WO2015155925A1 - Planar light emitting body and illumination device - Google Patents

Planar light emitting body and illumination device Download PDF

Info

Publication number
WO2015155925A1
WO2015155925A1 PCT/JP2015/001041 JP2015001041W WO2015155925A1 WO 2015155925 A1 WO2015155925 A1 WO 2015155925A1 JP 2015001041 W JP2015001041 W JP 2015001041W WO 2015155925 A1 WO2015155925 A1 WO 2015155925A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
electrode layer
layer
layers
electrode
Prior art date
Application number
PCT/JP2015/001041
Other languages
French (fr)
Japanese (ja)
Inventor
高志 安食
裕子 鈴鹿
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2015155925A1 publication Critical patent/WO2015155925A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • G02F1/157Structural association of cells with optical devices, e.g. reflectors or illuminating devices

Definitions

  • the present invention relates to a flat light emitter including an organic EL (Electro-Luminescence) element, and a lighting device including the flat light emitter.
  • organic EL Electro-Luminescence
  • the electrochromic element is an element in which the light transmittance, the absorptivity, and the reflectance change in accordance with the applied voltage.
  • the display device described in Patent Document 1 includes an organic EL element provided on a substrate, a planarizing film provided on the organic EL element, and an electrochromic element provided on the planarizing film. .
  • visibility can be improved by performing light transmittance control according to the light emission state of an organic EL element.
  • the above-described conventional display device has a problem that the light extraction efficiency of light emitted from the organic EL element, that is, the light emission efficiency is low.
  • the present invention provides a flat light emitter and a lighting device capable of adjusting the reflectance and the transmittance and having high luminous efficiency.
  • a flat light-emitting body includes a light-transmitting substrate, and a light-transmitting first electrode layer and a second electrode sequentially stacked above the substrate.
  • Layer a light emitting unit provided between the first electrode layer and the second electrode layer, which emits light according to a first voltage applied between the first electrode layer and the second electrode layer, and a pair of electrode layers
  • a light reflective variable unit having variable light reflectivity and light transparency according to a second voltage applied between the pair of electrode layers, one of the pair of electrode layers being It is an electrode layer.
  • FIG. 1A is a view showing an example of use of a lighting device according to an embodiment of the present invention.
  • FIG. 1B is a view showing a usage example of the lighting device according to the embodiment of the present invention.
  • FIG. 2 is a diagram showing the configuration of the illumination device according to the embodiment of the present invention.
  • FIG. 3A is a plan view showing an arrangement example of the terminal portions of the flat light emitter according to the embodiment of the present invention.
  • FIG. 3B is a partially exploded perspective view showing an arrangement example of the terminal portions of the flat light emitter according to the embodiment of the present invention.
  • FIG. 3C is a plan view showing another example of arrangement of the terminal portions of the flat light emitter according to the embodiment of the present invention.
  • FIG. 4 is a cross-sectional view showing the configuration of the flat light emitter according to the embodiment of the present invention.
  • FIG. 5 is a diagram showing a spectrum of light emitted by the light emitting unit of the flat light emitter according to the embodiment of the present invention.
  • FIG. 6 is a view showing an example of the material and film thickness of each layer of the light reflectivity variable unit of the flat light emitter according to the embodiment of the present invention.
  • FIG. 7A is a view showing the relationship between the optical distance of the light reflective variable unit of the flat light emitter according to the embodiment of the present invention and the angular dependence of the emission color in the reflection state.
  • FIG. 5 is a diagram showing a spectrum of light emitted by the light emitting unit of the flat light emitter according to the embodiment of the present invention.
  • FIG. 6 is a view showing an example of the material and film thickness of each layer of the light reflectivity variable unit of the flat light emitter according to the embodiment of the present invention.
  • FIG. 7A is a
  • FIG. 7B is a view showing the relationship between the optical distance of the light reflective variable unit of the flat light emitter according to the embodiment of the present invention and the angular dependence of the light emission color in the transmission state.
  • FIG. 8 is a cross-sectional view showing the configuration of a flat light emitter according to a first modification of the embodiment of the present invention.
  • FIG. 9 is a cross-sectional view showing a part of the configuration of a flat light emitter according to Modification 2 of the embodiment of the present invention.
  • the electrochromic element when the electrochromic element is in a reflection state, light emitted from the organic EL element is reflected by the electrochromic element and emitted from the light emitting surface side. At this time, the reflected light of the light emitted from the organic EL element is emitted from the light emitting surface after passing through the flattening film twice. Therefore, the light extraction loss is large due to the difference in refractive index between the layers, and the light emission efficiency is degraded.
  • a flat light-emitting body includes a light-transmitting substrate, and a light-transmitting first electrode layer and a light-transmitting first electrode layer sequentially stacked above the substrate.
  • a light emitting unit provided between the two electrode layers, the first electrode layer and the second electrode layer, and emitting light according to a first voltage applied between the first electrode layer and the second electrode layer; and a pair of electrode layers
  • a light reflective variable unit having variable light reflectivity and light transparency according to a second voltage applied between the pair of electrode layers, one of the pair of electrode layers being a second electrode layer .
  • the reflectance and the transmittance can be adjusted, and the light emission efficiency can be increased.
  • each drawing is a schematic view, and is not necessarily illustrated exactly. Moreover, in each figure, the same code
  • FIGS. 1A and 1B are figures which show the usage example of the illuminating device 10 which concerns on this Embodiment.
  • Lighting device 10 has four operation modes. Specifically, the four operation modes are the “transmission and extinction mode”, the “transmission and illumination mode”, the “reflection and extinction mode” and the “reflection and illumination mode”.
  • the illumination device 10 has an illumination function, a transmission function, and a reflection (mirror) function, and thus can be used, for example, as a window or a window of a building such as a skylight. Alternatively, the lighting device 10 can also be used as a window of a transportation vehicle such as a car.
  • the lighting device 10 when used as a skylight, it is possible to take outside light such as sunlight into the room in the daytime “transmission mode” in the daytime, and can be used as lighting at night.
  • outside light such as sunlight into the room in the daytime “transmission mode” in the daytime
  • sunlight and the like in the “reflection mode” in the daytime, sunlight and the like can be prevented from entering the room, and heat insulation is also excellent.
  • the case where the users 20 and 30 are located in the both sides of the illuminating device 10 is assumed.
  • the surface by the side of the user 30 of the illuminating device 10 can change light reflectivity and light transmittance.
  • the lighting device 10 When the lighting device 10 operates in the “transmission and extinguishing mode" ((b) in FIG. 1A), the user 20 and the user 30 can see each other. That is, in the “transmission and extinction mode”, external light can be transmitted from one surface of the lighting device 10 to the other surface. At this time, the illumination device 10 does not emit the illumination light to the outside.
  • the illuminating device 10 when the illuminating device 10 operate
  • the illumination device 10 can emit the illumination light to the outside and simultaneously transmit the external light from one surface of the illumination device 10 to the other surface.
  • the user 20 and the user 30 can not mutually visually recognize.
  • the user 20 can view the mirror image 21 of himself / herself instead of the user 30 as shown in FIG. 1B (b). That is, the light incident from the user 20 side is reflected by the lighting device 10.
  • the illuminating device 10 when the illuminating device 10 operate
  • illumination light is irradiated only to the user 20 side. This is because the illumination light emitted by the illumination device 10 is reflected by the surface on the user 30 side.
  • the user 20 and the user 30 can not see each other.
  • the user 20 can view the mirror image 21 of itself as shown in (c) of FIG. 1B, although it depends on the intensity of the illumination light from the illumination device 10 instead of the user 30.
  • lighting installation 10 concerning this embodiment can control independently “transmission” and “reflection” and “lighting out” and “lighting”, respectively.
  • FIG. 2 is a view showing the configuration of the lighting apparatus 10 according to the present embodiment.
  • the lighting device 10 includes a flat light emitter 100 and a power supply circuit 200. First, the detailed configuration of the flat light emitter 100 will be described.
  • the planar light emitter 100 includes a substrate 110, an organic EL element 120, and an electrochromic element 130, as shown in FIG.
  • the substrate 110 is a light transmitting substrate.
  • the substrate 110 is a transparent substrate that transmits at least a portion of visible light.
  • the main surface of the substrate 110 opposite to the main surface on which the organic EL element 120 is provided is the light emitting surface of the flat light emitter 100.
  • the substrate 110 is a glass substrate such as non-alkali glass, soda glass, non-fluorescent glass, phosphoric acid-based glass, and boric acid-based glass.
  • the substrate 110 may be a quartz substrate or a plastic substrate.
  • the organic EL element 120 is a light emitting portion of the flat light emitter 100 and is provided above the substrate 110. That is, the organic EL element 120 controls “lighting” and “lighting off” of the flat light emitting body 100 according to the applied voltage.
  • the organic EL element 120 is provided with the 1st electrode layer 121, the light emission unit 122, and the 2nd electrode layer 123, as shown in FIG.
  • the first electrode layer 121, the light emitting unit 122, and the second electrode layer 123 are sequentially stacked above the substrate 110.
  • the first electrode layer 121 is an electrode provided on the light emitting surface side, and is provided, for example, on the substrate 110.
  • the first electrode layer 121 is, for example, an anode, and has a potential higher than that of the second electrode layer 123 when the light emitting unit 122 emits light.
  • the first electrode layer 121 is made of a light-transmitting conductive material.
  • the first electrode layer 121 is made of a transparent conductive material that transmits at least a part of visible light.
  • the first electrode layer 121 is made of, for example, a metal oxide film such as indium tin oxide (ITO), zinc oxide (ZnO), indium zinc oxide (IZO), tin oxide (SnO 2 ), indium gallium zinc oxide (IGZO), etc. Configured
  • the first electrode layer 121 is ITO of 100 nm.
  • the first electrode layer 121 may be made of a thin metal film (eg, 10 nm) of silver, aluminum, magnesium or the like as a thin film to the extent that light can be transmitted.
  • the first electrode layer 121 may be silver nanowires, carbon nanotubes, or the like.
  • the first electrode layer 121 may be a conductive polymer film such as PEDOT / PSS or polyaniline.
  • the first electrode layer 121 may be a laminated film of the above-described materials.
  • the first electrode layer 121 is formed by depositing a transparent conductive film on the substrate 110 by a vapor deposition method or a sputtering method, and patterning the deposited transparent conductive film.
  • the first electrode layer 121 is connected to the first power supply circuit 210 via the terminal portion 121a.
  • the light emitting unit 122 is provided between the first electrode layer 121 and the second electrode layer 123, and emits light according to a first voltage applied between the first electrode layer 121 and the second electrode layer 123. Specifically, the light emitting unit 122 is provided on the first electrode layer 121.
  • the light emitting unit 122 has, for example, a plurality of organic layers.
  • the light emitting unit 122 includes a hole injection layer, a hole transport layer, a light emitting layer (organic EL layer), an electron transport layer, and an electron injection layer.
  • An organic layer such as a light emitting layer is made of, for example, an organic material such as diamine, anthracene, or a metal complex.
  • Each layer constituting the light emitting unit 122 is formed by a vapor deposition method, a spin coating method, a cast method or the like.
  • a first hole transport layer of 60 nm is provided on the first electrode layer 121.
  • a blue fluorescent light emitting layer including 4,4'-bis (9-ethyl-3-carbazovinylene) -1,1'-biphenyl (BCzVBi) as a blue fluorescent light emitting material
  • green fluorescent light emitting Layers including green fluorescent light emitting material (containing triphenylamine (TPA)), first electron transporting layer (4,4'-N, N'-dicarbazolebiphenyl (CBP) in this order, a film of 35 nm in total It is provided to be thick.
  • TPA triphenylamine
  • CBP first electron transporting layer
  • an intermediate layer having a layer structure of Alq 3 (tris (8-quinolinate) aluminum) / Li 2 O / Alq 3 / HAT-CN 6 (hexaazatriphenylene hexacarbonitrile) is provided.
  • a 25 nm second hole transport layer is provided.
  • a red phosphorescent light emitting layer (containing tris (1-phenylisoquinoline) iridium (III) (Ir (piq) 3 ) as a red phosphorescent light emitting material), a green phosphorescent light emitting layer (green color Bis (2,2'-benzothienyl) -biridinato-N, C3 iridium (acetylacetonate) (including Bt 2 Ir (acac)) as a phosphorescent light emitting material, the second electron transport layer in this order, 95 nm in total
  • the second electrode layer 123 is an electrode provided on the side opposite to the light emitting surface, and is provided on the light emitting unit 122, for example.
  • the second electrode layer 123 is, for example, a cathode, and has a lower potential than the first electrode layer 121 when the light emitting unit 122 emits light.
  • the second electrode layer 123 is made of a light-transmitting conductive material.
  • the second electrode layer 123 is made of a transparent conductive material that transmits at least a part of visible light.
  • the second electrode layer 123 is made of the same material as the material that can be used as the first electrode layer 121.
  • the second electrode layer 123 is formed by depositing a transparent conductive film on the light emitting unit 122 by a vapor deposition method or a sputtering method, and patterning the deposited transparent conductive film.
  • the second electrode layer 123 is ITO of 100 nm.
  • the second electrode layer 123 is connected to the first power supply circuit 210 via the terminal portion 123a.
  • the second electrode layer 123 is one of a pair of electrodes of the electrochromic element 130. Therefore, the second electrode layer 123 is also connected to the second power supply circuit 220 through the terminal portion 131a (that is, the terminal portion 123a).
  • the electrochromic element 130 is an example of a light-reflecting variable unit having a pair of electrode layers and having variable light reflectivity and light transparency according to the second voltage applied between the pair of electrode layers. Specifically, the electrochromic element 130 can reversibly change the light reflectivity and the light transmittance according to the second voltage.
  • the electrochromic device 130 controls “transmission” and “reflection” of the flat light emitter 100 according to the applied voltage.
  • the electrochromic element 130 includes a counter electrode layer 131 and a reversible reaction electrode layer 132 which are a pair of electrode layers, and an intermediate layer 133.
  • the counter electrode layer 131, the intermediate layer 133, and the reversible reaction electrode layer 132 are sequentially stacked above the light emitting unit 122.
  • the counter electrode layer 131 is one of a pair of electrode layers of the light reflective variable unit. As shown in FIG. 2, the counter electrode layer 131 is a second electrode layer 123. That is, the counter electrode layer 131 and the second electrode layer 123 are the same conductive film. In other words, the organic EL element 120 and the electrochromic element 130 share the same conductive film as an electrode.
  • the reversible reaction electrode layer 132 is the other of the pair of electrode layers of the light reflectivity variable unit.
  • the reversible reaction electrode layer 132 is an electrode layer in which light reflectivity and light transparency are reversible according to the second voltage applied between the reversible reaction electrode layer 131 and the counter electrode layer 131.
  • the reversible reaction electrode layer 132 can switch between the mirror state (reflection state) and the transparent state (transmission state) according to the second voltage.
  • the reversible reaction electrode layer 132 is made of a material capable of changing the light reflectivity and the light transparency by storing or releasing hydrogen and hydrogen ions.
  • the reversible reaction electrode layer 132 is in a transmission state when storing hydrogen (hydrogenation), and is in a reflection state when releasing hydrogen.
  • the reversible reaction electrode layer 132 is composed of magnesium, an alkaline earth element, a rare earth element, and an alloy containing any of these elements.
  • the reversible reaction electrode layer 132 is made of magnesium-nickel alloy (Mg-Ni), magnesium-titanium alloy (Mg-Ti), magnesium-cobalt alloy (Mg-Co), magnesium-calcium alloy (Mg-Ca), magnesium -With barium alloy (Mg-Ba), magnesium-strontium alloy (Mg-Sr), gadolinium-magnesium alloy (Gd-Mg), samarium-magnesium alloy (Sm-Mg), yttrium-magnesium alloy (Y-Mg), etc. is there.
  • Mg-Ni magnesium-nickel alloy
  • Mg-Ti magnesium-titanium alloy
  • Mg-Co magnesium-cobalt alloy
  • Mg-Ca magnesium-calcium alloy
  • Mg-Ba magnesium-With barium alloy
  • a transparent conductive film such as ITO may be laminated on the opposite side of the counter electrode layer 131 of the reversible reaction electrode layer 132.
  • the reversible reaction electrode layer 132 is connected to the second power supply circuit 220 via the terminal portion 132a.
  • the intermediate layer 133 includes a plurality of layers stacked between the counter electrode layer 131 and the reversible reaction electrode layer 132.
  • the thickness of the intermediate layer 133 is determined such that the optical distance between the light emitting unit 122 and the reversible reaction electrode layer 132 is greater than three times the peak wavelength of the light emitted by the light emitting unit 122. The specific configuration will be described later.
  • the power supply circuit 200 can independently apply a first voltage supplied to the organic EL element 120 and a second voltage supplied to the electrochromic element 130. As shown in FIG. 2, the power supply circuit 200 includes a first power supply circuit 210 and a second power supply circuit 220.
  • the first power supply circuit 210 is connected to the first electrode layer 121 and the second electrode layer 123 (that is, the counter electrode layer 131), and a first voltage is applied between the first electrode layer 121 and the second electrode layer 123. Apply.
  • the first power supply circuit 210 is a direct current source or a direct voltage source in which the application direction is fixed and the current value or the voltage value is variable.
  • the first power supply circuit 210 applies a first voltage at which the first electrode layer 121 has a higher potential than the second electrode layer 123 so that a current flows from the first electrode layer 121 to the second electrode layer 123.
  • the first power supply circuit 210 operates independently of the operation of the second power supply circuit 220. For example, based on an instruction from a user or the like, the first power supply circuit 210 controls the voltage value (the amount of current flowing to the light emitting unit 122) to which the first voltage is applied, not applied, or applied.
  • the first power supply circuit 210 when the user instructs "turn off”, the first power supply circuit 210 does not apply the first voltage. In addition, when the user instructs “light up”, the first power supply circuit 210 applies the first voltage. In addition, when the user instructs to adjust the brightness, the first power supply circuit 210 controls the voltage value of the first voltage to be applied.
  • the second power supply circuit 220 is connected to the counter electrode layer 131 (that is, the second electrode layer 123) and the reversible reaction electrode layer 132, and applies a second voltage between the counter electrode layer 131 and the reversible reaction electrode layer 132.
  • the second power supply circuit 220 is a direct current source or a direct current voltage source which has a variable application direction and a fixed current value or voltage value.
  • the reversible reaction electrode layer 132 When the second power supply circuit 220 applies a second voltage such that the reversible reaction electrode layer 132 has a higher potential than the counter electrode layer 131, the reversible reaction electrode layer 132 is in a reflective state. Conversely, when the second power supply circuit 220 applies the second voltage so that the reversible reaction electrode layer 132 has a lower potential than the counter electrode layer 131, the reversible reaction electrode layer 132 is in the transmission state.
  • the second power supply circuit 220 controls the direction in which the second voltage is applied, not applied, or applied. Specifically, when the user instructs switching from “reflection” to “transmission”, for example, when the potential of the counter electrode layer 131 is 0 V, the second power supply circuit 220 By applying the second voltage so that the potential is ⁇ 5 V, the reversible reaction electrode layer 132 can be brought into the transmission state. Conversely, when the user instructs switching from “transmission” to “reflection”, the second power supply circuit 220 has, for example, the potential of the reversible reaction electrode layer 132 when the potential of the counter electrode layer 131 is 0 V. By applying the second voltage so as to be +5 V, the reversible reaction electrode layer 132 can be in a reflective state.
  • the second power supply circuit 220 may stop the application of the second voltage. Even after the application of the second voltage is stopped, the reversible reaction electrode layer 132 maintains the previous state.
  • FIGS. 3A and 3B are a plan view and a partially exploded perspective view showing an arrangement example of the terminal portion of the flat light emitter according to the embodiment of the present invention, respectively.
  • the three terminal portions 121a, 123a and 132a are arranged in one direction of the flat light emitter 100.
  • the planar view shape of the flat light emitter 100 according to the present embodiment is rectangular, the three terminal portions 121a, 123a and 132a are arranged side by side on one side of the rectangle.
  • the flat light emitter 100 has a sealing substrate provided so as to face the substrate 110.
  • the sealing substrate is a light-transmitting substrate, such as a glass substrate.
  • the organic EL element 120 and the electrochromic element 130 are sealed by the substrate 110 and the sealing substrate, and a sealing member such as a resin for bonding the substrate 110 and the sealing substrate. Thereby, the penetration of moisture and the like into the light emitting unit 122 of the organic EL element 120 is suppressed.
  • the terminal portions 121a, 123a, and 132a are lead electrode portions (electrode pads) drawn to the outside from the sealing space which is a space surrounded by the substrate 110, the sealing substrate, and the sealing member.
  • the terminal portion 121 a is a lead-out electrode portion for connecting to the first power supply circuit 210.
  • the terminal portion 121 a is electrically connected to the first electrode layer 121.
  • the terminal portion 121a is provided so that a part of the first electrode layer 121 extends.
  • the terminal portion 121 a is formed on the substrate 110 by patterning the conductive film in the same step as the first electrode layer 121. Therefore, the terminal portion 121a is made of, for example, the same material as the first electrode layer 121.
  • the terminal portion 123 a that is, the terminal portion 131 a is a lead-out electrode portion for connecting to the first power supply circuit 210 and the second power supply circuit 220.
  • the terminal portion 123a is electrically connected to the second electrode layer 123 (counter electrode layer 131). Specifically, as shown in FIG. 3B, the terminal portion 123a is provided such that a part of the second electrode layer 123 extends.
  • the terminal portion 123 a is formed on the substrate 110 by patterning the conductive film in the same step as the second electrode layer 123. Therefore, the terminal portion 123a is made of, for example, the same material as the second electrode layer 123.
  • the terminal portion 123a is separated from the first electrode layer 121 and the terminal portion 121a.
  • an insulating layer may be provided between the terminal portion 123a and the first electrode layer 121 and the terminal portion 121a.
  • the terminal portion 132 a is a lead-out electrode portion for connecting to the second power supply circuit 220.
  • the terminal portion 132 a is electrically connected to the reversible reaction electrode layer 132.
  • the terminal portion 132a is provided such that a part of the reversible reaction electrode layer 132 extends.
  • the terminal portion 132 a is formed on the substrate 110 by patterning the conductive film in the same step as the reversible reaction electrode layer 132. Therefore, the terminal portion 132a is made of, for example, the same material as the reversible reaction electrode layer 132.
  • the terminal portion 132a is separated from the first electrode layer 121, the terminal portion 121a, the second electrode layer 123, and the terminal portion 123a.
  • an insulating layer may be provided between the terminal portion 132a and the first electrode layer 121, the terminal portion 121a, the second electrode layer 123, and the terminal portion 123a.
  • the terminal portions 121a, 123a and 132a may be formed in the same process.
  • the terminal portions 121a, 123a, and 132a may be formed in the same process as the first electrode layer 121. That is, the terminal portions 121a, 123a and 132a may be made of the same material (ITO or the like) as the first electrode layer 121.
  • the terminal portion 121a is connected to the first electrode layer 121 as shown in FIG. 3B.
  • the terminal portions 123a and 132a are disposed to be separated from the first electrode layer 121 and the terminal portion 121a.
  • the second electrode layer 123 and the reversible reaction electrode layer 132 may be formed so as to be connected to the terminal portions 123a and 132a, respectively.
  • the flat light emitter 100 can be narrowed.
  • FIG. 3C is a top view which shows another example of arrangement
  • each of the first electrode layer 121, the second electrode layer 123 (counter electrode layer 131), and the reversible reaction electrode layer 132 has two terminal portions 121a, 123a, and 132a.
  • One of the terminal portions 121a, 123a and 132a is provided on one side of the flat light emitter 100, and the remaining terminal portions 121a, 123a and 132a are provided on the other side of the flat light emitter 100.
  • one side and the other side of the flat light emitting body 100 in which the terminal portion is provided are opposed to each other. That is, in the flat light emitter 100 shown in FIG. 3C, power can be supplied from both sides of each electrode layer. Thereby, the influence of the voltage drop in the electrode layer can be suppressed, and the surface uniformity of light emission and the surface uniformity of control of transmission or reflection can be improved.
  • one side and the other side of the flat light emitting body 100 in which the terminal portion is provided may be sides adjacent to each other. Even in this case, since power can be supplied from two places of each electrode layer, the influence of voltage drop in the electrode layer can be suppressed, and the surface uniformity of light emission and the surface uniformity of control of transmission or reflection can be improved. It can be done.
  • terminal portions 121a, 123a and 132a may be provided.
  • FIG. 4 is a cross-sectional view showing the configuration of the flat light emitter 100 according to the present embodiment.
  • the intermediate layer 133 includes, as shown in FIG. 4, an opposing reaction layer 134, a solid electrolyte layer 135, a buffer layer 136, and a catalyst layer 137. Specifically, on the counter electrode layer 131, the counter reaction layer 134, the solid electrolyte layer 135, the buffer layer 136, and the catalyst layer 137 are sequentially stacked.
  • the opposing reaction layer 134 reacts with the reversible reaction electrode layer 132 via the solid electrolyte layer 135. Specifically, the opposing reaction layer 134 reversibly stores and extracts hydrogen ions necessary for switching between the reflection state and the transmission state of the reversible reaction electrode layer 132. In other words, the opposing reaction layer 134 functions as an ion storage layer.
  • the opposing reaction layer 134 is made of, for example, a transition metal oxide. Specifically, the opposing reaction layer 134 is made of tungsten oxide (WO 3 ), iridium oxide (IrO), nickel oxide (NiO), chromium oxide (Cr 2 O 3 ), molybdenum oxide (MoO 3 ), vanadium oxide (V oxide) ) (V 2 O 5 ) and the like.
  • the opposing reaction layer 134 is formed, for example, by sputtering.
  • the solid electrolyte layer 135 is made of a material having the property that hydrogen ions can easily move by application of a voltage.
  • the solid electrolyte layer 135 is a transparent metal oxide thin film provided on the facing reaction layer 134.
  • hydrogen ions can be introduced, for example, by including water remaining in the chamber in a thin film when forming the solid electrolyte layer 135 by sputtering.
  • the solid electrolyte layer 135 is made of, for example, a metal oxide or a metal sulfide. Specifically, tantalum oxide (Ta 2 O 5 ), zirconium oxide (Zr 2 O 5 ), silver sulfide (Ag 2 S), copper sulfide (Cu 2 S), niobium oxide (Nb 2 O 5 ), ⁇ -alumina It is composed of a solid electrolyte ( ⁇ -Al 2 O 3 ) or the like.
  • the buffer layer 136 prevents diffusion of components such as the solid electrolyte layer 135, for example.
  • the buffer layer 136 is a metal thin film provided on the solid electrolyte layer 135.
  • the buffer layer 136 is a metal thin film of aluminum, titanium, tantalum or the like.
  • the buffer layer 136 is formed by sputtering, for example.
  • the catalyst layer 137 supplies hydrogen ions to the reversible reaction electrode layer 132 and obtains hydrogen ions from the reversible reaction electrode layer 132.
  • the catalyst layer 137 is a metal thin film provided on the buffer layer 136 and immediately below the reversible reaction electrode layer 132.
  • the catalyst layer 137 is made of palladium, platinum, silver or an alloy of these.
  • the catalyst layer 137 is formed by sputtering, for example.
  • the intermediate layer 133 is configured to have a film thickness determined according to the light emitted by the light emitting unit 122. Specifically, the film thickness of the intermediate layer 133 is such that the optical distance Z between the light emitting unit 122 and the reversible reaction electrode layer 132 is larger than three times the peak wavelength ⁇ max of the light emitted by the light emitting unit 122. It is determined. That is, the intermediate layer 133 is formed to satisfy the condition “Z / ⁇ max> 3” of the optical distance.
  • FIG. 5 is a figure which shows the spectrum of the light which the light emission unit 122 of the planar light-emitting body 100 which concerns on this Embodiment emits.
  • the peak wavelength ⁇ max of visible light shown in FIG. 5 is 620 nm.
  • simulation was performed on the flat light emitter having three different film thicknesses. Specifically, simulations were performed in each of the “reflection lighting mode” and the “transmission lighting mode”.
  • the angle dependency is a characteristic of the chromaticity change of the luminescent color (color of light emitted by the light emitting unit 122) with respect to the angle at which the flat light emitting body 100 is viewed.
  • the chromaticity change with respect to angle is small, the angular dependence is small, and when the chromaticity change with angle is large, the angular dependence is large.
  • the angle dependency when the angle dependency is large, the emission color changes significantly when the viewing angle is changed. On the contrary, when the angle dependency is small, even if the viewing angle is changed, the luminescent color does not change much. Therefore, it is preferable that the angle dependency be small.
  • FIG. 6 is a view showing an example of the material and film thickness of each layer of the variable light reflective unit 130 of the flat light emitter 100 according to the present embodiment.
  • Z of “Z / ⁇ max” is an optical distance between the light emitting unit 122 and the reversible reaction electrode layer 132. Specifically, it is the product sum of the refractive index n and the film thickness d of each of a plurality of layers provided between the light emitting unit 122 and the reversible reaction electrode layer 132. That is, Z is expressed by the following (Expression 1).
  • n i indicates the refractive index of the ith layer
  • d i indicates the film thickness of the ith layer
  • a second electrode layer 123 (counter electrode layer 131) and an intermediate layer 133 are provided between the light emitting unit 122 and the reversible reaction electrode layer 132.
  • the second electrode layer 123, the opposite reaction layer 134, the solid electrolyte layer 135, the buffer layer 136, and the catalyst layer 137 are stacked in this order between the light emitting unit 122 and the reversible reaction electrode layer 132.
  • the optical distance Z is the product (optical film thickness) of the refractive index n and the film thickness d of each of the second electrode layer 123, the facing reaction layer 134, the solid electrolyte layer 135, the buffer layer 136, and the catalyst layer 137. It becomes a sum.
  • a material such as metal having an extinction coefficient k larger than the refractive index n, it is not necessary to use for calculation of the optical distance.
  • the buffer layer 136 and the catalyst layer 137 have a size of about several nm, and are sufficiently smaller than the other layers. You do not have to put in
  • optical constants (refractive index n and extinction coefficient k) shown in FIG. 6 indicate values of an example used in the simulation.
  • the optical constant of Mg—Ni the value of Mg is used during reflection, and the value of MgH 2 is used during transmission.
  • FIGS. 7A and 7B are diagrams showing the relationship between the optical distance of the variable light reflective unit 130 of the flat light emitter 100 according to the present embodiment and the angular dependence of the emission color in the reflection state and the transmission state, respectively. is there. Specifically, FIGS. 7A and 7B show the simulation results of the angular dependency of each of the three types of flat light emitters of (a) to (c) shown in FIG. It is shown as a 'v' chromaticity diagram.
  • the black plots indicate the case of “0 °”
  • the white plots of the larger plots indicate the case of “80 °”.
  • “0 °” or “80 °” indicates an angle based on a direction perpendicular to the light emitting surface of the flat light emitter 100 (ie, the stacking direction). Specifically, “0 °” indicates a case where the light emitting surface is viewed from the front of the flat light emitting body 100. The angle increases in steps of 10 ° from the filled plot towards the filled plot.
  • the film thickness of the intermediate layer 133 is determined such that the optical distance Z is increased.
  • the film thickness of the intermediate layer 133 may be determined so as to increase the optical distance Z.
  • each layer of the intermediate layer 133 such that the film thickness of the facing reaction layer 134 or the solid electrolyte layer 135 is the largest among the plurality of layers constituting the intermediate layer 133 and the second electrode layer 123.
  • Film thickness is determined.
  • the intermediate layer 133 satisfying the above-described optical distance condition (Z / ⁇ max> 3) is formed.
  • the film thickness can not be increased for other layers.
  • the buffer layer 136 and the catalyst layer 137 are made of metal. Therefore, when the film thickness of the buffer layer 136 and the catalyst layer 137 is increased, it is difficult to transmit the light from the light emitting unit 122.
  • the second electrode layer 123 is formed of a transparent conductive film such as ITO that absorbs part of light in the visible light band. For this reason, when the film thickness of the second electrode layer 123 is increased, part of the light from the light emitting unit 122 is absorbed, and the emission color is colored.
  • the intermediate layer 133 satisfying the above-described optical distance condition (Z / ⁇ max> 3) is formed.
  • the film thickness of the intermediate layer 133 may be increased as a simple configuration.
  • the film thickness of the intermediate layer 133 is too large, the operation of the electrochromic element 130 is affected, or the light extraction efficiency from the light emitting unit 122 is deteriorated. Further, even if the film thickness of the intermediate layer 133 is increased more than necessary, no change in the angle dependency is observed.
  • the film thickness of the intermediate layer 133 is determined so that, for example, the optical distance Z between the light emitting unit 122 and the reversible reaction electrode layer 132 is 6 times or less of the peak wavelength ⁇ max of light emitted by the light emitting unit 122 Preferably. That is, the intermediate layer 133 is preferably formed to satisfy “Z / ⁇ max ⁇ 6”.
  • the flat light emitting body 100 includes the light transmitting substrate 110 and the light transmitting first electrode layer 121 and the second electrode sequentially stacked above the substrate 110.
  • a pair of light emitting units 122 provided between the layer 123 and the first electrode layer 121 and the second electrode layer 123 and emitting light according to the first voltage applied between the first electrode layer 121 and the second electrode layer 123;
  • Electrochromic device having the opposite electrode layer 131 and the reversible reaction electrode layer 132, and the light reflectivity and the light transmittance being variable according to the second voltage applied between the opposite electrode layer 131 and the reversible reaction electrode layer 132
  • the counter electrode layer 131 is the second electrode layer 123.
  • the illuminating device 10 which concerns on this Embodiment is provided with the planar light-emitting body 100 and the power supply circuit 200 which can apply a 1st voltage and a 2nd voltage independently.
  • the organic EL element 120 and the electrochromic element 130 are integrated.
  • the second electrode layer 123 which is the cathode of the organic EL element 120 and the counter electrode layer 131 of the electrochromic element 130 are common, that is, constitute the same layer.
  • the second electrode layer 123 and the counter electrode layer 131 in common, the number of layers through which light from the light emitting unit 122 passes is reduced. Therefore, the loss of light extraction from the light emitting unit 122 due to the difference in refractive index between layers is smaller than when the organic EL element 120 and the electrochromic element 130 are separately stacked, and the light emission efficiency can be increased.
  • permeability can be adjusted and luminous efficiency can be made high.
  • the planar light emitter 100 can be thinner than in the case where the organic EL element 120 and the electrochromic element 130 are separately laminated. . Therefore, the flat light emitter 100 can be easily bent, and can be used as the flexible lighting device 10.
  • the second electrode layer 123 and the counter electrode layer 131 in common, the number of components (specifically, the number of electrode layers) and the number of manufacturing steps can be reduced, thereby reducing the cost. can do.
  • the reversible reaction electrode layer 132 has variable light reflectivity and light transparency according to the second voltage, and the optical distance between the light emitting unit 122 and the reversible reaction electrode layer 132 is the light emitting unit 122. Greater than three times the peak wavelength of the light emitted by
  • a diffusion film for diffusing light can be used.
  • the diffusion film can not be used.
  • the flat light emitting body 100 by making the optical distance between the light emitting unit 122 and the reversible reaction electrode layer 132 appropriate, the angle of the light emission color can be obtained without using the diffusion film. The dependency can be reduced.
  • the electrochromic element 130 includes the intermediate layer 133 including a plurality of stacked layers between the counter electrode layer 131 and the reversible reaction electrode layer 132, and the intermediate layer 133 includes the solid electrolyte layer 135 and a solid.
  • the film thickness of the solid electrolyte layer 135 or the counter reaction layer 134 includes the counter reaction layer 134 that reacts with the reversible reaction electrode layer 132 via the electrolyte layer 135, and the film thickness of the solid electrolyte layer 135 or the counter reaction layer 134 is at maximum among the intermediate layer 133 and the second electrode layer 123. is there.
  • FIG. 8 is a cross-sectional view showing the configuration of a flat light emitter 300 according to the present modification.
  • the flat light emitter 300 shown in FIG. 8 is different from the flat light emitter 100 shown in FIG. 4 in that an electrochromic element 330 is provided instead of the electrochromic element 130.
  • the following description will focus on the differences.
  • the electrochromic element 330 includes an intermediate layer 333 instead of the intermediate layer 133.
  • the intermediate layer 333 comprises a solid electrolyte layer 335 instead of the solid electrolyte layer 135.
  • asperities with a period of 0.1 ⁇ m to 10 ⁇ m are formed in the horizontal direction of the substrate.
  • concave portions 335a and convex portions 335b are repeatedly formed in a matrix at a cycle of 0.1 ⁇ m to 10 ⁇ m.
  • the period corresponds to the total width of the concave portion 335a and the convex portion 335b.
  • the shape of the recess 335 a and the protrusion 335 b may be any shape.
  • the plan view shape of the recess 335 a and the protrusion 335 b is a rectangle, a circle, an ellipse, or the like.
  • the cross-sectional shapes of the concave portion 335 a and the convex portion 335 b have a taper. That is, the concave portion 335a and the convex portion 335b have a surface inclined with respect to the stacking direction.
  • the concave portion 335a and the convex portion 335b may have a plane parallel to the stacking direction.
  • the concave portion 335 a and the convex portion 335 b are formed by removing a part by etching or the like after film formation. That is, the removed portion is the concave portion 335a, and the remaining portion is the convex portion 335b.
  • a metal oxide film for example, tantalum oxide
  • a material of the solid electrolyte layer 335 is formed on the facing reaction layer 134 by sputtering or the like.
  • part of the metal oxide film is removed by dry etching (for example, RIE (Reactive Ion Etching)) or the like using a mask having an opening at a position corresponding to the concave portion 335a.
  • dry etching for example, RIE (Reactive Ion Etching)
  • the solid electrolyte layer 335 in which the recess 335 a and the protrusion 335 b are formed is formed.
  • the height of the unevenness is, for example, several nm to several tens of nm.
  • the buffer layer 136 and the catalyst layer 137 are stacked on the unevenness. For this reason, as shown in FIG. 8, the buffer layer 136 and the catalyst layer 137 become layers along the concavo-convex shape. Simply put, the buffer layer 136 and the catalyst layer 137 have a corrugated shape.
  • FIG. 8 shows an example in which the solid electrolyte layer 335 is formed with asperities, it is not limited thereto.
  • asperities may be formed on the opposing reaction layer 134.
  • the electrochromic element 330 has the intermediate layer 333 including a plurality of stacked layers between the counter electrode layer 131 and the reversible reaction electrode layer 132,
  • the intermediate layer 333 includes a solid electrolyte layer 335 and a facing reaction layer 134 that reacts with the reversible reaction electrode layer 132 via the solid electrolyte layer 335, and at least one of the solid electrolyte layer 335 and the facing reaction layer 134 is a substrate. Irregularities having a period of 0.1 ⁇ m to 10 ⁇ m are formed in the horizontal direction.
  • the reflected light by the reversible reaction electrode layer 132 can be diffused by the unevenness, the angle dependency can be reduced without increasing the film thickness.
  • the unevenness diffuses the reflected light, in the case of the reflection mode, it is not specular reflection but diffuse reflection.
  • FIG. 9 is a cross-sectional view showing a part of the configuration of a flat light emitter 400 according to this modification.
  • the flat light emitter 400 shown in FIG. 9 is different from the flat light emitter 100 shown in FIG. 4 in that an organic EL element 420 and an electrochromic element 430 are provided instead of the organic EL element 120 and the electrochromic element 130. ing. The following description will focus on the differences.
  • the organic EL element 420 includes a light emitting unit 422 and a second electrode layer 423 instead of the light emitting unit 122 and the second electrode layer 123.
  • the electrochromic element 430 includes a counter electrode layer 431, a reversible reaction electrode layer 432, and an intermediate layer 433.
  • the light emitting unit 422, the second electrode layer 423 (counter electrode layer 431), the reversible reaction electrode layer 432, and the intermediate layer 433 have the materials except for the shapes, respectively, such as the light emitting unit 122 and the second electrode layer 123 (counter electrode layer 131).
  • the reversible reaction electrode layer 132 and the intermediate layer 133 are the same.
  • the electrochromic element 430 covers the light emitting unit 422. That is, the electrochromic element 430 extends outward from the outer edge of the light emitting unit 422 in plan view.
  • the counter electrode layer 431 (second electrode layer 423), the intermediate layer 433 and the reversible reaction electrode layer 432 extend outward from the outer edge of the light emitting unit 422 in plan view.
  • the respective edges of the counter electrode layer 431 (second electrode layer 423), the intermediate layer 433 and the reversible reaction electrode layer 432 are in contact with the substrate 110 as shown in FIG.
  • the light from the light emitting unit 422 can be emitted to the light emitting surface side with almost no leak.
  • the light leakage of the light from the light emitting unit 422 can be suppressed to further enhance the light emission efficiency.
  • the electrochromic element 430 extends outward from the outer edge of the light emitting unit 422 in plan view.
  • the electrochromic element 430 when the electrochromic element 430 is in the reflection state, the light from the light emitting unit 422 can be reflected and emitted to the light emitting surface side. Thus, the light leakage of the light from the light emitting unit 422 can be suppressed to further enhance the light emission efficiency.
  • all layers included in the electrochromic element 430 extend outward from the outer edge of the light emitting unit 422 in plan view. That is, as shown in FIG. 9, the upper layer side covers the lower layer side. That is, in plan view, the layer on the upper side extends outward from the outer edge of the layer on the lower side.
  • At this time, at least the reversible reaction electrode layer 432 may extend outward from the outer edge of the light emitting unit 422 in order to suppress light leakage.
  • the flat light emitter according to the above-described embodiment and the modification may further have a stress relaxation structure. That is, in order to make the flat light emitter easier to bend, the flat light emitter may have a stress relaxation structure.
  • the stress relaxation structure is, for example, a plurality of through holes penetrating the flat light emitter in the stacking direction, or a plurality of grooves provided on a flat light emitter substrate or the like.
  • the stress caused when the flat light emitter is bent can be relaxed by the plurality of through holes or grooves, and the flat light emitter can be easily bent without being broken.
  • the present invention is not limited thereto.
  • the unevenness may not be periodically formed, and for example, the concave portion 335a and the convex portion 335b may be randomly arranged.
  • the light scattering structure may be provided to the intermediate layer 333 as well as the unevenness.
  • the present invention is not limited thereto.
  • the first electrode layer 121 may be provided on the planarization film provided on the substrate 110.
  • the first electrode layer 121 is an anode and the second electrode layer 123 is a cathode is shown in the above-described embodiment and modification, the opposite may be applied. That is, the first electrode layer 121 may be a cathode and the second electrode layer 123 may be an anode.
  • the electrochromic element is shown as the light reflectivity variable unit in the above embodiment and the modification, the present invention is not limited to this.
  • a light control mirror device such as a gas chromic device or a cholesteric liquid crystal can be used.
  • plan view shape of the flat light emitter is rectangular, but the present invention is not limited thereto.
  • the plan view shape of the planar light emitter may be a closed shape drawn as a straight line or a curve, such as a polygon, a circle or an ellipse.
  • the present invention can be realized by arbitrarily combining components and functions in each embodiment without departing from the scope of the present invention or embodiments obtained by applying various modifications that those skilled in the art may think to each embodiment.
  • the form is also included in the present invention.
  • Lighting device 100 300, 400 Planar light emitter 110 Substrate 120, 420 Organic EL element 121 First electrode layer 122, 422 Light emitting unit 123, 423 Second electrode layer 130, 330, 430 Electrochromic element (light reflective variable unit ) 131, 431 Counter electrode layer 132, 432 Reversible reaction electrode layer 133, 333, 433 Intermediate layer 134 Counter reaction layer 135, 335 Solid electrolyte layer 200 Power circuit 335a Concave portion 335b Convex portion

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

 A planar light emitting body (100) is provided with: a light-transmissive substrate (110); a first electrode layer (121) and a second electrode layer (123), which are light-transmissive and layered in the stated order over the substrate (110); a light-emitting unit (122) provided between the first electrode layer (121) and the second electrode layer (123), the light-emitting unit (122) emitting light according to a first voltage applied between the first electrode layer (121) and the second electrode layer (123); and a variable reflectivity unit (130) having a pair of electrode layers and having variability in light reflectivity and light-transmission according to a second voltage applied between the pair of electrode layers, one of the pair of electrode layers being the second electrode layer (123).

Description

平面発光体及び照明装置Planar light emitter and lighting device
 本発明は、有機EL(Electro-Luminescence)素子を備える平面発光体、及び、当該平面発光体を備える照明装置に関する。 The present invention relates to a flat light emitter including an organic EL (Electro-Luminescence) element, and a lighting device including the flat light emitter.
 従来、有機EL素子と、エレクトロクロミック素子とを備えた表示装置が知られている(例えば、特許文献1を参照)。エレクトロクロミック素子は、印加される電圧に応じて光の透過率、吸収率及び反射率が変化する素子である。 Conventionally, a display device provided with an organic EL element and an electrochromic element is known (see, for example, Patent Document 1). The electrochromic element is an element in which the light transmittance, the absorptivity, and the reflectance change in accordance with the applied voltage.
 例えば、特許文献1に記載の表示装置は、基板上に設けられた有機EL素子と、有機EL素子上に設けられた平坦化膜と、平坦化膜上に設けられたエレクトロクロミック素子とを備える。これにより、有機EL素子の発光状態に応じて光透過率制御を行うことで、視認性を向上させることができる。 For example, the display device described in Patent Document 1 includes an organic EL element provided on a substrate, a planarizing film provided on the organic EL element, and an electrochromic element provided on the planarizing film. . Thereby, visibility can be improved by performing light transmittance control according to the light emission state of an organic EL element.
特開2013-003480号公報JP, 2013-003480, A
 しかしながら、上記従来の表示装置では、有機EL素子から発せられる光の取り出し効率、すなわち、発光効率が悪いという課題がある。 However, the above-described conventional display device has a problem that the light extraction efficiency of light emitted from the organic EL element, that is, the light emission efficiency is low.
 そこで、本発明は、反射率及び透過率を調節可能で、かつ、発光効率の高い平面発光体及び照明装置を提供する。 Therefore, the present invention provides a flat light emitter and a lighting device capable of adjusting the reflectance and the transmittance and having high luminous efficiency.
 上記課題を解決するため、本発明の一態様に係る平面発光体は、透光性を有する基板と、前記基板の上方に順に積層された、透光性を有する第1電極層及び第2電極層と、前記第1電極層及び前記第2電極層間に設けられ、前記第1電極層及び前記第2電極層間に印加される第1電圧に応じて発光する発光ユニットと、一対の電極層を有し、当該一対の電極層間に印加される第2電圧に応じて光反射性及び光透過性が可変である光反射性可変ユニットとを備え、前記一対の電極層の一方は、前記第2電極層である。 In order to solve the above problems, a flat light-emitting body according to an aspect of the present invention includes a light-transmitting substrate, and a light-transmitting first electrode layer and a second electrode sequentially stacked above the substrate. Layer, a light emitting unit provided between the first electrode layer and the second electrode layer, which emits light according to a first voltage applied between the first electrode layer and the second electrode layer, and a pair of electrode layers A light reflective variable unit having variable light reflectivity and light transparency according to a second voltage applied between the pair of electrode layers, one of the pair of electrode layers being It is an electrode layer.
 本発明によれば、反射率及び透過率が調節可能で、かつ、発光効率が高い平面発光体及び照明装置を提供することができる。 According to the present invention, it is possible to provide a flat light emitter and a lighting device whose reflectance and transmittance can be adjusted and whose luminous efficiency is high.
図1Aは、本発明の実施の形態に係る照明装置の使用例を示す図である。FIG. 1A is a view showing an example of use of a lighting device according to an embodiment of the present invention. 図1Bは、本発明の実施の形態に係る照明装置の使用例を示す図である。FIG. 1B is a view showing a usage example of the lighting device according to the embodiment of the present invention. 図2は、本発明の実施の形態に係る照明装置の構成を示す図である。FIG. 2 is a diagram showing the configuration of the illumination device according to the embodiment of the present invention. 図3Aは、本発明の実施の形態に係る平面発光体の端子部の配置例を示す平面図である。FIG. 3A is a plan view showing an arrangement example of the terminal portions of the flat light emitter according to the embodiment of the present invention. 図3Bは、本発明の実施の形態に係る平面発光体の端子部の配置例を示す一部分解斜視図である。FIG. 3B is a partially exploded perspective view showing an arrangement example of the terminal portions of the flat light emitter according to the embodiment of the present invention. 図3Cは、本発明の実施の形態に係る平面発光体の端子部の別の配置例を示す平面図である。FIG. 3C is a plan view showing another example of arrangement of the terminal portions of the flat light emitter according to the embodiment of the present invention. 図4は、本発明の実施の形態に係る平面発光体の構成を示す断面図である。FIG. 4 is a cross-sectional view showing the configuration of the flat light emitter according to the embodiment of the present invention. 図5は、本発明の実施の形態に係る平面発光体の発光ユニットが発する光のスペクトルを示す図である。FIG. 5 is a diagram showing a spectrum of light emitted by the light emitting unit of the flat light emitter according to the embodiment of the present invention. 図6は、本発明の実施の形態に係る平面発光体の光反射性可変ユニットの各層の材料及び膜厚の例を示す図である。FIG. 6 is a view showing an example of the material and film thickness of each layer of the light reflectivity variable unit of the flat light emitter according to the embodiment of the present invention. 図7Aは、本発明の実施の形態に係る平面発光体の光反射性可変ユニットの光学的距離と反射状態における発光色の角度依存性との関係を示す図である。FIG. 7A is a view showing the relationship between the optical distance of the light reflective variable unit of the flat light emitter according to the embodiment of the present invention and the angular dependence of the emission color in the reflection state. 図7Bは、本発明の実施の形態に係る平面発光体の光反射性可変ユニットの光学的距離と透過状態における発光色の角度依存性との関係を示す図である。FIG. 7B is a view showing the relationship between the optical distance of the light reflective variable unit of the flat light emitter according to the embodiment of the present invention and the angular dependence of the light emission color in the transmission state. 図8は、本発明の実施の形態の変形例1に係る平面発光体の構成を示す断面図である。FIG. 8 is a cross-sectional view showing the configuration of a flat light emitter according to a first modification of the embodiment of the present invention. 図9は、本発明の実施の形態の変形例2に係る平面発光体の構成の一部を示す断面図である。FIG. 9 is a cross-sectional view showing a part of the configuration of a flat light emitter according to Modification 2 of the embodiment of the present invention.
 (本発明の基礎となった知見)
 本発明者は、「背景技術」の欄において記載した表示装置に関し、以下の問題が生じることを見出した。
(Findings that formed the basis of the present invention)
The inventors have found that the following problems occur with the display described in the "Background" section.
 従来の表示装置では、エレクトロクロミック素子が反射状態にあるときに、有機EL素子から発せられる光は、エレクトロクロミック素子で反射されて発光面側から出射される。このとき、有機EL素子から発せられる光の反射光は、平坦化膜を2回通過した後で、発光面から出射される。このため、層間の屈折率の差により光の取り出しロスが大きく、発光効率が悪くなる。 In the conventional display device, when the electrochromic element is in a reflection state, light emitted from the organic EL element is reflected by the electrochromic element and emitted from the light emitting surface side. At this time, the reflected light of the light emitted from the organic EL element is emitted from the light emitting surface after passing through the flattening film twice. Therefore, the light extraction loss is large due to the difference in refractive index between the layers, and the light emission efficiency is degraded.
 このような問題を解決するために、本発明の一態様に係る平面発光体は、透光性を有する基板と、基板の上方に順に積層された、透光性を有する第1電極層及び第2電極層と、第1電極層及び第2電極層間に設けられ、第1電極層及び第2電極層間に印加される第1電圧に応じて発光する発光ユニットと、一対の電極層を有し、当該一対の電極層間に印加される第2電圧に応じて光反射性及び光透過性が可変である光反射性可変ユニットとを備え、一対の電極層の一方は、第2電極層である。 In order to solve such a problem, a flat light-emitting body according to an aspect of the present invention includes a light-transmitting substrate, and a light-transmitting first electrode layer and a light-transmitting first electrode layer sequentially stacked above the substrate. A light emitting unit provided between the two electrode layers, the first electrode layer and the second electrode layer, and emitting light according to a first voltage applied between the first electrode layer and the second electrode layer; and a pair of electrode layers A light reflective variable unit having variable light reflectivity and light transparency according to a second voltage applied between the pair of electrode layers, one of the pair of electrode layers being a second electrode layer .
 これにより、反射率及び透過率を調節可能で、かつ、発光効率を高くすることができる。 Thereby, the reflectance and the transmittance can be adjusted, and the light emission efficiency can be increased.
 以下では、本発明の実施の形態に係る平面発光体及び照明装置について、図面を用いて詳細に説明する。なお、以下に説明する実施の形態は、いずれも本発明の好ましい一具体例を示すものである。したがって、以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置及び接続形態などは、一例であり、本発明を限定する趣旨ではない。よって、以下の実施の形態における構成要素のうち、本発明の最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。 Hereinafter, a flat light emitter and a lighting apparatus according to an embodiment of the present invention will be described in detail with reference to the drawings. Each of the embodiments described below shows a preferable specific example of the present invention. Therefore, numerical values, shapes, materials, components, arrangements of components, connection configurations and the like shown in the following embodiments are merely examples, and are not intended to limit the present invention. Therefore, among the components in the following embodiments, components that are not described in the independent claims indicating the highest concept of the present invention are described as optional components.
 また、各図は、模式図であり、必ずしも厳密に図示されたものではない。また、各図において、同じ構成部材については同じ符号を付している。 Further, each drawing is a schematic view, and is not necessarily illustrated exactly. Moreover, in each figure, the same code | symbol is attached | subjected about the same structural member.
 (実施の形態)
 [照明装置の概要]
 まず、本実施の形態に係る照明装置の概要について、図1A及び図1Bを用いて説明する。図1A及び図1Bは、本実施の形態に係る照明装置10の使用例を示す図である。
Embodiment
[Overview of lighting device]
First, an outline of a lighting device according to the present embodiment will be described using FIGS. 1A and 1B. FIG. 1A and FIG. 1B are figures which show the usage example of the illuminating device 10 which concerns on this Embodiment.
 本実施の形態に係る照明装置10は、4つの動作モードを有する。具体的には、4つの動作モードとは、「透過消灯モード」、「透過点灯モード」、「反射消灯モード」及び「反射点灯モード」である。 Lighting device 10 according to the present embodiment has four operation modes. Specifically, the four operation modes are the "transmission and extinction mode", the "transmission and illumination mode", the "reflection and extinction mode" and the "reflection and illumination mode".
 本実施の形態に係る照明装置10は、照明機能と、透過機能及び反射(鏡)機能を有するので、例えば、窓、又は、天窓などの建築物の窓に利用することができる。あるいは、照明装置10は、自動車などの輸送機関の窓などに利用することもできる。 The illumination device 10 according to the present embodiment has an illumination function, a transmission function, and a reflection (mirror) function, and thus can be used, for example, as a window or a window of a building such as a skylight. Alternatively, the lighting device 10 can also be used as a window of a transportation vehicle such as a car.
 例えば、照明装置10を天窓として利用した場合は、昼間は「透過モード」のときは太陽光などの外光を部屋の中に取り込むことが可能で、夜間は照明として利用することができる。また、昼間に「反射モード」のときは、太陽光などが部屋に入るのを防止することができ、断熱性にも優れている。 For example, when the lighting device 10 is used as a skylight, it is possible to take outside light such as sunlight into the room in the daytime “transmission mode” in the daytime, and can be used as lighting at night. In addition, in the "reflection mode" in the daytime, sunlight and the like can be prevented from entering the room, and heat insulation is also excellent.
 例えば、図1Aの(a)及び図1Bの(a)に示すように、ユーザ20及び30が照明装置10の両側に位置する場合を想定する。なお、図1Aの(a)及び図1Bの(a)に示す例では、照明装置10のユーザ30側の面が光反射性及び光透過性を変更可能である。 For example, as shown to (a) of FIG. 1A, and (a) of FIG. 1B, the case where the users 20 and 30 are located in the both sides of the illuminating device 10 is assumed. In addition, in the example shown to (a) of FIG. 1A and (a) of FIG. 1B, the surface by the side of the user 30 of the illuminating device 10 can change light reflectivity and light transmittance.
 照明装置10が「透過消灯モード」で動作する場合(図1Aの(b))、ユーザ20及びユーザ30は、互いに視認可能である。すなわち、「透過消灯モード」では、照明装置10の一方の面から他方の面に外光が透過することができる。このとき、照明装置10は、照明光を外部に出射しない。 When the lighting device 10 operates in the "transmission and extinguishing mode" ((b) in FIG. 1A), the user 20 and the user 30 can see each other. That is, in the “transmission and extinction mode”, external light can be transmitted from one surface of the lighting device 10 to the other surface. At this time, the illumination device 10 does not emit the illumination light to the outside.
 また、照明装置10が「透過点灯モード」で動作する場合(図1Aの(c))、照明装置10は、両側に照明光を発する。つまり、照明装置10は、ユーザ20及びユーザ30の双方を照射することができる。 Moreover, when the illuminating device 10 operate | moves by "transmission lighting mode" ((c) of FIG. 1A), the illuminating device 10 emits illumination light to both sides. That is, the lighting device 10 can illuminate both the user 20 and the user 30.
 このとき、照明装置10からの照明光の強度などにもよるが、ユーザ20からはユーザ30が視認可能である。すなわち、「透過点灯モード」では、照明装置10は、照明光を外部に出射すると同時に、照明装置10の一方の面から他方の面に外光が透過することができる。 At this time, although it depends on the intensity of the illumination light from the illumination device 10, etc., the user 30 is visible from the user 20. That is, in the “transmission lighting mode”, the illumination device 10 can emit the illumination light to the outside and simultaneously transmit the external light from one surface of the illumination device 10 to the other surface.
 また、照明装置10が「反射消灯モード」で動作する場合(図1Bの(b))、ユーザ20及びユーザ30は、互いに視認できない。ユーザ20は、ユーザ30の代わりに、図1Bの(b)に示すように、自身の鏡像21を見ることができる。つまり、ユーザ20側から入射した光は、照明装置10によって反射される。 Moreover, when the illuminating device 10 operate | moves in "reflection OFF mode" ((b) of FIG. 1B), the user 20 and the user 30 can not mutually visually recognize. The user 20 can view the mirror image 21 of himself / herself instead of the user 30 as shown in FIG. 1B (b). That is, the light incident from the user 20 side is reflected by the lighting device 10.
 このように、「反射消灯モード」では、照明装置10の一方の面から入射した外光は、他方の面によって反射される。このとき、照明装置10は、照明光を外部に出射しない。 Thus, in the "reflection off mode", external light incident from one surface of the lighting device 10 is reflected by the other surface. At this time, the illumination device 10 does not emit the illumination light to the outside.
 また、照明装置10が「反射点灯モード」で動作する場合(図1Bの(c))、照明装置10は、一方の側に照明光を発する。図1Bに示す例では、ユーザ20の側にのみ照明光を照射する。これは、照明装置10が発する照明光が、ユーザ30側の面によって反射されるためである。 Moreover, when the illuminating device 10 operate | moves in "reflection lighting mode" ((c) of FIG. 1B), the illuminating device 10 emits illumination light to one side. In the example shown to FIG. 1B, illumination light is irradiated only to the user 20 side. This is because the illumination light emitted by the illumination device 10 is reflected by the surface on the user 30 side.
 したがって、ユーザ20及びユーザ30は、互いに視認できない。ユーザ20は、ユーザ30の代わりに、照明装置10からの照明光の強度などにもよるが、図1Bの(c)に示すように、自身の鏡像21を見ることができる。 Thus, the user 20 and the user 30 can not see each other. The user 20 can view the mirror image 21 of itself as shown in (c) of FIG. 1B, although it depends on the intensity of the illumination light from the illumination device 10 instead of the user 30.
 以上のように、本実施の形態に係る照明装置10は、「透過」及び「反射」と、「消灯」及び「点灯」とをそれぞれ独立して制御することができる。 As mentioned above, lighting installation 10 concerning this embodiment can control independently "transmission" and "reflection" and "lighting out" and "lighting", respectively.
 [照明装置の構成]
 続いて、本実施の形態に係る照明装置10の構成について、図2を用いて説明する。図2は、本実施の形態に係る照明装置10の構成を示す図である。
[Configuration of lighting device]
Then, the structure of the illuminating device 10 which concerns on this Embodiment is demonstrated using FIG. FIG. 2 is a view showing the configuration of the lighting apparatus 10 according to the present embodiment.
 図2に示すように、照明装置10は、平面発光体100と、電源回路200とを備える。まず、平面発光体100の詳細な構成について説明する。 As shown in FIG. 2, the lighting device 10 includes a flat light emitter 100 and a power supply circuit 200. First, the detailed configuration of the flat light emitter 100 will be described.
 [平面発光体]
 平面発光体100は、図2に示すように、基板110と、有機EL素子120と、エレクトロクロミック素子130とを備える。
[Plane light emitter]
The planar light emitter 100 includes a substrate 110, an organic EL element 120, and an electrochromic element 130, as shown in FIG.
 基板110は、透光性を有する基板である。例えば、基板110は、可視光の少なくとも一部を透過する透明基板である。有機EL素子120が設けられる側の主面と反対側の基板110の主面が、平面発光体100の発光面である。 The substrate 110 is a light transmitting substrate. For example, the substrate 110 is a transparent substrate that transmits at least a portion of visible light. The main surface of the substrate 110 opposite to the main surface on which the organic EL element 120 is provided is the light emitting surface of the flat light emitter 100.
 例えば、基板110は、無アルカリガラス、ソーダガラス、無蛍光ガラス、リン酸系ガラス、ホウ酸系ガラスなどのガラス基板である。あるいは、基板110は、石英基板又はプラスチック基板でもよい。 For example, the substrate 110 is a glass substrate such as non-alkali glass, soda glass, non-fluorescent glass, phosphoric acid-based glass, and boric acid-based glass. Alternatively, the substrate 110 may be a quartz substrate or a plastic substrate.
 [有機EL素子]
 有機EL素子120は、平面発光体100の発光部であり、基板110の上方に設けられる。つまり、有機EL素子120は、印加される電圧に応じて平面発光体100の「点灯」及び「消灯」を制御する。
[Organic EL element]
The organic EL element 120 is a light emitting portion of the flat light emitter 100 and is provided above the substrate 110. That is, the organic EL element 120 controls “lighting” and “lighting off” of the flat light emitting body 100 according to the applied voltage.
 有機EL素子120は、図2に示すように、第1電極層121と、発光ユニット122と、第2電極層123とを備える。第1電極層121、発光ユニット122及び第2電極層123は、順に、基板110の上方に積層されている。 The organic EL element 120 is provided with the 1st electrode layer 121, the light emission unit 122, and the 2nd electrode layer 123, as shown in FIG. The first electrode layer 121, the light emitting unit 122, and the second electrode layer 123 are sequentially stacked above the substrate 110.
 [第1電極層]
 第1電極層121は、発光面側に設けられた電極であり、例えば、基板110上に設けられる。第1電極層121は、例えば、陽極であり、発光ユニット122の発光時には、第2電極層123よりも高い電位となる。
[First electrode layer]
The first electrode layer 121 is an electrode provided on the light emitting surface side, and is provided, for example, on the substrate 110. The first electrode layer 121 is, for example, an anode, and has a potential higher than that of the second electrode layer 123 when the light emitting unit 122 emits light.
 第1電極層121は、透光性を有する導電性材料から構成される。例えば、第1電極層121は、可視光の少なくとも一部を透過する透明の導電性材料から構成される。第1電極層121は、例えば、酸化インジウムスズ(ITO)、酸化亜鉛(ZnO)、酸化インジウム亜鉛(IZO)、酸化スズ(SnO)、酸化インジウムガリウム亜鉛(IGZO)などの金属酸化物膜から構成される。例えば、第1電極層121は、100nmのITOである。 The first electrode layer 121 is made of a light-transmitting conductive material. For example, the first electrode layer 121 is made of a transparent conductive material that transmits at least a part of visible light. The first electrode layer 121 is made of, for example, a metal oxide film such as indium tin oxide (ITO), zinc oxide (ZnO), indium zinc oxide (IZO), tin oxide (SnO 2 ), indium gallium zinc oxide (IGZO), etc. Configured For example, the first electrode layer 121 is ITO of 100 nm.
 なお、第1電極層121は、光を透過できる程度に薄膜の銀、アルミニウム、マグネシウムなどの金属薄膜(例えば、10nm)から構成されてもよい。また、第1電極層121は、銀ナノワイヤー、カーボンナノチューブなどでもよい。あるいは、第1電極層121は、PEDOT/PSS、ポリアニリンなどの導電性高分子膜などでもよい。また、第1電極層121は、上述した材料の積層膜でもよい。 The first electrode layer 121 may be made of a thin metal film (eg, 10 nm) of silver, aluminum, magnesium or the like as a thin film to the extent that light can be transmitted. The first electrode layer 121 may be silver nanowires, carbon nanotubes, or the like. Alternatively, the first electrode layer 121 may be a conductive polymer film such as PEDOT / PSS or polyaniline. The first electrode layer 121 may be a laminated film of the above-described materials.
 例えば、第1電極層121は、蒸着法又はスパッタリング法などによって透明導電膜を基板110上に成膜し、成膜した透明導電膜をパターニングすることで形成される。 For example, the first electrode layer 121 is formed by depositing a transparent conductive film on the substrate 110 by a vapor deposition method or a sputtering method, and patterning the deposited transparent conductive film.
 第1電極層121は、端子部121aを介して、第1電源回路210に接続されている。 The first electrode layer 121 is connected to the first power supply circuit 210 via the terminal portion 121a.
 [発光ユニット]
 発光ユニット122は、第1電極層121及び第2電極層123間に設けられ、第1電極層121及び第2電極層123間に印加される第1電圧に応じて発光する。具体的には、発光ユニット122は、第1電極層121上に設けられている。
[Light emitting unit]
The light emitting unit 122 is provided between the first electrode layer 121 and the second electrode layer 123, and emits light according to a first voltage applied between the first electrode layer 121 and the second electrode layer 123. Specifically, the light emitting unit 122 is provided on the first electrode layer 121.
 発光ユニット122は、例えば、複数の有機層を有する。具体的には、発光ユニット122は、正孔注入層、正孔輸送層、発光層(有機EL層)、電子輸送層及び電子注入層を含んでいる。発光層などの有機層は、例えば、ジアミン、アントラセン、金属錯体などの有機材料から構成される。発光ユニット122を構成する各層は、蒸着法、スピンコート法、キャスト法などにより形成される。 The light emitting unit 122 has, for example, a plurality of organic layers. Specifically, the light emitting unit 122 includes a hole injection layer, a hole transport layer, a light emitting layer (organic EL layer), an electron transport layer, and an electron injection layer. An organic layer such as a light emitting layer is made of, for example, an organic material such as diamine, anthracene, or a metal complex. Each layer constituting the light emitting unit 122 is formed by a vapor deposition method, a spin coating method, a cast method or the like.
 例えば、第1電極層121上に60nmの第1正孔輸送層が設けられる。正孔輸送層上には、青色蛍光発光層(青色蛍光発光材料として4、4’-ビス(9-エチル-3-カルバゾビニレン)-1,1’-ビフェニル(BCzVBi)を含む)、緑色蛍光発光層(緑色蛍光発光材料として(トリフェニルアミン(TPA)を含む)、第1電子輸送層(4,4’-N,N’-ジカルバゾールビフェニル(CBP))がこの順で、合計35nmの膜厚になるように設けられる。 For example, a first hole transport layer of 60 nm is provided on the first electrode layer 121. On the hole transport layer, a blue fluorescent light emitting layer (including 4,4'-bis (9-ethyl-3-carbazovinylene) -1,1'-biphenyl (BCzVBi) as a blue fluorescent light emitting material, green fluorescent light emitting Layers (including green fluorescent light emitting material (containing triphenylamine (TPA)), first electron transporting layer (4,4'-N, N'-dicarbazolebiphenyl (CBP)) in this order, a film of 35 nm in total It is provided to be thick.
 次に、Alq3(トリス(8-キノリラト)アルミニウム)/LiO/Alq3/HAT-CN6(ヘキサアザトリフェニレンヘキサカルボニトリル)の層構造を有する中間層が設けられる。さらに、25nmの第2正孔輸送層が設けられる。 Next, an intermediate layer having a layer structure of Alq 3 (tris (8-quinolinate) aluminum) / Li 2 O / Alq 3 / HAT-CN 6 (hexaazatriphenylene hexacarbonitrile) is provided. In addition, a 25 nm second hole transport layer is provided.
 さらに、第2正孔輸送層上には、赤色燐光発光層(赤色燐光発光材料としてトリス(1-フェニルイソキノリン)イリジウム(III)(Ir(piq))を含む)、緑色燐光発光層(緑色燐光発光材料としてビス(2,2’-ベンゾチエニル)-ビリジナト-N,C3イリジウム(アセチルアセトネート)(BtIr(acac))を含む)、第2電子輸送層がこの順で、合計95nmの膜厚になるように設けられる。 Furthermore, on the second hole transport layer, a red phosphorescent light emitting layer (containing tris (1-phenylisoquinoline) iridium (III) (Ir (piq) 3 ) as a red phosphorescent light emitting material), a green phosphorescent light emitting layer (green color Bis (2,2'-benzothienyl) -biridinato-N, C3 iridium (acetylacetonate) (including Bt 2 Ir (acac)) as a phosphorescent light emitting material, the second electron transport layer in this order, 95 nm in total The film thickness of
 [第2電極層]
 第2電極層123は、発光面とは反対側に設けられた電極であり、例えば、発光ユニット122上に設けられる。第2電極層123は、例えば、陰極であり、発光ユニット122の発光時には、第1電極層121よりも低い電位となる。
[Second electrode layer]
The second electrode layer 123 is an electrode provided on the side opposite to the light emitting surface, and is provided on the light emitting unit 122, for example. The second electrode layer 123 is, for example, a cathode, and has a lower potential than the first electrode layer 121 when the light emitting unit 122 emits light.
 第2電極層123は、透光性を有する導電性材料から構成される。例えば、第2電極層123は、可視光の少なくとも一部を透過する透明の導電性材料から構成される。例えば、第2電極層123は、第1電極層121として利用できる材料と同一の材料から構成される。例えば、第2電極層123は、蒸着法又はスパッタリング法などによって透明導電膜を発光ユニット122上に成膜し、成膜した透明導電膜をパターニングすることで形成される。例えば、第2電極層123は、100nmのITOである。 The second electrode layer 123 is made of a light-transmitting conductive material. For example, the second electrode layer 123 is made of a transparent conductive material that transmits at least a part of visible light. For example, the second electrode layer 123 is made of the same material as the material that can be used as the first electrode layer 121. For example, the second electrode layer 123 is formed by depositing a transparent conductive film on the light emitting unit 122 by a vapor deposition method or a sputtering method, and patterning the deposited transparent conductive film. For example, the second electrode layer 123 is ITO of 100 nm.
 第2電極層123は、端子部123aを介して、第1電源回路210に接続されている。 The second electrode layer 123 is connected to the first power supply circuit 210 via the terminal portion 123a.
 なお、後述するように、第2電極層123は、エレクトロクロミック素子130が有する一対の電極の一方である。このため、第2電極層123は、端子部131a(すなわち、端子部123a)を介して、第2電源回路220にも接続されている。 In addition, as described later, the second electrode layer 123 is one of a pair of electrodes of the electrochromic element 130. Therefore, the second electrode layer 123 is also connected to the second power supply circuit 220 through the terminal portion 131a (that is, the terminal portion 123a).
 [エレクトロクロミック素子]
 エレクトロクロミック素子130は、一対の電極層を有し、当該一対の電極層間に印加される第2電圧に応じて光反射性及び光透過性が可変である光反射性可変ユニットの一例である。具体的には、エレクトロクロミック素子130は、第2電圧に応じて可逆的に光反射性及び光透過性を変更することができる。エレクトロクロミック素子130は、印加される電圧に応じて平面発光体100の「透過」及び「反射」を制御する。
[Electrochromic device]
The electrochromic element 130 is an example of a light-reflecting variable unit having a pair of electrode layers and having variable light reflectivity and light transparency according to the second voltage applied between the pair of electrode layers. Specifically, the electrochromic element 130 can reversibly change the light reflectivity and the light transmittance according to the second voltage. The electrochromic device 130 controls “transmission” and “reflection” of the flat light emitter 100 according to the applied voltage.
 エレクトロクロミック素子130は、図2に示すように、一対の電極層である対向電極層131及び可逆反応電極層132と、中間層133とを備える。対向電極層131、中間層133及び可逆反応電極層132は、順に、発光ユニット122の上方に積層されている。 As shown in FIG. 2, the electrochromic element 130 includes a counter electrode layer 131 and a reversible reaction electrode layer 132 which are a pair of electrode layers, and an intermediate layer 133. The counter electrode layer 131, the intermediate layer 133, and the reversible reaction electrode layer 132 are sequentially stacked above the light emitting unit 122.
 [対向電極層]
 対向電極層131は、光反射性可変ユニットが有する一対の電極層の一方である。図2に示すように、対向電極層131は、第2電極層123である。つまり、対向電極層131と第2電極層123とは、同一の導電膜である。言い換えると、有機EL素子120と、エレクトロクロミック素子130とが、同一の導電膜を電極として共有している。
[Counter electrode layer]
The counter electrode layer 131 is one of a pair of electrode layers of the light reflective variable unit. As shown in FIG. 2, the counter electrode layer 131 is a second electrode layer 123. That is, the counter electrode layer 131 and the second electrode layer 123 are the same conductive film. In other words, the organic EL element 120 and the electrochromic element 130 share the same conductive film as an electrode.
 [可逆反応電極層]
 可逆反応電極層132は、光反射性可変ユニットが有する一対の電極層の他方である。可逆反応電極層132は、対向電極層131との間に印加される第2電圧に応じて光反射性及び光透過性が可逆な電極層である。簡単に言い換えると、可逆反応電極層132は、第2電圧に応じて、鏡状態(反射状態)及び透明状態(透過状態)を切り替えることができる。
[Reversible Reaction Electrode Layer]
The reversible reaction electrode layer 132 is the other of the pair of electrode layers of the light reflectivity variable unit. The reversible reaction electrode layer 132 is an electrode layer in which light reflectivity and light transparency are reversible according to the second voltage applied between the reversible reaction electrode layer 131 and the counter electrode layer 131. In other words, the reversible reaction electrode layer 132 can switch between the mirror state (reflection state) and the transparent state (transmission state) according to the second voltage.
 具体的には、可逆反応電極層132は、水素及び水素イオンを吸蔵又は放出することで、光反射性及び光透過性を変化させることができる材料から構成される。例えば、可逆反応電極層132は、水素を吸蔵した場合(水素化)に透過状態になり、水素を放出した場合に反射状態になる。 Specifically, the reversible reaction electrode layer 132 is made of a material capable of changing the light reflectivity and the light transparency by storing or releasing hydrogen and hydrogen ions. For example, the reversible reaction electrode layer 132 is in a transmission state when storing hydrogen (hydrogenation), and is in a reflection state when releasing hydrogen.
 例えば、可逆反応電極層132は、マグネシウム、アルカリ土類元素、希土類元素、及び、これらのいずれかの元素を含む合金から構成される。例えば、可逆反応電極層132は、マグネシウム-ニッケル合金(Mg-Ni)、マグネシウム-チタン合金(Mg-Ti)、マグネシウム-コバルト合金(Mg-Co)、マグネシウム-カルシウム合金(Mg-Ca)、マグネシウム-バリウム合金(Mg-Ba)、マグネシウム-ストロンチウム合金(Mg-Sr)、ガドリニウム-マグネシウム合金(Gd-Mg)、サマリウム-マグネシウム合金(Sm-Mg)、イットリウム-マグネシウム合金(Y-Mg)などである。 For example, the reversible reaction electrode layer 132 is composed of magnesium, an alkaline earth element, a rare earth element, and an alloy containing any of these elements. For example, the reversible reaction electrode layer 132 is made of magnesium-nickel alloy (Mg-Ni), magnesium-titanium alloy (Mg-Ti), magnesium-cobalt alloy (Mg-Co), magnesium-calcium alloy (Mg-Ca), magnesium -With barium alloy (Mg-Ba), magnesium-strontium alloy (Mg-Sr), gadolinium-magnesium alloy (Gd-Mg), samarium-magnesium alloy (Sm-Mg), yttrium-magnesium alloy (Y-Mg), etc. is there.
 なお、可逆反応電極層132の対向電極層131の反対側に、ITOなどの透明導電膜が積層されてもよい。 A transparent conductive film such as ITO may be laminated on the opposite side of the counter electrode layer 131 of the reversible reaction electrode layer 132.
 可逆反応電極層132は、端子部132aを介して、第2電源回路220に接続されている。 The reversible reaction electrode layer 132 is connected to the second power supply circuit 220 via the terminal portion 132a.
 [中間層]
 中間層133は、対向電極層131と可逆反応電極層132との間に積層された複数の層を含んでいる。発光ユニット122と可逆反応電極層132との間の光学的距離が、発光ユニット122が発する光のピーク波長の3倍より大きくなるように、中間層133の膜厚は決定される。具体的な構成については、後で説明する。
[Intermediate]
The intermediate layer 133 includes a plurality of layers stacked between the counter electrode layer 131 and the reversible reaction electrode layer 132. The thickness of the intermediate layer 133 is determined such that the optical distance between the light emitting unit 122 and the reversible reaction electrode layer 132 is greater than three times the peak wavelength of the light emitted by the light emitting unit 122. The specific configuration will be described later.
 [電源回路]
 電源回路200は、有機EL素子120に供給する第1電圧と、エレクトロクロミック素子130に供給する第2電圧とを独立して印加することができる。図2に示すように、電源回路200は、第1電源回路210と、第2電源回路220とを備える。
[Power supply circuit]
The power supply circuit 200 can independently apply a first voltage supplied to the organic EL element 120 and a second voltage supplied to the electrochromic element 130. As shown in FIG. 2, the power supply circuit 200 includes a first power supply circuit 210 and a second power supply circuit 220.
 第1電源回路210は、第1電極層121と第2電極層123(すなわち、対向電極層131)とに接続され、第1電極層121と第2電極層123との間に第1電圧を印加する。例えば、第1電源回路210は、印加方向が固定で、かつ、電流値又は電圧値が可変の直流電流源又は直流電圧源である。第1電源回路210は、第1電極層121から第2電極層123に電流が流れるように、第1電極層121が第2電極層123より高電位になる第1電圧を印加する。 The first power supply circuit 210 is connected to the first electrode layer 121 and the second electrode layer 123 (that is, the counter electrode layer 131), and a first voltage is applied between the first electrode layer 121 and the second electrode layer 123. Apply. For example, the first power supply circuit 210 is a direct current source or a direct voltage source in which the application direction is fixed and the current value or the voltage value is variable. The first power supply circuit 210 applies a first voltage at which the first electrode layer 121 has a higher potential than the second electrode layer 123 so that a current flows from the first electrode layer 121 to the second electrode layer 123.
 第1電源回路210は、第2電源回路220の動作とは独立して動作する。例えば、ユーザなどの指示に基づいて、第1電源回路210は、第1電圧を印加する、若しくは、印加しない、又は、印加する電圧値(発光ユニット122に流す電流量)を制御する。 The first power supply circuit 210 operates independently of the operation of the second power supply circuit 220. For example, based on an instruction from a user or the like, the first power supply circuit 210 controls the voltage value (the amount of current flowing to the light emitting unit 122) to which the first voltage is applied, not applied, or applied.
 例えば、ユーザが「消灯」を指示した場合には、第1電源回路210は、第1電圧を印加しない。また、ユーザが「点灯」を指示した場合には、第1電源回路210は、第1電圧を印加する。また、ユーザが明るさを調整する指示を行った場合には、第1電源回路210は、印加する第1電圧の電圧値を制御する。 For example, when the user instructs "turn off", the first power supply circuit 210 does not apply the first voltage. In addition, when the user instructs “light up”, the first power supply circuit 210 applies the first voltage. In addition, when the user instructs to adjust the brightness, the first power supply circuit 210 controls the voltage value of the first voltage to be applied.
 第2電源回路220は、対向電極層131(すなわち、第2電極層123)と可逆反応電極層132とに接続され、対向電極層131と可逆反応電極層132との間に第2電圧を印加する。例えば、第2電源回路220は、印加方向が可変で、かつ、電流値又は電圧値が固定の直流電流源又は直流電圧源である。 The second power supply circuit 220 is connected to the counter electrode layer 131 (that is, the second electrode layer 123) and the reversible reaction electrode layer 132, and applies a second voltage between the counter electrode layer 131 and the reversible reaction electrode layer 132. Do. For example, the second power supply circuit 220 is a direct current source or a direct current voltage source which has a variable application direction and a fixed current value or voltage value.
 第2電源回路220が、可逆反応電極層132が対向電極層131より高電位になるように第2電圧を印加した場合、可逆反応電極層132は、反射状態になる。逆に、第2電源回路220が、可逆反応電極層132が対向電極層131より低電位になるように第2電圧を印加した場合、可逆反応電極層132は、透過状態になる。 When the second power supply circuit 220 applies a second voltage such that the reversible reaction electrode layer 132 has a higher potential than the counter electrode layer 131, the reversible reaction electrode layer 132 is in a reflective state. Conversely, when the second power supply circuit 220 applies the second voltage so that the reversible reaction electrode layer 132 has a lower potential than the counter electrode layer 131, the reversible reaction electrode layer 132 is in the transmission state.
 例えば、ユーザなどの指示に基づいて、第2電源回路220は、第2電圧を印加する、若しくは、印加しない、又は、印加する方向を制御する。具体的には、ユーザが「反射」から「透過」への切り替えを指示した場合には、第2電源回路220は、例えば、対向電極層131の電位を0Vとしたとき可逆反応電極層132の電位が-5Vとなるよう第2電圧を印加することで、可逆反応電極層132を透過状態にすることができる。逆に、ユーザが「透過」から「反射」への切り替えを指示した場合には、第2電源回路220は、例えば、対向電極層131の電位を0Vとしたとき可逆反応電極層132の電位が+5Vとなるよう第2電圧を印加することで、可逆反応電極層132を反射状態にすることができる。 For example, based on an instruction from the user or the like, the second power supply circuit 220 controls the direction in which the second voltage is applied, not applied, or applied. Specifically, when the user instructs switching from “reflection” to “transmission”, for example, when the potential of the counter electrode layer 131 is 0 V, the second power supply circuit 220 By applying the second voltage so that the potential is −5 V, the reversible reaction electrode layer 132 can be brought into the transmission state. Conversely, when the user instructs switching from “transmission” to “reflection”, the second power supply circuit 220 has, for example, the potential of the reversible reaction electrode layer 132 when the potential of the counter electrode layer 131 is 0 V. By applying the second voltage so as to be +5 V, the reversible reaction electrode layer 132 can be in a reflective state.
 なお、第2電圧を印加することで可逆反応電極層132の状態が切り替わった後は、第2電源回路220は、第2電圧の印加を停止してもよい。第2電圧の印加の停止後も、可逆反応電極層132は、直前の状態が維持される。 After the state of the reversible reaction electrode layer 132 is switched by applying the second voltage, the second power supply circuit 220 may stop the application of the second voltage. Even after the application of the second voltage is stopped, the reversible reaction electrode layer 132 maintains the previous state.
 [端子部の構成]
 ここで、電源回路200と平面発光体100とを接続する各端子部の配置について、図3A及び図3Bを用いて説明する。図3A及び図3Bはそれぞれ、本発明の実施の形態に係る平面発光体の端子部の配置例を示す平面図及び一部分解斜視図である。
[Configuration of terminal section]
Here, the arrangement of the terminal portions connecting the power supply circuit 200 and the flat light emitter 100 will be described with reference to FIGS. 3A and 3B. FIGS. 3A and 3B are a plan view and a partially exploded perspective view showing an arrangement example of the terminal portion of the flat light emitter according to the embodiment of the present invention, respectively.
 図3Aに示すように、3つの端子部121a、123a及び132aは、平面発光体100の一方向に寄せて配置されている。例えば、本実施の形態に係る平面発光体100の平面視形状が矩形であるので、3つの端子部121a、123a及び132aは、矩形の一辺に並んで配置されている。 As shown in FIG. 3A, the three terminal portions 121a, 123a and 132a are arranged in one direction of the flat light emitter 100. For example, since the planar view shape of the flat light emitter 100 according to the present embodiment is rectangular, the three terminal portions 121a, 123a and 132a are arranged side by side on one side of the rectangle.
 なお、図示していないが、平面発光体100は、基板110に対向するように設けられた封止基板を有する。封止基板は、透光性を有する基板であり、例えば、ガラス基板などである。基板110及び封止基板と、基板110及び封止基板を接着する樹脂などの封止部材とによって、有機EL素子120及びエレクトロクロミック素子130は封止される。これにより、水分などが有機EL素子120の発光ユニット122に浸透するのを抑制している。 Although not shown, the flat light emitter 100 has a sealing substrate provided so as to face the substrate 110. The sealing substrate is a light-transmitting substrate, such as a glass substrate. The organic EL element 120 and the electrochromic element 130 are sealed by the substrate 110 and the sealing substrate, and a sealing member such as a resin for bonding the substrate 110 and the sealing substrate. Thereby, the penetration of moisture and the like into the light emitting unit 122 of the organic EL element 120 is suppressed.
 端子部121a、123a及び132aは、基板110、封止基板及び封止部材によって囲まれた空間である封止空間から外部に引き出された引き出し電極部(電極パッド)である。 The terminal portions 121a, 123a, and 132a are lead electrode portions (electrode pads) drawn to the outside from the sealing space which is a space surrounded by the substrate 110, the sealing substrate, and the sealing member.
 端子部121aは、第1電源回路210に接続するための引き出し電極部である。端子部121aは、第1電極層121に電気的に接続されている。具体的には、端子部121aは、図3Bに示すように、第1電極層121の一部が延伸するように設けられている。 The terminal portion 121 a is a lead-out electrode portion for connecting to the first power supply circuit 210. The terminal portion 121 a is electrically connected to the first electrode layer 121. Specifically, as shown in FIG. 3B, the terminal portion 121a is provided so that a part of the first electrode layer 121 extends.
 例えば、端子部121aは、第1電極層121と同一の工程で、導電膜をパターニングすることで基板110上に形成される。したがって、端子部121aは、例えば、第1電極層121と同一の材料で構成される。 For example, the terminal portion 121 a is formed on the substrate 110 by patterning the conductive film in the same step as the first electrode layer 121. Therefore, the terminal portion 121a is made of, for example, the same material as the first electrode layer 121.
 端子部123a、すなわち、端子部131aは、第1電源回路210及び第2電源回路220に接続するための引き出し電極部である。端子部123aは、第2電極層123(対向電極層131)に電気的に接続されている。具体的には、端子部123aは、図3Bに示すように、第2電極層123の一部が延伸するように設けられている。 The terminal portion 123 a, that is, the terminal portion 131 a is a lead-out electrode portion for connecting to the first power supply circuit 210 and the second power supply circuit 220. The terminal portion 123a is electrically connected to the second electrode layer 123 (counter electrode layer 131). Specifically, as shown in FIG. 3B, the terminal portion 123a is provided such that a part of the second electrode layer 123 extends.
 例えば、端子部123aは、第2電極層123と同一の工程で、導電膜をパターニングすることで基板110上に形成される。したがって、端子部123aは、例えば、第2電極層123と同一の材料で構成される。 For example, the terminal portion 123 a is formed on the substrate 110 by patterning the conductive film in the same step as the second electrode layer 123. Therefore, the terminal portion 123a is made of, for example, the same material as the second electrode layer 123.
 なお、このとき、端子部123aは、第1電極層121及び端子部121aと離間している。例えば、端子部123aと、第1電極層121及び端子部121aとの間に絶縁層が設けられてもよい。 At this time, the terminal portion 123a is separated from the first electrode layer 121 and the terminal portion 121a. For example, an insulating layer may be provided between the terminal portion 123a and the first electrode layer 121 and the terminal portion 121a.
 端子部132aは、第2電源回路220に接続するための引き出し電極部である。端子部132aは、可逆反応電極層132に電気的に接続されている。具体的には、端子部132aは、図3Bに示すように、可逆反応電極層132の一部が延伸するように設けられている。 The terminal portion 132 a is a lead-out electrode portion for connecting to the second power supply circuit 220. The terminal portion 132 a is electrically connected to the reversible reaction electrode layer 132. Specifically, as shown in FIG. 3B, the terminal portion 132a is provided such that a part of the reversible reaction electrode layer 132 extends.
 例えば、端子部132aは、可逆反応電極層132と同一の工程で、導電膜をパターニングすることで基板110上に形成される。したがって、端子部132aは、例えば、可逆反応電極層132と同一の材料で構成される。 For example, the terminal portion 132 a is formed on the substrate 110 by patterning the conductive film in the same step as the reversible reaction electrode layer 132. Therefore, the terminal portion 132a is made of, for example, the same material as the reversible reaction electrode layer 132.
 なお、このとき、端子部132aは、第1電極層121、端子部121a、第2電極層123及び端子部123aと離間している。例えば、端子部132aと、第1電極層121、端子部121a、第2電極層123及び端子部123aとの間に絶縁層が設けられてもよい。 At this time, the terminal portion 132a is separated from the first electrode layer 121, the terminal portion 121a, the second electrode layer 123, and the terminal portion 123a. For example, an insulating layer may be provided between the terminal portion 132a and the first electrode layer 121, the terminal portion 121a, the second electrode layer 123, and the terminal portion 123a.
 なお、端子部121a、123a及び132aは、同一の工程で形成されてもよい。例えば、端子部121a、123a及び132aは、第1電極層121と同一の工程で形成されてもよい。つまり、端子部121a、123a及び132aは、第1電極層121と同一の材料(ITOなど)から構成されてもよい。 The terminal portions 121a, 123a and 132a may be formed in the same process. For example, the terminal portions 121a, 123a, and 132a may be formed in the same process as the first electrode layer 121. That is, the terminal portions 121a, 123a and 132a may be made of the same material (ITO or the like) as the first electrode layer 121.
 このとき、端子部121aは、図3Bに示すように第1電極層121と接続されている。一方で、端子部123a及び132aには、第1電極層121及び端子部121aと離間するように配置される。そして、端子部123a及び132aのそれぞれに接続するように、第2電極層123及び可逆反応電極層132を形成すればよい。 At this time, the terminal portion 121a is connected to the first electrode layer 121 as shown in FIG. 3B. On the other hand, the terminal portions 123a and 132a are disposed to be separated from the first electrode layer 121 and the terminal portion 121a. Then, the second electrode layer 123 and the reversible reaction electrode layer 132 may be formed so as to be connected to the terminal portions 123a and 132a, respectively.
 以上のように、3つの端子部121a、123a及び132aを平面発光体100の一方向に寄せて配置することで、平面発光体100を狭額縁化することができる。 As described above, by arranging the three terminal portions 121a, 123a, and 132a in one direction of the flat light emitter 100, the flat light emitter 100 can be narrowed.
 なお、各層の端子部は、図3Cに示すように、平面発光体100の2方向に寄せて配置してもよい。ここで、図3Cは、本実施の形態に係る平面発光体100の端子部の配置の別の例を示す平面図である。 The terminal portions of the respective layers may be arranged in two directions of the flat light emitter 100 as shown in FIG. 3C. Here, FIG. 3C is a top view which shows another example of arrangement | positioning of the terminal part of the planar light-emitting body 100 which concerns on this Embodiment.
 図3Cに示すように、第1電極層121、第2電極層123(対向電極層131)及び可逆反応電極層132はそれぞれ、端子部121a、123a及び132aを2つずつ備える。端子部121a、123a及び132aの1つずつは、平面発光体100の一辺に設けられ、残りの端子部121a、123a及び132aは、平面発光体100の他辺に設けられる。 As shown in FIG. 3C, each of the first electrode layer 121, the second electrode layer 123 (counter electrode layer 131), and the reversible reaction electrode layer 132 has two terminal portions 121a, 123a, and 132a. One of the terminal portions 121a, 123a and 132a is provided on one side of the flat light emitter 100, and the remaining terminal portions 121a, 123a and 132a are provided on the other side of the flat light emitter 100.
 端子部が設けられる平面発光体100の一辺と他辺とは、図3Cに示すように互いに対向している。すなわち、図3Cに示す平面発光体100では、各電極層の両側から給電することができる。これにより、電極層内での電圧降下の影響を抑制し、発光の面均一性と、透過又は反射の制御の面均一性とを向上させることができる。 As shown in FIG. 3C, one side and the other side of the flat light emitting body 100 in which the terminal portion is provided are opposed to each other. That is, in the flat light emitter 100 shown in FIG. 3C, power can be supplied from both sides of each electrode layer. Thereby, the influence of the voltage drop in the electrode layer can be suppressed, and the surface uniformity of light emission and the surface uniformity of control of transmission or reflection can be improved.
 なお、端子部が設けられる平面発光体100の一辺と他辺とは、互いに隣り合う辺でもよい。この場合でも、各電極層の2ヶ所から給電することができるので、電極層内での電圧降下の影響を抑制し、発光の面均一性と、透過又は反射の制御の面均一性とを向上させることができる。 Note that one side and the other side of the flat light emitting body 100 in which the terminal portion is provided may be sides adjacent to each other. Even in this case, since power can be supplied from two places of each electrode layer, the influence of voltage drop in the electrode layer can be suppressed, and the surface uniformity of light emission and the surface uniformity of control of transmission or reflection can be improved. It can be done.
 なお、端子部121a、123a及び132aはそれぞれ3つ以上設けられてもよい。 Note that three or more terminal portions 121a, 123a and 132a may be provided.
 [中間層]
 続いて、本実施の形態に係るエレクトロクロミック素子130が備える中間層133の詳細な構成について図4を用いて説明する。図4は、本実施の形態に係る平面発光体100の構成を示す断面図である。
[Intermediate]
Subsequently, a detailed configuration of the intermediate layer 133 provided in the electrochromic element 130 according to the present embodiment will be described with reference to FIG. FIG. 4 is a cross-sectional view showing the configuration of the flat light emitter 100 according to the present embodiment.
 中間層133は、図4に示すように、対向反応層134と、固体電解質層135と、バッファ層136と、触媒層137とを含んでいる。具体的には、対向電極層131上に、対向反応層134と、固体電解質層135と、バッファ層136と、触媒層137とが順に積層されている。 The intermediate layer 133 includes, as shown in FIG. 4, an opposing reaction layer 134, a solid electrolyte layer 135, a buffer layer 136, and a catalyst layer 137. Specifically, on the counter electrode layer 131, the counter reaction layer 134, the solid electrolyte layer 135, the buffer layer 136, and the catalyst layer 137 are sequentially stacked.
 対向反応層134は、固体電解質層135を介して可逆反応電極層132と反応する。具体的には、対向反応層134は、可逆反応電極層132の反射状態と透過状態との切り替えに必要な水素イオンの貯蔵及び取り出しを可逆的に行う。言い換えると、対向反応層134は、イオン貯蔵層として機能する。 The opposing reaction layer 134 reacts with the reversible reaction electrode layer 132 via the solid electrolyte layer 135. Specifically, the opposing reaction layer 134 reversibly stores and extracts hydrogen ions necessary for switching between the reflection state and the transmission state of the reversible reaction electrode layer 132. In other words, the opposing reaction layer 134 functions as an ion storage layer.
 対向反応層134は、例えば、遷移金属酸化物から構成される。具体的には、対向反応層134は、酸化タングステン(WO)、酸化イリジウム(IrO)、酸化ニッケル(NiO)、酸化クロム(Cr)、酸化モリブデン(MoO)、酸化バナジウム(V)(V)などから構成される。対向反応層134は、例えば、スパッタリングなどによって形成される。 The opposing reaction layer 134 is made of, for example, a transition metal oxide. Specifically, the opposing reaction layer 134 is made of tungsten oxide (WO 3 ), iridium oxide (IrO), nickel oxide (NiO), chromium oxide (Cr 2 O 3 ), molybdenum oxide (MoO 3 ), vanadium oxide (V oxide) ) (V 2 O 5 ) and the like. The opposing reaction layer 134 is formed, for example, by sputtering.
 固体電解質層135は、電圧の印加によって水素イオンが容易に移動できる特性を有する材料から構成される。例えば、固体電解質層135は、対向反応層134上に設けられた透明金属酸化物薄膜である。なお、水素イオンは、例えば、固体電解質層135をスパッタリングによって形成する際に、チャンバ内に残存する水分などを薄膜中に内包させることにより導入することができる。 The solid electrolyte layer 135 is made of a material having the property that hydrogen ions can easily move by application of a voltage. For example, the solid electrolyte layer 135 is a transparent metal oxide thin film provided on the facing reaction layer 134. Note that hydrogen ions can be introduced, for example, by including water remaining in the chamber in a thin film when forming the solid electrolyte layer 135 by sputtering.
 固体電解質層135は、例えば、金属酸化物又は金属硫化物などから構成される。具体的には、酸化タンタル(Ta)、酸化ジルコニウム(Zr)、硫化銀(AgS)、硫化銅(CuS)、酸化ニオブ(Nb)、βアルミナ固体電解質(β-Al)などから構成される。 The solid electrolyte layer 135 is made of, for example, a metal oxide or a metal sulfide. Specifically, tantalum oxide (Ta 2 O 5 ), zirconium oxide (Zr 2 O 5 ), silver sulfide (Ag 2 S), copper sulfide (Cu 2 S), niobium oxide (Nb 2 O 5 ), β-alumina It is composed of a solid electrolyte (β-Al 2 O 3 ) or the like.
 バッファ層136は、例えば、固体電解質層135などの構成成分の拡散を防止する。例えば、バッファ層136は、固体電解質層135上に設けられた金属薄膜である。具体的には、バッファ層136は、アルミニウム、チタン、タンタルなどの金属薄膜である。バッファ層136は、例えば、スパッタリングなどによって形成される。 The buffer layer 136 prevents diffusion of components such as the solid electrolyte layer 135, for example. For example, the buffer layer 136 is a metal thin film provided on the solid electrolyte layer 135. Specifically, the buffer layer 136 is a metal thin film of aluminum, titanium, tantalum or the like. The buffer layer 136 is formed by sputtering, for example.
 触媒層137は、可逆反応電極層132に水素イオンを供給し、かつ、可逆反応電極層132から水素イオンを取得する。例えば、触媒層137は、バッファ層136上、かつ、可逆反応電極層132の直下に設けられた金属薄膜である。具体的には、触媒層137は、パラジウム、白金、銀又はこれらの合金などから構成される。触媒層137は、例えば、スパッタリング等によって形成される。 The catalyst layer 137 supplies hydrogen ions to the reversible reaction electrode layer 132 and obtains hydrogen ions from the reversible reaction electrode layer 132. For example, the catalyst layer 137 is a metal thin film provided on the buffer layer 136 and immediately below the reversible reaction electrode layer 132. Specifically, the catalyst layer 137 is made of palladium, platinum, silver or an alloy of these. The catalyst layer 137 is formed by sputtering, for example.
 [中間層の膜厚]
 続いて、中間層133の膜厚について、図5~図9を用いて説明する。
[Thin layer thickness]
Subsequently, the film thickness of the intermediate layer 133 will be described with reference to FIGS. 5 to 9.
 中間層133は、発光ユニット122が発する光に応じて決定された膜厚で構成される。具体的には、中間層133の膜厚は、発光ユニット122と可逆反応電極層132との間の光学的距離Zが、発光ユニット122が発する光のピーク波長λmaxの3倍より大きくなるように決定される。つまり、光学的距離の条件「Z/λmax>3」を満たすように、中間層133が形成される。 The intermediate layer 133 is configured to have a film thickness determined according to the light emitted by the light emitting unit 122. Specifically, the film thickness of the intermediate layer 133 is such that the optical distance Z between the light emitting unit 122 and the reversible reaction electrode layer 132 is larger than three times the peak wavelength λmax of the light emitted by the light emitting unit 122. It is determined. That is, the intermediate layer 133 is formed to satisfy the condition “Z / λmax> 3” of the optical distance.
 以下では、例えば、発光ユニット122が図5に示すようなスペクトルを有する可視光(白色光)を発する場合を想定する。なお、図5は、本実施の形態に係る平面発光体100の発光ユニット122が発する光のスペクトルを示す図である。図5に示す可視光のピーク波長λmaxは、620nmである。 In the following, for example, it is assumed that the light emitting unit 122 emits visible light (white light) having a spectrum as shown in FIG. In addition, FIG. 5 is a figure which shows the spectrum of the light which the light emission unit 122 of the planar light-emitting body 100 which concerns on this Embodiment emits. The peak wavelength λmax of visible light shown in FIG. 5 is 620 nm.
 ここで、中間層133の膜厚と平面発光体100の角度依存性との関係を調べるために、まず3種類の異なる膜厚を有する平面発光体についてのシミュレーションを行った。具体的には、「反射点灯モード」と「透過点灯モード」とのそれぞれでシミュレーションを行った。 Here, in order to investigate the relationship between the film thickness of the intermediate layer 133 and the angle dependency of the flat light emitter 100, first, simulation was performed on the flat light emitter having three different film thicknesses. Specifically, simulations were performed in each of the “reflection lighting mode” and the “transmission lighting mode”.
 なお、角度依存性は、平面発光体100を見る角度に対する発光色(発光ユニット122が発する光の色)の色度変化の特性である。角度に対する色度変化が小さい場合、角度依存性は小さく、角度に対する色度変化が大きい場合、角度依存性は大きい。 Note that the angle dependency is a characteristic of the chromaticity change of the luminescent color (color of light emitted by the light emitting unit 122) with respect to the angle at which the flat light emitting body 100 is viewed. When the chromaticity change with respect to angle is small, the angular dependence is small, and when the chromaticity change with angle is large, the angular dependence is large.
 簡単に言い換えると、角度依存性が大きい場合、見る角度を変えたときに、発光色が大きく変化する。逆に、角度依存性が小さい場合、見る角度を変えたとしても、発光色はあまり変化しない。したがって、角度依存性が小さいことが好ましい。 In other words, when the angle dependency is large, the emission color changes significantly when the viewing angle is changed. On the contrary, when the angle dependency is small, even if the viewing angle is changed, the luminescent color does not change much. Therefore, it is preferable that the angle dependency be small.
 図6は、本実施の形態に係る平面発光体100の光反射性可変ユニット130の各層の材料及び膜厚の例を示す図である。 FIG. 6 is a view showing an example of the material and film thickness of each layer of the variable light reflective unit 130 of the flat light emitter 100 according to the present embodiment.
 図6において、「Z/λmax」のZは、発光ユニット122と可逆反応電極層132との光学的距離である。具体的には、発光ユニット122と可逆反応電極層132との間に設けられた複数の層のそれぞれの屈折率nと膜厚dとの積和である。つまり、Zは、以下の(式1)で示される。 In FIG. 6, Z of “Z / λmax” is an optical distance between the light emitting unit 122 and the reversible reaction electrode layer 132. Specifically, it is the product sum of the refractive index n and the film thickness d of each of a plurality of layers provided between the light emitting unit 122 and the reversible reaction electrode layer 132. That is, Z is expressed by the following (Expression 1).
 (式1) Z=Σn (Expression 1) Z = Zn i d i
 なお、nは、i番目の層の屈折率を示し、dは、i番目の層の膜厚を示している。 Here, n i indicates the refractive index of the ith layer, and d i indicates the film thickness of the ith layer.
 図4に示すように、発光ユニット122と可逆反応電極層132との間には、第2電極層123(対向電極層131)と中間層133とが設けられている。具体的には、第2電極層123、対向反応層134、固体電解質層135、バッファ層136、触媒層137が、この順で、発光ユニット122と可逆反応電極層132との間に積層されている。 As shown in FIG. 4, a second electrode layer 123 (counter electrode layer 131) and an intermediate layer 133 are provided between the light emitting unit 122 and the reversible reaction electrode layer 132. Specifically, the second electrode layer 123, the opposite reaction layer 134, the solid electrolyte layer 135, the buffer layer 136, and the catalyst layer 137 are stacked in this order between the light emitting unit 122 and the reversible reaction electrode layer 132. There is.
 したがって、光学的距離Zは、第2電極層123、対向反応層134、固体電解質層135、バッファ層136及び触媒層137のそれぞれの屈折率nと膜厚dとの積(光学膜厚)の和になる。なお、金属などの消衰係数kが屈折率nより大きい材料については、光学的距離の算出に利用しなくてもよい。具体的には、バッファ層136及び触媒層137は、図6に示すように、数nm程度であり、他の層に比べて十分に小さいことから、光学的距離Zを算出する際には考慮に入れなくてよい。 Therefore, the optical distance Z is the product (optical film thickness) of the refractive index n and the film thickness d of each of the second electrode layer 123, the facing reaction layer 134, the solid electrolyte layer 135, the buffer layer 136, and the catalyst layer 137. It becomes a sum. In the case of a material such as metal having an extinction coefficient k larger than the refractive index n, it is not necessary to use for calculation of the optical distance. Specifically, as shown in FIG. 6, the buffer layer 136 and the catalyst layer 137 have a size of about several nm, and are sufficiently smaller than the other layers. You do not have to put in
 ピーク波長λmaxは620nmであるので、(式1)とλmax=620nmとから、図6に示す(a)~(c)の3種類の平面発光体の「Z/λmax」はそれぞれ、約2.37、約3.01、約3.66となる。 Since the peak wavelength λmax is 620 nm, “Z / λmax” of the three types of flat light emitters of (a) to (c) shown in FIG. 37, about 3.01, about 3.66.
 なお、図6に示す光学定数(屈折率n及び消衰係数k)は、シミュレーションに用いた一例の値を示している。また、Mg-Niの光学定数については、反射時はMgの値を、透過時はMgHの値を利用している。 The optical constants (refractive index n and extinction coefficient k) shown in FIG. 6 indicate values of an example used in the simulation. As for the optical constant of Mg—Ni, the value of Mg is used during reflection, and the value of MgH 2 is used during transmission.
 図7A及び図7Bはそれぞれ、本実施の形態に係る平面発光体100の光反射性可変ユニット130の光学的距離と、反射状態及び透過状態における発光色の角度依存性との関係を示す図である。具体的には、図7A及び図7Bは、図6に示す(a)~(c)の3種類の平面発光体のそれぞれの角度依存性のシミュレーション結果を、CIE(国際照明委員会)のu’v’色度図として示している。 FIGS. 7A and 7B are diagrams showing the relationship between the optical distance of the variable light reflective unit 130 of the flat light emitter 100 according to the present embodiment and the angular dependence of the emission color in the reflection state and the transmission state, respectively. is there. Specifically, FIGS. 7A and 7B show the simulation results of the angular dependency of each of the three types of flat light emitters of (a) to (c) shown in FIG. It is shown as a 'v' chromaticity diagram.
 なお、図7A及び図7Bにおいて、黒塗りのプロットが「0°」の場合を示し、白塗りのプロットのうち他より大きいプロットが「80°」の場合を示している。「0°」又は「80°」は、平面発光体100の発光面に対して垂直な方向(すなわち、積層方向)を基準としたときの角度を示している。具体的には、「0°」は、平面発光体100の正面から発光面を見た場合を示している。黒塗りのプロットから白塗りのプロットに向かうにつれて10°刻みで角度が増加する。 7A and 7B, the black plots indicate the case of “0 °”, and the white plots of the larger plots indicate the case of “80 °”. “0 °” or “80 °” indicates an angle based on a direction perpendicular to the light emitting surface of the flat light emitter 100 (ie, the stacking direction). Specifically, “0 °” indicates a case where the light emitting surface is viewed from the front of the flat light emitting body 100. The angle increases in steps of 10 ° from the filled plot towards the filled plot.
 図7A及び図7Bに示す色度空間において、任意の2点の角度間の距離の最大値を、図6のΔu’v’として示している。つまり、Δu’v’が大きい程、角度の差による色度の差が大きい、すなわち、角度依存性が強いことを意味している。したがって、図6に示すように、「Z/λmax」が大きい平面発光体ほど、Δu’v’が小さくなり、角度による色度変化が抑制されていることが分かる。 In the chromaticity space shown in FIGS. 7A and 7B, the maximum value of the distance between any two points is shown as Δu′v ′ in FIG. That is, the larger the difference Δu'v ', the larger the difference in chromaticity due to the difference in angles, that is, the stronger the angle dependency. Therefore, as shown in FIG. 6, it can be seen that as the planar light emitter with the larger “Z / λmax”, Δu′v ′ becomes smaller and the change in chromaticity due to the angle is suppressed.
 したがって、光学的距離Zが大きくなるように、中間層133の膜厚が決定される。これにより、角度依存性を改善するためには、すなわち、角度依存性を小さくするためには、光学的距離Zが大きくなるように、中間層133の膜厚が決定されればよい。 Therefore, the film thickness of the intermediate layer 133 is determined such that the optical distance Z is increased. Thus, in order to improve the angular dependency, that is, to reduce the angular dependency, the film thickness of the intermediate layer 133 may be determined so as to increase the optical distance Z.
 例えば、中間層133では、対向反応層134又は固体電解質層135の膜厚が、中間層133を構成する複数の層及び第2電極層123の中で最大であるように、中間層133の各層の膜厚が決定される。言い換えると、対向反応層134又は固体電解質層135の膜厚を調整することで、上述した光学的距離の条件(Z/λmax>3)を満たす中間層133を形成する。 For example, in the intermediate layer 133, each layer of the intermediate layer 133 such that the film thickness of the facing reaction layer 134 or the solid electrolyte layer 135 is the largest among the plurality of layers constituting the intermediate layer 133 and the second electrode layer 123. Film thickness is determined. In other words, by adjusting the film thickness of the opposing reaction layer 134 or the solid electrolyte layer 135, the intermediate layer 133 satisfying the above-described optical distance condition (Z / λmax> 3) is formed.
 なお、他の層については、膜厚を大きくすることができないなどの制限がある。例えば、バッファ層136及び触媒層137は、金属で構成されている。このため、バッファ層136及び触媒層137の膜厚を大きくした場合には、発光ユニット122からの光を透過することが困難になる。 There is a limitation that the film thickness can not be increased for other layers. For example, the buffer layer 136 and the catalyst layer 137 are made of metal. Therefore, when the film thickness of the buffer layer 136 and the catalyst layer 137 is increased, it is difficult to transmit the light from the light emitting unit 122.
 また、第2電極層123は、可視光帯域の光の一部を吸収するITOなどの透明導電膜で構成されている。このため、第2電極層123の膜厚を大きくした場合には、発光ユニット122からの光の一部が吸収され、発光色が色付いてしまう。 The second electrode layer 123 is formed of a transparent conductive film such as ITO that absorbs part of light in the visible light band. For this reason, when the film thickness of the second electrode layer 123 is increased, part of the light from the light emitting unit 122 is absorbed, and the emission color is colored.
 したがって、対向反応層134又は固体電解質層135の膜厚を調整することで、上述した光学的距離の条件(Z/λmax>3)を満たす中間層133を形成する。 Therefore, by adjusting the film thickness of the opposing reaction layer 134 or the solid electrolyte layer 135, the intermediate layer 133 satisfying the above-described optical distance condition (Z / λmax> 3) is formed.
 以上のことから、角度依存性を改善するためには、簡単な構成としては、中間層133の膜厚を大きくすればよい。しかしながら、中間層133の膜厚が大きすぎると、エレクトロクロミック素子130の動作に影響を与える、又は、発光ユニット122からの光の取り出し効率が悪くなる。また、中間層133の膜厚を必要以上に大きくしたとしても、角度依存性に変化が見られなくなる。 From the above, in order to improve the angular dependency, the film thickness of the intermediate layer 133 may be increased as a simple configuration. However, when the film thickness of the intermediate layer 133 is too large, the operation of the electrochromic element 130 is affected, or the light extraction efficiency from the light emitting unit 122 is deteriorated. Further, even if the film thickness of the intermediate layer 133 is increased more than necessary, no change in the angle dependency is observed.
 したがって、中間層133の膜厚は、例えば、発光ユニット122と可逆反応電極層132との間の光学的距離Zが、発光ユニット122が発する光のピーク波長λmaxの6倍以下になるように決定されることが好ましい。すなわち、中間層133は、「Z/λmax≦6」を満たすように形成されることが好ましい。 Therefore, the film thickness of the intermediate layer 133 is determined so that, for example, the optical distance Z between the light emitting unit 122 and the reversible reaction electrode layer 132 is 6 times or less of the peak wavelength λmax of light emitted by the light emitting unit 122 Preferably. That is, the intermediate layer 133 is preferably formed to satisfy “Z / λmax ≦ 6”.
 [まとめ]
 以上のように、本実施の形態に係る平面発光体100は、透光性を有する基板110と、基板110の上方に順に積層された、透光性を有する第1電極層121及び第2電極層123と、第1電極層121及び第2電極層123間に設けられ、第1電極層121及び第2電極層123間に印加される第1電圧に応じて発光する発光ユニット122と、一対の対向電極層131及び可逆反応電極層132を有し、対向電極層131及び可逆反応電極層132間に印加される第2電圧に応じて光反射性及び光透過性が可変であるエレクトロクロミック素子130とを備え、対向電極層131は、第2電極層123である。
[Summary]
As described above, the flat light emitting body 100 according to the present embodiment includes the light transmitting substrate 110 and the light transmitting first electrode layer 121 and the second electrode sequentially stacked above the substrate 110. A pair of light emitting units 122 provided between the layer 123 and the first electrode layer 121 and the second electrode layer 123 and emitting light according to the first voltage applied between the first electrode layer 121 and the second electrode layer 123; Electrochromic device having the opposite electrode layer 131 and the reversible reaction electrode layer 132, and the light reflectivity and the light transmittance being variable according to the second voltage applied between the opposite electrode layer 131 and the reversible reaction electrode layer 132 And the counter electrode layer 131 is the second electrode layer 123.
 また、本実施の形態に係る照明装置10は、平面発光体100と、第1電圧と第2電圧とを独立して印加することができる電源回路200とを備える。 Moreover, the illuminating device 10 which concerns on this Embodiment is provided with the planar light-emitting body 100 and the power supply circuit 200 which can apply a 1st voltage and a 2nd voltage independently.
 このように、本実施の形態に係る平面発光体100、及び、平面発光体100を備える照明装置10では、有機EL素子120とエレクトロクロミック素子130とが一体化されている。具体的には、有機EL素子120の陰極である第2電極層123と、エレクトロクロミック素子130の対向電極層131とが、共通である、すなわち、同一の層を構成している。 As described above, in the planar light emitter 100 according to the present embodiment and the lighting apparatus 10 including the planar light emitter 100, the organic EL element 120 and the electrochromic element 130 are integrated. Specifically, the second electrode layer 123 which is the cathode of the organic EL element 120 and the counter electrode layer 131 of the electrochromic element 130 are common, that is, constitute the same layer.
 したがって、第2電極層123と対向電極層131とを共通にすることで、発光ユニット122からの光が透過する層の数が少なくなる。よって、有機EL素子120とエレクトロクロミック素子130とを別々に積層した場合よりも、層間の屈折率の差による発光ユニット122からの光の取り出しロスが少なくなり、発光効率を高くすることができる。これにより、本実施の形態に係る平面発光体100及び照明装置10によれば、反射率及び透過率が調節可能で、かつ、発光効率を高くすることができる。 Therefore, by using the second electrode layer 123 and the counter electrode layer 131 in common, the number of layers through which light from the light emitting unit 122 passes is reduced. Therefore, the loss of light extraction from the light emitting unit 122 due to the difference in refractive index between layers is smaller than when the organic EL element 120 and the electrochromic element 130 are separately stacked, and the light emission efficiency can be increased. Thereby, according to the planar light-emitting body 100 and the illuminating device 10 which concern on this Embodiment, a reflectance and the transmittance | permeability can be adjusted and luminous efficiency can be made high.
 また、有機EL素子120とエレクトロクロミック素子130とが一体化されているので、有機EL素子120とエレクトロクロミック素子130とを別々に積層した場合よりも、平面発光体100を薄型化することができる。したがって、平面発光体100を曲げやすくすることができ、フレキシブルな照明装置10として利用することができる。 Further, since the organic EL element 120 and the electrochromic element 130 are integrated, the planar light emitter 100 can be thinner than in the case where the organic EL element 120 and the electrochromic element 130 are separately laminated. . Therefore, the flat light emitter 100 can be easily bent, and can be used as the flexible lighting device 10.
 また、第2電極層123と対向電極層131とを共通にすることで、部品点数(具体的には、電極層の数)、及び、製造工程数を削減することができるので、コストを削減することができる。 In addition, by using the second electrode layer 123 and the counter electrode layer 131 in common, the number of components (specifically, the number of electrode layers) and the number of manufacturing steps can be reduced, thereby reducing the cost. can do.
 また、例えば、可逆反応電極層132は、第2電圧に応じて光反射性及び光透過性が可変であり、発光ユニット122と可逆反応電極層132との間の光学的距離は、発光ユニット122が発する光のピーク波長の3倍より大きい。 Also, for example, the reversible reaction electrode layer 132 has variable light reflectivity and light transparency according to the second voltage, and the optical distance between the light emitting unit 122 and the reversible reaction electrode layer 132 is the light emitting unit 122. Greater than three times the peak wavelength of the light emitted by
 一般的には、角度依存性を小さくするためには、光を拡散させる拡散フィルムなどが利用できる。しかしながら、本実施の形態に係る平面発光体100のように、平面発光体100を通して反対側が視認可能であることが求められる場合(窓用途など)は、拡散フィルムを用いることができない。 Generally, in order to reduce the angle dependency, a diffusion film for diffusing light can be used. However, as in the flat light emitting body 100 according to the present embodiment, when it is required that the opposite side can be seen through the flat light emitting body 100 (window use etc.), the diffusion film can not be used.
 そこで、本実施の形態に係る平面発光体100によれば、発光ユニット122と可逆反応電極層132との光学的距離を適切にすることで、拡散フィルムを利用しなくても、発光色の角度依存性を小さくすることができる。 Therefore, according to the flat light emitting body 100 according to the present embodiment, by making the optical distance between the light emitting unit 122 and the reversible reaction electrode layer 132 appropriate, the angle of the light emission color can be obtained without using the diffusion film. The dependency can be reduced.
 また、例えば、エレクトロクロミック素子130は、対向電極層131及び可逆反応電極層132間に、積層された複数の層を含む中間層133を有し、中間層133は、固体電解質層135と、固体電解質層135を介して可逆反応電極層132と反応する対向反応層134とを含み、固体電解質層135又は対向反応層134の膜厚は、中間層133及び第2電極層123の中で最大である。 In addition, for example, the electrochromic element 130 includes the intermediate layer 133 including a plurality of stacked layers between the counter electrode layer 131 and the reversible reaction electrode layer 132, and the intermediate layer 133 includes the solid electrolyte layer 135 and a solid. The film thickness of the solid electrolyte layer 135 or the counter reaction layer 134 includes the counter reaction layer 134 that reacts with the reversible reaction electrode layer 132 via the electrolyte layer 135, and the film thickness of the solid electrolyte layer 135 or the counter reaction layer 134 is at maximum among the intermediate layer 133 and the second electrode layer 123. is there.
 これにより、光の取り出し効率、及び、発光色の変化などに与える影響を抑制しつつ、角度依存性を小さくすることができる。 As a result, it is possible to reduce the angle dependency while suppressing the influence on the light extraction efficiency and the change of the light emission color.
 (変形例1)
 以下では、本実施の形態に係る平面発光体の変形例1について、図8を用いて説明する。図8は、本変形例に係る平面発光体300の構成を示す断面図である。
(Modification 1)
Below, the modification 1 of the flat light-emitting body which concerns on this Embodiment is demonstrated using FIG. FIG. 8 is a cross-sectional view showing the configuration of a flat light emitter 300 according to the present modification.
 図8に示す平面発光体300は、図4に示す平面発光体100と比較して、エレクトロクロミック素子130の代わりにエレクトロクロミック素子330を備える点が異なっている。以下では、異なる点を中心に説明する。 The flat light emitter 300 shown in FIG. 8 is different from the flat light emitter 100 shown in FIG. 4 in that an electrochromic element 330 is provided instead of the electrochromic element 130. The following description will focus on the differences.
 具体的には、エレクトロクロミック素子330は、中間層133の代わりに中間層333を備える。中間層333は、固体電解質層135の代わりに固体電解質層335を備える。 Specifically, the electrochromic element 330 includes an intermediate layer 333 instead of the intermediate layer 133. The intermediate layer 333 comprises a solid electrolyte layer 335 instead of the solid electrolyte layer 135.
 固体電解質層335には、基板水平方向に0.1μm以上10μm以下の周期の凹凸が形成されている。具体的には、固体電解質層335の上面に、行列状に凹部335aと凸部335bとが0.1μm以上10μm以下の周期で繰り返し、形成されている。なお、周期は、凹部335aと凸部335bとの合計の幅に相当する。 In the solid electrolyte layer 335, asperities with a period of 0.1 μm to 10 μm are formed in the horizontal direction of the substrate. Specifically, on the upper surface of the solid electrolyte layer 335, concave portions 335a and convex portions 335b are repeatedly formed in a matrix at a cycle of 0.1 μm to 10 μm. The period corresponds to the total width of the concave portion 335a and the convex portion 335b.
 凹部335a及び凸部335bの形状はいかなるものでもよい。例えば、凹部335a及び凸部335bの平面視形状は、矩形、円形又は楕円形などである。凹部335a及び凸部335bの断面形状は、例えば、図8に示すように、テーパを有する。つまり、凹部335a及び凸部335bは、積層方向に対して傾斜した面を有する。なお、凹部335a及び凸部335bは、積層方向に平行な面を有してもよい。 The shape of the recess 335 a and the protrusion 335 b may be any shape. For example, the plan view shape of the recess 335 a and the protrusion 335 b is a rectangle, a circle, an ellipse, or the like. For example, as shown in FIG. 8, the cross-sectional shapes of the concave portion 335 a and the convex portion 335 b have a taper. That is, the concave portion 335a and the convex portion 335b have a surface inclined with respect to the stacking direction. The concave portion 335a and the convex portion 335b may have a plane parallel to the stacking direction.
 凹部335a及び凸部335bは、成膜後にエッチングなどによって一部を除去することで形成される。つまり、除去された部分が凹部335aであり、残った部分が凸部335bである。 The concave portion 335 a and the convex portion 335 b are formed by removing a part by etching or the like after film formation. That is, the removed portion is the concave portion 335a, and the remaining portion is the convex portion 335b.
 具体的には、まず、固体電解質層335の材料となる金属酸化物膜(例えば、酸化タンタル)をスパッタリングなどによって対向反応層134上に形成する。次に、凹部335aに相当する位置に開口を有するマスクを用いて、ドライエッチング(例えば、RIE(Reactive Ion Etching))などにより、金属酸化物膜の一部を除去する。これにより、凹部335aと凸部335bとが形成された固体電解質層335が形成される。凹凸の高さは、例えば、数nm~数十nmである。 Specifically, first, a metal oxide film (for example, tantalum oxide) to be a material of the solid electrolyte layer 335 is formed on the facing reaction layer 134 by sputtering or the like. Next, part of the metal oxide film is removed by dry etching (for example, RIE (Reactive Ion Etching)) or the like using a mask having an opening at a position corresponding to the concave portion 335a. Thereby, the solid electrolyte layer 335 in which the recess 335 a and the protrusion 335 b are formed is formed. The height of the unevenness is, for example, several nm to several tens of nm.
 なお、バッファ層136及び触媒層137は、凹凸の上に積層される。このため、図8に示すように、バッファ層136及び触媒層137は、凹凸形状に沿った層となる。簡単に言い換えると、バッファ層136及び触媒層137は、波打った形状を有する。 The buffer layer 136 and the catalyst layer 137 are stacked on the unevenness. For this reason, as shown in FIG. 8, the buffer layer 136 and the catalyst layer 137 become layers along the concavo-convex shape. Simply put, the buffer layer 136 and the catalyst layer 137 have a corrugated shape.
 なお、図8に示す例では、固体電解質層335に凹凸が形成された例について示したが、これに限らない。例えば、対向反応層134に凹凸が形成されてもよい。 Although the example shown in FIG. 8 shows an example in which the solid electrolyte layer 335 is formed with asperities, it is not limited thereto. For example, asperities may be formed on the opposing reaction layer 134.
 以上のように、本変形例に係る平面発光体300では、エレクトロクロミック素子330は、対向電極層131及び可逆反応電極層132間に、積層された複数の層を含む中間層333を有し、中間層333は、固体電解質層335と、固体電解質層335を介して可逆反応電極層132と反応する対向反応層134とを含み、固体電解質層335及び対向反応層134の少なくとも一方には、基板水平方向に0.1μm以上10μm以下の周期の凹凸が形成されている。 As described above, in the flat light emitting body 300 according to the present modification, the electrochromic element 330 has the intermediate layer 333 including a plurality of stacked layers between the counter electrode layer 131 and the reversible reaction electrode layer 132, The intermediate layer 333 includes a solid electrolyte layer 335 and a facing reaction layer 134 that reacts with the reversible reaction electrode layer 132 via the solid electrolyte layer 335, and at least one of the solid electrolyte layer 335 and the facing reaction layer 134 is a substrate. Irregularities having a period of 0.1 μm to 10 μm are formed in the horizontal direction.
 これにより、凹凸によって可逆反応電極層132による反射光を拡散させることができるので、膜厚を厚くしなくても、角度依存性を小さくすることができる。なお、凹凸が反射光を拡散するため、反射モードの場合は、鏡面反射ではなく、拡散反射となる。 Thereby, since the reflected light by the reversible reaction electrode layer 132 can be diffused by the unevenness, the angle dependency can be reduced without increasing the film thickness. In addition, since the unevenness diffuses the reflected light, in the case of the reflection mode, it is not specular reflection but diffuse reflection.
 (変形例2)
 以下では、本実施の形態に係る平面発光体の変形例2について、図9を用いて説明する。図9は、本変形例に係る平面発光体400の構成の一部を示す断面図である。
(Modification 2)
Below, the modification 2 of the flat light-emitting body which concerns on this Embodiment is demonstrated using FIG. FIG. 9 is a cross-sectional view showing a part of the configuration of a flat light emitter 400 according to this modification.
 図9に示す平面発光体400は、図4に示す平面発光体100と比較して、有機EL素子120及びエレクトロクロミック素子130の代わりに、有機EL素子420及びエレクトロクロミック素子430を備える点が異なっている。以下では、異なる点を中心に説明する。 The flat light emitter 400 shown in FIG. 9 is different from the flat light emitter 100 shown in FIG. 4 in that an organic EL element 420 and an electrochromic element 430 are provided instead of the organic EL element 120 and the electrochromic element 130. ing. The following description will focus on the differences.
 有機EL素子420は、発光ユニット122及び第2電極層123の代わりに、発光ユニット422及び第2電極層423を備える。また、エレクトロクロミック素子430は、対向電極層431、可逆反応電極層432及び中間層433を備える。発光ユニット422、第2電極層423(対向電極層431)、可逆反応電極層432及び中間層433はそれぞれ、形状を除いて材料などが、発光ユニット122、第2電極層123(対向電極層131)、可逆反応電極層132及び中間層133と同一である。 The organic EL element 420 includes a light emitting unit 422 and a second electrode layer 423 instead of the light emitting unit 122 and the second electrode layer 123. In addition, the electrochromic element 430 includes a counter electrode layer 431, a reversible reaction electrode layer 432, and an intermediate layer 433. The light emitting unit 422, the second electrode layer 423 (counter electrode layer 431), the reversible reaction electrode layer 432, and the intermediate layer 433 have the materials except for the shapes, respectively, such as the light emitting unit 122 and the second electrode layer 123 (counter electrode layer 131). And the reversible reaction electrode layer 132 and the intermediate layer 133 are the same.
 本変形例に係る平面発光体400では、図9に示すように、エレクトロクロミック素子430が発光ユニット422を覆っている。すなわち、エレクトロクロミック素子430は、平面視において、発光ユニット422の外縁より外方に延伸している。具体的には、対向電極層431(第2電極層423)、中間層433及び可逆反応電極層432が、平面視において、発光ユニット422の外縁より外方に延伸している。例えば、対向電極層431(第2電極層423)、中間層433及び可逆反応電極層432のそれぞれの端縁は、図9に示すように基板110に接触している。 In the flat light emitter 400 according to the present modification, as shown in FIG. 9, the electrochromic element 430 covers the light emitting unit 422. That is, the electrochromic element 430 extends outward from the outer edge of the light emitting unit 422 in plan view. Specifically, the counter electrode layer 431 (second electrode layer 423), the intermediate layer 433 and the reversible reaction electrode layer 432 extend outward from the outer edge of the light emitting unit 422 in plan view. For example, the respective edges of the counter electrode layer 431 (second electrode layer 423), the intermediate layer 433 and the reversible reaction electrode layer 432 are in contact with the substrate 110 as shown in FIG.
 これにより、可逆反応電極層432が反射状態であるときに、発光ユニット422からの光をほとんど漏らすことなく、発光面側に出射させることができる。このように、発光ユニット422からの光の光漏れを抑制して、発光効率をさらに高めることができる。 Accordingly, when the reversible reaction electrode layer 432 is in the reflection state, the light from the light emitting unit 422 can be emitted to the light emitting surface side with almost no leak. Thus, the light leakage of the light from the light emitting unit 422 can be suppressed to further enhance the light emission efficiency.
 以上のように、本変形例に係る平面発光体400では、エレクトロクロミック素子430は、平面視において、発光ユニット422の外縁より外方に延伸している。 As described above, in the flat light emitter 400 according to the present modification, the electrochromic element 430 extends outward from the outer edge of the light emitting unit 422 in plan view.
 これにより、エレクトロクロミック素子430が反射状態であるときに、発光ユニット422からの光を反射して、発光面側に出射させることができる。このように、発光ユニット422からの光の光漏れを抑制して、発光効率をさらに高めることができる。 Thereby, when the electrochromic element 430 is in the reflection state, the light from the light emitting unit 422 can be reflected and emitted to the light emitting surface side. Thus, the light leakage of the light from the light emitting unit 422 can be suppressed to further enhance the light emission efficiency.
 なお、本変形例に係る平面発光体400では、エレクトロクロミック素子430に含まれる全ての層が、平面視において発光ユニット422の外縁より外方に延伸している。すなわち、図9に示すように、上層側の層が下層側の層を覆っている。つまり、平面視において、上層側の層が下層側の層の外縁より外方に延伸している。 In the flat light emitter 400 according to the present modification, all layers included in the electrochromic element 430 extend outward from the outer edge of the light emitting unit 422 in plan view. That is, as shown in FIG. 9, the upper layer side covers the lower layer side. That is, in plan view, the layer on the upper side extends outward from the outer edge of the layer on the lower side.
 このとき、光漏れの抑制のためには、少なくとも可逆反応電極層432が発光ユニット422の外縁より外方に延伸していればよい。 At this time, at least the reversible reaction electrode layer 432 may extend outward from the outer edge of the light emitting unit 422 in order to suppress light leakage.
 (その他)
 以上、本発明に係る平面発光体及び照明装置について、上記実施の形態及びその変形例に基づいて説明したが、本発明は、上記の実施の形態に限定されるものではない。
(Others)
As mentioned above, although the planar light-emitting body and illuminating device which concern on this invention were demonstrated based on the said embodiment and its modification, this invention is not limited to said embodiment.
 例えば、上記実施の形態及びその変形例に係る平面発光体は、さらに、応力緩和構造を有してもよい。つまり、平面発光体をより曲げやすくするために、平面発光体は、応力緩和構造を有してもよい。 For example, the flat light emitter according to the above-described embodiment and the modification may further have a stress relaxation structure. That is, in order to make the flat light emitter easier to bend, the flat light emitter may have a stress relaxation structure.
 応力緩和構造は、例えば、平面発光体を積層方向に貫通する複数の貫通孔、又は、平面発光体の基板などに設けられる複数の溝などである。複数の貫通孔又は溝によって平面発光体を曲げたときの応力を緩和し、平面発光体が破壊されずに曲げやすくすることができる。 The stress relaxation structure is, for example, a plurality of through holes penetrating the flat light emitter in the stacking direction, or a plurality of grooves provided on a flat light emitter substrate or the like. The stress caused when the flat light emitter is bent can be relaxed by the plurality of through holes or grooves, and the flat light emitter can be easily bent without being broken.
 また、例えば、上記変形例1において、周期的な凹凸を固体電解質層335又は対向反応層134に形成する例について示したが、これに限らない。凹凸は、周期的に形成されなくてもよく、例えば、凹部335a及び凸部335bは、ランダムに配置されていてもよい。また、凹凸に限らず、中間層333に光の散乱構造を設ければよい。 Further, for example, although the example in which the periodic unevenness is formed in the solid electrolyte layer 335 or the facing reaction layer 134 in the first modification example is described, the present invention is not limited thereto. The unevenness may not be periodically formed, and for example, the concave portion 335a and the convex portion 335b may be randomly arranged. Further, the light scattering structure may be provided to the intermediate layer 333 as well as the unevenness.
 また、例えば、上記実施の形態及び変形例では、基板110上に第1電極層121を設ける例について示したが、これに限らない。例えば、第1電極層121は、基板110上に設けられた平坦化膜上に設けられてもよい。 Further, for example, although the example in which the first electrode layer 121 is provided on the substrate 110 is described in the above embodiment and the modification, the present invention is not limited thereto. For example, the first electrode layer 121 may be provided on the planarization film provided on the substrate 110.
 また、例えば、上記実施の形態及び変形例では、第1電極層121が陽極で、第2電極層123が陰極である例について示したが、逆でもよい。すなわち、第1電極層121が陰極で、第2電極層123が陽極でもよい。 Further, for example, although the example in which the first electrode layer 121 is an anode and the second electrode layer 123 is a cathode is shown in the above-described embodiment and modification, the opposite may be applied. That is, the first electrode layer 121 may be a cathode and the second electrode layer 123 may be an anode.
 また、例えば、上記実施の形態及び変形例では、光反射性可変ユニットとしてエレクトロクロミック素子を示したが、これに限らない。ガスクロミック素子、コレステリック液晶などの調光ミラー素子を利用することができる。 Further, for example, although the electrochromic element is shown as the light reflectivity variable unit in the above embodiment and the modification, the present invention is not limited to this. A light control mirror device such as a gas chromic device or a cholesteric liquid crystal can be used.
 また、例えば、上記実施の形態及び変形例では、平面発光体の平面視形状が矩形である例について示したが、これに限らない。平面発光体の平面視形状は、多角形、円形又は楕円形などの、直線若しくは曲線で描かれた閉じた形状でもよい。 Further, for example, in the above-described embodiment and the modification, an example in which the plan view shape of the flat light emitter is rectangular is described, but the present invention is not limited thereto. The plan view shape of the planar light emitter may be a closed shape drawn as a straight line or a curve, such as a polygon, a circle or an ellipse.
 その他、各実施の形態に対して当業者が思いつく各種変形を施して得られる形態や、本発明の趣旨を逸脱しない範囲で各実施の形態における構成要素及び機能を任意に組み合わせることで実現される形態も本発明に含まれる。 In addition, the present invention can be realized by arbitrarily combining components and functions in each embodiment without departing from the scope of the present invention or embodiments obtained by applying various modifications that those skilled in the art may think to each embodiment. The form is also included in the present invention.
10 照明装置
100、300、400 平面発光体
110 基板
120、420 有機EL素子
121 第1電極層
122、422 発光ユニット
123、423 第2電極層
130、330、430 エレクトロクロミック素子(光反射性可変ユニット)
131、431 対向電極層
132、432 可逆反応電極層
133、333、433 中間層
134 対向反応層
135、335 固体電解質層
200 電源回路
335a 凹部
335b 凸部
10 Lighting device 100, 300, 400 Planar light emitter 110 Substrate 120, 420 Organic EL element 121 First electrode layer 122, 422 Light emitting unit 123, 423 Second electrode layer 130, 330, 430 Electrochromic element (light reflective variable unit )
131, 431 Counter electrode layer 132, 432 Reversible reaction electrode layer 133, 333, 433 Intermediate layer 134 Counter reaction layer 135, 335 Solid electrolyte layer 200 Power circuit 335a Concave portion 335b Convex portion

Claims (6)

  1.  透光性を有する基板と、
     前記基板の上方に順に積層された、透光性を有する第1電極層及び第2電極層と、
     前記第1電極層及び前記第2電極層間に設けられ、前記第1電極層及び前記第2電極層間に印加される第1電圧に応じて発光する発光ユニットと、
     一対の電極層を有し、当該一対の電極層間に印加される第2電圧に応じて光反射性及び光透過性が可変である光反射性可変ユニットとを備え、
     前記一対の電極層の一方は、前記第2電極層である
     平面発光体。
    A translucent substrate,
    A light transmitting first electrode layer and a second electrode layer sequentially stacked above the substrate;
    A light emitting unit provided between the first electrode layer and the second electrode layer and emitting light according to a first voltage applied between the first electrode layer and the second electrode layer;
    A light reflective variable unit having a pair of electrode layers, the light reflectivity and the light transparency being variable according to a second voltage applied between the pair of electrode layers,
    One of the pair of electrode layers is the second electrode layer.
  2.  前記一対の電極層の他方は、前記第2電圧に応じて光反射性及び光透過性が可変な可逆反応電極層であり、
     前記発光ユニットと前記可逆反応電極層との間の光学的距離は、前記発光ユニットが発する光のピーク波長の3倍より大きい
     請求項1に記載の平面発光体。
    The other of the pair of electrode layers is a reversible reaction electrode layer in which light reflectivity and light transparency are variable according to the second voltage,
    The flat light-emitting body according to claim 1, wherein an optical distance between the light emitting unit and the reversible reaction electrode layer is larger than three times a peak wavelength of light emitted by the light emitting unit.
  3.  前記光反射性可変ユニットは、前記一対の電極層間に、積層された複数の層を有し、
     前記複数の層は、
     固体電解質層と、
     前記固体電解質層を介して前記一対の電極層の他方と反応する対向反応層とを含み、
     前記固体電解質層又は前記対向反応層の膜厚は、前記複数の層及び前記第2電極層の中で最大である
     請求項1又は2に記載の平面発光体。
    The light reflective variable unit has a plurality of layers stacked between the pair of electrode layers,
    The plurality of layers are
    A solid electrolyte layer,
    An opposing reaction layer that reacts with the other of the pair of electrode layers via the solid electrolyte layer,
    The flat light-emitting body according to claim 1 or 2, wherein the film thickness of the solid electrolyte layer or the facing reaction layer is the largest among the plurality of layers and the second electrode layer.
  4.  前記光反射性可変ユニットは、前記一対の電極層間に、積層された複数の層を有し、
     前記複数の層は、
     固体電解質層と、
     前記固体電解質層を介して前記一対の電極層の他方と反応する対向反応層とを含み、
     前記固体電解質層及び前記対向反応層の少なくとも一方には、基板水平方向に0.1μm以上10μm以下の周期の凹凸が形成されている
     請求項1又は2に記載の平面発光体。
    The light reflective variable unit has a plurality of layers stacked between the pair of electrode layers,
    The plurality of layers are
    A solid electrolyte layer,
    An opposing reaction layer that reacts with the other of the pair of electrode layers via the solid electrolyte layer,
    The flat light-emitting body according to claim 1 or 2, wherein an unevenness having a period of 0.1 μm to 10 μm is formed in at least one of the solid electrolyte layer and the facing reaction layer in the substrate horizontal direction.
  5.  前記光反射性可変ユニットは、平面視において、前記発光ユニットの外縁より外方に延伸している
     請求項1~4のいずれか1項に記載の平面発光体。
    The flat light-emitting body according to any one of claims 1 to 4, wherein the variable light-reflecting unit extends outward from an outer edge of the light-emitting unit in plan view.
  6.  請求項1~5のいずれか1項に記載の平面発光体と、
     前記第1電圧と前記第2電圧とを独立して印加することができる電源回路とを備える
     照明装置。
    A flat light emitter according to any one of claims 1 to 5;
    A power supply circuit capable of independently applying the first voltage and the second voltage.
PCT/JP2015/001041 2014-04-08 2015-02-27 Planar light emitting body and illumination device WO2015155925A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-079772 2014-04-08
JP2014079772 2014-04-08

Publications (1)

Publication Number Publication Date
WO2015155925A1 true WO2015155925A1 (en) 2015-10-15

Family

ID=54287519

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/001041 WO2015155925A1 (en) 2014-04-08 2015-02-27 Planar light emitting body and illumination device

Country Status (1)

Country Link
WO (1) WO2015155925A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106483731A (en) * 2017-01-03 2017-03-08 京东方科技集团股份有限公司 Electrochromic display device and navigator
WO2018199258A1 (en) * 2017-04-26 2018-11-01 国立大学法人九州大学 Electrode, structure and method for manufacturing same, connection structure, and element in which said electrode is used
CN109887981A (en) * 2019-03-20 2019-06-14 业成科技(成都)有限公司 Organic LED display panel and its manufacturing method
CN111883570A (en) * 2020-08-05 2020-11-03 合肥京东方显示技术有限公司 Display panel, display device and control method of display panel

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002043054A (en) * 2000-07-26 2002-02-08 Casio Comput Co Ltd Light-emitting element and method of manufacturing the same
JP2004127942A (en) * 2002-10-01 2004-04-22 Eastman Kodak Co High light abstraction type organic light emitting diode (oled) device
JP2005063839A (en) * 2003-08-13 2005-03-10 Toshiba Matsushita Display Technology Co Ltd Optical device and organic electroluminescent display device
JP2012109262A (en) * 2012-01-30 2012-06-07 Japan Display Central Co Ltd Light emitting device
JP2014017077A (en) * 2012-07-06 2014-01-30 Konica Minolta Inc Organic electroluminescent body

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002043054A (en) * 2000-07-26 2002-02-08 Casio Comput Co Ltd Light-emitting element and method of manufacturing the same
JP2004127942A (en) * 2002-10-01 2004-04-22 Eastman Kodak Co High light abstraction type organic light emitting diode (oled) device
JP2005063839A (en) * 2003-08-13 2005-03-10 Toshiba Matsushita Display Technology Co Ltd Optical device and organic electroluminescent display device
JP2012109262A (en) * 2012-01-30 2012-06-07 Japan Display Central Co Ltd Light emitting device
JP2014017077A (en) * 2012-07-06 2014-01-30 Konica Minolta Inc Organic electroluminescent body

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106483731A (en) * 2017-01-03 2017-03-08 京东方科技集团股份有限公司 Electrochromic display device and navigator
WO2018199258A1 (en) * 2017-04-26 2018-11-01 国立大学法人九州大学 Electrode, structure and method for manufacturing same, connection structure, and element in which said electrode is used
CN109887981A (en) * 2019-03-20 2019-06-14 业成科技(成都)有限公司 Organic LED display panel and its manufacturing method
CN109887981B (en) * 2019-03-20 2021-02-23 业成科技(成都)有限公司 Organic light emitting diode display panel and manufacturing method thereof
US11069757B2 (en) * 2019-03-20 2021-07-20 Interface Technology (Chengdu) Co., Ltd. Organic light emitting diode display panel and method for making same
CN111883570A (en) * 2020-08-05 2020-11-03 合肥京东方显示技术有限公司 Display panel, display device and control method of display panel
CN111883570B (en) * 2020-08-05 2022-11-29 合肥京东方显示技术有限公司 Display panel, display device and control method of display panel

Similar Documents

Publication Publication Date Title
CN106409876B (en) A kind of display device
CN100477872C (en) Organic electroluminescent element and organic electroluminescent display panel
CN109378323B (en) Display device
CN100401857C (en) Organic EL display panel
JP5222155B2 (en) Light emitting device
KR101431107B1 (en) Display device and electronic apparatus having the same
JP5566935B2 (en) Light emitting device
TWI617023B (en) Display device and optical film
US7915815B2 (en) Transparent light-emitting component
CN109256491B (en) Display panel, display module and electronic device
JP5687651B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT, LIGHTING DEVICE, AND METHOD FOR PRODUCING ORGANIC ELECTROLUMINESCENT ELEMENT
KR100741129B1 (en) Back light unit, and lcd therewith
TW201509225A (en) Electroluminescence device and manufacturing method thereof
KR20150063773A (en) Dual-mode pixels including emissive and reflective device and dual-mode display using the pixels
WO2007107903A1 (en) Led-based lighting device with colour control
WO2015155925A1 (en) Planar light emitting body and illumination device
TW201806141A (en) Display device
JP2008251217A (en) Organic electroluminescent element
KR102033162B1 (en) OLED light emitting device and display device
JP2005142002A (en) Lighting apparatus and display device
KR102156779B1 (en) Transparent display device and method of fabricating the same
JP2006318842A (en) Luminous device and luminous display panel
JP2006139932A (en) Organic electroluminescent element and its manufacturing method
CN204230304U (en) Light emitting module and ligthing paraphernalia
CN113193150A (en) Top-emitting display panel and display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15776832

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15776832

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP