WO2015141830A1 - 異方性導電フィルム及びその製造方法 - Google Patents

異方性導電フィルム及びその製造方法 Download PDF

Info

Publication number
WO2015141830A1
WO2015141830A1 PCT/JP2015/058474 JP2015058474W WO2015141830A1 WO 2015141830 A1 WO2015141830 A1 WO 2015141830A1 JP 2015058474 W JP2015058474 W JP 2015058474W WO 2015141830 A1 WO2015141830 A1 WO 2015141830A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulating
conductive particles
anisotropic conductive
conductive film
particles
Prior art date
Application number
PCT/JP2015/058474
Other languages
English (en)
French (fr)
Inventor
五十嵐 智
西村 淳一
Original Assignee
デクセリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デクセリアルズ株式会社 filed Critical デクセリアルズ株式会社
Priority to CN201580015143.2A priority Critical patent/CN106104930A/zh
Priority to KR1020167025255A priority patent/KR20160135197A/ko
Priority to US15/126,819 priority patent/US20170110806A1/en
Publication of WO2015141830A1 publication Critical patent/WO2015141830A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/04Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation using electrically conductive adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R11/00Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts
    • H01R11/01Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts characterised by the form or arrangement of the conductive interconnection between the connecting locations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R43/00Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors
    • H01R43/007Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors for elastomeric connecting elements

Definitions

  • the present invention relates to an anisotropic conductive film and a method for producing the same.
  • Anisotropic conductive films are widely used for mounting electronic components such as IC chips.
  • Anisotropic conductive film in which conductive particles for anisotropic conductive connection are arranged in a single layer in an insulating adhesive layer in a regular pattern such as a square lattice has been proposed for the purpose of cost reduction (Patent Document) 1).
  • This anisotropic conductive film is prepared as follows. That is, first, conductive particles are held in the transfer-type openings having openings formed in a regular pattern, and an adhesive film on which an adhesive layer for transfer is formed is pressed from above, and the conductive particles are applied to the adhesive layer. Make primary transfer. Next, the polymer particles that constitute the anisotropic conductive film are pressed against the conductive particles attached to the adhesive layer, and the conductive particles are secondarily transferred to the surface of the polymer film by heating and pressing. Next, an anisotropic conductive film is formed by forming an adhesive layer on the conductive particle side surface of the polymer film to which the conductive particles are secondarily transferred so as to cover the conductive particles. In addition, with the intention of shortening the manufacturing process, attempts have been made to transfer conductive particles directly to a polymer film without using an adhesive layer.
  • pressure bonding may be performed at a pressure exceeding the design pressure of the anisotropic conductive film, in which case the conductive particles are too crushed and broken, and the original conduction performance cannot be obtained. There was also a problem. This problem of excessive crushing of the conductive particles occurs particularly when connecting the electrode terminal of the flexible printed wiring board and the electrode terminal of the glass substrate.
  • An object of the present invention is to solve the above-mentioned problems of the prior art, and in an anisotropic conductive film prepared so that conductive particles are arranged in a regular pattern using a transfer mold having openings.
  • the connection of the conductive particles is suppressed to greatly suppress the occurrence of a short circuit, and the conduction failure due to the excessive collapse of the conductive particles is eliminated.
  • the present inventor is able to achieve the above-mentioned object by arranging the insulating filler in a regular pattern so as not to overlap the conductive particles with respect to the insulating binder layer in which the conductive particles are arranged in a regular pattern.
  • the headline and the present invention have been completed.
  • the present invention provides an anisotropic material comprising an insulating binder layer, conductive particles arranged in a regular pattern on one side of the insulating binder layer, and an insulating adhesive layer laminated on one side of the insulating binder layer.
  • Conductive film, The insulating binder layer provides an anisotropic conductive film in which insulating fillers are arranged in a regular pattern that does not overlap with the conductive particles.
  • the present invention also provides a method for producing an anisotropic conductive film having the following steps (A) to (D).
  • Step (A) An opening for accommodating conductive particles, a first opening formed in a regular pattern, and an opening for accommodating an insulating filler that does not overlap the first opening
  • Process (B) The process of making the insulating binder layer formed on the peeling film face the surface of the transfer mold on the side where the conductive particles and the insulating filler are arranged.
  • Process (C) A step of applying pressure to the insulating binder layer from the release film side, pressing the insulating binder layer into the first and second openings, and transferring the conductive particles and the insulating filler onto one surface of the insulating binder layer.
  • Process (D) A step of laminating an insulating adhesive layer on one surface of an insulating binder layer to which conductive particles and insulating filler are bonded.
  • the present invention also provides a connection structure in which the first electronic component is anisotropically conductively connected to the second electronic component using the anisotropic conductive film described above.
  • the present invention is a connection method for anisotropically conductively connecting a first electronic component to a second electronic component with the above-described anisotropic conductive film, An anisotropic conductive film is temporarily attached to the second electronic component from the insulating adhesive layer side, the first electronic component is mounted on the temporarily attached anisotropic conductive film, and heat is applied from the first electronic component side.
  • a connection method for crimping is provided.
  • An anisotropic conductive film of the present invention comprises an insulating binder layer, conductive particles arranged in a regular pattern on one side of the insulating binder layer, and an insulating adhesive layer laminated on one side of the insulating binder layer.
  • Insulating filler layers are arranged in a regular pattern that does not overlap with the conductive particles. For this reason, it can suppress that electroconductive particles couple
  • FIG. 1 is a cross-sectional view of the anisotropic conductive film of the present invention.
  • FIG. 2 is an example of a regular pattern arrangement of conductive particles and insulating fillers.
  • FIG. 3 is an example of a regular pattern arrangement of conductive particles and insulating fillers.
  • FIG. 4 is an example of a regular pattern arrangement of conductive particles and insulating fillers.
  • FIG. 5 is an example of a regular pattern arrangement of conductive particles and insulating fillers.
  • FIG. 6 is an example of a regular pattern arrangement of conductive particles and insulating fillers.
  • FIG. 7A is explanatory drawing of the manufacturing process (A) of the anisotropic conductive film of this invention.
  • FIG. 7A is explanatory drawing of the manufacturing process (A) of the anisotropic conductive film of this invention.
  • FIG. 7B is explanatory drawing of the manufacturing process (B) of the anisotropic conductive film of this invention.
  • FIG. 7C is explanatory drawing of the manufacturing process (C) of the anisotropic conductive film of this invention.
  • Drawing 7D is an explanatory view of the manufacturing process (D) of the anisotropic conductive film of the present invention.
  • FIG. 7E is explanatory drawing of the manufacturing process (D) of the anisotropic conductive film of this invention.
  • the anisotropic conductive film 100 of the present invention includes an insulating binder layer 1, conductive particles 2 arranged in a regular pattern on one side of the insulating binder layer 1, and an insulating binder layer 1. And an insulating adhesive layer 3 laminated on one side. Insulating binder layer 1 has insulating fillers 4 arranged in a regular pattern that does not overlap with conductive particles 2. The conductive particles 2 and the insulating filler 4 may be included in the insulating binder layer 1.
  • the conductive particles 2 can be appropriately selected from those used in conventionally known anisotropic conductive films.
  • metal particles such as nickel, cobalt, silver, copper, gold, and palladium, metal-coated resin particles, and the like can be given. Two or more kinds can be used in combination.
  • the preferred hardness of the conductive particles varies depending on the type of substrate or terminal to which anisotropic conductive connection is made.
  • FPC Flexible Printed Circuits
  • FOG anisotropic conductive connection
  • the deformation is 20%.
  • Relatively soft particles with a compression hardness (K value) of 1500 to 4000 N / mm 2 are preferable.
  • FPC and FPC are anisotropically conductively connected (FOF)
  • the compression hardness (K value) at 20% deformation ) Of 1500 to 4000 / mm 2 is preferable.
  • the compression hardness (K value) at 20% deformation is 3000 to 8000 N / mm 2.
  • the relatively hard particles are preferred.
  • particles having a compressive hardness (K value) at 20% deformation of 8000 N / mm 2 or more are preferable.
  • the compression hardness (K value) at the time of 20% deformation is when the conductive particles are compressed by loading in one direction and the particle size of the conductive particles becomes 20% shorter than the original particle size.
  • K (3 / ⁇ 2) F ⁇ S -8/2 ⁇ R -1/2 (1) (Wherein, F: load at the time of 20% compression deformation of conductive particles S: compression displacement (mm) R: radius of conductive particles (mm))
  • the average particle diameter of the conductive particles 2 is preferably 1 ⁇ m or more and 10 ⁇ m or less, more preferably 1 ⁇ m or more and 10 ⁇ m or less in order to be able to cope with variations in wiring height, to suppress an increase in conduction resistance, and to suppress the occurrence of short circuits. Is 2 ⁇ m or more and 6 ⁇ m or less.
  • the average particle diameter can be measured by a general particle size distribution measuring apparatus.
  • the abundance of the conductive particles 2 in the insulating binder layer 1 is preferably 50 or more and 40000 or less, more preferably, per square mm in order to suppress a decrease in conductive particle trapping efficiency and suppress the occurrence of short circuit. Is 200 or more and 20000 or less.
  • the regular pattern which is the arrangement state of the conductive particles 2 means that the conductive particles 2 which can be recognized when the conductive particles 2 are seen through the surface of the anisotropic conductive film 100 are rectangular lattice, square lattice, hexagonal lattice, rhombus lattice, etc. Means an array existing at the lattice point of. Virtual lines constituting these lattices may be not only straight lines but also curved lines and bent lines.
  • the ratio of the conductive particles 2 arranged in a regular pattern to the total conductive particles 2 is preferably 90% or more for stabilizing the anisotropic connection on the basis of the number of conductive particles. This ratio can be measured with an optical microscope or the like.
  • the interparticle distance of the conductive particles 2 is preferably 0.5 times or more, more preferably 1 time or more and 5 times or less of the average particle diameter of the conductive particles 2.
  • the insulating filler 4 can be appropriately selected from those used for conventionally known anisotropic conductive films. Examples thereof include resin particles and metal oxide particles such as aluminum oxide, titanium oxide, and zinc oxide.
  • examples of the shape include a spherical shape, an elliptical spherical shape, a flat shape, a columnar shape, and a needle shape, and a spherical shape is preferable.
  • a preferable hardness of the insulating filler 4 is that when the particle diameter of the insulating filler 4 is smaller than that of the conductive particles 2, the conductive particles 2 can be prevented from being crushed and crushed at the time of pressure bonding during anisotropic conductive connection.
  • the insulating filler 4 is harder than the conductive particles, when the particle diameter of the insulating filler 4 is larger than that of the conductive particles 2, the hardness of the insulating filler 4 may be equal to or less than the hardness of the conductive particles 2. Less than hardness.
  • the preferable hardness of the insulating filler 4 varies depending on the hardness of the electronic component to be anisotropically conductive and the heating and pressing conditions. Therefore, it is desirable that the size and hardness of the insulating filler 4 be appropriately designed based on the combination of electronic parts to be anisotropically conductively connected, the heating and pressing conditions at the time of connection, and the size and hardness of the conductive particles.
  • the average particle size of the insulating filler 4 may be smaller than the average particle size of the conductive particles 2 or may be greater than or equal to the average particle size of the conductive particles 2.
  • the average particle diameter of the insulating filler 4 is preferably smaller than the average particle diameter of the conductive particles 2.
  • the relative hardness of the insulating filler 4 with respect to the conductive particles 2 can be determined by comparing the compression hardness (K value) at the time of compressive deformation and the crushing rate when a predetermined pressure is applied. If the hardness is the same, the insulating filler is preferably smaller than the conductive particle diameter.
  • the preferable average particle diameter of the insulating filler 4 is that the conductive particles 2 are excessively pushed or crushed between the wiring and the bump. From the point which suppresses generation
  • the average particle diameter can be measured by a general particle size distribution measuring apparatus.
  • the hardness of the insulating filler 4 with respect to the conductive particles 2 in order to enable good pushing of the conductive particles 2 during anisotropic conductive connection and to prevent the insulating filler 4 from excessively adhering to the wiring and bumps.
  • the average particle size of the insulating filler 4 is preferably 75% or less of the average particle size of the conductive particles 2, and preferably 30% or more and 70% or less.
  • the average particle diameter of the insulating filler 4 is preferably 120% or less of the average particle diameter of the conductive particles 2.
  • the insulating filler 4 is also sandwiched between the bump and the wiring in addition to the conductive particles 2, and the thermal conductivity in the vicinity of the bump is also improved. That is, when performing anisotropic conductive connection, it is difficult for unnecessary heat to stay in the connection portion, which contributes to conduction reliability.
  • the method of manufacturing the insulating filler by adjusting the hardness of the insulating filler according to the hardness or diameter of the conductive particles is a plastic material that is excellent in compressive deformation of the resin particles forming the insulating filler. It is preferable to manufacture using.
  • plastic materials include (meth) acrylate resins, polystyrene resins, styrene- (meth) acrylic copolymer resins, urethane resins, epoxy resins, phenol resins, acrylonitrile / styrene (AS) resins, and benzoguanamine. It can be formed of a resin, a divinylbenzene resin, a styrene resin, a polyester resin, or the like.
  • the (meth) acrylate-based resin is a copolymer of a (meth) acrylate-based monomer, a compound having a reactive double bond that can be copolymerized with the (meth) acrylate-based monomer, and a bifunctional or polyfunctional monomer, if necessary. It is preferable.
  • Examples of (meth) acrylate monomers include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, stearyl (Meth) acrylate, cyclohexyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-propyl (meth) acrylate, chloro-2-hydroxyethyl (meth) acrylate, diethylene glycol mono (meth) acrylate, methoxyethyl (meta ) Acrylate, glycidyl (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclopentenyl (meth) acrylate, and isoboronor (meth) acrylate.
  • the polystyrene resin is preferably a copolymer of a styrene monomer, a compound having a reactive double bond that can be copolymerized with the styrene monomer, and a bifunctional or polyfunctional monomer, if necessary.
  • styrenic monomer examples include styrene, methyl styrene, dimethyl styrene, trimethyl styrene, ethyl styrene, diethyl styrene, triethyl styrene, propyl styrene, butyl styrene, hexyl styrene, hebutyl styrene and octyl styrene; alkyl styrene; fluoro styrene, chloro Mention may be made of halogenated styrenes such as styrene, bromostyrene, dibromostyrene, iodostyrene and chloromethylstyrene; and nitrostyrene, acetylstyrene and methoxystyrene.
  • the insulating filler may be formed of the above-mentioned (meth) acrylate resin or styrene resin alone, or may be a copolymer of monomers that form these, or a (meth) acrylate resin and a styrene resin.
  • a composition containing a resin may be used.
  • Examples of such other monomers include vinyl monomers and unsaturated carboxylic acid monomers.
  • examples of the polymer of the (meth) acrylate resin and other compounds include a polymer of a urethane compound and an acrylate monomer.
  • a urethane compound polyfunctional urethane acrylate can be used, for example, bifunctional urethane acrylate etc. can be used.
  • the urethane compound is preferably contained in an amount of 5 parts by weight or more, more preferably 25 parts by weight or more based on 100 parts by weight of the acrylate monomer.
  • the (meth) acrylic acid ester monomer means both acrylic acid ester (acrylate) and methacrylic acid ester (methacrylate).
  • the monomer includes an oligomer which is a polymer of two or more monomers as long as it is polymerized by heating, ultraviolet irradiation or the like.
  • the abundance in the insulating binder layer 1 of the insulating filler 4 is preferably 1 square mm in order to maintain the connection state, dissipate and stabilize the heat generated in the vicinity of the connection portion, and suppress the occurrence of a short circuit.
  • the number is 10 or more and 800000 or less, more preferably 20 or more and 400000 or less.
  • the regular pattern that is the arrangement state of the insulating fillers 4 is that the insulating fillers 4 that can be recognized when the insulating fillers 4 are seen through the surface of the anisotropic conductive film 100 are rectangular lattices and square lattices. , And an arrangement existing at lattice points such as a hexagonal lattice and a rhombus lattice. Virtual lines constituting these lattices may be not only straight lines but also curved lines and bent lines.
  • the regular pattern of the insulating filler 4 is arranged so as not to overlap the conductive particles 2.
  • the regular pattern of the conductive particles 2 and the regular pattern of the insulating filler 4 do not overlap each other.
  • the center of gravity of the conductive particles 2 arranged in these regular patterns and the insulating filler 4 This means that the center of gravity does not overlap in the thickness direction of the anisotropic conductive film. Unless the center of gravity overlaps, the conductive particles and the insulating filler may partially overlap in the thickness direction of the anisotropic conductive film. good.
  • the conductive particles 2 and the insulating filler 4 do not overlap at all in the plane view, in order to achieve good anisotropic connection.
  • required on the whole surface of an anisotropic conductive film the yield in manufacture deteriorates and it originates in a cost increase.
  • the centroids do not overlap even if they partially overlap, at least the conductive particles 2 are usually spherical, so that they do not laterally shift due to the resin flow at the time of pressing and do not hinder anisotropic connection.
  • the ratio of the insulating fillers 4 arranged in a regular pattern to the total insulating fillers 4 is preferably 90% or more in order to avoid defective anisotropic connection at the time of connection on the basis of the number of insulating fillers. This ratio can be measured with an optical microscope or the like.
  • the regular pattern of the conductive particles and the insulating filler in the anisotropic conductive film of the present invention is the same type of lattice arrangement, and the lattice pitch thereof is equal (see FIG. 2 and FIG. 3), the same type of lattice arrangement, and the lattice pitches thereof are different (FIGS. 4 and 5), the same type of lattice arrangement, and the direction of these lattices are different (FIG. 4), different types of lattices The embodiment (FIG. 6) etc.
  • Insulation fillers exist between the particles of the conductive particles arranged at least in the film longitudinal direction in the conductive particles arranged in a regular pattern.
  • (a) Insulating fillers are arranged between particles of conductive particles arranged in at least a direction perpendicular to the film longitudinal direction in the conductive particles arranged in a regular pattern. (See FIG. 3), (c) between conductive particles arranged in a film longitudinal direction in conductive particles arranged in a regular pattern, and between conductive particles arranged in a direction perpendicular to the film longitudinal direction.
  • An embodiment in which insulating fillers are arranged see FIG.
  • the insulating fillers 4 between the conductive particles are arranged in a direction orthogonal to the longitudinal direction of the film (when the insulating filler is arranged between the particles of conductive particles arranged in the direction orthogonal to the film longitudinal direction) ),
  • the insulating filler is easily sandwiched between the same bumps as the conductive particles, and the effect that the pushing degree of the conductive particles in the bumps can be made uniform can be obtained.
  • the number of insulating fillers 4 between the conductive particles is not limited to one, and a plurality of insulating fillers 4 may exist depending on the distance between the conductive particles. The number can be arbitrarily changed by the design of the bump.
  • the insulating filler 4 may be provided at a wider interval than the conductive particles 2. From the point of preventing short circuit by the insulating filler 4, if there is an insulating filler between the particles of the conductive particles arranged in the direction of the distance between the bumps, the lattice pitch of the insulating filler is larger than the lattice pitch of the conductive particles in that direction. This is because an effect of preventing a short circuit can be expected even if the width is large.
  • two or more insulating fillers 4 are preferably sandwiched on the bump, and more preferably three or more.
  • the longitudinal direction of the anisotropic conductive film is preferably parallel or substantially parallel to the direction orthogonal to the longitudinal direction of the anisotropic conductive film, and the longitudinal direction of the anisotropic conductive film, or in the longitudinal direction. A direction that is oblique to the orthogonal direction is more preferable.
  • the longitudinal direction of the terminal for anisotropic conductive connection is matched with the direction orthogonal to the longitudinal direction of the anisotropic conductive film, when the film is bonded to a substrate or the like, the film of the conductive particles and the terminal This is because the displacement in the longitudinal direction tends to be larger than the displacement in the direction orthogonal to the longitudinal direction.
  • the arrow is the longitudinal direction when the anisotropic conductive film is manufactured
  • the rectangle B surrounded by a dotted line is an example of a bump position assumed at the time of anisotropic conductive connection.
  • FIG. 2 shows that the regular pattern of the conductive particles 2 is a square lattice pattern, the regular pattern of the insulating filler 4 is a square lattice pattern, the lattice pitch thereof is equal, and the conductive particles 2 and the insulating filler 4 are anisotropic. It is the aspect arrange
  • the regular pattern of the conductive particles 2 is a square lattice pattern
  • the regular pattern of the insulating filler 4 is a square lattice pattern
  • the lattice pitch thereof is equal
  • the conductive particles 2 and the insulating filler 4 are anisotropic. It is the aspect arrange
  • the regular pattern of the conductive particles 2 is a square lattice pattern
  • the regular pattern of the insulating filler 4 is also a square lattice pattern, but these lattice directions are shifted by 45 °, and the lattice pitch of the conductive particles 2 is insulated from the lattice pitch.
  • This is a mode in which the pitches in the diagonal direction of the lattice of the filler 4 are equal.
  • both the insulating filler 4 and the conductive particles 2 are square lattices, and their lattice pitches are equal, but the square lattice pattern of the insulating filler is at a position shifted by a half pitch in the lattice direction with respect to the square lattice pattern of the insulating filler,
  • the regular pattern of the insulating filler can be seen as a face-centered square lattice pattern.
  • the insulating binder layer 1 constituting the anisotropic conductive film 100 of the present invention is a resin layer having a function of fixing the conductive particles 2 and the insulating filler 4 to the film 100, and is a known anisotropic conductive film.
  • the structure of the insulating resin layer to be used can be adopted as appropriate.
  • heat or photopolymerizable resin such as heat or photocation, anion or radical polymerizable resin is preferably polymerized so that the polymerization rate is 50% or more and 100% or less, thereby fixing conductive particles and insulating filler.
  • (Acrylate compound) As the acrylate compound serving as the acrylate unit, a conventionally known photoradical polymerizable acrylate can be used.
  • monofunctional (meth) acrylate here, (meth) acrylate includes acrylate and methacrylate
  • bifunctional or more polyfunctional (meth) acrylate can be used.
  • polyfunctional (meth) acrylate in order to make the insulating binder layer 1 thermosetting, it is preferable to use polyfunctional (meth) acrylate for at least a part of the acrylic monomer.
  • the content of the acrylate compound in the insulating binder layer 1 is too small, the conductive particles 2 and the insulating filler 4 are fixed to the insulating binder layer 1 so that the conductive particles 2 and the insulating filler 4 do not flow with molten resin during anisotropic conductive connection. If the amount is too large, curing shrinkage tends to be large, and workability tends to decrease. Therefore, the content is preferably 2% by mass or more and 70% by mass or less, more preferably 10% by mass or more and 50% by mass or less.
  • Photo radical polymerization initiator As a radical photopolymerization initiator, it can be used by appropriately selecting from known radical photopolymerization initiators. Examples include acetophenone photopolymerization initiators, benzyl ketal photopolymerization initiators, and phosphorus photopolymerization initiators.
  • the radical photopolymerization initiator used is too small relative to 100 parts by weight of the acrylate compound, the radical photopolymerization will not proceed sufficiently, and if too much, it will cause a decrease in rigidity. 25 parts by mass or less, more preferably 0.5 parts by mass or more and 15 parts by mass or less.
  • the insulating binder layer 1 is used in combination with a film forming resin such as phenoxy resin, epoxy resin, unsaturated polyester resin, saturated polyester resin, urethane resin, butadiene resin, polyimide resin, polyamide resin, and polyolefin resin, as necessary. be able to. You may use together similarly also at the insulating contact bonding layer 3 mentioned later.
  • a film forming resin such as phenoxy resin, epoxy resin, unsaturated polyester resin, saturated polyester resin, urethane resin, butadiene resin, polyimide resin, polyamide resin, and polyolefin resin, as necessary. be able to. You may use together similarly also at the insulating contact bonding layer 3 mentioned later.
  • the insulating binder layer 1 is preferably 1.0 ⁇ m or more and 6.0 ⁇ m or less. Preferably they are 2.0 micrometers or more and 5.0 micrometers or less.
  • the insulating binder layer 1 can further contain an epoxy compound and a heat or photocation or an anionic polymerization initiator.
  • the insulating adhesive layer 3 is also preferably a heat or photocation or anion polymerizable resin layer containing an epoxy compound and heat or a photocation or anion polymerization initiator. Thereby, delamination strength can be improved.
  • the epoxy compound and the heat or photocation or anion polymerization initiator will be described in the insulating adhesive layer 3.
  • the conductive particles 2 fixed to the insulating binder layer 1 are biting into the insulating adhesive layer 3 (in other words, the conductive particles 2 are exposed on the surface of the insulating binder layer 1).
  • the average particle diameter of the conductive particles is preferably 10% to 90%, more preferably Preferably they are 20% or more and 80% or less.
  • the insulating binder layer 1 can be formed, for example, on a photo radical polymerizable resin layer containing a photo radical polymerizable acrylate and a photo radical polymerization initiator, by a film transfer method, a mold transfer method, an ink jet method, or an electrostatic adhesion method.
  • the conductive particles and the insulating filler are attached by a method such as the above, and ultraviolet rays are irradiated from the conductive particle side, the opposite side, or both sides.
  • the insulating adhesive layer 3 is a resin layer having a function of connecting or adhering opposing electronic components during anisotropic conductive connection.
  • the structure of the insulating resin layer used in the known anisotropic conductive film can be adopted as appropriate, and heat or photocation, anion or radical polymerizable resin layer, preferably an epoxy compound and heat or photocation or anion. It is preferably formed from a heat or photo cation or anion polymerizable resin layer containing a polymerization initiator, or a heat or photo radical polymerizable resin layer containing an acrylate compound and a heat or photo radical polymerization initiator.
  • the insulating adhesive layer 3 is formed from a thermopolymerizable resin layer by ultraviolet irradiation when the insulating binder layer 1 is formed. Since the polymerization reaction of the insulating adhesive layer 3 does not occur, it is desirable in terms of production simplicity and quality stability.
  • the insulating adhesive layer 3 When the insulating adhesive layer 3 is a heat, photocation or anion polymerizable resin layer, it can further contain an acrylate compound and a heat or photo radical polymerization initiator. Thereby, the insulating binder layer 1 and the delamination strength can be improved.
  • epoxy compound When the insulating adhesive layer 3 is a heat or photocation or anion polymerizable resin layer containing an epoxy compound and a heat or photocation or anion polymerization initiator, the epoxy compound has two or more epoxy groups in the molecule. Preferred are compounds or resins having These may be liquid or solid.
  • thermal cationic polymerization initiator those known as the thermal cationic polymerization initiator of the epoxy compound can be adopted, for example, those which generate an acid capable of cationically polymerizing the cationic polymerizable compound by heat.
  • Iodonium salts, sulfonium salts, phosphonium salts, ferrocenes, and the like can be used, and aromatic sulfonium salts exhibiting good potential with respect to temperature can be preferably used.
  • the amount of the thermal cationic polymerization initiator is too small, the curing tends to be poor, and if it is too much, the product life tends to be reduced. 60 parts by mass or less, more preferably 5 parts by mass or more and 40 parts by mass or less.
  • thermal anionic polymerization initiator those known as the thermal anionic polymerization initiator of the epoxy compound can be employed.
  • a base capable of anionic polymerization of the anionic polymerizable compound is generated by heat, and is publicly known.
  • Aliphatic amine compounds, aromatic amine compounds, secondary or tertiary amine compounds, imidazole compounds, polymercaptan compounds, boron trifluoride-amine complexes, dicyandiamide, organic acid hydrazides, etc. can be used.
  • An encapsulated imidazole compound showing good potential with respect to temperature can be preferably used.
  • the amount of the thermal anionic polymerization initiator is preferably 2 parts by mass or more with respect to 100 parts by mass of the epoxy compound. 60 parts by mass or less, more preferably 5 parts by mass or more and 40 parts by mass or less.
  • Photocationic polymerization initiator and photoanionic polymerization initiator A well-known thing can be used suitably as a photocationic polymerization initiator or photoanion polymerization initiator for epoxy compounds.
  • the acrylate compound is appropriately selected from those described with respect to the insulating binder layer 1 Can be used.
  • thermal radical polymerization initiator examples include organic peroxides and azo compounds, but organic peroxides that do not generate nitrogen that causes bubbles can be preferably used.
  • the amount of the thermal radical polymerization initiator used is preferably 2 parts by weight or more and 60 parts by weight or less, more preferably 100 parts by weight. 5 parts by mass or more and 40 parts by mass or less.
  • Photo radical polymerization initiator As a radical photopolymerization initiator for the acrylate compound, a known radical photopolymerization initiator can be used.
  • the amount of the radical photopolymerization initiator used is preferably 2 parts by weight or more and 60 parts by weight or less, more preferably 100 parts by weight. 5 parts by mass or more and 40 parts by mass or less.
  • another insulating adhesive layer may be laminated on the other surface of the insulating binder layer 1. Thereby, the effect that it becomes possible to control the fluidity
  • another insulating adhesive layer may have the same configuration as that of the insulating adhesive layer 3 described above.
  • the openings for accommodating the conductive particles 2, the first openings 51 formed in a regular pattern, and the openings for accommodating the insulating filler 4, are regular.
  • the conductive particles 2 are arranged in the first openings 51 of the transfer mold 50 provided with the second openings 52 formed in a pattern and arranged so as not to overlap the first openings 51,
  • the insulating filler 4 is disposed in the two openings 52.
  • the conductive particles 2 enter the first opening 51.
  • the insulating filler 4 is subsequently disposed in the second opening 52.
  • the insulating filler 4 may enter the first opening 51 in which the conductive particles 2 are accommodated, but such a case is also excluded from the scope of the present invention unless the effects of the present invention are impaired. is not.
  • the conductive particles 2 and the insulating filler 4 are such that, in the thickness direction of the film, the center of gravity of the insulating filler 4 and the center of gravity of the conductive particles 2 are the thickness direction of the anisotropic conductive film (the pushing direction during anisotropic conductive connection). It is preferable that they do not overlap. In other words, the insulating filler 4 and the conductive particles 2 may overlap with each other as long as their centers of gravity do not overlap in the film thickness direction of the anisotropic conductive film.
  • the anisotropic connection may be disturbed, but the center of gravity of the insulating filler 4 and the center of gravity of the conductive particle 2 must overlap in the pushing direction.
  • the insulating filler 4 flows to a position where the anisotropic conductive connection is not hindered together with the binder resin and the insulating adhesive layer by heating during the anisotropic conductive connection. This is because it can be done.
  • the shape of the conductive particles 2 is generally substantially spherical, unless there are a large number of continuous insulating fillers that partially overlap the conductive particles, the pressure from the pressing tool is not uniform when connecting the bumps. This is because the insulating filler 4 is detached so as not to overlap the conductive particles 2 when flowing.
  • the number of insulating fillers 4 partially overlapping with the conductive particles 2 is preferably 6 or less, more preferably 5 or less, and more preferably 4 or less. Even more preferable, there are no practical problems.
  • Transfer type As the transfer mold 50, for example, an opening is formed in a known opening forming method such as a photolithographic method with respect to an inorganic material such as silicon, various ceramics, glass, stainless steel, or an organic material such as various resins. It is a thing.
  • a transfer mold 50 can take a plate shape, a roll shape, or the like.
  • Examples of the shape of the first opening 51 and the second opening 52 of the transfer mold 50 include a cylindrical shape, a polygonal column shape such as a quadrangular column, and a pyramid shape such as a quadrangular pyramid.
  • the arrangement of the first openings 51 and the second openings 52 is preferably an arrangement corresponding to the recording pattern of the conductive particles 2 and the insulating filler 4, respectively.
  • the diameter and depth of the first opening 51 and the second opening 52 of the transfer mold 50 can be measured with a laser microscope.
  • the opening is a cylinder
  • the deepest portion is the depth.
  • a method for accommodating the conductive particles 2 in the first opening 51 of the transfer mold 50 and a method for accommodating the insulating filler 4 in the second opening 52 are not particularly limited, and a known method is adopted. be able to. For example, after spraying or applying a dried conductive particle powder or a dispersion in which this is dispersed in a solvent on the opening forming surface of the transfer mold 50, the surface of the opening forming surface is wiped using a brush or a blade. Good.
  • the ratio of the average particle diameter of the conductive particles 2 to the depth (first opening depth) 51b of the first opening 51 improves transferability and holds conductive particles. From the balance of property, prevention of adhesion of insulating filler, etc., it is preferably 0.4 or more and 3.0 or less, more preferably 0.5 or more and 1.5 or less. If it is less than 1, it is assumed that an insulating filler adheres to the conductive particles, but since the conductive particles are usually spherical, their centers of gravity are unlikely to overlap. When the number is 1 or more, there are few gaps in the first opening after the conductive particles are filled, and therefore, the adhesion between the conductive particles and the insulating filler hardly occurs.
  • the bottom side diameter (first opening bottom part diameter) 51c on the base side of the first opening 51 is equal to or larger than the first opening diameter 51a.
  • the ratio of the first opening bottom part diameter 51c to the average particle diameter of the conductive particles 2 is the ease of accommodation of the conductive particles, the ease of pushing in the insulating resin.
  • the average particle size of the conductive particles is preferably 1.1 or more and 2.0 or less, more preferably 1.2 or more and 1.7 or less, and particularly preferably 1.3 or more and 1.6. It is as follows.
  • the ratio of the diameter (second opening diameter) 52a of the second opening 52 to the average particle diameter of the insulating filler 4 is also easy to accommodate the insulating filler. From the balance of ease of pushing in the insulating resin, etc., it is preferably 1.1 or more and 2.0 or less, more preferably 1.3 or more and 1.8 or less.
  • the ratio of the average particle diameter of the insulating filler 4 to the depth (second opening depth) 52b of the second opening 52 is also improved in transferability and insulation filler. From the balance with retention, it is preferably 0.4 or more and 3.0 or less, more preferably 0.5 or more and 1.5 or less.
  • the ratio of the bottom side diameter (second opening bottom part diameter) 52c of the second opening 52 to the average particle diameter of the conductive particles 2 is the insulating filler.
  • the average particle size of the insulating filler is preferably 1.1 or more and 2.0 or less, more preferably 1.2 or more and 1.7 or less, particularly from the balance of ease of accommodation, ease of pushing in the insulating resin, and the like. Preferably they are 1.3 or more and 1.6 or less.
  • the insulating binder layer 1 is pre-cured (heated or irradiated with ultraviolet rays) between the step (C) and the step (D). Thereby, the conductive particles 2 can be temporarily fixed to the insulating binder layer 1.
  • the release film 60 may be peeled off, and another insulating adhesive layer may be laminated on the surface (the other surface of the insulating binder layer) (not shown).
  • anisotropic conductive film thus obtained is used to heat or light a first electronic component such as an FPC, an IC chip, or an IC module and a second electronic component such as an FPC, a rigid substrate, a ceramic substrate, or a glass substrate. Therefore, it can be preferably applied when anisotropic conductive connection is performed.
  • the connection structure thus obtained is also part of the present invention.
  • the anisotropic conductive film As a method for connecting an electronic component using an anisotropic conductive film, for example, when the anisotropic conductive film having the layer configuration shown in FIG. 1 is used, the anisotropic conductive film is connected to a second electronic component such as a wiring board. It is possible to temporarily attach a film from the insulating binder layer, mount a first electronic component such as an IC chip on the temporarily attached anisotropic conductive film, and perform thermocompression bonding from the first electronic component side. It is preferable from the point of improving the property. Moreover, it can also connect using photocuring.
  • Phenoxy resin (YP-50, NS A mixed solution was prepared such that the solid content was 50% by mass with toluene.
  • a polyethylene terephthalate film (PET film) having a thickness of 50 ⁇ m is prepared as a release film, and the above-mentioned mixed solution is applied to this so that the dry thickness becomes 5 ⁇ m, and dried in an oven at 80 ° C. for 5 minutes.
  • PET film polyethylene terephthalate film having a thickness of 50 ⁇ m
  • a photo radical polymerization type insulating binder layer was formed on the PET film (release film).
  • FIG. 2 Examples 1, 4, and 7
  • FIG. 3 Examples 2 and 5
  • FIG. 4 Examples 3 and 6
  • a cylindrical first opening having a diameter of 5.5 ⁇ m and a depth of 4.5 ⁇ m is provided at a vertical and horizontal pitch of 9 ⁇ m
  • a cylindrical second opening having a diameter of 3.0 ⁇ m and a depth of 4.0 ⁇ m is provided for the insulating filler.
  • a transfer mold made of stainless steel was prepared.
  • the distance between the first openings is 18 ⁇ m.
  • a transfer mold was prepared in which three second openings were provided between the first openings at intervals of 2.25 ⁇ m.
  • One conductive particle (Ni / Au plating resin particle, AUL704, Sekisui Chemical Co., Ltd.) having an average particle diameter of 4 ⁇ m is accommodated in each of the first openings of these transfer molds, and an average particle diameter of 2 is stored in the second opening.
  • .8 ⁇ m (Examples 1 to 3) or 1.2 ⁇ m (Examples 4 to 9) silica particles (KE-P250 or KE-P100, Nippon Shokubai Co., Ltd.) were accommodated one by one.
  • the insulating binder layer was opposed to the opening forming surface of the transfer mold, and the conductive particles and the insulating filler were pushed into the insulating binder layer by pressing from the release film side at 60 ° C. under the condition of 0.5 MPa. .
  • the insulating binder layer in which the conductive particles and the insulating filler were temporarily fixed on the surface was formed by irradiating ultraviolet rays having a wavelength of 365 nm and an integrated light amount of 4000 mL / cm 2 from the release film side.
  • phenoxy resin YP-50, Nippon Steel & Sumikin Co., Ltd.
  • 40 parts by mass of epoxy resin jER828, Mitsubishi Chemical Co., Ltd.
  • photocation polymerization initiator SI-60, Sanshin Chemical
  • a mixed solution was prepared by adding 2 parts by mass of Kogyo Co., Ltd. with toluene so that the solid content was 50% by mass.
  • This mixed solution was applied to a PET film having a thickness of 50 ⁇ m so as to have a dry thickness of 12 ⁇ m, and dried in an oven at 80 ° C. for 5 minutes to form a relatively thick insulating adhesive layer.
  • a thin insulating adhesive layer having a dry thickness of 3 ⁇ m was formed by the same operation.
  • the relatively thick insulating adhesive layer obtained in this way was laminated on the temporary fixing surface of the insulating binder layer temporarily fixing the conductive particles and the insulating filler under the conditions of 60 ° C. and 0.5 MPa, An anisotropic conductive film was obtained by similarly laminating a thin insulating adhesive layer on the opposite surface.
  • the number of insulating fillers present between the conductive particles is as shown in FIGS.
  • Comparative Example 1 An anisotropic conductive film was obtained in the same manner as in Example 1 using a transfer mold in which an opening for an insulating filler was not provided and without using an insulating filler.
  • (E) Short-circuit occurrence rate The following IC (comb tooth TEG (test element group) of 7.5 ⁇ m space) was prepared as an IC for evaluating the short-circuit occurrence rate. Outer diameter: 1.5 ⁇ 13mm Thickness: 0.5mm Bump specifications: Gold plating, height 15 ⁇ m, size 25 ⁇ 140 ⁇ m, gap between bumps 7.5 ⁇ m
  • the anisotropic conductive films of the examples and comparative examples are sandwiched between an evaluation IC for short-circuit occurrence rate and a glass substrate having a pattern corresponding to the evaluation IC, and heated under the same connection conditions as in (b). Pressurized to obtain a connection object, and the occurrence rate of short circuit of the connection object was determined.
  • the short-circuit occurrence rate is calculated by “number of short-circuit occurrences / total number of 7.5 ⁇ m spaces”. It is practically desired that the short-circuit occurrence rate is less than 50 ppm.
  • the anisotropic conductive films of Examples 1 to 9 were not observed at all except that two connected conductive particles were observed in Example 9. Further, even when the number of insulating fillers in contact with the conductive particles was increased or decreased, the evaluation on “initial conduction resistance”, “conduction reliability”, and “short-circuit occurrence rate” was favorable. On the other hand, in the anisotropic conductive film of Comparative Example 1, since the insulating filler was not arranged, six connected conductive particles were observed, and accordingly, the conduction reliability was lowered and the occurrence of short circuit was increased.
  • Examples 10 to 15 and Comparative Examples 2 to 5 Manufacture of anisotropic conductive film
  • (i) Production of resin core By adding benzoyl peroxide as a polymerization initiator to a solution in which the mixing ratio of divinylbenzene, styrene, and butyl methacrylate is adjusted, and heating while uniformly stirring at high speed, a polymerization reaction is performed. A fine particle dispersion was obtained. The fine particle dispersion was filtered and dried under reduced pressure to obtain a block body that was an aggregate of fine particles. Furthermore, the block body was pulverized and classified to obtain divinylbenzene resin particles having an average particle diameter of 3, 4 or 5 ⁇ m as a resin core. The hardness of the particles was adjusted by adjusting the mixing ratio of divinylbenzene, styrene and butyl methacrylate.
  • an aqueous suspension was prepared by mixing the nickel-coated resin particles (12 g) obtained above with a solution obtained by dissolving 10 g of sodium chloroaurate in 1000 mL of ion exchange water.
  • a gold plating bath was prepared by adding 15 g of ammonium thiosulfate, 80 g of ammonium sulfite, and 40 g of ammonium hydrogen phosphate to the obtained aqueous suspension. After adding 4 g of hydroxylamine to the obtained gold plating bath, the pH of the gold plating bath is adjusted to 9 using ammonia, and the bath temperature is maintained at 60 ° C. for about 15 to 20 minutes, whereby gold / nickel coated resin particles Got. An operation such as classification was appropriately performed to obtain conductive particles having an average particle diameter of 4 ⁇ m or 5 ⁇ m.
  • the particle surface density of the conductive particles and the particle surface density of the insulating filler are the designed number density (pieces / mm 2 ) of the conductive particles and the insulating filler in the anisotropic conductive film.
  • 170 ° C., 3 MPa, 5 seconds is the lower limit of the pressure at which the FOG connection can fluctuate
  • 170 ° C., 5 MPa, 5 seconds is one of the standard pressures that FOG connection can fluctuate
  • 170 ° C., 8 MPa, and 5 seconds are conditions in which the pressure is relatively large among the pressures that can change the FOG connection
  • 170 ° C., 10 MPa, and 5 seconds are the upper limits of the pressure at which the FOG connection can fluctuate.
  • the initial conduction resistance and conduction reliability of the obtained connection for evaluation were measured in the same manner as in Example 1.
  • the initial continuity and the continuity reliability were evaluated in the following three stages depending on the magnitude of each continuity resistance. The results are shown in Table 2.
  • the conduction reliability is A: Less than 2.5 ⁇ B: 2.5 ⁇ or more to less than 10 ⁇ C: 10 ⁇ or more
  • C1 Collapse rate is less than 20% (particles are crushed)
  • B1 Crushing rate of 20% or more and less than 40%
  • A Crushing rate of 40% or more and less than 60%
  • B2 Crushing rate of 60% or more and less than 80%
  • C2 Crushing rate of 80% or more (slightly crushed particles)
  • Examples 10 to 15 containing an insulating filler were initially compared with Comparative Examples 2 to 5 containing no insulating filler when the conductive particles were appropriately crushed when pressed in the range of 3 MPa to 10 MPa. It turns out that conduction resistance and conduction reliability are excellent.
  • Comparative Example 2 the conductive particle diameter, the hardness of the conductive particles, and the surface density of the conductive particles are equivalent to those of a conventional general anisotropic conductive film. According to Comparative Example 2, it can be seen that the conductive particles are too crushed when the heating and pressurizing condition is a relatively high pressure of 8 MPa.
  • Comparative Example 3 the conductive particles are harder than Comparative Example 2, so that the conductive particles are not crushed too much at the time of anisotropic conductive connection, but the heating and pressing conditions at the time of anisotropic conductive connection are high. It turns out that conduction reliability is inferior at 10 MPa.
  • Comparative Example 4 since the conductive particles are harder than Comparative Example 3, the conductive particles are less likely to be crushed during anisotropic conductive connection, and the initial conduction resistance is improved by setting the heating and pressurizing condition to the high pressure side, but the conduction reliability is inferior. I understand.
  • Comparative Example 5 is the same as Comparative Example 4 in which the conductive particles are softened and the conductive particle diameter is increased. It is easier to crush at the time of anisotropic conductive connection than in Comparative Example 4, and the initial conduction resistance is improved when the heating and pressing conditions are low to medium pressure, but the conduction reliability is inferior at high pressure.
  • Example 14 contains an insulating filler having the same hardness as that of the conductive particles and a small particle diameter
  • Example 15 contains an insulating filler having the same hardness as that of the conductive particles and a large particle diameter.
  • the initial continuity and the continuity reliability were good at the pressure applied to the high pressure side. Comparing Example 14 and Comparative Example 5, it can be seen that Example 14 has a better result on the high-pressure side than Comparative Example 5, and the heating and pressing conditions are broadened. When Example 15 and Comparative Example 2 are compared, this tendency is more remarkable.
  • Examples 16-21 An anisotropic conductive film was produced and evaluated in the same manner as in Examples 10 to 15 except that the arrangement of the insulating filler and the conductive particles was changed to the arrangement pattern shown in FIG. The results are shown in Table 3. As shown in Table 3, the anisotropic conductive films of Examples 16 to 21 also had good initial conduction resistance and conduction reliability. In particular, in the arrangement pattern shown in FIG. 3, the conductive particles and the insulating filler are alternately and stably arranged in the longitudinal direction of the terminal, so that it is considered that the trapping property of the conductive particle at the terminal is improved.
  • Examples 22-27 An anisotropic conductive film was produced and evaluated in the same manner as in Examples 10 to 15 except that the arrangement of the insulating filler and the conductive particles was changed to the arrangement pattern shown in FIG. The results are shown in Table 4. As shown in Table 4, the anisotropic conductive films of Examples 22 to 27 also had good initial conduction resistance and conduction reliability. In particular, in the arrangement pattern shown in FIG. 4, the total particle surface density of the conductive particles and the insulating filler is higher than that in the arrangement patterns of FIGS. It is thought that the trapping property of was improved.
  • Examples 28-36 As shown in Table 5, anisotropic conductive films were produced and evaluated in the same manner as in Examples 10 to 15 except that the arrangement of insulating fillers and conductive particles was changed to the arrangement pattern shown in FIG. 5 or FIG. . The results are shown in Table 5.
  • the anisotropic conductive films of Examples 28 to 30 having the arrangement pattern of FIG. 5 had good initial conduction resistance and conduction reliability under each heating and pressing condition.
  • the arrangement pattern in FIG. 5 has a lower insulating filler density than the arrangement patterns in FIGS. 2 and 3, but when the insulating filler is hard, the conductive particles are prevented from being crushed even if the insulating filler density is low. I understand that I can do it.
  • the anisotropic conductive films of Examples 31 to 36 having the arrangement pattern of FIG. 6 also had good initial conduction resistance and conduction reliability, and the heating and pressing conditions were particularly good on the high pressure side.
  • the arrangement pattern in FIG. 6 has a higher density of insulating fillers than the arrangement patterns in FIGS. 2 and 3, so that the insulating fillers can prevent the conductive particles from being crushed even if the insulating filler has the same hardness as the conductive particles. It is considered that the insulation between terminals and the trapping property of conductive particles at each terminal were improved.
  • the anisotropic conductive film of the present invention it is possible to suppress the occurrence of poor connection even when the pressure conditions at the time of thermocompression bonding vary in the production line of the electronic device that performs anisotropic conductive connection. I understand.
  • An anisotropic conductive film of the present invention comprises an insulating binder layer, conductive particles arranged in a regular pattern on one side of the insulating binder layer, and an insulating adhesive layer laminated on one side of the insulating binder layer.
  • the insulating filler layer has insulating fillers arranged in a regular pattern that does not overlap with the conductive particles. For this reason, it can suppress that electroconductive particles couple

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Non-Insulated Conductors (AREA)
  • Manufacturing Of Electrical Connectors (AREA)

Abstract

 異方性導電フィルムが、絶縁性バインダ層と、該絶縁性バインダ層の片面に規則的パターンで配列した導電粒子と、該絶縁性バインダ層の片面に積層された絶縁性接着層とを有する。異方性導電フィルムの当該絶縁性バインダ層には、導電粒子と重なり合わない規則的パターンで絶縁フィラが配列されている。この異方性導電フィルムは、開口を有する転写型を用いて導電粒子と絶縁フィラを規則的パターンで配列させることにより製造でき、異方性導電接続の際に、接続抵抗を増大させることなく、導電粒子の連結を抑制してショートの発生を大きく抑制することができる。

Description

異方性導電フィルム及びその製造方法
 本発明は、異方性導電フィルム及びその製造方法に関する。
 ICチップなどの電子部品の実装に異方性導電フィルムは広く使用されており、近年では、高実装密度への適用の観点から、接続信頼性や絶縁性の向上、粒子捕捉効率の向上、製造コストの低減等を目的に、異方性導電接続用の導電粒子を単層で絶縁性接着層に正方格子等の規則的パターンで配列させた異方性導電フィルムが提案されている(特許文献1)。
 この異方性導電フィルムは、以下のように作成されている。即ち、まず、規則的パターンで形成された開口を有する転写型の当該開口に導電粒子を保持させ、その上から転写用の粘着層が形成された粘着フィルムを押し当て、粘着層に導電粒子を一次転写させる。次に、粘着層に付着した導電粒子に対し、異方性導電フィルムの構成要素となる高分子膜を押し当て、加熱加圧することにより導電粒子を高分子膜表面に二次転写させる。次に、導電粒子が二次転写された高分子膜の導電粒子側表面に、導電粒子を覆うように接着層を形成することにより異方性導電フィルムが作成されている。また、製造工程の短縮化を意図して、粘着層を使用せずに高分子膜に直接導電粒子を転着することも試みられている。
特開2010-33793号公報
 しかしながら、開口を有する転写型を用いて作成した特許文献1の異方性導電フィルムの場合、導電粒子が規則的パターンで所定間隔に配列しているものの、異方性導電接続の際に、導電粒子が予想以上に流動し、そのため複数の導電粒子同士が線状に連結してショートの発生率が高まるという問題があった。
 また、異方性導電接続時に、異方性導電フィルムの設計圧力を超える圧力で圧着が行われる場合があり、その場合に導電粒子が潰れすぎて砕けてしまい、本来の導通性能を得られないという問題もあった。この導電粒子の潰れすぎの問題は、特に、フレキシブルプリント配線基板の電極端子とガラス基板の電極端子とを接続する場合に生じていた。
 このような問題に対し、異方性導電フィルム中に導電粒子よりも小さい絶縁フィラを分散させることが考えられるが、絶縁フィラを単にランダムに分散させた場合には、導電粒子と絶縁フィラとが異方性導電接続時に押し込み方向で重なり合うことによる接続抵抗値の増大や接続信頼性の低下という問題が懸念される。
 本発明の目的は、以上の従来の技術の問題点を解決することであり、開口を有する転写型を用いて導電粒子が規則的パターンで配列するように作成した異方性導電フィルムにおいて、異方性導電接続の際に、接続抵抗を増大させることなく、導電粒子の連結を抑制してショートの発生を大きく抑制し、また導電粒子の潰れすぎによる導通不良を解消することである。
 本発明者は、規則的パターンで導電粒子が配列されている絶縁性バインダ層に対し、絶縁フィラを導電粒子と重なり合わないように規則的パターンで配列することにより、上述の目的を達成できることを見出し、本発明を完成させるに至った。
 即ち、本発明は、絶縁性バインダ層と、該絶縁性バインダ層の片面に規則的パターンで配列した導電粒子と、該絶縁性バインダ層の片面に積層された絶縁性接着層とを有する異方性導電フィルムであって、
 絶縁性バインダ層には、導電粒子と重なり合わないような規則的パターンで絶縁フィラが配列されている、異方性導電フィルムを提供する。
 また、本発明は、以下の工程(A)~(D)を有する異方性導電フィルムの製造方法を提供する。
工程(A)
 導電粒子を収容するための開口であって、規則的パターンに形成された第1の開口と、絶縁フィラを収容するための開口であって、第1の開口と重なりあわないような規則的パターンに形成された第2の開口とが設けられた転写型の当該第1の開口内に導電粒子を配置し、第2の開口に絶縁フィラを配置する工程。
工程(B)
 導電粒子と絶縁フィラとが配置された側の転写型の表面に、剥離フィルム上に形成された絶縁性バインダ層を対向させる工程。
工程(C)
 剥離フィルム側から絶縁性バインダ層に対して圧力をかけ、第1及び第2の開口内に絶縁性バインダ層を押し込んで絶縁性バインダ層の片面に導電粒子と絶縁フィラとを転着さる工程。
工程(D)
 導電粒子と絶縁フィラとが転着している絶縁性バインダ層の片面に絶縁性接着層を積層する工程。
 また、本発明は、上述の異方性導電フィルムで第1電子部品を第2電子部品に異方性導電接続してなる接続構造体を提供する。
 更に、本発明は、上述の異方性導電フィルムで第1電子部品を第2電子部品に異方性導電接続する接続方法であって、
 第2電子部品に対し、異方性導電フィルムを絶縁性接着層側から仮貼りし、仮貼りされた異方性導電フィルムに対し、第1電子部品を搭載し、第1電子部品側から熱圧着する接続方法を提供する。
 本発明の異方性導電フィルムは、絶縁性バインダ層と、絶縁性バインダ層の片面に規則的パターンで配列した導電粒子と、該絶縁性バインダ層の片面に積層された絶縁性接着層とを有し、当該絶縁性バインダ層には、導電粒子と重なり合わない規則的パターンで絶縁フィラが配列されている。このため、接続抵抗値を増大させることなく、導電粒子同士が連結することを抑制し、ショートの発生を大きく抑制することができる。また、異方性導電接続時にバンプ上で導電粒子が破砕されることを抑制することができる。
図1は、本発明の異方性導電フィルムの断面図である。 図2は、導電粒子と絶縁フィラとの規則的パターン配列例である。 図3は、導電粒子と絶縁フィラとの規則的パターン配列例である。 図4は、導電粒子と絶縁フィラとの規則的パターン配列例である。 図5は、導電粒子と絶縁フィラとの規則的パターン配列例である。 図6は、導電粒子と絶縁フィラとの規則的パターン配列例である。 図7Aは、本発明の異方性導電フィルムの製造工程(A)の説明図である。 図7Bは、本発明の異方性導電フィルムの製造工程(B)の説明図である。 図7Cは、本発明の異方性導電フィルムの製造工程(C)の説明図である。 図7Dは、本発明の異方性導電フィルムの製造工程(D)の説明図である。 図7Eは、本発明の異方性導電フィルムの製造工程(D)の説明図である。
 以下、本発明の異方性導電フィルムを詳細に説明する。なお、各図中、同一符号は同一又は同等の構成要素を表している。
<<異方性導電フィルム>>
 図1に示すように、本発明の異方性導電フィルム100は、絶縁性バインダ層1と、絶縁性バインダ層1の片面に規則的パターンで配列した導電粒子2と、絶縁性バインダ層1の片面に積層された絶縁性接着層3とを有する。この絶縁性バインダ層1には、導電粒子2と重なり合わない規則的パターンで絶縁フィラ4が配列している。導電粒子2と絶縁フィラ4とは、絶縁性バインダ層1の内部に包含されていてもよいが、後述する異方性導電フィルムの製造方法で異方性導電フィルム100を製造するにあたり、工程(C)で転写型内の導電粒子2と絶縁フィラ4を絶縁性バインダに転着させるときに過度の転写圧を避けた結果として、図1に示すように片面に偏在していることが好ましい。
<<導電粒子>>
 導電粒子2としては、従来公知の異方性導電フィルムに用いられているものの中から適宜選択して使用することができる。例えばニッケル、コバルト、銀、銅、金、パラジウムなどの金属粒子、金属被覆樹脂粒子などが挙げられる。2種以上を併用することもできる。
 導電粒子の好ましい硬さは、異方性導電接続する基板又は端子の種類に応じて異なり、FPC(Flexible Printed Circuits)とガラス基板を異方性導電接続する場合(FOG)には20%変形時の圧縮硬さ(K値)が1500~4000N/mm2の比較的柔らかい粒子が好ましく、FPCとFPCを異方性導電接続する場合(FOF)にも20%変形時の圧縮硬さ(K値)が1500~4000/mm2の比較的柔らかい粒子が好ましく、ICチップとガラス基板を異方性導電接続する場合には20%変形時の圧縮硬さ(K値)が3000~8000N/mm2の比較的硬い粒子が好ましい。また、材質によらず配線表面に酸化膜を形成する電子部品の場合には、20%変形時の圧縮硬さ(K値)が8000N/mm2以上さらに硬い粒子が好ましい。
 ここで、20%変形時の圧縮硬さ(K値)とは、導電粒子を一方向に荷重して圧縮することにより、導電粒子の粒子径が元の粒子径に比べて20%短くなるときの荷重から次式(1)により算出される数値であり、K値が小さいほど柔らかい粒子となる。
 K=(3/√2)F・S-8/2・R-1/2  (1)
(式中、F:導電粒子の20%圧縮変形時における荷重
    S:圧縮変位(mm)
    R:導電粒子の半径(mm) )
 導電粒子2の平均粒径としては、配線高さのばらつきに対応できるようにし、また、導通抵抗の上昇を抑制し、且つショートの発生を抑制するために、好ましくは1μm以上10μm以下、より好ましくは2μm以上6μm以下である。平均粒径は、一般的な粒度分布測定装置により測定することができる。
 導電粒子2の絶縁性バインダ層1中の存在量は、導電粒子捕捉効率の低下を抑制し、且つショートの発生を抑制するために、好ましくは1平方mm当たり50個以上40000個以下、より好ましくは200個以上20000個以下である。
<導電粒子2の規則的パターン>
 導電粒子2の配列状態である規則的パターンとは、異方性導電フィルム100の表面から導電粒子2を透視したときに認識できる導電粒子2が、長方形格子、正方格子、六方格子、菱形格子等の格子点に存在している配列を意味する。これらの格子を構成する仮想線は、直線だけなく、曲線、屈曲線であってもよい。
 全導電粒子2に対する、規則的パターンで配列されている導電粒子2の割合は、導電粒子数基準で異方性接続の安定化のために好ましくは90%以上である。この割合の測定は、光学顕微鏡などにより行うことができる。
 また、導電粒子2の粒子間距離は、導電粒子2の平均粒子径の好ましくは0.5倍以上、より好ましくは1倍以上5倍以下である。
<<絶縁フィラ>>
 絶縁フィラ4は、従来公知の異方性導電フィルムに用いられているものの中から適宜選択して使用することができる。例えば、樹脂粒子や、酸化アルミニウム、酸化チタン、酸化亜鉛等の金属酸化物粒子などを挙げることができる。また、その形状は、球状、楕円球状、扁平状、柱状、針状等が挙げられるが、球状が好ましい。
<絶縁フィラの硬さと径>
 絶縁フィラ4の好ましい硬さは、絶縁フィラ4の粒子径が導電粒子2よりも小さい場合には、異方性導電接続時の圧着時に導電粒子2が潰れすぎて砕けることを防止し得るように導電粒子よりも硬いことが望ましいが、絶縁フィラ4の粒子径が導電粒子2よりも大きい場合には、絶縁フィラ4の硬さは導電粒子2の硬さ以下でもよく、好ましくは導電粒子2の硬さ未満である。さらに、絶縁フィラ4の好ましい硬さは、異方性導電接続する電子部品の硬さや加熱加圧条件によっても異なる。したがって、絶縁フィラ4の大きさと硬さは、異方性導電接続する電子部品の組み合わせ、接続時の加熱加圧条件、及び導電粒子の大きさと硬さをもとに適宜設計することが望ましい。
 即ち、絶縁フィラ4が導電粒子2よりも柔らかい場合には、絶縁フィラ4の平均粒径は、導電粒子2の平均粒径より小さくてもよく、導電粒子2の平均粒径以上でもよい。一方、絶縁フィラ4が導電粒子2より硬い場合には、絶縁フィラ4の平均粒子径は導電粒子2の平均粒子径よりも小さくすることが好ましい。ここで、絶縁フィラ4の導電粒子2に対する相対的硬さは、圧縮変形時の圧縮硬さ(K値)や所定圧をかけた場合の潰れ率の対比により判断することができる。また、硬さが同じ場合であれば、絶縁フィラは導電粒子径より小さいことが望ましい。
 さらに、絶縁フィラ4の平均粒子径を導電粒子2の平均粒子径より小さくする場合に、絶縁フィラ4の好ましい平均粒径は、配線とバンプとの間で導電粒子2の過度の押し込みや破砕の発生を抑制し、また、導電粒子2の過度の流動を抑制し、且つ導電粒子2の接続に適した押し込みを実現する点から0.3μm以上7μm以下、より好ましくは0.9μm以上4.2μm以下である。平均粒径は、一般的な粒度分布測定装置により測定することができる。
 特に、異方性導電接続時に導電粒子2の良好な押し込みを可能し、絶縁フィラ4が配線やバンプに過度に付着してしまうことを抑制するために、導電粒子2に対する絶縁フィラ4の硬さの硬軟に関わらず、絶縁フィラ4の平均粒径は導電粒子2の平均粒径の75%以下であることが好ましく、30%以上70%以下であることが好ましい。また、絶縁フィラ4と導電粒子2が同程度に十分に柔らかい場合には、絶縁フィラ4の平均粒子径は、導電粒子2の平均粒子径の120%以下とすることが好ましい。これにより、バンプと配線の間で導電粒子2とは別に絶縁フィラ4も挟持されることになり、バンプ近傍の熱伝導性も良好になる。即ち、異方性導電接続を行うにあたり、接続部に不要な熱が留まり難くなり、導通信頼性にも寄与する。
<絶縁フィラを形成する樹脂>
 絶縁フィラを樹脂粒子から形成する場合において、絶縁フィラの硬さを導電粒子の硬さや径などに応じて調整して製造する方法としては、絶縁フィラを形成する樹脂粒子を圧縮変形に優れるプラスチック材料を用いて製造することが好ましい。このようなプラスチック材料としては、例えば(メタ)アクリレート系樹脂,ポリスチレン系樹脂,スチレン-(メタ)アクリル共重合樹脂、ウレタン系樹脂、エポキシ系樹脂、フェノール樹脂、アクリロニトリル・スチレン(AS)樹脂、ベンゾグアナミン樹脂、ジビニルベンゼン系樹脂、スチレン系樹脂、ポリエステル樹脂等で形成することができる。
 このうち(メタ)アクリレート系樹脂は、(メタ)アクリレート系モノマーと、さらに必要によりこれと共重合可能な反応性二重結合を有する化合物および二官能あるいは多官能性モノマーとの共重合体であることが好ましい。
 (メタ)アクリレート系モノマーの例としては、メチル(メタ)アクリレート,エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-プロピル(メタ)アクリレート、クロロ-2-ヒドロキシエチル(メタ)アクリレート,ジエチレングリコールモノ(メタ)アクリレート、メトキシエチル(メタ)アクリレート、グリシジル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレートおよびイソボロノル(メタ)アクリレート等を挙げることができる。
 一方、ポリスチレン系樹脂は、スチレン系モノマーと、さらに必要によりこれと共重合可能な反応性二重結合を有する化合物および二官能あるいは多官能性モノマーとの共重合体であることが好ましい。
 スチレン系モノマーとしては、スチレン、メチルスチレン、ジメチルスチレン、トリメチルスチレン、エチルスチレン、ジエチルスチレン、トリエチルスチレン、プロピルスチレン、ブチルスチレン、ヘキシルスチレン、ヘブチルスチレンおよびオクチルスチレン等のアルキルスチレン;フロロスチレン、クロロスチレン、ブロモスチレン、ジブロモスチレン、ヨウドスチレンおよびクロロメチルスチレンなどのハロゲン化スチレン;ならびに、ニトロスチレン、アセチルスチレンおよびメトキシスチレンを挙げることができる。
 絶縁フィラは、上述の(メタ)アクリレート系樹脂またはスチレン系樹脂の単独で形成されていてもよく、これらを形成するモノマーの共重合体であってもよく、(メタ)アクリレート系樹脂とスチレン系樹脂を含む組成物であってもよい。
 (メタ)アクリレート系樹脂を形成するモノマーとスチレン系樹脂を形成するモノマーとを共重合させる場合に、必要により共重合可能な他のモノマーを共重合させてもよい。
 このような他のモノマーの例としては、ビニル系モノマー、不飽和カルボン酸モノマーを挙げることができる。
 また、(メタ)アクリレート系樹脂と他の化合物との重合体の例としては、ウレタン化合物と、アクリレート系モノマーとの重合体をあげることができる。ここで、ウレタン化合物としては、多官能ウレタンアクリレートを使用することができ、例えば2官能ウレタンアクリレート等を使用することができる。ウレタン化合物とアクリレート系モノマーとの重合体の製造においては、アクリレート系モノマー100重量部に対しウレタン化合物を5重量部以上含有させることが好ましく、25重量部以上含有されることがより好ましい。
 なお、本発明において(メタ)アクリル酸エステル系のモノマーとは、アクリル酸エステル(アクリレート)と、メタクリル酸エステル(メタクリレート)の両方を指す。また、本発明においてモノマーには、加熱や紫外線照射等により重合するものであれば、2個以上のモノマーの重合体であるオリゴマーも含まれる。
<絶縁フィラの存在量>
 絶縁フィラ4の絶縁性バインダ層1中の存在量は、接続状態を保持し、接続部近傍に発生する熱を放熱して安定化させ、且つショート発生を抑制するために、好ましくは1平方mm当たり10個以上800000個以下、より好ましくは20個以上400000個以下である。
<絶縁フィラ4の規則的パターンの配列>
 絶縁フィラ4の配列状態である規則的パターンとは、導電粒子2と同様に、異方性導電フィルム100の表面から絶縁フィラ4を透視したときに認識できる絶縁フィラ4が、長方形格子、正方格子、六方格子、菱形格子等の格子点に存在している配列を意味する。これらの格子を構成する仮想線は、直線だけなく、曲線、屈曲線であってもよい。
 また、絶縁フィラ4の規則的パターンは、導電粒子2と重なり合わない配置を取る。なお、異方性導電フィルムにおいて導電粒子2の規則的パターンと絶縁フィラ4の規則的パターンとが重なり合わないとは、これらの規則的パターンに配置された導電粒子2の重心と絶縁フィラ4の重心とが異方性導電フィルムの厚さ方向で重なり合わないという意味であり、重心が重なり合わない限り、導電粒子と絶縁フィラは異方性導電フィルムの厚さ方向に部分的に重なり合っても良い。即ち、導電粒子2と絶縁フィラ4は、面視野において一切重なり合わないことが、異方性接続を良好に行う上では望ましい。しかし異方性導電フィルムの全面にこれを求める場合、製造上の歩留まりが悪化しコスト増加に起因する。一方、部分的に重なり合っていても重心が重なり合っていなければ、少なくとも導電粒子2は通常球形であるため、押し込み時の樹脂流動で横ズレし、異方性接続を阻害させることはなくなる。
 全絶縁フィラ4に対する、規則的パターンで配列している絶縁フィラ4の割合は、絶縁フィラ数基準で接続時の異方性接続の不良回避のために好ましくは90%以上である。
この割合の測定は、光学顕微鏡などにより行うことができる。
<導電粒子と絶縁フィラとの規則的パターン配列例>
 本発明の異方性導電フィルムにおける導電粒子と絶縁フィラとの規則的パターンの例としては、導電粒子と絶縁フィラの規則的パターンが同種の格子配列であり、それらの格子ピッチが等しい態様(図2及び図3)、同種の格子配列であり、それらの格子ピッチが異なる態様(図4及び図5)、同種の格子配列であり、それらの格子方向が異なる態様(図4)、異種の格子配列である態様(図6)などをあげることができ、より具体的には、(ア)規則的パターンに配列した導電粒子中の少なくともフィルム長手方向に配列した導電粒子の粒子間に絶縁フィラが配列されている態様(図2参照)、(イ)規則的パターンに配列した導電粒子中の少なくともフィルム長手方向と直交する方向に配列した導電粒子の粒子間に絶縁フィラが配列している態様(図3参照)、(ウ)規則的パターンに配列した導電粒子中のフィルム長手方向に配列した導電粒子の粒子間、並びにフィルム長手方向と直交する方向に配列した導電粒子の粒子間にそれぞれ絶縁フィラが配列している態様(図4参照)、(エ)導電粒子の配列と同一方向に配列した絶縁フィラを有し、該配列方向にいおいて導電粒子間の距離よりも絶縁フィラ間の距離の方が大きい態様(図5参照)、(オ)導電粒子の配列と同一方向に配列した絶縁フィラを有し、該配列方向において導電粒子間の距離よりも絶縁フィラ間の距離の方が小さい態様(図6参照)などが挙げられる。
 これら(ア)~(オ)の態様において、導電粒子間にある絶縁フィラ4がフィルムの長手方向に配列している場合(フィルム長手方向に配列した導電粒子の粒子間に絶縁フィラが配置されている場合)には、導電粒子のバンプ間での接触を抑制できる効果が得られる。また、導電粒子間にある絶縁フィラ4がフィルムの長手方向と直交する方向に配列している場合(フィルム長手方向と直交する方向に配列した導電粒子の粒子間に絶縁フィラが配置されている場合)には、絶縁フィラが導電粒子と同一のバンプに挟持されやすくなり、バンプ内での導電粒子の押し込み度合いを均一化できるという効果が得られる。
 また、導電粒子間にある絶縁フィラ4の個数は1個に限定されることはなく、導電粒子間距離によっては複数個存在してもよい。その個数は、バンプの設計によって任意に変更できる。
 また、絶縁フィラ4は、導電粒子2よりも広い間隔で設けられていてもよい。絶縁フィラ4によりショートを防止する点からは、バンプ間距離の方向に配列した導電粒子の粒子間に絶縁フィラが存在すれば、その方向の導電粒子の格子ピッチに比して絶縁フィラの格子ピッチが広くてもショート防止の効果が期待できるためである。なお、押し込みの均一性のためにはバンプ上で挟持される絶縁フィラ4は2個以上が好ましく、3個以上がより好ましい。
 導電粒子2の規則的パターンを構成する配列のうち、任意の導電粒子と該任意の導電粒子から最も近しい距離にある導電粒子とを通る方向の配列(即ち、導電粒子の最短ピッチの配列)を、異方性導電フィルムの長手方向とすること、又は異方性導電フィルムの長手方向と直交する方向と平行又は略平行とすることが好ましく、異方性導電フィルムの長手方向、又は長手方向に直交する方向に対して斜交する方向がより好ましい。これは、一般に、異方性導電フィルムの長手方向と直交する方向に異方性導電接続する端子の長手方向が合わせられるので、フィルムを基板等に貼り合わせる際、導電粒子と端子とのフィルムの長手方向のズレが、これに直交する方向のズレよりも大きくなりやすいためである。したがって、導電粒子や絶縁フィラの配列が、端子の短手方向(フィルムの長手方向)の縁端部に存在する場合に、異方性接続時に捕捉され難くなることを防止するため、導電粒子の最短ピッチの配列方向をフィルムの長手方向に合わせるか、又はフィルムの長手方向とそれに直交する方向に対して斜交させることが好ましい。
 次に、導電粒子と絶縁フィラとの規則的パターンの例を図2~4を参照してさらに詳細に説明する。図中、矢印は異方性導電フィルムの製造時の長手方向であり、点線で囲まれた矩形Bは、異方性導電接続時に想定されるバンプ位置の一例である。
 図2は、導電粒子2の規則的パターンが正方格子パターンであり、絶縁フィラ4の規則的パターンが正方格子パターンであり、それらの格子ピッチが等しく、導電粒子2と絶縁フィラ4とが異方性導電フィルムの長手方向(図中矢印方向)に交互に配置されている態様である。
 図3は、導電粒子2の規則的パターンが正方格子パターンであり、絶縁フィラ4の規則的パターンが正方格子パターンであり、それらの格子ピッチが等しく、導電粒子2と絶縁フィラ4とが異方性導電フィルムの長手方向(図中矢印方向)と直交する方向に交互に配置されている態様である。
 図4は、導電粒子2の規則的パターンが正方格子パターンであり、絶縁フィラ4の規則的パターンも正方格子パターンであるが、これらの格子方向は45°ずれ、導電粒子2の格子ピッチと絶縁フィラ4の格子の対角方向のピッチが等しい態様である。この態様は、絶縁フィラ4も導電粒子2も正方格子でそれらの格子ピッチも等しいが、絶縁フィラの正方格子パターンが絶縁フィラの正方格子パターンに対して格子方向に半ピッチずれた位置にあり、かつ、絶縁フィラの正方格子パターンの単位格子面の面心に絶縁フィラが存在することにより、絶縁フィラの規則的パターンが面心正方格子パターンに見える態様である。
<絶縁性バインダ層1>
 本発明の異方性導電フィルム100を構成する絶縁性バインダ層1は、導電粒子2や絶縁フィラ4を該フィルム100に固定する機能を担う樹脂層であり、公知の異方性導電性フィルムで使用される絶縁性樹脂層の構成を適宜採用することができる。例えば、熱又は光カチオン、アニオン又はラジカル重合性樹脂等の熱又は光重合性樹脂を、好ましくは重合率が50%以上100%以下となるように重合させることで、導電粒子や絶縁フィラを固定化できる。また、重合しているので、異方性導電接続時に加熱されても樹脂が流れ難くなるので、実装粒子捕捉効率も向上させることができ、ショートの発生を大きく抑制でき。従って、基板の電極とバンプとの導通信頼性と、基板の電極間又はバンプ間の絶縁性を向上させることができる。特に、好ましい絶縁性バインダ層1は、アクリレート化合物と光ラジカル重合開始剤とを含む光ラジカル重合性樹脂層を光ラジカル重合させた光ラジカル重合樹脂層である。以下、絶縁性バインダ層1が光ラジカル重合樹脂層である場合について説明する。
(アクリレート化合物)
 アクリレート単位となるアクリレート化合物としては、従来公知の光ラジカル重合性アクリレートを使用することができる。例えば、単官能(メタ)アクリレート(ここで、(メタ)アクリレートにはアクリレートとメタクリレートとが包含される)、二官能以上の多官能(メタ)アクリレートを使用することができる。本発明においては、絶縁性バインダ層1を熱硬化性とするために、アクリル系モノマーの少なくとも一部に多官能(メタ)アクリレートを使用することが好ましい。
 絶縁性バインダ層1におけるアクリレート化合物の含有量は、少なすぎると異方性導電接続時に導電粒子2や絶縁フィラ4が溶融した樹脂で流されないように、これらを絶縁性バインダ層1に固定しておくことが難くなり、多すぎると硬化収縮が大きく作業性が低下する傾向があるので、好ましくは2質量%以上70質量%以下、より好ましくは10質量%以上50質量%以下である。
(光ラジカル重合開始剤)
 光ラジカル重合開始剤としては、公知の光ラジカル重合開始剤の中から適宜選択して使用することができる。例えば、アセトフェノン系光重合開始剤、ベンジルケタール系光重
合開始剤、リン系光重合開始剤等が挙げられる。
 光ラジカル重合開始剤の使用量は、アクリレート化合物100質量部に対し、少なすぎると光ラジカル重合が十分に進行せず、多すぎると剛性低下の原因となるので、好ましくは0.1質量部以上25質量部以下、より好ましくは0.5質量部以上15質量部以下である。
 絶縁性バインダ層1には、必要に応じて、フェノキシ樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、飽和ポリエステル樹脂、ウレタン樹脂、ブタジエン樹脂、ポリイミド樹脂、ポリアミド樹脂、ポリオレフィン樹脂などの膜形成樹脂を併用することができる。後述する絶縁性接着層3にも、同様に併用してもよい。
 絶縁性バインダ層1の層厚は、薄すぎると実装導電粒子捕捉効率が低下する傾向があり、厚すぎると導通抵抗が高くなる傾向があるので、好ましくは1.0μm以上6.0μm以下、より好ましくは2.0μm以上5.0μm以下である。
 絶縁性バインダ層1には、更に、エポキシ化合物と熱又は光カチオン若しくはアニオン重合開始剤とを含有させることもできる。この場合、後述するように、絶縁性接着層3もエポキシ化合物と熱又は光カチオン若しくはアニオン重合開始剤とを含有する熱又は光カチオン若しくはアニオン重合性樹脂層とすることが好ましい。これにより、層間剥離強度を向上させることができる。エポキシ化合物と熱又は光カチオン若しくはアニオン重合開始剤については、絶縁性接着層3で説明する。
 図1に示すように、絶縁性バインダ層1に固定された導電粒子2は絶縁性接着層3に食い込んでいる(換言すれば、導電粒子2が絶縁性バインダ層1の表面に露出している)ことが好ましい。導電粒子がすべて絶縁性バインダ層に埋没していると、抵抗導通が高くなることが懸念されるからである。食い込みの程度は、小さすぎると実装導電粒子捕捉効率が低下する傾向があり、大きすぎると導通抵抗が高くなる傾向があるので、好ましくは導電粒子の平均粒子径の10%以上90%以下、より好ましくは20%以上80%以下である。
 絶縁性バインダ層1の形成は、例えば、光ラジカル重合性アクリレートと光ラジカル重合開始剤とを含有する光ラジカル重合性樹脂層に、フィルム転写法、金型転写法、インクジェット法、静電付着法等の手法により導電粒子と絶縁フィラとを付着させ、紫外線を導電粒子側、その反対側、もしくは両側から照射することにより行うことができる。
<絶縁性接着層3>
 絶縁性接着層3は、異方性導電接続時に対向する電子部品同士を接続ないし接着する機能を担う樹脂層である。公知の異方性導電性フィルムで使用される絶縁性樹脂層の構成を適宜採用することができ、熱又は光カチオン、アニオン若しくはラジカル重合性樹脂層、好ましくはエポキシ化合物と熱又は光カチオン若しくはアニオン重合開始剤とを含有する熱又は光カチオン若しくはアニオン重合性樹脂層、又はアクリレート化合物と熱又は光ラジカル重合開始剤とを含有する熱又は光ラジカル重合性樹脂層から形成することが好ましい。
 ここで、前述の絶縁性バインダ層1を光重合樹脂層から形成した場合に絶縁性接着層3を熱重合性樹脂層から形成することは、絶縁性バインダ層1を形成する際の紫外線照射により絶縁性接着層3の重合反応が生じないため、生産の簡便性および品質安定性の上では望ましい。
 絶縁性接着層3が、熱又は光カチオン若しくはアニオン重合性樹脂層である場合、更に、アクリレート化合物と熱又は光ラジカル重合開始剤とを含有することができる。これにより絶縁性バインダ層1と層間剥離強度を向上させることができる。
(エポキシ化合物)
 絶縁性接着層3がエポキシ化合物と熱又は光カチオン若しくはアニオン重合開始剤とを含有する熱又は光カチオン若しくはアニオン重合性樹脂層である場合、エポキシ化合物としては、分子内に2つ以上のエポキシ基を有する化合物もしくは樹脂が好ましく挙げられる。これらは液状であっても、固体状であってもよい。
(熱カチオン重合開始剤)
 熱カチオン重合開始剤としては、エポキシ化合物の熱カチオン重合開始剤として公知のものを採用することができ、例えば、熱により、カチオン重合性化合物をカチオン重合させ得る酸を発生するものであり、公知のヨードニウム塩、スルホニウム塩、ホスホニウム塩、フェロセン類等を用いることができ、温度に対して良好な潜在性を示す芳香族スルホニウム塩を好ましく使用することができる。
 熱カチオン重合開始剤の配合量は、少なすぎても硬化不良となる傾向があり、多すぎても製品ライフが低下する傾向があるので、エポキシ化合物100質量部に対し、好ましくは2質量部以上60質量部以下、より好ましくは5質量部以上40質量部以下である。
(熱アニオン重合開始剤)
 熱アニオン重合開始剤としては、エポキシ化合物の熱アニオン重合開始剤として公知のものを採用することができ、例えば、熱により、アニオン重合性化合物をアニオン重合させ得る塩基を発生するものであり、公知の脂肪族アミン系化合物、芳香族アミン系化合物、二級又は三級アミン系化合物、イミダゾール系化合物、ポリメルカプタン系化合物、三フッ化ホウ素-アミン錯体、ジシアンジアミド、有機酸ヒドラジッド等を用いることができ、温度に対して良好な潜在性を示すカプセル化イミダゾール系化合物を好ましく使用することができる。
 熱アニオン重合開始剤の配合量は、少なすぎても硬化不良となる傾向があり、多すぎても製品ライフが低下する傾向があるので、エポキシ化合物100質量部に対し、好ましくは2質量部以上60質量部以下、より好ましくは5質量部以上40質量部以下である。
(光カチオン重合開始剤及び光アニオン重合開始剤)
 エポキシ化合物用の光カチオン重合開始剤又は光アニオン重合開始剤としては、公知のものを適宜使用することができる。
(アクリレート化合物)
 絶縁性接着層3がアクリレート化合物と熱又は光ラジカル重合開始剤とを含有する熱又は光ラジカル重合性樹脂層である場合、アクリレート化合物としては、絶縁性バインダ層1に関して説明したものの中から適宜選択して使用することができる。
(熱ラジカル重合開始剤)
 また、熱ラジカル重合開始剤としては、例えば、有機過酸化物やアゾ系化合物等が挙げられるが、気泡の原因となる窒素を発生しない有機過酸化物を好ましく使用することができる。
 熱ラジカル重合開始剤の使用量は、少なすぎると硬化不良となり、多すぎると製品ライフの低下となるので、アクリレート化合物100質量部に対し、好ましくは2質量部以上60質量部以下、より好ましくは5質量部以上40質量部以下である。
(光ラジカル重合開始剤)
 アクリレート化合物用の光ラジカル重合開始剤としては、公知の光ラジカル重合開始剤を使用することができる。
 光ラジカル重合開始剤の使用量は、少なすぎると硬化不良となり、多すぎると製品ライフの低下となるので、アクリレート化合物100質量部に対し、好ましくは2質量部以上60質量部以下、より好ましくは5質量部以上40質量部以下である。
 なお、絶縁性バインダ層1の他面に、別の絶縁性接着層が積層されていてもよい。これにより、層全体の流動性をより精緻に制御することが可能となるという効果が得られる。ここで、別の絶縁性接着層としては、前述した絶縁性接着層3と同じ構成としてもよい。
<<異方性導電フィルムの製造方法>>
 次に、本発明の異方性導電フィルムの製造方法の一例を説明する。この製造方法は、以下の工程(A)~(D)を有する。以下工程毎に説明する。
<工程(A)>
 図7Aに示すように、導電粒子2を収容するための開口であって、規則的パターンに形成されている第1の開口51と、絶縁フィラ4を収容するための開口であって、規則的パターンに形成され、かつ第1の開口51と重なりあわないように配置された第2の開口52とが設けられた転写型50の当該第1の開口51内に導電粒子2を配置し、第2の開口52に絶縁フィラ4を配置する。
 ここで、絶縁フィラ4の粒子径が導電粒子2の粒子径より小さく、第1の開口51の開口径が第2の開口52の開口径よりも小さい場合、第1の開口51に導電粒子2を配置し、引き続き第2の開口52に絶縁フィラ4を配置する。この場合、導電粒子2が収容された第1の開口51に、絶縁フィラ4が入り込む場合があるが、本発明の効果を損なわない限り、そのような場合も本発明の範囲から排除されるものではない。
 また、導電粒子2と絶縁フィラ4とは、フィルムの厚み方向において、絶縁フィラ4の重心と導電粒子2の重心とが異方性導電フィルムの厚さ方向(異方性導電接続時の押し込み方向)に重なっていないことが好ましい。換言すれば、絶縁フィラ4と導電粒子2とは、異方性導電フィルムのフィルム厚方向にそれらの重心が重なっていなければ、その他の部分が重複していてもよい。これは、導電粒子の重心と絶縁フィラの重心が重なっていると、異方性接続が阻害される虞が生じるが、絶縁フィラ4の重心と導電粒子2の重心とが押し込み方向に重なっていなければ、導電粒子2の形状が一般に略球形であるため、異方性導電接続の際の加熱により、バインダ樹脂及び絶縁性接着層と共に、絶縁フィラ4が異方性導電接続を阻害しない位置まで流動することができるためである。
 即ち、導電粒子2の形状が一般に略球形であるため、導電粒子と部分的に重なっている絶縁フィラが連続で多数個存在しなければ、押圧ツールからの圧力がバンプ間接続時に不均一にはなりにくく、結果として流動時に絶縁フィラ4が導電粒子2から重複しないように外れるためである。導電粒子2と部分的に重複している絶縁フィラ4が、配列の同一方向に連続して存在する数は6個以下であれば好ましく、5個以下であればより好ましく、4個以下であれば更により好ましく、実用上での問題はなくなる。
(転写型)
 転写型50としては、例えば、シリコン、各種セラミックス、ガラス、ステンレススチールなどの金属等の無機材料や、各種樹脂等の有機材料などに対し、フォトリソグラフ法等の公知の開口形成方法によって開口を形成したものである。このような転写型50は、板状、ロール状等の形状をとることができる。
 転写型50の第1の開口51並びに第2の開口52の形状としては、それぞれ円柱状、四角柱等の多角柱状、四角錐等の角錐状等を例示することができる。
 第1の開口51並びに第2の開口52の配列としては、それぞれ導電粒子2並びに絶縁フィラ4の記録的パターンに対応した配列とすることが好ましい。
 なお、転写型50の第1の開口51並びに第2の開口52の径と深さは、レーザー顕微鏡で測定することができる。ここで、開口が円柱の場合は最深部を深さとする。
 転写型50の第1の開口51内に導電粒子2を収容する手法並びに第2の開口52内に絶縁フィラ4を収容する手法としては、特に限定されるものではなく、公知の手法を採用することができる。例えば、乾燥した導電粒子粉末またはこれを溶媒中に分散させた分散液を転写型50の開口形成面上に散布または塗布した後、ブラシやブレードなどを用いて開口形成面の表面をワイプすればよい。
(第1の開口)
 第1の開口51の径(第1開口径)51aの導電粒子2の平均粒径に対する比(=第1開口径/導電粒子平均径)は、導電粒子の収容のしやすさ、絶縁性樹脂の押し込みやすさ、絶縁フィラの付着防止等のバランスから、好ましくは1.1以上2.0以下、より好ましくは1.2以上1.8以下、特に好ましくは1.3以上1.7以下である。
 また、第1の開口51の深さ(第1開口深さ)51bに対する導電粒子2の平均粒径の比(=導電粒子平均径/第1開口深さ)は、転写性向上、導電粒子保持性、絶縁フィラの付着防止等のバランスから、好ましくは0.4以上3.0以下、より好ましくは0.5以上1.5以下である。1未満である場合、導電粒子上に絶縁フィラが付着することが想定されるが、導電粒子は通常球形であるため、お互いの重心は重なりにくい。1以上である場合は、導電粒子を充填した後の第1の開口内に隙間が少ないことから、導電粒子と絶縁フィラの付着は生じ難い。
 なお、第1の開口51の基底側の底部径(第1開口底部径)51cは第1開口径51aに対して同等以上であることが好ましい。第1開口底部径51cの導電粒子2の平均粒径に対する比(=第1開口基底部径/導電粒子平均粒径)は、導電粒子の収容のしやすさ、絶縁性樹脂の押し込みやすさ、絶縁フィラの付着防止等のバランスから、導電粒子の平均粒径の好ましくは1.1以上2.0以下、より好ましくは1.2以上1.7以下、特に好ましくは1.3以上1.6以下である。
(第2の開口)
 他方、第2の開口52の径(第2開口径)52aの絶縁フィラ4の平均粒径に対する比(=第2開口径/絶縁フィラ平均粒径)も、絶縁フィラの収容のしやすさ、絶縁性樹脂の押し込みやすさ等のバランスから、好ましくは1.1以上2.0以下、より好ましくは1.3以上1.8以下である。
 また、第2の開口52の深さ(第2開口深さ)52bに対する絶縁フィラ4の平均粒径の比(=絶縁フィラ平均粒径/第2開口深さ)も、転写性向上と絶縁フィラ保持性とのバランスから、好ましくは0.4以上3.0以下、より好ましくは0.5以上1.5以下である。
 なお、第2の開口52の基底側の底部径(第2開口底部径)52cの導電粒子2の平均粒径に対する比(=第2開口基底部径/導電粒子平均粒径)は、絶縁フィラの収容のしやすさ、絶縁性樹脂の押し込みやすさ等のバランスから、絶縁フィラの平均粒径の好ましくは1.1以上2.0以下、より好ましくは1.2以上1.7以下、特に好ましくは1.3以上1.6以下である。
<工程(B)>
工程(B)
 次に、図7Bに示すように、導電粒子2と絶縁フィラ4とが配置された側の転写型50の表面に、剥離フィルム60上に形成された絶縁性バインダ層1を対向させる。
<工程(C)>
 次に、図7Cに示すように、剥離フィルム60側から絶縁性バインダ層1に対して圧力をかけ、第1の開口51内及び第2の開口52内に絶縁性バインダ層1を押し込んで絶縁性バインダ層1の片面に導電粒子2と絶縁フィラ4とを転着させる。
<工程(D)>
 次に、図7Dに示すように、転写型から絶縁性バインダ層1を外し、導電粒子2と絶縁フィラ4とが転着している絶縁性バインダ層の片面に絶縁性接着層3を積層する。これにより、図7Eに示す異方性導電フィルム100が得られる。必要に応じて剥離フィルム60は除去してもよい。
 なお、工程(C)と工程(D)との間で、絶縁性バインダ層1を予備硬化処理(加熱あるいは紫外線照射等)することが好ましい。これにより、導電粒子2を絶縁性バインダ層1に仮固定することができる。
 必要に応じ、剥離フィルム60を剥がし、その面に(絶縁性バインダ層の他面)に、別の絶縁性接着層を積層してもよい(図示せず)。
<<異方性導電フィルムの用途>>
 このようにして得られた異方性導電フィルムは、FPC、ICチップ、ICモジュールなどの第1電子部品と、FPC、リジッド基板、セラミック基板、ガラス基板などの第2電子部品とを熱又は光により異方性導電接続する際に好ましく適用することができる。このようにして得られる接続構造体も本発明の一部である。
 異方性導電フィルムを用いた電子部品の接続方法としては、例えば、図1に示した層構成の異方性導電フィルムを用いる場合、配線基板などの第2電子部品に対し、異方性導電フィルムをその絶縁性バインダ層から仮貼りし、仮貼りされた異方性導電フィルムに対し、ICチップなどの第1電子部品を搭載し、第1電子部品側から熱圧着することが、接続信頼性を高める点から好ましい。また、光硬化を利用して接続することもできる。
 以下、本発明を実施例により具体的に説明する。
  実施例1~9
 フェノキシ樹脂(YP-50、新日鐵住金(株))60質量部、アクリレート(EP600、ダイセル・オルネクス(株))40質量部及び光ラジカル重合開始剤(IRGADCURE 369、三菱化学(株))2質量部をトルエンにて固形分が50質量%となるように混合液を調製した。一方、剥離フィルムとして厚さ50μmのポリエチレンテレフタレートフィルム(PETフィルム)を用意し、これに上述の混合液を、乾燥厚が5μmとなるように塗布し、80℃のオーブン中で5分間乾燥することにより、PETフィルム(剥離フィルム)上に光ラジカル重合型の絶縁性バインダ層を形成した。
 次に、図2(実施例1、4、7)、図3(実施例2、5)、図4(実施例3、6)又は図5(実施例9)に示すパターンで、導電粒子用に直径5.5μmで深さ4.5μmの円筒状の第1の開口が縦横9μmピッチで設けられ、絶縁フィラ用に直径3.0μmで深さ4.0μmの円筒状の第2の開口が設けられているステンレススチール製の転写型を用意した。
 また、図2のパターンの変形バージョン(実施例8)として、第1の開口間を18μm
にし、第1の開口間に第2の開口を2.25μmの間隔で3個設けた転写型を用意した。
 これらの転写型の第1の開口に平均粒径4μmの導電粒子(Ni/Auメッキ樹脂粒子、AUL704、積水化学工業(株))を一つずつ収容し、第2の開口に平均粒径2.8μm(実施例1~3)又は1.2μm(実施例4~9)のシリカ粒子(KE-P250又はKE-P100、(株)日本触媒)を一つずつ収容した。この転写型の開口形成面に対し、絶縁性バインダ層を対向させ、剥離フィルム側から、60℃で0.5MPaという条件で加圧することにより導電粒子と絶縁フィラとを絶縁性バインダ層に押し込んだ。
 次に、剥離フィルム側から波長365nm、積算光量4000mL/cmの紫外線を照射することにより、表面に導電粒子と絶縁フィラとが仮固定された絶縁性バインダ層を形成した。
 次に、フェノキシ樹脂(YP-50、新日鐵住金(株))60質量部、エポキシ樹脂(jER828、三菱化学(株))40質量部及び光カチオン重合開始剤(SI-60、三新化学工業(株))2質量部をトルエンにて固形分が50質量%となるように混合液を調製した。この混合液を、厚さ50μmのPETフィルムに、乾燥厚が12μmとなるように塗布し、80℃のオーブン中で5分間乾燥することにより、比較的厚い絶縁性接着層を形成した。同様の操作により乾燥厚3μmの薄い絶縁性接着層を形成した。
 このようにして得られた比較的厚い絶縁性接着層を、導電粒子と絶縁フィラとを仮固定した絶縁性バインダ層の仮固定面に、60℃、0.5MPaという条件でラミネートし、続いて反対面に薄い絶縁性接着層を同様にラミネートすることにより異方性導電フィルムを得た。
 なお、異方性導電フィルムにおいて、導電粒子間に存在する絶縁フィラの数は、図2~5に示した通りである。
 比較例1
 絶縁フィラ用の開口が設けられていない転写型を使用し、且つ絶縁フィラを使用することなく、実施例1と同様に異方性導電フィルムを得た。
<評価>
 各実施例及び比較例の異方性導電フィルムの(a)連結した導電粒子数、(b)導電粒子に接している絶縁フィラの数、(c)初期導通抵抗、(d)導通信頼性、(e)ショート発生率を、それぞれ次のように試験評価した。結果を表1に示す。
(a)連結した導電粒子数
 各実施例及び対照例の異方性導電フィルムを、初期導通および導通信頼性の評価用ICとガラス基板の間に挟み、加熱加圧(180℃、80MPa、5秒)して評価用接続物を得、バンプ上の導電粒子100個のうち、連結しているものの個数を計測した。この場合、連結しているものは1個として計測する。この個数は少ないほど好ましい。ここで、この各評価用ICとガラス基板は、それらの端子パターンが対応しており、サイズは次の通りである。
初期導通および導通信頼性の評価用IC
 外径:0.7×20mm
 厚み:0.2mm
 Bump仕様:金メッキ、高さ12μm、サイズ15×100μm、Bump間Gap15μm
ガラス基板
 ガラス材質:コーニング社製
 外径:30×50mm
 厚み:0.5mm
 電極:ITO配線
(b)導電粒子に接している絶縁フィラの数
 (a)で作成した評価用接続物について、バンプ上の導電粒子100個のうち、絶縁フィラと接触しているものの個数を計測した。この場合、一つの導電粒子に複数の絶縁フィラが接触しても1個として計測する。
(c)初期導通抵抗
 (a)で作成した評価用接続物の導通抵抗をデジタルマルチメーター(商品名:デジタルマルチメーター7561、横河電機(株))を用いて測定した。
(d)導通信頼性
 (a)の評価用接続物を温度85℃、湿度85%RHの恒温槽に500時間おいた後の導通抵抗を、(c)と同様に測定した。なお、この導通抵抗が5Ω以上であると、接続した電子部品の実用的な導通安定性の点から好ましくない。
(e)ショート発生率
 ショート発生率の評価用ICとして次のIC(7.5μmスペースの櫛歯TEG(test element group))を用意した。
 外径:1.5×13mm
 厚み:0.5mm
 Bump仕様:金メッキ、高さ15μm、サイズ25×140μm、Bump間Gap7.5μm
 各実施例及び比較例の異方性導電フィルムを、ショート発生率の評価用ICと、該評価用ICに対応したパターンのガラス基板との間に挟み、(b)と同様の接続条件で加熱加圧して接続物を得、その接続物のショート発生率を求めた。ショート発生率は、「ショートの発生数/7.5μmスペース総数」で算出される。ショート発生率が50ppm未満であることが実用上望まれる。
Figure JPOXMLDOC01-appb-T000001
 表1から分かるように、実施例1~9の異方性導電フィルムについては、実施例9の場合に2個連結した導電粒子が観察された他は、全く観察されなかった。また、導電粒子に接している絶縁フィラ個数が増減しても、「初期導通抵抗」、「導通信頼性」及び「ショート発生率」についての評価は好ましいものであった。それに対し、比較例1の異方性導電フィルムについては、絶縁フィラを配列させていないので、連結した導電粒子が6個観察され、それに伴い導通信頼性が低下し、ショートの発生も増加した。
 実施例10~15、比較例2~5
(異方性導電フィルムの製造)
(i)樹脂コアの製造
 ジビニルベンゼン、スチレン、ブチルメタクリレートの混合比を調整した溶液に、重合開始剤としてベンゾイルパーオキサイドを投入して高速で均一攪拌しながら加熱を行い、重合反応を行うことにより微粒子分散液を得た。前記微粒子分散液をろ過し減圧乾燥することにより微粒子の凝集体であるブロック体を得た。更に、前記ブロック体を粉砕・分級することにより、樹脂コアとして平均粒子径3、4又は5μmのジビニルベンゼン系樹脂粒子を得た。粒子の硬さはジビニルベンゼン、スチレン、ブチルメタクリレートの混合比を調整して行った。
(ii)導電粒子の製造
 (i)で得られたジビニルベンゼン系樹脂粒子(5g)に、パラジウム触媒を浸漬法により担持させた。次いで、この樹脂粒子に対し、硫酸ニッケル六水和物、次亜リン酸ナトリウム、クエン酸ナトリウム、トリエタノールアミン及び硝酸タリウムから調製された無電解ニッケルメッキ液(pH12、メッキ液温50℃)を用いて無電解ニッケルメッキを行い、ニッケルメッキ層(金属層)が表面に形成されたニッケル被覆樹脂粒子を得た。
 次に、塩化金酸ナトリウム10gをイオン交換水1000mLに溶解させた溶液に、上記で得られたニッケル被覆樹脂粒子(12g)を混合して水性懸濁液を調製した。得られた水性懸濁液に、チオ硫酸アンモニウム15g、亜硫酸アンモニウム80g、及びリン酸水素アンモニウム40gを投入することにより金メッキ浴を調製した。得られた金メッキ浴にヒドロキシルアミン4gを投入後、アンモニアを用いて金メッキ浴のpHを9に調整し、そして浴温を60℃に15~20分程度維持することにより、金/ニッケル被覆樹脂粒子を得た。適宜分級などの操作を行い、平均粒子径4μm又は5μmの導電粒子を得た。
(iii)異方性導電フィルムの製造
 (i)で製造した平均粒子径3μm又は5μmの樹脂コアを絶縁フィラとして使用し、絶縁フィラ及び(ii)で製造した平均粒子径4又は5μmの導電粒子を図2に示した配列パターンとし、絶縁性接着層を次の配合とした以外は実施例1と同様に異方性導電フィルムを製造した。
 フェノキシ樹脂(YP-50、新日鐵住金(株))60質量部
 カプセル化イミダゾール系硬化剤(ノバキュアHX3941HP、旭化成イーマテリアルズ(株))40質量部
 なお、表2において、導電粒子の粒子面密度及び絶縁フィラの粒子面密度は、異方性導電フィルムにおける導電粒子と絶縁フィラの設計上の個数密度(個/mm2)である。
(評価)
 得られた実施例10~15、及び比較例2~5の異方性導電フィルムをフレキシブル配線板の端子とガラス基板上の端子との接続(FOG:film on glass)に使用することを想定し、次のガラス基板とFPCを、表2に示す加熱加圧条件のように圧力を4通りに変えて熱圧着した。
 ガラス基板:Mo/Ti coating、ガラス厚0.7mm
 FPC:端子ピッチ50μm,端子幅:端子間スペース=1:1,ポリイミドフィルム厚/銅箔厚(PI/Cu)=38/8,Sn plating
 また、加熱加圧条件のうち、
170℃、3MPa、5秒は、FOG接続の変動しうる圧力の下限であり、
170℃、5MPa、5秒は、FOG接続の変動しうる圧力の標準の一つであり、
170℃、8MPa、5秒は、FOG接続の変動しうる圧力のうち、比較的圧力が大きい条件であり、
170℃、10MPa、5秒は、FOG接続の変動しうる圧力の上限である。
 得られた評価用接続物の初期導通抵抗と導通信頼性を実施例1と同様に測定した。
 ここで、初期導通性と導通信頼性は、それぞれの導通抵抗の大きさにより次の3段階に評価した。結果を表2に示す。
 初期導通性
 A:1Ω未満
 B:1Ω以上~5Ω未満
 C:5Ω以上
 導通信頼性は、
 A:2.5Ω未満
 B:2.5Ω以上~10Ω未満
 C:10Ω以上
 また、評価用接続物における導電粒子の潰れを、断面研磨後にSEMを用いて測定し、初期粒子径に対する潰れ率((評価用接続物における導電粒子径/初期導電粒子径)×100)を算出し、潰れ率に応じて次の5段階に評価した。
 C1:潰れ率20%未満(粒子が砕けている)
 B1:潰れ率20%以上40%未満
 A :潰れ率40%以上60%未満
 B2:潰れ率60%以上80%未満
 C2:潰れ率80%以上(粒子の潰れがわずか)
Figure JPOXMLDOC01-appb-T000002
 表2から、絶縁フィラを含有する実施例10~15は、3MPa~10MPaの範囲で押圧した場合、導電粒子が適度に潰れることにより、絶縁フィラを含有しない比較例2~5に比して初期導通抵抗も導通信頼性も優れていることがわかる。
 より具体的には、比較例2は、導電粒子径、導電粒子の硬さ、導電粒子の面密度が従来の一般的な異方性導電フィルムと同等である。比較例2によれば、加熱加圧条件が比較的高圧の8MPaになると導電粒子が潰れすぎることがわかる。
 比較例3では、比較例2よりも導電粒子が硬いので、異方性導電接続時の導電粒子の潰れすぎは比較例2より少ないが、異方性導電接続時の加熱加圧条件が高圧の10MPaになると導通信頼性が劣ることがわかる。
 比較例4では、比較例3よりもさらに導電粒子が硬いので異方性導電接続時に潰れにくく、加熱加圧条件を高圧側にすることにより初期導通抵抗は向上するが、導通信頼性は劣ることがわかる。
 比較例5は比較例4において導電粒子を柔らかくし、導電粒子径を大きくしたものである。比較例4よりも異方性導電接続時に潰れやすく、加熱加圧条件を低~中圧にすると初期導通抵抗が向上するが、高圧では導通信頼性が劣ることがわかる。
 これに対し、実施例10~13では絶縁フィラが導電粒子よりも硬く、粒子径が小さいので、異方性導電接続時に導電粒子が適度に潰れ、初期導通特性も導通信頼性も良好である。また、実施例14は、導電粒子と硬さが等しく、粒子径が小さい絶縁フィラを含有し、実施例15は導電粒子と硬さが等しく、粒子径が大きい絶縁フィラを含有し、それぞれ中程度から高圧側にかけての圧着圧力において初期導通性と導通信頼性が良好であった。
実施例14と比較例5を比べると、実施例14は比較例5に対して高圧側で良好な結果が得られ、加熱加圧条件が広くなっていることが分かる。実施例15と比較例2を比べると、この傾向がより顕著である。
 実施例16~21
 絶縁フィラ及び導電粒子の配置を図3に示した配列パターンにした以外は実施例10~15と同様にして異方性導電フィルムを製造し、評価した。結果を表3に示す。
 表3に示したように、実施例16~21の異方性導電フィルムも初期導通抵抗と導通信頼性が良好であった。特に、図3に示した配列パターンでは端子の長手方向に導電粒子と絶縁フィラが交互に安定して配置されるので、端子における導電粒子の捕捉性が向上したと考えられる。
Figure JPOXMLDOC01-appb-T000003
 実施例22~27
 絶縁フィラ及び導電粒子の配置を図4に示した配列パターンにした以外は実施例10~15と同様にして異方性導電フィルムを製造し、評価した。結果を表4に示す。
 表4に示したように、実施例22~27の異方性導電フィルムも初期導通抵抗と導通信頼性が良好であった。特に、図4に示した配列パターンでは、図2や図3の配列パターンに比して導電粒子と絶縁フィラの合計の粒子面密度が高いので、端子間の絶縁性と、各端子における導電粒子の捕捉性が向上したと考えられる。
Figure JPOXMLDOC01-appb-T000004
 実施例28~36
 表5に示したように、絶縁フィラ及び導電粒子の配置を図5又は図6に示した配列パターンにした以外は実施例10~15と同様にして異方性導電フィルムを製造し、評価した。結果を表5に示す。
 表5に示したように、図5の配列パターンを有する実施例28~30の異方性導電フィルムは、各加熱加圧条件で初期導通抵抗と導通信頼性が良好であった。図5の配列パターンは、図2や図3の配列パターンに比して絶縁フィラの密度が低いが、絶縁フィラが硬い場合には、絶縁フィラの密度が低くても導電粒子の潰れすぎを防止できることがわかる。
 また、図6の配列パターンを有する実施例31~36の異方性導電フィルムも初期導通抵抗と導通信頼性が良好であり、特に、加熱加圧条件が高圧側で良好であった。図6の配列パターンは、図2や図3の配列パターンに比して絶縁フィラの密度が高いため、絶縁フィラの硬さが導電粒子と同程度でも絶縁フィラによる導電粒子の潰れすぎが防止され、端子間の絶縁性と各端子における導電粒子の捕捉性が向上したと考えられる。
Figure JPOXMLDOC01-appb-T000005
 以上の実施例から、本発明の異方性導電フィルムによれば、異方性導電接続を行う電子機器の製造ラインにおいて熱圧着時の圧力条件がばらついた場合でも接続不良の発生を抑えられることがわかる。
 本発明の異方性導電フィルムは、絶縁性バインダ層と、絶縁性バインダ層の片面に規則的パターンで配列した導電粒子と、該絶縁性バインダ層の片面に積層された絶縁性接着層とを有し、当該絶縁性バインダ層には、導電粒子と重なり合わない規則的パターンで絶縁フィラが配列している。このため、接続抵抗値を増大させることなく、導電粒子同士が連結することを抑制し、ショートの発生を大きく抑制することができる。また、異方性導電接続時にバンプ上で導電粒子が破砕されることを抑制することが期待できる。よって、ICチップなどの電子部品の配線基板への異方性導電接続に有用である。
1 絶縁性バインダ層
2 導電粒子
3 絶縁性接着層
4 絶縁フィラ
50 転写型
51、52 開口
51a 第1開口径
51b 第1開口深さ
51c 第1開口底部径
52a 第2開口径
52b 第2開口深さ
52c 第2開口底部径
60 剥離フィルム
100 異方性導電フィルム

Claims (21)

  1.  絶縁性バインダ層と、該絶縁性バインダ層の片面に規則的パターンで配列した導電粒子と、該絶縁性バインダ層の片面に積層された絶縁性接着層とを有する異方性導電フィルムであって、
     絶縁性バインダ層には、導電粒子と重なり合わないような規則的パターンで絶縁フィラが配列されている、異方性導電フィルム。
  2.  導電粒子と絶縁フィラとが絶縁性バインダ層の片面に偏在している請求項1記載の異方性導電フィルム。
  3.  絶縁フィラの平均粒径が、導電粒子の平均粒径の75%以下である請求項1又は2記載の異方性導電フィルム。
  4.  絶縁フィラが導電粒子よりも柔らかい請求項1~3のいずれかに記載の異方性導電フィルム。
  5.  絶縁フィラが導電粒子よりも硬く、絶縁フィラの平均粒径が導電粒子の平均粒径よりも小さい請求項1又は2記載の異方性導電フィルム。
  6.  絶縁フィラが樹脂粒子である請求項1~5のいずれかに記載の異方性導電フィルム。
  7.  少なくともフィルム長手方向に配列した導電粒子の粒子間に絶縁フィラが配列している請求項1~6のいずれかに記載の異方性導電フィルム。
  8.  少なくともフィルム長手方向と直交する方向に配列した導電粒子の粒子間に絶縁フィラが配列している請求項1~6のいずれかに記載の異方性導電フィルム。
  9.  フィルム長手方向に配列した導電粒子の粒子間、並びにフィルム長手方向と直交する方向に配列した導電粒子の粒子間にそれぞれ絶縁フィラが配列している請求項1~6のいずれかに記載の異方性導電フィルム。
  10.  導電粒子の配列と同一方向に配列した絶縁フィラを有し、該配列方向において導電粒子間の距離よりも絶縁フィラ間の距離の方が大きい請求項1~6のいずれかに記載の異方性導電フィルム。
  11.  導電粒子の配列と同一方向に配列した絶縁フィラを有し、該配列方向において導電粒子間の距離よりも絶縁フィラ間の距離の方が小さい請求項1~6のいずれかに記載の異方性導電フィルム。
  12.  導電粒子の規則的パターンが正方格子パターンであり、絶縁フィラの規則的パターンが面心正方格子パターンである請求項1~6のいずれかに記載の異方性導電フィルム。
  13.  導電粒子の規則的パターンが正方格子パターンであり、絶縁フィラの規則的パターンが正方格子パターンであり、導電粒子と絶縁フィラとが異方性導電フィルムの長手方向に交互に配置されている請求項1~6のいずれかに記載の異方性導電フィルム。
  14.  導電粒子の規則的パターンが正方格子パターンであり、絶縁フィラの規則的パターンが正方格子パターンであり、導電粒子と絶縁フィラとが異方性導電フィルムの長手方向と直交する方向に交互に配置されている請求項1~6のいずれかに記載の異方性導電フィルム。
  15.  互いに隣接した導電粒子間の最短距離が、導電粒子の平均粒径の0.5倍以上である請求項1~14のいずれかに記載の異方性導電フィルム。
  16.  絶縁性バインダ層の他面に、別の絶縁性接着層が積層されている請求項1~15のいずれかに記載の異方性導電フィルム。
  17.  請求項1記載の異方性導電フィルムの製造方法であって、以下の工程(A)~(D):
    工程(A)
     導電粒子を収容するための開口であって、規則的パターンに形成された第1の開口と、絶縁フィラを収容するための開口であって、第1の開口と重なりあわないような規則的パターンに形成された第2の開口とが設けられた転写型の当該第1の開口内に導電粒子を配置し、第2の開口に絶縁フィラを配置する工程;
    工程(B)
     導電粒子と絶縁フィラとが配置された側の転写型の表面に、剥離フィルム上に形成された絶縁性バインダ層を対向させる工程;
    工程(C)
     剥離フィルム側から絶縁性バインダ層に対して圧力をかけ、第1及び第2の開口内に絶縁性バインダ層を押し込んで絶縁性バインダ層の片面に導電粒子と絶縁フィラとを転着させる工程;及び
    工程(D)
     導電粒子と絶縁フィラとが転着している絶縁性バインダ層の片面に絶縁性接着層を積層する工程
    を有する製造方法。
  18.  絶縁フィラの平均粒子径が導電粒子の平均粒子径よりも小さい場合に、工程(A)において、第1の開口に導電粒子を配置し、引き続き第2の開口に絶縁フィラを配置する請求項17記載の製造方法。
  19.  更に、工程(D)の後に
     絶縁性バインダ層の他面に、別の絶縁性接着層を積層する工程
    を有する請求項17又は18記載の製造方法。
  20.  請求項1~16のいずれかに記載の異方性導電フィルムで第1電子部品を第2電子部品に異方性導電接続してなる接続構造体。
  21.  請求項1~16のいずれかに記載の異方性導電フィルムで第1電子部品を第2電子部品に異方性導電接続する接続方法であって、
     第2電子部品に対し、異方性導電フィルムをその絶縁性バインダ層側から仮貼りし、仮貼りされた異方性導電フィルムに対し、第1電子部品を搭載し、第1電子部品側から熱圧着する接続方法。
PCT/JP2015/058474 2014-03-20 2015-03-20 異方性導電フィルム及びその製造方法 WO2015141830A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580015143.2A CN106104930A (zh) 2014-03-20 2015-03-20 各向异性导电膜及其制备方法
KR1020167025255A KR20160135197A (ko) 2014-03-20 2015-03-20 이방성 도전 필름 및 그의 제조 방법
US15/126,819 US20170110806A1 (en) 2014-03-20 2015-03-20 Anisotropic conductive film and production method of the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014058901 2014-03-20
JP2014-058901 2014-03-20

Publications (1)

Publication Number Publication Date
WO2015141830A1 true WO2015141830A1 (ja) 2015-09-24

Family

ID=54144791

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/058474 WO2015141830A1 (ja) 2014-03-20 2015-03-20 異方性導電フィルム及びその製造方法

Country Status (6)

Country Link
US (1) US20170110806A1 (ja)
JP (1) JP2015195198A (ja)
KR (1) KR20160135197A (ja)
CN (1) CN106104930A (ja)
TW (1) TW201606798A (ja)
WO (1) WO2015141830A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017188672A (ja) * 2016-04-01 2017-10-12 日亜化学工業株式会社 発光素子載置用基体の製造方法及びそれを用いた発光装置の製造方法並びに発光素子載置用基体及びそれを用いた発光装置
CN108475558A (zh) * 2016-02-15 2018-08-31 迪睿合株式会社 各向异性导电膜、其制造方法和连接结构体
US20180297153A1 (en) * 2015-11-20 2018-10-18 Sekisui Chemical Co., Ltd. Connecting material and connection structure
US20180297154A1 (en) * 2015-11-20 2018-10-18 Sekisui Chemical Co., Ltd. Particles, connecting material and connection structure
US20180318970A1 (en) * 2015-11-20 2018-11-08 Sekisui Chemical Co., Ltd. Particles, connecting material and connection structure
US11257999B2 (en) 2016-04-01 2022-02-22 Nichia Corporation Light emitting element mounting base member, and light emitting device using the light emitting element mounting base member
CN114907594A (zh) * 2016-10-31 2022-08-16 迪睿合株式会社 含填料膜

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102240963B1 (ko) * 2014-10-28 2021-04-16 데쿠세리아루즈 가부시키가이샤 이방성 도전 필름, 그 제조 방법, 및 접속 구조체
WO2017191772A1 (ja) * 2016-05-05 2017-11-09 デクセリアルズ株式会社 フィラー配置フィルム
KR20190010879A (ko) * 2016-09-13 2019-01-31 데쿠세리아루즈 가부시키가이샤 필러 함유 필름
CN115746361A (zh) * 2016-10-18 2023-03-07 迪睿合株式会社 含填料膜
CN113078486B (zh) * 2016-10-24 2023-10-20 迪睿合株式会社 各向异性导电膜的制造方法
JP7047282B2 (ja) * 2016-12-01 2022-04-05 デクセリアルズ株式会社 フィラー含有フィルム
WO2018101106A1 (ja) * 2016-12-01 2018-06-07 デクセリアルズ株式会社 異方性導電フィルム
JP7039883B2 (ja) * 2016-12-01 2022-03-23 デクセリアルズ株式会社 異方性導電フィルム
KR102649406B1 (ko) * 2016-12-01 2024-03-20 데쿠세리아루즈 가부시키가이샤 필러 함유 필름
WO2018163921A1 (ja) * 2017-03-06 2018-09-13 デクセリアルズ株式会社 樹脂組成物、樹脂組成物の製造方法、及び構造体
TWI624918B (zh) * 2017-07-11 2018-05-21 異向性導電薄膜的製作方法
WO2019235560A1 (ja) * 2018-06-06 2019-12-12 デクセリアルズ株式会社 フィラー含有フィルム
KR102254467B1 (ko) * 2018-07-12 2021-05-21 에이치엔에스하이텍(주) 이방도전성 접착필름의 제조방법
JP2021001966A (ja) * 2019-06-21 2021-01-07 セイコーエプソン株式会社 電気光学装置、及び電子機器
CN112898776B (zh) * 2021-01-22 2022-12-02 镇江中垒新材料科技有限公司 一种异方性导电薄片及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000348538A (ja) * 1999-06-04 2000-12-15 Tomoegawa Paper Co Ltd 異方性導電フィルムおよびその製造方法
JP2003286457A (ja) * 2002-03-28 2003-10-10 Asahi Kasei Corp 異方導電性接着シートおよびその製造方法
JP2007165052A (ja) * 2005-12-12 2007-06-28 Sumitomo Bakelite Co Ltd 異方導電性フィルム
WO2014030753A1 (ja) * 2012-08-24 2014-02-27 デクセリアルズ株式会社 異方性導電フィルムの製造方法及び異方性導電フィルム

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4993877B2 (ja) * 2005-06-03 2012-08-08 旭化成イーマテリアルズ株式会社 異方導電性接着シート及び微細接続構造体
EP2237650A4 (en) * 2007-10-15 2011-02-02 Hitachi Chemical Co Ltd CIRCUIT CONNECTING ADHESIVE FILM AND CIRCUIT CONNECTING STRUCTURE
JP4752986B1 (ja) * 2010-01-08 2011-08-17 日立化成工業株式会社 回路接続用接着フィルム及び回路接続構造体
JP5402804B2 (ja) * 2010-04-12 2014-01-29 デクセリアルズ株式会社 発光装置の製造方法
JP5737278B2 (ja) * 2011-12-21 2015-06-17 日立化成株式会社 回路接続材料、接続体、及び接続体を製造する方法
KR20130091521A (ko) * 2012-02-08 2013-08-19 삼성디스플레이 주식회사 이방성 도전층을 포함하는 미세 전자 소자 및 미세 전자 소자 형성 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000348538A (ja) * 1999-06-04 2000-12-15 Tomoegawa Paper Co Ltd 異方性導電フィルムおよびその製造方法
JP2003286457A (ja) * 2002-03-28 2003-10-10 Asahi Kasei Corp 異方導電性接着シートおよびその製造方法
JP2007165052A (ja) * 2005-12-12 2007-06-28 Sumitomo Bakelite Co Ltd 異方導電性フィルム
WO2014030753A1 (ja) * 2012-08-24 2014-02-27 デクセリアルズ株式会社 異方性導電フィルムの製造方法及び異方性導電フィルム

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11017916B2 (en) * 2015-11-20 2021-05-25 Sekisui Chemical Co., Ltd. Particles, connecting material and connection structure
US20180297153A1 (en) * 2015-11-20 2018-10-18 Sekisui Chemical Co., Ltd. Connecting material and connection structure
US20180297154A1 (en) * 2015-11-20 2018-10-18 Sekisui Chemical Co., Ltd. Particles, connecting material and connection structure
US20180301237A1 (en) * 2015-11-20 2018-10-18 Sekisui Chemical Co., Ltd. Particles, connecting material and connection structure
US20180318970A1 (en) * 2015-11-20 2018-11-08 Sekisui Chemical Co., Ltd. Particles, connecting material and connection structure
US11020825B2 (en) * 2015-11-20 2021-06-01 Sekisui Chemical Co., Ltd. Connecting material and connection structure
US11024439B2 (en) * 2015-11-20 2021-06-01 Sekisui Chemical Co., Ltd. Particles, connecting material and connection structure
US11027374B2 (en) * 2015-11-20 2021-06-08 Sekisui Chemical Co., Ltd. Particles, connecting material and connection structure
CN108475558A (zh) * 2016-02-15 2018-08-31 迪睿合株式会社 各向异性导电膜、其制造方法和连接结构体
JP2017188672A (ja) * 2016-04-01 2017-10-12 日亜化学工業株式会社 発光素子載置用基体の製造方法及びそれを用いた発光装置の製造方法並びに発光素子載置用基体及びそれを用いた発光装置
JP7011147B2 (ja) 2016-04-01 2022-01-26 日亜化学工業株式会社 発光素子載置用基体の製造方法及びそれを用いた発光装置の製造方法並びに発光素子載置用基体及びそれを用いた発光装置
US11257999B2 (en) 2016-04-01 2022-02-22 Nichia Corporation Light emitting element mounting base member, and light emitting device using the light emitting element mounting base member
CN114907594A (zh) * 2016-10-31 2022-08-16 迪睿合株式会社 含填料膜

Also Published As

Publication number Publication date
KR20160135197A (ko) 2016-11-25
US20170110806A1 (en) 2017-04-20
JP2015195198A (ja) 2015-11-05
TW201606798A (zh) 2016-02-16
CN106104930A (zh) 2016-11-09

Similar Documents

Publication Publication Date Title
WO2015141830A1 (ja) 異方性導電フィルム及びその製造方法
JP7368765B2 (ja) 異方性導電フィルム及びその製造方法
TWI613684B (zh) 異向性導電膜之製造方法、異向性導電膜、及連接結構體
US11685137B2 (en) Anisotropic conductive film and connection structure
WO2017010446A1 (ja) 異方性導電フィルム及び接続構造体
WO2016152791A1 (ja) 異方導電性フィルム及び接続構造体
WO2015141289A1 (ja) 異方性導電フィルム及びその製造方法
JP2022075723A (ja) フィラー含有フィルム
TW201947614A (zh) 異向性導電膜、連接結構體、及連接結構體之製造方法
US20190096843A1 (en) Anisotropic conductive film
JP2022069457A (ja) 異方性導電フィルム
KR102370245B1 (ko) 이방성 도전 필름 및 그의 제조 방법
JP2022069456A (ja) 異方性導電フィルム
JP2017147211A (ja) 異方導電性フィルム及び接続構造体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15765349

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 20167025255

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15126819

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15765349

Country of ref document: EP

Kind code of ref document: A1