WO2015141741A1 - 電子デバイス - Google Patents

電子デバイス Download PDF

Info

Publication number
WO2015141741A1
WO2015141741A1 PCT/JP2015/058109 JP2015058109W WO2015141741A1 WO 2015141741 A1 WO2015141741 A1 WO 2015141741A1 JP 2015058109 W JP2015058109 W JP 2015058109W WO 2015141741 A1 WO2015141741 A1 WO 2015141741A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas barrier
barrier layer
layer
film
electronic device
Prior art date
Application number
PCT/JP2015/058109
Other languages
English (en)
French (fr)
Inventor
森 孝博
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2016508771A priority Critical patent/JP6705375B2/ja
Publication of WO2015141741A1 publication Critical patent/WO2015141741A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/50Forming devices by joining two substrates together, e.g. lamination techniques
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes

Definitions

  • the present invention relates to an electronic device.
  • a gas barrier film formed by laminating a plurality of layers including thin films of metal oxides such as aluminum oxide, magnesium oxide, and silicon oxide on the surface of a plastic substrate or film is used to block various gases such as water vapor and oxygen.
  • metal oxides such as aluminum oxide, magnesium oxide, and silicon oxide
  • it is widely used for packaging of articles that require the use of, for example, packaging for preventing deterioration of foods, industrial products, pharmaceuticals, and the like.
  • gas barrier films are required to be developed into flexible electronic devices such as flexible solar cell elements, organic electroluminescence (EL) elements, and liquid crystal display elements, and many studies have been made.
  • EL organic electroluminescence
  • these flexible electronic devices are required to have a very high gas barrier property at the glass substrate level and a property that does not break (impact resistance).
  • JP 2013-61507 A proposes a method of bonding a plurality of gas barrier films and a method of forming a gas barrier layer on both surfaces of a substrate.
  • Japanese Patent Application Laid-Open No. 2013-241023 (corresponding to US Patent Application Publication No. 2011/039097) describes a gas barrier including a flexible film-like thin film glass substrate and a composite substrate of thin film glass and a resin film. Sex films have been proposed.
  • the gas barrier film described in JP-A-2013-61507 has a high gas barrier that suppresses the occurrence of dark spots in organic EL elements under high temperature and high humidity conditions such as 85 ° C. and 85% RH. There was a problem of not getting the sex.
  • the gas barrier film described in Japanese Patent Application Laid-Open No. 2013-241023 (corresponding to US Patent Application Publication No. 2011/039097) has a problem of being easily broken and inferior in impact resistance.
  • an object of the present invention is to provide an electronic device that is excellent in durability in a high-temperature and high-humidity environment and excellent in impact resistance.
  • the present inventor has conducted intensive research to solve the above problems.
  • the gas barrier property includes (A) the first gas barrier layer, (B) the buffer layer, (C) the second gas barrier layer, (D) the third gas barrier layer, and (E) the fourth gas barrier layer in this order. It has been found that the above problems can be solved by an electronic device including a film and the electronic device main body provided on the (E) fourth gas barrier layer. Based on the above findings, the present invention has been completed.
  • the present invention provides (A) a first gas barrier layer containing an inorganic compound; (B) a buffer layer containing a resin and having a thickness of 10 to 200 ⁇ m; (C) a second gas barrier layer containing an inorganic compound; (D) No. 1 which satisfies the composition range represented by SiO w N x (where 0.2 ⁇ w ⁇ 0.55, 0.66 ⁇ x ⁇ 0.75) and has a thickness of 50 to 1000 nm.
  • a gas barrier film including a fourth gas barrier layer having a thickness in this order; and an electronic device body formed on a surface of the fourth gas barrier layer opposite to the surface having the third gas barrier layer. And an electronic device.
  • FIG. 1 is a base material 10 is a delivery roll, 11, 12, 13, and 14 are transport rolls, 15 is a first film forming roll, 16 is a second film forming roll, and 17 is a take-up roll.
  • 18 is a gas supply pipe, 19 is a power source for generating plasma, 20 and 21 are magnetic field generators, 30 is a vacuum chamber, 40 is a vacuum pump, 41 is a control unit, and S is It is a film formation space.
  • FIG. 1 is a base material 10 is a delivery roll, 11, 12, 12 ′, 13, 13 ′ and 14 are transport rolls, 15 is a first film-forming roll, 16 is a second film-forming roll, 15 'Is a third film forming roll, 16' is a fourth film forming roll, 17 is a take-up roll, 18 and 18 'are gas supply pipes, and 19 and 19' are power sources for generating plasma.
  • 20, 20 ′, 21, and 21 ′ are magnetic field generators
  • 30 is a vacuum chamber
  • 40 is a vacuum pump
  • 41 is a control unit
  • S and S ′ are film formation spaces. .
  • the present invention includes (A) a first gas barrier layer containing an inorganic compound; (B) a buffer layer containing a resin and having a thickness of 10 to 200 ⁇ m; (C) a second gas barrier layer containing an inorganic compound; ) SiO w N x (wherein 0.2 ⁇ w ⁇ 0.55, 0.66 ⁇ x ⁇ 0.75) which satisfies the composition range and has a thickness of 50 to 1000 nm.
  • Gas barrier layer (E) SiO y N z (where 0.55 ⁇ y ⁇ 2.0, 0.25 ⁇ z ⁇ 0.66) and a thickness of 8 to 200 nm
  • a gas barrier film comprising, in this order, a gas barrier film, and an electronic device body formed on a surface of the fourth gas barrier layer opposite to the surface having the third gas barrier layer;
  • An electronic device .
  • the electronic device of the present invention having such a configuration is excellent in durability in a high temperature and high humidity environment and excellent in impact resistance.
  • an organic EL element is used as the electronic device body, an electronic device in which the generation of dark spots is suppressed is obtained.
  • X to Y indicating a range means “X or more and Y or less”. Unless otherwise specified, measurement of operation and physical properties is performed under conditions of room temperature (20 to 25 ° C.) / Relative humidity 40 to 50%.
  • the (A) first gas barrier layer (hereinafter also simply referred to as layer (A)) according to the present invention contains an inorganic compound. Since the layer (A) is the layer that is exposed to the highest humidity conditions among the layers (A) to (E), the composition is hardly changed by humidity and stably exhibits gas barrier properties. It is preferable to form by the vapor phase film forming method.
  • the first gas barrier layer according to the present invention contains an inorganic compound. Although it does not specifically limit as an inorganic compound contained in a 1st gas barrier layer, For example, a metal oxide, a metal nitride, a metal carbide, a metal oxynitride, or a metal oxycarbide is mentioned.
  • oxides, nitrides, carbides, oxynitrides or oxycarbides containing one or more metals selected from Si, Al, In, Sn, Zn, Ti, Cu, Ce and Ta in terms of gas barrier performance are preferably used, and an oxide, nitride or oxynitride of a metal selected from Si, Al, In, Sn, Zn and Ti is more preferable, and in particular, a metal selected from Si, Al and Ti, Oxides, nitrides or oxynitrides are preferred.
  • suitable inorganic compounds include composites such as silicon oxide, silicon nitride, silicon oxynitride, silicon carbide, silicon oxycarbide, aluminum oxide, titanium oxide, or aluminum silicate. You may contain another element as a secondary component.
  • the content of the inorganic compound contained in the first gas barrier layer is not particularly limited, but is preferably 50% by mass or more, more preferably 80% by mass or more, and 95% by mass in the first gas barrier layer. More preferably, it is more preferably 98% by mass or more, and most preferably 100% by mass (that is, the first gas barrier layer is made of an inorganic compound).
  • the formation method of the first gas barrier layer is preferably a vapor deposition method such as physical vapor deposition (PVD) or chemical vapor deposition (CVD).
  • PVD physical vapor deposition
  • CVD chemical vapor deposition
  • the physical vapor deposition method is a method of depositing a target material, for example, a thin film such as a carbon film, on the surface of the material in a gas phase by a physical method.
  • a target material for example, a thin film such as a carbon film
  • Examples thereof include a DC sputtering method, an RF sputtering method, an ion beam sputtering method, and a magnetron sputtering method, a vacuum deposition method, and an ion plating method.
  • Sputtering is a method in which a target is placed in a vacuum chamber, a rare gas element (usually argon) ionized by applying a high voltage is collided with the target, and atoms on the target surface are ejected and adhered to the substrate.
  • a reactive sputtering method may be used in which an inorganic layer is formed by causing nitrogen and oxygen gas to flow into the chamber to react nitrogen and oxygen with an element ejected from the target by argon gas. .
  • the chemical vapor deposition method (Chemical Vapor Deposition, CVD method) is a method of depositing a film by supplying a source gas containing a target thin film component onto a substrate and performing a chemical reaction on the surface of the substrate or in the gas phase. It is. In addition, for the purpose of activating the chemical reaction, there is a method of generating plasma or the like.
  • Known CVD such as thermal CVD method, catalytic chemical vapor deposition method, photo CVD method, vacuum plasma CVD method, atmospheric pressure plasma CVD method, etc. The method etc. are mentioned. Although not particularly limited, it is preferable to apply a plasma CVD method such as a vacuum plasma CVD method or an atmospheric pressure plasma CVD method from the viewpoint of film forming speed and processing area.
  • silicon oxide is generated.
  • highly active charged particles and active radicals exist in the plasma space at a high density, so that multistage chemical reactions are accelerated at high speed in the plasma space, and the elements present in the plasma space are thermodynamic. This is because it is converted into an extremely stable compound in a very short time.
  • the first gas barrier layer is manufactured by using a counter roll type roll-to-roll film forming apparatus that forms a thin film by a plasma CVD method will be described as an example of the film forming apparatus. To do.
  • FIG. 1 and 2 are schematic configuration diagrams showing an example of a film forming apparatus.
  • the film forming apparatus 101 illustrated in FIG. 2 has a basic structure in which two film forming apparatuses 100 illustrated in FIG. 1 are joined in tandem.
  • the case where the gas barrier layer is formed will be described using the film forming apparatus illustrated in FIG. 2 as an example.
  • the description regarding the film forming apparatus illustrated in FIG. 2 is the same as the description regarding the film forming apparatus illustrated in FIG. However, it is considered as appropriate.
  • the film forming apparatus 101 includes a feed roll 10, transport rolls 11 to 14, first, second, third, and fourth film forming rolls 15, 16, 15 ′, 16 ′, Take-off roll 17, gas supply pipes 18, 18 ', plasma generation power sources 19, 19', magnetic field generators 20, 21, 20 ', 21', vacuum chamber 30, vacuum pumps 40, 40 ' And a control unit 41.
  • the delivery roll 10, the transport rolls 11 to 14, the first, second, third and fourth film forming rolls 15, 16, 15 ′, 16 ′ and the take-up roll 17 are accommodated in the vacuum chamber 30.
  • the temperature of the first to fourth film forming rolls 15, 16, 15 ', 16' is not particularly limited, and is, for example, -30 to 100 ° C. If it is below the glass transition temperature of the base material 1a, the thermal deformation of the base material can be suppressed.
  • the first film forming roll 15 and the second film forming roll 16 are supplied with a plasma generating power source 19, and the third film forming roll 15 ′ and the fourth film forming roll 16 ′ are supplied with a plasma generating power supply 19 ′.
  • a generating high frequency voltage is applied.
  • the voltage applied by the plasma generating power supply 19 and the voltage applied by the plasma generating power supply 19 ′ may be the same or different.
  • the power source frequency of the plasma generating power source 19 or 19 ′ can be arbitrarily set, but the apparatus of this configuration is, for example, 60 to 100 kHz, and the applied power is, for example, 1 to 1 with respect to an effective film forming width of 1 m. 10 kW.
  • the first gas barrier layer formation (film formation) step can be repeated a plurality of times.
  • the gas supply pipes 18 and 18 ′ supply a film forming gas such as a plasma CVD source gas into the vacuum chamber 30.
  • the film forming gas supplied from the gas supply pipe 18 and the film forming gas supplied from the gas supply pipe 18 ′ may be the same or different. Furthermore, the supply gas pressures supplied from these gas supply pipes may be the same or different.
  • a silicon compound can be used as the source gas.
  • the compounds described in paragraph “0075” of JP2008-056967 can also be used.
  • the silicon compounds it is preferable to use hexamethyldisiloxane (HMDSO) in the formation of the first gas barrier layer (A) from the viewpoint of easy handling of the compound and high gas barrier properties of the obtained gas barrier film.
  • HMDSO hexamethyldisiloxane
  • Two or more silicon compounds may be used in combination.
  • the source gas may contain monosilane in addition to the silicon compound.
  • a reactive gas may be used in addition to the source gas.
  • a gas that reacts with the raw material gas to become a silicon compound such as oxide or nitride is selected.
  • a carrier gas may be further used to supply the source gas into the vacuum chamber 30.
  • a discharge gas may be used as a film forming gas in order to generate plasma.
  • the pressure (degree of vacuum) in the vacuum chamber 30 can be adjusted as appropriate according to the type of source gas.
  • the pressure of the film forming part S or S ′ is preferably 0.1 to 50 Pa.
  • the first gas barrier layer may be a single layer or a laminated structure of two or more layers.
  • the first gas barrier layers may have the same composition or different compositions.
  • the thickness of the first gas barrier layer (the total thickness in the case of a laminated structure of two or more layers) is not particularly limited, but is preferably 10 to 2000 nm, and more preferably 30 to 1000 nm. Within this range, there is little or no cracking in the gas barrier layer, and a gas barrier property suitable for the present invention can be obtained.
  • the (B) buffer layer (hereinafter also simply referred to as layer (B)) according to the present invention is a layer containing a resin and having a thickness of 10 to 200 ⁇ m.
  • the buffer layer having such a configuration diffuses the moisture that has permeated through the layer (A) in the buffer layer to create a low humidity state. By diffusing moisture in this way, it is difficult to make the passage of moisture, and the role of moisture permeation can be suppressed.
  • a film containing a resin that is, a resin base material is preferably used.
  • the resin base material include polyester resin, methacrylic resin, methacrylic acid-maleic acid copolymer, polystyrene resin, transparent fluororesin, polyimide, fluorinated polyimide resin, polyamide resin, polyamideimide resin, and polyether.
  • Imide resin cellulose acylate resin, polyurethane resin, polyether ether ketone resin, polycarbonate resin, alicyclic polyolefin resin, polyarylate resin, polyether sulfone resin, polysulfone resin, cycloolefin copolymer, fluorene ring modified polycarbonate resin, fat
  • base materials containing a thermoplastic resin such as a ring-modified polycarbonate resin, a fluorene ring-modified polyester resin, and an acryloyl compound.
  • the resin substrate is preferably transparent.
  • the resin base material preferably has a high surface smoothness.
  • the surface smoothness those having an average surface roughness (Ra) of 2 nm or less are preferable. Although there is no particular lower limit, it is preferably 0.01 nm or more for practical use. If necessary, the surface of the substrate may be polished to improve smoothness.
  • the surface of the resin substrate may be subjected to various known treatments for improving adhesion, such as corona discharge treatment, flame treatment, oxidation treatment, or plasma treatment, and the above treatments may be combined as necessary. May go.
  • various known treatments for improving adhesion such as corona discharge treatment, flame treatment, oxidation treatment, or plasma treatment, and the above treatments may be combined as necessary. May go.
  • a hard coat layer may be used as a buffer layer.
  • the material contained in the hard coat layer include a thermosetting resin and an active energy ray curable resin, but an active energy ray curable resin is preferable because it is easy to mold.
  • Such curable resins can be used singly or in combination of two or more.
  • examples of commercially available products of active energy ray-curable resins used for hard coat layer formation include, for example, the Hitaroid (registered trademark) series (manufactured by Hitachi Chemical Co., Ltd.), the Shikko series (Nippon Gosei Chemical Co., Ltd.) Company), ETERMER 2382 (ETERNAL CHEMICAL) and the like.
  • the buffer layer according to the present invention may have an adhesive layer.
  • the adhesive layer is suitably used in the manufacturing method of (4) or (5) described later among the manufacturing methods of the electronic device of the present invention.
  • the pressure-sensitive adhesive contained in the adhesive layer is not particularly limited, and examples include acrylic pressure-sensitive adhesives, silicon pressure-sensitive adhesives, urethane pressure-sensitive adhesives, polyvinyl butyral pressure-sensitive adhesives, and ethylene-vinyl acetate pressure-sensitive adhesives. can do.
  • an adhesive agent contained in an adhesive layer an epoxy-type adhesive agent, a urethane type adhesive agent, etc. are mentioned, for example.
  • additives for example, stabilizers, surfactants, ultraviolet absorbers, flame retardants, antistatic agents, antioxidants, thermal stabilizers, lubricants, fillers, coloring, adhesion modifiers, etc. Can also be included.
  • the buffer layer may be a single layer or a laminated structure of two or more layers.
  • each buffer layer may have the same composition or a different composition.
  • the thickness of the buffer layer according to the present invention (the total thickness in the case of a laminated structure of two or more layers) is 10 to 200 ⁇ m.
  • the thickness of the buffer layer is preferably 20 to 150 ⁇ m.
  • the (C) second gas barrier layer (hereinafter also simply referred to as layer (C)) according to the present invention contains an inorganic compound as in the case of the (A) first gas barrier layer. Since the kind of inorganic compound contained in the second gas barrier layer and the content of the inorganic compound are the same as those in the first gas barrier layer (A), description thereof is omitted here.
  • the method for forming the second gas barrier layer is not particularly limited, but a vapor deposition method such as physical vapor deposition (PVD) or chemical vapor deposition (CVD), or an inorganic compound, preferably a silicon compound. More preferably, a method of applying energy to a coating film obtained by applying and drying a coating liquid containing polysilazane (hereinafter, also simply referred to as a coating film forming method) and the like can be mentioned. Among these, the vapor deposition method is preferable from the viewpoint that the composition hardly changes due to humidity and stably exhibits gas barrier properties.
  • PVD physical vapor deposition
  • CVD chemical vapor deposition
  • an inorganic compound preferably a silicon compound. More preferably, a method of applying energy to a coating film obtained by applying and drying a coating liquid containing polysilazane (hereinafter, also simply referred to as a coating film forming method) and the like can be mentioned.
  • the vapor deposition method is preferable from
  • the second gas barrier layer according to the present invention is formed by applying energy to a coating film formed by applying a coating solution containing an inorganic compound, preferably a coating solution containing a silicon compound (coating method). (Film formation method). By applying this energy, the second gas barrier layer exhibits gas barrier properties.
  • the coating film forming method will be described by taking a silicon compound as an example of the inorganic compound, but the inorganic compound is not limited to the silicon compound.
  • the silicon compound is not particularly limited as long as a coating solution containing a silicon compound can be prepared.
  • polysilazane such as perhydropolysilazane and organopolysilazane; polysiloxane such as silsesquioxane, etc. are preferable in terms of film formation, fewer defects such as cracks, and less residual organic matter, and high gas barrier performance.
  • Polysilazane is more preferable, and perhydropolysilazane is particularly preferable because the barrier performance is maintained even when bent and under high temperature and high humidity conditions.
  • Polysilazane is a polymer having a silicon-nitrogen bond, such as SiO 2 , Si 3 N 4 having a bond such as Si—N, Si—H, or N—H, and ceramics such as both intermediate solid solutions SiO x N y. It is a precursor inorganic polymer.
  • the polysilazane preferably has the following structure.
  • R 1 , R 2 and R 3 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group, aryl group, vinyl group or (trialkoxysilyl) alkyl group. .
  • R 1 , R 2 and R 3 may be the same or different.
  • R 1 , R 2 and R 3 are hydrogen atom, methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, tert-butyl group, phenyl group, vinyl group, 3- (triethoxy A silyl) propyl group or a 3- (trimethoxysilylpropyl) group.
  • n is an integer
  • the polysilazane having the structure represented by the general formula (I) may be determined to have a number average molecular weight of 150 to 150,000 g / mol. preferable.
  • one of preferred embodiments is perhydropolysilazane in which all of R 1 , R 2 and R 3 are hydrogen atoms.
  • polysilazane has a structure represented by the following general formula (II).
  • R 1 ′ , R 2 ′ , R 3 ′ , R 4 ′ , R 5 ′ and R 6 ′ are each independently a hydrogen atom, a substituted or unsubstituted alkyl group, An aryl group, a vinyl group or a (trialkoxysilyl) alkyl group.
  • R 1 ′ , R 2 ′ , R 3 ′ , R 4 ′ , R 5 ′ and R 6 ′ may be the same or different.
  • n ′ and p are integers, and the polysilazane having the structure represented by the general formula (II) is determined to have a number average molecular weight of 150 to 150,000 g / mol. It is preferred that Note that n ′ and p may be the same or different.
  • polysilazane has a structure represented by the following general formula (III).
  • R 1 ′′ , R 2 ′′ , R 3 ′′ , R 4 ′′ , R 5 ′′ , R 6 ′′ , R 7 ′′ , R 8 ′′ and R 9 ′′ are each independently A hydrogen atom, a substituted or unsubstituted alkyl group, aryl group, vinyl group or (trialkoxysilyl) alkyl group, wherein R 1 ′′ , R 2 ′′ , R 3 ′′ , R 4 ′′ , R 5 ′′ , R 6 ′′ , R 7 ′′ , R 8 ′′ and R 9 ′′ may be the same or different.
  • n ′′, p ′′ and q are integers, and the polysilazane having the structure represented by the general formula (III) has a number average molecular weight of 150 to 150,000 g / mol. It is preferable to be determined as follows. Note that n ′′, p ′′, and q may be the same or different.
  • the content of polysilazane in the second gas barrier layer before energy application may be 100% by mass when the total mass of the second gas barrier layer is 100% by mass.
  • the content of polysilazane in the layer is preferably 10% by mass or more and 99% by mass or less, and 40% by mass or more and 95% by mass or less. More preferably, it is 70 mass% or more and 95 mass% or less.
  • the illuminance of the vacuum ultraviolet light on the coating surface received by the polysilazane coating is preferably 1 mW / cm 2 to 10 W / cm 2 , more preferably 30 mW / cm 2 to 200 mW / cm 2. preferably, further preferably at 50mW / cm 2 ⁇ 160mW / cm 2. If it is the said range, the modification
  • the amount of irradiation energy (irradiation amount) of vacuum ultraviolet rays on the coating surface is preferably 100 mJ / cm 2 to 50 J / cm 2 , more preferably 200 mJ / cm 2 to 20 J / cm 2 , and 500 mJ / cm 2. More preferably, it is 2 to 10 J / cm 2 . If it is the said range, modification
  • the vacuum ultraviolet ray to be used may be generated by plasma formed of a gas containing at least one of CO, CO 2 and CH 4 .
  • the gas containing at least one of CO, CO 2 and CH 4 hereinafter also referred to as carbon-containing gas
  • the carbon-containing gas may be used alone, but carbon containing rare gas or H 2 as the main gas. It is preferable to add a small amount of the contained gas. Examples of plasma generation methods include capacitively coupled plasma.
  • the second gas barrier layer may be a single layer or a laminated structure of two or more layers.
  • the second gas barrier layers may have the same composition or different compositions.
  • the second gas barrier layer may consist of only a layer formed by a vapor deposition method or may be formed by a coating film formation method. It may consist of only a layer, or may be a combination of a layer formed by a vapor phase film forming method and a layer formed by a coating film forming method.
  • the second gas barrier layer is preferably formed by a vapor deposition method from the viewpoint that the composition hardly changes with humidity and high gas barrier properties can be obtained.
  • the thickness of the second gas barrier layer (the total thickness in the case of a laminated structure of two or more layers) is preferably 10 to 1000 nm, and more preferably 50 to 500 nm. If it is this range, the balance of gas-barrier property and impact resistance will become favorable, and it is preferable.
  • the thickness of the second gas barrier layer can be measured by TEM observation.
  • the gas barrier film according to the present invention has (D) a third gas barrier layer (hereinafter also simply referred to as layer (D)).
  • the layer (D) satisfies the composition range represented by SiO w N x (where 0.20 ⁇ w ⁇ 0.55, 0.66 ⁇ x ⁇ 0.75) and has a thickness of 50 nm to 1000 nm. It is a layer.
  • the layer (D) has a gas barrier property, but also functions as a so-called desiccant layer that traps water vapor by reacting with water vapor that has gradually entered. For example, by setting the order of layer (A) / layer (B) / layer (C) / layer (D), most of the water vapor entering from the layer (A) side reaches the layer (C). Is barriered. However, in some cases, water vapor may enter slightly from the defective portion of the layer (C). A higher gas barrier property can be exhibited by capturing the water vapor by the layer (D).
  • the thickness of the layer (D) is 50 nm or more and 1000 nm or less.
  • the thickness of the layer (D) is less than 50 nm, since the total amount of the compound that reacts with water vapor as a desiccant is reduced, the amount of water vapor that can be captured is limited, and the desiccant function is lost within the service life required for the device. There is a possibility that the barrier property is lowered.
  • the thickness exceeds 1000 nm for example, when the layer (D) is formed by modification by application of energy, the modification may be insufficient and the barrier property may be lowered, and the cost may be increased.
  • the occurrence of cracks is concerned, and the productivity is also lowered.
  • the thickness of the layer (D) is preferably 100 nm or more and 300 nm or less. Within this range, the effect of maintaining good gas barrier properties and the effect of reducing costs are further improved during the service life required for the device.
  • the layer (D) may be present as one continuous layer, or two or more It may be a form that exists as a plurality of layers.
  • the sum (total thickness) of the thicknesses of all the layers (D) may be in the above range.
  • the layer (D) can be formed by forming the gas barrier layer by the coating film forming method described in the section of (C) the second gas barrier layer.
  • the coating liquid containing the silicon compound Thickness, degree of drying after application, amount of energy to be applied for example, when applying energy by irradiating vacuum ultraviolet light, adjust illuminance, plasma density, irradiation time, etc.
  • atmosphere at the time of energy application especially The oxygen concentration may be adjusted.
  • the coating film forming method if the amount of energy applied is reduced, oxygen can be reduced in the composition ratio of the layer (D).
  • the thickness of the coating solution containing a silicon compound is increased, the thickness of the layer is increased. Therefore, those skilled in the art can adjust the thickness of the coating film in accordance with the target layer thickness.
  • the layer (D) can also be formed by a vapor deposition method, but when the vapor deposition method is employed, there is a concern that the cost may increase due to the complexity of the deposition process. From the viewpoint of cost reduction, a coating film forming method is preferable, and a method of applying energy to a coating film obtained by applying and drying a coating liquid containing polysilazane is more preferable.
  • the coating liquid (coating film) after drying is preferably applied to a thickness such that the thickness is 60 nm to 1000 nm, more preferably 100 nm to 300 nm. What is necessary is just to apply
  • the amount of energy to be applied is preferably 500 mJ / cm 2 to 10 J / cm 2 , more preferably 1 J / cm 2 to 8 J / cm 2 .
  • the oxygen concentration in the atmosphere when energy is applied is preferably 0.001 to 2% by volume, more preferably 0.005 to 1% by volume.
  • composition distribution and thickness in the thickness direction of such a layer (D) and a later-described layer (E) can be obtained by measurement by a method using XPS (photoelectron spectroscopy) analysis as described below.
  • the thickness in the XPS analysis is obtained once based on the etching rate in terms of SiO 2 . Based on the cross-sectional TEM images of the same sample, the interface between each layer of the layer formed by stacking is specified to determine the thickness per layer, and this is compared with the composition distribution in the thickness direction obtained from XPS analysis.
  • each layer in the composition distribution in the thickness direction is specified, and each layer obtained from the XPS analysis so that the thickness of each layer obtained from the corresponding XPS analysis matches the thickness of each layer obtained from the cross-sectional TEM image
  • the thickness direction is corrected by uniformly applying a coefficient to the thickness of the film.
  • the XPS analysis in the present invention is performed under the following conditions, but even if the apparatus and measurement conditions are changed, any measurement method that conforms to the gist of the present invention can be applied without any problem.
  • the measurement method according to the gist of the present invention is mainly the resolution in the thickness direction, and the etching depth per measurement point (corresponding to the conditions of the following sputter ion and depth profile) is 1 to 15 nm.
  • the thickness is preferably 1 to 10 nm.
  • ⁇ XPS analysis conditions >> ⁇ Equipment: ULVAC-PHI QUANTERASXM ⁇ X-ray source: Monochromatic Al-K ⁇ Measurement area: Si2p, C1s, N1s, O1s ⁇ Sputtering ion: Ar (2 keV) Depth profile: repeats measurement after sputtering for a certain time. In one measurement, the sputtering time is adjusted so that the thickness is about 2.8 nm in terms of SiO 2. ⁇ Quantification: The background is obtained by the Shirley method, and the relative sensitivity coefficient method is calculated from the obtained peak area. And quantified. Data processing uses MultiPak manufactured by ULVAC-PHI.
  • each sample is photographed with a TEM, and each film thickness of the laminated structure is obtained.
  • the composition distribution profile in the film thickness direction obtained above is corrected using the actual film thickness data obtained from the TEM image to obtain the composition distribution in the film thickness direction of the layer. Based on this, the thicknesses of the layer (D) and the layer (E) are obtained.
  • a gas barrier film is prepared by using the following FIB processing apparatus, and then a cross-section TEM observation is performed according to a conventional method. In this way, the thickness of each layer can be calculated.
  • An example that can be used for FIB processing and TEM observation is shown below.
  • the gas barrier film according to the present invention has (E) a fourth gas barrier layer (hereinafter also simply referred to as layer (E)).
  • the layer (E) satisfies the composition range represented by SiO y N z (where 0.55 ⁇ y ⁇ 2.0, 0.25 ⁇ z ⁇ 0.66) and has a thickness of 8 nm to 200 nm. It is a layer.
  • Layer (E) has a very high gas barrier property.
  • the layer (E) is less reactive with water vapor than the layer (D) and has a small composition change even under high temperature and high humidity, so that it can maintain a very high gas barrier property over a long period of time.
  • water vapor that could not be trapped in layer (D) was almost completely blocked in layer (E). The Thereby, the invasion of water vapor into the electronic device main body provided immediately above the layer (E) can be prevented, and for example, the occurrence of dark spots in the organic EL element can be suppressed.
  • the thickness of the layer (E) is 8 nm or more and 200 nm or less.
  • the thickness of the layer (E) is less than 8 nm, there is a possibility that the water vapor is not sufficiently blocked.
  • it exceeds 200 nm the improvement in gas barrier properties accompanying the increase in film thickness is saturated, and the productivity is also lowered, so that no cost merit is obtained.
  • the thickness of the layer (E) is preferably 20 nm or more and 150 nm or less. Within this range, good gas barrier properties can be maintained during the service life required for the device, for example, the generation of dark spots when used in organic EL elements is suppressed, and even if dark spots are generated, the growth can be achieved. The effect which can be suppressed further improves.
  • the layer (E) may be present as one continuous layer, or as two or more layers. Form may be sufficient.
  • the sum (total thickness) of the thicknesses of all the layers (E) may be in the above range.
  • the layer (E) can be formed by forming the gas barrier layer by the coating film forming method described in the section of (C) the second gas barrier layer.
  • the coating liquid containing the silicon compound Thickness, degree of drying after coating, amount of energy to be applied for example, when applying energy by irradiating vacuum ultraviolet rays, illuminance, plasma density, irradiation time, etc. are adjusted), atmosphere at the time of energy application ( In particular, the oxygen concentration may be adjusted.
  • the coating film forming method if the amount of energy to be applied is increased, oxygen can be increased in the composition ratio of the layer (E).
  • the thickness of the coating solution containing a silicon compound is increased. Therefore, those skilled in the art can adjust the thickness of the coating film in accordance with the target layer thickness.
  • the layer (E) can also be formed by a vapor deposition method.
  • a vapor deposition method when employed, there is a concern that the cost may increase due to the complexity of the deposition process. From the viewpoint of cost reduction, a coating film forming method is preferable, and a method of applying energy to a coating film obtained by applying and drying a coating liquid containing polysilazane is more preferable.
  • the coating liquid (coating film) after drying is preferably applied with a thickness of 10 nm to 200 nm, more preferably 20 nm to 150 nm. What is necessary is just to apply
  • the amount of energy to be applied is preferably 500 mJ / cm 2 to 10 J / cm 2 , more preferably 1 J / cm 2 to 8 J / cm 2 .
  • the oxygen concentration in the atmosphere when energy is applied is preferably 0.02 to 2% by volume, more preferably 0.05 to 1% by volume.
  • composition distribution and the thickness in the thickness direction of such a layer (E) can be obtained by measurement by a method using XPS (photoelectron spectroscopy) analysis as described above.
  • An anchor coat layer is formed on the surface of the buffer layer on the side on which the gas barrier layer (first gas barrier layer, second gas barrier layer) according to the present invention is formed for the purpose of improving adhesion with the gas barrier layer. Also good.
  • polyester resins As anchor coating agents used for the anchor coat layer, polyester resins, isocyanate resins, urethane resins, acrylic resins, ethylene vinyl alcohol resins, vinyl modified resins, epoxy resins, modified styrene resins, modified silicon resins, alkyl titanates, etc. are used alone Or in combination of two or more.
  • the above-mentioned anchor coating agent is coated on the support by a known method such as roll coating, gravure coating, knife coating, dip coating, spray coating, etc., and anchor coating is performed by drying and removing the solvent, diluent, etc. be able to.
  • the application amount of the anchor coating agent is preferably about 0.1 to 5.0 g / m 2 (dry state).
  • the anchor coat layer can be formed by a vapor phase method such as physical vapor deposition or chemical vapor deposition.
  • a vapor phase method such as physical vapor deposition or chemical vapor deposition.
  • an inorganic film mainly composed of silicon oxide can be formed for the purpose of improving adhesion and the like.
  • an anchor coat layer as described in Japanese Patent Application Laid-Open No. 2004-314626, when an inorganic thin film is formed thereon by a vapor phase method, the gas generated from the substrate side is blocked to some extent.
  • an anchor coat layer can be formed for the purpose of controlling the composition of the inorganic thin film.
  • the thickness of the anchor coat layer is not particularly limited, but is preferably about 0.5 to 10 ⁇ m.
  • the gas barrier film according to the present invention may have a smooth layer between the buffer layer and the first gas barrier layer or between the buffer layer and the second gas barrier layer.
  • the smooth layer used in the present invention flattens the rough surface of the resin base material on which protrusions and the like exist, or flattens the unevenness and pinholes generated in the transparent inorganic compound layer by the protrusions existing on the resin base material.
  • Such a smooth layer is basically produced by curing a photosensitive material or a thermosetting material.
  • a resin composition containing an acrylate compound having a radical reactive unsaturated compound for example, a resin composition containing an acrylate compound and a mercapto compound having a thiol group, epoxy acrylate, urethane acrylate, examples thereof include a resin composition in which a polyfunctional acrylate monomer such as polyester acrylate, polyether acrylate, polyethylene glycol acrylate, or glycerol methacrylate is dissolved.
  • a UV curable organic / inorganic hybrid hard coat material OPSTAR (registered trademark) series manufactured by JSR Corporation can be used. It is also possible to use an arbitrary mixture of the above resin compositions, and any photosensitive resin containing a reactive monomer having one or more photopolymerizable unsaturated bonds in the molecule can be used. There are no particular restrictions.
  • thermosetting materials include Tutprom Series (Organic Polysilazane) manufactured by Clariant, SP COAT heat-resistant clear paint manufactured by Ceramic Coat, Nanohybrid Silicone manufactured by Adeka, and Unidic manufactured by DIC. (Registered trademark) V-8000 series, EPICLON (registered trademark) EXA-4710 (ultra-high heat resistant epoxy resin), various silicon resins manufactured by Shin-Etsu Chemical Co., Ltd., inorganic / organic nanocomposite material SSG manufactured by Nittobo Co., Ltd.
  • Examples include coats, thermosetting urethane resins composed of acrylic polyols and isocyanate prepolymers, phenol resins, urea melamine resins, epoxy resins, unsaturated polyester resins, and silicon resins.
  • an epoxy resin-based material having heat resistance is particularly preferable.
  • the method for forming the smooth layer is not particularly limited, but is preferably formed by a wet coating method such as a spin coating method, a spray method, a blade coating method, a dip method, or a dry coating method such as an evaporation method.
  • a wet coating method such as a spin coating method, a spray method, a blade coating method, a dip method, or a dry coating method such as an evaporation method.
  • additives such as an antioxidant, an ultraviolet absorber, and a plasticizer can be added to the above-described photosensitive resin as necessary.
  • an appropriate resin or additive may be used for improving the film formability and preventing the generation of pinholes in the film.
  • the thickness of the smooth layer is preferably in the range of 1 to 10 ⁇ m, more preferably in the range of 2 to 7 ⁇ m, from the viewpoint of improving the heat resistance of the film and facilitating the balance adjustment of the optical properties of the film. Is preferred.
  • the smoothness of the smooth layer is a value expressed by the surface roughness defined by JIS B 0601: 2001, and the 10-point average roughness Rz is preferably 10 nm or more and 30 nm or less. If it is this range, even if it is a case where a barrier layer is apply
  • the gas barrier film according to the present invention preferably has a protective layer on the surface opposite to the surface having the buffer layer of the first gas barrier layer.
  • the electronic device of the present invention is a device with higher durability (long-term reliability).
  • the protective layer may have a function of preventing scratches on the surface of the electronic device.
  • a hard coat such as a polyunsaturated organic compound having two or more polymerizable unsaturated groups in the molecule or a unitary unsaturated organic compound having one polymerizable unsaturated group in the molecule An agent can be mentioned.
  • Matting agents may be added as other additives.
  • inorganic particles having an average particle diameter of about 0.1 to 5 ⁇ m are preferable.
  • inorganic particles one or more of silica, alumina, talc, clay, calcium carbonate, magnesium carbonate, barium sulfate, aluminum hydroxide, titanium dioxide, zirconium oxide and the like can be used in combination. .
  • the protective layer may contain a thermoplastic resin, a thermosetting resin, an ionizing radiation curable resin, a photopolymerization initiator, and the like as other components of the hard coat agent and the mat agent.
  • the protective layer as described above is prepared as a coating liquid with a hard coating agent, a matting agent, and other components as necessary, and appropriately prepared as a coating solution using a diluent solvent, and the coating solution is used as a support film. After coating on the surface by a conventionally known coating method, it can be formed by irradiating with ionizing radiation and curing.
  • ultraviolet rays having a wavelength range of 100 to 400 nm, preferably 200 to 400 nm, emitted from an ultrahigh pressure mercury lamp, a high pressure mercury lamp, a low pressure mercury lamp, a carbon arc, a metal halide lamp, or the like are irradiated or scanned.
  • the irradiation can be performed by irradiating an electron beam having a wavelength region of 100 nm or less emitted from a type or curtain type electron beam accelerator.
  • the thickness of the protective layer is preferably in the range of 50 to 5000 nm, and more preferably in the range of 100 to 2000 nm.
  • a material may be provided.
  • a sealing material a film mainly composed of silicon oxide, nitride and / or oxynitride described in JP-A No. 11-144864, and a film described in JP-A No. 2003-243155 are disclosed. Examples thereof include a film containing a metal oxide or a metal nitride.
  • a sealing member such as a metal foil such as an aluminum foil or a copper foil, or a laminate of an inorganic layer and an organic layer may be provided so as to cover the entire electronic device.
  • the electronic device of the present invention is not particularly limited, but is preferably obtained by the following production method.
  • a step of forming a first gas barrier layer on one surface of a resin base material to be a buffer layer, and a surface of the resin base material opposite to the surface on which the first gas barrier layer is formed Forming a second gas barrier layer, a third gas barrier layer, and a fourth gas barrier layer in order from the resin substrate side to obtain a gas barrier film; and forming an electronic device body on the fourth gas barrier layer
  • a manufacturing method comprising:
  • the step of forming the second gas barrier layer, the third gas barrier layer, and the fourth gas barrier layer in order from the substrate side to obtain a second barrier film A surface of the first barrier film on which the first gas barrier layer is formed, and the second gas barrier layer, the third gas barrier layer, and the fourth gas barrier layer of the second barrier film are formed.
  • the manufacturing method including the process of bonding the surface on the opposite side of the done side, and the process of forming the said electronic device main body on a said 4th gas barrier layer.
  • an electronic device obtained by the manufacturing method (2), (3) or (5) is preferable, and an electronic device obtained by the manufacturing method (3) or (5) is more preferable. This is because peeling of the first gas barrier layer that may occur in the step of forming the electronic device body can be prevented.
  • the first resin base material is provided on the outer side (side closer to the outside air) than the first gas barrier layer.
  • Such an embodiment is also a category of the electronic device of the present invention.
  • the gas barrier film according to the present invention preferably has an absorptance of light having a wavelength of 450 nm (hereinafter also simply referred to as an absorptance at 450 nm) of less than 15%.
  • the use of the gas barrier film according to the present invention having a low light absorptivity (that is, high transmittance) at a wavelength of 450 nm for a display device enables the wavelength of 450 nm related to blue light in the process of visible light reaching from the light source to the user. Absorption of the nearby light by the gas barrier film can be suppressed as much as possible.
  • the absorption rate at 450 nm of the gas barrier film according to the present invention can be lowered.
  • the absorptivity at 450 nm is preferably less than 15%, more preferably less than 10%, and further preferably less than 8%.
  • the lower limit of the absorptance at 450 nm is not particularly limited, but is substantially 0% or more, for example.
  • the absorptance at 450 nm can be measured with a spectrophotometer or a spectrocolorimeter.
  • the absorptance at 450 nm is obtained by, for example, measuring a transmittance A (%) and a reflectance B (%) at 450 nm using a spectrocolorimeter (for example, CM-3600d, manufactured by Konica Minolta Co., Ltd.). What is necessary is just to obtain
  • the transmittance in the visible light region (400 to 700 nm) is preferably 80% or more, and more preferably 83% or more.
  • the transmittance in the visible light region (400 to 700 nm) is 80% or more, a gas barrier film having excellent optical characteristics over the entire visible light region is provided.
  • the total light transmittance in the visible light region is measured according to JIS K7375: 2008.
  • the electronic device of the present invention can be preferably applied to a device whose performance is deteriorated by chemical components (oxygen, water, nitrogen oxide, sulfur oxide, ozone, etc.) in the air.
  • Examples of the electronic device body used in the electronic device of the present invention include, for example, an organic electroluminescence element (organic EL element), a liquid crystal display element (LCD), a thin film transistor, a touch panel, electronic paper, a solar cell (PV), and the like. be able to. From the viewpoint that the effects of the present invention can be obtained more efficiently, the electronic device body is preferably an organic EL element or a solar cell, and more preferably an organic EL element.
  • organic EL element organic electroluminescence element
  • LCD liquid crystal display element
  • PV solar cell
  • Base material A PET film with a double-sided hard coat (total thickness: 136 ⁇ m, PET thickness: 125 ⁇ m, manufactured by Kimoto Co., Ltd., trade name: KB film (trademark) 125G1SBF) was used.
  • Substrate A PET film with a double-sided hard coat (total thickness: 58 ⁇ m, PET thickness: 50 ⁇ m, manufactured by Kimoto Co., Ltd., trade name: KB film (trademark) 50G1SBF) was used.
  • the substrate In contrast to the first pass, the substrate is transported in the direction of rewinding the substrate in the second pass. However, even when the pass directions are different, the first film forming unit passes through the first film forming unit, and the component that passes next. The film part was used as the second film forming part.
  • the power supply frequency was 84 kHz, and the film forming roll temperatures were all 30 ° C.
  • a substrate obtained by pasting and winding a heat-resistant protective film on the surface opposite to the film formation surface was used.
  • a heat-resistant protective film is further bonded to the film-formed surface of the base material after single-sided film formation, and then the protective film on the opposite surface, which is the next film formation surface, is peeled off. What was wound up was used.
  • the film thickness was determined by cross-sectional TEM observation.
  • the film forming conditions of the first film forming unit and the second film forming unit are shown in Table 1 below.
  • the third gas barrier layer and the fourth gas barrier layer were formed by applying a coating liquid as shown below to form a coating film, and then performing modification by vacuum ultraviolet irradiation to obtain a gas barrier layer.
  • a dibutyl ether solution containing 20% by mass of perhydropolysilazane (manufactured by AZ Electronic Materials Co., Ltd., NN120-20) and an amine catalyst (N, N, N ′, N′-tetramethyl-1,6-diaminohexane (TMDAH) ))
  • a dibutyl ether solution (NAX120-20, manufactured by AZ Electronic Materials Co., Ltd.) containing 20% by mass of perhydropolysilazane in a ratio of 4: 1 (mass ratio), and further for adjusting the dry film thickness
  • a coating solution was prepared by appropriately diluting with dibutyl ether.
  • a base material on which a gas barrier layer was formed or the above base material was cut out into a sheet shape and prepared.
  • Layer formation by coating was performed on the already formed gas barrier layer surface or on the smooth surface of the substrate.
  • the coating solution was applied by spin coating so as to have a dry film thickness shown in Table 2 below, and dried at 80 ° C. for 2 minutes.
  • the dried coating film was subjected to a vacuum ultraviolet ray irradiation treatment using an Xe excimer lamp having a wavelength of 172 nm under the conditions of oxygen concentration and irradiation energy shown in Table 2 below, and the third gas barrier layer and the fourth gas barrier layer A gas barrier layer was formed.
  • composition distribution in the thickness direction of the third gas barrier layer and the fourth gas barrier layer was determined by measurement using the following XPS analysis method.
  • composition distribution profile in the film thickness direction is corrected using the actual film thickness data obtained from the TEM image to obtain the composition distribution in the film thickness direction, and the third gas barrier layer and the fourth gas barrier layer. The thickness was determined.
  • the cross section was photographed with TEM to determine the film thickness.
  • Comparative Example 3 A composite film was prepared by adhering a 35 ⁇ m-thick thin film glass onto a 50 ⁇ m-thick PET film (product name: Lumirror (registered trademark) 50U48, manufactured by Toray Industries, Inc.).
  • Example 1 A first gas barrier layer was formed on one surface of the substrate A under the conditions of V1. Next, a second gas barrier layer was formed on the surface of the base material opposite to the side on which the first gas barrier layer was formed under the condition of V2. Next, a gas barrier layer was sequentially formed on the second gas barrier layer under the conditions of P3 and P1, and a third gas barrier layer and a fourth gas barrier layer were provided to produce a gas barrier film.
  • Example 2 A first gas barrier layer was formed on one surface of the base material under the condition V2. Next, a second gas barrier layer was formed on the surface of the base material opposite to the side on which the first gas barrier layer was formed under the condition of V3. Next, a gas barrier layer was formed on the second gas barrier layer under the conditions of P3, a third gas barrier layer and a fourth gas barrier layer were provided, and a gas barrier film was produced.
  • Example 3 A first gas barrier layer was formed on one surface of the substrate A under the conditions of V1. Next, a second gas barrier layer was formed on the surface of the base material opposite to the side on which the first gas barrier layer was formed under the condition of V3. Next, a gas barrier layer is sequentially formed on the second gas barrier layer under the condition of P3, the condition of P3, and the condition of P1, and a third gas barrier layer and a fourth gas barrier layer are provided to provide gas barrier properties. A film was prepared.
  • Example 4 A first gas barrier layer was formed on one surface of the substrate A under the conditions of V1. Next, a UV curing type hard coat layer was formed to a thickness of 15 ⁇ m on the first gas barrier layer. Further, a second gas barrier layer was formed on the hard coat layer under the condition of V3. Next, a gas barrier layer was sequentially formed under the condition of P3 and the condition of P1, and a third gas barrier layer and a fourth gas barrier layer were provided to produce a gas barrier film.
  • the UV curable hard coat layer was formed as follows. That is, UV curable resin Opstar (registered trademark) Z7527 manufactured by JSR Corporation was applied with an applicator so that the dry film thickness was 15 ⁇ m, and then dried at 80 ° C. for 10 minutes. Then, it hardened
  • Example 5 A gas barrier film was produced in the same manner as in Example 4 except that the thickness of the hard coat layer was 6 ⁇ m.
  • Example 5 A barrier film 1 in which a first gas barrier layer was formed on one surface of the substrate A under the conditions of V1 was prepared.
  • the surface of the gas barrier film obtained by the same method as in Comparative Example 1 on which the gas barrier layer is not formed is a transparent adhesive (manufactured by Sekisui Chemical Co., Ltd., High-transparent double-sided tape 5402, 25 ⁇ m thick) was used to produce a gas barrier film.
  • Example 6 A second gas barrier layer was formed on one surface of the base material under the conditions of P3. Next, a gas barrier layer was sequentially formed on the second gas barrier layer under the conditions of P3 and P1 to prepare a barrier film 2 provided with a third gas barrier layer and a fourth gas barrier layer. Separately, a barrier film 1 in which a first gas barrier layer was formed on one surface of the base material under the conditions of V1 was prepared. A transparent adhesive (manufactured by Sekisui Chemical Co., Ltd., highly transparent double-sided tape 5402, 25 ⁇ m thickness) is used for the first gas barrier layer of the barrier film 1 and the surface of the barrier film 2 where the gas barrier layer is not formed. And bonded to produce a gas barrier film.
  • a transparent adhesive manufactured by Sekisui Chemical Co., Ltd., highly transparent double-sided tape 5402, 25 ⁇ m thickness
  • a barrier film 1 in which a first gas barrier layer was formed on one surface of the substrate A under the conditions of V1 was prepared.
  • the surface of the barrier film 1 on which the first gas barrier layer is not formed and the surface of the gas barrier film obtained by the same method as in Comparative Example 4 on which the gas barrier layer is not formed are formed with a transparent adhesive (Sekisui A gas barrier film was prepared by bonding using a highly transparent double-sided tape 5402, 25 ⁇ m thickness, manufactured by Chemical Industry Co., Ltd.
  • Example 7 A barrier film 1 was prepared in which a first gas barrier layer was formed on one surface of the substrate A by sputtering under the condition of V4. On the first gas barrier layer of the barrier film 1, the surface of the gas barrier film obtained by the same method as in Comparative Example 4 on which the gas barrier layer is not formed is transparent adhesive (Sekisui Chemical Co., Ltd., highly transparent A double-sided tape 5402, 25 ⁇ m thick) was used to produce a gas barrier film.
  • transparent adhesive Sekisui Chemical Co., Ltd., highly transparent A double-sided tape 5402, 25 ⁇ m thick
  • a gas barrier film was produced in the same manner as in Example 5 except that the above-described barrier film 2 was used instead of the gas barrier film obtained by the same method as in Comparative Example 1.
  • a gas barrier film was produced in the same manner as in Example 5 except that the above-described barrier film 2 was used instead of the gas barrier film obtained by the same method as in Comparative Example 1.
  • Example 8 A hard coat layer serving as a protective layer was formed to a thickness of 500 nm on the surface of the first gas barrier layer of the gas barrier film obtained in Example 3 to produce a gas barrier film.
  • the protective layer was formed as follows. That is, UV curable resin Opstar (registered trademark) Z7527 manufactured by JSR Corporation was applied with an applicator so that the dry film thickness was 500 nm, and then dried at 80 ° C. for 3 minutes. Then, it hardened
  • UV curable resin Opstar registered trademark
  • Comparative Example 11 A gas barrier film having a gas barrier layer formed on one surface of the base material under the above-mentioned conditions of V1 was prepared. The surface of the film on which the gas barrier layer is not formed and the surface of the fourth gas barrier layer of the gas barrier film obtained by the same method as in Comparative Example 4 were combined with a transparent adhesive (manufactured by Sekisui Chemical Co., Ltd. A transparent double-sided tape 5402, 25 ⁇ m thick) was used to produce a gas barrier film.
  • a transparent adhesive manufactured by Sekisui Chemical Co., Ltd.
  • Example 9 A second gas barrier layer was formed on one surface of the base material under the conditions of P3. Subsequently, a gas barrier layer was sequentially formed on the second gas barrier layer under the conditions of P3 and P1 to produce a barrier film 2 provided with a third gas barrier layer and a fourth gas barrier layer. . Further, an organic EL element to be described later was formed on the fourth gas barrier layer of the barrier film 2.
  • a barrier film 1 in which a first gas barrier layer was formed on one surface of the base material under the conditions of V1 was prepared.
  • a transparent pressure-sensitive adhesive (manufactured by Sekisui Chemical Co., Ltd., highly transparent double-sided tape 5402, 25 ⁇ m thickness) is applied to the first gas barrier layer of the barrier film 1 and the surface of the barrier film 2 where the organic EL element is not formed.
  • the electronic device was produced by using and bonding.
  • Example 10 On the fourth gas barrier layer of the gas barrier film obtained by the same method as in Comparative Example 4, an organic EL element described later was formed. After forming the organic EL element, a gas barrier layer was formed on the surface of the gas barrier film on which the organic EL element was not formed under the above-mentioned conditions of V4 to produce an electronic device.
  • Table 3 below shows the structure of each layer obtained in Examples and Comparative Examples.
  • the gas barrier film is fixed to a substrate holder of a commercially available vacuum deposition apparatus, compound 118 is placed in a resistance heating boat made of tungsten, and the substrate holder and the heating boat are attached in the first vacuum chamber of the vacuum deposition apparatus. It was. Moreover, silver (Ag) was put into the resistance heating boat made from tungsten, and it attached in the 2nd vacuum chamber of a vacuum evaporation system.
  • the heating boat containing the compound 118 was energized and heated, and the deposition rate was 0.1 nm / second to 0.2 nm / second.
  • the underlayer of the first electrode was provided with a thickness of 10 nm.
  • the base material formed up to the base layer was transferred to the second vacuum chamber while being vacuumed, and after the pressure in the second vacuum chamber was reduced to 4 ⁇ 10 ⁇ 4 Pa, the heating boat containing silver was energized and heated.
  • a first electrode made of silver having a thickness of 8 nm was formed at a deposition rate of 0.1 nm / second to 0.2 nm / second.
  • compound A-3 blue light-emitting dopant
  • compound A-1 green light-emitting dopant
  • compound A-2 red light-emitting dopant
  • compound H-1 host compound
  • the vapor deposition rate was changed depending on the location so that it was linearly 35% to 5% by mass, and the compound A-1 and the compound A-2 each had a concentration of 0.2% by mass without depending on the film thickness.
  • the vapor deposition rate was changed depending on the location so that the compound H-1 was 64.6% by mass to 94.6% by mass, so that the thickness was 70 nm.
  • a light emitting layer was formed.
  • the compound ET-1 was deposited to a thickness of 30 nm to form an electron transport layer, and further potassium fluoride (KF) was formed to a thickness of 2 nm. Furthermore, aluminum 110nm was vapor-deposited and the 2nd electrode was formed.
  • KF potassium fluoride
  • compound 118 The compound 118, compound HT-1, compounds A-1 to A-3, compound H-1, and compound ET-1 are the compounds shown below.
  • the sample was placed in a decompression device, and pressed at 90 ° C. under a reduced pressure of 0.1 MPa, pressed against the superposed base material and the sealing member, and held for 5 minutes. Subsequently, the sample was returned to an atmospheric pressure environment and further heated at 120 ° C. for 30 minutes to cure the adhesive.
  • the sealing step is performed under atmospheric pressure and in a nitrogen atmosphere with a water content of 1 ppm or less, in accordance with JIS B 9920: 2002.
  • the measured cleanliness is class 100, the dew point temperature is ⁇ 80 ° C. or less, and the oxygen concentration is 0. It was performed at an atmospheric pressure of 8 ppm or less.
  • the description regarding formation of the lead-out wiring from an anode and a cathode is abbreviate
  • Example 9 is an estimated value based on Example 6, and Example 10 is an estimated value based on Example 7.
  • the organic EL device obtained as described above was energized for 300 hours in an environment of 85 ° C. and 85% RH, and for the generated dark spots, the number of generated dark spots having a circle-equivalent diameter of 200 ⁇ m or more was determined. The average was obtained for four devices.
  • the organic EL device obtained as described above is placed on a horizontal base with the light emitting surface side up (a flat plate member made of a specific material is placed under it), and a steel ball having a diameter of 10 mm is placed thereon with a height of 1 m.
  • the device was dropped from the position, and the damage status of the device was visually confirmed. Moreover, the presence or absence of subsequent light emission was also confirmed.
  • the electronic device of the present invention is excellent in durability in a high temperature and high humidity environment and excellent in impact resistance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)
  • Laminated Bodies (AREA)

Abstract

 本発明は、高温高湿環境での耐久性に優れ、かつ耐衝撃性に優れた電子デバイスを提供する。 本発明は、(A)無機化合物を含む第1のガスバリア層:(B)樹脂を含み、厚さが10~200μmであるバッファー層;(C)無機化合物を含む第2のガスバリア層;(D)SiO(ただし、0.2<w≦0.55、0.66<x≦0.75)で表される組成範囲を満たし、かつ、50~1000nmの厚さを有する第3のガスバリア層;(E)SiO(ただし、0.55<y≦2.0、0.25<z≦0.66)で表される組成範囲を満たし、かつ、8~200nmの厚さを有する第4のガスバリア層;をこの順に含む、ガスバリア性フィルムと、前記第4のガスバリア層の前記第3のガスバリア層を有する面とは反対側の面上に形成される電子デバイス本体と、を含む電子デバイスである。

Description

電子デバイス
 本発明は、電子デバイスに関する。
 従来、プラスチック基板やフィルムの表面に、酸化アルミニウム、酸化マグネシウム、酸化ケイ素等の金属酸化物の薄膜を含む複数の層を積層して形成したガスバリア性フィルムは、水蒸気や酸素等の各種ガスの遮断を必要とする物品の包装、例えば、食品や工業用品および医薬品等の変質を防止するための包装用途に広く用いられている。
 包装用途以外にも、ガスバリア性フィルムは、フレキシブル性を有する太陽電池素子、有機エレクトロルミネッセンス(EL)素子、液晶表示素子等のフレキシブル電子デバイスへの展開が要望され、多くの検討がなされている。しかし、これらフレキシブル電子デバイスにおいては、ガラス基材レベルの非常に高いガスバリア性や割れないという特性(耐衝撃性)が要求される。
 ガスバリア性フィルムを形成する方法として、特開2013-61507号公報では、複数のガスバリア性フィルムを貼り合わせる方法や、基材の両面にガスバリア層を形成する方法が提案されている。
 また、特開2013-241023号公報(米国特許出願公開第2011/039097号明細書に対応)では、フレキシブルなフィルム状の薄膜ガラス基材や、薄膜ガラスと樹脂フィルムとの複合基材を含むガスバリア性フィルムが提案されている。
 しかしながら、上記特開2013-61507号公報に記載のガスバリア性フィルムは、例えば85℃、85%RHというような高温高湿条件下での有機EL素子のダークスポット発生を抑制するというような高いガスバリア性を得るには至っていないという問題があった。また、特開2013-241023号公報(米国特許出願公開第2011/039097号明細書に対応)に記載のガスバリア性フィルムは、割れやすく耐衝撃性に劣るという問題があった。
 そこで本発明は、高温高湿環境での耐久性に優れ、かつ耐衝撃性に優れた電子デバイスを提供することを目的とする。
 本発明者は、上記の課題を解決すべく、鋭意研究を行った。その結果、(A)第1のガスバリア層、(B)バッファー層、(C)第2のガスバリア層、(D)第3のガスバリア層、(E)第4のガスバリア層をこの順に含むガスバリア性フィルムと、前記(E)第4のガスバリア層上に設けられた電子デバイス本体と、を含む電子デバイスにより、上記課題を解決することを見出した。上記知見に基づいて、本発明を完成した。
 すなわち、本発明は、(A)無機化合物を含む第1のガスバリア層;(B)樹脂を含み、厚さが10~200μmであるバッファー層;(C)無機化合物を含む第2のガスバリア層;(D)SiO(ただし、0.2<w≦0.55、0.66<x≦0.75)で表される組成範囲を満たし、かつ、50~1000nmの厚さを有する第3のガスバリア層;(E)SiO(ただし、0.55<y≦2.0、0.25<z≦0.66)で表される組成範囲を満たし、かつ、8~200nmの厚さを有する第4のガスバリア層;をこの順に含む、ガスバリア性フィルムと、前記第4のガスバリア層の前記第3のガスバリア層を有する面とは反対側の面上に形成される電子デバイス本体と、を含む、電子デバイスである。
本発明に係るガスバリア性フィルムの第1のガスバリア層および第2のガスバリア層を製造するために好適に利用することが可能な成膜装置の一例を示す模式図であり、1は基材であり、10は送り出しロールであり、11、12、13、および14は搬送ロールであり、15は第1成膜ロールであり、16は第2成膜ロールであり、17は巻取りロールであり、18はガス供給管であり、19はプラズマ発生用電源であり、20および21は磁場発生装置であり、30は真空チャンバであり、40は真空ポンプであり、41は制御部であり、Sは成膜空間である。 本発明に係るガスバリア性フィルムの第1のガスバリア層および第2のガスバリア層を製造するために好適に利用することが可能な成膜装置の他の例を示す模式図であり、1は基材であり、10は送り出しロールであり、11、12、12’、13、13’および14は搬送ロールであり、15は第1成膜ロールであり、16は第2成膜ロールであり、15’は第3成膜ロールであり、16’は第4成膜ロールであり、17は巻取りロールであり、18および18’はガス供給管であり、19および19’はプラズマ発生用電源であり、20、20’、21、および21’は磁場発生装置であり、30は真空チャンバであり、40は真空ポンプであり、41は制御部であり、SおよびS’は成膜空間である。
 本発明は、(A)無機化合物を含む第1のガスバリア層;(B)樹脂を含み、厚さが10~200μmであるバッファー層;(C)無機化合物を含む第2のガスバリア層;(D)SiO(ただし、0.2<w≦0.55、0.66<x≦0.75)で表される組成範囲を満たし、かつ、50~1000nmの厚さを有する第3のガスバリア層;(E)SiO(ただし、0.55<y≦2.0、0.25<z≦0.66)で表される組成範囲を満たし、かつ、8~200nmの厚さを有する第4のガスバリア層;をこの順に含む、ガスバリア性フィルムと、前記第4のガスバリア層の前記第3のガスバリア層を有する面とは反対側の面上に形成される電子デバイス本体と、を含む、電子デバイスである。このような構成を有する本発明の電子デバイスは、高温高湿環境での耐久性に優れ、かつ耐衝撃性に優れる。特に、電子デバイス本体として有機EL素子を用いた場合、ダークスポットの発生が抑制された電子デバイスとなる。
 以下、本発明の好ましい実施形態を説明する。なお、本発明は、以下の実施の形態のみには限定されない。また、図面の寸法比率は、説明の都合上誇張されており、実際の比率とは異なる場合がある。
 本明細書において、範囲を示す「X~Y」は「X以上Y以下」を意味する。また、特記しない限り、操作および物性等の測定は室温(20~25℃)/相対湿度40~50%の条件で測定する。
 [(A)第1のガスバリア層]
 本発明に係る(A)第1のガスバリア層(以下、単に層(A)とも称する)は、無機化合物を含む。当該層(A)は、(A)~(E)の各層の中では、最も高湿度の条件に曝される層となることから、湿度により組成が変化しにくく、安定してガスバリア性を発揮する気相成膜法により形成することが好ましい。
 本発明に係る第1のガスバリア層は、無機化合物を含む。第1のガスバリア層に含まれる無機化合物としては、特に限定されないが、例えば、金属酸化物、金属窒化物、金属炭化物、金属酸窒化物または金属酸炭化物が挙げられる。中でも、ガスバリア性能の点で、Si、Al、In、Sn、Zn、Ti、Cu、CeおよびTaから選ばれる1種以上の金属を含む、酸化物、窒化物、炭化物、酸窒化物または酸炭化物などを好ましく用いることができ、Si、Al、In、Sn、ZnおよびTiから選ばれる金属の酸化物、窒化物または酸窒化物がより好ましく、特にSi、Al、およびTiから選ばれる金属の、酸化物、窒化物または酸窒化物が好ましい。好適な無機化合物として、具体的には、酸化ケイ素、窒化ケイ素、酸窒化ケイ素、炭化ケイ素、酸炭化ケイ素、酸化アルミニウム、酸化チタン、またはアルミニウムシリケートなどの複合体が挙げられる。副次的な成分として他の元素を含有してもよい。
 第1のガスバリア層に含まれる無機化合物の含有量は特に限定されないが、第1のガスバリア層中、50質量%以上であることが好ましく、80質量%以上であることがより好ましく、95質量%以上であることがさらに好ましく、98質量%以上であることが特に好ましく、100質量%である(すなわち、第1のガスバリア層は無機化合物からなる)ことが最も好ましい。
 第1のガスバリア層の形成方法は、物理気相成長法(PVD法)、化学気相成長法(CVD法)などの気相成膜法であることが好ましい。
 以下、気相成膜法について説明する。
 <気相成膜法>
 物理気相成長法(Physical Vapor Deposition、PVD法)は、気相中で物質の表面に物理的手法により、目的とする物質、例えば、炭素膜等の薄膜を堆積する方法であり、例えば、スパッタ法(DCスパッタ法、RFスパッタ法、イオンビームスパッタ法、およびマグネトロンスパッタ法等)、真空蒸着法、イオンプレーティング法などが挙げられる。
 スパッタ法は、真空チャンバ内にターゲットを設置し、高電圧をかけてイオン化した希ガス元素(通常はアルゴン)をターゲットに衝突させて、ターゲット表面の原子をはじき出し、基材に付着させる方法である。このとき、チャンバ内に窒素ガスや酸素ガスを流すことにより、アルゴンガスによってターゲットからはじき出された元素と、窒素や酸素とを反応させて無機層を形成する、反応性スパッタ法を用いてもよい。
 化学気相成長法(Chemical Vapor Deposition、CVD法)は、基材上に、目的とする薄膜の成分を含む原料ガスを供給し、基材表面または気相での化学反応により膜を堆積する方法である。また、化学反応を活性化する目的で、プラズマなどを発生させる方法などがあり、熱CVD法、触媒化学気相成長法、光CVD法、真空プラズマCVD法、大気圧プラズマCVD法など公知のCVD方式等が挙げられる。特に限定されるものではないが、製膜速度や処理面積の観点から、真空プラズマCVD法または大気圧プラズマCVD法等のプラズマCVD法を適用することが好ましい。
 例えば、ケイ素化合物を原料化合物として用い、分解ガスに酸素を用いれば、ケイ素酸化物が生成する。これはプラズマ空間内では非常に活性な荷電粒子・活性ラジカルが高密度で存在するため、プラズマ空間内では多段階の化学反応が非常に高速に促進され、プラズマ空間内に存在する元素は熱力学的に安定な化合物へと非常な短時間で変換されるためである。
 なお、以下では、成膜装置として、プラズマCVD法によって薄膜を形成する、対向ロール型のロール・トゥ・ロール成膜装置を使用して、第1のガスバリア層を製造する場合を例示して説明する。
 図1および図2は、成膜装置の一例を示す概略構成図である。図2に例示した成膜装置101は、図1に例示した成膜装置100をタンデムに2台接合した構成を基本としている。ここでは、図2に例示した成膜装置を例にしてガスバリア層を形成する場合を説明するが、図2に記載の成膜装置に関する説明は、図1に記載の成膜装置に関する説明に対しても適宜参酌される。
 図2に示すとおり、成膜装置101は、送り出しロール10と、搬送ロール11~14と、第1、第2、第3および第4成膜ロール15、16、15’、16’と、巻取りロール17と、ガス供給管18、18’と、プラズマ発生用電源19、19’と、磁場発生装置20、21、20’、21’と、真空チャンバ30と、真空ポンプ40、40’と、制御部41と、を有する。
 送り出しロール10、搬送ロール11~14、第1、第2、第3および第4成膜ロール15、16、15’、16’、および巻取りロール17は、真空チャンバ30に収容されている。
 第1~第4成膜ロール15、16、15’、16’の温度は、特に制限されるものではなく、例えば-30~100℃である。基材1aのガラス転移温度以下であれば、基材の熱変形を抑えることができる。
 第1成膜ロール15と第2成膜ロール16とにはプラズマ発生用電源19により、第3成膜ロール15’と第4成膜ロール16’とにはプラズマ発生用電源19’により、プラズマ発生用の高周波電圧が印加される。プラズマ発生用電源19が印加する電圧と、プラズマ発生用電源19’が印加する電圧とは、同一であっても良いが、異なっていても良い。プラズマ発生用電源19または19’の電源周波数は任意に設定できるが、本構成の装置としては、例えば60~100kHzであり、印加される電力は、有効成膜幅1mに対して、例えば1~10kWである。
 成膜装置101を用いて(A)第1のガスバリア層を形成する場合は、基材1aを順方向および逆方向に搬送して成膜部Sまたは成膜部S’を往復させることにより、(A)第1のガスバリア層の形成(成膜)工程を複数回繰り返すこともできる。
 ガス供給管18、18’は、真空チャンバ30内にプラズマCVDの原料ガスなどの成膜ガスを供給する。ガス供給管18から供給される成膜ガスとガス供給管18’から供給される成膜ガスとは同一でもよいが、異なっていても良い。さらに、これらのガス供給管から供給される供給ガス圧についても、同一でもよいが異なっていても良い。
 原料ガスには、ケイ素化合物を使用することができる。また、特開2008-056967号公報の段落「0075」に記載の化合物を使用することもできる。ケイ素化合物の中でも、化合物の取り扱い易さや得られるガスバリア性フィルムの高いガスバリア性などの観点から、(A)第1のガスバリア層の形成においては、ヘキサメチルジシロキサン(HMDSO)を使用することが好ましい。なお、ケイ素化合物は、2種以上が組み合わせて使用されてもよい。また、原料ガスには、ケイ素化合物の他にモノシランが含有されてもよい。
 成膜ガスとしては、原料ガスの他に反応ガスが使用されてもよい。反応ガスとしては、原料ガスと反応して酸化物、窒化物などのケイ素化合物となるガスが選択される。成膜ガスとしては、原料ガスを真空チャンバ30内に供給するために、さらにキャリアガスが使用されてもよい。また、成膜ガスとして、プラズマを発生させるために、さらに放電ガスが使用されてもよい。
 真空チャンバ30内の圧力(真空度)は、原料ガスの種類などに応じて適宜調整することができる。成膜部SまたはS’の圧力は、0.1~50Paであることが好ましい。
 該第1のガスバリア層は、単層でもよいし2層以上の積層構造であってもよい。該第1のガスバリア層が2層以上の積層構造である場合、各第1のガスバリア層は同じ組成であってもよいし異なる組成であってもよい。
 第1のガスバリア層の厚さ(2層以上の積層構造である場合はその総厚)は、特に制限されないが、10~2000nmであることが好ましく、30~1000nmであることがより好ましい。この範囲であればガスバリア層にクラックを生じることがほとんどないかまたは全くなく、本発明に適したガスバリア性を得ることができる。
 [(B)バッファー層]
 本発明に係る(B)バッファー層(以下、単に層(B)とも称する)は、樹脂を含み、厚さが10~200μmである層である。かような構成を有するバッファー層は、上記層(A)を透過してきた水分を該バッファー層内で拡散させ、低湿度状態を作り出す。こうして水分を拡散させることにより、水分の通り道をできにくくし、水分透過を抑制する役割を果たし得る。
 このようなバッファー層としては、樹脂を含むフィルム、すなわち樹脂基材が好適に用いられる。該樹脂基材としては、具体的には、ポリエステル樹脂、メタクリル樹脂、メタクリル酸-マレイン酸共重合体、ポリスチレン樹脂、透明フッ素樹脂、ポリイミド、フッ素化ポリイミド樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、ポリエーテルイミド樹脂、セルロースアシレート樹脂、ポリウレタン樹脂、ポリエーテルエーテルケトン樹脂、ポリカーボネート樹脂、脂環式ポリオレフィン樹脂、ポリアリレート樹脂、ポリエーテルスルホン樹脂、ポリスルホン樹脂、シクロオレフィルンコポリマー、フルオレン環変性ポリカーボネート樹脂、脂環変性ポリカーボネート樹脂、フルオレン環変性ポリエステル樹脂、アクリロイル化合物などの熱可塑性樹脂を含む基材が挙げられる。該樹脂基材は、単独でもまたは2種以上組み合わせても用いることができる。
 本発明に係るガスバリア性フィルムは、有機EL素子等の電子デバイスとして利用されることから、樹脂基材は透明であることが好ましい。
 樹脂基材は、表面の平滑性が高いものが好ましい。表面の平滑性としては、平均表面粗さ(Ra)が2nm以下であるものが好ましい。下限は特にないが、実用上、0.01nm以上であることが好ましい。必要に応じて、基材の表面を研磨し平滑性を向上させておいてもよい。
 樹脂基材の表面は、密着性向上のための公知の種々の処理、例えばコロナ放電処理、火炎処理、酸化処理、またはプラズマ処理等を行っていてもよく、必要に応じて上記処理を組み合わせて行っていてもよい。
 また、上記の樹脂基材以外に、ハードコート層をバッファー層としてもよい。ハードコート層に含まれる材料の例としては、例えば、熱硬化性樹脂や活性エネルギー線硬化性樹脂が挙げられるが、成形が容易なことから、活性エネルギー線硬化性樹脂が好ましい。このような硬化性樹脂は、単独でもまたは2種以上組み合わせても用いることができる。
 ハードコート層形成に用いられる活性エネルギー線硬化性樹脂の市販品の例としては、上記の他に、例えば、ヒタロイド(登録商標)シリーズ(日立化成株式会社製)、紫光シリーズ(日本合成化学工業株式会社製)、ETERMER2382(ETERNAL CHEMICAL社製)等を挙げることができる。
 本発明に係るバッファー層は、粘接着層を有していてもよい。該粘接着層は、本発明の電子デバイスの製造方法のうち、後述の(4)または(5)の製造方法において、好適に用いられる。
 粘接着層に含まれる粘着剤としては、特に制限されず、例えば、アクリル系粘着剤、シリコン系粘着剤、ウレタン系粘着剤、ポリビニルブチラール系粘着剤、エチレン-酢酸ビニル系粘着剤などを例示することができる。また、粘接着層に含まれる接着剤としては、例えば、エポキシ系接着剤、ウレタン系接着剤等が挙げられる。この粘接着層には、添加剤として、例えば安定剤、界面活性剤、紫外線吸収剤、難燃剤、帯電防止剤、抗酸化剤、熱安定剤、滑剤、充填剤、着色、接着調整剤等を含有させることもできる。
 該バッファー層は、単層でもよいし2層以上の積層構造であってもよい。該バッファー層が2層以上の積層構造である場合、各バッファー層は同じ組成であってもよいし異なる組成であってもよい。
 本発明に係るバッファー層の厚さ(2層以上の積層構造である場合はその総厚)は、10~200μmである。該厚さが10μm未満の場合、第1のガスバリア層を透過した水分の拡散が不十分となり、水分の通り道が形成され、水分透過が起こりやすくなる虞がある。一方、200μmを超える場合、バッファー層の端部(エッジ)からの水分の浸透が起き、エッジからのシュリンクが起こる虞がある。該バッファー層の厚さは、好ましくは20~150μmである。
 [(C)第2のガスバリア層]
 本発明に係る(C)第2のガスバリア層(以下、単に層(C)とも称する)は、上記(A)第1のガスバリア層と同様に、無機化合物を含む。第2のガスバリア層に含まれる無機化合物の種類や無機化合物の含有量は、上記(A)第1のガスバリア層と同様であるため、ここでは説明を省略する。
 第2のガスバリア層の形成方法は、特に制限されないが、物理気相成長法(PVD法)、化学気相成長法(CVD法)などの気相成膜法、または無機化合物、好ましくはケイ素化合物、より好ましくはポリシラザンを含有する塗布液を塗布および乾燥して得られる塗膜に対して、エネルギーを印加し形成する方法(以下、単に塗膜形成法とも称する)などが挙げられる。これらの中でも、湿度により組成が変化しにくく、安定してガスバリア性を発揮するという観点から、気相成膜法が好ましい。
 気相成膜法の詳細は、上記(A)第1のガスバリア層の項で説明した内容と同様であるため、ここでは説明は省略する。以下では、塗膜形成法について説明する。
 <塗膜形成法>
 本発明に係る第2のガスバリア層は、無機化合物を含有する塗布液、好ましくはケイ素化合物を含有する塗布液を塗布して形成される塗膜に、さらにエネルギーを印加して形成する方法(塗膜形成法)で形成されてもよい。このエネルギーの印加により、第2のガスバリア層はガスバリア性を発現する。以下、無機化合物としてケイ素化合物を例に挙げて塗膜形成法を説明するが、前記無機化合物はケイ素化合物に限定されるものではない。
 (ケイ素化合物)
 前記ケイ素化合物としては、ケイ素化合物を含有する塗布液の調製が可能であれば特に限定はされない。
 中でも、成膜性、クラック等の欠陥が少ないこと、残留有機物の少なさの点で、パーヒドロポリシラザン、オルガノポリシラザン等のポリシラザン;シルセスキオキサン等のポリシロキサン等が好ましく、ガスバリア性能が高く、屈曲時および高温高湿条件下であってもバリア性能が維持されることから、ポリシラザンがより好ましく、パーヒドロポリシラザンが特に好ましい。
 ポリシラザンとは、ケイ素-窒素結合を有するポリマーであり、Si-N、Si-H、N-H等の結合を有するSiO、Si、および両方の中間固溶体SiO等のセラミック前駆体無機ポリマーである。
 具体的には、ポリシラザンは、好ましくは下記の構造を有する。
Figure JPOXMLDOC01-appb-C000001
 上記一般式(I)において、R、RおよびRは、それぞれ独立して、水素原子、置換または非置換の、アルキル基、アリール基、ビニル基または(トリアルコキシシリル)アルキル基である。この際、R、RおよびRは、それぞれ、同じであってもあるいは異なるものであってもよい。好ましくは、R、RおよびRは、水素原子、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、フェニル基、ビニル基、3-(トリエトキシシリル)プロピル基または3-(トリメトキシシリルプロピル)基である。
 また、上記一般式(I)において、nは、整数であり、一般式(I)で表される構造を有するポリシラザンが150~150,000g/モルの数平均分子量を有するように定められることが好ましい。
 上記一般式(I)で表される構造を有する化合物において、好ましい態様の一つは、R、RおよびRのすべてが水素原子であるパーヒドロポリシラザンである。
 または、ポリシラザンとしては、下記一般式(II)で表される構造を有する。
Figure JPOXMLDOC01-appb-C000002
 上記一般式(II)において、R1’、R2’、R3’、R4’、R5’およびR6’は、それぞれ独立して、水素原子、置換または非置換の、アルキル基、アリール基、ビニル基または(トリアルコキシシリル)アルキル基である。この際、R1’、R2’、R3’、R4’、R5’およびR6’は、それぞれ、同じであってもあるいは異なるものであってもよい。
 また、上記一般式(II)において、n’およびpは、整数であり、一般式(II)で表される構造を有するポリシラザンが150~150,000g/モルの数平均分子量を有するように定められることが好ましい。なお、n’およびpは、同じであってもあるいは異なるものであってもよい。
 または、ポリシラザンとしては、下記一般式(III)で表される構造を有する。
Figure JPOXMLDOC01-appb-C000003
 上記一般式(III)において、R1”、R2”、R3”、R4”、R5”、R6”、R7”、R8”およびR9”は、それぞれ独立して、水素原子、置換または非置換の、アルキル基、アリール基、ビニル基または(トリアルコキシシリル)アルキル基である。この際、R1”、R2”、R3”、R4”、R5”、R6”、R7”、R8”およびR9”は、それぞれ、同じであってもあるいは異なるものであってもよい。
 また、上記一般式(III)において、n”、p”およびqは、整数であり、一般式(III)で表される構造を有するポリシラザンが150~150,000g/モルの数平均分子量を有するように定められることが好ましい。なお、n”、p”およびqは、同じであってもあるいは異なるものであってもよい。
 その他、ポリシラザンとして、特開2015-003464号公報の段落「0095」~「0097」に記載の化合物や市販品を使用することができる。
 ポリシラザンを用いる場合、エネルギー印加前の第2のガスバリア層中におけるポリシラザンの含有率としては、第2のガスバリア層の全質量を100質量%としたとき、100質量%でありうる。また、第2のガスバリア層がポリシラザン以外のものを含む場合には、層中におけるポリシラザンの含有率は、10質量%以上99質量%以下であることが好ましく、40質量%以上95質量%以下であることがより好ましく、特に好ましくは70質量%以上95質量%以下である。
 (第2のガスバリア層形成用塗布液)
 第2のガスバリア層形成用塗布液の構成、塗布方法、塗布後得られる塗膜の乾燥温度、塗膜の水分の除去方法等については、特開2015-033764号公報の段落「0092」~「0101」に記載の条件等を適宜参照し採用することができる。
 <エネルギーの印加>
 続いて、上記のようにして形成された塗膜に対して、エネルギーを印加し、ケイ素化合物の酸化ケイ素または酸窒化ケイ素等への転化反応を行い、第2のガスバリア層がガスバリア性を発現しうる無機薄膜への改質を行う。改質処理としては、プラスチック基板への適応という観点から、より低温で、転化反応が可能なプラズマ処理や紫外線照射処理による転化反応が好ましい。この転化反応の具体的な方法としては、特開2015-003464号公報の段落「0120」~「0123」、および「0130」~「0145」に記載の条件等を適宜参照し採用することができる。
 真空紫外線照射工程において、ポリシラザン塗膜が受ける塗膜面での該真空紫外線の照度は1mW/cm~10W/cmであると好ましく、30mW/cm~200mW/cmであることがより好ましく、50mW/cm~160mW/cmであるとさらに好ましい。上記範囲であれば改質効率が十分となり塗膜のアブレーションや、基材へのダメージを抑えることができる。
 塗膜面における真空紫外線の照射エネルギー量(照射量)は、100mJ/cm~50J/cmであることが好ましく、200mJ/cm~20J/cmであることがより好ましく、500mJ/cm~10J/cmであることがさらに好ましい。上記範囲であれば、改質が十分となり、クラック発生や、基材の熱変形を抑えることができる。
 また、用いられる真空紫外線は、CO、COおよびCHの少なくとも一種を含むガスで形成されたプラズマにより発生させてもよい。さらに、CO、COおよびCHの少なくとも一種を含むガス(以下、炭素含有ガスとも称する)は、炭素含有ガスを単独で使用してもよいが、希ガスまたはHを主ガスとして、炭素含有ガスを少量添加することが好ましい。プラズマの生成方式としては容量結合プラズマなどが挙げられる。
 該第2のガスバリア層は、単層でもよいし2層以上の積層構造であってもよい。該第2のガスバリア層が2層以上の積層構造である場合、各第2のガスバリア層は同じ組成であってもよいし異なる組成であってもよい。また、第2のガスバリア層が2層以上の積層構造である場合、第2のガスバリア層は気相成膜法により形成される層のみからなってもよいし、塗膜形成法により形成される層のみからなってもよいし、気相成膜法により形成される層と塗膜形成法により形成される層との組み合わせであってもよい。
 しかしながら、湿度で組成が変化しにくく、高いガスバリア性を得ることができるという観点から、第2のガスバリア層は気相成膜法で形成することが好ましい。
 第2のガスバリア層の厚さ(2層以上の積層構造である場合はその総厚)は、10~1000nmであることが好ましく、50~500nmであることがより好ましい。この範囲であれば、ガスバリア性と耐衝撃性とのバランスが良好となり好ましい。第2のガスバリア層の厚さは、TEM観察により測定することができる。
 [(D)第3のガスバリア層]
 本発明に係るガスバリア性フィルムは、(D)第3のガスバリア層(以下、単に層(D)とも称する)を有する。層(D)は、SiO(ただし、0.20<w≦0.55、0.66≦x<0.75)で表される組成範囲を満たし、かつ厚さが50nm以上1000nm以下である層である。
 層(D)はガスバリア性も有するが、ゆるやかに浸入してきた水蒸気と反応することで水蒸気を捕捉する、いわゆるデシカント層としても機能する層である。例えば、層(A)/層(B)/層(C)/層(D)の順とすることで、層(A)側から浸入してくる水蒸気は、層(C)まででその大部分がバリアされる。しかしながら、層(C)の欠陥部から、ごくわずかに水蒸気が浸入する場合もある。この水蒸気を層(D)が捕捉することで、より高いガスバリア性を発揮することができる。
 層(D)の厚さは、50nm以上1000nm以下である。層(D)の厚さが50nm未満であると、デシカントとして水蒸気と反応する化合物の総量が少なくなるため、捕捉できる水蒸気量も限られ、デバイスとして求められる耐用年数内にデシカント機能が失われ、バリア性が低下する虞がある。一方、1000nmを超えると、例えば、エネルギーの印加による改質で層(D)を形成する場合に、改質が不十分となりバリア性が低下する虞があるとともに、コスト増加にも繋がる。また、層(D)を含む層において、クラックの発生が懸念され、生産性も低下する。
 層(D)の厚さは、好ましくは100nm以上300nm以下である。この範囲であれば、デバイスとして求められる耐用年数の間、良好なガスバリア性を維持できる効果や、コストを削減できる効果がさらに向上する。
 層(D)は、層(C)と後述する(E)第4のガスバリア層との間に存在するのであれば、1つの連続した層として存在する形態であってもよいし、2つ以上の複数の層として存在する形態であってもよい。層(D)が2つ以上存在する場合は、全ての層(D)の厚さの和(総厚)が、上記の範囲になっていればよい。
 層(D)におけるSi/O/N組成比や厚さは、当業者であれば任意の方法で調整することができる。例えば、上記(C)第2のガスバリア層の項で説明した塗膜形成法によってガスバリア層を形成することにより層(D)を形成することができるが、この場合、ケイ素化合物を含む塗布液の厚さ、塗布後の乾燥の程度、印加するエネルギー量(例えば、真空紫外線を照射してエネルギーを印加する場合は、照度、プラズマ密度、照射時間等を調整する)、エネルギー印加時の雰囲気(特に酸素濃度)等を調整すればよい。塗膜形成法の場合、印加するエネルギー量を小さくすれば、層(D)の組成比において酸素を少なくすることができる。また、ケイ素化合物を含む塗布液の厚さを厚くすると、層の厚さが厚くなるため、当業者であれば目的とする層の厚さに合わせて塗膜の厚さを調整できる。
 層(D)は気相成膜法によっても形成することができるが、気相製膜法を採用した場合、成膜工程が複雑になることによってコスト増となる懸念がある。コストダウンの観点から、塗膜形成法が好ましく、ポリシラザンを含有する塗布液を塗布および乾燥して得られる塗膜にエネルギーを印加して形成する方法がより好ましい。
 塗膜形成法に用いられる塗布液(第3のガスバリア層形成用塗布液)に用いられる溶媒の種類およびポリシラザンの種類、塗布方法および乾燥方法、ならびにエネルギーの印加方法の詳細は、上記の(C)第2のガスバリア層の項で説明した内容と同様であるので、ここでは詳細な説明を省略する。エネルギーの印加は、改質効率(印加エネルギーに対するガスバリア性向上効果)の観点から、真空紫外線により行うことが好ましい。
 塗膜形成法により層(D)を形成する場合は、乾燥後の塗布液(塗膜)の厚さが好ましくは60nm以上1000nm以下、より好ましくは100nm以上300nm以下となるような厚さで塗布液を塗布すればよい。また、印加するエネルギー量は、好ましくは500mJ/cm~10J/cm、より好ましくは1J/cm~8J/cmである。さらに、エネルギー印加時の雰囲気の酸素濃度は、好ましくは0.001~2体積%、より好ましくは0.005~1体積%である。
 このような層(D)および後述の層(E)の厚さ方向の組成分布および厚さは、下記のようなXPS(光電子分光法)分析を用いた方法で測定して求めることができる。
 本発明に係る層(D)および層(E)のエッチングレートは組成によって異なるため、本発明においては、XPS分析での厚さは、SiO換算のエッチングレートを元にして一旦求めておき、同一試料の断面TEM画像をもとに、積層して形成した層の各層間の界面を特定して一層当たりの厚さを求め、これをXPS分析から求めた厚さ方向の組成分布と比較しながら、厚さ方向の組成分布における各層を特定し、それぞれに対応するXPS分析から求めた各層の厚さと、断面TEM画像から求めた各層の厚さが一致するように、XPS分析から求めた各層の厚さに対して一律に係数をかけることで厚さ方向の補正を行っている。
 本発明におけるXPS分析は、下記の条件で行ったものであるが、装置や測定条件が変わっても本発明の主旨に即した測定方法であれば問題なく適用できるものである。
 本発明の主旨に即した測定方法とは、主に厚さ方向の解像度であり、測定点1点あたりのエッチング深さ(下記のスパッタイオンとデプスプロファイルの条件に相当)は1~15nmであることが好ましく、1~10nmであることがより好ましい。
 《XPS分析条件》
 ・装置:アルバックファイ製QUANTERASXM
 ・X線源:単色化Al-Kα
 ・測定領域:Si2p、C1s、N1s、O1s
 ・スパッタイオン:Ar(2keV)
 ・デプスプロファイル:一定時間スパッタ後、測定を繰り返す。1回の測定は、SiO換算で、約2.8nmの厚さ分となるようにスパッタ時間を調整する
 ・定量:バックグラウンドをShirley法で求め、得られたピーク面積から相対感度係数法を用いて定量した。データ処理は、アルバックファイ社製のMultiPakを用いる。
 このようにして、ガスバリア層の膜厚方向の組成分布のプロファイルの一次データを得る。
 また、各試料の断面をTEMで撮影し、積層構成の各膜厚を求める。上記で求めた膜厚方向の組成分布のプロファイルをTEM画像から求めた実膜厚データを用いて補正し、層の膜厚方向の組成分布を得る。これを元に、層(D)、層(E)の厚さを求める。
 TEM画像により一層当たりの厚さを求める方法は、ガスバリア性フィルムを、以下のFIB加工装置により薄片を作製した後、定法に従い断面TEM観察を行えばよい。このようにして、各層の厚さを算出できる。FIB加工およびTEM観察に用いることができる一例を以下に示す。
 《FIB加工》
 ・装置:SII製SMI2050
 ・加工イオン:(Ga 30kV)
 ・試料厚み:100nm~200nm
 《TEM観察》
 ・装置:日本電子株式会社製JEM2000FX(加速電圧:200kV)。
 [(E)第4のガスバリア層]
 本発明に係るガスバリア性フィルムは、(E)第4のガスバリア層(以下、単に層(E)とも称する)を有する。層(E)は、SiO(ただし、0.55<y≦2.0、0.25<z≦0.66)で表される組成範囲を満たし、かつ厚さが8nm以上200nm以下である層である。
 層(E)は非常に高いガスバリア性を有する。層(E)は、層(D)と比べて水蒸気との反応性が低く、高温高湿下においても組成変化が少ないため、長期間にわたり非常に高いガスバリア性を維持することができる。層(A)/層(B)/層(C)/層(D)/層(E)の順とし、層(D)で捕捉しきれなかった水蒸気が層(E)においてほぼ完全にバリアされる。これにより、層(E)の直上に設けられる電子デバイス本体への水蒸気の侵入を防ぐことができ、例えば有機EL素子にダークスポットが生じることを抑制することができる。
 層(E)の厚さは8nm以上200nm以下である。層(E)の厚さが8nm未満であると、水蒸気の遮断が不十分となる虞がある。一方、200nmを超えると、膜厚の増加に伴うガスバリア性の向上が飽和し、また生産性も低下するためコストメリットが得られない。
 層(E)の厚さは、好ましくは20nm以上150nm以下である。この範囲であれば、デバイスとして求められる耐用年数の間、良好なガスバリア性を維持でき、例えば有機EL素子に使用した際のダークスポットの発生を抑制し、ダークスポットが発生したとしてもその成長を抑制できる効果がさらに向上する。
 層(E)は、層(D)と電子デバイス本体との間に存在するのであれば、1つの連続した層として存在する形態であってもよいし、2つ以上の複数の層として存在する形態であってもよい。層(E)が2つ以上存在する場合は、全ての層(E)の厚さの和(総厚)が、上記の範囲になっていればよい。
 層(E)におけるSi/O/N組成比や厚さは、当業者であれば任意の方法で調整することができる。例えば、上記(C)第2のガスバリア層の項で説明した塗膜形成法によってガスバリア層を形成することにより層(E)を形成することができるが、この場合、ケイ素化合物を含む塗布液の厚さ、塗布後の乾燥の程度、印加するエネルギー量(例えば、真空紫外線を照射してエネルギーを印加する場合は、照度、プラズマ密度、照射時間等を調整する。)、エネルギー印加時の雰囲気(特に酸素濃度)等を調整すればよい。塗膜形成法の場合、印加するエネルギー量を大きくすれば、層(E)の組成比において酸素を多くすることができる。また、ケイ素化合物を含む塗布液の厚さを厚くすると、層の厚さが厚くなるため、当業者であれば目的とする層の厚さに合わせて塗膜の厚さを調整できる。
 層(E)は気相成膜法によっても形成することができるが、気相製膜法を採用した場合、成膜工程が複雑になることによってコスト増となる懸念がある。コストダウンの観点から、塗膜形成法が好ましく、ポリシラザンを含有する塗布液を塗布および乾燥して得られる塗膜にエネルギーを印加して形成する方法がより好ましい。
 塗膜形成法に用いられる塗布液(第4のガスバリア層形成用塗布液)に用いられる溶媒の種類およびポリシラザンの種類、塗布方法および乾燥方法、ならびにエネルギーの印加方法の詳細は、上記の(C)第2のガスバリア層の項で説明した内容と同様であるので、ここでは詳細な説明を省略する。エネルギーの印加は、改質効率(印加エネルギーに対するガスバリア性向上効果)の観点から、真空紫外線により行うことが好ましい。
 塗膜形成法により層(E)を形成する場合は、乾燥後の塗布液(塗膜)の厚さを好ましくは10nm以上200nm以下、より好ましくは20nm以上150nm以下となるような厚さで塗布液を塗布すればよい。また、印加するエネルギー量は好ましくは500mJ/cm~10J/cm、より好ましくは1J/cm~8J/cmである。エネルギー印加時の雰囲気の酸素濃度は、好ましくは0.02~2体積%、より好ましくは0.05~1体積%である。
 このような層(E)の厚さ方向の組成分布および厚さは、上記のようなXPS(光電子分光法)分析を用いた方法で測定して求めることができる。
 [種々の機能を有する層]
 本発明に係るガスバリア性フィルムにおいては、種々の機能を有する層を設けることができる。
 (アンカーコート層)
 本発明に係るガスバリア層(第1のガスバリア層、第2のガスバリア層)を形成する側のバッファー層の表面には、ガスバリア層との密着性の向上を目的として、アンカーコート層を形成してもよい。
 アンカーコート層に用いられるアンカーコート剤としては、ポリエステル樹脂、イソシアネート樹脂、ウレタン樹脂、アクリル樹脂、エチレンビニルアルコール樹脂、ビニル変性樹脂、エポキシ樹脂、変性スチレン樹脂、変性シリコン樹脂、およびアルキルチタネート等を単独でまたは2種以上組み合わせて使用することができる。
 これらのアンカーコート剤には、従来公知の添加剤を加えることもできる。そして、上記のアンカーコート剤は、ロールコート、グラビアコート、ナイフコート、ディップコート、スプレーコート等の公知の方法により支持体上にコーティングし、溶剤、希釈剤等を乾燥除去することによりアンカーコーティングすることができる。上記のアンカーコート剤の塗布量としては、0.1~5.0g/m(乾燥状態)程度が好ましい。
 また、アンカーコート層は、物理蒸着法または化学蒸着法といった気相法により形成することもできる。例えば、特開2008-142941号公報に記載のように、接着性等を改善する目的で酸化珪素を主体とした無機膜を形成することもできる。あるいは、特開2004-314626号公報に記載されているようなアンカーコート層を形成することで、その上に気相法により無機薄膜を形成する際に、基材側から発生するガスをある程度遮断して、無機薄膜の組成を制御するといった目的でアンカーコート層を形成することもできる。
 また、アンカーコート層の厚さは、特に制限されないが、0.5~10μm程度が好ましい。
 (平滑層)
 本発明に係るガスバリア性フィルムにおいては、バッファー層と第1のガスバリア層との間、またはバッファー層と第2のガスバリア層との間に、平滑層を有してもよい。本発明に用いられる平滑層は突起等が存在する樹脂基材の粗面を平坦化し、あるいは、樹脂基材に存在する突起により透明無機化合物層に生じた凹凸やピンホールを埋めて平坦化するために設けられる。このような平滑層は、基本的には感光性材料、または、熱硬化性材料を硬化させて作製される。
 平滑層の感光性材料としては、例えば、ラジカル反応性不飽和化合物を有するアクリレート化合物を含有する樹脂組成物、アクリレート化合物とチオール基を有するメルカプト化合物を含有する樹脂組成物、エポキシアクリレート、ウレタンアクリレート、ポリエステルアクリレート、ポリエーテルアクリレート、ポリエチレングリコールアクリレート、グリセロールメタクリレート等の多官能アクリレートモノマーを溶解させた樹脂組成物等が挙げられる。具体的には、JSR株式会社製のUV硬化型有機/無機ハイブリッドハードコート材 OPSTAR(登録商標)シリーズを用いることができる。また、上記のような樹脂組成物の任意の混合物を使用することも可能であり、光重合性不飽和結合を分子内に1個以上有する反応性のモノマーを含有している感光性樹脂であれば特に制限はない。
 熱硬化性材料として具体的には、クラリアント社製のトゥットプロムシリーズ(有機ポリシラザン)、セラミックコート株式会社製のSP COAT耐熱クリアー塗料、株式会社アデカ製のナノハイブリッドシリコーン、DIC株式会社製のユニディック(登録商標)V-8000シリーズ、EPICLON(登録商標) EXA-4710(超高耐熱性エポキシ樹脂)、信越化学工業株式会社製の各種シリコン樹脂、日東紡株式会社製の無機・有機ナノコンポジット材料SSGコート、アクリルポリオールとイソシアネートプレポリマーとからなる熱硬化性ウレタン樹脂、フェノール樹脂、尿素メラミン樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、シリコン樹脂等が挙げられる。この中でも特に耐熱性を有するエポキシ樹脂ベースの材料であることが好ましい。
 平滑層の形成方法は、特に制限はないが、スピンコーティング法、スプレー法、ブレードコーティング法、ディップ法等のウエットコーティング法、あるいは、蒸着法等のドライコーティング法により形成することが好ましい。
 平滑層の形成では、上述の感光性樹脂に、必要に応じて酸化防止剤、紫外線吸収剤、可塑剤等の添加剤を加えることができる。また、平滑層の積層位置に関係なく、いずれの平滑層においても、成膜性向上および膜のピンホール発生防止等のために適切な樹脂や添加剤を使用してもよい。
 平滑層の厚さとしては、フィルムの耐熱性を向上させ、フィルムの光学特性のバランス調整を容易にする観点から、1~10μmの範囲が好ましく、さらに好ましくは、2μm~7μmの範囲にすることが好ましい。
 平滑層の平滑性は、JIS B 0601:2001で規定される表面粗さで表現される値で、十点平均粗さRzが、10nm以上、30nm以下であることが好ましい。この範囲であれば、バリア層を塗布形式で塗布した場合であっても、ワイヤーバー、ワイヤレスバー等の塗布方式で、平滑層表面に塗工手段が接触する場合であっても塗布性が損なわれることが少なく、また、塗布後の凹凸を平滑化することも容易である。
 (保護層)
 本発明に係るガスバリア性フィルムは、上記第1のガスバリア層のバッファー層を有する面とは反対側の面に保護層を有することが好ましい。保護層を有することにより、本発明の電子デバイスは、耐久性(長期信頼性)がより高いデバイスとなる。また、該保護層は、電子デバイスの表面の傷付き防止機能を有しうる。
 保護層の形成材料としては、分子中に2個以上の重合性不飽和基を有する多価不飽和有機化合物または分子中に一個の重合性不飽和基を有する単価不飽和有機化合物等のハードコート剤を挙げることができる。
 その他の添加剤として、マット剤を含有してもよい。マット剤としては平均粒子径が0.1~5μm程度の無機粒子が好ましい。このような無機粒子としては、シリカ、アルミナ、タルク、クレイ、炭酸カルシウム、炭酸マグネシウム、硫酸バリウム、水酸化アルミニウム、二酸化チタン、酸化ジルコニウム等の1種または2種以上を併せて使用することができる。
 また、保護層は、ハードコート剤およびマット剤の他の成分として熱可塑性樹脂、熱硬化性樹脂、電離放射線硬化性樹脂、光重合開始剤等を含有させてもよい。
 以上のような保護層は、ハードコート剤、マット剤、および必要に応じて他の成分を配合して、適宜必要に応じて用いる希釈溶剤によって塗布液として調製し、当該塗布液を支持体フィルム表面に従来公知の塗布方法によって塗布した後、電離放射線を照射して硬化させることにより形成することができる。
 なお、電離放射線を照射する方法としては、超高圧水銀灯、高圧水銀灯、低圧水銀灯、カーボンアーク、メタルハライドランプ等から発せられる100~400nm、好ましくは200~400nmの波長領域の紫外線を照射する、または走査型やカーテン型の電子線加速器から発せられる100nm以下の波長領域の電子線を照射することにより行うことができる。
 保護層の厚さとしては、50~5000nmの範囲が好ましく、100~2000nmの範囲がより好ましい。
 (サイド封止)
 上述したような、本発明に係る層(B)における端部(エッジ)からの水分の浸透を防止するために、本発明の電子デバイスの外周を取り囲むように、外気を遮断するための封止材を設けてもよい。このような封止材としては、特開平11-144864号公報に記載のシリコンの酸化物、窒化物、および/または酸化窒化物を主成分とする膜、特開2003-243155号公報に記載の金属酸化物または金属窒化物を含有する膜等が挙げられる。
 また、電子デバイス全体を覆うように、アルミニウム箔、銅箔等の金属箔、無機層と有機層との積層体などの封止部材を設けてもよい。
 [電子デバイスの製造方法]
 本発明の電子デバイスは、特に制限されないが、下記のような製造方法により得られたものであることが好ましい。
 (1)バッファー層となる樹脂基材の一方の面に第1のガスバリア層を形成する工程と、前記樹脂基材の前記第1のガスバリア層が形成された面とは反対側の面に前記樹脂基材側から順に第2のガスバリア層、第3のガスバリア層、および第4のガスバリア層を形成しガスバリア性フィルムを得る工程と、前記第4のガスバリア層上に電子デバイス本体を形成する工程と、を含む製造方法。
 (2)バッファー層となる樹脂基材の一方の面に前記樹脂基材側から順に第2のガスバリア層、第3のガスバリア層、および第4のガスバリア層を形成する工程と、前記樹脂基材の前記第2のガスバリア層、前記第3のガスバリア層、および前記第4のガスバリア層が形成された面とは反対側の面に第1のガスバリア層を形成しガスバリア性フィルムを得る工程と、前記第4のガスバリア層上に電子デバイス本体を形成する工程と、を含む製造方法。
 (3)バッファー層となる樹脂基材の一方の面に前記樹脂基材側から順に第2のガスバリア層、第3のガスバリア層、および第4のガスバリア層を形成する工程と、前記第4のガスバリア層上に電子デバイス本体を形成する工程と、前記樹脂基材の前記第2のガスバリア層、前記第3のガスバリア層、前記第4のガスバリア層、および前記電子デバイス本体が形成された面とは反対側の面に第1のガスバリア層を形成する工程と、を含む製造方法。
 (4)第1の樹脂基材の一方の面に前記第1のガスバリア層を形成し第1のバリア性フィルムを得る工程と、第2の樹脂基材の一方の面に前記第2の樹脂基材側から順に前記第2のガスバリア層、前記第3のガスバリア層、および前記第4のガスバリア層を形成し第2のバリア性フィルムを得る工程と、接着剤または粘着剤を用いて、前記第1のバリア性フィルムの前記第1のガスバリア層を形成した面と、前記第2のバリア性フィルムの前記第2のガスバリア層、前記第3のガスバリア層、および前記第4のガスバリア層を形成した側の反対側の面とを貼合する工程と、前記第4のガスバリア層上に前記電子デバイス本体を形成する工程と、を含む製造方法。
 (5)第1の樹脂基材の一方の面に前記第1のガスバリア層を形成し第1のバリア性フィルムを得る工程と、第2の樹脂基材の一方の面に前記第2の樹脂基材側から順に前記第2のガスバリア層、前記第3のガスバリア層、および前記第4のガスバリア層を形成し第2のバリア性フィルムを得る工程と、前記第2のバリア性フィルムの前記第4のガスバリア層上に前記電子デバイス本体を形成する工程と、接着剤または粘着剤を用いて、前記第1のバリア性フィルムの前記第1のガスバリア層を形成した面と、前記第2のバリア性フィルムの前記第2のガスバリア層、前記第3のガスバリア層、前記第4のガスバリア層、および前記電子デバイス本体を形成した側の反対側の面と、を貼合する工程と、を含む製造方法。
 これらの中でも、(2)、(3)または(5)の製造方法により得られた電子デバイスが好ましく、(3)または(5)の製造方法により得られた電子デバイスがより好ましい。電子デバイス本体を形成する工程において起こり得る第1のガスバリア層の剥がれが防止できるからである。
 なお、(4)または(5)の製造方法で得られる電子デバイスにおいては、第1の樹脂基材が第1のガスバリア層よりも外側(外気に近い側)に備えられることになるが、このような実施形態も、本発明の電子デバイスの範疇である。
 層(A)~(E)の形成方法は、上記で説明した通りであるため、ここでは説明を省略する。
 [波長450nmの光の吸収率]
 本発明に係るガスバリア性フィルムは、波長450nmの光の吸収率(以下、単に450nmにおける吸収率とも称する)が15%未満であることが好ましい。波長450nmの光の吸収率が低い(すなわち、透過性が高い)本発明に係るガスバリア性フィルムを表示デバイスに用いることにより、光源から使用者まで可視光が届く過程において、青色光にかかわる波長450nm付近の光のガスバリア性フィルムによる吸収を極力抑えることができる。
 層(D)および層(E)を有することで、本発明に係るガスバリア性フィルムの450nmにおける吸収率を低くすることができる。本発明に係るガスバリア性フィルムにおいては、450nmにおける吸収率が15%未満であれば好ましいが、より好ましくは10%未満であり、さらに好ましくは8%未満である。450nmにおける吸収率の下限は特に制限はないが、例えば実質的に0%以上である。
 450nmにおける吸収率は、分光光度計や分光測色計により測定することができる。450nmにおける吸収率は、例えば、分光測色計(例えば、CM-3600d、コニカミノルタ株式会社製)を用い、450nmでの透過率A(%)と反射率B(%)を測定し、下記式を用いて求めればよい。
Figure JPOXMLDOC01-appb-M000004
 また、本発明に係るガスバリア性フィルムは、可視光領域(400~700nm)の透過率が80%以上であることが好ましく、83%以上であることがより好ましい。可視光領域(400~700nm)の透過率が80%以上であることにより、可視光領域全体について光学特性が優れたガスバリア性フィルムが提供される。可視光領域の全光線透過率は、JIS K7375:2008に準じて測定する。
 [電子デバイス本体]
 本発明の電子デバイスは、空気中の化学成分(酸素、水、窒素酸化物、硫黄酸化物、オゾン等)によって性能が劣化するデバイスに好ましく適用できる。
 本発明の電子デバイスに用いられる電子デバイス本体の例としては、例えば、有機エレクトロルミネッセンス素子(有機EL素子)、液晶表示素子(LCD)、薄膜トランジスタ、タッチパネル、電子ペーパー、太陽電池(PV)等を挙げることができる。本発明の効果がより効率的に得られるという観点から、該電子デバイス本体は有機EL素子または太陽電池が好ましく、有機EL素子がより好ましい。
 本発明の効果を、以下の実施例および比較例を用いて説明する。ただし、本発明の技術的範囲が以下の実施例のみに制限されるわけではない。
 〔樹脂基材〕
 基材ア:両面ハードコート付きPETフィルム(全厚み:136μm、PET厚み:125μm、株式会社きもと製、商品名:KBフィルム(商標)125G1SBF)を用いた。
 基材イ:両面ハードコート付きPETフィルム(全厚み:58μm、PET厚み:50μm、株式会社きもと製、商品名:KBフィルム(商標)50G1SBF)を用いた。
 〔気相成膜法によるガスバリア層の形成〕
 特許第4268195号公報に記載の対向する成膜ロールからなる成膜部を有する装置を2台つなげたタイプ(第1成膜部、第2成膜部を有する)のロール・トゥ・ロール型CVD成膜装置を用いた(図2参照)。有効成膜幅を1000mmとし、成膜条件は、搬送速度、第一成膜部、第二成膜部それぞれの原料ガス(HMDSO)の供給量、酸素ガスの供給量、真空度、印加電力、電源の周波数、成膜回数(装置のパス数)で調整した。1パス目に対して、2パス目は基材を巻き戻す方向に搬送しているが、パス方向が異なる場合でも、最初に通過する成膜部を第一成膜部、次に通過する成膜部を第二成膜部とした。
 その他の条件として、電源周波数は84kHz、成膜ロールの温度はすべて30℃とした。用いる基材は、成膜面と反対面に耐熱性の保護フィルムを貼合して巻き取ったものを用いた。両面に成膜する場合は、片面成膜後の基材の成膜済面にさらに耐熱性の保護フィルムを貼合し、次いで、次の成膜面である反対面の保護フィルムを剥離して巻き取ったものを用いた。膜厚は断面TEM観察で求めた。
 第1成膜部および第2成膜部の成膜条件を、下記表1に示す。
Figure JPOXMLDOC01-appb-T000005
 〔第3のガスバリア層および第4のガスバリア層の形成〕
 第3のガスバリア層および第4のガスバリア層は、下記に示すような塗布液を塗布し塗布膜を形成した後、真空紫外線照射による改質を行ってガスバリア層を得ることにより形成した。
 パーヒドロポリシラザンを20質量%含むジブチルエーテル溶液(AZエレクトロニックマテリアルズ株式会社製、NN120-20)と、アミン触媒(N,N,N',N'-テトラメチル-1,6-ジアミノヘキサン(TMDAH))を含むパーヒドロポリシラザン20質量%のジブチルエーテル溶液(AZエレクトロニックマテリアルズ株式会社製、NAX120-20)とを、4:1(質量比)の割合で混合し、さらに乾燥膜厚調整のためジブチルエーテルで適宜希釈し、塗布液を調製した。
 ガスバリア層を形成した基材、または上記の基材をシート状に切り出して準備した。塗布による層形成は、すでに形成済みのガスバリア層面、または基材の平滑面に行った。スピンコート法により塗布液を下記表2に示す乾燥膜厚になるよう塗布し、80℃で2分間乾燥した。次いで、乾燥した塗膜に対して、波長172nmのXeエキシマランプを用い、下記表2に示す酸素濃度、および照射エネルギーの条件で、真空紫外線照射処理を施して第3のガスバリア層および第4のガスバリア層を形成した。
 真空紫外線の照射条件を、下記表2に示す。
Figure JPOXMLDOC01-appb-T000006
 第3のガスバリア層および第4のガスバリア層の厚さ方向の組成分布は、以下のようなXPS分析を用いた方法で測定して求めた。
 (XPS分析条件)
 ・装置:アルバックファイ製QUANTERASXM
 ・X線源:単色化Al-Kα
 ・測定領域:Si2p、C1s、N1s、O1s
 ・スパッタイオン:Ar(2keV)
 ・デプスプロファイル:一定時間スパッタ後、測定を繰り返す。1回の測定は、SiO換算で約2.8nmの厚さ分となるようにスパッタ時間を調整した
 ・定量:バックグラウンドをShirley法で求め、得られたピーク面積から相対感度係数法を用いて定量した。データ処理は、アルバックファイ社製のMultiPakを用いた。
 このようにして、第3のガスバリア層および第4のガスバリア層における膜厚方向の組成分布のプロファイルの一次データを得た。得られた膜厚方向の組成分布のプロファイルを、TEM画像から求めた実膜厚データを用いて補正し、膜厚方向の組成分布を得て、第3のガスバリア層および第4のガスバリア層の厚さを求めた。
 第1のガスバリア層、バッファー層、および第2のガスバリア層については、断面をTEMで撮影し膜厚を求めた。
 (比較例1)
 0.7mm厚のガラス板を準備した。
 (比較例2)
 35μm厚の薄膜ガラスを準備した。
 (比較例3)
 50μm厚のPETフィルム(東レ株式会社製、品名:ルミラー(登録商標)50U48)の上に、35μm厚の薄膜ガラスを接着した複合フィルムを準備した。
 (比較例4)
 基材アの一方の面に、上記V3の条件で第2のガスバリア層を形成した。次いで、第2のガスバリア層の上に、上記P3の条件、および上記P1の条件で順次ガスバリア層を形成し、第3のガスバリア層および第4のガスバリア層を設け、ガスバリア性フィルムを作製した。
 (実施例1)
 基材アの一方の面に、上記V1の条件で第1のガスバリア層を形成した。次いで、基材アの第1のガスバリア層を形成した側とは反対側の面に、上記V2の条件で第2のガスバリア層を形成した。次いで、第2のガスバリア層の上に、上記P3の条件、および上記P1の条件で順次ガスバリア層を形成し、第3のガスバリア層および第4のガスバリア層を設け、ガスバリア性フィルムを作製した。
 (実施例2)
 基材アの一方の面に、上記V2の条件で第1のガスバリア層を形成した。次いで、基材アの第1のガスバリア層を形成した側とは反対側の面に、上記V3の条件で第2のガスバリア層を形成した。次いで、第2のガスバリア層の上に、上記P3の条件でガスバリア層を形成し、第3のガスバリア層および第4のガスバリア層を設け、ガスバリア性フィルムを作製した。
 (実施例3)
 基材アの一方の面に、上記V1の条件で第1のガスバリア層を形成した。次いで、基材アの第1のガスバリア層を形成した側とは反対側の面に、上記V3の条件で第2のガスバリア層を形成した。次いで、第2のガスバリア層の上に、上記P3の条件、上記P3の条件、および上記P1の条件で順次ガスバリア層を形成し、第3のガスバリア層および第4のガスバリア層を設け、ガスバリア性フィルムを作製した。
 (実施例4)
 基材アの一方の面に、上記V1の条件で第1のガスバリア層を形成した。次いで、第1のガスバリア層の上に、UV硬化タイプのハードコート層を15μmの厚さで形成した。さらに、ハードコート層の上に、上記V3の条件で第2のガスバリア層を形成した。次いで、上記P3の条件、および上記P1の条件で順次ガスバリア層を形成し、第3のガスバリア層および第4のガスバリア層を設け、ガスバリア性フィルムを作製した。
 なお、UV硬化タイプのハードコート層は、以下のようにして形成した。すなわち、JSR株式会社製UV硬化型樹脂オプスター(登録商標)Z7527を、乾燥膜厚が15μmになるようにアプリケーターで塗布した後、80℃で10分間乾燥した。その後、空気下、高圧水銀ランプを用いて照射エネルギー量2J/cmで硬化を行い、ハードコート層とした。
 (比較例5)
 ハードコート層の厚さを6μmとしたこと以外は、実施例4と同様にして、ガスバリア性フィルムを作製した。
 (実施例5)
 基材アの一方の面に、上記V1の条件で第1のガスバリア層を形成したバリア性フィルム1を用意した。このバリア性フィルム1の第1のガスバリア層上に、比較例1と同様の方法で得られたガスバリア性フィルムのガスバリア層を形成していない面を、透明粘着剤(積水化学工業株式会社製、高透明両面テープ5402、25μm厚)を用いて貼合し、ガスバリア性フィルムを作製した。
 (実施例6)
 基材アの一方の面に、上記P3の条件で第2のガスバリア層を形成した。次いで、第2のガスバリア層上に、上記P3の条件、および上記P1の条件で順次ガスバリア層を形成し、第3のガスバリア層および第4のガスバリア層を設けたバリア性フィルム2を用意した。別途、基材アの一方の面に、上記V1の条件で第1のガスバリア層を形成したバリア性フィルム1を用意した。バリア性フィルム1の第1のガスバリア層と、バリア性フィルム2のガスバリア層を形成していない面とを、透明粘着剤(積水化学工業株式会社製、高透明両面テープ5402、25μm厚)を用いて貼合し、ガスバリア性フィルムを作製した。
 (比較例6)
 基材アの一方の面に、上記V1の条件で第1のガスバリア層を形成したバリア性フィルム1を用意した。このバリア性フィルム1の第1のガスバリア層を形成していない面と、比較例4と同様の方法で得られたガスバリア性フィルムのガスバリア層を形成していない面とを、透明粘着剤(積水化学工業株式会社製、高透明両面テープ5402、25μm厚)を用いて貼合し、ガスバリア性フィルムを作製した。
 (実施例7)
 基材イの一方の面に、上記V4の条件でスパッタによる第1のガスバリア層を形成したバリア性フィルム1を用意した。このバリア性フィルム1の第1のガスバリア層上に、比較例4と同様の方法で得られたガスバリア性フィルムのガスバリア層を形成いていない面を透明粘着剤(積水化学工業株式会社製、高透明両面テープ5402、25μm厚)を用いて貼合し、ガスバリア性フィルムを作製した。
 (比較例7)
 基材アの一方の面に、上記V3の条件で第2のガスバリア層を形成した。次いで、第2のガスバリア層の上に、上記P2の条件、および上記P1の条件で順次ガスバリア層を形成し、第3のガスバリア層および第4のガスバリア層を設け、バリア性フィルム2を作製した。
 比較例1と同様の方法で得られたガスバリア性フィルムの代わりに、上記のバリア性フィルム2を用いたこと以外は、実施例5と同様にして、ガスバリア性フィルムを作製した。
 (比較例8)
 基材アの一方の面に、上記V3の条件で第2のガスバリア層を形成した。次いで、第2のガスバリア層の上に、上記P4の条件でガスバリア層を形成し、第3のガスバリア層を設け、バリア性フィルム2を作製した。
 比較例1と同様の方法で得られたガスバリア性フィルムの代わりに、上記のバリア性フィルム2を用いたこと以外は、実施例5と同様にして、ガスバリア性フィルムを作製した。
 (比較例9)
 基材アの両面に、上記V3の条件でガスバリア層を形成し、ガスバリア性フィルムを作製した。
 (実施例8)
 実施例3で得られたガスバリア性フィルムの第1のガスバリア層の表面に、保護層となるハードコート層を500nmの厚さで形成し、ガスバリア性フィルムを作製した。
 なお、保護層は、以下のようにして形成した。すなわち、JSR株式会社製UV硬化型樹脂オプスター(登録商標)Z7527を、乾燥膜厚が500nmになるようにアプリケーターで塗布した後、80℃で3分間乾燥した。その後、空気下、高圧水銀ランプを用いて照射エネルギー量0.5J/cmで硬化を行い、保護層とした。
 (比較例10)
 実施例3で得られたガスバリア性フィルムの第1のガスバリア層上に、後述する有機EL素子を形成した。
 (比較例11)
 基材アの一方の面に、上記のV1の条件でガスバリア層を形成したガスバリア性フィルムを用意した。このフィルムのガスバリア層を形成していない面と、比較例4と同様の方法で得られたガスバリア性フィルムの第4のガスバリア層の面とを、透明粘着剤(積水化学工業株式会社製、高透明両面テープ5402、25μm厚)を用いて貼合し、ガスバリア性フィルムを作製した。
 (実施例9)
 基材アの一方の面に、上記P3の条件で第2のガスバリア層を形成した。次いで、第2のガスバリア層の上に、上記P3の条件、および上記P1の条件で順次ガスバリア層を形成し、第3のガスバリア層および第4のガスバリア層を設けたバリア性フィルム2を作製した。さらに、バリア性フィルム2の第4のガスバリア層上に、後述する有機EL素子を形成した。
 別途、基材アの一方の面に、上記V1の条件で第1のガスバリア層を形成したバリア性フィルム1を用意した。バリア性フィルム1の第1のガスバリア層と、バリア性フィルム2の有機EL素子を形成していない面とを、透明粘着剤(積水化学工業株式会社製、高透明両面テープ5402、25μm厚)を用いて貼合し、電子デバイスを作製した。
 (実施例10)
 比較例4と同様の方法で得られたガスバリア性フィルムの第4のガスバリア層上に、後述の有機EL素子を形成した。有機EL素子を形成後、ガスバリア性フィルムの有機EL素子を形成していない面上に、上記V4の条件でガスバリア層を形成し、電子デバイスを作製した。
 実施例および比較例で得られた各層の構成を下記表3に示す。
Figure JPOXMLDOC01-appb-T000007
 ≪有機EL素子の作製方法≫
 比較例1~2で準備したガラス板、比較例3で準備した複合フィルム、ならびに実施例1~8および比較例4~11で得られたガスバリア性フィルムを用い、下記に示すような方法で、発光領域の面積が5cm×5cmとなるように、ボトムエミッション型の有機エレクトロルミネッセンス素子(有機EL素子)を作製した。なお、以下では、ガスバリア性フィルムを用いた場合の有機EL素子の作製方法を示しているが、ガラス板および複合フィルムにおいても、同様の方法で有機EL素子を作製した。
 (下地層、第1電極の形成)
 ガスバリア性フィルムを、市販の真空蒸着装置の基材ホルダーに固定し、化合物118をタングステン製の抵抗加熱ボートに入れ、これら基材ホルダーと加熱ボートとを真空蒸着装置の第1真空槽内に取り付けた。また、タングステン製の抵抗加熱ボートに銀(Ag)を入れ、真空蒸着装置の第2真空槽内に取り付けた。
 次に、真空蒸着装置の第1真空槽を4×10-4Paまで減圧した後、化合物118の入った加熱ボートに通電して加熱し、蒸着速度0.1nm/秒~0.2nm/秒で第1電極の下地層を厚さ10nmで設けた。
 次に、下地層まで形成した基材を真空のまま第2真空槽に移し、第2真空槽を4×10-4Paまで減圧した後、銀の入った加熱ボートを通電して加熱した。これにより、蒸着速度0.1nm/秒~0.2nm/秒で厚さ8nmの銀からなる第1電極を形成した。
 (有機機能層~第2電極)
 引き続き、市販の真空蒸着装置を用い、真空度1×10-4Paまで減圧した後、基材を移動させながら化合物HT-1を、蒸着速度0.1nm/秒で蒸着し、20nmの正孔輸送層(HTL)を設けた。
 次に、化合物A-3(青色発光ドーパント)、化合物A-1(緑色発光ドーパント)、化合物A-2(赤色発光ドーパント)および化合物H-1(ホスト化合物)を、化合物A-3が膜厚に対し線形に35質量%から5質量%になるように場所により蒸着速度を変化させ、化合物A-1と化合物A-2とは膜厚に依存することなく各々0.2質量%の濃度になるように、蒸着速度0.0002nm/秒で、化合物H-1は64.6質量%から94.6質量%になるように場所により蒸着速度を変化させて、厚さ70nmになるよう共蒸着し発光層を形成した。
 その後、化合物ET-1を膜厚30nmに蒸着して電子輸送層を形成し、さらにフッ化カリウム(KF)を厚さ2nmで形成した。さらに、アルミニウム110nmを蒸着して第2電極を形成した。
 なお、上記化合物118、化合物HT-1、化合物A-1~3、化合物H-1、および化合物ET-1は、以下に示す化合物である。
Figure JPOXMLDOC01-appb-C000008
 (固体封止)
 次に、封止部材として厚さ25μmのアルミ箔を使用し、このアルミ箔の片面に封止樹脂層として熱硬化型のシート状接着剤(エポキシ系樹脂)を厚さ20μmで貼合した封止部材を用いて、第2電極までを作製した試料に重ね合わせた。このとき、第1電極および第2電極の引き出し電極の端部が外に出るように、封止部材の接着剤形成面と、素子の有機機能層面とを連続的に重ね合わせた。
 次いで、試料を減圧装置内に配置し、90℃で0.1MPaの減圧条件下で、重ね合わせた基材と封止部材とに押圧をかけて5分間保持した。続いて、試料を大気圧環境に戻し、さらに120℃で30分間加熱して接着剤を硬化させた。
 上記封止工程は、大気圧下、含水率1ppm以下の窒素雰囲気下で、JIS B 9920:2002に準拠し、測定した清浄度がクラス100で、露点温度が-80℃以下、酸素濃度0.8ppm以下の大気圧で行った。なお、陽極、陰極からの引き出し配線等の形成に関する記載は省略してある。
 このようにして、発光領域が5cm×5cmサイズの電子デバイスを、1水準について4枚作製した。
 (450nmにおける吸収率)
 分光測色計(CM-3600d、コニカミノルタ株式会社製)を用い、ガスバリア性フィルム(またはガラス、複合フィルム)の波長450nmでの透過率A(%)および反射率B(%)を測定し、下記の式により波長450nmにおける吸収率(%)を求めた。
Figure JPOXMLDOC01-appb-M000009
 なお、実施例9は実施例6を基にした推定値であり、実施例10は実施例7を基にした推定値である。
 (ダークスポット(DS)の評価)
 上記のようにして得られた有機EL素子を85℃、85%RHの環境下で300時間通電を行い、発生しているダークスポットについて、円換算直径が200μm以上であるダークスポットの発生個数を4枚のデバイスの平均で求めた。
 (耐衝撃性評価)
 上記のようにして得られた有機EL素子を水平な台に発光面側を上にして置き(特定材質の平板部材をその下に置き)、その上に直径10mmのスチールボールを高さ1mの位置から落として、デバイスの破損状況を目視で確認した。また、その後の発光の有無も確認した。
 以上の評価結果を下記表4に示す。
Figure JPOXMLDOC01-appb-T000010
 上記表4から明らかなように、本発明の電子デバイスは、高温高湿環境での耐久性に優れ、かつ耐衝撃性に優れる。
 なお、本出願は、2014年3月19日に出願された日本特許出願第2014-56840号に基づいており、その開示内容は、参照により全体として引用されている。

Claims (7)

  1.  (A)無機化合物を含む第1のガスバリア層:
     (B)樹脂を含み、厚さが10~200μmであるバッファー層;
     (C)無機化合物を含む第2のガスバリア層;
     (D)SiO(ただし、0.2<w≦0.55、0.66<x≦0.75)で表される組成範囲を満たし、かつ、50~1000nmの厚さを有する第3のガスバリア層;
     (E)SiO(ただし、0.55<y≦2.0、0.25<z≦0.66)で表される組成範囲を満たし、かつ、8~200nmの厚さを有する第4のガスバリア層;
    をこの順に含む、ガスバリア性フィルムと、
     前記第4のガスバリア層の前記第3のガスバリア層を有する面とは反対側の面上に形成される電子デバイス本体と、
    を含む電子デバイス。
  2.  前記第1のガスバリア層および前記第2のガスバリア層が気相成膜法で形成され、かつ
     前記第3のガスバリア層および前記第4のガスバリア層が、ポリシラザンを含有する塗布液を塗布および乾燥して得られる塗膜にエネルギーを印加して形成される、請求項1に記載の電子デバイス。
  3.  前記エネルギーの印加が、真空紫外線を照射することにより行われる、請求項2に記載の電子デバイス。
  4.  前記ガスバリア性フィルムの波長450nmの光の吸収率が15%未満である、請求項1~3のいずれか1項に記載の電子デバイス。
  5.  前記第1のガスバリア層の前記バッファー層を有する面とは反対側の面上に、さらに保護層を有する、請求項1~4のいずれか1項に記載の電子デバイス。
  6.  前記電子デバイスは、
     前記バッファー層となる樹脂基材の一方の面に前記樹脂基材側から順に第2のガスバリア層、第3のガスバリア層、および第4のガスバリア層を形成する工程と、
     前記第4のガスバリア層上に電子デバイス本体を形成する工程と、
     前記樹脂基材の前記第2のガスバリア層、前記第3のガスバリア層、前記第4のガスバリア層、および前記電子デバイス本体が形成された面とは反対側の面に第1のガスバリア層を形成する工程と、
    を含む製造方法により製造されたものである、請求項1~5のいずれか1項に記載の電子デバイス。
  7.  前記電子デバイスは、
     第1の樹脂基材の一方の面に前記第1のガスバリア層を形成し第1のバリア性フィルムを得る工程と、
     第2の樹脂基材の一方の面に前記第2の樹脂基材側から順に前記第2のガスバリア層、前記第3のガスバリア層、および前記第4のガスバリア層を形成し第2のバリア性フィルムを得る工程と、
     前記第2のバリア性フィルムの前記第4のガスバリア層上に前記電子デバイス本体を形成する工程と、
     接着剤または粘着剤を用いて、前記第1のバリア性フィルムの前記第1のガスバリア層を形成した面と、前記第2のバリア性フィルムの前記第2のガスバリア層、前記第3のガスバリア層、前記第4のガスバリア層、および前記電子デバイス本体を形成した側の反対側の面とを貼合する工程と、
    を含む製造方法により得られたものである、請求項1~5のいずれか1項に記載の電子デバイス。
PCT/JP2015/058109 2014-03-19 2015-03-18 電子デバイス WO2015141741A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016508771A JP6705375B2 (ja) 2014-03-19 2015-03-18 電子デバイス

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014056840 2014-03-19
JP2014-056840 2014-03-19

Publications (1)

Publication Number Publication Date
WO2015141741A1 true WO2015141741A1 (ja) 2015-09-24

Family

ID=54144705

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/058109 WO2015141741A1 (ja) 2014-03-19 2015-03-18 電子デバイス

Country Status (2)

Country Link
JP (1) JP6705375B2 (ja)
WO (1) WO2015141741A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007038529A (ja) * 2005-08-03 2007-02-15 Konica Minolta Holdings Inc ガスバリア性薄膜積層体、ガスバリア性樹脂基材および有機エレクトロルミネッセンスデバイス
JP2007190844A (ja) * 2006-01-20 2007-08-02 Konica Minolta Holdings Inc ガスバリア性樹脂基材および有機エレクトロルミネッセンスデバイス
WO2012090644A1 (ja) * 2010-12-27 2012-07-05 コニカミノルタホールディングス株式会社 ガスバリア性フィルム及び電子デバイス
WO2013065812A1 (ja) * 2011-11-04 2013-05-10 リンテック株式会社 ガスバリアフィルム及びその製造方法、ガスバリアフィルム積層体、電子デバイス用部材、並びに電子デバイス
JP2013119567A (ja) * 2011-12-06 2013-06-17 Lintec Corp ガスバリアフィルム用中間層形成用組成物、ガスバリアフィルム及びその製造方法、並びに電子部材又は光学部材
JP2013202973A (ja) * 2012-03-29 2013-10-07 Fujifilm Corp ガスバリアフィルム
JP2013226673A (ja) * 2012-04-24 2013-11-07 Konica Minolta Inc ガスバリア性フィルムおよびその製造方法、並びに前記ガスバリア性フィルムを含む電子デバイス
JP2013234365A (ja) * 2012-05-09 2013-11-21 Mitsubishi Plastics Inc ガスバリア性フィルムの製造方法
JP2013252700A (ja) * 2012-05-09 2013-12-19 Mitsubishi Plastics Inc ガスバリア性フィルム及びガスバリア性フィルムの製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150132587A1 (en) * 2012-04-26 2015-05-14 Konica Minolta, Inc. Gas barrier film and electronic device using the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007038529A (ja) * 2005-08-03 2007-02-15 Konica Minolta Holdings Inc ガスバリア性薄膜積層体、ガスバリア性樹脂基材および有機エレクトロルミネッセンスデバイス
JP2007190844A (ja) * 2006-01-20 2007-08-02 Konica Minolta Holdings Inc ガスバリア性樹脂基材および有機エレクトロルミネッセンスデバイス
WO2012090644A1 (ja) * 2010-12-27 2012-07-05 コニカミノルタホールディングス株式会社 ガスバリア性フィルム及び電子デバイス
WO2013065812A1 (ja) * 2011-11-04 2013-05-10 リンテック株式会社 ガスバリアフィルム及びその製造方法、ガスバリアフィルム積層体、電子デバイス用部材、並びに電子デバイス
JP2013119567A (ja) * 2011-12-06 2013-06-17 Lintec Corp ガスバリアフィルム用中間層形成用組成物、ガスバリアフィルム及びその製造方法、並びに電子部材又は光学部材
JP2013202973A (ja) * 2012-03-29 2013-10-07 Fujifilm Corp ガスバリアフィルム
JP2013226673A (ja) * 2012-04-24 2013-11-07 Konica Minolta Inc ガスバリア性フィルムおよびその製造方法、並びに前記ガスバリア性フィルムを含む電子デバイス
JP2013234365A (ja) * 2012-05-09 2013-11-21 Mitsubishi Plastics Inc ガスバリア性フィルムの製造方法
JP2013252700A (ja) * 2012-05-09 2013-12-19 Mitsubishi Plastics Inc ガスバリア性フィルム及びガスバリア性フィルムの製造方法

Also Published As

Publication number Publication date
JP6705375B2 (ja) 2020-06-03
JPWO2015141741A1 (ja) 2017-04-13

Similar Documents

Publication Publication Date Title
JP5895687B2 (ja) ガスバリア性フィルム
JP5730235B2 (ja) ガスバリアフィルムおよびガスバリアフィルムの製造方法
WO2014163062A1 (ja) ガスバリアー性フィルムの製造方法、ガスバリアー性フィルム及び電子デバイス
TWI647110B (zh) 層合體之製造方法
WO2015060394A1 (ja) ガスバリア性フィルム
CN110114213B (zh) 气体阻隔性膜和气体阻隔性膜的制造方法
WO2016190284A1 (ja) ガスバリア性フィルムおよびその製造方法
JPWO2016190284A6 (ja) ガスバリア性フィルムおよびその製造方法
JP2017095758A (ja) ガスバリア性フィルムの製造方法
CN111093973B (zh) 阻气膜及阻气膜的制造方法
WO2015083706A1 (ja) ガスバリア性フィルム及びその製造方法
WO2017047346A1 (ja) 電子デバイス及び電子デバイスの封止方法
WO2015053189A1 (ja) ガスバリアーフィルム及びその製造方法
JP5895855B2 (ja) ガスバリア性フィルムの製造方法
WO2015141741A1 (ja) 電子デバイス
WO2014125877A1 (ja) ガスバリア性フィルム
WO2015029732A1 (ja) ガスバリアフィルムおよびガスバリアフィルムの製造方法
WO2017010249A1 (ja) ガスバリア性フィルム
WO2018207508A1 (ja) ガスバリアフィルムおよびガスバリアフィルムの製造方法
WO2017110463A1 (ja) ガスバリアーフィルム及びその製造方法
WO2016159206A1 (ja) ガスバリアーフィルム及びその製造方法
WO2017090498A1 (ja) ガスバリア性フィルムの製造方法
JP2013226758A (ja) ガスバリア性フィルムの製造方法
JP2016193527A (ja) ガスバリア性フィルム
WO2018021021A1 (ja) ガスバリア性膜、これを用いたガスバリア性フィルム、およびこれらを用いた電子デバイス、ならびにガスバリア性膜の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15765693

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016508771

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15765693

Country of ref document: EP

Kind code of ref document: A1