WO2015163398A1 - Negative electrode active substance for non-aqueous electrolyte secondary batteries - Google Patents

Negative electrode active substance for non-aqueous electrolyte secondary batteries Download PDF

Info

Publication number
WO2015163398A1
WO2015163398A1 PCT/JP2015/062353 JP2015062353W WO2015163398A1 WO 2015163398 A1 WO2015163398 A1 WO 2015163398A1 JP 2015062353 W JP2015062353 W JP 2015062353W WO 2015163398 A1 WO2015163398 A1 WO 2015163398A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
negative electrode
electrode active
silicon
electrolyte secondary
Prior art date
Application number
PCT/JP2015/062353
Other languages
French (fr)
Japanese (ja)
Inventor
井上 大輔
蔭井 慎也
成紀 徳地
Original Assignee
三井金属鉱業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井金属鉱業株式会社 filed Critical 三井金属鉱業株式会社
Publication of WO2015163398A1 publication Critical patent/WO2015163398A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a negative electrode active material that can be used in a non-aqueous electrolyte secondary battery such as a lithium secondary battery.
  • the negative electrode of a non-aqueous electrolyte secondary battery is generally prepared by mixing active material particles made of a material capable of inserting lithium ions by charging with a binder, a conductive material, and a solvent, and collecting the resulting mixture. It is manufactured by applying to the surface of the body and drying to form a coating film, followed by pressing.
  • the silicon-based active material has a potential that the capacity per mass is 5 to 10 times that of graphite.
  • the electron conductivity is not high as compared with graphite. Therefore, conventionally, in order to increase the electronic conductivity of the silicon-based active material, for example, the addition of a conductive additive for the purpose of imparting the electronic conductivity between the current collector and the active material has been proposed.
  • Patent Document 1 proposes that metal material particles having a particle size of 0.0005 to 10 ⁇ m be adhered to the surface of silicon-based active material particles.
  • Patent Document 2 proposes that the core particles containing silicon are covered with a silicon solid solution such as Mg 2 Si, CoSi, NiSi, and the surface is further covered with a conductive material such as graphite or acetylene black. ing.
  • the silicon-based active material also has a large volume change due to the insertion and desorption of lithium ions, it tends to fall off the active material layer with repeated charge and discharge, resulting in cycle deterioration and a decrease in energy density. There is also a problem that the battery performance is lowered and the safety of the battery is lowered.
  • the present applicant first comprises an active material layer containing active material particles, and deposits a metal material having a low ability to form a lithium compound between the particles by electrolytic plating, It has been proposed to coat the surface of the active material layer continuously or discontinuously with a surface layer made of the same metal material as the metal material (Patent Document 3).
  • Patent Document 4 relates to active material particles containing silicon and / or a silicon alloy.
  • the active material particles have an average particle size of 1 ⁇ m to 10 ⁇ m and a particle size distribution of 60 volumes within a range of 1 ⁇ m to 10 ⁇ m.
  • % Particle size distribution suppresses an increase in contact resistance between the active material particles due to expansion / contraction of the volume of the active material particles due to insertion / extraction of lithium due to charge / discharge. Is described.
  • Patent Document 5 relates to a negative electrode active material containing silicon particles, in which the average particle size is in the range of 7.5 to 15 ⁇ m, and the particle size distribution includes 60% by volume or more in the range of ⁇ 40% of the average particle size. That the active material particles have is disclosed. By setting the average particle diameter of the active material particles to 7.5 ⁇ m or more, the number of particles per volume existing in the thickness direction of the active material layer is reduced. Therefore, it is disclosed that good current collecting property can be obtained.
  • Patent Document 6 discloses active material particles having an average particle diameter of 5 ⁇ m or more and 25 ⁇ m or less with respect to active material particles containing silicon. By making the average particle diameter of the active material particles 5 ⁇ m or more, the original active material particles are disclosed. The specific surface area of the substance can be reduced. This describes that the contact area between the electrolyte and the new active material surface can be reduced, so that the effect of improving the cycle characteristics and the effect of suppressing the expansion of the active material are increased.
  • the cycle characteristics it is conceivable to improve the reactivity of the particles by reducing the particle size of the silicon-based active material.
  • the silicon-based active material particles are simply made smaller, the particles are likely to aggregate in the slurry during electrode preparation, which not only deteriorates handling properties but also requires an increase in the amount of binder and conductive auxiliary agent. May occur and the capacity per unit volume may decrease.
  • the present invention provides a new negative electrode for a non-aqueous electrolyte secondary battery that can improve the cycle characteristics of the battery without simply reducing the particle size of the silicon-based active material. .
  • the present invention is a negative electrode active material for a non-aqueous electrolyte secondary battery containing silicon and having a D50 of 0.01 ⁇ m to 3.3 based on a volume-based particle size distribution obtained by measurement by a laser diffraction scattering particle size distribution measurement method.
  • a negative electrode active material for a nonaqueous electrolyte secondary battery is proposed, which is 0 ⁇ m and D100 / D50 is 5.0 or less.
  • the present invention does not simply reduce the particle size of the negative electrode active material, but controls D50 and D100 / D50 based on the volume-based particle size distribution, in other words, the particle size of coarse particles does not increase. By controlling, the problem due to the stress inside the electrode could be solved. That is, the stress of the negative electrode active material layer during charge / discharge can be averaged, and the isolation and non-uniformity of the particles can be suppressed, thereby succeeding in further improving the cycle characteristics of the battery.
  • the negative electrode active material for a non-aqueous electrolyte secondary battery according to an example of this embodiment (hereinafter referred to as “the present negative electrode active material”) is a negative electrode active material containing silicon.
  • This negative electrode active material for example, pure silicon, SiO and SiO 2 such as silicon oxide, SiB 4 and SiB 6, Cu 5 Si, FeSi 2, Mg 2 silicon alloy such as Si, more Si 3 N 4 and SiC, etc. It can be composed of silicon-containing materials such as silicon compounds.
  • these silicon oxide, silicon alloy and silicon compound contain one or more elements of the group consisting of Ni, B, P, Co, Ti, Fe, In, Ag, Cu and Nb. It is meant to include those that are. In that case, you may contain in what state, for example, you may contain in the state dissolved.
  • the negative electrode active material also includes transition metal elements, group 13 metalloid elements (for example, B) or metal elements (for example, Al), group 14 (but excluding silicon) metalloid elements or metal elements, and group 15 nonmetal elements.
  • One or two or more elements in the group consisting of metals or metalloid elements may be contained in the silicon-containing substance.
  • the additive element may be a solid solution in a silicon-containing substance (referred to as “silicon solid solution”).
  • silicon solid solution a silicon-containing substance
  • the mixture of such a silicon solid solution and said silicon-containing substance may be sufficient.
  • the element is one or more of the group consisting of B, Al, P, Fe, Ni, Cu, Co, Ti, Nb, and Ag.
  • one or more of the group consisting of B, Al, P, Fe, Ni and Ti is more preferable.
  • the side reaction of the electrolyte solution on the negative electrode active material is mainly an electrophilic reaction, it can be considered that the side reaction is reduced by the presence of many holes in the negative electrode active material.
  • the content of the additive element is 0.01 atomic% to 10 atomic%, particularly 1 atomic% or more or 6 atomic% or less, Among these, the content is preferably 1 atomic% or more or 3 atomic% or less.
  • Such a numerical value is considerably higher than usual and covers a range exceeding the theoretical value.
  • it can be realized by atomizing by a steam explosion atomizing method described later or by atomizing by a water atomizing method. However, it is not limited to this method.
  • the additive element such as boron (B) is dissolved, it is preferable to precipitate the additive element at the grain boundary by heat treatment in terms of improving battery characteristics.
  • the negative electrode active material may be composed of the silicon-containing material, may be composed of the silicon solid solution, or may be composed of the silicon solid solution and the silicon-containing material. It may consist of a mixture. Furthermore, you may consist of a mixture of these and a silicon alloy.
  • examples of the silicon alloy include an alloy of silicon and a transition metal, and examples of the transition metal include Fe, Ni, Ti, Co, and Cu. Further, an alloy of silicon and Nb may be used.
  • the particle shape of the negative electrode active material is not particularly limited.
  • a spherical shape, a polyhedral shape, a spindle shape, a plate shape, a scale shape, an amorphous shape, or a combination thereof can be used.
  • the laser diffraction / scattering particle size distribution measurement method is a measurement method in which agglomerated particles are regarded as one particle (aggregated particle) and the particle size is calculated. Therefore, D10, D50, and D100 based on the volume-based particle size distribution obtained by measurement by the laser diffraction / scattering particle size distribution measurement method are the finer ones in the cumulative percentage notation of the particle size measurement value converted into the volume in the volume-based particle size distribution chart. Mean diameters of 10%, 50% and 100%.
  • D50 of the present negative electrode active material is preferably 0.01 ⁇ m to 3.0 ⁇ m, more preferably 0.05 ⁇ m or more and 2.8 ⁇ m or less, and particularly preferably 0.10 ⁇ m or more or 2.70 ⁇ m or less. .
  • the D50 of the present negative electrode active material is within such a range, not only can the reactivity of the negative electrode active material particles be increased to improve the cycle characteristics, but also the uniform reactivity of the electrode can be improved, and the cycle characteristics can be improved. Can be increased. Furthermore, a decrease in volume energy density can be suppressed.
  • the ratio of D100 to D50 is preferably 5.0 or less, more preferably 4.5 or less, and even more preferably 4.0 or less.
  • D50 and D100 / D50 by volume-based particle size distribution, in other words, by controlling so that the particle size of coarse particles does not increase, the stress of the negative electrode active material layer during charge and discharge can be averaged, Isolation and non-uniformity of the particles can be suppressed, and thereby the cycle characteristics of the battery can be further improved.
  • the ratio of D10 to D50 is preferably 0.1 to 0.9, more preferably 0.3 or more and 0.8 or less, and particularly 0.4 or more. Or it is more preferable that it is 0.6 or less.
  • the electrolytic solution reacts with silicon during repeated charging and discharging to produce a corrosion product, resulting in an increase in electrical resistance, cycle characteristics and output.
  • the characteristics deteriorated.
  • the particle size is low, that is, the presence of fine particles increases, the reactivity of the particles improves, but at the same time, the electrolytic solution and silicon react with each other to generate a corrosion product. Therefore, by controlling D10 / D50 at the same time as D100 / D50 so that the particle size of the fine particles does not become small, and by incorporating boron or the like, the problem caused by such corrosion deposits can be solved. .
  • the pulverization conditions such as selection of pulverized raw material particle size, media diameter, circulation flow rate, slurry concentration, etc. are adjusted in pulverization, or classification conditions are changed. You can adjust it. However, it is not limited to these methods.
  • This negative electrode active material is, for example, a silicon-containing material, or a silicon-containing material and a transition metal, a group 13 semimetal or metal, a group 14 metal (except silicon), or a group 15 metal.
  • the negative electrode active material D50 is obtained by using a medium and a step of preparing a negative electrode active material by a method of atomizing or liquid quenching a mixture of one or two or more of the group consisting of non-metals or metalloids. And a step of pulverizing so that D100 / D50 is 5.0 or less. However, it is not limited to this manufacturing method.
  • the silicon-containing material is heated to obtain a melt, or the silicon-containing material is mixed with the additive element and heated to obtain a melt, or
  • the negative electrode active material may be prepared by heating the silicon-containing material to obtain a melt, mixing the additive element with the melt, and atomizing the melt by an atomizing method or a liquid quenching method.
  • the pressure wave generated by causing boiling by spontaneous nucleation is dropped into the cooling medium. It is preferable to employ a method of atomizing molten metal (this atomization method is referred to as “steam explosion atomization method” in this specification) or a single roll quenching method. However, it is not limited to such an atomizing method.
  • a liquid medium such as water or a dispersant is added and wet mixed to form a slurry, and the resulting slurry is wet pulverized using a medium such as zirconia or alumina, or non-
  • a cyclone method or sieve classification is performed in an oxygen atmosphere, and pulverization and classification may be performed so that D50 is 0.01 to 3.0 ⁇ m and D100 / D50 is 5.0 or less.
  • a bead mill may be used so that D50 is 0.01 to 3.0 ⁇ m and D100 / D50 is 5.0 or less.
  • a drying step may be performed after the above pulverization classification step.
  • drying is preferably performed in a non-oxygen atmosphere for 1 hour to 10 hours, particularly 1 hour to 5 hours.
  • the drying temperature is preferably 100 ° C. to 400 ° C., particularly 60 ° C. higher than the boiling point of the solvent used.
  • the negative electrode according to the present embodiment includes a coating film including the negative electrode active material, a binder, a conductive material as necessary, and graphite as the negative electrode active material as necessary.
  • binder any of polyimide, polyamide, and polyamideimide may be used. These may be used singly or in combination of two or more (hereinafter collectively referred to as “polyimide etc.”). Furthermore, you may use together binders other than these further.
  • polyimide Commercially available products can be used as the polyimide and the like.
  • a polyamide having a glass transition point Tg of 200 to 400 ° C it is preferable to use a polyamideimide having a glass transition point Tg of 200 to 400 ° C.
  • the polyimide or the like is preferably fixed to at least a part of the surface of the negative electrode active material particles (hereinafter simply referred to as “negative electrode active material particles” when simply referred to as “active material particles”).
  • a particularly preferable form of fixing of polyimide or the like is a form in which the surface of the active material particles is fixed in a planar shape with at least a part of the surface.
  • “Surface shape” is synonymous with film shape, and is in a state opposite to a state in which dots are scattered.
  • “adhesion” refers to bonding in a state where a mechanical bonding force (for example, an anchor effect such as engagement or fitting) or a chemical bonding force is generated between the active material particles and polyimide. The state where the active material particles and polyimide are simply mixed and both are in contact with each other as a result is not “fixed”.
  • a method for fixing polyimide or the like on the surface of the active material particles in a planar shape will be described later.
  • the polyimide or the like does not cover the entire surface of the active material particles, but is preferably fixed to the surface in such a manner that a portion where the polyimide or the like is not fixed remains on the surface of the active material particles. . It is preferable that adjacent active material particles are in contact with each other at a portion where polyimide or the like is not fixed, and polyimide or the like is fixed and connected around the contact point. Thus, the electronic conductivity can be ensured by bringing the active material particles into contact with each other through a portion where polyimide or the like is not fixed.
  • the polyimide, etc., fixed in a planar shape to the surface of the active material particles are integrally connected via a connecting portion made of polyimide, etc., fixed to the surface of another active material adjacent to the particle.
  • a connecting portion made of polyimide, etc. fixed to the surface of another active material adjacent to the particle.
  • the active material particles are in contact with adjacent particles, and polyimide or the like fixed around the contact point is connected to each other to form a connected portion.
  • the connecting portion made of polyimide or the like can be stretched while maintaining a fixed state with the particles. This effectively prevents the active material particles from falling off the active material layer due to expansion, and improves the charge / discharge cycle characteristics.
  • This also contributes to suppression of an increase in battery thickness associated with charging.
  • the suppression of the increase in the thickness of the battery accompanying charging is particularly effective when the negative electrode of the present invention is applied to a battery used in a situation where the battery accommodation space is limited, such as a battery for a mobile phone.
  • the connection site can also contract as the particles contract.
  • the connection part which consists of polyimides etc. has connected active material particle
  • the plurality of active material particles are connected in a bead shape via the connecting part.
  • the beaded connection may be linear or meandering.
  • the beaded connection may literally be annular or non-annular.
  • the bead-like connection may be a single line or a branched aspect.
  • the ratio of polyimide or the like contained in the active material layer is preferably 1 to 15% by mass, more preferably 2% by mass or more and 10% by mass or less, based on the mass of the active material particles.
  • the proportion of polyimide or the like contained in the active material layer can be measured by the following method. Since the negative electrode of the present invention does not contain organic substances other than polyimide and the like, the mass of elements other than organic substances contained in the negative electrode from the mass of the negative electrode, that is, Si, Cu, Al, Fe, Ca, F, P, C, etc.
  • the mass of the organic material By subtracting the mass of the inorganic material, the mass of the organic material can be obtained, and the mass of the organic material can be divided by the mass of the active material layer to calculate the proportion of polyimide or the like contained in the active material layer. Specifically, first, the mass of the negative electrode is measured. Further, the active material layer is removed from the negative electrode, and the mass of the current collector is measured. Next, the negative electrode is completely dissolved, and the total mass of the inorganic substance is measured using an ICP emission analyzer. Then, the total mass of the inorganic substance is subtracted from the mass of the negative electrode to calculate the mass of the organic substance.
  • the mass of the constituent material other than the current collector is calculated out of the total mass of the inorganic material, and the mass of the active material layer is calculated by adding the calculated value and the mass of the organic material.
  • the ratio of the polyimide etc. which are contained in an active material layer is computable by dividing the mass of organic substance by the mass of an active material layer, and also multiplying by 100.
  • the conductive material for example, metal fine powder, powder of conductive carbon material such as acetylene black, or the like can be used.
  • metal fine powder powder of conductive carbon material such as acetylene black, or the like can be used.
  • fine powder such as a metal having lithium ion conductivity such as Sn, Zn, Ag and In or an alloy of these metals.
  • the content of the binder is preferably 1 to 15 parts by mass, particularly 2 parts by mass or more and 10 parts by mass or less with respect to 100 parts by mass of the present negative electrode active material.
  • the content of the conductive material is preferably 1 to 10 parts by weight, particularly 2 parts by weight or more and 5 parts by weight or less with respect to 100 parts by weight of the present negative electrode active material.
  • graphite is blended as the negative electrode active material, the graphite content is such that the mixing mass ratio of the negative electrode active material and graphite is 0.5: 95 to 50:50, particularly 10:90. preferable.
  • the negative electrode is prepared by mixing the negative electrode active material (particulate), a binder, a conductive material, and a solvent to prepare a negative electrode mixture.
  • the negative electrode mixture is applied to the surface of a current collector made of Cu or the like.
  • the negative electrode active material layer can be formed by coating and drying, and then the active material layer can be pressed as necessary.
  • Drying after applying the negative electrode mixture to the surface of the current collector is preferably performed in a non-oxygen atmosphere, such as an argon atmosphere, for 1 hour to 10 hours, particularly 1 hour to 7 hours.
  • a non-oxygen atmosphere such as an argon atmosphere
  • the manufacturing method of this negative electrode at the time of using a polyimide as a binder is demonstrated.
  • the negative electrode active material particle
  • a polyimide precursor compound an organic solvent such as N-methyl-2-pyrrolidone
  • a conductive material such as metal fine powder or acetylene black
  • a negative electrode mixture is prepared, and this negative electrode mixture is applied to the surface of a current collector made of Cu or the like.
  • a polyamic acid polyamide acid
  • a polyimide precursor compound can be used as a polyimide precursor compound.
  • the precursor compound of a polyimide can be polymerized and it can be set as a polyimide.
  • polyimide can be fixed in a planar shape on the surface of the active material particles, and the active material is connected in a bead shape through a connecting portion made of polyimide. Can do.
  • the first-stage heating is preferably performed at 100 to 150 ° C.
  • the second-stage heating is preferably performed at 200 to 400 ° C.
  • the heating time of the first stage is equal to or longer than the heating time of the second stage.
  • a heating temperature intermediate between the first and second stages in the above-described two-stage heating is preferably performed at 150 to 190 ° C.
  • the heating time is preferably the same as the time of the first stage and the second stage or a time intermediate between the first stage and the second stage. That is, when performing heating in three stages, it is preferable that the heating time be the same in each stage, or that the heating time be shortened as the stages progress. Furthermore, when performing heating of 4 steps
  • heating is preferably performed in an inert atmosphere such as argon.
  • an inert atmosphere such as argon.
  • the organic solvent contained in the negative electrode mixture can be gradually volatilized, whereby the precursor compound of the polyamide can be made sufficiently high molecular weight, and the active material Polyimide can be fixed over a wide range of the particle surface, and a three-dimensional network void can be formed in the active material layer over the entire thickness direction.
  • heat treatment can be performed in the same manner as the polyimide described above.
  • a negative electrode mixture containing polyamide or polyamideimide and active material particles is applied to the surface of the current collector, and then Tg-100 ° C. to Tg + 100 ° C. (where Tg is polyamide or
  • the active material layer is preferably formed by drying the coating film in a temperature range of (representing the glass transition point of polyamideimide), particularly in the temperature range of Tg-100 ° C. to Tg.
  • the further improvement of the cycle characteristics becomes even more remarkable when the above-mentioned drying is performed in the temperature range of Tg-50 ° C. to Tg + 50 ° C., particularly Tg-50 ° C. to Tg.
  • the glass transition point of polyamide or polyamideimide is measured by using TG-DTA6200 (manufactured by SII Co., Ltd.) under an argon atmosphere and setting the scanning speed to 5 ° C./min.
  • the non-aqueous electrolyte secondary battery (referred to as “the present secondary battery”) according to the present embodiment can be composed of a negative electrode, a positive electrode, a separator, a non-aqueous electrolyte, and the like.
  • the positive electrode is formed, for example, by forming a positive electrode active material layer on at least one surface of a current collector.
  • the positive electrode active material layer contains a positive electrode active material.
  • a positive electrode active material what is conventionally known in the said technical field can be especially used without a restriction
  • various lithium transition metal composite oxides can be used. Examples of such a material include LiCoO 2 , LiNiO 2 , LiMnO 2 , LiMn 2 O 4 , LiCo 1/3 Ni 1/3 Mn 1/3 O 2 , LiCo 0.5 Ni 0.5 O 2 , LiNi 0.7 Co 0.2 Mn 0.1.
  • a synthetic resin nonwoven fabric As the separator used together with the negative electrode and the positive electrode, a synthetic resin nonwoven fabric, a polyolefin such as polyethylene or polypropylene, or a polytetrafluoroethylene porous film is preferably used.
  • the nonaqueous electrolytic solution is a solution in which a lithium salt as a supporting electrolyte is dissolved in an organic solvent.
  • organic solvent include carbonate organic solvents such as ethylene carbonate, propylene carbonate, dimethyl carbonate, methyl ethyl carbonate, and diethyl carbonate, fluorine organic solvents obtained by fluorinating a part of the carbonate organic solvent such as fluoroethylene carbonate, and the like.
  • One type or a combination of two or more types is used. Specifically, fluoroethylene carbonate, diethyl fluorocarbonate, dimethyl fluorocarbonate, or the like can be used.
  • the lithium salt CF 3 SO 3 Li, ( CF 3 SO 2) NLi, (C 2 F 5 SO 2) 2 NLi, LiClO 4, LiA1Cl 4, LiPF 6, LiAsF 6, LiSbF 6, LiCl, LiBr, LiI And LiC 4 F 9 SO 3 .
  • These can be used alone or in combination of two or more.
  • Example 1 (1) Production of negative electrode active material Each ingot of silicon (Si) and boron (B) was mixed and then heated and melted. The melt heated to 1600 ° C. was subjected to steam explosion atomization using the apparatus described in FIG. 2 of WO 01/081033 pamphlet. At this time, the inner diameter of the cylindrical mixing nozzle 2 was 2.0 mm, and the amount of the refrigerant swirling in the mixing nozzle was 100 L / min. Room temperature water was used as the refrigerant. The molten liquid was dropped into the mixing nozzle 2 by 13 g (free fall) to obtain a powder. The cooling rate at this time was estimated to be 10 6 K / s to 10 8 K / s. The solid solution amount of boron was 2 atomic% with respect to 100 atomic% of silicon.
  • the negative electrode mixture prepared as described above was applied on one side so as to have a coating thickness of 12 ⁇ m on the electrolytic copper foil. Subsequently, the coating film was heated in a reduced pressure argon atmosphere to polymerize the precursor compound, thereby preparing a negative electrode. The heating was performed in four stages. The first stage heating was performed at 120 ° C. for 4 hours, the second stage heating was performed at 150 ° C. for 1 hour, the third stage heating was performed at 200 ° C. for 1 hour, and the fourth stage heating was performed at 300 ° C. for 1 hour. During the heating, the current collector on which the coating film was formed was sandwiched between two glass plates.
  • Example 2 Production of negative electrode active material Each ingot of silicon (Si) and boron (B) was mixed and then heated and melted. The melt heated to 1600 ° C. was processed by a single roll method using a liquid rapid solidification apparatus (Nisshin Giken Co., Ltd. “NEV-A30 type”) to obtain flakes. At this time, the tapping diameter of the crucible was 1.0 mm ⁇ 6, the gap between the tapping port and the copper roll was 1 mm, and the rotation speed of the copper roll was 1500 rpm.
  • a liquid rapid solidification apparatus Nishin Giken Co., Ltd. “NEV-A30 type
  • the obtained flakes were put in a mill pot, pulverized for 20 minutes with a vibration mill (model 1033-200, manufactured by Yoshida Seisakusho), sieved with a 45 ⁇ m sieve, and the powder under the sieve was collected to obtain a powder.
  • the solid solution amount of boron was 2 atomic% with respect to 100 atomic% of silicon.
  • Example 3 (1) Production of negative electrode active material In Example 1, instead of mixing 400 g of ethanol with 100 g of powder, 43 g of N-methyl-2-pyrrolidone was mixed with 100 g of powder, and the processing time for wet grinding was 15 Changed from 150 minutes to 150 minutes. Except for this, a negative electrode active material powder was obtained in the same manner as in Example 1. D50 of the obtained negative electrode active material powder was 0.6 ⁇ m, D100 / D50 was 3.2, and D10 / D50 was 0.5.
  • Example 4 (1) Production of negative electrode active material Each ingot of silicon (Si) and titanium (Ti) was mixed and then heated and melted. The melt heated to 1600 ° C. was subjected to steam explosion atomization using the apparatus described in FIG. 2 of WO 01/081033 pamphlet. At this time, the inner diameter of the cylindrical mixing nozzle 2 was 2.0 mm, and the amount of the refrigerant swirling in the mixing nozzle was 100 L / min. Room temperature water was used as the refrigerant. The molten liquid was dropped into the mixing nozzle 2 by 13 g (free fall) to obtain a powder. In the obtained powder, the solid solution amount of Ti was 5 atomic% with respect to 100 atomic% of silicon.
  • Example 5 Production of negative electrode active material
  • Si silicon
  • Al aluminum
  • the melt heated to 1600 ° C. was subjected to steam explosion atomization using the apparatus described in FIG. 2 of WO 01/081033 pamphlet.
  • the inner diameter of the cylindrical mixing nozzle 2 was 2.0 mm, and the amount of the refrigerant swirling in the mixing nozzle was 100 L / min.
  • Room temperature water was used as the refrigerant.
  • the molten liquid was dropped into the mixing nozzle 2 by 13 g (free fall) to obtain a powder.
  • the solid solution amount of Al was 5 atomic% with respect to 100 atomic% of silicon.
  • Example 6 Production of negative electrode active material Silicon (Si) powder was heated and melted. The melt heated to 1600 ° C. was subjected to steam explosion atomization using the apparatus described in FIG. 2 of WO 01/081033 pamphlet. At this time, the inner diameter of the cylindrical mixing nozzle 2 was 2.0 mm, and the amount of the refrigerant swirling in the mixing nozzle was 100 L / min. Room temperature water was used as the refrigerant. 13 g of the molten liquid was dropped into the mixing nozzle 2 (free fall) to obtain a powder.
  • Si negative electrode active material Silicon
  • the media diameter is 0.5 mm ⁇ , and the feed rate is 100 g / min.
  • a negative electrode active material powder was obtained in the same manner as in Example 1 except that the treatment time was changed to 15 minutes. D50 of the negative electrode active material powder at this time was 2.6 ⁇ m, D100 / D50 was 8.5, and D10 / D50 was 0.3.
  • ⁇ Comparative example 2> Production of negative electrode active material In the wet pulverization step of Example 1, except that the media diameter was 0.5 mm ⁇ , the peripheral speed was 4 m / s, the liquid feed amount was 250 g / min, and the pulverization time was changed to 5 minutes. In the same manner as in Example 1, a negative electrode active material powder was obtained. D50 of the obtained negative electrode active material powder was 4.6 micrometers, D100 / D50 was 4.8, D10 / D50 was 0.4.
  • Lithium secondary batteries were prepared using the negative electrodes obtained in the examples and comparative examples, and the cycle characteristics when charging and discharging were repeated were measured.
  • an electrolytic solution a solution obtained by dissolving 1 mol / l LiPF 6 in a 1: 1 volume ratio mixed solvent of ethylene carbonate and diethyl carbonate was used. A polypropylene porous film was used as the separator. The obtained negative electrode was punched into a circle having a diameter of 14 mm and vacuum-dried at 160 ° C. for 6 hours. Then, a 2032 coin cell was assembled in a glove box under an argon atmosphere. Metal lithium was used as the counter electrode. As an electrolytic solution, a solution of 1 mol / L LiPF 6 dissolved in a 1: 1 volume ratio mixed solvent of ethylene carbonate and diethyl carbonate was used. A polypropylene porous film was used as the separator.
  • Example 1 to 6 and Comparative Examples 1 and 2 6.47 mA was set to 1C. Based on the current value of 1C, the current value of each C rate was calculated and used to evaluate the capacity retention rate.
  • charge / discharge is controlled by controlling D50 and D100 / D50 by volume-based particle size distribution, in other words, by controlling so that the particle size of coarse particles does not increase. It was found that the stress of the negative electrode active material layer inside can be averaged, and the isolation and non-uniformity of the particles can be suppressed, thereby further improving the cycle characteristics of the battery.
  • a silicon-containing material as a negative electrode active material, a transition metal element, a group 13 metalloid element or metal element, a group 14 metal element or metal element (excluding silicon), and a group 15 nonmetal or metalloid
  • the cycle characteristics can be similar or better. Inferred to be possible.

Abstract

A novel negative electrode active substance for non-aqueous electrolyte secondary batteries, that contains silicon as a novel negative electrode for non-aqueous electrolyte secondary batteries, is capable of improving cycle characteristics of batteries without simply reducing the particle diameter of a silicon-based active substance, and is characterized by: the D50 being 0.01-3.0 µm, according to a volume-based particle size distribution measured and obtained by a laser diffraction/scattering particle size distribution measuring method; and D100/D50 being no more than 5.0.

Description

非水電解液二次電池用負極活物質Anode active material for non-aqueous electrolyte secondary battery
 本発明は、リチウム二次電池等の非水電解液二次電池に用いることのできる負極活物質に関する。 The present invention relates to a negative electrode active material that can be used in a non-aqueous electrolyte secondary battery such as a lithium secondary battery.
 非水電解液二次電池の負極は、一般的に、充電によってリチウムイオンを挿入可能な材料からなる活物質の粒子を、バインダー、導電材及び溶剤と混合し、得られた合剤を集電体の表面に塗布して乾燥させて塗膜とし、更にプレス加工を施して製造されている。 The negative electrode of a non-aqueous electrolyte secondary battery is generally prepared by mixing active material particles made of a material capable of inserting lithium ions by charging with a binder, a conductive material, and a solvent, and collecting the resulting mixture. It is manufactured by applying to the surface of the body and drying to form a coating film, followed by pressing.
 近年、電気自動車やスマートフォンといったアプリケーションの発達に伴い、電池の高容量化や高寿命化がさらに望まれている。現在、市販されている電池の負極は、そのほとんどがグラファイトを負極活物質として使っているが、容量の面ではすでに理論限界に至っており、新たな負極活物質の開発が必要とされている。その有力候補の一つとして挙げられるのが、ケイ素を含有する活物質(「ケイ素系活物質」とも称する)である。 In recent years, with the development of applications such as electric vehicles and smartphones, it is further desired to increase the capacity and life of batteries. At present, most of the negative electrodes of commercially available batteries use graphite as a negative electrode active material, but the capacity has already reached the theoretical limit, and the development of a new negative electrode active material is required. One of the promising candidates is an active material containing silicon (also referred to as “silicon-based active material”).
 ケイ素系活物質は、質量当たりの容量がグラファイトの5~10倍というポテンシャルを有している。しかしその反面、グラファイトと比べて電子伝導性が高くないという課題を有している。そこで従来、ケイ素系活物質の電子伝導性を高めるために、例えば集電体と活物質との間の電子伝導性を付与する目的で導電助剤を添加することなどが提案されている。
 例えば特許文献1においては、ケイ素系活物質粒子の表面に粒径0.0005~10μmの金属材料の粒子を付着させることが提案されている。
 また、特許文献2では、ケイ素を含む核粒子の周囲をMg2Si、CoSi、NiSi等のケイ素固溶体によって被覆し、更にその表面を黒鉛やアセチレンブラック等の導電性材料で被覆することが提案されている。
The silicon-based active material has a potential that the capacity per mass is 5 to 10 times that of graphite. On the other hand, however, there is a problem that the electron conductivity is not high as compared with graphite. Therefore, conventionally, in order to increase the electronic conductivity of the silicon-based active material, for example, the addition of a conductive additive for the purpose of imparting the electronic conductivity between the current collector and the active material has been proposed.
For example, Patent Document 1 proposes that metal material particles having a particle size of 0.0005 to 10 μm be adhered to the surface of silicon-based active material particles.
Patent Document 2 proposes that the core particles containing silicon are covered with a silicon solid solution such as Mg 2 Si, CoSi, NiSi, and the surface is further covered with a conductive material such as graphite or acetylene black. ing.
 ケイ素系活物質はまた、リチウムイオンの挿入脱離による体積変化が大きいことから、充放電を繰り返すにつれて活物質層からの脱落が起こりやすく、結果的にサイクルの劣化やエネルギー密度の減少を引き起こし、電池性能が低下し、また、電池の安全性が低下するという課題も抱えている。
 この課題を解消するための手段として、本出願人は先に、活物質の粒子を含む活物質層を備え、該粒子間にリチウム化合物の形成能の低い金属材料を電解めっきによって析出させて、該活物質層の表面を、該金属材料と同種の金属材料からなる表面層によって連続に又は不連続に被覆することを提案している(特許文献3)。
Since the silicon-based active material also has a large volume change due to the insertion and desorption of lithium ions, it tends to fall off the active material layer with repeated charge and discharge, resulting in cycle deterioration and a decrease in energy density. There is also a problem that the battery performance is lowered and the safety of the battery is lowered.
As a means for solving this problem, the present applicant first comprises an active material layer containing active material particles, and deposits a metal material having a low ability to form a lithium compound between the particles by electrolytic plating, It has been proposed to coat the surface of the active material layer continuously or discontinuously with a surface layer made of the same metal material as the metal material (Patent Document 3).
 また、ケイ素系活物質に関しては、粒度分布や粒径をコントロールすることにより、電池特性を高める旨の提案がなされている。
 例えば特許文献4には、ケイ素及び/またはケイ素合金を含む活物質粒子に関し、活物質粒子の平均粒径を1μm以上10μm以下とし、かつその粒度分布を粒径1μm以上10μm以下の範囲に60体積%以上が存在する粒度分布とすることにより、充放電によるリチウムの吸蔵・放出に伴い活物質粒子の体積が膨張・収縮することによって、活物質粒子間の接触抵抗が増加するのを抑制する旨が記載されている。
Further, regarding silicon-based active materials, proposals have been made to improve battery characteristics by controlling the particle size distribution and particle size.
For example, Patent Document 4 relates to active material particles containing silicon and / or a silicon alloy. The active material particles have an average particle size of 1 μm to 10 μm and a particle size distribution of 60 volumes within a range of 1 μm to 10 μm. % Particle size distribution suppresses an increase in contact resistance between the active material particles due to expansion / contraction of the volume of the active material particles due to insertion / extraction of lithium due to charge / discharge. Is described.
 特許文献5には、ケイ素粒子を含む負極活物質に関し、平均粒径が7.5~15μmの範囲内であり、平均粒径の±40%の範囲内に60体積%以上が存在する粒度分布を活物質粒子が有するものが開示されている。活物質粒子の平均粒径を7.5μm以上とすることにより、活物質層の厚み方向に存在する体積あたりの粒子の数が少なくなるため、集電性を得るために接触させるべき粒子の数が少なくなるので、良好な集電性を得ることができる旨が開示されている。 Patent Document 5 relates to a negative electrode active material containing silicon particles, in which the average particle size is in the range of 7.5 to 15 μm, and the particle size distribution includes 60% by volume or more in the range of ± 40% of the average particle size. That the active material particles have is disclosed. By setting the average particle diameter of the active material particles to 7.5 μm or more, the number of particles per volume existing in the thickness direction of the active material layer is reduced. Therefore, it is disclosed that good current collecting property can be obtained.
 特許文献6には、ケイ素を含む活物質粒子に関し、平均粒径が5μm以上25μm以下の活物質粒子が開示されており、活物質粒子の平均粒径を5μm以上とすることで、元々の活物質の比表面積を低減できる。これにより電解質と活物質新生面の接触面積を低減できるため、サイクル特性の向上効果及び活物質膨化の抑制効果が大きくなる旨が記載されている。 Patent Document 6 discloses active material particles having an average particle diameter of 5 μm or more and 25 μm or less with respect to active material particles containing silicon. By making the average particle diameter of the active material particles 5 μm or more, the original active material particles are disclosed. The specific surface area of the substance can be reduced. This describes that the contact area between the electrolyte and the new active material surface can be reduced, so that the effect of improving the cycle characteristics and the effect of suppressing the expansion of the active material are increased.
特開平11-250896号公報JP-A-11-250896 特開2000-285919号公報JP 2000-285919 A 特許第4053576号公報Japanese Patent No. 4053576 特許第4033720号公報(特開2004-22433号公報)Japanese Patent No. 4033720 (Japanese Patent Laid-Open No. 2004-22433) 特開2007-234336号公報JP 2007-234336 A 特開2008-123814号公報JP 2008-123814 A
 ケイ素系活物質を負極活物質として用いる場合、リチウムイオンの挿入脱離による体積変化が大きいことから、充放電を繰り返すにつれて電極内部に応力が生じ、これが集電箔および活物質層の不均一化を起こし、サイクル特性が低下するという課題を抱えていた。 When a silicon-based active material is used as the negative electrode active material, the volume change due to the insertion and desorption of lithium ions is large, so stress is generated inside the electrode as charging and discharging are repeated, which makes the current collector foil and active material layer non-uniform This causes a problem that the cycle characteristics deteriorate.
 サイクル特性を向上させるための手段として、ケイ素系活物質の粒径を小さくして粒子の反応性を向上させることが考えられる。しかし、ケイ素系活物質の粒子を単純に小さくしたのでは、電極作製時にスラリー中で粒子が凝集し易くなるため、ハンドリング性が悪くなるばかりか、バインダーや導電助剤の量を多くする必要が生じ、単位体積当たりの容量が低下する可能性がある。 As a means for improving the cycle characteristics, it is conceivable to improve the reactivity of the particles by reducing the particle size of the silicon-based active material. However, if the silicon-based active material particles are simply made smaller, the particles are likely to aggregate in the slurry during electrode preparation, which not only deteriorates handling properties but also requires an increase in the amount of binder and conductive auxiliary agent. May occur and the capacity per unit volume may decrease.
 そこで本発明は、ケイ素系活物質の粒径を単純に小さくすることなく、電池のサイクル特性を改善することができる、新たな非水電解液二次電池用負極を提供せんとするものである。 Accordingly, the present invention provides a new negative electrode for a non-aqueous electrolyte secondary battery that can improve the cycle characteristics of the battery without simply reducing the particle size of the silicon-based active material. .
 本発明は、ケイ素を含有する非水電解液二次電池用負極活物質であって、レーザー回折散乱式粒度分布測定法により測定して得られる体積基準粒度分布によるD50が0.01μm~3.0μmであり、且つ、D100/D50が5.0以下であることを特徴とする非水電解液二次電池用負極活物質を提案する。 The present invention is a negative electrode active material for a non-aqueous electrolyte secondary battery containing silicon and having a D50 of 0.01 μm to 3.3 based on a volume-based particle size distribution obtained by measurement by a laser diffraction scattering particle size distribution measurement method. A negative electrode active material for a nonaqueous electrolyte secondary battery is proposed, which is 0 μm and D100 / D50 is 5.0 or less.
 ケイ素を含有する負極活物質が粒子である場合、粒度分布の範囲が広く、一般的に、粒子分布が広くなりやすい。この結果、充放電によるリチウムイオンの挿入・脱離時における粒子の膨張量に差が生じやすいために粒子の活物質層からの脱落や不均一化が起き、活物質自体の劣化が進み易かったりする問題を生じていた。これに対し、本発明は、負極活物質の粒径を単純に小さくするのではなく、体積基準粒度分布によるD50およびD100/D50を制御する、言い換えれば、粗大粒の粒径が大きくならないように制御することで、このような電極内部の応力による問題を解決することができた。すなわち、充放電中の負極活物層の応力を平均化することができ、粒子の孤立や不均一化を抑制することができ、これによって電池のサイクル特性をさらに高めることに成功した。 When the negative electrode active material containing silicon is particles, the range of particle size distribution is wide, and generally the particle distribution tends to be wide. As a result, the difference in the amount of expansion of the particles during insertion / extraction of lithium ions due to charge / discharge tends to occur, causing the particles to fall off from the active material layer or become non-uniform, and the active material itself can easily deteriorate. Was causing problems. On the other hand, the present invention does not simply reduce the particle size of the negative electrode active material, but controls D50 and D100 / D50 based on the volume-based particle size distribution, in other words, the particle size of coarse particles does not increase. By controlling, the problem due to the stress inside the electrode could be solved. That is, the stress of the negative electrode active material layer during charge / discharge can be averaged, and the isolation and non-uniformity of the particles can be suppressed, thereby succeeding in further improving the cycle characteristics of the battery.
 次に、実施の形態例に基づいて本発明を説明する。但し、本発明が次に説明する実施形態に限定されるものではない。 Next, the present invention will be described based on an embodiment. However, the present invention is not limited to the embodiment described below.
<本負極活物質>
 本実施形態の一例に係る非水電解液二次電池用負極活物質(以下「本負極活物質」と称する)は、ケイ素を含有する負極活物質である。
<This negative electrode active material>
The negative electrode active material for a non-aqueous electrolyte secondary battery according to an example of this embodiment (hereinafter referred to as “the present negative electrode active material”) is a negative electrode active material containing silicon.
 本負極活物質は、例えば純ケイ素、SiOやSiO2等のケイ素酸化物、SiB4やSiB6、Cu5Si、FeSi2、Mg2Si等のケイ素合金、さらにはSi34やSiC等のケイ素化合物などのケイ素含有物質から構成することができる。この際、これらケイ素酸化物、ケイ素合金及びケイ素化合物に、Ni、B、P、Co、Ti、Fe、In、Ag、Cu及びNbからなる群のうちの1種又は2種以上の元素を含有しているものも包含する意である。その際、どのような状態で含有してもよく、例えば固溶した状態で含有してもよい。 This negative electrode active material, for example, pure silicon, SiO and SiO 2 such as silicon oxide, SiB 4 and SiB 6, Cu 5 Si, FeSi 2, Mg 2 silicon alloy such as Si, more Si 3 N 4 and SiC, etc. It can be composed of silicon-containing materials such as silicon compounds. At this time, these silicon oxide, silicon alloy and silicon compound contain one or more elements of the group consisting of Ni, B, P, Co, Ti, Fe, In, Ag, Cu and Nb. It is meant to include those that are. In that case, you may contain in what state, for example, you may contain in the state dissolved.
 本負極活物質はまた、遷移金属元素、13族の半金属元素(例えばB)若しくは金属元素(例えばAl)、14族(ただしケイ素は除く)の半金属元素若しくは金属元素、および15族の非金属若しくは半金属元素からなる群のうちの1種又は2種以上の元素(これをまとめて「添加元素」と称する)が、上記のケイ素含有物質に含有されてなるものであってもよい。好ましくは、当該添加元素がケイ素含有物質に固溶されてなるもの(「ケイ素固溶体」と称する)であってもよい。また、このようなケイ素固溶体と上記のケイ素含有物質との混合物であってもよい。
 本負極活物質の粒径を小さくすると、比表面積が大きくなるため、充放電時において電解液分解などの副反応による負極活物質の劣化が起こりやすくなる。そこで、上記のような添加元素を固溶させることで、電解液分解などの副反応による負極活物質の劣化の程度が小さくなり、腐食を抑制することができる。また、副反応物の発生は電極膨張の原因になるだけではなく、電極反応に活性なリチウムを消費するなどの不具合が生じる。このような観点から、上記添加元素の中でも、B、Al、P、Fe、Ni、Cu、Co、Ti、Nb及びAgからなる群のうちの1種又は2種以上であるのが好ましく、その中でも、電解液との反応性を抑制する点から、B、Al、P、Fe、Ni及びTiからなる群のうちの1種又は2種以上であるのがさらに好ましく、その中でもB、Al及びTiからなる群のうちの1種又は2種以上であるのがさらに好ましい。この場合、ケイ素にホウ素が固溶することに起因して、固溶体中に多くの正孔が導入されるものと考えることができる。負極活物質上での電解液の副反応は主に求電子反応であるため、負極活物質に多くの正孔が存在することで、その副反応が低減するものと考えることができる。
The negative electrode active material also includes transition metal elements, group 13 metalloid elements (for example, B) or metal elements (for example, Al), group 14 (but excluding silicon) metalloid elements or metal elements, and group 15 nonmetal elements. One or two or more elements (collectively referred to as “additive elements”) in the group consisting of metals or metalloid elements may be contained in the silicon-containing substance. Preferably, the additive element may be a solid solution in a silicon-containing substance (referred to as “silicon solid solution”). Moreover, the mixture of such a silicon solid solution and said silicon-containing substance may be sufficient.
When the particle size of the negative electrode active material is reduced, the specific surface area is increased, and therefore, the negative electrode active material is likely to be deteriorated due to side reactions such as electrolytic solution decomposition during charge and discharge. Therefore, by dissolving the additive elements as described above, the degree of deterioration of the negative electrode active material due to side reactions such as electrolytic solution decomposition is reduced, and corrosion can be suppressed. Further, the generation of the side reaction product not only causes expansion of the electrode, but also causes problems such as consumption of active lithium in the electrode reaction. From such a viewpoint, among the additive elements, it is preferable that the element is one or more of the group consisting of B, Al, P, Fe, Ni, Cu, Co, Ti, Nb, and Ag. Among these, from the viewpoint of suppressing reactivity with the electrolytic solution, one or more of the group consisting of B, Al, P, Fe, Ni and Ti is more preferable. Among them, B, Al and More preferably, it is one or more of the group consisting of Ti. In this case, it can be considered that many holes are introduced into the solid solution due to the solid solution of boron in silicon. Since the side reaction of the electrolyte solution on the negative electrode active material is mainly an electrophilic reaction, it can be considered that the side reaction is reduced by the presence of many holes in the negative electrode active material.
 ホウ素(B)、Al、Tiなどの上記添加元素を固溶する場合、当該添加元素の含有量は、それぞれ、0.01原子%~10原子%、特に1原子%以上或いは6原子%以下、その中でも1原子%以上或いは3原子%以下であるのが好ましい。かかる数値は、通常よりかなり高く、理論値を超える範囲までカバーするものである。
 上記添加元素の固溶量を高めるためには、例えば、後述する水蒸気爆発アトマイズ法により微粒化したり、水アトマイズ法により微粒化したりすることによって実現することができる。但し、かかる方法に限定されるものではない。
 なお、ホウ素(B)などの上記添加元素を固溶させる場合には、熱処理することで当該添加元素を粒界に析出させることが電池特性向上の点で好ましい。
When the above additive elements such as boron (B), Al, Ti and the like are dissolved, the content of the additive element is 0.01 atomic% to 10 atomic%, particularly 1 atomic% or more or 6 atomic% or less, Among these, the content is preferably 1 atomic% or more or 3 atomic% or less. Such a numerical value is considerably higher than usual and covers a range exceeding the theoretical value.
In order to increase the solid solution amount of the additive element, for example, it can be realized by atomizing by a steam explosion atomizing method described later or by atomizing by a water atomizing method. However, it is not limited to this method.
When the additive element such as boron (B) is dissolved, it is preferable to precipitate the additive element at the grain boundary by heat treatment in terms of improving battery characteristics.
 本負極活物質は、上述したように、上記ケイ素含有物質からなるものであってもよいし、上記ケイ素固溶体からなるものであってもよいし、また、上記ケイ素固溶体と上記ケイ素含有物質との混合物からなるものであってもよい。さらには、これらと、ケイ素合金との混合物からなるものであってもよい。
 この際、当該ケイ素合金としては、例えばケイ素と遷移金属との合金を挙げることができ、当該遷移金属としては、例えばFe、Ni、Ti、Co、Cuなどを挙げることができる。また、ケイ素とNbとの合金であってもよい。
As described above, the negative electrode active material may be composed of the silicon-containing material, may be composed of the silicon solid solution, or may be composed of the silicon solid solution and the silicon-containing material. It may consist of a mixture. Furthermore, you may consist of a mixture of these and a silicon alloy.
In this case, examples of the silicon alloy include an alloy of silicon and a transition metal, and examples of the transition metal include Fe, Ni, Ti, Co, and Cu. Further, an alloy of silicon and Nb may be used.
(粒子形状)
 本負極活物質の粒子形状は、特に限定されるものではない。例えば球状、多面体状、紡錘状、板状、鱗片状若しくは不定形又はそれらの組み合わせを用いることができる。例えばガスアトマイズによれば球状となり、ジェットミルなどにより粉砕すると、粒界に沿って粒子が割れるために不定形状になることが確認されている。
(Particle shape)
The particle shape of the negative electrode active material is not particularly limited. For example, a spherical shape, a polyhedral shape, a spindle shape, a plate shape, a scale shape, an amorphous shape, or a combination thereof can be used. For example, it has been confirmed that when it is sphered by gas atomization and pulverized by a jet mill or the like, the particle breaks along the grain boundary, resulting in an indefinite shape.
(D10、D50、D100)
 レーザー回折散乱式粒度分布測定法は、凝集した粉粒を一個の粒子(凝集粒子)として捉えて粒径を算出する測定方法である。よって、レーザー回折散乱式粒度分布測定法により測定して得られる体積基準粒度分布によるD10、D50、D100とは、体積基準粒度分布のチャートにおいて体積換算した粒径測定値の累積百分率表記の細かい方から累積10%、50%、100%の径を意味する。
(D10, D50, D100)
The laser diffraction / scattering particle size distribution measurement method is a measurement method in which agglomerated particles are regarded as one particle (aggregated particle) and the particle size is calculated. Therefore, D10, D50, and D100 based on the volume-based particle size distribution obtained by measurement by the laser diffraction / scattering particle size distribution measurement method are the finer ones in the cumulative percentage notation of the particle size measurement value converted into the volume in the volume-based particle size distribution chart. Mean diameters of 10%, 50% and 100%.
 本負極活物質のD50は、0.01μm~3.0μmであることが好ましく、中でも0.05μm以上或いは2.8μm以下、その中でも特に0.10μm以上或いは2.70μm以下であるのがさらに好ましい。
 本負極活物質のD50がかかる範囲であれば、負極活物質粒子の反応性を高めてサイクル特性を高めることができるばかりか、電極の均一反応性を優れたものとすることができ、サイクル特性を高めることができる。さらには体積エネルギー密度の低下を抑えることもできる。
D50 of the present negative electrode active material is preferably 0.01 μm to 3.0 μm, more preferably 0.05 μm or more and 2.8 μm or less, and particularly preferably 0.10 μm or more or 2.70 μm or less. .
When the D50 of the present negative electrode active material is within such a range, not only can the reactivity of the negative electrode active material particles be increased to improve the cycle characteristics, but also the uniform reactivity of the electrode can be improved, and the cycle characteristics can be improved. Can be increased. Furthermore, a decrease in volume energy density can be suppressed.
 本負極活物質については、D50に対するD100の比率(D100/D50)が5.0以下であることが好ましく、中でも4.5以下、その中でも4.0以下であるのがさらに好ましい。 For the negative electrode active material, the ratio of D100 to D50 (D100 / D50) is preferably 5.0 or less, more preferably 4.5 or less, and even more preferably 4.0 or less.
 体積基準粒度分布によるD50およびD100/D50を制御する、言い換えれば、粗大粒の粒径が大きくならないように制御することで、充放電中の負極活物層の応力を平均化することができ、粒子の孤立や不均一化を抑制することができ、これによって電池のサイクル特性をさらに高めることができる。 By controlling D50 and D100 / D50 by volume-based particle size distribution, in other words, by controlling so that the particle size of coarse particles does not increase, the stress of the negative electrode active material layer during charge and discharge can be averaged, Isolation and non-uniformity of the particles can be suppressed, and thereby the cycle characteristics of the battery can be further improved.
 また、本負極活物質については、D50に対するD10の比率(D10/D50)が0.1~0.9であることが好ましく、中でも0.3以上或いは0.8以下、その中でも0.4以上或いは0.6以下であるのがさらに好ましい。 In the present negative electrode active material, the ratio of D10 to D50 (D10 / D50) is preferably 0.1 to 0.9, more preferably 0.3 or more and 0.8 or less, and particularly 0.4 or more. Or it is more preferable that it is 0.6 or less.
 ケイ素系活物質を二次電池の負極活物質として用いる場合、充放電を繰り返すうちに、電解液とケイ素とが反応し、腐食生成物を生成する結果、電気抵抗が高くなり、サイクル特性や出力特性が低下するという課題も抱えていた。かかる課題については、低粒度側、すなわち微粒の存在が多くなれば、粒子の反応性は向上する反面、同時に電解液等とケイ素が反応し腐食生成物を生成することになる。そこで、D100/D50と同時にD10/D50を制御して、微粒子の粒径が小さくならないように制御すると共に、ホウ素等を含有させることで、このような腐食堆積物による問題を解決することができる。 When a silicon-based active material is used as a negative electrode active material for a secondary battery, the electrolytic solution reacts with silicon during repeated charging and discharging to produce a corrosion product, resulting in an increase in electrical resistance, cycle characteristics and output. There was also a problem that the characteristics deteriorated. Regarding this problem, if the particle size is low, that is, the presence of fine particles increases, the reactivity of the particles improves, but at the same time, the electrolytic solution and silicon react with each other to generate a corrosion product. Therefore, by controlling D10 / D50 at the same time as D100 / D50 so that the particle size of the fine particles does not become small, and by incorporating boron or the like, the problem caused by such corrosion deposits can be solved. .
 なお、本負極活物質のD10、D50及びD100を上記範囲に調整するには、粉砕において粉砕原料粒度の選択、メディア径、循環流量、スラリー濃度などの粉砕条件を調整したり、もしくは分級条件を調整したりすればよい。但し、これらの方法に限定するものではない。 In order to adjust D10, D50 and D100 of the present negative electrode active material to the above range, the pulverization conditions such as selection of pulverized raw material particle size, media diameter, circulation flow rate, slurry concentration, etc. are adjusted in pulverization, or classification conditions are changed. You can adjust it. However, it is not limited to these methods.
(本負極活物質の製造方法)
 本負極活物質は、例えば、ケイ素含有物質を、或いは、ケイ素含有物質と、遷移金属、13族の半金属若しくは金属、14族(ただしケイ素は除く)の半金属若しくは金属、及び、15族の非金属若しくは半金属からなる群のうちの一種又は二種以上との混合物を、アトマイズ法もしくは液体急冷法によって負極活物質を作製する工程と、メディアを使用して、前記負極活物質のD50が0.01~3.0μmであり、且つ、D100/D50が5.0以下となるように粉砕する工程とを備えた製造方法によって製造することができる。但し、この製法に限定するものではない。
(Method for producing the present negative electrode active material)
This negative electrode active material is, for example, a silicon-containing material, or a silicon-containing material and a transition metal, a group 13 semimetal or metal, a group 14 metal (except silicon), or a group 15 metal. The negative electrode active material D50 is obtained by using a medium and a step of preparing a negative electrode active material by a method of atomizing or liquid quenching a mixture of one or two or more of the group consisting of non-metals or metalloids. And a step of pulverizing so that D100 / D50 is 5.0 or less. However, it is not limited to this manufacturing method.
 上記の負極活物質を作製する工程では、例えば上記ケイ素含有物質を加熱して溶融液とした後、或いは、上記ケイ素含有物質に上記添加元素を混合して加熱して溶融液とした後、或いは、上記ケイ素含有物質を加熱して溶融液とし、この溶融液に上記添加元素を混合した後、アトマイズ法もしくは液体急冷法などによって微粒化させて負極活物質を作製すればよい。 In the step of producing the negative electrode active material, for example, the silicon-containing material is heated to obtain a melt, or the silicon-containing material is mixed with the additive element and heated to obtain a melt, or The negative electrode active material may be prepared by heating the silicon-containing material to obtain a melt, mixing the additive element with the melt, and atomizing the melt by an atomizing method or a liquid quenching method.
 上記のアトマイズ法としては、例えば、国際公開01/081033号パンフレットの図2に記載の装置を用いて、自発核生成による沸騰を起こさせて生じる圧力波を利用して、冷却媒中に滴下した溶融金属を微粒化する方法(この微粒化方法を本明細書では「水蒸気爆発アトマイズ法」と称する)または、単ロール急冷法を採用するのが好ましい。但し、かかるアトマイズ法に限定するものではない。 As the above atomizing method, for example, using the apparatus described in FIG. 2 of WO 01/081033 pamphlet, the pressure wave generated by causing boiling by spontaneous nucleation is dropped into the cooling medium. It is preferable to employ a method of atomizing molten metal (this atomization method is referred to as “steam explosion atomization method” in this specification) or a single roll quenching method. However, it is not limited to such an atomizing method.
 上記の粉砕する工程では、水や分散剤などの液媒体を加えて湿式混合してスラリー化させ、得られたスラリーを、ジルコニア、アルミナ、などのメディアを使用した湿式粉砕する方法、または、非酸素雰囲気下でサイクロン方式や篩分級を行って、D50が0.01~3.0μmであり、且つ、D100/D50が5.0以下となるように粉砕し分級すればよい。
 中でも、直径0.5mmφ以下のメディアを用いて、その充填量を70%以上で使用して粉砕するのが好ましい。
 この際、D50が0.01~3.0μmであり、且つ、D100/D50が5.0以下となるようには、例えばビーズミルで粉砕すればよい。
In the above pulverizing step, a liquid medium such as water or a dispersant is added and wet mixed to form a slurry, and the resulting slurry is wet pulverized using a medium such as zirconia or alumina, or non- A cyclone method or sieve classification is performed in an oxygen atmosphere, and pulverization and classification may be performed so that D50 is 0.01 to 3.0 μm and D100 / D50 is 5.0 or less.
Among them, it is preferable to use a medium having a diameter of 0.5 mmφ or less and pulverize using a filling amount of 70% or more.
At this time, for example, a bead mill may be used so that D50 is 0.01 to 3.0 μm and D100 / D50 is 5.0 or less.
 また、上記の粉砕分級の工程後に乾燥工程を行ってもよい。この場合、非酸素雰囲気下で、1時間~10時間、特に1時間~5時間乾燥を行うのが好ましい。また、乾燥温度については100℃~400℃、特に、使用溶媒の沸点より60℃高い温度が好ましい。 Further, a drying step may be performed after the above pulverization classification step. In this case, drying is preferably performed in a non-oxygen atmosphere for 1 hour to 10 hours, particularly 1 hour to 5 hours. The drying temperature is preferably 100 ° C. to 400 ° C., particularly 60 ° C. higher than the boiling point of the solvent used.
<負極>
 本実施形態に係る負極(以下「本負極」と称する)は、本負極活物質と、バインダーと、必要に応じて導電材と、必要に応じて負極活物質としてのグラファイトとを含む塗膜を、集電体上に備えた非水電解液二次電池用負極である。
<Negative electrode>
The negative electrode according to the present embodiment (hereinafter referred to as “the negative electrode”) includes a coating film including the negative electrode active material, a binder, a conductive material as necessary, and graphite as the negative electrode active material as necessary. A negative electrode for a non-aqueous electrolyte secondary battery provided on a current collector.
(バインダー)
 バインダーとしては、ポリイミド、ポリアミド及びポリアミドイミドのうちのいずれを用いてもよい。これらは単独で用いてもよく、あるいは2種以上を組み合わせてもよい(以下、これらを総称して「ポリイミド等」とも言う。)。更にこれら以外のバインダーを更に併用してもよい。
(binder)
As the binder, any of polyimide, polyamide, and polyamideimide may be used. These may be used singly or in combination of two or more (hereinafter collectively referred to as “polyimide etc.”). Furthermore, you may use together binders other than these further.
 上記のポリイミド等としては、市販のものを制限なく用いることができる。特にポリアミドとしては、200~400℃のガラス転移点Tgを有するものを用いることが好ましい。ポリアミドイミドとしても、200~400℃のガラス転移点Tgを有するものを用いることが好ましい。 Commercially available products can be used as the polyimide and the like. In particular, it is preferable to use a polyamide having a glass transition point Tg of 200 to 400 ° C. It is preferable to use a polyamideimide having a glass transition point Tg of 200 to 400 ° C.
 上記のポリイミド等は、負極活物質粒子(以降、単に「活物質粒子」と言えば「負極活物質粒子」の意である)の表面の少なくとも一部に固着しているのが好ましい。
 ポリイミド等の固着の形態として特に好ましい形態は、活物質粒子の表面を少なくとも一部おいて面状に固着している形態である。「面状」とは、膜状と同義であり、点状に散在している状態と対極にある状態である。また、「固着」とは、活物質粒子とポリイミド等との間に機械的な結合力(例えば係合や嵌合等のアンカー効果)又は化学的な結合力が生じるような状態で結合している状態であり、活物質粒子とポリイミド等とを単に混合して両者が結果的に接触しているだけ状態は「固着」に当たらない。
 活物質粒子の表面にポリイミド等を面状に固着させるための方法については後述する。
The polyimide or the like is preferably fixed to at least a part of the surface of the negative electrode active material particles (hereinafter simply referred to as “negative electrode active material particles” when simply referred to as “active material particles”).
A particularly preferable form of fixing of polyimide or the like is a form in which the surface of the active material particles is fixed in a planar shape with at least a part of the surface. “Surface shape” is synonymous with film shape, and is in a state opposite to a state in which dots are scattered. In addition, “adhesion” refers to bonding in a state where a mechanical bonding force (for example, an anchor effect such as engagement or fitting) or a chemical bonding force is generated between the active material particles and polyimide. The state where the active material particles and polyimide are simply mixed and both are in contact with each other as a result is not “fixed”.
A method for fixing polyimide or the like on the surface of the active material particles in a planar shape will be described later.
 ポリイミド等は、活物質粒子の表面の全域を被覆しているのではなく、ポリイミド等が固着していない部分を活物質粒子表面に残すような態様で、該表面に固着していることが好ましい。そして、隣接する活物質粒子間は、ポリイミド等が固着していない部分において接触すると共に、その接触点の周辺にポリイミド等が固着して連結しているのが好ましい。このようにポリイミド等が固着していない部分を介して活物質粒子どうしが接触することで電子伝導性を確保することができる。 The polyimide or the like does not cover the entire surface of the active material particles, but is preferably fixed to the surface in such a manner that a portion where the polyimide or the like is not fixed remains on the surface of the active material particles. . It is preferable that adjacent active material particles are in contact with each other at a portion where polyimide or the like is not fixed, and polyimide or the like is fixed and connected around the contact point. Thus, the electronic conductivity can be ensured by bringing the active material particles into contact with each other through a portion where polyimide or the like is not fixed.
 活物質粒子の表面に面状に固着しているポリイミド等は、当該粒子と隣り合う別の活物質の表面に固着しているポリイミド等からなる連結部位を介して一体的に連結しているのが好ましい。すなわち、上述したように、活物質粒子は隣接する粒子同士接触すると共に、その接触点の周辺に固着したポリイミド等が互いに連結して連結部位を形成しているのが好ましい。
 ポリイミド等からなる該連結部位は、活物質粒子にリチウムイオンが挿入され膨張するときに、該粒子との固着状態を維持したままで伸長が可能である。このことによって、膨張に起因する活物質粒子の活物質層からの脱落が効果的に防止され、充放電のサイクル特性が向上する。また、このことは、充電に伴う電池の厚みの増加の抑制にも寄与する。充電に伴う電池の厚みの増加の抑制は、本発明の負極を、携帯電話用の電池のように、電池収容スペースが限られている場面で用いられる電池に適用した場合に特に有効である。一方、放電によって活物質粒子からリチウムイオンが脱離すると該粒子は収縮するところ、連結部位も該粒子の収縮に伴い収縮が可能である。このように、ポリイミド等からなる連結部位は、活物質粒子どうしをあたかもバネのように連結しているので、該粒子が活物質層から脱落することが効果的に防止される。
The polyimide, etc., fixed in a planar shape to the surface of the active material particles are integrally connected via a connecting portion made of polyimide, etc., fixed to the surface of another active material adjacent to the particle. Is preferred. That is, as described above, it is preferable that the active material particles are in contact with adjacent particles, and polyimide or the like fixed around the contact point is connected to each other to form a connected portion.
When the lithium ion is inserted into the active material particles and expands, the connecting portion made of polyimide or the like can be stretched while maintaining a fixed state with the particles. This effectively prevents the active material particles from falling off the active material layer due to expansion, and improves the charge / discharge cycle characteristics. This also contributes to suppression of an increase in battery thickness associated with charging. The suppression of the increase in the thickness of the battery accompanying charging is particularly effective when the negative electrode of the present invention is applied to a battery used in a situation where the battery accommodation space is limited, such as a battery for a mobile phone. On the other hand, when lithium ions are desorbed from the active material particles by discharge, the particles contract, and the connection site can also contract as the particles contract. Thus, since the connection part which consists of polyimides etc. has connected active material particle | grains like a spring, it is prevented effectively that this particle | grain falls out of an active material layer.
 活物質粒子どうしが、ポリイミド等からなる連結部位を介して連結していることに加え、複数個の活物質粒子が、前記の連結部位を介して数珠状に連結していることがさらに好ましい。この際、数珠状の連結は、直線状でもよく、あるいは蛇行状でもよい。また、数珠状の連結は、文字どおり環状になっていてもよく、あるいは非環状でもよい。
 さらに、数珠状の連結は、一本の線となる態様でもよく、あるいは枝分かれの態様であってもよい。複数の活物質粒子が数珠状に連結していることで、活物質粒子の膨張による体積の増加が、数珠状の連結の再配置によって一層緩和され、充電に伴う電池の厚みの増加が一層抑制される。
 このように複数個の活物質粒子が数珠状に連結するようにするには、例えば負極合剤を集電体に塗布した後、後述するように、比較的低温で加熱して乾燥させるようにすればよい。但し、この方法に限定するものではない。急激に乾燥させるのではなく、緩やかに乾燥させることにより、溶媒が揮発する経路が生じ、この経路に沿って活物質粒子が配列されるのではないか、と考えることができる。
In addition to the active material particles being connected via a connecting part made of polyimide or the like, it is more preferable that the plurality of active material particles are connected in a bead shape via the connecting part. At this time, the beaded connection may be linear or meandering. Also, the beaded connection may literally be annular or non-annular.
Further, the bead-like connection may be a single line or a branched aspect. By connecting multiple active material particles in a bead shape, the increase in volume due to expansion of the active material particles is further mitigated by the rearrangement of the bead shape connection, and the increase in battery thickness associated with charging is further suppressed. Is done.
In order to connect a plurality of active material particles in a bead shape as described above, for example, after applying a negative electrode mixture to a current collector, as described later, it is heated and dried at a relatively low temperature. do it. However, it is not limited to this method. It can be considered that a path through which the solvent volatilizes is generated by gently drying instead of drying rapidly, and the active material particles are arranged along this path.
 活物質層中に含まれるポリイミド等の割合は、活物質粒子の質量に対して1~15質量%であるのが好ましく、特に2質量%以上或いは10質量%以下であるのがさらに好ましい。活物質層に含まれるポリイミド等の割合は以下の方法により測定することができる。
 本発明の負極は、ポリイミド等以外の有機物を含まないため、負極の質量から負極に含まれている有機物以外の元素の質量、すなわちSi、Cu、Al、Fe、Ca、F、P及びC等の無機物の質量を差し引くことで有機物の質量を求め、その有機物の質量を活物質層の質量で除することで活物質層中に含まれるポリイミド等の割合を算出することができる。具体的には、先ず負極の質量を測定する。また、負極から活物質層を除去して集電体の質量を測定する。次に、負極を完全溶解させて無機物の全質量を、ICP発光分析装置を用いて測定する。そして、負極の質量から無機物の全質量を差し引き有機物の質量を算出する。また、無機物の全質量のうち、集電体以外の構成材料の質量を算出し、算出された値と有機物の質量とを足し合わせて活物質層の質量を算出する。そして、有機物の質量を活物質層の質量で除し、更に100を乗じることで、活物質層に含まれるポリイミド等の割合を算出することができる。
The ratio of polyimide or the like contained in the active material layer is preferably 1 to 15% by mass, more preferably 2% by mass or more and 10% by mass or less, based on the mass of the active material particles. The proportion of polyimide or the like contained in the active material layer can be measured by the following method.
Since the negative electrode of the present invention does not contain organic substances other than polyimide and the like, the mass of elements other than organic substances contained in the negative electrode from the mass of the negative electrode, that is, Si, Cu, Al, Fe, Ca, F, P, C, etc. By subtracting the mass of the inorganic material, the mass of the organic material can be obtained, and the mass of the organic material can be divided by the mass of the active material layer to calculate the proportion of polyimide or the like contained in the active material layer. Specifically, first, the mass of the negative electrode is measured. Further, the active material layer is removed from the negative electrode, and the mass of the current collector is measured. Next, the negative electrode is completely dissolved, and the total mass of the inorganic substance is measured using an ICP emission analyzer. Then, the total mass of the inorganic substance is subtracted from the mass of the negative electrode to calculate the mass of the organic substance. In addition, the mass of the constituent material other than the current collector is calculated out of the total mass of the inorganic material, and the mass of the active material layer is calculated by adding the calculated value and the mass of the organic material. And the ratio of the polyimide etc. which are contained in an active material layer is computable by dividing the mass of organic substance by the mass of an active material layer, and also multiplying by 100.
(導電材)
 導電材としては、例えば金属微粉や、アセチレンブラック等の導電性炭素材料の粉末等を用いることができる。導電材として金属微粉を用いる場合には、Sn、Zn、Ag及びIn等のリチウムイオン伝導性有する金属又はこれらの金属の合金等の微粉を用いることが好ましい。
(Conductive material)
As the conductive material, for example, metal fine powder, powder of conductive carbon material such as acetylene black, or the like can be used. When metal fine powder is used as the conductive material, it is preferable to use fine powder such as a metal having lithium ion conductivity such as Sn, Zn, Ag and In or an alloy of these metals.
(グラファイト)
 負極活物質としてのグラファイトを本負極活物質に加えることで、ケイ素に起因する高容量化と、グラファイトに起因する良好なサイクル特性とを両方得ることができる。
(Graphite)
By adding graphite as the negative electrode active material to the negative electrode active material, it is possible to obtain both high capacity due to silicon and good cycle characteristics due to graphite.
(配合組成)
 本負極において、バインダーの含有量は、本負極活物質100質量部に対して1~15質量部、特に2質量部以上或いは10質量部以下であるのが好ましい。
 また、導電材を配合する場合には、導電材の含有量は、本負極活物質100質量部に対して1~10質量部、特に2質量部以上或いは5質量部以下であるのが好ましい。
 また、負極活物質としてグラファイトを配合する場合には、グラファイトの含有量は、本負極活物質とグラファイトとの混合質量比は0.5:95~50:50、特に10:90であることが好ましい。
(Composition composition)
In the present negative electrode, the content of the binder is preferably 1 to 15 parts by mass, particularly 2 parts by mass or more and 10 parts by mass or less with respect to 100 parts by mass of the present negative electrode active material.
In addition, when a conductive material is blended, the content of the conductive material is preferably 1 to 10 parts by weight, particularly 2 parts by weight or more and 5 parts by weight or less with respect to 100 parts by weight of the present negative electrode active material.
When graphite is blended as the negative electrode active material, the graphite content is such that the mixing mass ratio of the negative electrode active material and graphite is 0.5: 95 to 50:50, particularly 10:90. preferable.
(本負極の製造方法)
 本負極は、上記本負極活物質(粒子状)と、バインダーと、導電材と、溶媒とを混合して負極合剤を調製し、この負極合剤をCu等からなる集電体の表面に塗布して乾燥させることで負極活物質層を形成し、その後、必要に応じて活物質層をプレスして形成することができる。
(Production method of this negative electrode)
The negative electrode is prepared by mixing the negative electrode active material (particulate), a binder, a conductive material, and a solvent to prepare a negative electrode mixture. The negative electrode mixture is applied to the surface of a current collector made of Cu or the like. The negative electrode active material layer can be formed by coating and drying, and then the active material layer can be pressed as necessary.
 負極合剤を集電体の表面に塗布した後の乾燥は、非酸素雰囲気、例えばアルゴン雰囲気下において、1時間~10時間、特に1時間~7時間乾燥を行うのが好ましい。 Drying after applying the negative electrode mixture to the surface of the current collector is preferably performed in a non-oxygen atmosphere, such as an argon atmosphere, for 1 hour to 10 hours, particularly 1 hour to 7 hours.
 ここで、バインダーとしてポリイミドを用いた場合の本負極の製造方法について説明する。
 先ず、本負極活物質(粒子状)と、ポリイミドの前駆体化合物と、N-メチル-2-ピロリドン等の有機溶媒、必要に応じて、金属微粉やアセチレンブラック等の導電材とを混合して負極合剤を調製し、この負極合剤をCu等からなる集電体の表面に塗布する。
 この際、ポリイミドの前駆体化合物としては、ポリアミック酸(ポリアミド酸)を用いることができる。
Here, the manufacturing method of this negative electrode at the time of using a polyimide as a binder is demonstrated.
First, the negative electrode active material (particulate), a polyimide precursor compound, an organic solvent such as N-methyl-2-pyrrolidone, and a conductive material such as metal fine powder or acetylene black are mixed as necessary. A negative electrode mixture is prepared, and this negative electrode mixture is applied to the surface of a current collector made of Cu or the like.
At this time, a polyamic acid (polyamide acid) can be used as a polyimide precursor compound.
 負極合剤を集電体の表面に塗布したら、塗膜を加熱して有機溶剤を揮発させるとともに、ポリイミドの前駆体化合物を重合させてポリイミドとすることができる。
 この際、当該前駆体化合物の重合条件を調整することで、活物質粒子の表面にポリイミドを面状に固着させることができ、ポリイミドからなる連結部位を介して活物質を数珠状に連結することができる。
If a negative electrode mixture is apply | coated to the surface of an electrical power collector, while heating a coating film and volatilizing an organic solvent, the precursor compound of a polyimide can be polymerized and it can be set as a polyimide.
At this time, by adjusting the polymerization conditions of the precursor compound, polyimide can be fixed in a planar shape on the surface of the active material particles, and the active material is connected in a bead shape through a connecting portion made of polyimide. Can do.
 前駆体化合物の重合条件として、多段階の加熱を行うことが有利であることが、本発明者らの検討の結果判明した。特に、少なくとも2段階、好適には少なくとも3段階、さらに好ましくは4段階の加熱を行うことが有利である。例えば、2段階の加熱を行う場合には、1段階目の加熱を100~150℃で行うことが好ましく、2段階目の加熱を200~400℃で行うことが好ましい。
 加熱時間に関しては、1段階目の加熱時間を2段階目の加熱時間と同じか又はそれよりも長くすることが好ましい。例えば、1段階目の加熱時間を120~300分、特に180分以上或いは240分以下に設定し、2段階目の加熱時間を30~120分、特に30~60分に設定することが好ましい。
As a result of the study by the present inventors, it has been found that it is advantageous to perform multi-stage heating as the polymerization condition of the precursor compound. In particular, it is advantageous to carry out heating in at least 2 stages, preferably at least 3 stages, more preferably 4 stages. For example, when two-stage heating is performed, the first-stage heating is preferably performed at 100 to 150 ° C., and the second-stage heating is preferably performed at 200 to 400 ° C.
Regarding the heating time, it is preferable that the heating time of the first stage is equal to or longer than the heating time of the second stage. For example, it is preferable to set the first stage heating time to 120 to 300 minutes, particularly 180 minutes or more and 240 minutes or less, and the second stage heating time to 30 to 120 minutes, particularly 30 to 60 minutes.
 3段階の加熱を行う場合には、上述した2段階の加熱において、1段階目と2段階目の中間の加熱温度を採用することが好ましい。
 この中間の加熱は、150~190℃で行うことが好ましい。加熱時間は、1段階目及び2段階目の時間と同じか又は1段階目と2段階目の中間の時間とすることが好ましい。つまり、3段階の加熱を行う場合には、各段階で加熱時間を同じにするか、又は段階が進むにつれて加熱時間を短くすることが好ましい。
 さらに4段階の加熱を行う場合には、3段階目よりも高い加熱温度を採用することが好ましい。
In the case of performing three-stage heating, it is preferable to employ a heating temperature intermediate between the first and second stages in the above-described two-stage heating.
This intermediate heating is preferably performed at 150 to 190 ° C. The heating time is preferably the same as the time of the first stage and the second stage or a time intermediate between the first stage and the second stage. That is, when performing heating in three stages, it is preferable that the heating time be the same in each stage, or that the heating time be shortened as the stages progress.
Furthermore, when performing heating of 4 steps | paragraphs, it is preferable to employ | adopt heating temperature higher than the 3rd step | paragraph.
 加熱を何段階で行うかにかかわらず、加熱はアルゴン等の不活性雰囲気中で行うことが好ましい。
 また、加熱処理のときには、活物質層をガラス板等の押さえ部材で押さえることも好ましい。こうすることで、有機溶媒が潤沢な状態で、つまりポリアミック酸が有機溶媒中にあたかも飽和したような状態で、該ポリアミック酸を重合させることができるので、生成するポリイミドの分子鎖どうしが絡まりやすくなるからである。
Regardless of the number of stages of heating, heating is preferably performed in an inert atmosphere such as argon.
In the heat treatment, it is also preferable to hold the active material layer with a pressing member such as a glass plate. By doing so, the polyamic acid can be polymerized in a state where the organic solvent is abundant, that is, in a state where the polyamic acid is saturated in the organic solvent, so that the molecular chains of the resulting polyimide are easily entangled. Because it becomes.
 以上の多段階加熱を行うことで、負極合剤に含まれている有機溶媒を徐々に揮発させることができ、それによってポリアミドの前駆体化合物を十分に高分子量化させることができるとともに、活物質粒子の表面の広い範囲にわたりポリイミドを固着させることができ、活物質層中にはその厚み方向全域にわたる三次元網目状の空隙を形成することができる。 By performing the above multi-step heating, the organic solvent contained in the negative electrode mixture can be gradually volatilized, whereby the precursor compound of the polyamide can be made sufficiently high molecular weight, and the active material Polyimide can be fixed over a wide range of the particle surface, and a three-dimensional network void can be formed in the active material layer over the entire thickness direction.
 なお、ポリアミドやポリアミドイミドを用いる場合も、上述したポリイミドと同様に、熱処理することができる。但し、ポリアミド又はポリアミドイミドを用いる場合には、ポリアミド又はポリアミドイミド及び活物質の粒子を含む負極合剤を集電体の表面に塗布し、その後Tg-100℃~Tg+100℃(該Tgはポリアミド又はポリアミドイミドのガラス転移点を表す)の温度範囲、特にTg-100℃~Tgの温度範囲で塗膜を乾燥することで活物質層を形成することが好ましい。このような乾燥を行うことでサイクル特性が一層向上することが、本発明者らの検討の結果判明した。サイクル特性の更に一層の向上は、前記の乾燥をTg-50℃~Tg+50℃、中でも特にTg-50℃~Tgの温度範囲で行うと一層顕著なものとなる。
 ポリアミド又はポリアミドイミドのガラス転移点は、TG-DTA6200(SII(株)社製)を用いて、アルゴン雰囲気下、走査速度を5℃/minに設定して測定される。
In the case of using polyamide or polyamideimide, heat treatment can be performed in the same manner as the polyimide described above. However, when polyamide or polyamideimide is used, a negative electrode mixture containing polyamide or polyamideimide and active material particles is applied to the surface of the current collector, and then Tg-100 ° C. to Tg + 100 ° C. (where Tg is polyamide or The active material layer is preferably formed by drying the coating film in a temperature range of (representing the glass transition point of polyamideimide), particularly in the temperature range of Tg-100 ° C. to Tg. As a result of studies by the present inventors, it has been found that the cycle characteristics are further improved by performing such drying. The further improvement of the cycle characteristics becomes even more remarkable when the above-mentioned drying is performed in the temperature range of Tg-50 ° C. to Tg + 50 ° C., particularly Tg-50 ° C. to Tg.
The glass transition point of polyamide or polyamideimide is measured by using TG-DTA6200 (manufactured by SII Co., Ltd.) under an argon atmosphere and setting the scanning speed to 5 ° C./min.
<非水電解液二次電池>
 本実施形態に係る非水電解液二次電池(「本二次電池」と称する)は、本負極と、正極と、セパレータと、非水電解液等とから構成することができる。
<Nonaqueous electrolyte secondary battery>
The non-aqueous electrolyte secondary battery (referred to as “the present secondary battery”) according to the present embodiment can be composed of a negative electrode, a positive electrode, a separator, a non-aqueous electrolyte, and the like.
(正極)
 正極は、例えば集電体の少なくとも一面に正極活物質層が形成されてなるものである。正極活物質層には正極活物質が含まれている。正極活物質としては、当該技術分野において従来知られているものを特に制限なく用いることができる。例えば各種のリチウム遷移金属複合酸化物を用いることができる。そのような物質としては、例えばLiCoO2、LiNiO2、LiMnO2、LiMn24、LiCo1/3Ni1/3Mn1/32、LiCo0.5Ni0.52、LiNi0.7Co0.2Mn0.12、Li(LixMn2xCo1-3x)O2(式中、0<x<1/3である)、LiFePO4、LiMn1-zzPO4 (式中、0<z≦0.1であり、MはCo、Ni、Fe、Mg、Zn及びCuからなる群から選ばれる少なくとも1種の金属元素である。)などが挙げられる。
(Positive electrode)
The positive electrode is formed, for example, by forming a positive electrode active material layer on at least one surface of a current collector. The positive electrode active material layer contains a positive electrode active material. As a positive electrode active material, what is conventionally known in the said technical field can be especially used without a restriction | limiting. For example, various lithium transition metal composite oxides can be used. Examples of such a material include LiCoO 2 , LiNiO 2 , LiMnO 2 , LiMn 2 O 4 , LiCo 1/3 Ni 1/3 Mn 1/3 O 2 , LiCo 0.5 Ni 0.5 O 2 , LiNi 0.7 Co 0.2 Mn 0.1. O 2 , Li (Li x Mn 2x Co 1-3x ) O 2 (where 0 <x <1/3), LiFePO 4 , LiMn 1-z M z PO 4 (where 0 <z ≦ 0.1 and M is at least one metal element selected from the group consisting of Co, Ni, Fe, Mg, Zn and Cu.
(セパレータ)
 負極及び正極とともに用いられるセパレータとしては、合成樹脂製不織布、ポリエチレンやポリプロピレン等のポリオレフィン、又はポリテトラフルオロエチレンの多孔質フィルム等が好ましく用いられる。
(Separator)
As the separator used together with the negative electrode and the positive electrode, a synthetic resin nonwoven fabric, a polyolefin such as polyethylene or polypropylene, or a polytetrafluoroethylene porous film is preferably used.
(非水電解液)
 非水電解液は、支持電解質であるリチウム塩を有機溶媒に溶解した溶液からなる。有機溶媒としては、例えばエチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネート等のカーボネート系有機溶媒、フルオロエチレンカーボネート等の前記カーボネート系有機溶媒の一部をフッ素化したフッ素系有機溶媒等の1種又は2種以上の組み合わせが用いられる。具体的には、フルオロエチレンカーボネート、ジエチルフルオロカーボネート、ジメチルフルオロカーボネート等を用いることができる。リチウム塩としては、CF3SO3Li、(CF3SO2)NLi、(C25SO22NLi、LiClO4、LiA1Cl4、LiPF6、LiAsF6、LiSbF6、LiCl、LiBr、LiI、LiC49SO3等が例示される。これらは単独で又は2種以上を組み合わせて用いることができる。
(Nonaqueous electrolyte)
The nonaqueous electrolytic solution is a solution in which a lithium salt as a supporting electrolyte is dissolved in an organic solvent. Examples of the organic solvent include carbonate organic solvents such as ethylene carbonate, propylene carbonate, dimethyl carbonate, methyl ethyl carbonate, and diethyl carbonate, fluorine organic solvents obtained by fluorinating a part of the carbonate organic solvent such as fluoroethylene carbonate, and the like. One type or a combination of two or more types is used. Specifically, fluoroethylene carbonate, diethyl fluorocarbonate, dimethyl fluorocarbonate, or the like can be used. The lithium salt, CF 3 SO 3 Li, ( CF 3 SO 2) NLi, (C 2 F 5 SO 2) 2 NLi, LiClO 4, LiA1Cl 4, LiPF 6, LiAsF 6, LiSbF 6, LiCl, LiBr, LiI And LiC 4 F 9 SO 3 . These can be used alone or in combination of two or more.
<用語の説明>
 本明細書において「X~Y」(X,Yは任意の数字)と表現する場合、特にことわらない限り「X以上Y以下」の意と共に、「好ましくはXより大きい」或いは「好ましくはYより小さい」の意も包含する。
 また、「X以上」(Xは任意の数字)或いは「Y以下」(Yは任意の数字)と表現した場合、「Xより大きいことが好ましい」或いは「Y未満であることが好ましい」旨の意図も包含する。
<Explanation of terms>
In the present specification, when expressed as “X to Y” (X and Y are arbitrary numbers), “X is preferably greater than X” or “preferably Y”, with the meaning of “X to Y” unless otherwise specified. It also includes the meaning of “smaller”.
In addition, when expressed as “X or more” (X is an arbitrary number) or “Y or less” (Y is an arbitrary number), it is “preferably greater than X” or “preferably less than Y”. Includes intentions.
 以下、本発明を下記実施例及び比較例に基づいてさらに詳述する。 Hereinafter, the present invention will be described in further detail based on the following examples and comparative examples.
<実施例1>
(1)負極活物質の製造
 ケイ素(Si)とホウ素(B)それぞれのインゴットを混合後、加熱溶融した。1600℃に加熱した溶融液を、国際公開01/081033号パンフレットの図2に記載の装置を用いて水蒸気爆発アトマイズを行った。この際、円筒状の混合ノズル2の内径は2.0mmとし、混合ノズル内で旋回している冷媒の量は100L/minとした。冷媒には室温の水を用いた。前記溶融液を13gずつ混合ノズル2内に滴下(自由落下)させて粉末を得た。このときの冷却速度は、106K/s~108K/sと推定された。ホウ素の固溶量は、ケイ素100原子%に対して2原子%であった。
<Example 1>
(1) Production of negative electrode active material Each ingot of silicon (Si) and boron (B) was mixed and then heated and melted. The melt heated to 1600 ° C. was subjected to steam explosion atomization using the apparatus described in FIG. 2 of WO 01/081033 pamphlet. At this time, the inner diameter of the cylindrical mixing nozzle 2 was 2.0 mm, and the amount of the refrigerant swirling in the mixing nozzle was 100 L / min. Room temperature water was used as the refrigerant. The molten liquid was dropped into the mixing nozzle 2 by 13 g (free fall) to obtain a powder. The cooling rate at this time was estimated to be 10 6 K / s to 10 8 K / s. The solid solution amount of boron was 2 atomic% with respect to 100 atomic% of silicon.
 得られた粉末100gに対してエタノールを400g混合し、湿式粉砕機(アシザワファインテック社製「LMZ015」)を用いて粒度調整を行った。この際、湿式粉砕に用いたメディア径は0.3mmφ、メディアの充填量は80%、周速を14m/sとし、送液量500g/min.とし、15分間粉砕を行い、負極活物質粉末を得た。
 得られた負極活物質粉末のD50は2.6μmであり、D100/D50は4.3、D10/D50は0.3であった。
400 g of ethanol was mixed with 100 g of the obtained powder, and the particle size was adjusted using a wet pulverizer (“LMZ015” manufactured by Ashizawa Finetech). At this time, the diameter of the media used for the wet pulverization was 0.3 mmφ, the filling amount of the media was 80%, the peripheral speed was 14 m / s, and the feeding amount was 500 g / min. And pulverizing for 15 minutes to obtain a negative electrode active material powder.
D50 of the obtained negative electrode active material powder was 2.6 μm, D100 / D50 was 4.3, and D10 / D50 was 0.3.
(2)負極活物質の乾燥
 上記で得られた負極活物質粉末を、イナートガスオーブン(KOYOサーモシステム社製「INH-21CD-S」)を用い、窒素雰囲気中で0.2℃/min.の昇温速度で120℃まで昇温し、その後、120℃を3時間保持した後、室温まで5℃/min.の降温速度で乾燥した。また、この時のオーブン内の酸素濃度は10ppm以下であった。
(2) Drying of negative electrode active material The negative electrode active material powder obtained above was subjected to 0.2 ° C./min. In an atmosphere of nitrogen using an inert gas oven (“INH-21CD-S” manufactured by KOYO Thermosystem). The temperature was raised to 120 ° C. at a temperature raising rate of 120 ° C., and then kept at 120 ° C. for 3 hours, and then to 5 ° C./min. It dried at the temperature-fall rate. At this time, the oxygen concentration in the oven was 10 ppm or less.
(3)負極合剤の調製
 上記で得られた負極活物質粉末100質量部と、導電材(アセチレンブラック)5質量部と、ポリイミドの前駆体化合物(ポリアミック酸)5質量部と、N-メチル-2-ピロリドン100質量部とを混合して負極合剤を得た。
(3) Preparation of negative electrode mixture 100 parts by mass of the negative electrode active material powder obtained above, 5 parts by mass of a conductive material (acetylene black), 5 parts by mass of a polyimide precursor compound (polyamic acid), and N-methyl A negative electrode mixture was obtained by mixing 100 parts by mass of -2-pyrrolidone.
(4)負極の作製
 上記の如く調製した負極合剤を、電解銅箔上に塗膜厚12μmとなるように片面塗布した。次いで、減圧アルゴン雰囲気下において塗膜を加熱して前駆体化合物の重合を行って負極を作製した。
 なお、加熱は4段階で行った。1段階目の加熱は120℃で4時間、2段階目の加熱は150℃で1時間、3段階目の加熱は200℃で1時間、4段階目の加熱は300℃で1時間行った。加熱の間、塗膜が形成された集電体を、2枚のガラス板に挟持しておいた。
(4) Production of Negative Electrode The negative electrode mixture prepared as described above was applied on one side so as to have a coating thickness of 12 μm on the electrolytic copper foil. Subsequently, the coating film was heated in a reduced pressure argon atmosphere to polymerize the precursor compound, thereby preparing a negative electrode.
The heating was performed in four stages. The first stage heating was performed at 120 ° C. for 4 hours, the second stage heating was performed at 150 ° C. for 1 hour, the third stage heating was performed at 200 ° C. for 1 hour, and the fourth stage heating was performed at 300 ° C. for 1 hour. During the heating, the current collector on which the coating film was formed was sandwiched between two glass plates.
<実施例2>
(1)負極活物質の製造
 ケイ素(Si)とホウ素(B)それぞれのインゴットを混合後、加熱溶融した。1600℃に加熱した溶融液を、液体急冷凝固装置(日新技研株式会社「NEV-A30型」)を用いて単ロール法により処理を行って薄片を得た。この際、坩堝の出湯径を1.0mm×6個とし、出湯口と銅ロールのギャップを1mmとし、銅ロールの回転数は1500rpmとした。
 得られた薄片をミル用ポットに5g入れ、振動ミル((型式1033-200)吉田製作所製)で20分間粉砕を行い、45μmの篩で篩い、篩下を回収して粉末を得た。得られた粉末において、ホウ素の固溶量は、ケイ素100原子%に対して2原子%であった。
<Example 2>
(1) Production of negative electrode active material Each ingot of silicon (Si) and boron (B) was mixed and then heated and melted. The melt heated to 1600 ° C. was processed by a single roll method using a liquid rapid solidification apparatus (Nisshin Giken Co., Ltd. “NEV-A30 type”) to obtain flakes. At this time, the tapping diameter of the crucible was 1.0 mm × 6, the gap between the tapping port and the copper roll was 1 mm, and the rotation speed of the copper roll was 1500 rpm.
The obtained flakes were put in a mill pot, pulverized for 20 minutes with a vibration mill (model 1033-200, manufactured by Yoshida Seisakusho), sieved with a 45 μm sieve, and the powder under the sieve was collected to obtain a powder. In the obtained powder, the solid solution amount of boron was 2 atomic% with respect to 100 atomic% of silicon.
 得られた粉末100gに対し、エタノールを400g混合し、湿式粉砕機(アシザワファインテック社製「LMZ015」)を用いて粒度調整を行った。この際、湿式粉砕に用いた、メディア径は0.3mmφ、メディアの充填量は80%、周速を14m/sとし、送液量500g/min.とし、150分間粉砕を行い、負極活物質粉末を得た。
 得られた負極活物質粉末のD50は0.7μmであり、D100/D50は3.7、D10/D50は0.4であった。
400 g of ethanol was mixed with 100 g of the obtained powder, and the particle size was adjusted using a wet pulverizer (“LMZ015” manufactured by Ashizawa Finetech Co., Ltd.). At this time, the media diameter used for the wet pulverization was 0.3 mmφ, the media filling amount was 80%, the peripheral speed was 14 m / s, and the liquid feeding amount was 500 g / min. And pulverizing for 150 minutes to obtain a negative electrode active material powder.
D50 of the obtained negative electrode active material powder was 0.7 micrometer, D100 / D50 was 3.7, D10 / D50 was 0.4.
(2)負極活物質の乾燥、(3)負極合剤の調製及び(4)負極の作製は、実施例1と同様に行った。 (2) Drying of the negative electrode active material, (3) Preparation of the negative electrode mixture, and (4) Preparation of the negative electrode were carried out in the same manner as in Example 1.
<実施例3>
(1)負極活物質の製造
 実施例1において、粉末100gに対してエタノールを400g混合する代わりに、粉末100gに対してN-メチル-2-ピロリドンを43g混合し、湿式粉砕の処理時間を15分間から150分間に変更した。これ以外は、実施例1と同様に負極活物質粉末を得た。
 得られた負極活物質粉末のD50は0.6μmであり、D100/D50は3.2、D10/D50は0.5であった。
<Example 3>
(1) Production of negative electrode active material In Example 1, instead of mixing 400 g of ethanol with 100 g of powder, 43 g of N-methyl-2-pyrrolidone was mixed with 100 g of powder, and the processing time for wet grinding was 15 Changed from 150 minutes to 150 minutes. Except for this, a negative electrode active material powder was obtained in the same manner as in Example 1.
D50 of the obtained negative electrode active material powder was 0.6 μm, D100 / D50 was 3.2, and D10 / D50 was 0.5.
(2)負極活物質の乾燥
 上記で得られた負極活物質粉末を、イナートガスオーブン(KOYOサーモシステム社製「INH-21CD-S」)を用い、窒素雰囲気中で0.2℃/min.の昇温速度で180℃まで昇温し、180℃を3時間保持した後、さらに0.2℃/min.の昇温速度で210℃まで昇温し、210℃を3時間保持した後、さらに0.2℃/min.の昇温速度で300℃まで昇温し、300℃を3時間保持した後、室温まで5℃/min.の降温速度で乾燥した。また、この時のオーブン内の酸素濃度は10ppm以下であった。
(2) Drying of negative electrode active material The negative electrode active material powder obtained above was subjected to 0.2 ° C./min. In an atmosphere of nitrogen using an inert gas oven (“INH-21CD-S” manufactured by KOYO Thermosystem). The temperature was increased to 180 ° C. at a rate of temperature increase of 180 ° C. and held at 180 ° C. for 3 hours, and then 0.2 ° C./min. The temperature was raised to 210 ° C. at a rate of temperature increase of 210 ° C. and maintained at 210 ° C. for 3 hours, and then 0.2 ° C./min. The temperature was raised to 300 ° C. at a rate of temperature rise of 300 ° C., kept at 300 ° C. for 3 hours, and then brought to room temperature at 5 ° C./min. It dried at the temperature-fall rate. At this time, the oxygen concentration in the oven was 10 ppm or less.
(3)負極合剤の調製及び(4)負極の作製は、実施例1と同様に行った。 (3) Preparation of negative electrode mixture and (4) preparation of negative electrode were carried out in the same manner as in Example 1.
<実施例4>
(1)負極活物質の製造
 ケイ素(Si)とチタン(Ti)それぞれのインゴットを混合後、加熱溶融した。1600℃に加熱した溶融液を、国際公開01/081033号パンフレットの図2に記載の装置を用いて水蒸気爆発アトマイズを行った。この際、円筒状の混合ノズル2の内径は2.0mmとし、混合ノズル内で旋回している冷媒の量は100L/minとした。冷媒には室温の水を用いた。前記溶融液を13gずつ混合ノズル2内に滴下(自由落下)させて粉末を得た。
 得られた粉末において、Tiの固溶量はケイ素100原子%に対して5原子%であった。
<Example 4>
(1) Production of negative electrode active material Each ingot of silicon (Si) and titanium (Ti) was mixed and then heated and melted. The melt heated to 1600 ° C. was subjected to steam explosion atomization using the apparatus described in FIG. 2 of WO 01/081033 pamphlet. At this time, the inner diameter of the cylindrical mixing nozzle 2 was 2.0 mm, and the amount of the refrigerant swirling in the mixing nozzle was 100 L / min. Room temperature water was used as the refrigerant. The molten liquid was dropped into the mixing nozzle 2 by 13 g (free fall) to obtain a powder.
In the obtained powder, the solid solution amount of Ti was 5 atomic% with respect to 100 atomic% of silicon.
 得られた粉末100gに対してエタノールを400g混合し、湿式粉砕機(アシザワファインテック社製「LMZ015」)を用いて粒度調整を行った。この際、湿式粉砕に用いたメディア径は0.5mmφ、メディアの充填量は80%、周速を7m/sとし、送液量420g/min.とし、25分間粉砕を行い、負極活物質粉末を得た。
 得られた負極活物質粉末のD50は2.6μmであり、D100/D50は4.9、D10/D50は0.3であった。
400 g of ethanol was mixed with 100 g of the obtained powder, and the particle size was adjusted using a wet pulverizer (“LMZ015” manufactured by Ashizawa Finetech). At this time, the media diameter used for the wet pulverization was 0.5 mmφ, the filling amount of the media was 80%, the peripheral speed was 7 m / s, and the feed rate was 420 g / min. And pulverizing for 25 minutes to obtain a negative electrode active material powder.
D50 of the obtained negative electrode active material powder was 2.6 micrometers, D100 / D50 was 4.9 and D10 / D50 was 0.3.
 (2)負極活物質の乾燥、(3)負極合剤の調製及び(4)負極の作製は、実施例1と同様に行った。 (2) Drying of the negative electrode active material, (3) Preparation of the negative electrode mixture, and (4) Preparation of the negative electrode were carried out in the same manner as in Example 1.
<実施例5>
(1)負極活物質の製造
 ケイ素(Si)とアルミニウム(Al)それぞれのインゴットを混合後、加熱溶融した。1600℃に加熱した溶融液を、国際公開01/081033号パンフレットの図2に記載の装置を用いて水蒸気爆発アトマイズを行った。この際、円筒状の混合ノズル2の内径は2.0mmとし、混合ノズル内で旋回している冷媒の量は100L/minとした。冷媒には室温の水を用いた。前記溶融液を13gずつ混合ノズル2内に滴下(自由落下)させて粉末を得た。
 得られた粉末において、Alの固溶量はケイ素100原子%に対して5原子%であった。
<Example 5>
(1) Production of negative electrode active material Each ingot of silicon (Si) and aluminum (Al) was mixed and then heated and melted. The melt heated to 1600 ° C. was subjected to steam explosion atomization using the apparatus described in FIG. 2 of WO 01/081033 pamphlet. At this time, the inner diameter of the cylindrical mixing nozzle 2 was 2.0 mm, and the amount of the refrigerant swirling in the mixing nozzle was 100 L / min. Room temperature water was used as the refrigerant. The molten liquid was dropped into the mixing nozzle 2 by 13 g (free fall) to obtain a powder.
In the obtained powder, the solid solution amount of Al was 5 atomic% with respect to 100 atomic% of silicon.
 得られた粉末100gに対してエタノールを400g混合し、湿式粉砕機(アシザワファインテック社製「LMZ015」)を用いて粒度調整を行った。この際、湿式粉砕に用いたメディア径は0.5mmφ、メディアの充填量は80%、周速を7m/sとし、送液量420g/min.とし、40分間粉砕を行い、負極活物質粉末を得た。
 得られた負極活物質粉末のD50は2.5μmであり、D100/D50は4.8、D10/D50は0.4であった。
400 g of ethanol was mixed with 100 g of the obtained powder, and the particle size was adjusted using a wet pulverizer (“LMZ015” manufactured by Ashizawa Finetech). At this time, the media diameter used for the wet pulverization was 0.5 mmφ, the filling amount of the media was 80%, the peripheral speed was 7 m / s, and the feed rate was 420 g / min. And pulverizing for 40 minutes to obtain a negative electrode active material powder.
D50 of the obtained negative electrode active material powder was 2.5 μm, D100 / D50 was 4.8, and D10 / D50 was 0.4.
 (2)負極活物質の乾燥、(3)負極合剤の調製及び(4)負極の作製は、実施例1と同様に行った。 (2) Drying of the negative electrode active material, (3) Preparation of the negative electrode mixture, and (4) Preparation of the negative electrode were carried out in the same manner as in Example 1.
<実施例6>
(1)負極活物質の製造
 ケイ素(Si)の粉末を加熱溶融した。1600℃に加熱した溶融液を、国際公開01/081033号パンフレットの図2に記載の装置を用いて水蒸気爆発アトマイズを行った。この際、円筒状の混合ノズル2の内径は2.0mmとし、混合ノズル内で旋回している冷媒の量は100L/minとした。冷媒には室温の水を用いた。前記溶融液を13gずつ混合ノズル2内に滴下(自由落下)させて粉末を得た。
 得られた粉末100gに対してエタノールを400g混合し、湿式粉砕機(アシザワファインテック社製「LMZ015」)を用いて粒度調整を行った。この際、湿式粉砕に用いたメディア径は0.5mmφ、メディアの充填量は80%、周速を7m/sとし、送液量420g/minとし、160分間粉砕を行い、負極活物質粉末を得た。
 得られた負極活物質粉末のD50は2.7μmであり、D100/D50は2.9、D10/D50は0.7であった。
<Example 6>
(1) Production of negative electrode active material Silicon (Si) powder was heated and melted. The melt heated to 1600 ° C. was subjected to steam explosion atomization using the apparatus described in FIG. 2 of WO 01/081033 pamphlet. At this time, the inner diameter of the cylindrical mixing nozzle 2 was 2.0 mm, and the amount of the refrigerant swirling in the mixing nozzle was 100 L / min. Room temperature water was used as the refrigerant. 13 g of the molten liquid was dropped into the mixing nozzle 2 (free fall) to obtain a powder.
400 g of ethanol was mixed with 100 g of the obtained powder, and the particle size was adjusted using a wet pulverizer (“LMZ015” manufactured by Ashizawa Finetech). At this time, the media diameter used for the wet pulverization was 0.5 mmφ, the filling amount of the media was 80%, the peripheral speed was 7 m / s, the feeding amount was 420 g / min, pulverization was performed for 160 minutes, and the negative electrode active material powder was obtained. Obtained.
D50 of the obtained negative electrode active material powder was 2.7 μm, D100 / D50 was 2.9, and D10 / D50 was 0.7.
 (2)負極活物質の乾燥、(3)負極合剤の調製及び(4)負極の作製は、実施例1と同様に行った。 (2) Drying of the negative electrode active material, (3) Preparation of the negative electrode mixture, and (4) Preparation of the negative electrode were carried out in the same manner as in Example 1.
<比較例1>
(1)負極活物質の製造
 ケイ素(Si)のインゴットを加熱溶融させ、1600℃に加熱した溶融液を、国際公開01/081033号パンフレットの図2に記載の装置を用いて水蒸気爆発アトマイズを行った。この際、円筒状の混合ノズル2の内径は2.0mmとし、混合ノズル内で旋回している冷媒の量は100L/minとした。冷媒には室温の水を用いた。前記溶融液を13gずつ混合ノズル2内に滴下(自由落下)させた。このときの冷却速度は、106K/s~108K/sと推定された。
 湿式粉砕の工程において、メディア径を0.5mmφ、送液量100g/min.、処理時間を15分に変更した以外は、実施例1と同様にして負極活物質粉末を得た。この時の負極活物質粉末のD50は2.6μmであり、D100/D50は8.5、D10/D50は0.3であった。
<Comparative Example 1>
(1) Manufacture of negative electrode active material Steam explosion atomization is performed on the melt obtained by heating and melting a silicon (Si) ingot to 1600 ° C. using the apparatus described in FIG. 2 of International Publication No. 01/081033. It was. At this time, the inner diameter of the cylindrical mixing nozzle 2 was 2.0 mm, and the amount of the refrigerant swirling in the mixing nozzle was 100 L / min. Room temperature water was used as the refrigerant. The molten liquid was dropped (freely dropped) into the mixing nozzle 2 by 13 g. The cooling rate at this time was estimated to be 10 6 K / s to 10 8 K / s.
In the wet pulverization step, the media diameter is 0.5 mmφ, and the feed rate is 100 g / min. A negative electrode active material powder was obtained in the same manner as in Example 1 except that the treatment time was changed to 15 minutes. D50 of the negative electrode active material powder at this time was 2.6 μm, D100 / D50 was 8.5, and D10 / D50 was 0.3.
(2)負極活物質の乾燥、(3)負極合剤の調製及び(4)負極の作製は、実施例1と同様に行った。 (2) Drying of the negative electrode active material, (3) Preparation of the negative electrode mixture, and (4) Preparation of the negative electrode were carried out in the same manner as in Example 1.
<比較例2>
(1)負極活物質の製造
 実施例1の湿式粉砕の工程において、メディア径を0.5mmφ、周速を4m/sとし、送液量250g/min、粉砕時間を5分間に変更した以外は、実施例1と同様にして負極活物質粉末を得た。
 得られた負極活物質粉末のD50は4.6μmであり、D100/D50は4.8、D10/D50は0.4であった。
<Comparative example 2>
(1) Production of negative electrode active material In the wet pulverization step of Example 1, except that the media diameter was 0.5 mmφ, the peripheral speed was 4 m / s, the liquid feed amount was 250 g / min, and the pulverization time was changed to 5 minutes. In the same manner as in Example 1, a negative electrode active material powder was obtained.
D50 of the obtained negative electrode active material powder was 4.6 micrometers, D100 / D50 was 4.8, D10 / D50 was 0.4.
(2)負極活物質の乾燥、(3)負極合剤の調製及び(4)負極の作製は、実施例1と同様に行った。 (2) Drying of the negative electrode active material, (3) Preparation of the negative electrode mixture, and (4) Preparation of the negative electrode were carried out in the same manner as in Example 1.
<粒度測定>
 レーザー回折粒度分布測定機用試料循環器(日機装株式会社製「Microtorac No.9320-X100」)を用い、実施例・比較例で得た負極活物質粉末を水溶性溶媒に投入し、40mL/secの流速中、30wattsの超音波を150秒間照射した後、日機装株式会社製レーザー回折粒度分布測定機「HRA(X100)」を用いて粒度分布を測定し、得られた体積基準粒度分布のチャートからD10、D50及びD100を求めた。
<Particle size measurement>
Using a sample circulator for a laser diffraction particle size distribution measuring instrument (“Microtorac No. 9320-X100” manufactured by Nikkiso Co., Ltd.), the negative electrode active material powders obtained in Examples and Comparative Examples were charged into a water-soluble solvent, and 40 mL / sec. After irradiating ultrasonic waves of 30 watts for 150 seconds at a flow rate of 1, a particle size distribution was measured using a laser diffraction particle size distribution analyzer “HRA (X100)” manufactured by Nikkiso Co., Ltd. D10, D50 and D100 were determined.
<電池特性の評価>
 実施例及び比較例で得られた負極を用いてリチウム二次電池を作製し、充放電を繰り返したときのサイクル特性を測定した。
<Evaluation of battery characteristics>
Lithium secondary batteries were prepared using the negative electrodes obtained in the examples and comparative examples, and the cycle characteristics when charging and discharging were repeated were measured.
(電池の作製)
 電解液として、エチレンカーボネートとジエチルカーボネートの1:1体積比混合溶媒に1mol/lのLiPF6を溶解した溶液を用いた。
 セパレータとして、ポリプロピレン製多孔質フィルムを用いた。得られた負極を、直径14mmの円形に打ち抜き、160℃で6時間真空乾燥を施した。そして、アルゴン雰囲気下のグローブボックス内で、2032コインセルを組み立てた。
 対極としては金属リチウムを用いた。電解液としては、エチレンカーポネートとジエチルカーポネートの1:1体積比混合溶媒に1moL/LのLiPF6を溶解した溶液を用いた。セバレータとしては、ポリプロピレン製多孔質フィルムを用いた。
(Production of battery)
As an electrolytic solution, a solution obtained by dissolving 1 mol / l LiPF 6 in a 1: 1 volume ratio mixed solvent of ethylene carbonate and diethyl carbonate was used.
A polypropylene porous film was used as the separator. The obtained negative electrode was punched into a circle having a diameter of 14 mm and vacuum-dried at 160 ° C. for 6 hours. Then, a 2032 coin cell was assembled in a glove box under an argon atmosphere.
Metal lithium was used as the counter electrode. As an electrolytic solution, a solution of 1 mol / L LiPF 6 dissolved in a 1: 1 volume ratio mixed solvent of ethylene carbonate and diethyl carbonate was used. A polypropylene porous film was used as the separator.
<充放電条件>
 充電は、定電流・定電圧充電方式で電池電圧が0.01Vまで定電流で、その後は定電圧充電制御により低下する電流値が1/5となったところで充電完了とした。
 放電は定電流で電池電圧が1.5Vまで行った。
 充電及び放電のサイクルにおけるレートは、1回目は0.1C、2回目以降は0.2Cとした。
 充放電サイクル特性の評価においては、2サイクル目放電容量を、それぞれ100%とした場合の各サイクルの放電容量を容量維持率(Capacity Retention)として比較した。
<Charging / discharging conditions>
Charging was completed at a constant current / constant voltage charging method until the battery voltage was constant up to 0.01V, and then the current value decreased by constant voltage charging control became 1/5.
Discharging was performed at a constant current up to a battery voltage of 1.5V.
The rate in the cycle of charging and discharging was 0.1 C for the first time and 0.2 C for the second and subsequent times.
In the evaluation of the charge / discharge cycle characteristics, the discharge capacity of each cycle when the discharge capacity at the second cycle was 100% was compared as the capacity retention rate (Capacity Retention).
 なお、実施例1~6及び比較例1~2については、6.47mAを1Cとした。その1Cの電流値を基に各々のCレートの電流値を算出し、容量維持率の評価に用いた。 In Examples 1 to 6 and Comparative Examples 1 and 2, 6.47 mA was set to 1C. Based on the current value of 1C, the current value of each C rate was calculated and used to evaluate the capacity retention rate.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 上記実施例及びこれまで発明者が行ってきた試験結果から、体積基準粒度分布によるD50およびD100/D50を制御する、言い換えれば、粗大粒の粒径が大きくならないように制御することで、充放電中の負極活物層の応力を平均化することができ、粒子の孤立や不均一化を抑制することができ、これによって電池のサイクル特性をさらに高めることができることが分かった。 From the above examples and the results of tests conducted by the inventors so far, charge / discharge is controlled by controlling D50 and D100 / D50 by volume-based particle size distribution, in other words, by controlling so that the particle size of coarse particles does not increase. It was found that the stress of the negative electrode active material layer inside can be averaged, and the isolation and non-uniformity of the particles can be suppressed, thereby further improving the cycle characteristics of the battery.
 また、上記実施例及びこれまで発明者が行ってきた試験結果から、D100/D50を上記のように調整すると同時に、D10/D50を0.3~0.9に調整することで、電解液とケイ素とが反応して腐食生成物を生成するのを抑制することができ、サイクル特性や出力特性をさらに良好にすることができることが分かった。 Further, from the above examples and the results of tests conducted by the inventors so far, by adjusting D100 / D50 as described above, and simultaneously adjusting D10 / D50 from 0.3 to 0.9, It was found that the reaction with silicon can prevent the formation of corrosion products, and the cycle characteristics and output characteristics can be further improved.
 ところで、ケイ素を含有するケイ素系活物質を二次電池の負極活物質として用いる場合、充放電を繰り返すうちに、電解液とケイ素とが反応し、腐食生成物を生成する結果、電気抵抗が高くなり、サイクル特性や出力特性が低下するという課題も抱えていた。すなわち、このような課題は、ケイ素を含有するケイ素系活物質に共通する課題であった。
 そして、D100/D50を制御して、粗大粒の粒径が大きくならないように制御することで、充放電中の負極活物層の応力を平均化することができ、粒子の孤立や不均一化を抑制することができると言った効果は、ケイ素を含有するケイ素系活物質であれば得られるものと考えられる。これまで発明者が行ってきた試験結果から、ケイ素を含有するケイ素系活物質であれば共通の性質を有することを確認しているからである。
By the way, when a silicon-based active material containing silicon is used as a negative electrode active material for a secondary battery, the electrolytic solution reacts with silicon during repeated charging and discharging to produce a corrosion product, resulting in high electrical resistance. Therefore, there is a problem that the cycle characteristic and the output characteristic are deteriorated. That is, such a problem is a problem common to silicon-containing active materials containing silicon.
And by controlling D100 / D50 so that the particle size of the coarse particles does not increase, the stress of the negative electrode active material layer during charge and discharge can be averaged, and the isolation and non-uniformity of the particles It is considered that the effect that it can be suppressed is obtained if it is a silicon-based active material containing silicon. This is because it has been confirmed from the results of tests conducted by the inventors so far that silicon-containing silicon-based active materials have common properties.
 また、ケイ素含有物質を負極活物質として、遷移金属元素、13族の半金属元素若しくは金属元素、14族(ただしケイ素は除く)の半金属元素若しくは金属元素、および15族の非金属若しくは半金属元素からなる群のうちの1種又は2種以上の元素を含有しているケイ素含有物質はケイ素よりも導電性が高いという点を考慮すると、サイクル特性は同様もしくはそれを上回る効果を得ることができるものと推察される。 Further, using a silicon-containing material as a negative electrode active material, a transition metal element, a group 13 metalloid element or metal element, a group 14 metal element or metal element (excluding silicon), and a group 15 nonmetal or metalloid In view of the fact that silicon-containing materials containing one or more elements in the group consisting of elements are more conductive than silicon, the cycle characteristics can be similar or better. Inferred to be possible.

Claims (10)

  1.  ケイ素を含有する非水電解液二次電池用負極活物質であって、レーザー回折散乱式粒度分布測定法により測定して得られる体積基準粒度分布によるD50が0.01μm~3.0μmであり、且つ、D100/D50が5.0以下であることを特徴とする非水電解液二次電池用負極活物質。 A negative electrode active material for a non-aqueous electrolyte secondary battery containing silicon, having a D50 of 0.01 μm to 3.0 μm based on a volume-based particle size distribution obtained by measurement by a laser diffraction / scattering particle size distribution measurement method, And D100 / D50 is 5.0 or less, The negative electrode active material for nonaqueous electrolyte secondary batteries characterized by the above-mentioned.
  2.  D100/D50が4.5以下であることを特徴とする請求項1に記載の非水電解液二次電池用負極活物質。 D100 / D50 is 4.5 or less, The negative electrode active material for nonaqueous electrolyte secondary batteries of Claim 1 characterized by the above-mentioned.
  3.  遷移金属元素、13族の半金属元素若しくは金属元素、14族(ただしケイ素は除く)の半金属元素若しくは金属元素、および15族の非金属若しくは半金属元素からなる群のうちの1種又は2種以上の元素を含有していることを特徴とする請求項1又は2に記載の非水電解液二次電池用負極活物質。 One or two of the group consisting of transition metal elements, group 13 metalloid elements or metal elements, group 14 metal elements or metal elements (excluding silicon), and group 15 nonmetal or metalloid elements The negative electrode active material for a non-aqueous electrolyte secondary battery according to claim 1, wherein the negative electrode active material contains at least one kind of element.
  4.  D10/D50が0.1~0.9であることを特徴とする請求項1~3の何れかに記載の非水電解液二次電池用負極活物質。 The negative electrode active material for a non-aqueous electrolyte secondary battery according to any one of claims 1 to 3, wherein D10 / D50 is 0.1 to 0.9.
  5.  B(ホウ素)、Al、P、Fe、Ni、Cu、Co、Ti、Nb及びAgからなる群のうちの1種又は2種以上の元素を含有することを特徴とする請求項1~4の何れかに記載の非水電解液二次電池用負極活物質。 The element according to any one of claims 1 to 4, comprising one or more elements selected from the group consisting of B (boron), Al, P, Fe, Ni, Cu, Co, Ti, Nb, and Ag. The negative electrode active material for nonaqueous electrolyte secondary batteries in any one.
  6.  B(ホウ素)、Al及びTiからなる群のうちの1種又は2種以上の元素を含有することを特徴とする請求項1~5の何れかに記載の非水電解液二次電池用負極活物質。 The negative electrode for a non-aqueous electrolyte secondary battery according to any one of claims 1 to 5, comprising one or more elements selected from the group consisting of B (boron), Al, and Ti. Active material.
  7.  請求項1~6の何れかに記載の非水電解液二次電池用活物質と、グラファイトと、バインダーとを含む塗膜を集電体上に備えた非水電解液二次電池用負極。 A negative electrode for a non-aqueous electrolyte secondary battery, comprising a coating containing the active material for a non-aqueous electrolyte secondary battery according to any one of claims 1 to 6, graphite, and a binder on a current collector.
  8.  前記バインダーが、ポリイミドであることを特徴とする請求項7に記載の非水電解液二次電池用負極。 The negative electrode for a non-aqueous electrolyte secondary battery according to claim 7, wherein the binder is polyimide.
  9.  請求項7又は8に記載の負極を備えた非水電解液二次電池。 A non-aqueous electrolyte secondary battery comprising the negative electrode according to claim 7 or 8.
  10.  ケイ素含有物質を、或いは、ケイ素含有物質と、遷移金属、13族の半金属若しくは金属、14族(ただしケイ素は除く)の半金属若しくは金属、及び、15族の非金属若しくは半金属からなる群のうちの一種又は二種以上との混合物を、アトマイズ法もしくは液体急冷法によって負極活物質を作製する工程と、メディアを使用して前記負極活物質のD50が0.01~3.0μmであり、且つ、D100/D50が5.0以下となるように粉砕する工程と、を備えた非水電解液二次電池用活物質の製造方法。 Group containing silicon-containing material, or silicon-containing material and transition metal, group 13 metalloid or metal, group 14 metal (excluding silicon) or metal, and group 15 nonmetal or metalloid A negative electrode active material is prepared by using an atomization method or a liquid quenching method for a mixture of one or more of the above and a medium, and the D50 of the negative electrode active material is 0.01 to 3.0 μm. And the manufacturing method of the active material for nonaqueous electrolyte secondary batteries provided with the process grind | pulverized so that D100 / D50 may be 5.0 or less.
PCT/JP2015/062353 2014-04-25 2015-04-23 Negative electrode active substance for non-aqueous electrolyte secondary batteries WO2015163398A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-091241 2014-04-25
JP2014091241 2014-04-25

Publications (1)

Publication Number Publication Date
WO2015163398A1 true WO2015163398A1 (en) 2015-10-29

Family

ID=54332560

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/062353 WO2015163398A1 (en) 2014-04-25 2015-04-23 Negative electrode active substance for non-aqueous electrolyte secondary batteries

Country Status (1)

Country Link
WO (1) WO2015163398A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111384370A (en) * 2018-12-29 2020-07-07 安普瑞斯(南京)有限公司 High-capacity density lithium ion battery cathode
CN115092924A (en) * 2022-07-22 2022-09-23 中南大学 Porous silicon nanosheet negative electrode active material derived from serpentine, preparation method thereof and application of porous silicon nanosheet negative electrode active material in lithium ion battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005044672A (en) * 2003-07-23 2005-02-17 Mitsui Mining & Smelting Co Ltd Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP2005293943A (en) * 2004-03-31 2005-10-20 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2006164952A (en) * 2004-11-15 2006-06-22 Matsushita Electric Ind Co Ltd Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery comprising the same
JP2006253126A (en) * 2005-02-14 2006-09-21 Matsushita Electric Ind Co Ltd Anode active material for nonaqueous electrolyte secondary cell, anode for nonaqueous electrolyte secondary cell using same, and nonaqueous electrolyte secondary cell
WO2013151047A1 (en) * 2012-04-05 2013-10-10 三井金属鉱業株式会社 Negative electrode active material for nonaqueous electrolyte secondary batteries

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005044672A (en) * 2003-07-23 2005-02-17 Mitsui Mining & Smelting Co Ltd Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP2005293943A (en) * 2004-03-31 2005-10-20 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2006164952A (en) * 2004-11-15 2006-06-22 Matsushita Electric Ind Co Ltd Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery comprising the same
JP2006253126A (en) * 2005-02-14 2006-09-21 Matsushita Electric Ind Co Ltd Anode active material for nonaqueous electrolyte secondary cell, anode for nonaqueous electrolyte secondary cell using same, and nonaqueous electrolyte secondary cell
WO2013151047A1 (en) * 2012-04-05 2013-10-10 三井金属鉱業株式会社 Negative electrode active material for nonaqueous electrolyte secondary batteries

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111384370A (en) * 2018-12-29 2020-07-07 安普瑞斯(南京)有限公司 High-capacity density lithium ion battery cathode
CN115092924A (en) * 2022-07-22 2022-09-23 中南大学 Porous silicon nanosheet negative electrode active material derived from serpentine, preparation method thereof and application of porous silicon nanosheet negative electrode active material in lithium ion battery
CN115092924B (en) * 2022-07-22 2023-08-18 中南大学 Serpentine-derived porous silicon nano-sheet negative electrode active material, preparation thereof and application thereof in lithium ion battery

Similar Documents

Publication Publication Date Title
JP5884573B2 (en) Negative electrode active material for lithium ion battery and negative electrode for lithium ion battery using the same
JP5572267B2 (en) Anode active material for non-aqueous electrolyte secondary battery
JP5790282B2 (en) Negative electrode active material for lithium secondary battery and negative electrode for lithium secondary battery
JP5513689B1 (en) Anode active material for non-aqueous electrolyte secondary battery
JP6808988B2 (en) Negative electrode active material for lithium-ion batteries and lithium-ion batteries
JP2012178344A (en) Compound material and method for manufacturing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP5674964B2 (en) Anode active material for non-aqueous electrolyte secondary battery
JP6601937B2 (en) Negative electrode active material, negative electrode employing the same, lithium battery, and method for producing the negative electrode active material
JP2013191529A (en) Composite material, method for manufacturing composite material, electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP5652070B2 (en) Composite particle, method for producing composite particle, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
WO2015163398A1 (en) Negative electrode active substance for non-aqueous electrolyte secondary batteries
JP6978563B2 (en) Si-based negative electrode active material
JP2019179731A (en) All solid-state battery negative electrode and all solid lithium secondary battery
JP7337580B2 (en) Anode materials for lithium-ion batteries containing multicomponent silicides and silicon
JP7443851B2 (en) Powder material for negative electrode of lithium ion battery and its manufacturing method
JP2015138625A (en) Negative electrode active material for lithium ion batteries
JP2006155904A (en) Negative electrode material for nonaqueous electrolyte battery, negative electrode, and nonaqueous electrolyte battery using it
JP2006155903A (en) Negative electrode material for nonaqueous electrolyte battery, negative electrode, and nonaqueous electrolyte battery using it

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15783424

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15783424

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP