ^^,^表示所述 MBSFN子帧上承载的 PMCH的传输带宽, NS D 表示一个时隙中 OFDM符号的数目 , 表示所述 PMCH在所述 MBSFN 子帧上的起始 OFDM符号的编号。
36、 根据权利要求 32-35任一项所述的 UE , 其特征在于, 所述接收单元, 还用于接收物理下行共享信道 PDSCH配置信息, 所 述 PDSCH配置信息用于指示所述 PDSCH在所述 MBSFN子帧上的传输 带宽;
所述确定单元,还用于根据所述接收单元接收的所述 PDSCH配置信 息, 确定所述 PD S CH在所述 MB SFN子帧上的传输带宽。
37、 根据权利要求 32-36任一项所述的 UE , 其特征在于,
所述接收单元, 还用于接收所述 PMCH的正交频分复用 OFDM符号 信息, 所述 OFDM符号信息用于指示所述 PMCH在所述 MBSFN子帧上 的起始 OFDM符号为所述 MBSFN子帧的第一个 OFDM符号;
所述确定单元, 还用于根据所述接收单元接收的所述 PMCH 的 OFDM符号信息, 确定所述 PMCH在所述 MBSFN子帧上的起始 OFDM 符号。
38、 根据权利要求 32-37任一项所述的 UE , 其特征在于,
所述接收单元, 还用于接收增强的物理下行控制信道 EPDCCH配置 信息, 所述 EPDCCH配置信息用于指示所述 EDPCCH在所述 MBSFN子 帧上的传输带宽;
所述确定单元, 还用于根据所述接收单元接收的所述 EPDCCH配置 信息, 确定所述 EPDCCH在所述 MB SFN子帧上的传输带宽。
39、 根据权利要求 32-38任一项所述的 UE , 其特征在于,
所述接收单元, 还用于接收所述 PMCH的天线配置信息, 所述天线 配置信息用于指示所述 PMCH的天线传输方式为天线端口数大于 1的多 天线传输方式;
所述确定单元, 还用于根据所述接收单元接收的所述 PMCH的天线 配置信息, 确定所述 PMCH的天线传输方式。
40、 根据权利要求 39所述的 UE , 其特征在于, 所述多天线传输方 式中,所述参考信号图案采用频分复用 FDM方式或时分复用 TDM方式, 或者通过正交码 4故码分的码分复用 CDM方式。
PCT/CN2014/076405 2014-04-28 2014-04-28 一种mbsfn配置的方法及设备 WO2015165016A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/CN2014/076405 WO2015165016A1 (zh) 2014-04-28 2014-04-28 一种mbsfn配置的方法及设备
EP14891059.9A EP3128795B1 (en) 2014-04-28 2014-04-28 Mbsfn configuration method and device
KR1020167033124A KR102027352B1 (ko) 2014-04-28 2014-04-28 Mbsfn 구성 방법 및 기기
JP2016565325A JP2017518686A (ja) 2014-04-28 2014-04-28 Mbsfn構成方法および装置
CN201480037950.XA CN105379390B (zh) 2014-04-28 2014-04-28 一种mbsfn配置的方法及设备
US15/336,491 US10536926B2 (en) 2014-04-28 2016-10-27 MBSFN configuration method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/076405 WO2015165016A1 (zh) 2014-04-28 2014-04-28 一种mbsfn配置的方法及设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/336,491 Continuation US10536926B2 (en) 2014-04-28 2016-10-27 MBSFN configuration method and device

Publications (1)

Publication Number Publication Date
WO2015165016A1 true WO2015165016A1 (zh) 2015-11-05

Family

ID=54357981

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/076405 WO2015165016A1 (zh) 2014-04-28 2014-04-28 一种mbsfn配置的方法及设备

Country Status (6)

Country Link
US (1) US10536926B2 (zh)
EP (1) EP3128795B1 (zh)
JP (1) JP2017518686A (zh)
KR (1) KR102027352B1 (zh)
CN (1) CN105379390B (zh)
WO (1) WO2015165016A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114600413A (zh) * 2019-10-18 2022-06-07 三星电子株式会社 无线通信***中用于发送控制消息的方法和装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108282318B (zh) * 2017-01-06 2020-09-22 维沃移动通信有限公司 一种传输资源的配置方法、基站及终端
US10326576B2 (en) * 2017-04-28 2019-06-18 Qualcomm Incorporated Reusing long-term evolution (LTE) reference signals for nested system operations
US11329756B2 (en) * 2018-12-12 2022-05-10 Qualcomm Incorproated Multimedia broadcast multicast services with new numerologies and reference signal patterns
US20220240056A1 (en) * 2019-06-18 2022-07-28 Telefonaktiebolaget Lm Ericsson (Publ) Mbsfn area patterns to automatically handle resource allocations without conflict
US11522744B2 (en) 2019-07-12 2022-12-06 Qualcomm Incorporated Reference signal design for cellular broadcast
KR20210120723A (ko) * 2020-03-27 2021-10-07 삼성전자주식회사 무선 통신 시스템에서 보안 mbs 통신을 위한 방법 및 장치

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101540751A (zh) * 2009-04-30 2009-09-23 北京邮电大学 用于多流数据的解调方法和***
CN101931600A (zh) * 2009-06-25 2010-12-29 中兴通讯股份有限公司 动态确定控制格式指示的装置及方法
CN102377722A (zh) * 2010-08-09 2012-03-14 财团法人工业技术研究院 用于不同无线电接入技术之间的共存的设备和方法
CN103314614A (zh) * 2011-01-07 2013-09-18 华为技术有限公司 参考信号传输和接收的方法和设备

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2395788A1 (en) * 2009-02-05 2011-12-14 Sharp Kabushiki Kaisha Wireless communication system and base station
US8369206B2 (en) * 2009-03-25 2013-02-05 Samsung Electronics Co., Ltd Cell-specific shifting of reference signals in multi-stream transmissions
CN102088434B (zh) * 2009-12-04 2015-05-13 中兴通讯股份有限公司 解调参考信号发送方法、序列生成方法及发射、接收装置
KR101740221B1 (ko) * 2010-01-18 2017-05-29 주식회사 골드피크이노베이션즈 채널상태정보-기준신호 할당 방법 및 장치
KR20140101830A (ko) * 2011-08-12 2014-08-20 인터디지탈 패튼 홀딩스, 인크 무선 시스템에서의 융통성있는 대역폭 동작을 위한 다운링크 리소스 할당
US9264249B2 (en) * 2012-03-28 2016-02-16 Qualcomm Incorporated Extending cyclic prefix length in wireless communication network having mixed carrier
US9131351B2 (en) * 2012-05-03 2015-09-08 Qualcomm Incorporated Apparatus and methods of MBMS support in new carrier type in LTE
CN103457709B (zh) * 2012-05-31 2018-05-08 中兴通讯股份有限公司 一种控制信道的发送、接收方法及基站和终端
JP6294834B2 (ja) * 2012-12-28 2018-03-14 株式会社Nttドコモ ユーザ装置、基地局、干渉低減方法、及び干渉低減制御情報通知方法
US11177919B2 (en) * 2013-01-18 2021-11-16 Texas Instruments Incorporated Methods for energy-efficient unicast and multicast transmission in a wireless communication system
US8964705B2 (en) * 2013-02-14 2015-02-24 Blackberry Limited For small cell demodulation reference signal and initial synchronization
US9325552B2 (en) * 2013-09-13 2016-04-26 Qualcomm Incorporated Extended duration cyclic prefix with low overhead for LTE broadcast

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101540751A (zh) * 2009-04-30 2009-09-23 北京邮电大学 用于多流数据的解调方法和***
CN101931600A (zh) * 2009-06-25 2010-12-29 中兴通讯股份有限公司 动态确定控制格式指示的装置及方法
CN102377722A (zh) * 2010-08-09 2012-03-14 财团法人工业技术研究院 用于不同无线电接入技术之间的共存的设备和方法
CN103314614A (zh) * 2011-01-07 2013-09-18 华为技术有限公司 参考信号传输和接收的方法和设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3128795A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114600413A (zh) * 2019-10-18 2022-06-07 三星电子株式会社 无线通信***中用于发送控制消息的方法和装置

Also Published As

Publication number Publication date
EP3128795B1 (en) 2021-07-07
US10536926B2 (en) 2020-01-14
EP3128795A1 (en) 2017-02-08
KR20160146998A (ko) 2016-12-21
JP2017518686A (ja) 2017-07-06
EP3128795A4 (en) 2017-04-19
KR102027352B1 (ko) 2019-10-01
US20170048820A1 (en) 2017-02-16
CN105379390A (zh) 2016-03-02
CN105379390B (zh) 2019-06-11

Similar Documents

Publication Publication Date Title
KR102601139B1 (ko) 협대역 업링크 단일 톤 송신들을 위한 시스템 및 방법
CN109478991A (zh) 设备到设备通信***中基于优先级的资源选择
WO2017167290A1 (zh) 一种数据传输方法、网络侧设备及终端设备
WO2015165016A1 (zh) 一种mbsfn配置的方法及设备
JP6553213B2 (ja) ユニキャスト信号とマルチキャスト信号との間の非直交多元接続
JP6445035B2 (ja) D2dチャネル測定値のためのsrsシグナリングパターン
WO2015018246A1 (zh) 一种物理下行共享信道传输的方法、***和网络侧设备
CN104322126A (zh) 确定用于d2d通信的可用资源
CN112350806B (zh) 一种被用于无线通信的节点中的方法和装置
CN108353401A (zh) 用于v2x应用的lte-d通信
WO2012006931A1 (zh) 一种csi-rs的发送方法、检测方法及其装置
CN103828282A (zh) 为增强型物理混合自动重复请求指示符信道分配资源的方法和设备
KR102130621B1 (ko) Lte에서 epdcch에 대한 tpr 관리
CN104322127A (zh) 用于向由家用演进型b节点服务的ue提供d2d***信息的方法和装置
KR102090946B1 (ko) 다중 셀 다중 사용자 업링크에 대한 기회적 간섭 정렬
CN110891252B (zh) 一种被用于无线通信的节点中的方法和装置
WO2017174018A1 (zh) 多传输点数据传输的方法及装置
WO2014135002A1 (zh) Pmch传输方法和设备
JP6509825B2 (ja) Ibe認識チャネル選択
CN112910608B (zh) 一种被用于无线通信的节点中的方法和装置
CN112713973B (zh) 一种被用于无线通信的节点中的方法和装置
CN112637810B (zh) 一种被用于无线通信的节点中的方法和装置
CA3028499A1 (en) Method for sending control information, method for receiving control information, network device, and terminal device
JP2018525923A (ja) ビークルツービークルのためのLTE(登録商標)−Direct通信
JP2015095669A (ja) 端末装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14891059

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016565325

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014891059

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014891059

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20167033124

Country of ref document: KR

Kind code of ref document: A