WO2015146781A1 - プリプレグおよび繊維強化複合材料 - Google Patents

プリプレグおよび繊維強化複合材料 Download PDF

Info

Publication number
WO2015146781A1
WO2015146781A1 PCT/JP2015/058236 JP2015058236W WO2015146781A1 WO 2015146781 A1 WO2015146781 A1 WO 2015146781A1 JP 2015058236 W JP2015058236 W JP 2015058236W WO 2015146781 A1 WO2015146781 A1 WO 2015146781A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
prepreg
particles
resin
fiber
Prior art date
Application number
PCT/JP2015/058236
Other languages
English (en)
French (fr)
Inventor
新井厚仁
古川浩司
山下直史
河内真二
國光佑美
藤岡由衣
大皷寛
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to US15/128,583 priority Critical patent/US10597503B2/en
Priority to EP15768492.9A priority patent/EP3093308B1/en
Priority to JP2015515338A priority patent/JP5831668B1/ja
Priority to CN201580015001.6A priority patent/CN106133036B/zh
Priority to KR1020167026286A priority patent/KR101741387B1/ko
Publication of WO2015146781A1 publication Critical patent/WO2015146781A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08L71/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08L71/12Polyphenylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/042Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with carbon fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/10Reinforcing macromolecular compounds with loose or coherent fibrous material characterised by the additives used in the polymer mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/243Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using carbon fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/249Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs characterised by the additives used in the prepolymer mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/24Conductive material dispersed in non-conductive organic material the conductive material comprising carbon-silicon compounds, carbon or silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2471/00Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
    • C08J2471/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08J2471/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08J2471/12Polyphenylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2477/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • C08J2477/02Polyamides derived from omega-amino carboxylic acids or from lactams thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2477/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • C08J2477/04Polyamides derived from alpha-amino carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a prepreg used to obtain a fiber reinforced composite material having both excellent impact resistance and conductivity in the thickness direction, and a fiber reinforced composite material using the prepreg.
  • Fiber reinforced composite materials composed of carbon fiber, glass fiber and other reinforcing fibers and epoxy resins, phenolic resins and other matrix resins are lightweight, yet have excellent mechanical properties such as strength and rigidity, heat resistance, and corrosion resistance. Therefore, it has been applied to many fields such as aviation / space, automobiles, railway vehicles, ships, civil engineering architecture and sports equipment. Especially in applications where high performance is required, fiber reinforced composite materials using continuous reinforcing fibers are used, carbon fibers with excellent specific strength and specific elastic modulus are used as reinforcing fibers, and thermosetting is used as a matrix resin. Of these, many epoxy resins are used that are particularly excellent in adhesion to carbon fibers.
  • a cured product of a thermosetting resin such as an epoxy resin generally has a fracture toughness lower than that of a thermoplastic resin. This causes a problem that the impact resistance of the fiber reinforced composite material is lowered. In particular, in the case of aircraft structural members, improvement in impact resistance has been a major issue because excellent impact resistance is required against tool dropping during assembly and impact of a kite during operation.
  • Fiber reinforced composite materials generally have a layer structure, and when an impact is applied thereto, high stress is applied between the layers, and cracks are generated. In order to suppress the occurrence of cracks, it is effective to increase the plastic deformation ability of the epoxy resin, and the means is to contain a thermoplastic resin having an excellent plastic deformation ability.
  • Patent Document 1 or 2 there is a method in which a reinforcing material that improves impact resistance and conductive particles that improve conductivity in the thickness direction are disposed in an interlayer portion of a fiber-reinforced composite material.
  • the fiber reinforced composite material needs to be adjusted appropriately according to the purpose, such as the basis weight of the carbon fiber and the fiber volume content, depending on the application or part of application.
  • the desired conductivity in the thickness direction cannot be obtained, or the fiber volume content required for the applied member is not satisfied. May decrease or the mass of the member may increase.
  • An object of the present invention is to provide a prepreg capable of obtaining a fiber-reinforced composite material having both excellent impact resistance and conductivity in the thickness direction.
  • the structural element [D] includes at least the following structural elements [A] to [F] and includes the structural number Ne of the structural element [F] existing within a range of 110% outside the particle diameter of the structural element [E]. ]
  • the ratio Ne / Nd to the number of structures Nd of the constituent element [F] existing within the range of 110% outside the particle diameter of [ii] is 0.25 or more.
  • the prepreg of the present invention By laminating and curing the prepreg of the present invention, it becomes possible to provide a fiber reinforced composite material having both excellent impact resistance and electrical conductivity in the thickness direction.
  • the prepreg of the present invention has excellent impact resistance and electrical conductivity in the thickness direction even for various carbon fiber basis weights, so that it can be used for aircraft structural members, windmill blades, automobile outer plates, IC trays and laptop computers. It can be widely deployed in computer applications such as a housing, and the performance of the applied product can be greatly improved.
  • the prepreg of the present invention includes at least the following components [A] to [F], and the number of structures Ne of the component [F] existing within the outer 110% of the particle diameter of the component [E].
  • the ratio Ne / Nd to the number of structures Nd of the constituent element [F] existing within the range of 110% outside the particle diameter of the constituent element [D] is 0.25 or more.
  • the carbon fiber which is the constituent element [A] of the present invention is excellent in specific strength, specific elastic modulus and high conductivity, so that it has excellent mechanical properties and high properties. It is preferably used for applications requiring electrical conductivity.
  • the carbon fiber of the component [A] include acrylic, pitch, and rayon carbon fibers, and acrylic carbon fibers having high tensile strength are particularly preferably used.
  • Such acrylic carbon fibers can be manufactured, for example, through the following steps.
  • a spinning stock solution containing polyacrylonitrile obtained from a monomer containing acrylonitrile as a main component is spun by a wet spinning method, a dry wet spinning method, a dry spinning method, a melt spinning method, or the like to obtain a coagulated yarn.
  • the coagulated yarn is made into a precursor through a yarn making process.
  • an acrylic carbon fiber can be obtained by making the precursor into carbon fiber through steps such as flame resistance and carbonization.
  • a twisted yarn, an untwisted yarn, a non-twisted yarn, or the like can be used. Since twisted yarns are not parallel in the orientation of the filaments that make up the carbon fiber bundle, they can cause a reduction in the mechanical properties of the resulting fiber-reinforced composite material, so the balance between formability and strength properties of the fiber-reinforced composite material is good Untwisted yarn or non-twisted yarn is preferably used.
  • the tensile elastic modulus of the carbon fiber of the component [A] is preferably 200 to 440 GPa.
  • the tensile elastic modulus of the carbon fiber is affected by the crystallinity of the graphite structure constituting the carbon fiber, and the elastic modulus increases as the crystallinity increases. Also, the conductivity increases as the crystallinity increases.
  • the tensile elastic modulus of the carbon fiber of the component [A] is within this range, it is preferable because the conductivity, rigidity, and strength of the fiber-reinforced composite material are balanced at a high level.
  • a more preferable tensile elastic modulus of the carbon fiber is 230 to 400 GPa, and an even more preferable tensile elastic modulus of the carbon fiber is 260 to 370 GPa.
  • the tensile elastic modulus of the carbon fiber is a value measured according to JIS R7601-2006.
  • Carbon fibers that can be used for the component [A] include “Torayca (registered trademark)” T800S-24K, “Torayca (registered trademark)” T300-3K, and “Torayca (registered trademark)” T700S- 12K (manufactured by Toray Industries, Inc.).
  • thermosetting resin which is the constituent element [B] of the present invention is not particularly limited, but an epoxy resin is preferable.
  • an epoxy resin obtained by reacting a compound having three or more epoxy groups in one molecule with an aromatic ring such as benzene or naphthalene is more preferable.
  • “including” the constituent element [B] and the constituent element [C] includes not only the case where each of them is included in an unreacted state, but also the structure after a part or all of them have reacted. This includes cases where
  • Preferred examples of the epoxy resin obtained by reacting three or more epoxy groups in one molecule with a compound having an aromatic ring such as benzene and naphthalene are glycidylamine type epoxy resins and glycidyl ether type epoxy resins. It is.
  • the number of functional groups is preferably 3 to 7, more preferably 3 to 5, since the matrix resin after curing becomes brittle and may impair impact resistance.
  • Examples of the glycidylamine type epoxy resin include diaminodiphenylmethane type, diaminodiphenylsulfone type, aminophenol type, metaxylenediamine type, 1,3-bisaminomethylcyclohexane type, isocyanurate type and hydantoin type epoxy resins. Can be mentioned. Among these, diaminodiphenylmethane type and aminophenol type epoxy resins are particularly preferably used because of a good balance of physical properties.
  • Examples of the glycidyl ether type epoxy resin include phenol novolak type, orthocresol novolak type, trishydroxyphenylmethane type, and tetraphenylolethane type epoxy resins.
  • epoxy resins may be used alone or in combination of two or more.
  • an epoxy resin that exhibits fluidity at an arbitrary temperature and an epoxy resin that does not exhibit fluidity at an arbitrary temperature is effective in controlling the fluidity of the matrix resin when the resulting prepreg is thermoset.
  • combining a plurality of epoxy resins exhibiting various viscoelastic behaviors at an arbitrary temperature is also effective for making the tackiness and draping properties of the obtained prepreg appropriate.
  • thermosetting resin in addition to the thermosetting resin as the component [B], a copolymer of the component [B] and the thermosetting resin, a modified product of the component [B], and the like may be contained. . Moreover, you may contain monofunctional or bifunctional epoxy resin.
  • thermosetting resin to be copolymerized when the component [B] is an epoxy resin examples include unsaturated polyester resins and vinyl esters. Examples include resins, epoxy resins, benzoxazine resins, phenol resins, urea resins, melamine resins, and polyimide resins. These resins may be used alone or in combination of two or more.
  • the inclusion of a monofunctional epoxy resin or a bifunctional epoxy resin in addition to the thermosetting resin as the constituent element [B] has both the fluidity of the resin and the heat resistance after curing. Cheap.
  • glycidylamine type epoxy resin and glycidyl ether type epoxy resin makes it possible to achieve both heat resistance, water resistance and processability.
  • containing at least one epoxy resin that is liquid at normal temperature and at least one epoxy resin that is solid at normal temperature tends to make the tackiness and drape of the prepreg appropriate.
  • a glycidyl ether type epoxy resin having a phenol as a precursor is preferably used as the bifunctional epoxy resin.
  • epoxy resins include bisphenol A type epoxy resins, bisphenol F type epoxy resins, bisphenol S type epoxy resins, naphthalene type epoxy resins, biphenyl type epoxy resins, urethane-modified epoxy resins, and resorcinol type epoxy resins.
  • liquid bisphenol A type epoxy resin, bisphenol F type epoxy resin and resorcinol type epoxy resin are preferably used in combination with other epoxy resins because of their low viscosity.
  • the solid bisphenol A type epoxy resin gives a structure having a lower crosslink density than the liquid bisphenol A type epoxy resin, the heat resistance is low, but a structure with higher toughness is easily obtained. It is preferably used in combination with an amine type epoxy resin, a liquid bisphenol A type epoxy resin or a bisphenol F type epoxy resin.
  • An epoxy resin having a naphthalene skeleton gives a cured resin having low water absorption and high heat resistance.
  • Biphenyl type epoxy resins, dicyclopentadiene type epoxy resins, phenol aralkyl type epoxy resins and diphenylfluorene type epoxy resins are also preferably used because they give a cured resin having a low water absorption rate.
  • Urethane-modified epoxy resins and isocyanate-modified epoxy resins give cured resins having high fracture toughness and high elongation.
  • Examples of commercially available resorcinol-type epoxy resins include “Deconal (registered trademark)” EX-201 (manufactured by Nagase ChemteX Corporation).
  • diaminodiphenylmethane type epoxy resins include ELM434 (manufactured by Sumitomo Chemical Co., Ltd.), “Araldite (registered trademark)” MY720, “Araldite (registered trademark)” MY721, “Araldite (registered trademark)” MY9512, “Araldite” (Registered trademark) “MY9663 (manufactured by Huntsman Advanced Materials Co., Ltd.)” and “Epototo (registered trademark)” YH-434 (manufactured by Tohto Kasei Co., Ltd.).
  • metaxylenediamine type epoxy resins examples include “TETRAD (registered trademark)”-X (manufactured by Mitsubishi Gas Chemical Company).
  • Examples of commercially available 1,3-bisaminomethylcyclohexane type epoxy resins include “TETRAD (registered trademark)”-C (manufactured by Mitsubishi Gas Chemical Company).
  • Examples of commercially available isocyanurate type epoxy resins include “TEPIC (registered trademark)”-P (manufactured by Nissan Chemical Co., Ltd.).
  • TACTIX registered trademark
  • Examples of commercially available tetraphenylolethane type epoxy resins include “jER (registered trademark)” 1031S (manufactured by Mitsubishi Chemical Corporation).
  • aminophenol type epoxy resins include ELM120 and ELM100 (above, manufactured by Sumitomo Chemical Co., Ltd.), “jER (registered trademark)” 630 (manufactured by Mitsubishi Chemical Corporation), and “Araldite (registered trademark)”. MY0510 (manufactured by Huntsman Advanced Materials Co., Ltd.), “Araldite (registered trademark)” MY0600 (manufactured by Huntsman Advanced Materials Co., Ltd.), and the like.
  • Examples of commercially available tetraglycidyldiaminodiphenylsulfone type epoxy resin include TG3DAS (manufactured by Mitsui Chemicals Fine Co., Ltd.).
  • Examples of commercially available glycidyl aniline type epoxy resins include GAN and GOT (manufactured by Nippon Kayaku Co., Ltd.).
  • biphenyl type epoxy resins examples include NC-3000 (manufactured by Nippon Kayaku Co., Ltd.).
  • Examples of commercially available dicyclopentadiene type epoxy resins include “Epiclon (registered trademark)” HP7200 (manufactured by DIC Corporation).
  • Examples of commercially available urethane-modified epoxy resins include AER4152 (manufactured by Asahi Kasei Epoxy Corporation).
  • phenol novolac epoxy resins examples include DEN431 and DEN438 (manufactured by Dow Chemical Co., Ltd.) and “jER (registered trademark)” 152 (manufactured by Mitsubishi Chemical Corporation).
  • ortho-cresol novolak epoxy resins examples include EOCN-1020 (manufactured by Nippon Kayaku Co., Ltd.) and “Epiclon (registered trademark)” N-660 (manufactured by DIC Corporation).
  • a commercially available hydantoin type epoxy resin includes AY238 (manufactured by Huntsman Advanced Materials Co., Ltd.).
  • the curing agent which is the component [C] of the present invention is used as a curing agent for heat curing the thermosetting resin of the component [B].
  • an aromatic amine is preferably used.
  • the aromatic amine compound include 3,3′-diisopropyl-4,4′-diaminodiphenylmethane, 3,3′-di-t-butyl-4,4′-diaminodiphenylmethane, and 3,3′-diethyl- 5,5'-dimethyl-4,4'-diaminodiphenylmethane, 3,3'-diisopropyl-5,5'-dimethyl-4,4'-diaminodiphenylmethane, 3,3'-di-t-butyl-5 5'-dimethyl-4,4'-diaminodiphenylmethane, 3,3 ', 5,5'-tetraethyl-4,4'-diamin
  • 4,4'-diaminodiphenylsulfone and 3,3 ' are excellent in heat resistance and elastic modulus for aviation, spacecraft applications, and the like, and can provide a cured product with a small reduction in heat resistance due to linear expansion coefficient and moisture absorption.
  • -Diaminodiphenyl sulfone is preferably used.
  • These aromatic amine compounds may be used alone or in combination of two or more. When mixing with other components, either powder or liquid form may be used, and powder and liquid aromatic amine compounds may be mixed and used.
  • aromatic amine compounds include “Seika Cure (registered trademark)” S (manufactured by Seika Corporation), MDA-220 (manufactured by Mitsui Chemicals), “LONZACURE (registered trademark)” M-DIPA (Lonza). And “LONZACURE (registered trademark)” M-MIPA (manufactured by Lonza) and 3,3′-DAS (manufactured by Mitsui Chemicals).
  • the content in the case of using the aromatic amine as the constituent element [C] is the number of moles of active hydrogen of the aromatic amine compound in the resin composition containing the constituent element [B] from the viewpoint of heat resistance and mechanical properties. It is preferably 0.6 to 1.2 times, more preferably 0.8 to 1.1 times the number of moles of epoxy groups of all epoxy resins. If it is less than 0.6 times, the cured product may not have a sufficient crosslinking density, so that the elastic modulus and heat resistance may be insufficient, and the static strength characteristics of the fiber-reinforced composite material may be insufficient. When it exceeds 1.2 times, the crosslink density of the cured product is increased, the plastic deformation ability is decreased, and the impact resistance of the fiber composite material may be inferior.
  • a curing accelerator can be contained in order to accelerate the reaction to the aromatic amine compound.
  • curing accelerators include tertiary amines, Lewis acid complexes, onium salts, imidazole compounds, urea compounds, and the like.
  • a hardening accelerator it is 10 mass parts or less with respect to 100 mass parts of all the epoxy resins, Preferably it is 5 mass parts or less.
  • thermoplastic resin whose primary particles have a number average particle size of 5 to 50 ⁇ m, which is a constituent element [D] of the present invention, add impact resistance to the fiber-reinforced composite material of the present invention.
  • “having a thermoplastic resin as a main component” means containing 50 mass% or more of a thermoplastic resin.
  • fiber reinforced composite materials have a laminated structure. When an impact is applied to this, high stress is generated between the layers, and peeling damage occurs. Therefore, in order to improve impact resistance against external impact, a resin layer (hereinafter referred to as an “interlayer resin layer”) formed between layers composed of the component [A] of the fiber reinforced composite material. It may be possible to improve toughness.
  • an interlayer resin layer formed between layers composed of the component [A] of the fiber reinforced composite material. It may be possible to improve toughness.
  • thermoplastic resin that is the main component of the component [D] of the present invention polyamide or polyimide can be preferably used.
  • polyamide is more preferable because impact resistance can be greatly improved due to excellent toughness.
  • nylon 6, nylon 12, nylon 11 and nylon 6/12 copolymers are more preferable because they give particularly good adhesive strength with thermosetting resins.
  • polyamides include SP-500 (manufactured by Toray Industries, Inc.), “Trepearl (registered trademark)” TN (manufactured by Toray Industries, Inc.), and “Orgasol (registered trademark)” 1002D (manufactured by Arkema). "Orgasol (registered trademark)” 2002 (manufactured by Arkema), “Orgasol (registered trademark)” 3202 (manufactured by Arkema), and the like.
  • the component [D] of the present invention may be particles containing only the above-mentioned thermoplastic resin as a component, but in that case, solvent resistance may be a problem.
  • Fiber reinforced composite materials may be painted on the surface when used as structural members or skins, and may be exposed to hydraulic oil or fuel when used in aircraft or automotive applications. There are things to do.
  • the particles containing only the thermoplastic resin as a component may swell and deteriorate due to such chemicals, resulting in a decrease in performance.
  • thermosetting resin As a means for improving the chemical resistance of such a thermoplastic resin, there is a method containing a small amount of a thermosetting resin.
  • the linear structure of the thermoplastic resin is taken into the three-dimensional network structure formed by the thermosetting resin, and a semi-IPN structure that is one of the interpenetrating network structures is formed dramatically. Improved solvent resistance.
  • the component [D] of the present invention preferably forms such a semi-IPN structure.
  • the content ratio of the thermoplastic resin and the thermosetting resin (thermoplastic resin: thermosetting property) of the particles having the thermoplastic resin as the main component of the constituent element [D]. (Resin, mass ratio) is preferably in the range of 95: 5 to 70:30, more preferably in the range of 90:10 to 80:20.
  • thermosetting resin examples include unsaturated polyester resins, vinyl ester resins, epoxy resins, benzoxazine resins, phenol resins, urea resins, melamine resins, and polyimide resins.
  • an epoxy resin is preferable because it is the same as the component [B], which is the main component of the matrix resin of the present invention, and can be used without a decrease in mechanical properties.
  • the number average particle diameter of the constituent element [D] is in the range of 5 to 50 ⁇ m, preferably in the range of 7 to 40 ⁇ m, and more preferably in the range of 10 to 30 ⁇ m.
  • the thickness of the matrix resin layer on the surface of the prepreg is optimized, and in the obtained fiber-reinforced composite material, the volume content of the carbon fiber as the component [A] is appropriate.
  • the number average particle diameter of the constituent element [D] as a raw material was measured with a laser microscope (ultra-depth color 3D shape measuring microscope VK-9510: manufactured by Keyence Corporation) as described later. The observation is performed with magnification of 200 times or more, and the average value of 60 arbitrary particles after measuring the diameter of the circle circumscribing the particle as the particle diameter is used.
  • the number average particle diameter of the constituent element [D] in the prepreg was obtained by enlarging the cross-section of the prepreg 200 times or more with an epi-illumination type optical microscope as described later, and taking pictures at five locations, and then obtaining The average value is used after measuring the particle size of 60 particles of the component [D] from the cross-sectional photograph.
  • the shape of the particle mainly composed of the thermoplastic resin as the constituent element [D] of the present invention may be any of amorphous, spherical, porous, needle-like, whisker-like and flake-like. Of these, spherical is preferable. Because it is spherical, it does not deteriorate the flow characteristics of the matrix resin, so it has better impregnation with carbon fibers, and the delamination caused by local impacts is further reduced when falling weight impacts on fiber reinforced composite materials.
  • the content of particles mainly composed of the thermoplastic resin, which is the constituent element [D] of the present invention is preferably in the range of 10 to 35 parts by weight, more preferably 100 parts by weight of the constituent element [B]. It is in the range of 15 to 25 parts by mass.
  • the constituent elements [E] and [F] of the present invention are contained in order to increase the conductivity in the thickness direction of the fiber-reinforced composite material of the present invention.
  • the fiber-reinforced composite material of the present invention is selectively increased in toughness and improved in impact resistance by disposing the constituent element [D] in the interlayer resin layer.
  • a fiber reinforced composite material gives a high impact resistance to the fiber reinforced composite material, while forming a resin layer serving as an insulating layer between the layers. Has the disadvantage that it is significantly reduced.
  • the conductive particles which are the constituent element [E] of the present invention are contained.
  • Such conductive particles may be particles that behave as an electrically good conductor, and are not limited to those composed only of a conductor.
  • the volume resistivity of the conductive particles as the constituent element [E] is preferably 10 ⁇ cm or less, more preferably 5 ⁇ cm or less, and further preferably 3 ⁇ cm or less.
  • a conductive path can be formed in the interlayer resin layer to increase the conductivity in the thickness direction.
  • the volume resistivity was calculated from the measured value by setting the sample in a cylindrical cell having four probe electrodes, measuring the thickness and resistance value of the sample with a pressure of 60 MPa applied to the sample. Value.
  • conductive particles include metal particles, polyacetylene particles, polyaniline particles, polypyrrole particles, polythiophene particles, polyisothianaphthene particles, conductive polymer particles such as polyethylenedioxythiophene particles, carbon particles, and inorganic materials.
  • Particles in which the cores of these are coated with a conductive substance and particles in which the cores of organic materials are coated with a conductive substance can be used.
  • carbon particles, particles in which the core of an inorganic material is coated with a conductive material, and particles in which the core of an organic material is coated with a conductive material are preferably used because of high conductivity and stability. In particular, carbon particles are particularly preferably used because they can be obtained at low cost.
  • the conductive particles are particles in which the core of an inorganic material is coated with a conductive substance
  • examples of the core inorganic material include inorganic oxides, inorganic-organic composites, and carbon.
  • Examples of the inorganic oxide used for the core inorganic material include, for example, silica, alumina, zirconia, titania, silica-alumina, silica-zirconia, and the like, and a single inorganic oxide and two or more composite inorganic oxides Is mentioned.
  • Examples of the inorganic organic composite used for the inorganic material as the core include polyorganosiloxane obtained by hydrolyzing metal alkoxide and / or metal alkyl alkoxide.
  • Amorphous carbon includes, for example, “Bellpearl (registered trademark)” C-600, C-800, C-2000 (manufactured by Air Water Co., Ltd.), “NICABEADS (registered trademark)” ICB, PC, MC ( Nippon Carbon Co., Ltd.), Glassy Carbon (Tokai Carbon Co., Ltd.), High Purity Artificial Graphite SG Series, SGB Series, SN Series (SEC Carbon Co., Ltd.), True Spherical Carbon (Gunei Chemical Industry Co., Ltd.) )))) and the like.
  • the organic material that is the core includes unsaturated polyester resin, vinyl ester resin, epoxy resin, benzoxazine resin, phenol resin, Thermosetting resins such as urea resin, melamine resin and polyimide resin, polyamide resin, phenol resin, amino resin, acrylic resin, ethylene-vinyl acetate resin, polyester resin, urea resin, melamine resin, alkyd resin, polyimide resin, urethane resin And thermoplastic resins such as divinylbenzene resin.
  • These organic materials may be used alone or in combination of two or more. Among these, acrylic resins and divinylbenzene resins having excellent heat resistance, and polyamide resins having excellent impact resistance are preferably used.
  • the conductive particles which are the constituent element [E] of the present invention need to be localized in the interlayer resin layer in order to increase the conductivity of the interlayer resin layer of the fiber-reinforced composite material of the present invention. Further, in the fiber reinforced composite material, the conductive path is not formed unless the constituent particles [A] and the constituent particles [E] located in the upper and lower portions of the interlayer resin layer are in contact with each other. Less. Therefore, it is necessary to adjust the number average particle diameter of the conductive particles as the constituent element [E] of the present invention within a specific range.
  • the basis weight (mass per unit area) of the carbon fiber, which is the constituent element [A] in the prepreg depends on the purpose. Need to be adjusted.
  • the basis weight of the carbon fiber is changed, it is necessary to adjust the thickness of the interlayer resin layer in order to make the volume content of the carbon fiber in the obtained fiber-reinforced composite material constant. Therefore, the number average particle diameter of the conductive particles that are the constituent element [E] of the present invention needs to be changed according to the basis weight of the carbon fibers of the constituent element [A].
  • the range of the number average particle diameter of the conductive particles as the constituent element [E] is adjusted by the following formula (1).
  • P size number average particle size ( ⁇ m) of primary particles of conductive particles as constituent element [E]
  • A The basis weight (g / m 2 ) of the component [A] in the prepreg.
  • a conductive path can be appropriately formed according to the basis weight of the carbon fiber that is the component [A] in the prepreg,
  • the volume content of the carbon fibers in the obtained fiber-reinforced composite material can be set within a predetermined range.
  • the number average particle diameter of the constituent element [E] as a raw material was measured with a laser microscope (ultra-depth color 3D shape measuring microscope VK-9510: manufactured by Keyence Corporation) as described later. The observation is performed with magnification of 200 times or more, and the average value of 60 arbitrary particles after measuring the diameter of the circle circumscribed by the particles as the particle diameter is used.
  • the number average particle diameter of the constituent element [E] in the prepreg was obtained by enlarging the cross section of the prepreg 200 times or more with an epi-illumination type optical microscope as described later, and taking pictures at five locations, and then obtaining The average value is used after measuring the particle size of 60 particles of the component [E] from the cross-sectional photograph.
  • the content of the conductive particles as the constituent element [E] of the present invention is preferably in the range of 0.5 to 15 parts by mass with respect to 100 parts by mass of the constituent element [B], and preferably 1 to 8 parts by mass.
  • the range is more preferable, and the range of 2 to 5 parts by mass is even more preferable. It is possible to balance the electrical conductivity in the thickness direction and the mechanical properties of the fiber-reinforced composite material obtained by setting the content of the conductive particles in such a range.
  • the fiber-reinforced composite material of the present invention improves the conductivity of the interlayer resin layer that was an insulating layer by disposing the conductive particles as the constituent element [E] in the interlayer resin layer of the fiber-reinforced composite material. And the electrical conductivity of the thickness direction of a fiber reinforced composite material is improved.
  • the contact between a part of the conductive particles of the component [E] and the carbon fiber bundles located above and below the interlayer resin layer is insufficient, a conductive path is not formed, and the conductivity improvement effect is obtained. There is a possibility of fading.
  • even within the bundle composed of the component [A] if there is little contact between the components [A], it is difficult to conduct electricity, which may reduce the conductivity.
  • the filler made of the carbon material here is not particularly limited.
  • carbon nanofiber, carbon nanohorn, carbon nanocone, carbon nanotube, carbon nanocoil, carbon microcoil, carbon nanowall, carbon nanochaplet, fullerene examples thereof include carbon black, graphite, graphene, carbon nanoflakes, and derivatives thereof.
  • carbon black is preferable because it is inexpensive and has a high conductivity-imparting effect from the comprehensive aspects such as supply, price, and conductivity-imparting effect.
  • Carbon black is generally a carbon-based particle produced by controlling the number average particle size of primary particles to 3 to 500 nm.
  • Examples of such carbon black include furnace black, hollow furnace black, acetylene black, and channel black.
  • Carbon black usually forms a structure in which a plurality of primary particles are connected when dispersed in the component [B]. Carbon black, which is easy to form a large structure, is said to be excellent in electrical conductivity, but if the structure is too large, it is between bundles of constituent elements [A] or bundles of constituent elements [A] that cause poor contact. It becomes impossible to enter the gap between the conductive particles as the element [E].
  • the size of the structure of the constituent element [F] of the present invention is preferably in the range of 40 to 500 nm, more preferably in the range of 50 to 400 nm in terms of number average particle diameter, More preferably, it is in the range of 300 nm.
  • the bundle of the constituent elements [A] and the constituent elements [A] and the conductive particles as the constituent elements [E] are connected to form a conductive path.
  • the conductivity in the thickness direction of the resulting fiber-reinforced composite material can be dramatically improved.
  • the size obtained by the following method is used as the size of the structure of the carbon black as described later. That is, after carbon black is dispersed in the constituent element [B], the curing agent which is the constituent element [C] is blended and injected into a predetermined mold, and is heated from room temperature to 180 ° C. in a hot air oven. The temperature was raised by 1.5 ° C. per minute and then held at 180 ° C. for 2 hours to obtain a 2 mm thick resin cured plate. The obtained hardened plate is processed with a microtome and observed with a transmission electron microscope (TEM), and the distance of the longest portion of 60 arbitrary structures is measured as the particle diameter, and the average value is obtained. is there.
  • TEM transmission electron microscope
  • the content of the component [F] of the present invention is preferably in the range of 0.5 to 15 parts by mass, preferably in the range of 1 to 10 parts by mass with respect to 100 parts by mass of the component [B]. Is more preferable, and the range of 2 to 7 parts by mass is even more preferable. It is possible to balance the electrical conductivity in the thickness direction and the mechanical properties of the fiber-reinforced composite material obtained by setting the content of the component [F] within such a range.
  • the prepreg of the present invention comprises a thermoplastic resin soluble in an epoxy resin preferably used as the component [B] in order to improve the mechanical properties such as tack and drape characteristics of the prepreg and impact resistance of the fiber reinforced composite material.
  • Organic particles such as rubber particles and thermoplastic resin particles, inorganic particles, and the like can be contained.
  • thermoplastic resin soluble in the epoxy resin a thermoplastic resin having a hydrogen-bonding functional group can be mentioned because an effect of improving the adhesion between the resin and the reinforcing fiber can be expected.
  • the hydrogen bondable functional group include an alcoholic hydroxyl group, an amide bond, a sulfonyl group, and a carboxyl group.
  • thermoplastic resin having an alcoholic hydroxyl group examples include polyvinyl acetal resins such as polyvinyl formal and polyvinyl butyral, polyvinyl alcohol, and phenoxy resins.
  • thermoplastic resin having an amide bond examples include polyamide, polyimide, polyamideimide, and polyvinylpyrrolidone.
  • thermoplastic resin having a sulfonyl group examples include polysulfone and polyethersulfone.
  • thermoplastic resin having a carboxyl group examples include polyester, polyamide, and polyamideimide.
  • polyamide, polyimide and polysulfone may have a functional group such as an ether bond and a carbonyl group in the main chain. Further, the polyamide may have a substituent on the nitrogen atom of the amide group.
  • thermoplastic resin soluble in the epoxy resin is an acrylic resin.
  • the acrylic resin has high compatibility with the epoxy resin and is preferably used for controlling viscoelasticity.
  • Commercially available acrylic resins include “Dianar (registered trademark)” BR series (Mitsubishi Rayon Co., Ltd.), “Matsumoto Microsphere (registered trademark)” M, M100, M500 (Matsumoto Yushi Seiyaku Co., Ltd.) ) And the like.
  • thermoplastic resin soluble in the epoxy resin is a thermoplastic resin composed of a polyaryl ether skeleton, which is a preferred component [G] of the present invention.
  • a thermoplastic resin composed of a polyaryl ether skeleton as the constituent element [G]
  • controlling the flowability of the matrix resin when the prepreg is heat-cured, and the resulting fiber Toughness can be imparted without impairing the heat resistance and elastic modulus of the reinforced composite material.
  • thermoplastic resin composed of such a polyaryl ether skeleton can include polysulfone, polyphenylsulfone, polyethersulfone, polyetherimide, polyphenylene ether, polyetheretherketone, polyetherethersulfone, and the like. These thermoplastic resins composed of a polyaryl ether skeleton may be used alone or in combination of two or more.
  • the glass transition temperature (Tg) of the thermoplastic resin composed of the polyaryl ether skeleton of the constituent element [G] is preferably at least 150 ° C. or more, 170 ° C. More preferably. If the glass transition temperature of the thermoplastic resin composed of the polyaryl ether skeleton is less than 150 ° C., it may be easily deformed by heat when used as a molded article.
  • the terminal functional group of the thermoplastic resin composed of the polyaryl ether skeleton is preferably a hydroxyl group, a carboxyl group, a thiol group, an acid anhydride, or the like because it can react with a cationically polymerizable compound.
  • a thermoplastic resin having such a terminal functional group and comprising a polyaryl ether skeleton “Sumika Excel (registered trademark)” PES3600P and “Sumika Excel (registered trademark)” PES5003P, which are commercially available products of polyethersulfone, are used.
  • the oligomer refers to a polymer having a relatively low molecular weight in which about 10 to 100 finite number
  • the content of the thermoplastic resin composed of the polyaryl ether skeleton, which is a preferable component [G] of the present invention, is preferably in the range of 5 to 40 parts by mass with respect to 100 parts by mass of the component [B]. More preferably, it is in the range of 10 to 35 parts by mass, and still more preferably in the range of 15 to 30 parts by mass.
  • Rubber particles added to improve mechanical properties such as tack and drape characteristics of the prepreg of the present invention and impact resistance of fiber reinforced composite materials include crosslinked rubber particles, and grafted with a heterogeneous polymer on the surface of the crosslinked rubber particles.
  • Polymerized core-shell rubber particles are preferably used from the viewpoint of handleability and the like.
  • Examples of commercially available core-shell rubber particles include “Paraloid (registered trademark)” EXL-2655, EXL-2611, and EXL-3387 (produced by Rohm and Haas Co., Ltd.) made of a butadiene / alkyl methacrylate / styrene copolymer.
  • Staffyroid (registered trademark)” AC-3355, TR-2122 (manufactured by Gantz), “Nanostrength (registered trademark)” M22, 51, 52, 53 (Manufactured by Arkema Co., Ltd.), “Kane Ace (registered trademark)” MX series (manufactured by Kaneka Corporation) and the like can be used.
  • heteroaggregation means that two or more kinds of particles having different properties are aggregated by van der Waals force or electrostatic interaction.
  • the constituent element [F] is self-aggregated to some extent to form a structure, so that it is easier to form a conductive path, which is advantageous for improving the conductivity.
  • the component [F] and the components [D] and [E] are used in combination as in the present invention, the component [F] is surprisingly not hetero-aggregated with the component [D].
  • Higher conductivity develops when dispersed in [B]. This is because, when the component [E] is present, it is better to form the conductive path in combination with the component [E] having a higher conductivity and size than the component [F] alone to form the conductive path. This is thought to be because of the high efficiency in improving the conductivity. Therefore, it is a more preferable aspect that the component [F] forms a heteroaggregation with the component [E].
  • the presence or absence of heteroaggregation of the constituent element [D], the constituent element [E], and the constituent element [F] as raw materials can be confirmed by the following method, for example.
  • a curing agent that is the constituent element [C] is blended and placed in a predetermined formwork.
  • the temperature is kept at 180 ° C. for 2 hours to obtain a 2 mm thick resin cured plate.
  • the obtained cured plate is processed into a thin piece with a microtome and observed with a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • the constituent element [F] When the constituent element [D] and the constituent element [F] are hetero-aggregated, the constituent element [F] is very small with respect to the constituent element [D], so that the constituent element [F] surrounds the constituent element [D].
  • the components [F] are hardly observed around the component [E] or in the resin region composed of the components [B] and [C].
  • a prepreg containing the constituent elements [A], [B], [C], [D], [E], and [F] is laminated in a number of about 4 mm to obtain a laminate.
  • the obtained pre-laminated body was set in an autoclave, heated at a pressure of 0.6 MPa by 1.7 ° C. per minute from room temperature to 180 ° C., and cured at a temperature of 180 ° C. for 2 hours.
  • FIB bundle ion beam
  • TEM transmission electron microscope
  • the number of structures of the constituent element [F] existing within the range of 110% outside the particle diameter of the constituent element [E] is measured in the present invention for the constituent element [F] observed by the method for observation using the prepreg.
  • the ratio Ne / Nd of the number of structures Nd of the constituent element [F] existing within 110% outside the particle diameter of Ne and the constituent element [D] is 0.25 or more, preferably 0.6 or more. Yes, more preferably 1.0 or more.
  • the ratio of Ne / Nd is less than 0.25, it becomes difficult for the component [F] to assist in the formation of the conductive path between the component [E] and the carbon fiber, and the improvement in the conductivity of the fiber-reinforced composite material is not good. It will be enough.
  • within the range of 110% outside the particle diameter means that the particle diameter is 100%, and the component [F] is in the range of 10% of the particle diameter protruding from the outer periphery of the particle. Is distributed. For example, for particles having a particle diameter of 10 ⁇ m, the particle diameter is within the range of 1 ⁇ m from the outer periphery of the particle.
  • Nd and Ne measurement methods if even a part of the component [F] is within the range of 110% outside the particle diameter of the component [D] or component [E], it is included in Nd or Ne.
  • the component [F] aggregates around the component [D] or the component [E] and the boundary between the structures is difficult to understand, the component [F] was measured alone in the component [B].
  • the aggregate is divided into a circular shape having a structure size as a diameter, and Nd and Ne are measured.
  • the structure size of the component [F] alone in the component [B] is measured by the following method as described later. After injecting an epoxy resin composition comprising the constituent elements [B], [C] and [F] into a mold and raising the temperature in a hot air oven from room temperature to a temperature of 180 ° C. by 1.5 ° C. per minute Then, the resin-cured plate having a thickness of 2 mm is prepared by holding at 180 ° C. for 2 hours. The obtained hardened plate was processed with a microtome and observed with a transmission electron microscope (TEM), and the average value was obtained after measuring the distance of the longest portion as the particle size for 60 arbitrary particles. The structure size of the component [F] alone in the component [B] is assumed.
  • TEM transmission electron microscope
  • the zeta potential of the component [D] is ⁇ d and the zeta potential of the component [F] is ⁇ f, at least one of the following formulas (2) to (4) is satisfied, It is preferable because heteroaggregation of [D] and component [F] hardly occurs.
  • Examples of the zeta potential measurement method include electrophoretic light scattering (Electrokinetic Light Scattering), ESA (Electrokinetic Sonic Amplitude) method in which an AC electric field is applied to a dispersion, and a colloid oscillating current method.
  • the zeta potential of the present invention is measured by the electrophoretic light scattering method after the constituent elements [D], [E], and [F] are dispersed in ethanol.
  • the electrophoretic light scattering method particles are moved (electrophoresis) by applying an electric field to the particles (filler), and then the moving particles are irradiated with a laser, and the electrophoretic velocity is determined from changes in the frequency of the irradiated light and scattered light.
  • the zeta potential can be calculated by calculating.
  • Various devices known to those skilled in the art are suitable for that purpose, such as the ZetaPlus or ZetaPALS series from Brookhaven® Instrument® Corporation.
  • phase analysis light scattering (PALS) techniques can also be applied (eg using a ZetaPALS device).
  • a dispersant that is the component [H] of the present invention can be used as necessary.
  • the constituent element [H] may act directly on the constituent element [F] to improve dispersibility, or may act on the constituent element [D] or [E] to improve the surface state or the electrostatic state. And may indirectly contribute to the dispersibility of the constituent element [F]. Since the dispersion state of the component [F] is improved by containing the component [H], the number of structures Ne of the component [F] existing within a range of 110% outside the particle diameter of the component [E]. The ratio Ne / Nd to the number of structures Nd of the component [F] existing within 110% outside the particle diameter of the component [D] tends to be large.
  • a surfactant or a resin-type dispersant can be used, and a resin-type dispersant is more preferably used.
  • Surfactants are mainly classified into anionic, cationic, nonionic, and amphoteric, and suitable types and contents can be selected and used according to the required properties.
  • the anionic surfactant is not particularly limited, and fatty acid salt, polysulfonate, polycarboxylate, alkyl sulfate ester salt, alkylaryl sulfonate, alkylnaphthalene sulfonate, dialkyl sulfonate, Dialkyl sulfosuccinate, alkyl phosphate, polyoxyethylene alkyl ether sulfate, polyoxyethylene alkyl aryl ether sulfate, naphthalene sulfonate formalin condensate, polyoxyethylene alkyl phosphate sulfonate, glycerol borate fatty acid ester, Polyoxyethylene glycerol fatty acid ester, etc., specifically, sodium dodecylbenzenesulfonate, sodium laurate sulfate, sodium polyoxyethylene lauryl ether sulfate, polyoxyethylene Nonylphenyl ether sulfate, sodium
  • cationic activators include alkylamine salts and quaternary ammonium salts. Specifically, stearylamine acetate, trimethyl cocoammonium chloride, trimethyl tallow ammonium chloride, dimethyldioleyl ammonium chloride, methyl oleyl diethanol chloride, tetramethyl.
  • Ammonium chloride lauryl pyridinium chloride, lauryl pyridinium bromide, lauryl pyridinium disulfate, cetyl pyridinium bromide, 4-alkylmercaptopyridine, poly (vinylpyridine) -dodecyl bromide, dodecylbenzyltriethylammonium chloride and the like.
  • Nonionic activators include polyoxyethylene alkyl ethers, polyoxyalkylene derivatives, polyoxyethylene phenyl ethers, sorbitan fatty acid esters, polyoxyethylene sorbitan fatty acid esters, alkyl allyl ethers, and more specifically, polyoxyethylene Examples include lauryl ether, sorbitan fatty acid ester, polyoxyethylene octyl phenyl ether, and the like.
  • amphoteric surfactants examples include aminocarboxylates.
  • the selection of the surfactant is not limited to one type, and two or more surfactants such as an anionic surfactant and a nonionic surfactant, and a cationic surfactant and a nonionic surfactant are used. It can also be used in combination.
  • the content at that time is preferably the content described later for each activator component.
  • a combination of two or more surfactants is preferably a combination of an anionic surfactant and a nonionic surfactant.
  • the anionic surfactant used is preferably a polycarboxylate
  • the nonionic surfactant is preferably polyoxyethylene phenyl ether.
  • the resin-type dispersant include polyurethane; polycarboxylic acid ester such as polyacrylate; unsaturated polyamide, polycarboxylic acid, polycarboxylic acid (partial) amine salt, polycarboxylic acid ammonium salt, polycarboxylic acid alkylamine salt, Polysiloxane, long-chain polyaminoamide phosphate, hydroxyl group-containing polycarboxylic acid ester, and modified products thereof; amide formed by reaction of poly (lower alkyleneimine) and polyester having a free carboxyl group, its salt, etc.
  • Oil-based dispersants (meth) acrylic acid-styrene copolymers, (meth) acrylic acid- (meth) acrylic acid ester copolymers, styrene-maleic acid copolymers; water-soluble resins such as polyvinyl alcohol and polyvinylpyrrolidone And water-soluble polymer compounds; polyester resins; Li acrylate resins, ethylene oxide / propylene oxide adduct; phosphate ester resins. These may be used alone or in combination of two or more, but are not necessarily limited thereto.
  • the content of the dispersant for the component [H] is about 0.5 to 20% by weight based on the component [E] or [F], or about 5 to 50% by weight based on the component [D]. It is preferable to do.
  • dispersants include DISPERBYK-101, 103, 107, 108, 110, 111, 116, 130, 140, 154, 161, 162, 163, 164, 165, 166, 170, 171, 174 manufactured by Big Chemie.
  • the prepreg of the present invention can be obtained by various known methods using the components [A] to [F].
  • the matrix resin is dissolved in an organic solvent selected from acetone, methyl ethyl ketone, methanol, and the like to lower the viscosity, and the wet method in which the reinforcing fiber is impregnated, or the matrix resin is heated to lower the viscosity without using the organic solvent
  • the prepreg can be obtained by a method such as a hot melt method in which the reinforcing fibers are impregnated.
  • the reinforced fiber is dipped in a liquid containing a matrix resin and then pulled up, and the organic solvent is evaporated using an oven or the like to obtain a prepreg.
  • a resin film may be used first, and then a resin film is superimposed on the reinforcing fiber side from both sides or one side of the reinforcing fiber, and a method in which the reinforcing fiber is impregnated with a matrix resin by heating and pressurizing is used. it can.
  • the method for producing the prepreg of the present invention is preferably a hot melt method in which a matrix resin is impregnated into a reinforcing fiber without using an organic solvent, since substantially no organic solvent remains in the prepreg.
  • the first method is to heat and press the resin film comprising the constituent elements [B] to [F] of the present invention from both sides or one side of the constituent element [A] to thereby form the epoxy resin composition in a single step.
  • This is a so-called one-stage impregnation hot melt method for impregnation.
  • the second method is a multistage impregnation hot melt method in which the epoxy resin composition is divided into multiple stages and impregnated by heating and pressing from both sides or one side of the component [A].
  • the number of times the matrix resin is impregnated into the constituent element [A] is not limited, but the production cost increases as the number of times increases. Therefore, a so-called two-stage impregnation hot melt method in which the epoxy resin composition is impregnated by heating and pressurizing from both sides or one side of the component [A] in two stages is preferably used.
  • the resin film 1 consisting of the constituent elements [B], [C], and [F] and substantially free of the constituent elements [D] and [E]
  • resin film 2 consisting of constituent elements [B] to [F] and containing constituent elements [D] and [E] is placed on both sides of the prepreg precursor.
  • the method of obtaining a prepreg by sticking to one side is used preferably.
  • the component [A] is converted into the component [D].
  • [E] are selectively disposed on the surface of the prepreg by blocking the intrusion of the particles of [E] and [E].
  • the component [A] is impregnated with the prepreg precursor obtained by impregnating the component [A] with the resin film 1 that does not contain the components [D] and [E].
  • the resin film 2 containing D] and [E] By attaching the resin film 2 containing D] and [E], the particles of the constituent elements [D] and [E] can be selectively arranged on the prepreg surface. Therefore, in the prepreg obtained by the two-stage impregnation hot melt method, the amount of the constituent elements [D] and [E] existing in a range corresponding to an average prepreg thickness of 15% measured by the method described later increases.
  • the particles of the constituent elements [D] and [E] are selectively disposed in a range corresponding to an average thickness of 15% of the prepreg from the surface of the prepreg. And a fiber reinforced composite material having both conductivity in the thickness direction can be obtained.
  • the two-stage impregnation hot melt method is preferable because many particles of the constituent elements [D] and [E] can be arranged on the prepreg surface.
  • the matrix resin composed of the constituent elements [B] to [F] used in the present invention (hereinafter referred to as an epoxy resin composition) can be produced by various known methods. For example, the method of kneading each component with a kneader is mentioned. Moreover, you may knead
  • the primary resin for obtaining the prepreg precursor by impregnating the component [A] in the first stage and the prepreg in the second stage A secondary resin to be attached to both sides or one side of the precursor is required.
  • the primary resin is composed of constituent elements [B], [C], and [F] and substantially does not contain the constituent elements [D] and [E].
  • the secondary resin is composed of the constituent elements [B] to [F] and substantially includes the constituent elements [D] and [E].
  • a primary resin is produced with a kneader
  • the component [B] and other epoxy resin, thermoplastic resin, etc. are first blended, they are heated and mixed at a temperature in the range of 100 to 200 ° C. Next, after cooling to a temperature of 70 ° C. or lower, the component [F] is dispersed.
  • the constituent element [F] often forms an agglomerate, and when all the components are kneaded at one time, the dispersion may be poor. If the size of the structure formed by the component [F] is too large as described above, it is between the bundle of the component [A] or the bundle of the component [A] causing the contact failure and the component [E].
  • a master batch can be produced in advance and used in a part of the component [B] and the component [F].
  • the masterbatch can be manufactured by various known methods. For example, stirring by a ball mill, stirring by a homomixer or a homogenizer, stirring by ultrasonic waves, and the like are available. After the constituent element [F] is dispersed, the aromatic amine compound as the constituent element [C] is finally added and kneaded.
  • the range corresponding to the average thickness of 13% of the prepreg from the surface of the obtained prepreg is preferably composed of the constituent elements [B] to [F]. That is, it is preferable that the component [A] is not included in a range corresponding to an average thickness of 13% of the prepreg from the surface of the prepreg.
  • an interlayer resin layer can be formed in the fiber reinforced composite material obtained.
  • the thickness of the matrix resin layer on the prepreg surface can be evaluated by the following method. That is, the prepreg obtained in the present invention is closely attached between two smooth support plates, and is cured by gradually raising the temperature over a long period of time.
  • a fiber reinforced composite material is used.
  • a cross section of the obtained fiber reinforced composite material is polished, and magnified to 200 times or more with an epi-illumination type optical microscope to take a picture.
  • the average thickness of the prepreg is determined.
  • the average thickness of the prepreg is measured at at least five points arbitrarily selected on the photograph, and the average is taken.
  • the thickness of the matrix resin layer formed on the surface of the fiber reinforced composite material is obtained.
  • the thickness of the matrix resin layer is also measured at at least five points arbitrarily selected on the photograph, and the average is taken.
  • the ratio can be calculated from the average thickness of the obtained prepreg and the average thickness of the matrix resin layer.
  • the prepreg of the present invention it is preferable that 85% by mass or more of each of the constituent elements [D] and [E] is present in a range corresponding to an average thickness of 15% of the prepreg from the surface of the obtained prepreg. That is, it is preferable that the components [D] and [E] are localized on the surface of the prepreg.
  • a prepreg having such a structure it is possible to form an interlayer resin layer in which the constituent elements [D] and [E] are selectively arranged in the obtained fiber-reinforced composite material, and a high impact resistance.
  • a fiber-reinforced composite material having conductivity in the thickness direction can be obtained.
  • the degree of localization of particles in the prepreg can be evaluated by the following method. That is, after obtaining the fiber reinforced composite material by the above-described method, the cross section is polished, and the photograph is magnified to 200 times magnification or more with an epi-illumination optical microscope. Using this cross-sectional photograph, first, the average thickness of the prepreg is determined. The average thickness of the prepreg is measured at at least five points arbitrarily selected on the photograph, and the average is taken. Next, a line is drawn in parallel with the outermost surface of the prepreg at a position of 15% of the thickness of the prepreg from the surface that is in contact with both support plates.
  • the total cross-sectional area of each particle existing between the surface in contact with the support plate and 15% parallel lines is quantified on both sides of the prepreg. Further, the total sum of the cross-sectional areas of the respective constituent elements [E] and [F] existing over the total thickness of the prepreg is also quantified.
  • the ratio of the total cross-sectional area of each particle existing in a range corresponding to 15% of the average thickness of the prepreg from the surface of the prepreg to the total cross-sectional area of the particles existing over the total thickness of the prepreg is determined from the average thickness of the prepreg from the prepreg surface. The amount of particles existing within 15%.
  • the quantification of the particle cross-sectional area may be performed by an image analyzer or by cutting out all the particle portions existing in a predetermined region from a cross-sectional photograph and weighing the weight. In order to eliminate the influence of variation in the partial distribution of particles, this evaluation is performed over the entire width of the obtained photo, and the same evaluation is performed for five or more arbitrarily selected photos, and the average is obtained. It is necessary to take When it is difficult to distinguish between the particles and the matrix resin, one of them is selectively stained and observed.
  • the microscope may be an optical microscope or a scanning electron microscope, and may be properly used depending on the size of the particles and the staining method.
  • the ratio calculated by the area ratio as described above is defined as the mass ratio of particles existing in a range corresponding to an average thickness of 15% of the prepreg from the surface of the prepreg.
  • the number average particle diameter of each of the constituent elements [D] and [E] can be obtained. Specifically, after measuring the particle diameter of 100 arbitrary particles for each particle of the constituent elements [D] and [E], the average value is defined as the number average particle diameter.
  • the preferable range of the number average particle diameter of the constituent elements [D] and [E] is the same as the above-described preferable range of the number average particle diameter.
  • the volume content (hereinafter referred to as Vf) of the carbon fiber as the constituent element [A] is preferably in the range of 50 to 67% by volume, more preferably 53 to 65% by volume. More preferably, it is in the range of 56 to 62% by volume.
  • Vf of the prepreg is a value obtained by the following method. That is, a 100 ⁇ 100 mm test piece is cut out from the prepreg obtained in the present invention, and the volume is calculated by measuring the thickness with a micrometer. Subsequently, according to the test method of “prepreg mass per unit area, carbon fiber mass per unit area, resin mass content and fiber mass content” described in JIS K7071 (1988), the carbon fiber mass per unit area was measured, and carbon The value calculated by calculating the volume using the density provided by the fiber manufacturer and dividing by the volume of the test piece is used.
  • the fiber-reinforced composite material of the present invention can be obtained by curing the prepreg of the present invention.
  • various known methods can be used. For example, a method in which the obtained prepreg is cut into a predetermined size and then singly or a predetermined number of prepregs are laminated and then heat-cured while applying pressure can be preferably used.
  • the temperature at which the fiber-reinforced composite material is molded needs to be appropriately adjusted depending on the type of the curing agent of the component [C] contained in the thermosetting resin of the component [B]. For example, when an aromatic amine compound is used as the component [C], the molding is usually performed at a temperature in the range of 150 to 220 ° C. If the molding temperature is too low, sufficient rapid curability may not be obtained. Conversely, if the molding temperature is too high, warping due to thermal strain may be likely to occur.
  • the pressure when the fiber-reinforced composite material is molded by the autoclave molding method varies depending on the thickness of the prepreg and the volume content of the carbon fiber, but is usually in the range of 0.1 to 1 MPa. By setting the molding pressure within such a range, it is possible to obtain a fiber-reinforced composite material that does not have defects such as voids and does not have dimensional variations such as warpage.
  • the fiber-reinforced composite material of the present invention includes a filler composed of particles mainly composed of a thermoplastic resin as a constituent element [D], conductive particles as a constituent element [E], and a carbon material as a constituent element [F]. Each is contained as described above, and is characterized by high impact resistance and electrical conductivity in the thickness direction.
  • impact resistance can be measured by post-impact compressive strength (hereinafter referred to as CAI).
  • CAI is measured as CAI after applying an impact energy of 6.7 J per 1 mm thickness of the test piece according to JIS K 7089 (1996).
  • the CAI of the fiber-reinforced composite material of the present invention is preferably 230 MPa or more, more preferably 280 MPa or more. When the CAI is within such a range, the width of an applicable structural member such as an aircraft becomes wide, which is preferable.
  • the conductivity in the thickness direction can be measured by the following method. That is, the unidirectional prepreg obtained in the present invention was symmetrically laminated with the longitudinal direction of the carbon fiber being 0 ° and repeated twice based on [+ 45 ° / 0 ° / ⁇ 45 ° / 90 °], Cut out from the fiber reinforced composite panel obtained by heating and pressurizing in an autoclave in a size of 50 mm long ⁇ 50 mm wide, completely remove the resin layers on both surfaces by polishing, and then apply conductive paste on both sides. Sample pieces. This is a method in which the volume specific resistance obtained by measuring the resistance in the stacking direction of the obtained sample piece by using the R6581 digital multimeter manufactured by Advantest Co., Ltd. by the four-terminal method is made conductive in the thickness direction.
  • Examples of the conductive paste include “Dotite (registered trademark)” D-550, FN-101, D-500, D-362, XA-9015, FE-107, XC-12, XC-32, and SH-. 3A, XA-436, FA-545, XA-824, FC-403R, XC-223, FA-501, FA-333, FA-353N, XA-602N, XA-472, FC-415, XB-101G, SN-8800G, XB-114, XB-107, XB-110, FH-889, FEL-190, FEL-615, FEC-198, FEA-685, XB-101G (manufactured by Fujikura Kasei Co., Ltd.); N- 2057, N-2057A (manufactured by Shoei Chemical Industry Co., Ltd.); CA-6178, CA-6178B, CA-6178T, CA-2500E, CA-BE0
  • the volume specific resistance in the thickness direction which is an index of conductivity in the thickness direction of the fiber-reinforced composite material of the present invention, is preferably 6 ⁇ cm or less, more preferably 4 ⁇ cm or less, and further preferably 3 ⁇ cm or less.
  • electrical damage such as lightning strikes and static electricity dissipation can be suppressed when fiber reinforced composite materials are used as members.
  • the thickness direction of the fiber reinforced composite material means a direction in which the prepreg of the present invention used for the production is laminated.
  • the fiber reinforced composite material obtained from the prepreg of the present invention is excellent in strength, rigidity, impact resistance, thickness direction conductivity, etc., so that it is a primary structural member such as an aircraft fuselage, main wing, tail wing and floor beam, and a flap.
  • Secondary materials such as aileron, cowl, fairing and interior materials, rocket motor cases and satellite structure materials, structural materials for mobile and automobiles, ships and railway vehicles, construction materials, windmillscan be suitably used for a wide range of applications such as computer applications such as blades, IC trays and notebook PC housings (housings).
  • the unit “part” of the composition ratio means part by mass unless otherwise specified.
  • Various characteristics (physical properties) were measured in an environment of a temperature of 23 ° C. and a relative humidity of 50% unless otherwise specified.
  • Constituent element [A] carbon fiber “Torayca (registered trademark)” T800S-24K-10E (24,000 fibers, tensile elastic modulus: 294 GPa, density 1.8 g / cm 3 , manufactured by Toray Industries, Inc.) .
  • Component [B] Thermosetting resin (bifunctional epoxy resin) "Araldite (registered trademark)" GY282 (component: bisphenol F type epoxy resin, manufactured by Huntsman Advanced Materials Co., Ltd.) GAN (component: N, N-diglycidyl aniline, manufactured by Nippon Kayaku Co., Ltd.).
  • Curing agent “Seikacure (registered trademark)” S (4,4′-diaminodiphenylmethane, manufactured by Seika Corporation).
  • Component [D] Particles mainly composed of thermoplastic resin / Nylon 12 particles SP-10 (component: nylon 12, number average particle size: 10 ⁇ m, shape: spherical, manufactured by Toray Industries, Inc.) "Orgasol" 1002D NAT1 (component: nylon 6, number average particle size: 20 ⁇ m, manufactured by Arkema Co., Ltd.) -Particles A (particles having a number average particle diameter of 13 ⁇ m prepared from “Trogamide (registered trademark)” CX7323 as a raw material) (Production method of particle A: Reference was made to the pamphlet of International Publication No.
  • -Particle B obtained by the following production method (number average particle size: 13 ⁇ m) 90 parts of transparent polyamide ("Grillamide (registered trademark)” TR55, manufactured by Ms Chemie Japan), 7.5 parts of epoxy resin ("jER (registered trademark)” 828, manufactured by Mitsubishi Chemical Corporation) and curing agent 2.5 parts ("Tomide (registered trademark)”# 296, manufactured by T & K Toka) were added to a mixed solvent of 300 parts of chloroform and 100 parts of methanol to obtain a homogeneous solution. Next, the obtained uniform solution was sprayed in the form of a mist toward the liquid surface of 3000 parts of n-hexane being stirred using a spray gun for coating to precipitate a solute.
  • the precipitated solid was separated by filtration, washed well with n-hexane, and then vacuum-dried at a temperature of 100 ° C. for 24 hours to obtain epoxy-modified nylon particles B having a spherical semi-IPN structure.
  • the resulting epoxy modified nylon particles A by press-forming after a resin plate, in accordance with ASTM D 5045-96, the results of measuring the G Ic value by compact tension method was 4420J / m 2.
  • Conductive particles C (component: carbon, number average particle size: 33 ⁇ m) obtained by firing and classifying phenol resin particles (Marilyn HF type, manufactured by Gunei Chemical Industry Co., Ltd.) at 2000 ° C.
  • Conductive particles D (component: carbon, number average particle size: 20 ⁇ m) obtained by baking and classifying phenol resin particles (Marilyn HF type, manufactured by Gunei Chemical Industry Co., Ltd.) at 2000 ° C.
  • Conductive particles E (component: carbon, number average particle size: 16 ⁇ m) obtained by firing and classifying phenol resin particles (Marilyn HF type, manufactured by Gunei Chemical Industry Co., Ltd.) at 2000 ° C.
  • the number average particle diameter of each material is measured according to “(I) Component [D] and [E] each of which is independently measured” in various evaluation methods described later.
  • the number average particle size in the prepreg can be measured according to “(IV) Measurement of particle size of each of the constituent elements [D] and [E] in the prepreg alone” of various evaluation methods described later.
  • Component [G] Thermoplastic resin composed of polyaryl ether skeleton “Virantage (registered trademark)” VW-10700RFP (component; terminal hydroxyl group polyethersulfone, manufactured by Solvay Specialty Polymers Co., Ltd.) .
  • the obtained hardened plate was processed with a microtome and observed with a transmission electron microscope (TEM), and the average value was obtained after measuring the distance of the longest portion as the particle size for 60 arbitrary particles.
  • the carbon black structure size which is the constituent element [F] in the constituent element [B] was used.
  • grains with a particle size of 5 micrometers or more are not used for calculation of carbon black structure size.
  • the obtained pre-laminated body was set in an autoclave, heated at a pressure of 0.6 MPa by 1.7 ° C. per minute from room temperature to 180 ° C., and cured at a temperature of 180 ° C. for 2 hours.
  • a fiber reinforced composite material was obtained.
  • the obtained fiber reinforced composite material was processed into a thin piece with a focused ion beam (FIB) apparatus, and the particle diameter was measured for each of 20 components [D] and [E] using a transmission electron microscope (TEM). The amount of component [F] and Ne / Nd present in the outer 110% range were measured.
  • FIB focused ion beam
  • Vf volume content of carbon fiber in prepreg
  • the test piece is put in a beaker, about 200 ml of methyl ethyl ketone (MEK) is put, and ultrasonic irradiation is performed for 15 minutes, followed by stirring.
  • MEK methyl ethyl ketone
  • the supernatant liquid is filtered using a glass filter whose mass has been measured in advance
  • MEK is put into a beaker in which the carbon fiber as the constituent element [A] remains, and the above operation is repeated three times.
  • the carbon fiber is also transferred to a glass filter and suction filtered. After filtration, the carbon fiber is dried together with a glass filter at a temperature of 105 ° C.
  • Vf volume% of the prepreg.
  • a sample 40 mm long and 40 mm wide was cut out from the obtained fiber-reinforced composite material, and after removing the resin layers on both surfaces, conductive paste N-2057 (manufactured by Shoei Chemical Industry Co., Ltd.) was applied to both sides.
  • conductive paste N-2057 manufactured by Shoei Chemical Industry Co., Ltd.
  • the resistance in the thickness direction of the obtained sample was measured by a four-terminal method using an R6581 digital multimeter manufactured by Advantest Corporation. The measurement was performed 6 times, and the average value was defined as the volume resistivity ( ⁇ cm) of the fiber composite material.
  • the primary resin obtained above was applied onto release paper using a knife coater to produce two resin films 1 having a resin basis weight of 24 g / m 2 .
  • the secondary resin obtained above was applied onto release paper to prepare two resin films 2 having a resin basis weight of 23.5 g / m 2 .
  • the prepreg precursor was obtained by repeatedly applying heat and pressure to impregnate the epoxy resin composition.
  • the obtained prepreg precursor was overlaid with two resin films 2 from both sides of the prepreg precursor, and heated and pressurized to obtain a prepreg.
  • the obtained prepreg was 57 vol%, and was suitable for structural members Met.
  • composition of the constituent elements [B] to [G] in the obtained prepreg is as follows.
  • the constituent element [D] It was 95 mass%, and component [D] was 99 mass% with respect to the whole quantity of component [D].
  • the particle sizes of [D] and [E] were measured in accordance with “(IV) Measurement of particle sizes of components [D] and [E] each independently in prepreg”, and “(I) components [D] and [D] E] Since the number average particle diameter measured by “single particle diameter measurement” was not changed, the measurements of Examples 1 to 35 and Comparative Examples 1 to 7 were performed as “(I) Components [D] and [E]. The number average particle size measured by “single particle size measurement” was used.
  • Examples 2 to 35 Except for changing the composition as shown in Tables 1 to 5, after preparing a primary resin and a secondary resin as an epoxy resin composition in the same manner as in Example 1, and obtaining a prepreg by the two-stage impregnation hot melt method Then, a fiber-reinforced composite material was produced and various measurements were performed.
  • a primary resin and a secondary resin which are epoxy resin compositions, were prepared in the same manner as in Example 1 except that the composition and the basis weight of the carbon fiber that is the constituent element [A] were changed. After obtaining the prepreg by the hot melt method, a fiber reinforced composite material was prepared and subjected to various measurements.
  • Comparative Example 1 does not include the component [D]. Although the fiber reinforced composite material obtained in Comparative Example 1 has a small volume resistivity value in the thickness direction, the post-impact compressive strength is low. When compared with Examples 1 to 35, it can be seen that the fiber-reinforced composite material obtained in Examples 1 to 35 has improved compressive strength after impact by including the component [D].
  • Comparative Examples 2 and 3 do not include any one of the constituent elements [E] and [F]. Thereby, the volume specific resistance value with respect to the thickness direction of the fiber reinforced composite material is increased. In contrast to Examples 1 to 35, the inclusion of both components [E] and [F] improves the electrical conductivity in the thickness direction of the fiber-reinforced composite materials obtained in Examples 1 to 35. I understand.
  • Comparative Examples 4 and 5 include both components [D] and [E], but do not satisfy Formula (1). Comparing Comparative Example 4 with Examples 1 to 35, it can be seen that the fiber-reinforced composite materials obtained in Examples 1 to 35 have improved conductivity in the thickness direction by satisfying the formula (1). Further, comparing Comparative Example 5 with Examples 1 to 35, it can be seen that the fiber-reinforced composite materials obtained in Examples 1 to 35 have improved compressive strength after impact by satisfying the formula (1).
  • Comparative Examples 6 and 7 include both the constituent elements [D] and [E] and satisfy the formula (1), but the constituent elements [D] and [F] are heteroaggregated, and Ne / Nd is 0. Less than 25.
  • the fiber reinforced composite materials obtained in Comparative Examples 6 and 7 have a small volume resistivity value in the thickness direction of the fiber reinforced composite material.
  • the fiber reinforced composite materials obtained in Examples 1 to 35 have an Ne / Nd of 0.25 or more, and [D] and [F] represent the formulas (2) to (4). It can be seen that the electrical conductivity in the thickness direction is greatly improved by satisfying this condition.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Reinforced Plastic Materials (AREA)
  • Moulding By Coating Moulds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 優れた耐衝撃性と厚み方向の導電性とを兼ね備えた繊維強化複合材料を製造することができるプリプレグを提供するため、以下の構成を有する。 少なくとも次の構成要素[A]~[F]を含み、構成要素[E]の粒子直径の外側110%の範囲内に存在する構成要素[F]のストラクチャー個数Neの、構成要素[D]の粒子直径の外側110%の範囲内に存在する構成要素[F]のストラクチャー個数Ndに対する比Ne/Ndが0.25以上であることを特徴とするプリプレグ。 [A]:炭素繊維 [B]:熱硬化性樹脂 [C]:硬化剤 [D]:1次粒子の数平均粒径が5~50μmである熱可塑性樹脂を主成分とする粒子 [E]:構成要素[D]と異なる粒子であって1次粒子の数平均粒径が特定の式の範囲である導電性粒子 [F]:カーボン材料からなるフィラー

Description

プリプレグおよび繊維強化複合材料
 本発明は、優れた耐衝撃性と厚み方向の導電性を兼ね備えた繊維強化複合材料を得るために用いられるプリプレグ、および該プリプレグを用いた繊維強化複合材料に関するものである。
 炭素繊維、ガラス繊維などの強化繊維と、エポキシ樹脂、フェノール樹脂などのマトリックス樹脂からなる繊維強化複合材料は、軽量でありながら、強度や剛性などの力学特性や耐熱性、また耐食性に優れているため、航空・宇宙、自動車、鉄道車両、船舶、土木建築およびスポーツ用品などの数多くの分野に応用されてきた。特に、高性能が要求される用途では、連続した強化繊維を用いた繊維強化複合材料が用いられ、強化繊維としては比強度、比弾性率に優れた炭素繊維が、そしてマトリックス樹脂としては熱硬化性樹脂、中でも特に炭素繊維との接着性に優れたエポキシ樹脂が多く用いられている。
 しかしながら、エポキシ樹脂などの熱硬化性樹脂の硬化物は熱可塑性樹脂にくらべて破壊靭性が一般的に低い。それにより繊維強化複合材料の耐衝撃性が低下する問題が生じる。特に航空機用構造部材の場合、組立中の工具落下や運用中の雹の衝撃等に対して優れた耐衝撃性が要求されるため、耐衝撃性の向上は大きな課題であった。
 繊維強化複合材料は一般に層構造をとっており、これに衝撃が加わると層間に高い応力がかかり、クラックが発生する。クラック発生を抑制するにはエポキシ樹脂の塑性変形能力を高めることが有効であり、その手段としては塑性変形能力に優れている熱可塑性樹脂を含有することである。
 ところが、このような技術は、繊維強化複合材料に高度な耐衝撃性を与える一方で、層間に絶縁層となる樹脂層を生じることになる。そのため、繊維強化複合材料の特徴の一つである導電性のうち、厚み方向の導電性が著しく低下するという欠点がある。
 近年では、繊維強化複合材料にて優れた耐衝撃性と厚み方向の導電性の両立を目指すべく、鋭意検討がなされている。例えば、特許文献1または2に記載があるように、繊維強化複合材料の層間部分に耐衝撃性を向上する強化材と厚み方向の導電性を向上する導電性粒子を配置する方法等が挙げられる。
特開2008-231395号公報 特表2010-508416号公報
 しかしながら、特許文献1または2に記載された手法による厚み方向の導電性の向上効果は十分とまではいえず、更なる向上が期待されている。
 また、繊維強化複合材料は適用する用途または部位により、目的に応じた炭素繊維の目付と繊維体積含有率などを適宜調整する必要がある。そのような場合、耐衝撃性強化材や導電性粒子の大きさを調整しないと目的とする厚み方向の導電性が得られなかったり、適用部材に必要とされる繊維体積含有率から外れ、物性が低下したり、部材質量が増加したりする可能性があった。
 以上のように、目的に応じて炭素繊維目付などを変更しても、優れた耐衝撃性と厚み方向の導電性を両立する繊維強化複合材料を得る必要があった。
 本発明の目的は、優れた耐衝撃性と厚み方向の導電性を兼ね備えた繊維強化複合材料を得ることができるプリプレグを提供することにある。
 本発明は、かかる課題を解決するために次のような手段を採用するものである。すなわち、少なくとも次の構成要素[A]~[F]を含み、構成要素[E]の粒子直径の外側110%の範囲内に存在する構成要素[F]のストラクチャー個数Neの、構成要素[D]の粒子直径の外側110%の範囲内に存在する構成要素[F]のストラクチャー個数Ndに対する比Ne/Ndが0.25以上であることを特徴とするプリプレグ。
[A]:炭素繊維
[B]:熱硬化性樹脂
[C]:硬化剤
[D]:1次粒子の数平均粒径が5~50μmである熱可塑性樹脂を主成分とする粒子
[E]:構成要素[D]と異なる粒子であって1次粒子の数平均粒径が次式(1)の範囲である導電性粒子
  [(A×0.1)+4]≦Psize≦[(A×0.1)+14]・・・・・・・・・・式(1)
  Psize:構成要素[E]である導電性粒子の1次粒子の数平均粒径(μm)
  A:プリプレグ中の構成要素[A]の目付(g/m
[F]:カーボン材料からなるフィラー
 本発明のプリプレグの好ましい態様によれば、構成要素[D]のゼータ電位をζd、構成要素[F]のゼータ電位をζfとしたときに、下記の式(2)~式(4)の少なくとも1つが満たされることである。
  │ζd│ < 10mV・・・・・・・・・・式(2)
  │ζf│ < 10mV・・・・・・・・・・式(3)
  ζd × ζf > 0・・・・・・・・・・式(4)
 本発明のプリプレグを積層し、硬化することにより、優れた耐衝撃性と厚み方向の導電性を兼ね備えた繊維強化複合材料を提供することが可能になる。本発明のプリプレグは、種々の炭素繊維目付に対しても優れた耐衝撃性と厚み方向の導電性を兼ね備えているため、航空機構造部材、風車の羽根、自動車外板およびICトレイやノートパソコンの筐体などのコンピュータ用途等に広く展開でき、適用製品の性能を大きく向上させることが可能である。
 本発明のプリプレグは、少なくとも次の構成要素[A]~[F]を含み、構成要素[E]の粒子直径の外側110%の範囲内に存在する構成要素[F]のストラクチャー個数Neの、構成要素[D]の粒子直径の外側110%の範囲内に存在する構成要素[F]のストラクチャー個数Ndに対する比Ne/Ndが0.25以上である。
[A]:炭素繊維
[B]:熱硬化性樹脂
[C]:硬化剤
[D]:1次粒子の数平均粒径が5~50μmである熱可塑性樹脂を主成分とする粒子
[E]:構成要素[D]と異なる粒子であって1次粒子の数平均粒径が次式(1)の範囲である導電性粒子
  [(A×0.1)+4]≦Psize≦[(A×0.1)+14]・・・・・・・・・・式(1)
  Psize:構成要素[E]である導電性粒子の1次粒子の数平均粒径(μm)
  A:プリプレグ中の構成要素[A]の目付(g/m
[F]:カーボン材料からなるフィラー
 本発明の構成要素[A]である炭素繊維は比強度、比弾性率に優れ、かつ、高い導電性を有していることから、優れた力学物性と高導電性が求められる用途に好ましく用いられる。
 構成要素[A]の炭素繊維の具体例としては、アクリル系、ピッチ系およびレーヨン系等の炭素繊維が挙げられ、特に引張強度の高いアクリル系の炭素繊維が好ましく用いられる。
 かかるアクリル系の炭素繊維は、例えば、次に述べる工程を経て製造することができる。
 まず、アクリロニトリルを主成分とするモノマーから得られるポリアクリロニトリルを含む紡糸原液を、湿式紡糸法、乾湿式紡糸法、乾式紡糸法、または溶融紡糸法などにより紡糸して凝固糸を得る。次に、凝固糸を、製糸工程を経て、プリカーサーとする。続いてプリカーサーを、耐炎化および炭化などの工程を経て、炭素繊維とすることにより、アクリル系の炭素繊維を得ることができる。
 構成要素[A]の炭素繊維の形態としては、有撚糸、解撚糸および無撚糸等を使用することができる。有撚糸は炭素繊維束を構成するフィラメントの配向が平行ではないため、得られる繊維強化複合材料の力学特性の低下の原因となることから、繊維強化複合材料の成形性と強度特性のバランスが良い解撚糸または無撚糸が好ましく用いられる。
 構成要素[A]の炭素繊維の引張弾性率は、200~440GPaであることが好ましい。炭素繊維の引張弾性率は、炭素繊維を構成する黒鉛構造の結晶度に影響され、結晶度が高いほど弾性率は向上する。また、導電性も結晶度が高いほど高くなる。構成要素[A]の炭素繊維の引張弾性率がこの範囲であると、繊維強化複合材料の導電性、剛性、強度のすべてが高いレベルでバランスするために好ましい。より好ましい炭素繊維の引張弾性率は、230~400GPaであり、さらに好ましい炭素繊維の引張弾性率は260~370GPaである。ここで、炭素繊維の引張弾性率は、JIS R7601-2006に従い測定された値である。
 構成要素[A]に用いることができる炭素繊維の市販品としては、“トレカ(登録商標)”T800S-24K、“トレカ(登録商標)”T300-3K、および“トレカ(登録商標)”T700S-12K(以上東レ(株)製)などが挙げられる。
 本発明の構成要素[B]である熱硬化性樹脂は、特に限定されるものではないが、エポキシ樹脂が好ましい。中でも、1分子中に3個以上のエポキシ基と、ベンゼンやナフタレン等の芳香族環を有する化合物を反応させて得られるエポキシ樹脂がより好ましい。なお、本発明において、構成要素[B]、構成要素[C]を「含む」とは、それぞれが未反応の状態で含まれる場合だけでなく、一部あるいは全部が反応した後の構造として含まれる場合も含む。
 かかる、1分子中に3個以上のエポキシ基と、ベンゼンやナフタレン等の芳香族環を有する化合物を反応させて得られるエポキシ樹脂の好適な例は、グリシジルアミン型エポキシ樹脂およびグリシジルエーテル型エポキシ樹脂である。また、官能基数については、多すぎると硬化後のマトリックス樹脂が脆くなってしまい、耐衝撃性を損ねる場合があるので、好ましくは3~7、より好ましくは3~5である。
 前記グリシジルアミン型エポキシ樹脂としては、例えば、ジアミノジフェニルメタン型、ジアミノジフェニルスルホン型、アミノフェノール型、メタキシレンジアミン型、1,3-ビスアミノメチルシクロヘキサン型、イソシアヌレート型およびヒダントイン型等のエポキシ樹脂が挙げられる。中でも物性のバランスが良いことから、ジアミノジフェニルメタン型とアミノフェノール型のエポキシ樹脂が特に好ましく用いられる。
 前記グリシジルエーテル型エポキシ樹脂としては、例えば、フェノールノボラック型、オルソクレゾールノボラック型、トリスヒドロキシフェニルメタン型およびテトラフェニロールエタン型等のエポキシ樹脂が挙げられる。
 これらのエポキシ樹脂は、単独で用いてもよいし、二種以上で用いてもよい。
 任意の温度において流動性を示すエポキシ樹脂と、任意の温度において流動性を示さないエポキシ樹脂を含有することは、得られるプリプレグを熱硬化する時の、マトリックス樹脂の流動性制御に有効である。
 また、任意の温度において様々な粘弾性挙動を示すエポキシ樹脂を複数種組み合わせることは、得られるプリプレグのタック性やドレープ性を適切なものとするためにも有効である。
 本発明においては、構成要素[B]である熱硬化性樹脂の他に、構成要素[B]と熱硬化性樹脂の共重合体、構成要素[B]の変性体等を含有しても良い。また、1官能や2官能のエポキシ樹脂を含有しても良い。
 前記構成要素[B]と熱硬化性樹脂の共重合体を含む場合において、構成要素[B]がエポキシ樹脂の場合に共重合させる熱硬化性樹脂としては、例えば、不飽和ポリエステル樹脂、ビニルエステル樹脂、エポキシ樹脂、ベンゾオキサジン樹脂、フェノール樹脂、尿素樹脂、メラミン樹脂およびポリイミド樹脂等が挙げられる。これらの樹脂は、単独で用いてもよいし二種以上で用いてもよい。
 本発明において、構成要素[B]である熱硬化性樹脂の他に、1官能のエポキシ樹脂や2官能のエポキシ樹脂を含有することは、樹脂の流動性と硬化後の耐熱性を兼ね備えるものとしやすい。
 特に、グリシジルアミン型エポキシ樹脂とグリシジルエーテル型エポキシ樹脂の組み合わせは、耐熱性および耐水性とプロセス性の両立を可能にする。
 また、常温で液状のエポキシ樹脂を少なくとも1種と、常温で固形状のエポキシ樹脂を少なくとも1種を含有することは、プリプレグのタック性とドレープ性を適切なものとしやすい。
 前記2官能のエポキシ樹脂としては、フェノール類を前駆体とするグリシジルエーテル型エポキシ樹脂が好ましく用いられる。このようなエポキシ樹脂として、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ナフタレン型エポキシ樹脂、ビフェニル型エポキシ樹脂、ウレタン変性エポキシ樹脂およびレゾルシノール型エポキシ樹脂等が挙げられる。
 液状のビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂およびレゾルシノール型エポキシ樹脂は、低粘度であるために、他のエポキシ樹脂と組み合わせて使うことが好ましい。
 また、固形のビスフェノールA型エポキシ樹脂は、前記液状のビスフェノールA型エポキシ樹脂と比較して架橋密度の低い構造を与えるため耐熱性は低くなるが、より靭性の高い構造が得られやすいため、グリシジルアミン型エポキシ樹脂や液状のビスフェノールA型エポキシ樹脂やビスフェノールF型エポキシ樹脂と組み合わせて用いることが好ましい。
 ナフタレン骨格を有するエポキシ樹脂は、低吸水率かつ高耐熱性の硬化樹脂を与える。また、ビフェニル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂およびジフェニルフルオレン型エポキシ樹脂も、低吸水率の硬化樹脂を与えるため好適に用いられる。ウレタン変性エポキシ樹脂およびイソシアネート変性エポキシ樹脂は、破壊靱性と伸度の高い硬化樹脂を与える。
 ビスフェノールA型エポキシ樹脂の市販品としては、“jER(登録商標)”825(三菱化学(株)製)、“エポトート(登録商標)”YD-128(東都化成(株)製)、およびDER-331やDER-332(以上、ダウケミカル社製)などが挙げられる。
 ビスフェノールF型エポキシ樹脂の市販品としては、“jER(登録商標)”806、“jER(登録商標)”807および“jER(登録商標)”1750(以上、三菱化学(株)製)、“エピクロン(登録商標)”830(DIC(株)製)および“エポトート(登録商標)”YD-170(東都化成(株)製)などが挙げられる。
 レゾルシノール型エポキシ樹脂の市販品としては、“デコナール(登録商標)”EX-201(ナガセケムテックス(株)製)などが挙げられる。
 ジアミノジフェニルメタン型のエポキシ樹脂市販品としては、ELM434(住友化学(株)製)、“アラルダイト(登録商標)”MY720、“アラルダイト(登録商標)”MY721、“アラルダイト(登録商標)”MY9512、“アラルダイト(登録商標)”MY9663(以上ハンツマン・アドバンスト・マテリアルズ(株)製)、および“エポトート(登録商標)”YH-434(東都化成(株)製)などが挙げられる。
 メタキシレンジアミン型のエポキシ樹脂市販品としては、“TETRAD(登録商標)”-X(三菱ガス化学社製)が挙げられる。
 1,3-ビスアミノメチルシクロヘキサン型のエポキシ樹脂市販品としては、“TETRAD(登録商標)”-C(三菱ガス化学社製)が挙げられる。
 イソシアヌレート型のエポキシ樹脂市販品としては、“TEPIC(登録商標)”-P(日産化学社製)が挙げられる。
 トリスヒドロキシフェニルメタン型のエポキシ樹脂市販品としては、“TACTIX(登録商標)”742(ハンツマン・アドバンスト・マテリアルズ(株)製)が挙げられる。
 テトラフェニロールエタン型のエポキシ樹脂市販品としては、“jER(登録商標)”1031S(三菱化学(株)製)が挙げられる。
 アミノフェノール型のエポキシ樹脂市販品としては、ELM120やELM100(以上、住友化学(株)製)、“jER(登録商標)”630(三菱化学(株)製)、および“アラルダイト(登録商標)”MY0510(ハンツマン・アドバンスト・マテリアルズ(株)製)、“アラルダイト(登録商標)”MY0600(ハンツマン・アドバンスト・マテリアルズ(株)製)などが挙げられる。
 テトラグリシジルジアミノジフェニルスルホン型のエポキシ樹脂市販品としては、TG3DAS(三井化学ファイン(株)製)などが挙げられる。
 グリシジルアニリン型のエポキシ樹脂市販品としては、GANやGOT(以上、日本化薬(株)製)などが挙げられる。
 ビフェニル型エポキシ樹脂の市販品としては、NC-3000(日本化薬(株)製)などが挙げられる。
 ジシクロペンタジエン型エポキシ樹脂の市販品としては、“エピクロン(登録商標)”HP7200(DIC(株)製)などが挙げられる。
 ウレタン変性エポキシ樹脂の市販品としては、AER4152(旭化成エポキシ(株)製)などが挙げられる。
 フェノールノボラック型エポキシ樹脂の市販品としては、DEN431やDEN438(以上、ダウケミカル社製)および“jER(登録商標)”152(三菱化学(株)製)などが挙げられる。
 オルソクレゾールノボラック型のエポキシ樹脂市販品としては、EOCN-1020(日本化薬(株)製)や“エピクロン(登録商標)”N-660(DIC(株)製)などが挙げられる。
 ヒダントイン型のエポキシ樹脂市販品としては、AY238(ハンツマン・アドバンスト・マテリアルズ(株)製)が挙げられる。
 本発明の構成要素[C]である硬化剤は、構成要素[B]の熱硬化性樹脂を加熱硬化するための硬化剤として使用される。かかる硬化剤としては芳香族アミンが好ましく用いられる。芳香族アミン化合物としては、例えば、3,3’-ジイソプロピル-4,4’-ジアミノジフェニルメタン、3,3’-ジ-t-ブチル-4,4’-ジアミノジフェニルメタン、3,3’-ジエチル-5,5’-ジメチル-4,4’-ジアミノジフェニルメタン、3,3’-ジイソプロピル-5,5’-ジメチル-4,4’-ジアミノジフェニルメタン、3,3’-ジ-t-ブチル-5,5’-ジメチル-4,4’-ジアミノジフェニルメタン、3,3’,5,5’-テトラエチル-4,4’-ジアミノジフェニルメタン、3,3’-ジイソプロピル-5,5’-ジエチル-4,4’-ジアミノジフェニルメタン、3,3’-ジ-t-ブチル-5,5’-ジエチル-4,4’-ジアミノジフェニルメタン、3,3’,5,5’-テトライソプロピル-4,4’-ジアミノジフェニルメタン、3,3’-ジ-t-ブチル-5,5’-ジイソプロピル-4,4’-ジアミノジフェニルメタン、3,3’,5,5’-テトラ-t-ブチル-4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルスルホン、m-フェニレンジアミン、m-キシリレンジアミン、ジエチルトルエンジアミンなどが挙げられる。中でも、航空、宇宙機用途などの場合、耐熱性、弾性率に優れ、さらに線膨張係数および吸湿による耐熱性の低下が小さい硬化物が得られる4,4’-ジアミノジフェニルスルホンおよび3,3’-ジアミノジフェニルスルホンが用いることが好ましい。これらの芳香族アミン化合物は単独で用いてもよいし、二種以上で用いてもよい。また、他成分との混合時は粉体、液体いずれの形態でもよく、粉体と液体の芳香族アミン化合物を混合して用いても良い。
 芳香族アミン化合物の市販品としては、“セイカキュア(登録商標)”S(セイカ(株)製)、MDA-220(三井化学(株)製)、“LONZACURE(登録商標)”M-DIPA(Lonza(株)製)、および“LONZACURE(登録商標)”M-MIPA(Lonza(株)製)および3,3’-DAS(三井化学(株)製)などが挙げられる。
 構成要素[C]として芳香族アミンを用いる場合の含有量は、耐熱性や力学特性の観点から、芳香族アミン化合物の活性水素のモル数を、構成要素[B]を含む樹脂組成物中の全エポキシ樹脂のエポキシ基のモル数に対して0.6~1.2倍とすることが好ましく、0.8~1.1倍とすればより好ましい。0.6倍に満たない場合、硬化物の架橋密度が十分でない場合があるため、弾性率、耐熱性が不足し、繊維強化複合材料の静的強度特性が不足する場合がある。1.2倍を超える場合、硬化物の架橋密度が高くなり、塑性変形能力が小さくなり、繊維複合材料の耐衝撃性に劣る場合がある。
 本発明の構成要素[C]として芳香族アミン化合物を用いる場合は、一般的に架橋反応の進行が遅いことが知られている。そこで、本発明では芳香族アミン化合物に反応を促進するため硬化促進剤を含有することができる。かかる硬化促進剤としては、例えば、三級アミン、ルイス酸錯体、オニウム塩、イミダゾール化合物、尿素化合物などが挙げられる。硬化促進剤の含有量は、使用する種類により適宜調整する必要があるが、全エポキシ樹脂100質量部に対し、10質量部以下、好ましくは5質量部以下である。硬化促進剤がかかる範囲で含有されている場合、繊維強化複合材料を成形する際の温度ムラが生じにくいために好ましい。
 本発明の構成要素[D]である、1次粒子の数平均粒径が5~50μmである熱可塑性樹脂を主成分とする粒子は、本発明の繊維強化複合材料に耐衝撃性を付加するために含有される。なお、本発明において、「熱可塑性樹脂を主成分とする」とは、熱可塑性樹脂を50質量%以上含むことを指す。
 一般的に、繊維強化複合材料は積層構造をとっている。これに衝撃が加わると層間に高い応力が発生し、剥離損傷が生じる。よって、外部からの衝撃に対する耐衝撃性を向上させるためには、繊維強化複合材料の構成要素[A]からなる層と層の間に形成される樹脂層(以降、「層間樹脂層」と表すこともある)の靭性を向上させることが考えられる。
 本発明の構成要素[D]の主成分である熱可塑性樹脂としては、ポリアミドやポリイミドを好ましく用いることができる。中でも、優れた靭性のため耐衝撃性を大きく向上できることから、ポリアミドがより好ましい。また、ポリアミドの中でも、特に良好な熱硬化性樹脂との接着強度を与えることから、ナイロン6、ナイロン12、ナイロン11やナイロン6/12共重合体がさらに好ましい。
 ポリアミドの市販品としては、SP-500(東レ(株)製)、“トレパール(登録商標)”TN(東レ(株)製)、“オルガソール(登録商標)”1002D(Arkema(株)製)、“オルガソール(登録商標)”2002(Arkema(株)製)、“オルガソール(登録商標)”3202(Arkema(株)製)などが挙げられる。
 本発明の構成要素[D]は、前記した熱可塑性樹脂のみを成分とする粒子であってもよいが、その場合、耐溶剤性が問題になることがある。繊維強化複合材料は、構造部材や外板として使用される場合、表面に塗装が施されることがあり、また、航空機用途や自動車用途などに使用される場合、作動油や燃料にさらされたりすることがある。前記熱可塑性樹脂のみを成分とする粒子は、こうした薬品で膨潤劣化して性能が低下する場合がある。
 こうした熱可塑性樹脂の耐薬品性を向上する手段として、少量の熱硬化性樹脂を含有する方法がある。この場合、熱硬化性樹脂が形成する三次元網目構造の中に、熱可塑性樹脂の直鎖構造が取り込まれ、相互侵入型網目構造の一つであるセミIPN構造を形成することで飛躍的に耐溶剤性が向上する。
 本発明の構成要素[D]は、かかるセミIPN構造を形成していることが好ましい。耐溶剤性と耐衝撃性を発現させるためには、構成要素[D]の熱可塑性樹脂を主成分とする粒子の、熱可塑性樹脂と熱硬化性樹脂の含有比率(熱可塑性樹脂:熱硬化性樹脂、質量比)は95:5~70:30の範囲であることが好ましく、90:10~80:20の範囲であることがより好ましい。
 ここで、かかる熱硬化性樹脂としては、例えば、不飽和ポリエステル樹脂、ビニルエステル樹脂、エポキシ樹脂、ベンゾオキサジン樹脂、フェノール樹脂、尿素樹脂、メラミン樹脂およびポリイミド樹脂等を挙げることができる。これらのうち、本発明のマトリックス樹脂の主成分である構成要素[B]と同種であるため力学物性の低下なく使用できることから、エポキシ樹脂が好ましい。
 本発明の繊維強化複合材料の層間樹脂層を選択的に高靭性化するためには、構成要素[D]を層間樹脂層に留めておく必要がある。そのため、構成要素[D]の数平均粒径は5~50μmの範囲であり、好ましくは7~40μmの範囲であり、より好ましくは10~30μmの範囲である。数平均粒径を5μm以上とすることで、構成要素[D]の粒子が構成要素[A]である炭素繊維の束の中に侵入せず、得られる繊維強化複合材料の層間樹脂層に留まることができる。また、数平均粒径を50μm以下とすることで、プリプレグ表面のマトリックス樹脂層の厚みを適正化し、ひいては得られる繊維強化複合材料において、構成要素[A]である炭素繊維の体積含有率を適正化することができる。
 ここで、原料としての構成要素[D]の数平均粒径は、後述のとおり、構成要素[D]をレーザー顕微鏡(超深度カラー3D形状測定顕微鏡VK-9510:(株)キーエンス製)にて200倍以上に拡大して観察を行い、任意の粒子60個について、その粒子の外接する円の直径を粒径として計測後、平均した値が用いられる。
 また、プリプレグ中の構成要素[D]の数平均粒径は、後述のとおり、プリプレグの断面を落射照明型光学顕微鏡で200倍以上に拡大し、5カ所について写真撮影し、次いで、得られた断面写真から構成要素[D]の粒子について60個の粒径を計測後、平均した値が用いられる。
 本発明の構成要素[D]である熱可塑性樹脂を主成分とする粒子の形状は、無定形、球状、多孔質、針状、ウイスカー状およびフレーク状のいずれでもよい。これらのうち、好ましいのは球状である。球状であることにより、マトリックス樹脂の流動特性を低下させないため炭素繊維への含浸性により優れ、かつ、繊維強化複合材料への落錘衝撃時に、局所的な衝撃により生じる層間剥離がより低減されるため、かかる衝撃後の繊維強化複合材料に応力がかかった場合において、応力集中による破壊の起点となる前記局所的な衝撃に起因して生じた層間剥離部分がより少ないことから、高い耐衝撃性を発現する繊維強化複合材料が得られやすくなる。
 本発明の構成要素[D]である熱可塑性樹脂を主成分とする粒子の含有量は、構成要素[B]100質量部に対して好ましくは10~35質量部の範囲であり、さらに好ましくは15~25質量部の範囲である。該熱可塑性樹脂の含有量をかかる範囲とすることで、混合物の粘度、しいては得られるプリプレグのタック性と、得られる繊維強化複合材料の力学物性のバランスをとることができる。
 本発明の構成要素[E]および[F]は、本発明の繊維強化複合材料の厚み方向の導電性を高めるために含有する。
 本発明の繊維強化複合材料は、前記したように層間樹脂層に構成要素[D]を配置することで選択的に高靭性化し、耐衝撃性を向上している。ところが、このような繊維強化複合材料は、その繊維強化複合材料に高度な耐衝撃性を与える一方で層間に絶縁層となる樹脂層を生じるため、得られる繊維強化複合材料の厚み方向の導電性が著しく低下するという欠点がある。
 そこで、繊維強化複合材料の層間樹脂層の導電性を高めるため、本発明の構成要素[E]である導電性粒子を含有する。かかる導電性粒子は、電気的に良好な導体として振る舞う粒子であれば良く、導体のみからなるものに限定されない。
 構成要素[E]である導電性粒子の体積固有抵抗は、好ましくは10Ωcm以下であり、より好ましくは5Ωcm以下であり、さらに好ましくは3Ωcm以下である。体積固有抵抗をかかる範囲とすることで、層間樹脂層に導電経路を形成して厚み方向の導電性を高めることができる。ここで、体積固有抵抗は、4探針電極を有する円筒型セルに試料をセットし、試料に60MPaの圧力を加えた状態で試料の厚さと抵抗値を測定し、測定された値から算出した値である。
 かかる導電性粒子の具体例としては、金属粒子、ポリアセチレン粒子、ポリアニリン粒子、ポリピロール粒子、ポリチオフェン粒子、ポリイソチアナフテン粒子、ポリエチレンジオキシチオフェン粒子等の導電性ポリマー粒子、カーボン粒子の他、無機材料の核が導電性物質で被覆されてなる粒子、有機材料の核が導電性物質で被覆されてなる粒子を使用することができる。これらの中でも、高い導電性および安定性を示すことから、カーボン粒子、無機材料の核が導電性物質で被覆されてなる粒子、有機材料の核が導電性物質で被覆されてなる粒子が好ましく用いられ、特にカーボン粒子は安価に入手できることもあり特に好ましく用いられる。
 前記導電性粒子が、無機材料の核が導電性物質で被覆されてなる粒子の場合、核である無機材料としては、無機酸化物、無機有機複合物および炭素などを挙げることができる。
 前記核である無機材料に用いられる無機酸化物としては、例えば、シリカ、アルミナ、ジルコニア、チタニア、シリカ・アルミナ、シリカ・ジルコニア等、単一の無機酸化物、および2種以上の複合無機酸化物が挙げられる。
 前記核である無機材料に用いられる無機有機複合物としては、例えば、金属アルコキシドおよび/または金属アルキルアルコキシドを加水分解して得られるポリオルガノシロキサン等が挙げられる。
 前記核である無機材料に用いられる炭素としては、結晶質炭素、非晶質炭素が好ましく用いられる。非晶質炭素としては、例えば、“ベルパール(登録商標)”C-600、C-800、C-2000(エア・ウォーター(株)製)、“NICABEADS(登録商標)”ICB、PC、MC(日本カーボン(株)製)、グラッシーカーボン(東海カーボン(株)製)、高純度人造黒鉛SGシリーズ、SGBシリーズ、SNシリーズ(SECカーボン(株)製)、真球状カーボン(群栄化学工業(株)製)などが具体的に挙げられる。
 前記導電性粒子が、有機材料の核が導電性物質で被覆されてなる粒子の場合、核である有機材料としては、不飽和ポリエステル樹脂、ビニルエステル樹脂、エポキシ樹脂、ベンゾオキサジン樹脂、フェノール樹脂、尿素樹脂、メラミン樹脂およびポリイミド樹脂等の熱硬化性樹脂、ポリアミド樹脂、フェノール樹脂、アミノ樹脂、アクリル樹脂、エチレン-酢酸ビニル樹脂、ポリエステル樹脂、尿素樹脂、メラミン樹脂、アルキド樹脂、ポリイミド樹脂、ウレタン樹脂、および、ジビニルベンゼン樹脂等の熱可塑性樹脂等が挙げられ、これら有機材料は単独で用いても良く、複数種を組み合わせて用いても良い。中でも、優れた耐熱性を有するアクリル樹脂やジビニルベンゼン樹脂、および優れた耐衝撃性を有するポリアミド樹脂が好ましく用いられる。
 本発明の構成要素[E]である導電性粒子は、本発明の繊維強化複合材料の層間樹脂層の導電性を高めるため、層間樹脂層に局在化する必要がある。また、繊維強化複合材料において、層間樹脂層の上下部に位置する構成要素[A]と構成要素[E]である導電性粒子が接触していないと導電経路が形成されず、導電性向上効果が少なくなる。そのため、本発明の構成要素[E]である導電性粒子は数平均粒径を特定の範囲に調整する必要がある。
 しかしながら、一般的に繊維強化複合材料を航空機や自動車などの部材として使用するには、適用部位によりプリプレグ中の構成要素[A]である炭素繊維の目付(単位面積あたりの質量)を目的に応じて調整する必要がある。炭素繊維の目付が変更された場合、得られる繊維強化複合材料中の炭素繊維の体積含有率を一定にするためには層間樹脂層の厚みを調整する必要がある。したがって、本発明の構成要素[E]である導電性粒子の数平均粒径は、構成要素[A]の炭素繊維の目付に応じて変更する必要がある。
 そこで、本発明では構成要素[E]である導電性粒子の数平均粒径の範囲を次式(1)により調整する。
  [(A×0.1)+4]≦Psize≦[(A×0.1)+14]・・・・・・・・・・式(1)
  Psize:構成要素[E]である導電性粒子の1次粒子の数平均粒径(μm)
  A:プリプレグ中の構成要素[A]の目付(g/m)。
 構成要素[E]の数平均粒径を式(1)の範囲とすることで、プリプレグ中の構成要素[A]である炭素繊維の目付に応じて適切に導電経路を形成することができ、得られる繊維強化複合材料中の炭素繊維の体積含有率を所定の範囲とすることができる。
 ここで、原料としての構成要素[E]の数平均粒径は、後述のとおり、構成要素[E]をレーザー顕微鏡(超深度カラー3D形状測定顕微鏡VK-9510:(株)キーエンス製)にて200倍以上に拡大して観察を行い、任意の粒子60個の粒子について、その粒子の外接する円の直径を粒径として計測後、平均した値が用いられる。
 また、プリプレグ中の構成要素[E]の数平均粒径は、後述のとおり、プリプレグの断面を落射照明型光学顕微鏡で200倍以上に拡大し、5カ所について写真撮影し、次いで、得られた断面写真から構成要素[E]の粒子について60個の粒径を計測後、平均した値が用いられる。
 本発明の構成要素[E]である導電性粒子の含有量は、構成要素[B]100質量部に対して0.5~15質量部の範囲であることが好ましく、1~8質量部の範囲であることがより好ましく、2~5質量部の範囲であることがさらに好ましい。導電性粒子の含有量をかかる範囲とすることで得られる繊維強化複合材料の厚み方向の導電性と力学物性のバランスを取ることができる。
 本発明の繊維強化複合材料は、前記したように構成要素[E]である導電性粒子を繊維強化複合材料の層間樹脂層に配置することで絶縁層であった層間樹脂層の導電性を改善し、繊維強化複合材料の厚み方向の導電性を向上させる。しかしながら、構成要素[E]の導電性粒子の一部と、層間樹脂層の上下部に位置する炭素繊維束と接触が不十分であったりすると、導電経路が形成されず、導電性向上効果が薄れてしまう可能性がある。また、構成要素[A]からなる束の内部においても、構成要素[A]同士の接触が少ないと導電しにくいため導電性が低下する可能性がある。
 そこで、かかる問題を解決するため、本発明の構成要素[F]であるカーボン材料からなるフィラーを含有する。
 ここでいうカーボン材料からなるフィラーとは、特に制限はなく、例えば、カーボンナノファイバー、カーボンナノホーン、カーボンナノコーン、カーボンナノチューブ、カーボンナノコイル、カーボンマイクロコイル、カーボンナノウォール、カーボンナノチャプレット、フラーレン、カーボンブラック、グラファイト、グラフェン、カーボンナノフレーク、およびこれらの誘導体などが挙げられる。これらのカーボン系フィラーは1種を単独で使用しても2種以上を併用してもよい。このようなカーボン材料からなるフィラーのうち、供給、価格、導電性付与効果など総合的な面から、低価格で且つ導電性付与効果の高いカーボンブラックが好ましい。
 カーボンブラックとは、一般的に一次粒子の状態の数平均粒径が3~500nmに制御されて製造された炭素主体の粒子である。かかるカーボンブラックとしては、例えば、ファーネスブラック、中空ファーネスブラック、アセチレンブラック、チャンネルブラックなどを挙げることができる。
 カーボンブラックは、構成要素[B]に分散された場合、通常、一次粒子が複数個連結したストラクチャーを形成している。大きなストラクチャーを形成しやすいカーボンブラックが導電性に優れるとされているが、ストラクチャーが大きすぎると構成要素[A]からなる束の間や、接触不良を起こしている構成要素[A]からなる束と構成要素[E]である導電性粒子の隙間に入り込むことができなくなる。以上の理由により、本発明の構成要素[F]のストラクチャーの大きさは、数平均粒径で40~500nmの範囲であることが好ましく、50~400nmの範囲であることがより好ましく、60~300nmの範囲であることがさらに好ましい。カーボンブラックのストラクチャーの大きさをかかる範囲とすることで、構成要素[A]同士および構成要素[A]からなる束と構成要素[E]である導電性粒子が連結して導電経路を形成し、ひいては得られる繊維強化複合材料の厚み方向の導電性を飛躍的に向上することができる。
 ここで、カーボンブラックのストラクチャーの大きさは、後述のとおり、次の方法で得られた値が用いられる。すなわち、構成要素[B]にカーボンブラックを分散させた後、構成要素[C]である硬化剤を配合して、所定の型枠内に注入し、熱風オーブン中で室温から180℃の温度まで1分間に1.5℃ずつ昇温した後、180℃の温度下で2時間保持して2mm厚の樹脂硬化板を得た。得られた硬化板をミクロトームにて薄片加工を行い、透過型電子顕微鏡(TEM)にて観察し、任意のストラクチャー60個について、一番長い箇所の距離を粒径として計測し、平均した値である。
 本発明の構成要素[F]の含有量は、構成要素[B]100質量部に対して、0.5~15質量部の範囲であることが好ましく、1~10質量部の範囲であることがより好ましく、2~7質量部の範囲であることがさらに好ましい。構成要素[F]の含有量をかかる範囲とすることで得られる繊維強化複合材料の厚み方向の導電性と力学物性のバランスを取ることができる。
 本発明のプリプレグは、プリプレグのタックやドレープ特性や、繊維強化複合材料の耐衝撃性などの力学特性を改良するために、構成要素[B]として好ましく用いられるエポキシ樹脂に可溶性の熱可塑性樹脂や、ゴム粒子および熱可塑性樹脂粒子等の有機粒子や、無機粒子等を含有することができる。
 前記エポキシ樹脂に可溶性の熱可塑性樹脂の好適な例の一つとして、樹脂と強化繊維との接着性改善効果が期待できることから、水素結合性官能基を有する熱可塑性樹脂が挙げられる。水素結合性官能基としては、アルコール性水酸基、アミド結合、スルホニル基、カルボキシル基などを挙げることができる。
 アルコール性水酸基を有する熱可塑性樹脂としては、ポリビニルホルマールやポリビニルブチラールなどのポリビニルアセタール樹脂、ポリビニルアルコール、フェノキシ樹脂などを挙げることができる。
 アミド結合を有する熱可塑性樹脂としては、ポリアミド、ポリイミド、ポリアミドイミド、ポリビニルピロリドンなどを挙げることができる。
 スルホニル基を有する熱可塑性樹脂としては、ポリスルホンやポリエーテルスルホンなどを挙げることができる。
 カルボキシル基を有する熱可塑性樹脂としては、ポリエステル、ポリアミド、ポリアミドイミドなどを挙げることができる。
 上記のうち、ポリアミド、ポリイミドおよびポリスルホンは主鎖にエーテル結合、カルボニル基などの官能基を有してもよい。また、ポリアミドは、アミド基の窒素原子に置換基を有してもよい。
 エポキシ樹脂に可溶性の熱可塑性樹脂で、かつ水素結合性官能基を有する熱可塑性樹脂の市販品としては、ポリビニルアセタール樹脂としてデンカブチラール(電気化学工業(株)製)、およびポリビニルアルコール樹脂として“デンカポバール(登録商標)”(電気化学工業(株)製)、“ビニレック(登録商標)”(チッソ(株)製)、ポリアミド樹脂として“マクロメルト(登録商標)”(ヘンケル株式会社製)、“アミラン(登録商標)”CM4000(東レ株式会社製)、ポリイミドとして“ウルテム(登録商標)”(サビックイノベーティブプラスチックス社製)、“オーラム(登録商標)”(三井化学(株)製)、“ベスペル(登録商標)”(デュポン社製)PEEKポリマーとして“Victrex(登録商標)”(ビクトレックス社製)、ポリスルホンとして“UDEL(登録商標)”(ソルベイ アドバンストポリマーズ(株)製)、ポリビニルピロリドンとして、“ルビスコール(登録商標)”(ビーエーエスエフジャパン(株)製)を挙げることができる。
 前記エポキシ樹脂に可溶性の熱可塑性樹脂の別の好適な例として、アクリル系樹脂が挙げられる。アクリル系樹脂は、エポキシ樹脂との高い相溶性を有し、粘弾性制御のために好ましく用いられる。アクリル樹脂の市販品としては、“ダイヤナール(登録商標)”BRシリーズ(三菱レイヨン(株)製)、“マツモトマイクロスフェアー(登録商標)”M、M100、M500(松本油脂製薬(株)製)などを挙げることができる。
 前記エポキシ樹脂に可溶性の熱可塑性樹脂のさらに別の好適な例として、本発明の好適な構成要素[G]である、ポリアリールエーテル骨格で構成される熱可塑性樹脂が挙げられる。構成要素[G]として、ポリアリールエーテル骨格で構成される熱可塑性樹脂を用いることで、得られるプリプレグのタック性の制御、プリプレグを加熱硬化する時のマトリックス樹脂の流動性の制御および得られる繊維強化複合材料の耐熱性や弾性率を損なうことなく靭性を付与することができる。
 かかるポリアリールエーテル骨格で構成される熱可塑性樹脂としては、例えば、ポリスルホン、ポリフェニルスルホン、ポリエーテルスルホン、ポリエーテルイミド、ポリフェニレンエーテル、ポリエーテルエーテルケトン、ポリエーテルエーテルスルホンなどを挙げることができ、これらのポリアリールエーテル骨格で構成される熱可塑性樹脂は単独で用いてもよいし、二種以上で用いてもよい。
 なかでも、良好な耐熱性を得るためには、構成要素[G]のポリアリールエーテル骨格で構成される熱可塑性樹脂のガラス転移温度(Tg)が少なくとも150℃以上であることが好ましく、170℃以上であることがより好ましい。前記ポリアリールエーテル骨格で構成される熱可塑性樹脂のガラス転移温度が、150℃未満であると、成形体として用いた時に熱による変形を起こしやすくなる場合がある。
 前記ポリアリールエーテル骨格で構成される熱可塑性樹脂の末端官能基は、カチオン重合性化合物と反応することができることから、水酸基、カルボキシル基、チオール基、酸無水物などが好ましい。かかる末端官能基を有する、ポリアリールエーテル骨格で構成される熱可塑性樹脂の市販品として、ポリエーテルスルホンの市販品である“スミカエクセル(登録商標)”PES3600P、“スミカエクセル(登録商標)”PES5003P、“スミカエクセル(登録商標)”PES5200P、“スミカエクセル(登録商標)”PES7200P(以上、住友化学工業(株)製)、“Virantage(登録商標)”VW-10200RFP、“Virantage(登録商標)”VW-10700RFP(以上、ソルベイ アドバンストポリマーズ(株)製)などを使用することができ、また、特表2004-506789号公報に記載されるようなポリエーテルスルホンとポリエーテルエーテルスルホンの共重合体オリゴマー、さらにポリエーテルイミドの市販品である“ウルテム(登録商標)”1000、“ウルテム(登録商標)”1010、“ウルテム(登録商標)”1040(以上、SABIC(株)製)などが挙げられる。なお、本発明において、オリゴマーとは10個から100個程度の有限個のモノマーが結合した比較的分子量が低い重合体を指す。
 本発明の好適な構成要素[G]であるポリアリールエーテル骨格で構成される熱可塑性樹脂の含有量は、構成要素[B]100質量部に対し、好ましくは5~40質量部の範囲であり、より好ましくは10~35質量部の範囲、さらに好ましくは15~30質量部の範囲である。該熱可塑性樹脂の含有量をかかる範囲とすることで、混合物の粘度、しいては得られるプリプレグのタック性と、得られる繊維強化複合材料の力学物性のバランスをとることができる。
 本発明のプリプレグのタックやドレープ特性や、繊維強化複合材料の耐衝撃性などの力学特性を改良するために添加するゴム粒子としては、架橋ゴム粒子、および架橋ゴム粒子の表面に異種ポリマーをグラフト重合したコアシェルゴム粒子が、取り扱い性等の観点から好ましく用いられる。
 コアシェルゴム粒子の市販品としては、例えば、ブタジエン・メタクリル酸アルキル・スチレン共重合物からなる“パラロイド(登録商標)”EXL-2655、EXL-2611、EXL-3387(ロームアンドハーズ(株)製)、アクリル酸エステル・メタクリル酸エステル共重合体からなる“スタフィロイド(登録商標)”AC-3355、TR-2122(ガンツ(株)製)、“Nanostrength(登録商標)”M22、51、52、53(アルケマ社製)、“カネエース(登録商標)”MXシリーズ(カネカ(株)製)等を使用することができる。
 本発明における構成要素[D]、[E]、[F]のように、粒子が複数種類存在すると、自己凝集に加えて、異種粒子同士の凝集、所謂ヘテロ凝集が起きる場合がある。ここでいうヘテロ凝集とは、性質の異なる2種以上の粒子がファンデアルワールス力もしくは静電相互作用により凝集することである。
 一般に構成要素[F]は、ある程度自己凝集をしてストラクチャーを形成した方が導電パスを形成しやすく、導電性の向上には有利とされる。しかし、本発明のように構成要素[F]と構成要素[D]、[E]とを併用した場合、驚くべきことに構成要素[F]は構成要素[D]とヘテロ凝集しないで構成要素[B]中に分散した方がより高い導電性が発現する。これは構成要素[E]がある場合、構成要素[F]単独で導電パスを形成するよりも、導電性が高く、サイズの大きな構成要素[E]と組み合わさって導電パスを形成した方が、導電性の向上に効率が良いためと考えられる。そのため構成要素[F]が構成要素[E]とヘテロ凝集を形成することはより好ましい態様である。
 原料としての構成要素[D]、構成要素[E]と構成要素[F]のヘテロ凝集の有無は、例えば、次の方法で確認することができる。構成要素[B]に、構成要素[D]、構成要素[E]、構成要素[F]を分散させた後、構成要素[C]である硬化剤を配合して、所定の型枠内に注入し、熱風オーブン中で室温から180℃の温度まで1分間に1.5℃ずつ昇温した後、180℃の温度下で2時間保持して2mm厚の樹脂硬化板を得る。得られた硬化板をミクロトームにて薄片加工を行い、透過型電子顕微鏡(TEM)にて観察する。構成要素[D]と構成要素[F]がヘテロ凝集する場合、構成要素[F]が構成要素[D]に対して非常に小さいため、構成要素[F]が構成要素[D]の周囲を取り囲むように配置し、構成要素[E]の周囲や構成要素[B]と構成要素[C]からなる樹脂領域に構成要素[F]はほとんど観測されない。
 また、プリプレグを用いて観測する場合、後述のとおり、次の方法で確認できる。構成要素[A]、[B]、[C]、[D]、[E]、[F]を含むプリプレグを、4mm厚程度となる枚数を積層して積層体を得る。得られた予備積層体をオートクレーブにセットし、0.6MPaの圧力で、室温から180℃の温度まで1分間に1.7℃ずつ昇温し、180℃の温度下で2時間かけて硬化して繊維強化複合材料を得る。得られた繊維強化複合材料を束イオンビーム(FIB)装置にて薄片加工を行い、透過型電子顕微鏡(TEM)にて観察する。構成要素[F]を鮮明に観測するため倍率を上げて測定することで、[D]や[E]の粒径に対して視野領域が小さくなる場合は、測定は[D]および[E]の粒子の全円周に対して12分の1~2分の1の周囲領域付近に存在する[F]の量を測定し、各[D]および[E]粒子周囲全域の[F]の存在量を算出することができる。
 上記プリプレグを用いて観測する場合の方法により観測した構成要素[F]について、本発明では、構成要素[E]の粒子直径の外側110%の範囲内に存在する構成要素[F]のストラクチャー個数Neと、構成要素[D]の粒子直径の外側110%の範囲内に存在する構成要素[F]のストラクチャー個数Ndの比Ne/Ndが0.25以上であり、好ましくは0.6以上であり、より好ましくは1.0以上である。Ne/Ndの比が十分大きいことで、構成要素[F]は、構成要素[E]と炭素繊維の間の導電パス形成を補助し、繊維強化複合材料の導電率は飛躍的に向上する。Ne/Ndの比が0.25未満の場合、構成要素[E]と炭素繊維の間の導電パス形成を構成要素[F]が補助し難くなり、繊維強化複合材料の導電率の向上が不十分となる。なお、本発明において、粒子直径の外側110%の範囲内とは、粒子直径を100%として、その粒子直径の10%の長さ分、粒子外周から外側にはみ出た範囲に構成要素[F]が分布することを示す。例えば、粒子直径10μmの粒子に対しては粒子外周から1μmの範囲内を示す。
 上記Nd、Neの測定方法について、構成要素[F]の一部でも構成要素[D]あるいは構成要素[E]の粒子直径の外側110%の範囲内に存在する場合はNdあるいはNeに含める。構成要素[F]が、構成要素[D]または構成要素[E]の周囲で凝集してストラクチャー間の境界が分かりにくい場合は、構成要素[B]中で構成要素[F]単独で測定したストラクチャーサイズを直径とする円形状に当該凝集物を区切り、NdやNeの測定を行う。
 構成要素[B]中での構成要素[F]単独のストラクチャーサイズは、後述のとおり、次の方法で測定される。構成要素[B]、[C]および[F]からなるエポキシ樹脂組成物を型枠内に注入し、熱風オーブン中で室温から180℃の温度まで1分間に1.5℃ずつ昇温した後、180℃の温度下で2時間保持して2mm厚の樹脂硬化板を作製する。得られた硬化板をミクロトームにて薄片加工を行い、透過型電子顕微鏡(TEM)にて観察し、任意の粒子60個について、一番長い箇所の距離を粒径として計測後、平均した値を構成要素[B]中の構成要素[F]単独のストラクチャーサイズとする。
 また、構成要素[D]のゼータ電位をζd、構成要素[F]のゼータ電位をζfとしたときに、下記の式(2)~式(4)の少なくとも1つが満たされることで、構成要素[D]と構成要素[F]のヘテロ凝集が起こりにくくなるため好ましい。
  │ζd│ < 10mV・・・・・・・・・・式(2)
  │ζf│ < 10mV・・・・・・・・・・式(3)
  ζd × ζf > 0・・・・・・・・・・式(4)
 液体中に分散している粒子の多くは、プラスまたはマイナスに帯電しているが、この粒子から充分離れた電気的に中性領域をゼロ点と定義づけ、このゼロ点を基準として、粒子の移動が起こる滑り面の電位をゼータ電位(zeta-potential)と定義される。一般に異なる符号のゼータ電位を有する粒子同士はヘテロ凝集し易く、同符号のゼータ電位を有する粒子同士は静電気的な反発によりヘテロ凝集し難い。
 ゼータ電位の測定法として、例えば、電気泳動光散乱(Electrokinetic Light Scattaring)、分散液に交流電場を印加して音場を測定するESA(Electrokinetic Sonic Amplitude)法やコロイド振動電流法などが挙げられる。本発明のゼータ電位は、構成要素[D]、[E]、[F]をエタノールに分散させた後、電気泳動光散乱法により測定する。
 電気泳動光散乱法では、粒子(フィラー)に電場をかけることで粒子を移動(電気泳動)させ、さらに、移動する粒子にレーザー照射して、照射光と散乱光の周波数の変化から電気泳動速度を計算することによりゼータ電位を算出することができる。当業者に公知の各種機器は、例えばBrookhaven Instrument CorporationからのZetaPlusまたはZetaPALSのシリーズのようにその目的に適している。非常に小さな電位を測定する場合、または、無極性媒体中や高塩濃度で測定する場合は、いわゆる相分析光散乱(PALS)技術も適用することができる(例えばZetaPALS装置の使用)。
 本発明は構成要素[F]の良好な分散状態を得るために、必要に応じて本発明の構成要素[H]である分散剤を用いることができる。構成要素[H]は、構成要素[F]に直接作用して分散性を向上しても良いし、構成要素[D]あるいは[E]に作用することで表面状態や静電的状態を改質し、間接的に構成要素[F]の分散性に寄与しても良い。構成要素[H]を含有することにより構成要素[F]の分散状態が向上するため、構成要素[E]の粒子直径の外側110%の範囲内に存在する構成要素[F]のストラクチャー個数Neの、構成要素[D]の粒子直径の外側110%の範囲内に存在する構成要素[F]のストラクチャー個数Ndに対する比Ne/Ndが大きくなりやすい。
 構成要素[H]の分散剤としては、界面活性剤または樹脂型分散剤を使用することができ、樹脂型分散剤を使用することがより好ましい。
 界面活性剤は主にアニオン性、カチオン性、ノニオン性、両性に分類され、要求特性に応じて適宜好適な種類、含有量を選択して使用することができる。
 アニオン性界面活性剤としては、特に限定されるものではなく、脂肪酸塩、ポリスルホン酸塩、ポリカルボン酸塩、アルキル硫酸エステル塩、アルキルアリールスルホン酸塩、アルキルナフタレンスルホン酸塩、ジアルキルスルホン酸塩、ジアルキルスルホコハク酸塩、アルキルリン酸塩、ポリオキシエチレンアルキルエーテル硫酸塩、ポリオキシエチレンアルキルアリールエーテル硫酸塩、ナフタレンスルホン酸ホルマリン縮合物、ポリオキシエチレンアルキルリン酸スルホン酸塩、グリセロールボレイト脂肪酸エステル、ポリオキシエチレングリセロール脂肪酸エステルなどが挙げられ、具体的にはドデシルベンゼンスルホン酸ナトリウム、ラウリル酸硫酸ナトリウム、ポリオキシエチレンラウリルエーテル硫酸ナトリウム、ポリオキシエチレンノニルフェニルエーテル硫酸エステル塩、β-ナフタレンスルホン酸ホルマリン縮合物のナトリウム塩などが挙げられる。
 カチオン性活性剤としては、アルキルアミン塩類、第四級アンモニウム塩類があり、具体的にはステアリルアミンアセテート、トリメチルヤシアンモニウムクロリド、トリメチル牛脂アンモニウムクロリド、ジメチルジオレイルアンモニウムクロリド、メチルオレイルジエタノールクロリド、テトラメチルアンモニウムクロリド、ラウリルピリジニウムクロリド、ラウリルピリジニウムブロマイド、ラウリルピリジニウムジサルフェート、セチルピリジニウムブロマイド、4-アルキルメルカプトピリジン、ポリ(ビニルピリジン)-ドデシルブロマイド、ドデシルベンジルトリエチルアンモニウムクロリドなどが挙げられる。
 ノニオン性活性剤としては、ポリオキシエチレンアルキルエーテル、ポリオキシアルキレン誘導体、ポリオキシエチレンフェニルエーテル、ソルビタン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、アルキルアリルエーテルなどが挙げられ、具体的にはポリオキシエチレンラウリルエーテル、ソルビタン脂肪酸エステル、ポリオキシエチレンオクチルフェニルエーテル等などが挙げられる。
 両性界面活性剤としては、アミノカルボン酸塩などが挙げられる。
 界面活性剤の選択に際しては1種類に限定されるものではなく、アニオン性界面活性剤とノニオン性界面活性剤、カチオン性界面活性剤とノニオン性界面活性剤など、2種以上の界面活性剤を併用して使用することも可能である。その際の含有量は、それぞれの活性剤成分に対して後述の含有量とすることが好ましい。界面活性剤を2種以上使用する場合の組み合わせとして好ましいのは、アニオン性界面活性剤とノニオン性界面活性剤の併用である。その場合に使用されるアニオン性界面活性剤としてはポリカルボン酸塩が好ましく、ノニオン性界面活性剤としてはポリオキシエチレンフェニルエーテルが好ましい。
 樹脂型分散剤の具体例として、ポリウレタン;ポリアクリレート等のポリカルボン酸エステル;不飽和ポリアミド、ポリカルボン酸、ポリカルボン酸(部分)アミン塩、ポリカルボン酸アンモニウム塩、ポリカルボン酸アルキルアミン塩、ポリシロキサン、長鎖ポリアミノアマイドリン酸塩、水酸基含有ポリカルボン酸エステルや、これらの変性物;ポリ(低級アルキレンイミン)と遊離のカルボキシル基を有するポリエステルとの反応により形成されたアミドやその塩等の油性分散剤;(メタ)アクリル酸-スチレン共重合体、(メタ)アクリル酸-(メタ)アクリル酸エステル共重合体、スチレン-マレイン酸共重合体;ポリビニルアルコール、ポリビニルピロリドン等の水溶性樹脂や水溶性高分子化合物;ポリエステル系樹脂;変性ポリアクリレート系樹脂;エチレンオキサイド/プロピレンオキサイド付加化合物;リン酸エステル系樹脂等が挙げられる。これらは単独または2種以上を混合して用いることができるが、必ずしもこれらに限定されるものではない。
 構成要素[H]の分散剤の含有量は、構成要素[E]あるいは[F]に対して0.5~20重量%程度、または構成要素[D]に対して5~50重量%程度使用することが好ましい。
 市販の分散剤としては、ビックケミー社製のDISPERBYK-101、103、107、108、110、111、116、130、140、154、161、162、163、164、165、166、170、171、174、180、181、182、183、184、185、190、2000、2001、2020、2025、2050、2070、2095、2150、2155またはAnti-Terra-U、203、204、またはBYK-P104、P104S、220S、6919、またはLactimon、Lactimon-WSまたはBykumen等;日本ルーブリゾール社製のSOLSPERSE-3000、9000、13000、13240、13650、13940、16000、17000、18000、20000、21000、24000、26000、27000、28000、31845、32000、32500、32550、33500、32600、34750、35100、36600、38500、41000、41090、53095、55000、76500等;チバ・ジャパン社製のEFKA-46、47、48、452、4008、4009、4010、4015、4020、4047、4050、4055、4060、4080、4400、4401、4402、4403、4406、4408、4300、4310、4320、4330、4340、450、451、453、4540、4550、4560、4800、5010、5065、5066、5070、7500、7554、1101、120、150、1501、1502、1503、等;味の素ファインテクノ社製のアジスパーPA111、PB711、PB821、PB822、PB824等が挙げられる。
 本発明のプリプレグは、前記構成要素[A]~[F]を用いて、様々な公知の方法で得ることができる。例えば、マトリックス樹脂をアセトン、メチルエチルケトンおよびメタノールなどから選ばれる有機溶媒に溶解させて低粘度化し、強化繊維に含浸させるウェット法、あるいは、マトリックス樹脂を、有機溶媒を用いずに加熱により低粘度化し、強化繊維に含浸させるホットメルト法などの方法により、プリプレグを得ることができる。
 ウェット法では、強化繊維を、マトリックス樹脂を含む液体に浸漬した後に引き上げ、オーブンなどを用いて有機溶媒を蒸発させてプリプレグを得ることができる。
 また、ホットメルト法では、加熱により低粘度化したマトリックス樹脂を、直接、強化繊維に含浸させる方法、あるいは一旦マトリックス樹脂を離型紙などの上にコーティングした樹脂フィルム付きの離型紙シート(以降、「樹脂フィルム」と表すこともある)をまず作製し、次いで強化繊維の両側あるいは片側から樹脂フィルムを強化繊維側に重ね、加熱加圧することにより強化繊維にマトリックス樹脂を含浸させる方法などを用いることができる。
 本発明のプリプレグを作製する方法としては、プリプレグ中に残留する有機溶媒が実質的に皆無となるため、有機溶媒を用いずにマトリックス樹脂を強化繊維に含浸させるホットメルト法が好ましい。
 本発明のプリプレグをホットメルト法にて作製する方法としては、具体的には次に示す方法が挙げられるが、いずれの方法でも製造することが可能である。
 すなわち、1つ目の方法は、本発明の構成要素[B]~[F]からなる樹脂フィルムを構成要素[A]の両側あるいは片側から加熱加圧することにより、単段階でエポキシ樹脂組成物を含浸させる、いわゆる1段含浸ホットメルト法である。
 2つ目の方法は、エポキシ樹脂組成物を多段階に分けて、構成要素[A]の両側あるいは片側から加熱加圧することにより含浸させる、多段含浸ホットメルト法である。多段含浸ホットメルト法では、マトリックス樹脂を構成要素[A]に含浸させる回数は制限されないが、回数が増えるほど製造コストがかかる。そのため、エポキシ樹脂組成物を2段階に分けて、構成要素[A]の両側あるいは片側から加熱加圧することにより含浸させる、いわゆる2段含浸ホットメルト法が好ましく用いられる。2段含浸ホットメルト法の中でも、まず構成要素[B]、[C]、および[F]からなり、実質的に構成要素[D]と[E]を含まない樹脂フィルム1を、構成要素[A]の両側あるいは片側から含浸させプリプレグ前駆体を得た後、構成要素[B]~[F]からなり、構成要素[D]および[E]を含む樹脂フィルム2を該プリプレグ前駆体の両側あるいは片側に貼付することでプリプレグを得る方法が好ましく用いられる。
 1段含浸ホットメルト法を用いた場合は、本発明の構成要素[B]~[F]からなる樹脂フィルムを構成要素[A]に含浸させる過程において、構成要素[A]が構成要素[D]および[E]の粒子の侵入を遮断することにより、プリプレグの表面に選択的に構成要素[D]および[E]が配置される。しかしながら、構成要素[D]および[E]の粒子をすべて構成要素[A]で遮断することは困難であり、構成要素[D]の一部は、構成要素[A]からなる層に侵入することがある。
 一方、2段含浸ホットメルト法を用いた場合は、まず構成要素[D]および[E]を含まない樹脂フィルム1を構成要素[A]に含浸させ得られたプリプレグ前駆体に、構成要素[D]および[E]を含む樹脂フィルム2を貼付することで、プリプレグ表面に構成要素[D]および[E]の粒子を選択的に配置することができる。そのため、2段含浸ホットメルト法により得られたプリプレグは、後述する方法により測定されるプリプレグの平均厚み15%に相当する範囲に存在する構成要素[D]および[E]の量が多くなる。
 本発明のプリプレグは、構成要素[D]および[E]の粒子が、該プリプレグの表面から該プリプレグの平均厚み15%に相当する範囲に選択的に配置されることで、高度な耐衝撃性と厚み方向の導電性を両立する繊維強化複合材料を得ることができる。2段含浸ホットメルト法では、プリプレグ表面により多くの構成要素[D]および[E]の粒子を配置できため、好ましい。
 本発明で用いられる構成要素[B]~[F]からなるマトリックス樹脂(以下、エポキシ樹脂組成物と表す)は、様々な公知の方法で作製することができる。例えば、各成分をニーダーにて混練する方法が挙げられる。また、各成分を二軸の押出機を用いて混練してもよい。
 本発明のプリプレグを前記した2段含浸ホットメルト法にて作製する場合、1段目において構成要素[A]に含浸させてプリプレグ前駆体を得るための1次樹脂と、2段目において該プリプレグ前駆体の両側あるいは片側に貼り付ける2次樹脂が必要となる。前記1次樹脂は、構成要素[B]、[C]および[F]からなり、実質的に構成要素[D]および[E]を含まない。また、前記2次樹脂は構成要素[B]~[F]からなり、実質的に構成要素[D]および[E]を含む。
 かかる1次樹脂をニーダーにて製造する場合、例えば、先ず構成要素[B]とその他のエポキシ樹脂、熱可塑性樹脂などを配合する場合には100~200℃の範囲の温度で加熱混合する。次いで、70℃の温度以下まで冷却した後に構成要素[F]を分散させる。ここで、構成要素[F]は凝集体を形成している場合が多く、一度に全ての成分を混練した場合、分散不良となる場合がある。構成要素[F]が形成するストラクチャーの大きさは、前記したように大きすぎると構成要素[A]からなる束の間や、接触不良を起こしている構成要素[A]からなる束と構成要素[E]である導電性粒子の隙間に入り込むことができなくなるため100~800nmの範囲であると良く、好ましくは120~600nmの範囲であり、より好ましくは130~400nmの範囲である。構成要素[F]をかかる粒径の範囲に調整する方法として、構成要素[B]の一部と構成要素[F]にて、予めマスターバッチを製造して使用することができる。マスターバッチの製造方法は、様々な公知の方法で製造することができる。例えば、ボールミルによる攪拌、ホモミキサーやホモジナイザーによる攪拌、超音波による攪拌などがある。構成要素[F]を分散させた後、最後に構成要素[C]である芳香族アミン化合物を加えて混練する。
 本発明のプリプレグにおいては、得られたプリプレグの表面から該プリプレグの平均厚み13%に相当する範囲が、構成要素[B]~[F]で構成されていることが好ましい。すなわち、プリプレグの表面から該プリプレグの平均厚み13%に相当する範囲に構成要素[A]を含まないことが好ましい。このような構造のプリプレグとすることで、得られる繊維強化複合材料に層間樹脂層を形成することができる。ここで、プリプレグ表面のマトリックス樹脂層の厚みは、次の方法で評価できる。すなわち、本発明で得られたプリプレグを2枚の平滑な支持板の間にはさんで密着させ、長時間かけて徐々に温度を挙げて硬化させる。この時に重要なのは可能な限り低温でゲル化させることである。ゲル化しないうちに温度を上げるとプリプレグ中の樹脂が流動し、正確なマトリックス樹脂層の厚みを評価できないので、ゲル化した後、さらに時間をかけて徐々に温度をかけてプリプレグを硬化させ、繊維強化複合材料とする。得られた繊維強化複合材料の断面を研磨し、落射照明型光学顕微鏡で倍率200倍以上に拡大して写真を撮る。この断面写真を用い、まずプリプレグの平均厚みを求める。プリプレグの平均厚みは写真上で任意に選んだ少なくとも5ヶ所で測り、その平均をとる。次いで、繊維強化複合材料表面に形成されているマトリックス樹脂層の厚みを求める。マトリックス樹脂層の厚みも写真上で任意に選んだ少なくとも5ヶ所で測り、その平均をとる。得られたプリプレグの平均厚みとマトリックス樹脂層の平均厚みから比率を算出することができる。
 また、本発明のプリプレグは構成要素[D]および[E]それぞれの85質量%以上が、得られたプリプレグの表面から該プリプレグの平均厚み15%に相当する範囲に存在することが好ましい。すなわち、構成要素[D]および[E]がプリプレグの表面に局在化していることが好ましい。このような構造のプリプレグとすることで、得られる繊維強化複合材料に構成要素[D]および[E]を選択的に配置した層間樹脂層を形成することが可能となり、高度な耐衝撃性と厚み方向の導電性を有する繊維強化複合材料を得ることができる。
 なお、プリプレグ中の粒子の局在化の程度は次の方法で評価できる。すなわち、上述した方法にて繊維強化複合材料を得た後、断面を研磨し、落射照明型光学顕微鏡で倍率200倍以上に拡大して写真を撮る。この断面写真を用い、まずプリプレグの平均厚みを求める。プリプレグの平均厚みは写真上で任意に選んだ少なくとも5ヶ所で測り、その平均をとる。次に両方の支持板に接していた面からプリプレグの厚みの15%の位置にプリプレグの最表面と平行に線を引く。支持板に接していた面と15%の平行線の間に存在する各粒子の断面積の総和をプリプレグの両面について定量する。また、プリプレグ総厚みに渡って存在する構成要素[E]および[F]それぞれの粒子の断面積の総和についても定量する。プリプレグの表面から該プリプレグの平均厚み15%に相当する範囲に存在する各粒子の断面積の総和とプリプレグ総厚みに渡って存在する粒子の断面積の総和に対する比をプリプレグ表面からプリプレグの平均厚みの15%以内に存在する粒子量とする。粒子断面積の定量はイメージアナライザーによってもよいし、断面写真から所定の領域に存在する粒子部分をすべて切り取りその重量を秤ることによってもよい。粒子の部分的な分布のばらつきの影響を排除するため、この評価は得られた写真の幅全域に渡って行い、かつ、任意に選んだ5ヶ所以上の写真について同様の評価を行い、その平均をとる必要がある。粒子とマトリックス樹脂との見分けがつきにくい時は、一方を選択的に染色して観察する。顕微鏡は光学顕微鏡でも走査型電子顕微鏡でも良く、粒子の大きさや染色方法によって使い分けると良い。なお、本発明においては、上記のように面積比によって計算した比率を、プリプレグの表面から該プリプレグの平均厚み15%に相当する範囲に存在する粒子の質量比と定義している。
 なお、得られた繊維強化複合材料の断面を落射照明型光学顕微鏡で倍率200倍以上に拡大して写真を撮り、構成要素[D]および[E]それぞれの粒子について、直径を計測することで、構成要素[D]および[E]それぞれの数平均粒径を得ることができる。具体的には構成要素[D]および[E]それぞれの粒子について任意の粒子100個の粒径を計測後、平均した値を数平均粒径とする。
 構成要素[D]および[E]の数平均粒径の好ましい範囲は、前記したそれぞれの好ましい数平均粒径の範囲と同じである。
 さらに、本発明のプリプレグは、構成要素[A]である炭素繊維の体積含有率(以下、Vfと表す)が50~67体積%の範囲であることが好ましく、より好ましくは53~65体積%の範囲であり、さらに好ましくは56~62体積%の範囲である。Vfをかかる範囲とすることで、得られる繊維強化複合材料が高い導電率を得られるのみならず、得られる繊維強化複合材料の重量が増えるのを防ぎ、かつ、繊維強化複合材料内部に未含浸部分やボイドといった欠陥の発生を抑え力学物性の優れた繊維強化複合材料を得ることができる。
 ここで、プリプレグのVfは次の方法で求めた値である。すなわち、本発明で得られたプリプレグから100×100mmの試験片を切り出し、マイクロメーターにより厚みを測定して体積を算出する。次いでJIS K7071(1988)に記載のある「単位面積当たりプリプレグ質量、単位面積当たり炭素繊維質量、樹脂質量含有率および繊維質量含有率」の試験方法に従い、単位面積当たり炭素繊維質量を測定し、炭素繊維メーカーから提示されている密度を使用して体積を算出し、試験片の体積で割返すことで算出した値が用いられる。
 本発明の繊維強化複合材料は、本発明のプリプレグを硬化させることにより得ることができる。プリプレグを用いて繊維強化複合材料を成形する場合、様々な公知の方法を用いることができる。例えば、得られたプリプレグを所定の大きさに切断し、それを単独で、または所定枚数のプリプレグを積層後、圧力を付与しながら加熱硬化させる方法などを好ましく用いることができる。
 プリプレグの積層体に圧力を付与しながら加熱硬化させる方法には、プレス成形法、オートクレーブ成形法、バッギング成形法、ラッピングテープ法、および内圧成形法などがあり、使用用途により適宜使い分ける。中でも、航空機、宇宙機用途の場合、優れた性能と安定した品質の繊維強化複合材料が得られることから、オートクレーブ成形法を適用することが好ましい。
 繊維強化複合材料を成形する温度は、構成要素[B]の熱硬化性樹脂に含まれる構成要素[C]の硬化剤の種類により、適宜、調整する必要がある。例えば、構成要素[C]として芳香族アミン化合物を使用する場合には、通常、150~220℃の範囲の温度で成形が行われる。かかる成形温度が低すぎると、十分な速硬化性が得られない場合があり、逆に高すぎると、熱歪みによる反りが発生しやすくなったりする場合がある。
 繊維強化複合材料をオートクレーブ成形法で成形する場合の圧力は、プリプレグの厚みや炭素繊維の体積含有率などにより異なるが、通常、0.1~1MPaの範囲である。成形圧力をかかる範囲とすることで、内部にボイドの様な欠点がなく、反りなどの寸法変動のない繊維強化複合材料を得ることができる。
 本発明の繊維強化複合材料は、構成要素[D]である熱可塑性樹脂を主成分とする粒子、構成要素[E]である導電性粒子および構成要素[F]であるカーボン材料からなるフィラーをそれぞれ前述したように含有しており、高度な耐衝撃性と厚み方向の導電性を有することが特徴である。
 本発明において、耐衝撃性は衝撃後圧縮強度(以下、CAIと表す)にて測定することが可能である。前記CAIは、JIS K 7089(1996)に従って試験片の厚さ1mmあたり6.7Jの衝撃エネルギーを付与した後のCAIとして測定される。本発明の繊維強化複合材料のCAIは、230MPa以上であることが好ましく、より好ましくは280MPa以上である。CAIがかかる範囲である場合は、適用可能な航空機等の構造部材の幅が広くなり好ましい。CAIの上限値については特に制限はなく、数値が高いほど繊維強化複合材料を構造部材として適用した場合の安全性が高まる。
 本発明において、厚み方向の導電性は次の方法で測定することができる。すなわち、本発明で得られた一方向プリプレグを炭素繊維の長手方向を0°として、[+45°/0°/-45°/90°]を基本として2回繰り返したものを対称に積層し、オートクレーブにて加熱、加圧して得られた繊維強化複合材のパネルから縦50mm×横50mmの寸法で切り出し、両表面の樹脂層を研磨により完全に除去した後、両面に導電性ペーストを塗布してサンプル片を作製する。得られたサンプル片を、アドバンテスト(株)製R6581デジタルマルチメーターを用いて、四端子法で積層方向の抵抗を測定して求めた体積固有抵抗を厚み方向の導電性とする方法である。
 なお、導電性ペーストとしては、例えば“ドータイト(登録商標)”D-550、FN-101、D-500、D-362、XA-9015、FE-107、XC-12、XC-32、SH-3A、XA-436、FA-545、XA-824、FC-403R、XC-223、FA-501、FA-333、FA-353N、XA-602N、XA-472、FC-415、XB-101G、SN-8800G、XB-114、XB-107、XB-110、FH-889、FEL-190、FEL-615、FEC-198、FEA-685、XB-101G(藤倉化成(株)製);N-2057、N-2057A(昭栄化学工業(株)製);CA-6178、CA-6178B、CA-6178T、CA-2500E、CA-BE04(大研化学工業(株)製);SP、SD、ST、SF、SL、SI、NPS-J、NPS、NPS-J-HTB、NPS-HTB、NPG-J(ハリマ化成(株)製);“MDot(登録商標)”-SLP、“CUX(登録商標)”-Rシリーズ(三ツ星ベルト(株)製)などを用いることができる。
 本発明の繊維強化複合材料の厚み方向の導電性の指標である厚み方向の体積固有抵抗は6Ωcm以下であることが好ましく、より好ましくは4Ωcm以下であり、さらに好ましくは3Ωcm以下である。厚み方向の体積固有抵抗をかかる範囲以下とすることで、繊維強化複合材料を部材として用いた場合に落雷や静電気散逸などの電気的ダメージを抑制することができ、特に航空機用途の場合、落雷への対策として部材表面に設けられている金属メッシュなどを減らすことができることから軽量化にも効果がある。ここで、繊維強化複合材料の厚み方向とは、その製造に用いられる本発明のプリプレグが積層される方向を意味する。
 本発明のプリプレグから得られる繊維強化複合材料は、強度、剛性、耐衝撃性および厚み方向の導電性等に優れていることから航空機の胴体、主翼、尾翼およびフロアビーム等の一次構造部材やフラップ、エルロン、カウル、フェアリングおよび内装材等の二次構造部材、ロケットモーターケースおよび人工衛星構造材といった、航空・宇宙用途や自動車、船舶および鉄道車両等の移動体の構造材、建築材、風車の羽根、ICトレイやノートパソコンの筐体(ハウジング)などのコンピュータ用途など幅広い用途に好適に用いることができる。
 以下、実施例によって、本発明のプリプレグおよび炭素繊維複合材料について、さらに具体的に説明する。なお、組成比の単位「部」は、特に注釈のない限り質量部を意味する。また、各種特性(物性)の測定は、特に注釈のない限り温度23℃、相対湿度50%の環境下で行った。
 <実施例で用いられた材料>
 (1)構成要素[A]:炭素繊維
・“トレカ(登録商標)”T800S-24K-10E(繊維数24000本、引張弾性率:294GPa、密度1.8g/cm、東レ(株)製)。
 (2)構成要素[B]:熱硬化性樹脂(多官能エポキシ樹脂)
・“アラルダイト(登録商標)”MY721(成分:テトラグリシジルジアミノジフェニルメタン、ハンツマン・アドバンスト・マテリアルズ(株)製)
・“jER”630(成分:トリグリシジル-p-アミノフェノール、三菱化学(株)製)。
 (3)構成要素[B]:熱硬化性樹脂(2官能エポキシ樹脂)
・“アラルダイト(登録商標)”GY282(成分:ビスフェノールF型エポキシ樹脂、ハンツマン・アドバンスト・マテリアルズ(株)製)
・GAN(成分:N,N-ジグリシジルアニリン、日本化薬(株)製)。
 (4)構成要素[C]:硬化剤
・“セイカキュア(登録商標)”S(4,4’-ジアミノジフェニルメタン、セイカ(株)製)。
 (5)構成要素[D]:熱可塑性樹脂を主成分とする粒子
・ナイロン12粒子SP-10(成分:ナイロン12、数平均粒径:10μm、形状:球状、東レ(株)製)
・“Orgasol”1002D NAT1(成分:ナイロン6、数平均粒径:20μm、Arkema(株)製)
・粒子A(“トロガミド(登録商標)”CX7323を原料として作製した、数平均粒子径13μmの粒子)
(粒子Aの製造方法:国際公開2009/142231号パンフレットを参考とした。)
1000mlの耐圧ガラスオートクレーブ(耐圧硝子工業(株)ハイパーグラスターTEM-V1000N)の中に、ポリマーAとしてポリアミド(重量平均分子量17,000、デグザ社製“TROGAMID(登録商標)”CX7323)を35g、有機溶媒としてN-メチル-2-ピロリドン287g、ポリマーBとしてポリビニルアルコール28g(日本合成化学工業(株)製“ゴーセノール(登録商標)”GM-14重量平均分子量29,000、酢酸ナトリウム含量0.23質量%、SP値32.8(J/cm1/2)を加え、99体積%以上の窒素置換を行った後、180℃に加熱し、ポリマーが溶解するまで2時間攪拌を行った。その後、貧溶媒として350gのイオン交換水を、送液ポンプを経由して、2.92g/分のスピードで滴下した。約200gのイオン交換水を加えた時点で、系が白色に変化した。全量の水を入れ終わった後、攪拌したまま降温させ、得られた懸濁液を、ろ過し、イオン交換水700gを加えてリスラリー洗浄し、濾別したものを、80℃、10時間真空乾燥を行い、灰色に着色した固体を34g得た。得られた粉体を走査型電子顕微鏡にて観察したところ、平均粒子径13μmのポリアミド粒子であった。
 ・下記の製造方法で得られた粒子B(数平均粒径:13μm)
 透明ポリアミド(“グリルアミド(登録商標)”TR55、エムスケミー・ジャパン(株)製)90部、エポキシ樹脂(“jER(登録商標)”828、三菱化学(株)社製)7.5部および硬化剤(“トーマイド(登録商標)”#296、(株)ティーアンドケイ東華製)2.5部を、クロロホルム300部とメタノール100部の混合溶媒中に添加して均一溶液を得た。次に、得られた均一溶液を塗装用のスプレーガンを用い、撹拌している3000部のn-ヘキサンの液面に向かって霧状に吹き付けて溶質を析出させた。析出した固体を濾別し、n-ヘキサンで良く洗浄した後に、100℃の温度で24時間の真空乾燥を行い、球状のセミIPN構造を有するエポキシ改質ナイロン粒子Bを得た。得られたエポキシ改質ナイロン粒子Aをプレス成形して樹脂板とした後、ASTM D 5045-96に従い、コンパクトテンション法によるGIc値を測定した結果、4420J/mであった。
 (6)構成要素[E]:導電性粒子
・フェノール樹脂の粒子(マリリンHFタイプ、群栄化学工業(株)製)を2000℃で焼成し、分級をして得られた導電性粒子A(成分:カーボン、数平均粒径:28μm)
・“グラッシーカーボン(登録商標)”(成分:カーボン、数平均粒径:26μm、東海カーボン(株)製)
・“ミクロパール(登録商標)”AU225(成分:ジビニルベンゼンポリマー粒子にニッケルをメッキし、さらにその上に金をメッキした粒子、数平均粒径:25μm、積水化学(株)製)
・フェノール樹脂の粒子(マリリンHFタイプ、群栄化学工業(株)製)を2000℃で焼成し、分級をして得られた導電性粒子B(成分:カーボン、数平均粒径:36μm)。
・フェノール樹脂の粒子(マリリンHFタイプ、群栄化学工業(株)製)を2000℃で焼成し、分級をして得られた導電性粒子C(成分:カーボン、数平均粒径:33μm)。
・フェノール樹脂の粒子(マリリンHFタイプ、群栄化学工業(株)製)を2000℃で焼成し、分級をして得られた導電性粒子D(成分:カーボン、数平均粒径:20μm)。
・フェノール樹脂の粒子(マリリンHFタイプ、群栄化学工業(株)製)を2000℃で焼成し、分級をして得られた導電性粒子E(成分:カーボン、数平均粒径:16μm)。
 なお、各材料の数平均粒径は、後述する各種評価方法の「(I)構成要素[D]および[E]それぞれ単独での粒径測定」に従って測定したものである。また、プリプレグ中の数平均粒径は、後述する各種評価方法の「(IV)プリプレグ中の構成要素[D]および[E]それぞれ単独の粒径測定」に従って測定することができる。
 (7)構成要素[F]:カーボンブラック
・“Printex(登録商標)”L6(成分:ファーネスブラック、1次粒子の数平均粒径23nm、オリオン・エンジニアドカーボンズ(株)製)
・“Printex(登録商標)”L(成分:ファーネスブラック、1次粒子の数平均粒径23nm、オリオン・エンジニアドカーボンズ(株)製)
・“Printex(登録商標)”P(成分:ファーネスブラック、1次粒子の数平均粒径23nm、オリオン・エンジニアドカーボンズ(株)製)
・Specail Black550(成分:ファーネスブラック、1次粒子の数平均粒径23nm、オリオン・エンジニアドカーボンズ(株)製)
・ECP600JD(成分:ファーネスブラック、1次粒子の数平均粒径25nm、LION(株)製)
・“三菱(登録商標)”導電性カーボンブラック#3230B(成分:ファーネスブラック、1次粒子の数平均粒径23nm、三菱化学(株)製)。
 (8)構成要素[G]:ポリアリールエーテル骨格で構成される熱可塑性樹脂
・“Virantage(商標登録)”VW-10700RFP(成分;末端水酸基ポリエーテルスルホン、ソルベイ・スペシャリティ・ポリマーズ(株)製)。
 (9)構成要素[H]:分散剤
・DISPERBYK-111(ビックケミー社製)
・DISPERBYK-2155(ビックケミー社製)。
 <各種評価方法>
 (I)構成要素[D]および[E]それぞれ単独の粒径測定
 構成要素[D]および[E]それぞれについて、レーザー顕微鏡(超深度カラー3D形状測定顕微鏡VK-9510:(株)キーエンス製)にて200倍以上に拡大して観察を行い、任意の粒子60個の粒子について、その粒子の外接する円の直径を粒径として計測後、平均した値を構成要素[D]および[E]それぞれの数平均粒径とした。なお、粒径1μm未満の粒子は数平均粒径の計算には用いない。
 (II)構成要素[B]中の構成要素[F]であるカーボンブラックストラクチャーサイズの測定
 各実施例および比較例で得られた構成要素[B]、[C]および[F]からなるエポキシ樹脂組成物(1次樹脂)、または、[G]を含む組成の場合は構成要素[B]、[C]、[F]および[G]からなるエポキシ樹脂組成物(1次樹脂)を型枠内に注入し、熱風オーブン中で室温から180℃の温度まで1分間に1.5℃ずつ昇温した後、180℃の温度下で2時間保持して2mm厚の樹脂硬化板を作製した。得られた硬化板をミクロトームにて薄片加工を行い、透過型電子顕微鏡(TEM)にて観察し、任意の粒子60個について、一番長い箇所の距離を粒径として計測後、平均した値を構成要素[B]中の構成要素[F]であるカーボンブラックストラクチャーサイズとした。なお、粒径5μm以上の粒子はカーボンブラックストラクチャーサイズの計算には用いない。
 (III)ゼータ電位の測定方法
 構成要素[D]、[F]それぞれのゼータ電位は、大塚電子(株)製の電気泳動光散乱光度計ELS-Z2を用いて、電圧60V、エタノールを分散媒として室温(23℃±2℃)下にて測定した。分散媒に対して0.1wt%となるよう各試料を調製して測定溶液とした。測定は5回行い、その平均値をセータ電位ζ(mV)とした。
 (IV)プリプレグ中の構成要素[D]および[E]それぞれ単独の粒径測定
 各実施例および比較例で得られたプリプレグを、後述の(VII)の手法にて硬化したプリプレグの断面を落射照明型光学顕微鏡で200倍以上に拡大し、5カ所について写真撮影した。次いで、得られた断面写真から構成要素[D]および[E]それぞれの粒子について60個の粒径を計測後、平均した値を構成要素[D]および[E]それぞれの数平均粒径とした。なお、粒径1μm未満の粒子は数平均粒径の計算には用いない。
 (V)プリプレグ中の構成要素[F]の1次粒子の平均粒径の測定
 実施例および比較例で得られたプリプレグを、後述の(VII)の手法にて硬化したプリプレグを集束イオンビーム(FIB)装置にて薄片加工を行い、透過型電子顕微鏡(TEM)にて観察し、任意の粒子60個の粒径を計測後、平均した値を数平均粒径とした。
 (VI)構成要素[E]の粒子直径の外側110%の範囲内に存在する構成要素[F]のストラクチャー個数Neの、構成要素[D]の粒子直径の外側110%の範囲内に存在する構成要素[F]のストラクチャー個数Ndに対する比Ne/Ndの測定方法
 各実施例および比較例で得られたプリプレグに含まれる炭素繊維の長手方向を0°とし、[+45°/0°/-45°/90°]を基本として3回繰り返したものを対称に積層し、合計24plyの疑似等方予備積層体とする。得られた予備積層体をオートクレーブにセットし、0.6MPaの圧力で、室温から180℃の温度まで1分間に1.7℃ずつ昇温し、180℃の温度下で2時間かけて硬化して繊維強化複合材料を得た。得られた繊維強化複合材料を集束イオンビーム(FIB)装置にて薄片加工を行い、透過型電子顕微鏡(TEM)を用いて構成要素[D]および[E]の各20個対して粒子直径の外側110%の範囲内に存在する構成要素[F]の量とNe/Ndを測定した。
 (VII)プリプレグ表面からプリプレグ平均厚みの13%に相当する範囲の構成要素の評価
 各実施例および比較例で得られたプリプレグを、2枚の表面の平滑なポリ四フッ化エチレン樹脂板間に挟持して密着させ、7日間かけて徐々に150℃迄温度を上昇させてゲル化および硬化させて板状の硬化物を作製した。硬化後、密着面と垂直な方向(厚み方向)に切断し、断面を研磨後、落射照明型光学顕微鏡で200倍以上に拡大し、プリプレグの上下面が視野内に納まるようにして写真撮影した。断面写真の横方向の5ヵ所でポリ四フッ化エチレン樹脂板間の間隔を測定し、その平均値をプリプレグの平均厚みとした。
 また、この写真より、プリプレグの表面からプリプレグの平均厚みの13%に相当する範囲において、構成要素[A]である炭素繊維の有無を確認した。
 (VIII)プリプレグの平均厚みの15%の深さの範囲に存在する構成要素[D]および[E]である各粒子の存在率評価
 各実施例および比較例で得られたプリプレグを、前記(VII)の手法によりプリプレグの平均厚みを測定した。このプリプレグ硬化物の写真に、プリプレグ硬化物の両表面から、プリプレグの平均厚みの15%の深さの位置に、プリプレグの表面と平行な線を2本引き、プリプレグの表面と該平行線の間に存在する構成要素[D]および[E]の各粒子について合計面積と、プリプレグの厚みに渡って存在する全粒子の合計面積を求め、プリプレグの厚さ100%に対して、プリプレグの表面から15%の深さの範囲に存在する粒子の存在率を計算した。ここで、各粒子の合計面積は、断面写真から粒子部分を切り抜き、その質量から換算して求めた。
 (IX)プリプレグ中の炭素繊維の体積含有率(Vf)測定
 先ず、JIS K7071(1988)に記載のある「単位面積当たりプリプレグ質量、単位面積当たり炭素繊維質量、樹脂質量含有率および繊維質量含有率」の試験方法に従い、単位面積当たり炭素繊維質量を測定する。具体的には各実施例および比較例で得られたプリプレグから100×100mmの試験片を切り出し、任意の5点の厚みを測定して平均値を平均厚みとし、体積を計算する。次いで、23℃の温度において、試験片をビーカーに入れて約200mlのメチルエチルケトン(MEK)を入れ、15分間超音波照射を行い攪拌する。予め質量を測定したガラスフィルタを用いて上澄み液をろ過した後、構成要素[A]である炭素繊維が残っているビーカーにMEKを入れ、前記操作を3回繰り返し行う。3回目の操作終了後、炭素繊維もガラスフィルタに移し、吸引濾過する。ろ過後、炭素繊維をガラスフィルタごと、105℃の温度で90分間、乾燥機中で乾燥し、デシケーター中で45分間以上冷却した後、炭素繊維が入ったままのガラスフィルタの質量を測定し、予め測定していたガラスフィルタの質量を差し引いた値を炭素繊維の質量とする。炭素繊維メーカーから提示されている炭素繊維の密度を使用し、測定で得られた炭素繊維質量から体積を算出する。得られた炭素繊維の体積を、初めに算出した試験片の体積で割返すことでVfを算出した。測定は3回行い、平均値をプリプレグのVf(体積%)とした。
 (X)繊維強化複合材料の導電性測定方法
 各実施例および比較例で得られたプリプレグに含まれる炭素繊維の長手方向を0°とし、[+45°/0°/-45°/90°]を基本として2回繰り返したものを対称に積層し、合計16plyの疑似等方予備積層体とする。得られた予備積層体をオートクレーブにセットし、0.6MPaの圧力で、室温から180℃の温度まで1分間に1.7℃ずつ昇温し、180℃の温度下で2時間かけて硬化して繊維強化複合材料を得た。得られた繊維強化複合材料から、縦40mm×横40mmのサンプルを切り出し、両表面の樹脂層を研磨除去後、両面に導電性ペーストN-2057(昭栄化学工業(株)製)を、バーコーターを用いて約70μmの厚さで塗布し、180℃の温度に調整した熱風オーブン中にて、30分かけて硬化させ、導電性評価用のサンプル得た。得られたサンプルの厚さ方向の抵抗を、アドバンテスト(株)製R6581デジタルマルチメーターを用いて四端子法により測定した。測定は6回行い、平均値を繊維複合材料の体積固有抵抗(Ωcm)とした。
 (XI)繊維強化複合材料の衝撃後圧縮強度(CAI)測定方法
 各実施例および比較例で得られたプリプレグに含まれる炭素繊維の長手方向を0°とし、[+45°/0°/-45°/90°]を基本として3回繰り返したものを対称に積層し、合計24plyの疑似等方予備積層体とする。得られた予備積層体をオートクレーブにセットし、0.6MPaの圧力で、室温から180℃の温度まで1分間に1.7℃ずつ昇温し、180℃の温度下で2時間かけて硬化して繊維強化複合材料を得た。得られた繊維強化複合材料から、縦150mm×横100mmの矩形試験片を切り出し、試験片の中心にJIS K 7089(1996)に従って試験片の厚さ1mmあたり6.7Jの落錘衝撃を与えた後、JIS K 7089(1996)に従い残存圧縮強度を測定した。測定は6回行い、平均値を衝撃後圧縮強度(CAI)(MPa)とした。
 <実施例1>
 次の手法にて、プリプレグを作製した。
 (カーボンブラックマスターバッチの調合)
 構成要素[B]に該当するエポキシ樹脂である“アラルダイト(登録商標)”MY721を80部に対し、構成要素[F]に該当するカーボンブラックである“Printex(登録商標)”Lを20部加え、スパチュラなどを使用して軽く攪拌した後、3本ロールでカーボンブラックを分散させてカーボンブラックマスターバッチとした。該操作は室温環境下にて行った。
 (1次樹脂の調合)
 混練装置中に、表1に記載の構成要素[B](内、前記したカーボンブラックマスターバッチに含まれる分を除く)および構成要素[G]を投入して加熱混練を行い、構成要素[G]成分を溶解させた。予め準備したカーボンブラックマスターバッチ8部(内、カーボンブラック成分が1.6部)を加えて攪拌した。
 次いで、表1に記載の構成要素[C]を加えて撹拌し、エポキシ樹脂組成物の1次樹脂を得た。
 得られた樹脂組成物について、前記した各種評価方法の「(III)構成要素[B]中の構成要素[F]であるカーボンブラックストラクチャーサイズの測定」に従い、構成要素[B]中の構成要素[F]であるカーボンブラックストラクチャーサイズを測定したところ180nmであった。
 (2次樹脂の調合)
 混練装置中に、表1に記載の構成要素[B](内、前記したカーボンブラックマスターバッチに含まれる分を除く)および構成要素[G]を投入して加熱混練を行い、構成要素[G]成分を溶解させた。予め準備したカーボンブラックマスターバッチ8部(内、カーボンブラック成分が1.6部)を加えて攪拌し均一に分散させた。次いで、表1に記載の構成要素[E]を加えて均一になるまで攪拌した後、表1に記載の構成要素[D]を加えて攪拌した。表1に記載している構成要素[C]を加えて30分間撹拌し、エポキシ樹脂組成物の2次樹脂を得た。
 (プリプレグの作製)
 前記にて得られた1次樹脂をナイフコーターを用いて離型紙上に塗布して、樹脂目付が24g/mの樹脂フィルム1を2枚作製した。同様に前記にて得られた2次樹脂を離型紙上に塗布して、樹脂目付が23.5g/mの樹脂フィルム2を2枚作製した。
 次に、炭素繊維目付が192g/mのシート状となるように一方向に配列させた構成要素[A]である炭素繊維に、得られた樹脂フィルム1を2枚、炭素繊維の両面から重ね、加熱加圧してエポキシ樹脂組成物を含浸させてプリプレグ前駆体を得た。
 得られたプリプレグ前駆体に、樹脂フィルム2を2枚プリプレグ前駆体の両面から重ね、加熱加圧してプリプレグを得た。
 得られたプリプレグを前記した各種評価方法の「(IX)プリプレグ中の炭素繊維の体積含有率(Vf)測定」に従い、Vfを測定した結果、57体積%であり、構造用部材に適したものであった。
 得られたプリプレグ中に占める構成要素[B]~[G]の構成は次の通りである。
 ・構成要素[B];
 “アラルダイト(登録商標)”MY721:60部、
 “アラルダイト(登録商標)”GY282:40部。
 ・構成要素[C];
 “セイカキュア(登録商標)”S:42部。
 ・構成要素[D];
 粒子A:21.3部。
 ・構成要素[E];
 導電性粒子A:4.3部。
 ・構成要素[F];
 “Printex(登録商標)”L:2.4部。
 ・構成要素[G];
 “Virantage(商標登録)”VW-10700RFP:16部。
 構成要素[D]、構成要素[F]それぞれについて、「(III)ゼータ電位の測定方法」に従ってゼータ電位の測定を行った結果、構成要素[D]:5mV、構成要素[F]:-43mVであった。
 (プリプレグ特性の評価)
 得られたプリプレグについて、プリプレグ表面からプリプレグ平均厚みの13%に相当する範囲の構成要素の評価を前記した各種評価方法の「(VII)プリプレグ表面からプリプレグ平均厚みの13%に相当する範囲の構成要素の評価」に従い行った結果、構成要素[A]を含まなかった。また、プリプレグ表面からプリプレグ平均厚みの15%の深さの範囲に存在する構成要素[D]および[E]である各粒子の存在率を前記した各種評価方法の「(VIII)プリプレグの平均厚みの15%の深さの範囲に存在する構成要素[D]および[E]である各粒子の存在率評価」に従い行った結果、構成要素[D]は構成要素[E]の全量に対し、95質量%であり、構成要素[D]は構成要素[D]の全量に対し、99質量%であった。「(IV)プリプレグ中の構成要素[D]および[E]それぞれ単独の粒径測定」に従い[D]および[E]の粒径を測定したところ、「(I)構成要素[D]および[E]それぞれ単独の粒径測定」により測定した数平均粒子径と変化がなかったため、実施例1~35、および比較例1~7の測定は「(I)構成要素[D]および[E]それぞれ単独の粒径測定」により測定した数平均粒子径を用いた。
 (繊維強化複合材料特性の評価)
 得られたプリプレグを用い、前記した各種評価方法の「(X)繊維強化複合材料の導電性測定方法」および「(XI)繊維強化複合材料の衝撃後圧縮強度(CAI)測定方法」に従い、繊維強化複合材料を作製して得られたパネルの厚み方向の導電性およびCAI測定を行った結果、厚み方向の体積固有抵抗値は2.6Ωcm、CAIは290MPaであった。
 <実施例2~35>
 表1~5に示すように組成を変更した以外は実施例1と同様にエポキシ樹脂組成物である1次樹脂、2次樹脂を作製し、2段含浸ホットメルト法にてプリプレグを得た後、繊維強化複合材料を作製して各種測定を行った。
 各種測定の結果は表1~5に示す通りであり、実施例2~35のように材料や含有比を所定の範囲内で変動させても樹脂特性、プリプレグ特性に問題なく、優れた厚み方向の導電性と耐衝撃性を有する繊維強化複合材料が得られた。
 <比較例1~7>
 表6に示すように組成および構成要素[A]である炭素繊維の目付を変更した以外は実施例1と同様にエポキシ樹脂組成物である1次樹脂、2次樹脂を作製し、2段含浸ホットメルト法にてプリプレグを得た後、繊維強化複合材料を作製して各種測定を行った。
 比較例1は構成要素[D]を含まない。比較例1で得られる繊維強化複合材料は、厚み方向に対する体積固有抵抗値が小さいものの、衝撃後圧縮強度は低い。実施例1~35と対比すると、構成要素[D]を含むことで、実施例1~35で得られる繊維強化複合材料は、衝撃後圧縮強度が向上していることがわかる。
 比較例2、3は、構成要素[E]および[F]のどちらか1つを含まない。それにより、繊維強化複合材料の厚み方向に対する体積固有抵抗値が大きくなっている。実施例1~35と対比すると、構成要素[E]および[F]の両方を含有することで、実施例1~35で得られる繊維強化複合材料の厚み方向の導電性が向上していることがわかる。
 比較例4、5は、構成要素[D]および[E]の両方を含むが式(1)を満たさない。比較例4と実施例1~35と対比すると、実施例1~35で得られる繊維強化複合材料は、式(1)を満たすことで厚み方向の導電性が向上していることがわかる。また、比較例5と実施例1~35と対比すると、実施例1~35で得られる繊維強化複合材料は、式(1)を満たすことで衝撃後圧縮強度が向上していることがわかる。
 比較例6、7は、構成要素[D]および[E]の両方を含み、かつ、式(1)を満たすが、構成要素[D]と[F]がヘテロ凝集し、Ne/Ndは0.25未満である。比較例6、7で得られる繊維強化複合材料は、繊維強化複合材料の厚み方向に対する体積固有抵抗値が小さい。実施例1~35と対比すると、実施例1~35で得られる繊維強化複合材料は、Ne/Ndが0.25以上あり、[D]と[F]が式(2)~(4)を満たすことで厚み方向の導電性が大きく向上していることがわかる。
 比較例6と実施例34、35を対比すると、実施例34、35で得られる繊維強化複合材料は、構成要素[H]の効果によりNe/Ndが改善し、厚み方向の導電性が大きく向上していることがわかる。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006

Claims (11)

  1. 少なくとも次の構成要素[A]~[F]を含み、構成要素[E]の粒子直径の外側110%の範囲内に存在する構成要素[F]のストラクチャー個数Neの、構成要素[D]の粒子直径の外側110%の範囲内に存在する構成要素[F]のストラクチャー個数Ndに対する比Ne/Ndが0.25以上であることを特徴とするプリプレグ。
    [A]:炭素繊維
    [B]:熱硬化性樹脂
    [C]:硬化剤
    [D]:1次粒子の数平均粒径が5~50μmである熱可塑性樹脂を主成分とする粒子
    [E]:構成要素[D]と異なる粒子であって1次粒子の数平均粒径が次式(1)の範囲である導電性粒子
      [(A×0.1)+4]≦Psize≦[(A×0.1)+14]・・・・・・・・・・式(1)
      Psize:構成要素[E]である導電性粒子の1次粒子の数平均粒径(μm)
      A:プリプレグ中の構成要素[A]の目付(g/m
    [F]:カーボン材料からなるフィラー
  2. 構成要素[D]のゼータ電位をζd、構成要素[F]のゼータ電位をζfとしたときに、下記の式(2)~式(4)の少なくとも1つが満たされる、請求項1に記載のプリプレグ。
      │ζd│ < 10mV・・・・・・・・・・式(2)
      │ζf│ < 10mV・・・・・・・・・・式(3)
      ζd × ζf > 0・・・・・・・・・・式(4)
  3. さらに次の構成要素[G]を含む、請求項1または2に記載のプリプレグ。
    [G]:ポリアリールエーテル骨格で構成される熱可塑性樹脂
  4. 構成要素[F]がカーボンブラック、カーボンナノチューブ、グラフェン、フラーレン、カーボンナノファイバーからなる群から選択される少なくとも1つを含む、請求項1~3のいずれかに記載のプリプレグ。
  5. 構成要素[F]を、構成要素[B]100質量部に対して0.5~15質量部含む、請求項1~4のいずれかに記載のプリプレグ。
  6. 構成要素[E]がカーボン粒子である、請求項1~5のいずれかに記載のプリプレグ。
  7. 構成要素[E]を、構成要素[B]100質量部に対して0.5~15質量部含む、請求項1~6のいずれかに記載のプリプレグ。
  8. 構成要素[D]の熱可塑性樹脂を主成分とする粒子が、ポリアミドを主成分とする粒子である、請求項1~7のいずれかに記載のプリプレグ。
  9. 構成要素[D]を、構成要素[B]100質量部に対して10~35質量部含む、請求項1~8のいずれかに記載のプリプレグ。
  10. さらに次の構成要素[H]を含む、請求項1~9に記載のプリプレグ。
    [H]:分散剤
  11. 請求項1~10のいずれかに記載のプリプレグを加熱硬化させて得られる、厚み方向の体積固有抵抗が6Ωcm以下である繊維強化複合材料。
PCT/JP2015/058236 2014-03-24 2015-03-19 プリプレグおよび繊維強化複合材料 WO2015146781A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/128,583 US10597503B2 (en) 2014-03-24 2015-03-19 Prepreg and fiber reinforced composite material
EP15768492.9A EP3093308B1 (en) 2014-03-24 2015-03-19 Prepreg and fiber-reinforced composite material
JP2015515338A JP5831668B1 (ja) 2014-03-24 2015-03-19 プリプレグおよび繊維強化複合材料
CN201580015001.6A CN106133036B (zh) 2014-03-24 2015-03-19 预浸料坯及纤维增强复合材料
KR1020167026286A KR101741387B1 (ko) 2014-03-24 2015-03-19 프리프레그 및 섬유 강화 복합 재료

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-059519 2014-03-24
JP2014059519 2014-03-24

Publications (1)

Publication Number Publication Date
WO2015146781A1 true WO2015146781A1 (ja) 2015-10-01

Family

ID=54195302

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/058236 WO2015146781A1 (ja) 2014-03-24 2015-03-19 プリプレグおよび繊維強化複合材料

Country Status (6)

Country Link
US (1) US10597503B2 (ja)
EP (1) EP3093308B1 (ja)
JP (1) JP5831668B1 (ja)
KR (1) KR101741387B1 (ja)
CN (1) CN106133036B (ja)
WO (1) WO2015146781A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105802187A (zh) * 2016-04-18 2016-07-27 和县隆盛精密机械有限公司 一种自重轻节能的打磨用机械臂元件及其制备方法
JP2017132932A (ja) * 2016-01-29 2017-08-03 東レ株式会社 プリプレグおよび繊維強化複合材料
WO2019013230A1 (ja) * 2017-07-11 2019-01-17 田中貴金属工業株式会社 導電性接着剤組成物
WO2019098243A1 (ja) * 2017-11-14 2019-05-23 東レ株式会社 プリプレグおよび繊維強化複合材料
KR20200109593A (ko) * 2019-03-13 2020-09-23 경상대학교산학협력단 열가소성 수지 매트릭스 섬유, 이를 포함하는 고함침성 탄소섬유 강화 열가소성 플라스틱 복합재료 및 이의 제조방법
CN113402750A (zh) * 2021-06-04 2021-09-17 中国航发北京航空材料研究院 一种具有三维网络结构的石墨烯预浸料的制备方法
WO2024029541A1 (ja) * 2022-08-02 2024-02-08 株式会社スリーボンド 導電性組成物、導電性接着剤および硬化物

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107587676B (zh) * 2017-08-31 2020-04-21 苏州仲勉装饰有限公司 一种碳纤维改性的电热装饰板及其制备方法
WO2019049921A1 (ja) 2017-09-11 2019-03-14 株式会社Ihi 炭素繊維複合素材及びその製造方法、並びに炭素繊維複合素材の製造装置、プリプレグ、炭素繊維強化樹脂複合材料
CN110885535B (zh) * 2019-12-20 2022-08-12 上海复合材料科技有限公司 一种适用于热压罐始加压环氧树脂组合物的制备方法
CN111531767B (zh) * 2020-04-03 2022-02-15 广西大学 一种无机富勒烯碳纤维复合材料无人机螺旋桨的制备方法
EP4182389A1 (en) * 2020-07-17 2023-05-24 LyondellBasell Advanced Polymers Inc. Compositions with increased electrical conductivity

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010508416A (ja) * 2006-11-06 2010-03-18 ヘクセル コンポジット、リミテッド 改良型複合材料
JP2011144213A (ja) * 2010-01-12 2011-07-28 Toray Ind Inc 炭素繊維強化複合材料用エポキシ樹脂組成物、プリプレグおよび炭素繊維強化複合材料
JP2011213991A (ja) * 2010-03-16 2011-10-27 Toray Ind Inc 炭素繊維強化複合材料
WO2012124450A1 (ja) * 2011-03-17 2012-09-20 東レ株式会社 プリプレグ、プリプレグの製造方法および炭素繊維強化複合材料
WO2014017339A1 (ja) * 2012-07-25 2014-01-30 東レ株式会社 プリプレグおよび炭素繊維強化複合材料
JP2014141656A (ja) * 2012-12-26 2014-08-07 Toray Ind Inc プリプレグおよび繊維強化複合材料

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4141078B2 (ja) * 2000-03-14 2008-08-27 富士ゼロックス株式会社 静電荷像現像用トナー及び静電荷像現像用現像剤、並びに画像形成方法
GB0020620D0 (en) 2000-08-22 2000-10-11 Cytec Tech Corp Compostions adapted for chain linking
JP4969363B2 (ja) * 2006-08-07 2012-07-04 東レ株式会社 プリプレグおよび炭素繊維強化複合材料
JP5185966B2 (ja) 2010-03-25 2013-04-17 三菱重工業株式会社 船舶の抵抗低減装置
US10192660B2 (en) * 2010-07-02 2019-01-29 Sri Lanka Institute of Nanotechnology (Pvt) Ltd. Process for preparation of nanoparticles from magnetite ore
TWI519608B (zh) * 2013-12-27 2016-02-01 財團法人工業技術研究院 混成碳黑、及包含其之塗佈組合物與遮光材料

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010508416A (ja) * 2006-11-06 2010-03-18 ヘクセル コンポジット、リミテッド 改良型複合材料
JP2011144213A (ja) * 2010-01-12 2011-07-28 Toray Ind Inc 炭素繊維強化複合材料用エポキシ樹脂組成物、プリプレグおよび炭素繊維強化複合材料
JP2011213991A (ja) * 2010-03-16 2011-10-27 Toray Ind Inc 炭素繊維強化複合材料
WO2012124450A1 (ja) * 2011-03-17 2012-09-20 東レ株式会社 プリプレグ、プリプレグの製造方法および炭素繊維強化複合材料
WO2014017339A1 (ja) * 2012-07-25 2014-01-30 東レ株式会社 プリプレグおよび炭素繊維強化複合材料
JP2014141656A (ja) * 2012-12-26 2014-08-07 Toray Ind Inc プリプレグおよび繊維強化複合材料

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3093308A4 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017132932A (ja) * 2016-01-29 2017-08-03 東レ株式会社 プリプレグおよび繊維強化複合材料
CN105802187A (zh) * 2016-04-18 2016-07-27 和县隆盛精密机械有限公司 一种自重轻节能的打磨用机械臂元件及其制备方法
WO2019013230A1 (ja) * 2017-07-11 2019-01-17 田中貴金属工業株式会社 導電性接着剤組成物
WO2019098243A1 (ja) * 2017-11-14 2019-05-23 東レ株式会社 プリプレグおよび繊維強化複合材料
JPWO2019098243A1 (ja) * 2017-11-14 2020-10-01 東レ株式会社 プリプレグおよび繊維強化複合材料
JP7183793B2 (ja) 2017-11-14 2022-12-06 東レ株式会社 プリプレグおよび繊維強化複合材料
KR20200109593A (ko) * 2019-03-13 2020-09-23 경상대학교산학협력단 열가소성 수지 매트릭스 섬유, 이를 포함하는 고함침성 탄소섬유 강화 열가소성 플라스틱 복합재료 및 이의 제조방법
KR102191092B1 (ko) 2019-03-13 2020-12-15 경상대학교산학협력단 열가소성 수지 매트릭스 섬유, 이를 포함하는 고함침성 탄소섬유 강화 열가소성 플라스틱 복합재료 및 이의 제조방법
CN113402750A (zh) * 2021-06-04 2021-09-17 中国航发北京航空材料研究院 一种具有三维网络结构的石墨烯预浸料的制备方法
WO2024029541A1 (ja) * 2022-08-02 2024-02-08 株式会社スリーボンド 導電性組成物、導電性接着剤および硬化物

Also Published As

Publication number Publication date
KR20160116021A (ko) 2016-10-06
EP3093308A4 (en) 2017-01-18
CN106133036B (zh) 2018-05-01
JPWO2015146781A1 (ja) 2017-04-13
CN106133036A (zh) 2016-11-16
EP3093308A1 (en) 2016-11-16
US10597503B2 (en) 2020-03-24
KR101741387B1 (ko) 2017-05-29
EP3093308B1 (en) 2019-04-24
US20170226299A1 (en) 2017-08-10
JP5831668B1 (ja) 2015-12-09

Similar Documents

Publication Publication Date Title
JP5831668B1 (ja) プリプレグおよび繊維強化複合材料
JP6519492B2 (ja) プリプレグおよび繊維強化複合材料
JP6833679B2 (ja) 高いz方向電気伝導率をもつ複合材料
JP5929046B2 (ja) 炭素繊維織物プリプレグおよび炭素繊維強化複合材料
JP5887963B2 (ja) プリプレグおよび炭素繊維強化複合材料
WO2012039456A1 (ja) 繊維強化複合材料用エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料
JP2010059225A (ja) 炭素繊維強化複合材料用エポキシ樹脂組成物、プリプレグおよび炭素繊維強化複合材料
JP6210007B2 (ja) プリプレグおよびその製造方法、ならびに炭素繊維強化複合材料
JP6131593B2 (ja) プリプレグおよび繊維強化複合材料
WO2012147401A1 (ja) プリプレグ、繊維強化複合材料およびプリプレグの製造方法
JP2009074075A (ja) 炭素繊維強化複合材料用エポキシ樹脂組成物、プリプレグおよび炭素繊維強化複合材料
JP2011144213A (ja) 炭素繊維強化複合材料用エポキシ樹脂組成物、プリプレグおよび炭素繊維強化複合材料
WO2019098243A1 (ja) プリプレグおよび繊維強化複合材料
JP6213225B2 (ja) プリプレグおよび繊維強化複合材料
EP4286461A1 (en) Prepreg
CN110191915B (zh) 预浸料坯及其制造方法、分切带预浸料坯
JP2016132709A (ja) エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料
JP5573650B2 (ja) エポキシ樹脂組成物、エポキシ樹脂硬化物、プリプレグおよび繊維強化複合材料
JP2014156582A (ja) プリプレグおよび繊維強化複合材料
JPWO2020004421A1 (ja) プリプレグおよびその製造方法、スリットテーププリプレグ、炭素繊維強化複合材料
JP6308146B2 (ja) 樹脂フィルムおよびその製造方法
WO2018131580A1 (ja) エポキシ樹脂組成物、エポキシ樹脂硬化物、プリプレグ、繊維強化複合材料、ブロック共重合体およびその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015515338

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15768492

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015768492

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015768492

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20167026286

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE