WO2015137228A1 - Polyarylene sulfide resin composition, method for producing same, and molded body - Google Patents

Polyarylene sulfide resin composition, method for producing same, and molded body Download PDF

Info

Publication number
WO2015137228A1
WO2015137228A1 PCT/JP2015/056488 JP2015056488W WO2015137228A1 WO 2015137228 A1 WO2015137228 A1 WO 2015137228A1 JP 2015056488 W JP2015056488 W JP 2015056488W WO 2015137228 A1 WO2015137228 A1 WO 2015137228A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyarylene sulfide
sulfide resin
magnesium hydroxide
parts
mass
Prior art date
Application number
PCT/JP2015/056488
Other languages
French (fr)
Japanese (ja)
Inventor
文明 阿部
堅太 樋渡
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to JP2016507485A priority Critical patent/JP6570077B2/en
Publication of WO2015137228A1 publication Critical patent/WO2015137228A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/203Solid polymers with solid and/or liquid additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/346Clay
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L81/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
    • C08L81/02Polythioethers; Polythioether-ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2381/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen, or carbon only; Polysulfones; Derivatives of such polymers
    • C08J2381/04Polysulfides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2217Oxides; Hydroxides of metals of magnesium
    • C08K2003/2224Magnesium hydroxide

Definitions

  • the present invention relates to a polyarylene sulfide resin (hereinafter sometimes abbreviated as PAS) composition containing magnesium hydroxide and a resin molded body molded from the PAS composition.
  • PAS polyarylene sulfide resin
  • PAS resin Polyarylene sulfide (hereinafter abbreviated as PAS) resin, represented by polyphenylene sulfide (hereinafter abbreviated as PPS) resin, has heat resistance, mechanical properties, chemical resistance, dimensional stability, flame resistance, and insulation. Therefore, it is a thermoplastic resin that is widely used mainly for automobile parts, electrical and electronic parts, and housing equipment parts. However, the tracking resistance is low, and it is classified into level 4 by PLC (Performance Level Category) display. For this reason, in order to achieve the level 1 (600 ⁇ P [V]) required in recent years, it is necessary to blend magnesium hydroxide in a high ratio with respect to the PAS resin (see, for example, Patent Documents 1 to 3). .
  • PLC Physical Level Category
  • This magnesium hydroxide has a true specific gravity of 2.4, is relatively small among inorganic fillers, and is generally used for industrial general-purpose products having a particle size of about 1 ⁇ m because of its inherent crystal growth rate. ing. Furthermore, when adding to a thermoplastic resin such as PAS resin, the magnesium hydroxide particles are subjected to a surface treatment for the purpose of uniform dispersion in the resin and suppression of hydrolysis after forming the desired molded product. Has been. Due to the effects of these low true specific gravity, small particle diameter, and surface treatment, the apparent specific gravity is further lowered and becomes so-called bulky.
  • the composition variation is caused by the PAS resin having a low melt viscosity, causing a rapid increase or decrease in the melt viscosity, and a rapid increase in the motor current value for constantly rotating the screw of the melt kneading extruder,
  • the feed rate of the raw material containing magnesium hydroxide to the melt-kneading extruder has been set extremely low so far, and the amount of residence in the melt-kneading extruder is kept low, so that the residence time in the extruder To solve this problem.
  • the discharge amount in the melt-kneading extruder is also low, the production amount per hour is extremely low and inferior in economic efficiency, and the residence time in the extruder is also long, so the thermal deterioration of the resin and magnesium hydroxide also increases. , Quality degradation was a problem.
  • the problem to be solved by the present invention is excellent in that magnesium hydroxide and PAS resin are included, and even if ordinary PAS resin is melt kneaded under melt kneading conditions, the feed neck phenomenon is suppressed and stable production is possible.
  • Production method of polyarylene sulfide resin composition having productivity, and polyarylene sulfide resin composition excellent in tracking resistance, insulation and thermal conductivity obtained by such production method, and molded article thereof Is to provide.
  • the present invention provides the polyarylene sulfide resin (A) and the magnesium hydroxide (B) having an apparent specific gravity of 0.7 or more with respect to 30 to 70 parts by mass of the polyarylene sulfide resin (A).
  • a polyarylene sulfide resin composition wherein magnesium oxide (B) is charged into a melt-kneading extruder in the range of 70 to 30 parts by mass and melt-kneaded under a kneading condition with a discharge rate of 100 (kg / hr) or more. It relates to the manufacturing method.
  • the present invention also provides a polyarylene sulfide resin composition
  • a polyarylene sulfide resin composition comprising a polyarylene sulfide resin (A) and magnesium hydroxide (B) having an apparent specific gravity of 0.7 or more as essential components, the polyarylene sulfide resin (A ) Is in the range of 70 to 30 parts by mass of magnesium hydroxide (B) with respect to 30 to 70 parts by mass, and a molding formed by molding the resin composition About the body.
  • a polycrystal having excellent productivity that includes magnesium hydroxide and a PAS resin, suppresses the feed neck phenomenon even when the ordinary PAS resin is melt-kneaded under melt-kneading conditions, and enables stable production. It is possible to provide a method for producing an arylene sulfide resin composition, a polyarylene sulfide resin composition having excellent tracking resistance, insulating properties and thermal conductivity obtained by such a production method, and a molded article thereof. it can.
  • the polyarylene sulfide resin composition of the present invention is a polyarylene sulfide resin composition comprising a polyarylene sulfide resin (A) and magnesium hydroxide (B) having an apparent specific gravity of 0.7 or more as essential components,
  • the polyarylene sulfide resin (A) is in the range of 30 to 70 parts by mass, and the magnesium hydroxide (B) is in the range of 70 to 30 parts by mass.
  • the polyarylene sulfide resin (A) used in the present invention has a resin structure having a repeating unit of a structure in which an aromatic ring and a sulfur atom are bonded.
  • the polyarylene sulfide resin (A) is represented by the following formula (1):
  • R 1 and R 2 each independently represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, a nitro group, an amino group, a phenyl group, a methoxy group, or an ethoxy group). It is a resin having a structural site as a repeating unit.
  • R 1 and R 2 in the formula are hydrogen atoms from the viewpoint of the mechanical strength of the polyarylene sulfide resin (A1).
  • those bonded at the para position represented by the following formula (2) and those bonded at the meta position represented by the following formula (3) are exemplified.
  • the heat resistance of the polyarylene sulfide resin (A) is that the bond of the sulfur atom to the aromatic ring in the repeating unit is a structure bonded at the para position represented by the structural formula (2). It is preferable in terms of crystallinity.
  • polyarylene sulfide resin (A) includes not only the structural portion represented by the formula (1) but also the following structural formulas (4) to (7).
  • the structural site represented by the formula (1) may be included at 30 mol% or less of the total with the structural site represented by the formula (1).
  • the structural portion represented by the above formulas (4) to (7) is preferably 10 mol% or less from the viewpoint of heat resistance and mechanical strength of the polyarylene sulfide resin (A1).
  • the bonding mode thereof may be either a random copolymer or a block copolymer. May be.
  • the polyarylene sulfide resin (A) has the following formula (8) in its molecular structure.
  • the melt viscosity of the polyarylene sulfide resin (A) is not particularly limited as long as it does not impair the effects of the present invention.
  • the melt viscosity (V6) measured at 300 ° C. is 2 to 1,000 [Pa Is preferably in the range of s], and more preferably in the range of 5 to 100 [Pa ⁇ s] because the balance between fluidity and mechanical strength is improved.
  • melt viscosity (V6) measured at 300 ° C. is an orifice having a temperature / 300 ° C., a load of 1.96 MPa, an orifice length and an orifice diameter of 10/1 using a flow tester. Represents the melt viscosity after holding for 6 minutes.
  • the non-Newton index of the polyarylene sulfide resin (A) is not particularly limited as long as it does not impair the effects of the present invention.
  • the non-Newton index may be in the range of 0.90 to 2.00. preferable.
  • the non-Newtonian index is preferably in the range of 0.90 to 1.20, more preferably in the range of 0.95 to 1.15, particularly 0.95 to 1.10. It is preferable that Such a polyarylene sulfide resin is excellent in mechanical properties, fluidity, and abrasion resistance.
  • SR shear rate (second ⁇ 1 )
  • SS shear stress (dyne / cm 2 )
  • K represents a constant. The closer the N value is to 1, the closer the polyarylene sulfide resin is to a linear structure, and the higher the N value, the more branched the structure is.
  • the production method of the polyarylene sulfide resin (A) is not particularly limited.
  • the method 3) is versatile and preferable.
  • an alkali metal salt of carboxylic acid or sulfonic acid or an alkali hydroxide may be added to adjust the degree of polymerization.
  • a hydrous sulfiding agent is introduced into a mixture containing a heated organic polar solvent and a dihalogenoaromatic compound at a rate at which water can be removed from the reaction mixture, and the dihalogenoaromatic compound and
  • a method for producing a polyarylene sulfide resin by reacting with a sulfidizing agent and controlling the amount of water in the reaction system in the range of 0.02 to 0.5 mol relative to 1 mol of the organic polar solvent ( Japanese Patent Application Laid-Open No.
  • Magnesium hydroxide used in the present invention has an apparent specific gravity (g / cm 3 ) in the range of 0.7 or more, more preferably in the range of 0.75 or more, and in the range of 1.6 or less. Is preferred.
  • the magnesium hydroxide used in the present invention may be in the form of particles, flakes, or fibers, but particles and flakes are preferred from the viewpoint of dispersibility.
  • Magnesium hydroxide used in the present invention includes vinylsilane compounds such as vinyltriethoxysilane and vinyltrichlorosilane, ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropyltriethoxysilane, ⁇ - (3,4- Epoxysilane compounds such as epoxycyclohexyl) ethyltrimethoxysilane, ⁇ - (2-aminoethyl) aminopropylmethyldimethoxysilane, ⁇ - (2-aminoethyl) aminopropyltrimethoxysilane, ⁇ -aminopropyltrimethoxysilane, etc.
  • vinylsilane compounds such as vinyltriethoxysilane and vinyltrichlorosilane, ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropyltriethoxysilane, ⁇ - (3,4- Epoxysi
  • a surface treatment with a long-chain fatty acid such as an aminosilane compound, stearic acid, oleic acid, montanic acid or stearyl alcohol or a long-chain aliphatic alcohol can also be used.
  • a long-chain fatty acid such as an aminosilane compound, stearic acid, oleic acid, montanic acid or stearyl alcohol or a long-chain aliphatic alcohol
  • magnesium hydroxide surface-treated with an epoxy silane compound or an amino silane compound because tracking resistance and mechanical strength are improved.
  • the composition ratio of the polyarylene sulfide resin (A) and the magnesium hydroxide (B) is such that the polyarylene sulfide resin (A) is 30 to 70 parts by mass, and the magnesium hydroxide (B) is 70 to 30 parts by mass.
  • the rear arylene sulfide resin (A) is 30 to 60 parts by mass, and the magnesium hydroxide (B) is 60 to 40 parts by mass. A range is more preferable.
  • the polyarylene sulfide resin composition of the present invention comprises a fibrous reinforcing material (C) in order to improve mechanical strength in addition to the polyarylene sulfide resin (A) and magnesium hydroxide (B) having a specific gravity of 0.7 or more. Can be contained in a range of 10 to 50 parts by mass with respect to 100 parts by mass in total of the polyarylene sulfide resin (A) and the magnesium hydroxide (B).
  • fibrous reinforcing material (C) used in the present invention examples include inorganic fibrous reinforcing materials such as glass fibers, carbon fibers, and basalt fibers, and organic fibrous reinforcing materials such as aramid fibers. It can mix
  • glass fiber is preferable when the insulating property is maintained as the resin composition, and carbon fiber is preferable when further excellent thermal conductivity is required.
  • a high thermal conductive carbon fiber of 100 W / m ⁇ K or more can be used.
  • the fiber diameter and fiber length of the fibrous reinforcing material (C) are not particularly limited, but those having a fiber diameter in the range of 5 to 15 [ ⁇ m] are preferable from the viewpoint of filling rate and mechanical strength.
  • the length is preferably in the range of 0.05 to 20 [mm].
  • shearing of the fibrous reinforcing material at the time of melt-kneading is suppressed, viscosity increase of the resin composition is suppressed, and fluidity is maintained.
  • the mechanical strength of the molded body can be maintained, which is preferable.
  • composition ratio of the fibrous reinforcing material (C) contained in the polyarylene sulfide resin composition of the present invention is 10 with respect to a total of 100 parts by mass of the polyarylene sulfide resin (A) and the magnesium hydroxide (B).
  • the amount is preferably ⁇ 50 parts by mass, and more preferably 15 to 40 parts by mass.
  • the polyarylene sulfide resin composition of the present invention preferably further contains a clay mineral (D) as long as the effects of the present invention are not impaired.
  • the clay mineral (D) is not particularly limited, but includes talc (talc), kaolinite, dickite, nacrite, halloysite, antigorite, Monoclinic orthorhombic, orthochrysotile, parachrysotile, lizardite, amesite, kellyite, berthierine, greener and romanceuite ) And the like.
  • talc is preferable from the viewpoint of improving supply stability to the extruder and excellent tracking resistance.
  • the shape of the clay mineral (D) is not particularly limited, and may be spherical, plate-like, or fiber-like, but it can improve the supply stability to the extruder and has excellent tracking resistance. From the viewpoint, a plate shape is preferable.
  • composition ratio of the clay mineral (D) contained in the polyarylene sulfide resin composition of the present invention is 1 to 4 parts per 100 parts by mass in total of the polyarylene sulfide resin (A) and the magnesium hydroxide (B).
  • the range is preferably 25 parts by mass, more preferably 3 to 15 parts by mass.
  • an impact resistance imparting agent (E) may be blended.
  • the impact resistance imparting agent include the thermoplastic elastomer obtained by copolymerizing ⁇ -olefins and a vinyl polymerizable compound.
  • the ⁇ -olefins include ⁇ -olefins having 2 to 8 carbon atoms such as ethylene, propylene, and butene-1.
  • the vinyl polymerizable compound include ⁇ , ⁇ -unsaturated carboxylic acids such as (meth) acrylic acid and (meth) acrylic acid esters and alkyl esters thereof, maleic acid, fumaric acid, itaconic acid, and other carbons.
  • Examples thereof include unsaturated dicarboxylic acids having 4 to 10 atoms and mono- and diesters thereof, ⁇ , ⁇ -unsaturated dicarboxylic acids such as acid anhydrides and derivatives thereof, glycidyl (meth) acrylate, and the like.
  • the composition ratio of the impact resistance-imparting agent (E) contained in the polyarylene sulfide resin composition of the present invention can suppress decomposition during molding and also suppress the generation of corrosive gases and mold deposits.
  • the polyarylene sulfide resin composition preferably has 5% by mass or less, and more preferably 1% by mass or less because the moldability can be improved.
  • additives can be appropriately blended.
  • the method for producing the polyarylene sulfide resin composition described in detail above specifically includes the polyarylene sulfide resin (A) and the magnesium hydroxide (B), and if necessary, a fibrous reinforcing material (C). And a clay mineral (D) and other compounding components may be introduced into a melt-kneading extruder such as a twin-screw extruder and melt-kneaded so as to achieve the composition ratio described above. At that time, before being introduced into the melt-kneading extruder, it is uniformly premixed with a tumbler or a Henschel mixer as necessary so as to have the composition ratio described above, and then introduced into the melt-kneading extruder.
  • a melt-kneading extruder such as a twin-screw extruder and melt-kneaded so as to achieve the composition ratio described above.
  • the raw material charging into the melt-kneading extruder is not particularly limited, a hopper is provided at the melt-kneading extruder inlet, and a feeder (quantitative feeder) is provided for quantitatively supplying the raw material to the hopper. Quantitatively supplying the raw material input to the melt-kneading extruder can stabilize fluctuations in shear heat generation during resin melting and residence time in the extruder, and thermal decomposition due to shear heat generation and residence in the extruder. It is possible to suppress the fluctuation of product quality due to. By producing under such conditions, the magnesium hydroxide (B) can be uniformly dispersed using the polyarylene sulfide resin (A) as a matrix.
  • each of the above-mentioned components is put into a melt kneading extruder such as in a twin-screw extruder, and the melting point of the polyarylene sulfide resin (A) is higher, preferably the melting point + 10 ° C. to 350 ° C.
  • a melting and kneading method may be mentioned in the temperature range, more preferably in the temperature range of the melting point + 10 ° C. to 340 ° C., specifically, the set temperature of about 290 to 340 ° C. If it is 340 degrees C or less, since decomposition
  • the present invention can be melt-kneaded with a discharge amount equivalent to the case where magnesium hydroxide is not used, even if magnesium hydroxide is blended, and the production amount per hour is extremely high. Since the residence time is also short, thermal deterioration of the polyarylene sulfide resin and magnesium hydroxide can be suppressed to a low level.
  • the melt-kneaded product thus obtained, and the molded product obtained by melt-molding it, are composed of the polyarylene sulfide resin as a matrix and the magnesium hydroxide (B), and if necessary, the fibrous reinforcement.
  • the melt kneading conditions in the melt kneader / extruder of the polyarylene sulfide resin composition of the present invention are such that the discharge amount of the blended components in the melt kneader is in the range of 100 (kg / hr) or more. More preferably, it is more preferably in the range of 100 to 1000 (kg / hr), and particularly preferably in the range of 120 to 500 (kg / hr).
  • the rotation is preferably performed in the range of the screw rotation speed of 100 (rpm) or more, and more preferably in the range of 100 to 500 (rpm).
  • melt-knead at a ratio (discharge amount / screw rotation number) to the screw rotation speed (rpm) of 0.4 (kg / hr / rpm) or more, and further the ratio (discharge amount / screw rotation number). Is more preferably in a range of 0.4 to 4.0 (kg / hr / rpm), and the ratio (discharge amount / screw rotation number) is preferably 0.5 to 2.0 (kg / hr / rpm). It is most preferable to carry out in the range.
  • the fibrous reinforcing material (C) among the blended components may be dispersed into the extruder from a side feeder of a melt-kneading extruder such as the twin-screw extruder. Is preferable from the point that becomes favorable.
  • the position of the side feeder is such that the ratio of the distance from the extruder resin charging part to the side feeder with respect to the total screw length of the melt-kneading extruder such as the twin-screw extruder is in the range of 0.1 to 0.6. It is preferable. In particular, the range of 0.2 to 0.4 is particularly preferable.
  • the resin molded body of the present invention can be formed by a known molding method such as injection molding, extrusion molding or injection compression molding of the resin composition.
  • the molded product obtained by molding the polyarylene sulfide resin composition of the present invention is excellent in tracking resistance and mechanical strength, it is a component that radiates heat generated internally, such as a heat exchanger, a heat sink, etc.
  • electrical and electronic parts such as connectors, printed boards, LEDs, sensors, sockets, terminal blocks, motor parts, ECU cases, optical pickups, lamp reflectors and sealing molded products, and various electrical components.
  • Injection molding or compression molding of interior parts such as parts, automobile parts, various buildings, aircraft and automobiles, precision parts such as OA equipment parts, camera parts and watch parts, or extrusion molding of composites, sheets, pipes, etc.
  • a material for various forming processes such as pultrusion, or a material for fibers or films It is a wide range of useful and.
  • Examples 1 to 3, Comparative Examples 1 to 4, Reference Examples 1 and 2 After dry blending each component in the proportions shown in Tables 1 and 2, using a “TEM-58SS” twin screw extruder manufactured by Toshiba Machine Co., Ltd., at a cylinder set temperature of 310 ° C., a discharge amount Q (kg / hour) and a screw The raw material was supplied under the conditions shown in Table 1 at a rotational speed N (rpm), and melt kneading was performed to produce pellets. Next, after drying the obtained pellet at 140 degreeC for 3 hours, the test piece was shape
  • Production start means the time when the raw material is charged into the twin screw extruder in the twin screw extruder
  • production stop means that the motor current value for rotating the screw constant is rated (80 A). ), The time when the product automatically stops and becomes unmanufacturable.
  • Examples 5 to 8, Comparative Examples 5 to 6, Reference Examples 3 to 6) After the components shown in Tables 3 and 4 were dry blended, using a “TEM-58SS” twin screw extruder manufactured by Toshiba Machine Co., Ltd., at a cylinder set temperature of 310 ° C., a discharge amount Q (kg / hour) and a screw The raw material was supplied under the conditions shown in Table 1 at a rotational speed N (rpm), and melt kneading was performed to produce pellets. Next, after drying the obtained pellet at 140 degreeC for 3 hours, the test piece was shape
  • TD direction bending strength Conforms to JIS-K7171 "Plastics-Testing method for bending properties”.
  • the test piece was formed by injection molding ISO D2 (2 mmt), and after cutting into a predetermined test piece shape, the bending strength in the TD direction was evaluated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Provided are: a polyarylene sulfide resin composition exhibiting excellent anti-tracking properties, insulative properties, and thermal conductivity; a molded body thereof; and a method for producing a polyarylene sulfide resin composition which has excellent producibility and can be stably produced, contains magnesium hydroxide and a PAS resin, and suppresses bottlenecking even when melting and mixing under normal PAS resin melting/mixing conditions. Furthermore, this method for producing a polyarylene sulfide resin composition involves inserting 30-70 parts by mass of a polyarylene sulfide resin (A) and 70-30 parts by mass of a magnesium hydroxide (B) having an apparent specific gravity of 0.7 or higher into a melting/mixing extruder, and melting and mixing the same under mixing conditions stipulating a discharge rate of 100 kg/hr or higher. The provided composition and molded body thereof are obtained using said production method.

Description

ポリアリーレンスルフィド樹脂組成物、その製造方法および成形体Polyarylene sulfide resin composition, method for producing the same, and molded article
 本発明は、水酸化マグネシウムを含むポリアリーレンスルフィド樹脂(以下、PASと略称することがある)組成物と該PAS組成物から成形される樹脂成形体に関する。 The present invention relates to a polyarylene sulfide resin (hereinafter sometimes abbreviated as PAS) composition containing magnesium hydroxide and a resin molded body molded from the PAS composition.
 ポリフェニレンサルファイド(以下PPSと略す)樹脂に代表されるポリアリーレンサルファイド(以下PASと略す)樹脂は、耐熱性、機械的物性、耐薬品性、寸法安定性、難燃性、絶縁性を有していることから、自動車部品、電気電子部品、住宅設備部品を中心に幅広く用いられている熱可塑性樹脂である。しかしながら、耐トラッキング性が低く、PLC(PerformanceLevel Category)表示でレベル4に分類される。このため、近年求められるレベル1(600≦P〔V〕)を達成しようとすると、水酸化マグネシウムをPAS樹脂に対して高比率で配合する必要があった(例えば、特許文献1~3参照)。 Polyarylene sulfide (hereinafter abbreviated as PAS) resin, represented by polyphenylene sulfide (hereinafter abbreviated as PPS) resin, has heat resistance, mechanical properties, chemical resistance, dimensional stability, flame resistance, and insulation. Therefore, it is a thermoplastic resin that is widely used mainly for automobile parts, electrical and electronic parts, and housing equipment parts. However, the tracking resistance is low, and it is classified into level 4 by PLC (Performance Level Category) display. For this reason, in order to achieve the level 1 (600 ≦ P [V]) required in recent years, it is necessary to blend magnesium hydroxide in a high ratio with respect to the PAS resin (see, for example, Patent Documents 1 to 3). .
 この水酸化マグネシウムは、真比重が2.4であり、無機フィラーの中では比較的小さく、また固有の結晶成長速度のため、工業汎用品の粒子径は1μm程度のものが一般的に用いられている。さらに、PAS樹脂をはじめとする熱可塑性樹脂へ添加する場合には、樹脂への均一分散や、目的の成形体とされた後の加水分解抑制を目的として、水酸化マグネシウム粒子に表面処理が施されている。これら低真比重、小粒子径、表面処理の影響により、見かけ比重はさらに低くなり、いわゆる嵩高いものとなる。 This magnesium hydroxide has a true specific gravity of 2.4, is relatively small among inorganic fillers, and is generally used for industrial general-purpose products having a particle size of about 1 μm because of its inherent crystal growth rate. ing. Furthermore, when adding to a thermoplastic resin such as PAS resin, the magnesium hydroxide particles are subjected to a surface treatment for the purpose of uniform dispersion in the resin and suppression of hydrolysis after forming the desired molded product. Has been. Due to the effects of these low true specific gravity, small particle diameter, and surface treatment, the apparent specific gravity is further lowered and becomes so-called bulky.
 そのため、PLCレベル1を達成するために嵩高い水酸化マグネシウムをPAS樹脂に添加して高比率、例えば、30質量%以上といった割合で溶融混練しようとすると、通常の製造条件では溶融混練ができないといった問題が発生していた。これは、嵩高い水酸化マグネシウムを含む原料が溶融混練押出機投入口に設けられたホッパーや、当該ホッパーに供給する供給機(フィーダー)内、そしてその配管内でブリッジを発生させ、溶融混練押出機への原料供給停止や、原料供給速度の不安定さに起因して定量的な供給を阻害し、組成が変動するなどのフィードネック現象を起こしていた。特に組成の変動は、溶融粘度の低いPAS樹脂にも起因して、溶融粘度の急激な上昇や下降を招き、溶融混練押出機のスクリューを一定に回転させるためのモーター電流値の急激な上昇、下降を発生させて、さらに装置の許容上限(定格)を超えて自動停止させるという問題があった。
 このため、これまで溶融混練押出機への水酸化マグネシウムを含む原料の供給速度は極端に低く設定され、かつ、溶融混練押出機内での吐出量も低く抑えることで、該押出機内での滞留時間を稼ぎ、この問題を解消していた。したがって、溶融混練押出機内での吐出量も低くなり、時間あたりの生産量はきわめて低く経済性に劣り、また押出機内での滞留時間も長くなるため樹脂や水酸化マグネシウムの熱的劣化も大きくなり、品質の低下が問題となっていた。
Therefore, if bulk magnesium hydroxide is added to the PAS resin in order to achieve PLC level 1 and an attempt is made to melt and knead it at a high ratio, for example, 30% by mass or more, it cannot be melt-kneaded under normal production conditions. There was a problem. This is because the raw material containing bulky magnesium hydroxide generates a bridge in the hopper provided at the inlet of the melt-kneading extruder, the feeder (feeder) that supplies the hopper, and the piping, and the melt-kneading extrusion The feed-neck phenomenon such as the stoppage of the raw material supply to the machine and the instability of the raw material supply rate hindered quantitative supply and the composition changed. In particular, the composition variation is caused by the PAS resin having a low melt viscosity, causing a rapid increase or decrease in the melt viscosity, and a rapid increase in the motor current value for constantly rotating the screw of the melt kneading extruder, There has been a problem that a descent is caused and the automatic stop is performed beyond the allowable upper limit (rating) of the apparatus.
Therefore, the feed rate of the raw material containing magnesium hydroxide to the melt-kneading extruder has been set extremely low so far, and the amount of residence in the melt-kneading extruder is kept low, so that the residence time in the extruder To solve this problem. Therefore, the discharge amount in the melt-kneading extruder is also low, the production amount per hour is extremely low and inferior in economic efficiency, and the residence time in the extruder is also long, so the thermal deterioration of the resin and magnesium hydroxide also increases. , Quality degradation was a problem.
特開2001-288363号公報JP 2001-288363 A 特開2009-215512公報JP 2009-215512 A 特開2012-36386号公報JP 2012-36386 A
 そこで本発明が解決しようとする課題は、水酸化マグネシウムとPAS樹脂を含み、通常のPAS樹脂を溶融混練条件で溶融混練してもフィードネック現象を抑制し、安定した生産が可能な、優れた生産性を有するポリアリーレンスルフィド樹脂組成物の製造方法およびそのような製造方法によって得られた、耐トラッキング性に優れ、かつ絶縁性、熱伝導率に優れたポリアリーレンスルフィド樹脂組成物およびその成形体を提供することにある。 Therefore, the problem to be solved by the present invention is excellent in that magnesium hydroxide and PAS resin are included, and even if ordinary PAS resin is melt kneaded under melt kneading conditions, the feed neck phenomenon is suppressed and stable production is possible. Production method of polyarylene sulfide resin composition having productivity, and polyarylene sulfide resin composition excellent in tracking resistance, insulation and thermal conductivity obtained by such production method, and molded article thereof Is to provide.
 本願発明者らは種々の検討を行った結果、特定範囲の比重を有する水酸化マグネシウムを用いることで、上記課題を解決できることを見出し、本発明を解決するに至った。 As a result of various studies, the inventors of the present application have found that the above problem can be solved by using magnesium hydroxide having a specific gravity in a specific range, and have solved the present invention.
 すなわち、本発明は、ポリアリーレンスルフィド樹脂(A)と、見かけ比重0.7以上の水酸化マグネシウム(B)とを、ポリアリーレンスルフィド樹脂(A)の30~70質量部に対して、前記水酸化マグネシウム(B)を70~30質量部の範囲で溶融混練押出機に投入し、吐出量100(kg/hr)以上なる混練条件下に溶融混練することを特徴とするポリアリーレンスルフィド樹脂組成物の製造方法に関する。 That is, the present invention provides the polyarylene sulfide resin (A) and the magnesium hydroxide (B) having an apparent specific gravity of 0.7 or more with respect to 30 to 70 parts by mass of the polyarylene sulfide resin (A). A polyarylene sulfide resin composition, wherein magnesium oxide (B) is charged into a melt-kneading extruder in the range of 70 to 30 parts by mass and melt-kneaded under a kneading condition with a discharge rate of 100 (kg / hr) or more. It relates to the manufacturing method.
 また、本発明は、ポリアリーレンスルフィド樹脂(A)と、見かけ比重0.7以上の水酸化マグネシウム(B)とを必須成分とするポリアリーレンスルフィド樹脂組成物であって、ポリアリーレンスルフィド樹脂(A)が30~70質量部に対して、前記水酸化マグネシウム(B)が70~30質量部の範囲であることを特徴とするポリアリーレンスルフィド樹脂組成物、該樹脂組成物を成形してなる成形体に関する。 The present invention also provides a polyarylene sulfide resin composition comprising a polyarylene sulfide resin (A) and magnesium hydroxide (B) having an apparent specific gravity of 0.7 or more as essential components, the polyarylene sulfide resin (A ) Is in the range of 70 to 30 parts by mass of magnesium hydroxide (B) with respect to 30 to 70 parts by mass, and a molding formed by molding the resin composition About the body.
 本発明によれば、水酸化マグネシウムとPAS樹脂を含み、通常のPAS樹脂を溶融混練条件で溶融混練してもフィードネック現象を抑制し、安定した生産が可能な、優れた生産性を有するポリアリーレンスルフィド樹脂組成物の製造方法およびそのような製造方法によって得られた、耐トラッキング性に優れ、かつ絶縁性、熱伝導率に優れたポリアリーレンスルフィド樹脂組成物およびその成形体を提供することができる。 According to the present invention, a polycrystal having excellent productivity that includes magnesium hydroxide and a PAS resin, suppresses the feed neck phenomenon even when the ordinary PAS resin is melt-kneaded under melt-kneading conditions, and enables stable production. It is possible to provide a method for producing an arylene sulfide resin composition, a polyarylene sulfide resin composition having excellent tracking resistance, insulating properties and thermal conductivity obtained by such a production method, and a molded article thereof. it can.
 本発明のポリアリーレンスルフィド樹脂組成物は、ポリアリーレンスルフィド樹脂(A)と、見かけ比重0.7以上の水酸化マグネシウム(B)とを必須成分とするポリアリーレンスルフィド樹脂組成物であって、
 ポリアリーレンスルフィド樹脂(A)が30~70質量部に対して、前記水酸化マグネシウム(B)が70~30質量部の範囲であることを特徴とする。
The polyarylene sulfide resin composition of the present invention is a polyarylene sulfide resin composition comprising a polyarylene sulfide resin (A) and magnesium hydroxide (B) having an apparent specific gravity of 0.7 or more as essential components,
The polyarylene sulfide resin (A) is in the range of 30 to 70 parts by mass, and the magnesium hydroxide (B) is in the range of 70 to 30 parts by mass.
 本発明に用いるポリアリーレンスルフィド樹脂(A)は、芳香族環と硫黄原子とが結合した構造を繰り返し単位とする樹脂構造を有するものであり、具体的には、下記式(1) The polyarylene sulfide resin (A) used in the present invention has a resin structure having a repeating unit of a structure in which an aromatic ring and a sulfur atom are bonded. Specifically, the polyarylene sulfide resin (A) is represented by the following formula (1):
Figure JPOXMLDOC01-appb-C000001
(式中、R及びRは、それぞれ独立して水素原子、炭素原子数1~4のアルキル基、ニトロ基、アミノ基、フェニル基、メトキシ基、エトキシ基を表す。)で表される構造部位を繰り返し単位とする樹脂である。
Figure JPOXMLDOC01-appb-C000001
(Wherein R 1 and R 2 each independently represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, a nitro group, an amino group, a phenyl group, a methoxy group, or an ethoxy group). It is a resin having a structural site as a repeating unit.
 ここで、前記式(1)で表される構造部位は、特に該式中のR及びRは、前記ポリアリーレンスルフィド樹脂(A1)の機械的強度の点から水素原子であることが好ましく、その場合、下記式(2)で表されるパラ位で結合するもの、及び下記式(3)で表されるメタ位で結合するものが挙げられる。 Here, in the structural part represented by the formula (1), it is particularly preferable that R 1 and R 2 in the formula are hydrogen atoms from the viewpoint of the mechanical strength of the polyarylene sulfide resin (A1). In this case, those bonded at the para position represented by the following formula (2) and those bonded at the meta position represented by the following formula (3) are exemplified.
Figure JPOXMLDOC01-appb-C000002
 これらの中でも、特に繰り返し単位中の芳香族環に対する硫黄原子の結合は前記構造式(2)で表されるパラ位で結合した構造であることが前記ポリアリーレンスルフィド樹脂(A)の耐熱性や結晶性の面で好ましい。
Figure JPOXMLDOC01-appb-C000002
Among these, the heat resistance of the polyarylene sulfide resin (A) is that the bond of the sulfur atom to the aromatic ring in the repeating unit is a structure bonded at the para position represented by the structural formula (2). It is preferable in terms of crystallinity.
 また、前記ポリアリーレンスルフィド樹脂(A)は、前記式(1)で表される構造部位のみならず、下記の構造式(4)~(7) In addition, the polyarylene sulfide resin (A) includes not only the structural portion represented by the formula (1) but also the following structural formulas (4) to (7).
Figure JPOXMLDOC01-appb-C000003
で表される構造部位を、前記式(1)で表される構造部位との合計の30モル%以下で含んでいてもよい。特に本発明では上記式(4)~(7)で表される構造部位は10モル%以下であることが、ポリアリーレンスルフィド樹脂(A1)の耐熱性、機械的強度の点から好ましい。前記ポリアリーレンスルフィド樹脂(A1)中に、上記式(4)~(7)で表される構造部位を含む場合、それらの結合様式としては、ランダム共重合体、ブロック共重合体の何れであってもよい。
Figure JPOXMLDOC01-appb-C000003
The structural site represented by the formula (1) may be included at 30 mol% or less of the total with the structural site represented by the formula (1). In particular, in the present invention, the structural portion represented by the above formulas (4) to (7) is preferably 10 mol% or less from the viewpoint of heat resistance and mechanical strength of the polyarylene sulfide resin (A1). When the polyarylene sulfide resin (A1) includes a structural moiety represented by the above formulas (4) to (7), the bonding mode thereof may be either a random copolymer or a block copolymer. May be.
 また、前記ポリアリーレンスルフィド樹脂(A)は、その分子構造中に、下記式(8) The polyarylene sulfide resin (A) has the following formula (8) in its molecular structure.
Figure JPOXMLDOC01-appb-C000004
で表される3官能性の構造部位、或いは、ナフチルスルフィド結合などを有していてもよいが、他の構造部位との合計モル数に対して、3モル%以下が好ましく、特に1モル%以下であることが好ましい。
Figure JPOXMLDOC01-appb-C000004
May have a trifunctional structural site represented by the formula (1) or a naphthyl sulfide bond, but is preferably 3 mol% or less, particularly 1 mol%, based on the total number of moles with other structural sites. The following is preferable.
 また、ポリアリーレンスルフィド樹脂(A)の溶融粘度は、本願発明の効果を損ねない範囲であれば特に限定されないが、例えば、300℃で測定した溶融粘度(V6)が2~1,000〔Pa・s〕の範囲であることが好ましく、さらに流動性および機械的強度のバランスが良好となることから5~100〔Pa・s〕の範囲が好ましい。ただし、300℃で測定した溶融粘度(V6)とは、フローテスターを用いて、温度300℃、荷重1.96MPa、オリフィス長とオリフィス径との、前者/後者の比が10/1であるオリフィスを使用して6分間保持した後の溶融粘度を表す。また、ポリアリーレンスルフィド樹脂(A)の非ニュートン指数は、本願発明の効果を損ねない範囲であれば特に限定されないが、例えばその非ニュートン指数が0.90~2.00の範囲であることが好ましい。リニア型ポリアリーレンスルフィド樹脂を用いる場合には、非ニュートン指数が0.90~1.20の範囲、さらに0.95~1.15の範囲であることが好ましく、特に0.95~1.10であることが好ましい。このようなポリアリーレンスルフィド樹脂は機械的物性、流動性、耐磨耗性に優れる。ただし、非ニュートン指数(N値)は、キャピログラフを用いて300℃、オリフィス長(L)とオリフィス径(D)の比、L/D=40の条件下で、剪断速度及び剪断応力を測定し、下記式(II)を用いて算出した値である。 The melt viscosity of the polyarylene sulfide resin (A) is not particularly limited as long as it does not impair the effects of the present invention. For example, the melt viscosity (V6) measured at 300 ° C. is 2 to 1,000 [Pa Is preferably in the range of s], and more preferably in the range of 5 to 100 [Pa · s] because the balance between fluidity and mechanical strength is improved. However, melt viscosity (V6) measured at 300 ° C. is an orifice having a temperature / 300 ° C., a load of 1.96 MPa, an orifice length and an orifice diameter of 10/1 using a flow tester. Represents the melt viscosity after holding for 6 minutes. The non-Newton index of the polyarylene sulfide resin (A) is not particularly limited as long as it does not impair the effects of the present invention. For example, the non-Newton index may be in the range of 0.90 to 2.00. preferable. When the linear polyarylene sulfide resin is used, the non-Newtonian index is preferably in the range of 0.90 to 1.20, more preferably in the range of 0.95 to 1.15, particularly 0.95 to 1.10. It is preferable that Such a polyarylene sulfide resin is excellent in mechanical properties, fluidity, and abrasion resistance. However, the non-Newtonian index (N value) is measured by measuring the shear rate and shear stress using a capillograph at 300 ° C, the ratio of the orifice length (L) to the orifice diameter (D), and L / D = 40. The value calculated using the following formula (II).
Figure JPOXMLDOC01-appb-M000005
[ただし、SRは剪断速度(秒-1)、SSは剪断応力(ダイン/cm)、そしてKは定数を示す。]N値は1に近いほどポリアリーレンスルフィド樹脂は線状に近い構造であり、N値が高いほど分岐が進んだ構造であることを示す。
Figure JPOXMLDOC01-appb-M000005
[Wherein SR represents shear rate (second −1 ), SS represents shear stress (dyne / cm 2 ), and K represents a constant. The closer the N value is to 1, the closer the polyarylene sulfide resin is to a linear structure, and the higher the N value, the more branched the structure is.
 ポリアリーレンスルフィド樹脂(A)の製造方法としては、特に限定されないが、例えば1)ジハロゲノ芳香族化合物と、更に必要ならばその他の共重合成分とを、硫黄と炭酸ソーダの存在下で重合させる方法、2)p-クロルチオフェノールと、更に必要ならばその他の共重合成分とを自己縮合させる方法、3)有機極性溶媒中で、スルフィド化剤とジハロゲノ芳香族化合物と、更に必要ならばその他の共重合成分とを反応させる方法、4)ジヨード芳香族化合物と単体硫黄と必要に応じて重合禁止剤とを重合触媒の存在下で溶融重合する方法等が挙げられる。これらの方法のなかでも、3)の方法が汎用的であり好ましい。反応の際に、重合度を調節するためにカルボン酸やスルホン酸のアルカリ金属塩を添加したり、水酸化アルカリを添加しても良い。上記3)方法のなかでも、加熱した有機極性溶媒とジハロゲノ芳香族化合物を含む混合物に含水スルフィド化剤を水が反応混合物から除去され得る速度で導入し、有機極性溶媒中でジハロゲノ芳香族化合物とスルフィド化剤とを反応させること、及び反応系内の水分量を該有機極性溶媒1モルに対して0.02~0.5モルの範囲にコントロールすることによりポリアリーレンスルフィド樹脂を製造する方法(特開平07-228699号公報参照。)や、固形のアルカリ金属硫化物及び非プロトン性極性有機溶媒の存在下でポリハロ芳香族化合物、アルカリ金属水硫化物及び有機酸アルカリ金属塩を、硫黄源1モルに対して0.01~0.9モルの有機酸アルカリ金属塩および反応系内の水分量を非プロトン性極性有機溶媒1モルに対して0.02モルの範囲にコントロールしながら反応させる方法(WO2010/058713号パンフレット参照。)で得られるものが特に好ましい。 The production method of the polyarylene sulfide resin (A) is not particularly limited. For example, 1) a method of polymerizing a dihalogeno aromatic compound and, if necessary, other copolymerization components in the presence of sulfur and sodium carbonate. 2) Self-condensation of p-chlorothiophenol with other copolymerization components if necessary, 3) In an organic polar solvent, sulfidizing agent and dihalogenoaromatic compound, and if necessary other Examples thereof include a method of reacting a copolymerization component, and 4) a method of melt polymerization of a diiodo aromatic compound, elemental sulfur and, if necessary, a polymerization inhibitor in the presence of a polymerization catalyst. Among these methods, the method 3) is versatile and preferable. In the reaction, an alkali metal salt of carboxylic acid or sulfonic acid or an alkali hydroxide may be added to adjust the degree of polymerization. Among the above methods 3), a hydrous sulfiding agent is introduced into a mixture containing a heated organic polar solvent and a dihalogenoaromatic compound at a rate at which water can be removed from the reaction mixture, and the dihalogenoaromatic compound and A method for producing a polyarylene sulfide resin by reacting with a sulfidizing agent and controlling the amount of water in the reaction system in the range of 0.02 to 0.5 mol relative to 1 mol of the organic polar solvent ( Japanese Patent Application Laid-Open No. 07-228699), polyhaloaromatic compounds, alkali metal hydrosulfides and organic acid alkali metal salts in the presence of solid alkali metal sulfides and aprotic polar organic solvents. 0.01-0.9 mol of organic acid alkali metal salt with respect to mol and the amount of water in the reaction system with respect to 1 mol of aprotic polar organic solvent A method of reacting while controlling the .02 mols (WO2010 / 058 713 pamphlet reference.) Is what is particularly preferably obtained by.
 本発明に用いる水酸化マグネシウムは、見かけ比重(g/cm)が0.7以上の範囲であり、さらに0.75以上の範囲であることが好ましく、かつ1.6以下の範囲であることが好ましい。 Magnesium hydroxide used in the present invention has an apparent specific gravity (g / cm 3 ) in the range of 0.7 or more, more preferably in the range of 0.75 or more, and in the range of 1.6 or less. Is preferred.
 本発明に用いる水酸化マグネシウムとしては、粒子状、フレーク状、繊維状いずれでもよいが分散性などの観点から粒子状、フレーク状が好ましい。 The magnesium hydroxide used in the present invention may be in the form of particles, flakes, or fibers, but particles and flakes are preferred from the viewpoint of dispersibility.
 本発明に用いる水酸化マグネシウムは、ビニルトリエトキシシラン、ビニルトリクロロシランなどのビニルシラン化合物、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシランなどのエポキシシラン化合物、γ-(2-アミノエチル)アミノプロピルメチルジメトキシシラン、γ-(2-アミノエチル)アミノプロピルトリメトキシシラン、γ-アミノプロピルトリメトキシシランなどのアミノシラン化合物、ステアリン酸、オレイン酸、モンタン酸、ステアリルアルコールなどの長鎖脂肪酸または長鎖脂肪族アルコールで表面処理して使用することもできる。その場合、特にエポキシシラン化合物、アミノシラン化合物で表面処理した水酸化マグネシウムを使用することが耐トラッキング性や機械的強度が向上するためより好ましい。 Magnesium hydroxide used in the present invention includes vinylsilane compounds such as vinyltriethoxysilane and vinyltrichlorosilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropyltriethoxysilane, β- (3,4- Epoxysilane compounds such as epoxycyclohexyl) ethyltrimethoxysilane, γ- (2-aminoethyl) aminopropylmethyldimethoxysilane, γ- (2-aminoethyl) aminopropyltrimethoxysilane, γ-aminopropyltrimethoxysilane, etc. A surface treatment with a long-chain fatty acid such as an aminosilane compound, stearic acid, oleic acid, montanic acid or stearyl alcohol or a long-chain aliphatic alcohol can also be used. In that case, it is more preferable to use magnesium hydroxide surface-treated with an epoxy silane compound or an amino silane compound because tracking resistance and mechanical strength are improved.
 かかるポリアリーレンスルフィド樹脂(A)と水酸化マグネシウム(B)の組成割合は、ポリアリーレンスルフィド樹脂(A)が30~70質量部に対して、前記水酸化マグネシウム(B)が70~30質量部の範囲であり、耐トラッキング性、機械的強度、流動性に優れる点からリアリーレンスルフィド樹脂(A)が30~60質量部に対して、前記水酸化マグネシウム(B)が60~40質量部の範囲であることがより好ましい。 The composition ratio of the polyarylene sulfide resin (A) and the magnesium hydroxide (B) is such that the polyarylene sulfide resin (A) is 30 to 70 parts by mass, and the magnesium hydroxide (B) is 70 to 30 parts by mass. In view of excellent tracking resistance, mechanical strength and fluidity, the rear arylene sulfide resin (A) is 30 to 60 parts by mass, and the magnesium hydroxide (B) is 60 to 40 parts by mass. A range is more preferable.
 本発明のポリアリーレンスルフィド樹脂組成物は、ポリアリーレンスルフィド樹脂(A)と、比重0.7以上の水酸化マグネシウム(B)に加え、さらに機械的強度向上のため、繊維状強化材(C)を、ポリアリーレンスルフィド樹脂(A)及び前記水酸化マグネシウム(B)の合計100質量部に対して10~50質量部の範囲で含有することができる。 The polyarylene sulfide resin composition of the present invention comprises a fibrous reinforcing material (C) in order to improve mechanical strength in addition to the polyarylene sulfide resin (A) and magnesium hydroxide (B) having a specific gravity of 0.7 or more. Can be contained in a range of 10 to 50 parts by mass with respect to 100 parts by mass in total of the polyarylene sulfide resin (A) and the magnesium hydroxide (B).
 本発明で用いる繊維状強化材(C)としては、ガラス繊維、炭素繊維、バサルト繊維などの無機繊維状強化材や、アラミド繊維、などの有機繊維状強化材が挙げられ、これらを単独あるいは2種以上組み合わせて配合することができる。本発明においては、樹脂組成物として絶縁性を保持する場合には、ガラス繊維が好ましく、さらにより優れた熱伝導性が求められる場合には炭素繊維であることが好ましい。特に、優れた熱伝導性が求められる場合には、100W/m・K以上の高熱伝導性炭素繊維を用いることもできる。 Examples of the fibrous reinforcing material (C) used in the present invention include inorganic fibrous reinforcing materials such as glass fibers, carbon fibers, and basalt fibers, and organic fibrous reinforcing materials such as aramid fibers. It can mix | blend combining a seed | species or more. In the present invention, glass fiber is preferable when the insulating property is maintained as the resin composition, and carbon fiber is preferable when further excellent thermal conductivity is required. In particular, when excellent thermal conductivity is required, a high thermal conductive carbon fiber of 100 W / m · K or more can be used.
 繊維状強化材(C)の繊維径および繊維長としては特に制限はないが、充填率と機械的強度の観点から、繊維径が5~15〔μm〕の範囲のものが好ましく、また、繊維長が0.05~20〔mm〕の範囲のものが好ましい。特に、本発明では、長繊維長を有する繊維状強化材を用いた場合でも、溶融混練時における繊維状強化材の剪断を抑制して、樹脂組成物の増粘を抑え、流動性を保持しつつ、成形体の機械的強度も保持することができるため、好ましい。 The fiber diameter and fiber length of the fibrous reinforcing material (C) are not particularly limited, but those having a fiber diameter in the range of 5 to 15 [μm] are preferable from the viewpoint of filling rate and mechanical strength. The length is preferably in the range of 0.05 to 20 [mm]. In particular, in the present invention, even when a fibrous reinforcing material having a long fiber length is used, shearing of the fibrous reinforcing material at the time of melt-kneading is suppressed, viscosity increase of the resin composition is suppressed, and fluidity is maintained. However, the mechanical strength of the molded body can be maintained, which is preferable.
 本発明のポリアリーレンスルフィド樹脂組成物中に含有される繊維状強化材(C)の組成割合は、ポリアリーレンスルフィド樹脂(A)及び前記水酸化マグネシウム(B)の合計100質量部に対して10~50質量部であることが好ましく、さらに15~40質量部の範囲であることがより好ましい。 The composition ratio of the fibrous reinforcing material (C) contained in the polyarylene sulfide resin composition of the present invention is 10 with respect to a total of 100 parts by mass of the polyarylene sulfide resin (A) and the magnesium hydroxide (B). The amount is preferably ˜50 parts by mass, and more preferably 15 to 40 parts by mass.
 本発明のポリアリーレンスルフィド樹脂組成物は、本発明の効果を損ねない範囲で、さらに、粘土鉱物(D)を含有することが好ましい。粘土鉱物(D)としては、特に限定されないが、タルク(滑石)や、カオリナイト(kaolinite)、ディク石(dickite)、ナクル石(nacrite)、ハロイ石(halloysite)、アンチゴライト(antigorite)、単斜クリソタイル石、斜方クリソタイル石(orthochrysotile)、パラクリソタイル石(parachrysotile)、リザード石(lizardite)、アメス石(amesite)、ケリー石(kellyite)、ベルチェリン(berthierine)、グリーナ石およびヌポア石(nepouite)などのカオリナイト(高陵石)等が挙げられる。本発明においては、押出機への供給安定性を向上させること、また耐トラッキング性に優れる観点からタルクが好ましい。 The polyarylene sulfide resin composition of the present invention preferably further contains a clay mineral (D) as long as the effects of the present invention are not impaired. The clay mineral (D) is not particularly limited, but includes talc (talc), kaolinite, dickite, nacrite, halloysite, antigorite, Monoclinic orthorhombic, orthochrysotile, parachrysotile, lizardite, amesite, kellyite, berthierine, greener and nepouite ) And the like. In the present invention, talc is preferable from the viewpoint of improving supply stability to the extruder and excellent tracking resistance.
 該粘土鉱物(D)の形状としては特に制限はないが、球状、板状、繊維状のものいずれのものでも良いが、押出機への供給安定性を向上させること、また耐トラッキング性に優れる観点から板状であることが好ましい。 The shape of the clay mineral (D) is not particularly limited, and may be spherical, plate-like, or fiber-like, but it can improve the supply stability to the extruder and has excellent tracking resistance. From the viewpoint, a plate shape is preferable.
 本発明のポリアリーレンスルフィド樹脂組成物中に含有される該粘土鉱物(D)の組成割合は、ポリアリーレンスルフィド樹脂(A)及び前記水酸化マグネシウム(B)の合計100質量部に対して1~25質量部の範囲であることが好ましく、さらに3~15質量部の範囲であることがより好ましい。 The composition ratio of the clay mineral (D) contained in the polyarylene sulfide resin composition of the present invention is 1 to 4 parts per 100 parts by mass in total of the polyarylene sulfide resin (A) and the magnesium hydroxide (B). The range is preferably 25 parts by mass, more preferably 3 to 15 parts by mass.
 本発明のポリアリーレンスルフィド樹脂組成物には、必要に応じて、耐衝撃性付与剤(E)を配合してもよい。耐衝撃性付与剤としては、例えばα-オレフィン類とビニル重合性化合物とを共重合して得られる前記熱可塑性エラストマーなどが挙げられる。前記α-オレフィン類としては、例えば、エチレン、プロピレン、ブテン-1等の炭素原子数2~8のα-オレフィン類などが挙げられる。前記ビニル重合性化合物としては、例えば、(メタ)アクリル酸、(メタ)アクリル酸エステル等のα,β-不飽和カルボン酸類及びそのアルキルエステル類、マレイン酸、フマル酸、イタコン酸、その他の炭素原子数4~10の不飽和ジカルボン酸類とそのモノ及びジエステル類、その酸無水物等のα,β-不飽和ジカルボン酸及びその誘導体、グリシジル(メタ)アクリレート等が挙げられる。 In the polyarylene sulfide resin composition of the present invention, if necessary, an impact resistance imparting agent (E) may be blended. Examples of the impact resistance imparting agent include the thermoplastic elastomer obtained by copolymerizing α-olefins and a vinyl polymerizable compound. Examples of the α-olefins include α-olefins having 2 to 8 carbon atoms such as ethylene, propylene, and butene-1. Examples of the vinyl polymerizable compound include α, β-unsaturated carboxylic acids such as (meth) acrylic acid and (meth) acrylic acid esters and alkyl esters thereof, maleic acid, fumaric acid, itaconic acid, and other carbons. Examples thereof include unsaturated dicarboxylic acids having 4 to 10 atoms and mono- and diesters thereof, α, β-unsaturated dicarboxylic acids such as acid anhydrides and derivatives thereof, glycidyl (meth) acrylate, and the like.
 なお、本発明のポリアリーレンスルフィド樹脂組成物中に含有される耐衝撃性付与剤(E)の組成割合は、成形加工時における分解の抑制や、また腐食性ガスやモールドデポジットの発生を抑制できるなど、成形加工性を向上できることから、ポリアリーレンスルフィド樹脂組成物中に5質量%以下であることが好ましく、1質量%以下であることがより好ましい。 In addition, the composition ratio of the impact resistance-imparting agent (E) contained in the polyarylene sulfide resin composition of the present invention can suppress decomposition during molding and also suppress the generation of corrosive gases and mold deposits. For example, the polyarylene sulfide resin composition preferably has 5% by mass or less, and more preferably 1% by mass or less because the moldability can be improved.
 またその他にも離型剤、着色剤、帯電防止剤、酸化防止剤、耐熱安定剤、紫外線安定剤、紫外線吸収剤、発泡剤、難燃剤、難燃助剤、防錆剤等の公知慣用の添加剤を適宜配合することもできる。 In addition, other known and commonly used release agents, colorants, antistatic agents, antioxidants, heat stabilizers, UV stabilizers, UV absorbers, foaming agents, flame retardants, flame retardant aids, rust inhibitors, etc. Additives can be appropriately blended.
 以上詳述したポリアリーレンスルフィド樹脂組成物を製造する方法は、具体的にはポリアリーレンスルフィド樹脂(A)と、前記水酸化マグネシウム(B)を、更に必要に応じて繊維状強化材(C)や粘土鉱物(D)、その他の配合成分を、上記で説明した組成割合となるよう、2軸押出機などの溶融混練押出機に投入し、溶融混練する方法が挙げられる。その際、溶融混練押出機に投入する前に、上記で説明した組成比となるよう、必要に応じてタンブラー又はヘンシェルミキサーなどで均一に予備混合してから、前記溶融混練押出機に投入してもよい。溶融混練押出機への原料の投入も特に限定されるものではないが、溶融混練押出機投入口にホッパーを設け、さらに当該ホッパーに原料を定量的に供給する供給機(定量フィーダー)を設けて、原料投入量を定量的に溶融混練押出機に供給することにより、樹脂溶融時のせん断発熱の変動や押出機内での滞留時間を安定させることができ、せん断発熱や押出機内滞留での熱分解による製品品質の変動を抑制することが可能となる。
 かかる条件下に製造することによって前記ポリアリーレンスルフィド樹脂(A)をマトリックスとして前記水酸化マグネシウム(B)とを均一に分散させることができる。
The method for producing the polyarylene sulfide resin composition described in detail above specifically includes the polyarylene sulfide resin (A) and the magnesium hydroxide (B), and if necessary, a fibrous reinforcing material (C). And a clay mineral (D) and other compounding components may be introduced into a melt-kneading extruder such as a twin-screw extruder and melt-kneaded so as to achieve the composition ratio described above. At that time, before being introduced into the melt-kneading extruder, it is uniformly premixed with a tumbler or a Henschel mixer as necessary so as to have the composition ratio described above, and then introduced into the melt-kneading extruder. Also good. Although the raw material charging into the melt-kneading extruder is not particularly limited, a hopper is provided at the melt-kneading extruder inlet, and a feeder (quantitative feeder) is provided for quantitatively supplying the raw material to the hopper. Quantitatively supplying the raw material input to the melt-kneading extruder can stabilize fluctuations in shear heat generation during resin melting and residence time in the extruder, and thermal decomposition due to shear heat generation and residence in the extruder. It is possible to suppress the fluctuation of product quality due to.
By producing under such conditions, the magnesium hydroxide (B) can be uniformly dispersed using the polyarylene sulfide resin (A) as a matrix.
 上記製造方法につき更に詳述すれば、前記した各成分を2軸押出機内等の溶融混練押出機に投入し、ポリアリーレンスルフィド樹脂(A)の融点以上、好ましくは該融点+10℃~350℃の温度範囲で、さらに好ましくは融点+10℃~340℃の温度範囲で、具体的には設定温度290~340℃程度の温度条件下に溶融混練する方法が挙げられる。340℃以下であれば溶融混練時の水酸化マグネシウムの分解を抑制できるため好ましい。 More specifically about the above production method, each of the above-mentioned components is put into a melt kneading extruder such as in a twin-screw extruder, and the melting point of the polyarylene sulfide resin (A) is higher, preferably the melting point + 10 ° C. to 350 ° C. A melting and kneading method may be mentioned in the temperature range, more preferably in the temperature range of the melting point + 10 ° C. to 340 ° C., specifically, the set temperature of about 290 to 340 ° C. If it is 340 degrees C or less, since decomposition | disassembly of magnesium hydroxide at the time of melt-kneading can be suppressed, it is preferable.
 また、本発明は、水酸化マグネシウムを配合しても、水酸化マグネシウムを用いない場合と同等程度の吐出量で溶融混練することができ、時間あたりの生産量をきわめて高く、また押出機内での滞留時間も短いためポリアリーレンスルフィド樹脂や水酸化マグネシウムの熱的劣化も低く抑えることができる。このようにして得られた溶融混練物、さらにそれを溶融成形して得られる成形体は、前記ポリアリーレンスルフィド樹脂をマトリックスとして前記水酸化マグネシウム(B)と、さらに必要に応じて前記繊維状強化材(C)や前記粘土鉱物(D)が分散したモルフォロジーを形成することにより絶縁性や耐トラッキング性に優れるだけでなく、配合成分に応じて、機械的強度や熱伝導性もさらに良好となる。 Further, the present invention can be melt-kneaded with a discharge amount equivalent to the case where magnesium hydroxide is not used, even if magnesium hydroxide is blended, and the production amount per hour is extremely high. Since the residence time is also short, thermal deterioration of the polyarylene sulfide resin and magnesium hydroxide can be suppressed to a low level. The melt-kneaded product thus obtained, and the molded product obtained by melt-molding it, are composed of the polyarylene sulfide resin as a matrix and the magnesium hydroxide (B), and if necessary, the fibrous reinforcement. By forming a morphology in which the material (C) and the clay mineral (D) are dispersed, not only is insulation and tracking resistance excellent, but mechanical strength and thermal conductivity are further improved depending on the compounding components. .
 したがって、上記観点から、本発明のポリアリーレンスルフィド樹脂組成物の溶融混練押出機における溶融混練条件としては、溶融混練機内における配合成分の吐出量を100(kg/hr)以上の範囲で行うことが好ましく、さらに100~1000(kg/hr)の範囲で行うことがより好ましく、120~500(kg/hr)の範囲で行うことが特に好ましい。スクリュー回転数100(rpm)以上の範囲で行うことが好ましく、さらに、100~500(rpm)の範囲であることがより好ましい。 Therefore, from the above viewpoint, the melt kneading conditions in the melt kneader / extruder of the polyarylene sulfide resin composition of the present invention are such that the discharge amount of the blended components in the melt kneader is in the range of 100 (kg / hr) or more. More preferably, it is more preferably in the range of 100 to 1000 (kg / hr), and particularly preferably in the range of 120 to 500 (kg / hr). The rotation is preferably performed in the range of the screw rotation speed of 100 (rpm) or more, and more preferably in the range of 100 to 500 (rpm).
 さらに、スクリュー回転数(rpm)との比率(吐出量/スクリュー回転数)が0.4(kg/hr/rpm)以上で溶融混練することが好ましく、さらに前記比率(吐出量/スクリュー回転数)が0.4~4.0(kg/hr/rpm)の範囲で行うことがより好ましくは、前記比率(吐出量/スクリュー回転数)が0.5~2.0(kg/hr/rpm)の範囲で行うことが最も好ましい。 Furthermore, it is preferable to melt-knead at a ratio (discharge amount / screw rotation number) to the screw rotation speed (rpm) of 0.4 (kg / hr / rpm) or more, and further the ratio (discharge amount / screw rotation number). Is more preferably in a range of 0.4 to 4.0 (kg / hr / rpm), and the ratio (discharge amount / screw rotation number) is preferably 0.5 to 2.0 (kg / hr / rpm). It is most preferable to carry out in the range.
 また、前記配合成分のうち繊維状強化材(C)は、前記2軸押出機等の溶融混練押出機のサイドフィーダーから該押出機内に投入することが該繊維状強化材(C)の分散性が良好となる点から好ましい。かかるサイドフィーダーの位置は、前記2軸押出機等の溶融混練押出機のスクリュー全長に対する、押出機樹脂投入部から該サイドフィーダーまでの距離の比率が、0.1~0.6の範囲であることが好ましい。中でも0.2~0.4の範囲であることが特に好ましい。 In addition, the fibrous reinforcing material (C) among the blended components may be dispersed into the extruder from a side feeder of a melt-kneading extruder such as the twin-screw extruder. Is preferable from the point that becomes favorable. The position of the side feeder is such that the ratio of the distance from the extruder resin charging part to the side feeder with respect to the total screw length of the melt-kneading extruder such as the twin-screw extruder is in the range of 0.1 to 0.6. It is preferable. In particular, the range of 0.2 to 0.4 is particularly preferable.
 さらに本発明の樹脂成形体は、上記樹脂組成物を射出成形、押出成形、射出圧縮成形などの公知の成形方法により形成することができる。 Furthermore, the resin molded body of the present invention can be formed by a known molding method such as injection molding, extrusion molding or injection compression molding of the resin composition.
 本発明のポリアリーレンスルフィド樹脂組成物を成形して得られる成形体は、耐トラッキング性および機械的強度に優れることから、熱交換器、放熱板等といった内部で発生した熱を外部に放熱する部品に好適に用いることができ、例えば、コネクタ、プリント基板、LED、センサ、ソケット、端子台、モータ部品、ECUケース、光ピックアップ、ランプリフレクター及び封止成形品等の電気・電子部品、各種電装品部品、自動車部品、各種建築物、航空機及び自動車などの内装用材料、あるいはOA機器部品、カメラ部品及び時計部品などの精密部品等の射出成形若しくは圧縮成形、若しくはコンポジット、シート、パイプなどの押出成形、又は引抜成形などの各種成形加工用の材料として、あるいは繊維若しくはフィルム用の材料として幅広く有用である。 Since the molded product obtained by molding the polyarylene sulfide resin composition of the present invention is excellent in tracking resistance and mechanical strength, it is a component that radiates heat generated internally, such as a heat exchanger, a heat sink, etc. For example, electrical and electronic parts such as connectors, printed boards, LEDs, sensors, sockets, terminal blocks, motor parts, ECU cases, optical pickups, lamp reflectors and sealing molded products, and various electrical components. Injection molding or compression molding of interior parts such as parts, automobile parts, various buildings, aircraft and automobiles, precision parts such as OA equipment parts, camera parts and watch parts, or extrusion molding of composites, sheets, pipes, etc. , Or as a material for various forming processes such as pultrusion, or a material for fibers or films It is a wide range of useful and.
 以下、本発明を実施例により具体的に説明するが、本発明はこれら実施例にのみ限定されるものではない。 Hereinafter, the present invention will be specifically described by way of examples. However, the present invention is not limited to these examples.
(実施例1~3、比較例1~4、参考例1、2)
 表1、2に示す割合で各成分をドライブレンドした後、東芝機械株式会社製「TEM-58SS」二軸押出機を用い、シリンダー設定温度310℃で、吐出量Q(kg/hour)およびスクリュー回転数N(rpm)を表1に示す条件で原料供給して、溶融混練を行い、ペレットを製造した。次に、得られたペレットを140℃で3時間乾燥してから、試験片を成形し、各評価に供した。
(Examples 1 to 3, Comparative Examples 1 to 4, Reference Examples 1 and 2)
After dry blending each component in the proportions shown in Tables 1 and 2, using a “TEM-58SS” twin screw extruder manufactured by Toshiba Machine Co., Ltd., at a cylinder set temperature of 310 ° C., a discharge amount Q (kg / hour) and a screw The raw material was supplied under the conditions shown in Table 1 at a rotational speed N (rpm), and melt kneading was performed to produce pellets. Next, after drying the obtained pellet at 140 degreeC for 3 hours, the test piece was shape | molded and used for each evaluation.
[見かけ比重]
 23℃の環境下で、300mlのメスシリンダーに約200mlとなる水酸化マグネシウムを投入し、投入前後の質量差より投入した水酸化マグネシウムの重量W(g)を求めた。その後、東京理化機械製振盪機MMS-410型にて、8の字振盪を30回/分で1分振盪した後の水酸化マグネシウム上面のメニスカスを読み取り、水酸化マグネシウムの体積V(ml)を評価した。見掛け比重は以下の式で求めた。
  (見掛け比重)=(W/V)
[Apparent specific gravity]
Under an environment of 23 ° C., about 200 ml of magnesium hydroxide was charged into a 300 ml graduated cylinder, and the weight W (g) of the magnesium hydroxide added was determined from the mass difference before and after the charging. After that, the meniscus on the top surface of magnesium hydroxide after shaking for 1 minute at 30 times / minute on a shaker MMS-410 made by Tokyo Rika Kikai Co., Ltd. was read, and the volume V (ml) of magnesium hydroxide was calculated. evaluated. The apparent specific gravity was determined by the following formula.
(Apparent specific gravity) = (W / V)
[供給安定性]
 生産開始から生産停止となるまでの時間(分)で原料の供給安定性を評価した。ただし、「生産開始」とは、二軸押出機において、原料を二軸押出機に投入した時点を、また「生産停止」とは、スクリューを一定に回転させるためのモーター電流値が定格(80A)を超えて自動停止し、製造不能となった時点を言うものとする。
[Supply stability]
The supply stability of raw materials was evaluated by the time (minutes) from the start of production to the stop of production. However, “production start” means the time when the raw material is charged into the twin screw extruder in the twin screw extruder, and “production stop” means that the motor current value for rotating the screw constant is rated (80 A). ), The time when the product automatically stops and becomes unmanufacturable.
[熱伝導率]
JIS-R2618「耐火断熱れんがの熱線法による熱伝導率の試験方法」に準拠し、ISO D2を組み合わせた120×60×20mm成形品の熱伝導率を測定した後、別途、JIS-R1611「セラミックスの熱拡散率測定」で、1mmt成形品を測定した場合との換算式を用い、測定値を換算し評価した。
[Thermal conductivity]
In accordance with JIS-R2618 “Testing method for thermal conductivity of fireproof insulation bricks by the hot wire method”, after measuring the thermal conductivity of a 120 × 60 × 20 mm molded product combined with ISO D2, separately, JIS-R1611 “Ceramics” In “Measurement of thermal diffusivity”, the measured value was converted and evaluated using a conversion formula with the case of measuring a 1 mmt molded product.
[MD方向 曲げ強さ]
JIS-K7171「プラスチック-曲げ特性の試験方法」に準拠。試験片はISOダンベル(4mmt)を射出成形にて成形し、流動方向の曲げ強さを評価した。
[MD direction bending strength]
Conforms to JIS-K7171 "Plastics-Testing method for bending properties". The test piece was formed by injection molding an ISO dumbbell (4 mmt), and the bending strength in the flow direction was evaluated.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
※ただし、表1~4中の組成比は質量部であり、各原料は以下のものを用いた。
PPS:DSP. PPS H-1G (DIC株式会社製)
水マグ1:水酸化マグネシウム「キスマ5EU」(協和化学株式会社製)見かけ比重0.87
水マグ2:水酸化マグネシウム「マグシーズEP」(神島化学株式会社製)見かけ比重0.72
水マグ3:水酸化マグネシウム「マグシーズW」(神島化学株式会社製)見かけ比重0.64
水マグ4:水酸化マグネシウム「キスマ5E」 (協和化学株式会社製)見かけ比重 0.53
Figure JPOXMLDOC01-appb-T000007
* However, the composition ratios in Tables 1 to 4 are parts by mass, and the following materials were used.
PPS: DSP. PPS H-1G (manufactured by DIC Corporation)
Water mug 1: Magnesium hydroxide “Kisuma 5EU” (Kyowa Chemical Co., Ltd.) Apparent specific gravity 0.87
Water mug 2: Magnesium hydroxide “Magse's EP” (manufactured by Kamishima Chemical Co., Ltd.) Apparent specific gravity 0.72
Water mug 3: Magnesium hydroxide “Magsees W” (manufactured by Kamishima Chemical Co., Ltd.) Apparent specific gravity 0.64
Water mug 4: Magnesium hydroxide “Kisuma 5E” (Kyowa Chemical Co., Ltd.) Apparent specific gravity 0.53
 なお、参考例2、比較例2のものは、3分以内で生産停止になり、ペレットが得られなかった。このため熱伝導率、曲げ強度は評価不能となった。 In addition, the production of Reference Example 2 and Comparative Example 2 was stopped within 3 minutes, and no pellet was obtained. For this reason, thermal conductivity and bending strength could not be evaluated.
(実施例5~8、比較例5~6、参考例3~6)
 表3、4に示す割合で各成分をドライブレンドした後、東芝機械株式会社製「TEM-58SS」二軸押出機を用い、シリンダー設定温度310℃で、吐出量Q(kg/hour)およびスクリュー回転数N(rpm)を表1に示す条件で原料供給して、溶融混練を行い、ペレットを製造した。次に、得られたペレットを140℃で3時間乾燥してから、試験片を成形し、各評価に供した。
(Examples 5 to 8, Comparative Examples 5 to 6, Reference Examples 3 to 6)
After the components shown in Tables 3 and 4 were dry blended, using a “TEM-58SS” twin screw extruder manufactured by Toshiba Machine Co., Ltd., at a cylinder set temperature of 310 ° C., a discharge amount Q (kg / hour) and a screw The raw material was supplied under the conditions shown in Table 1 at a rotational speed N (rpm), and melt kneading was performed to produce pellets. Next, after drying the obtained pellet at 140 degreeC for 3 hours, the test piece was shape | molded and used for each evaluation.
[耐トラッキング指数]
IEC112第3版に準拠。試験片はISO D3(3mmt)を射出成形により作成し、トラッキング破壊が生じる印加電圧を測定した。
[Tracking resistance index]
Compliant with IEC112 3rd edition. The test piece was made by injection molding ISO D3 (3 mmt), and the applied voltage at which tracking breakdown occurred was measured.
[TD方向 曲げ強さ]
 JIS-K7171「プラスチック-曲げ特性の試験方法」に準拠。試験片はISO D2(2mmt)を射出成形にて成形し、所定試験片形状に切削加工後、TD方向の曲げ強さを評価した。
[TD direction bending strength]
Conforms to JIS-K7171 "Plastics-Testing method for bending properties". The test piece was formed by injection molding ISO D2 (2 mmt), and after cutting into a predetermined test piece shape, the bending strength in the TD direction was evaluated.
[流動性/スパイラルフローテスト]
1.6mm厚みのスパイラルフロー金型を用い、シリンダー温度330℃、金型温度150℃、保圧80MPaで成形したときの流動長を測定した。
[Fluidity / spiral flow test]
Using a 1.6 mm thick spiral flow mold, the flow length was measured when molding was performed at a cylinder temperature of 330 ° C., a mold temperature of 150 ° C., and a holding pressure of 80 MPa.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009

※なお、表中の各原料は以下のものを用いた。
GF:ガラスフィラー「CS-03-JA-FT-562」(オーウェンスコーニング社製)
タルク:「DS-34」(富士タルク工業株式会社製)
Figure JPOXMLDOC01-appb-T000009

* The following materials were used for the raw materials in the table.
GF: Glass filler “CS-03-JA-FT-562” (Owens Corning)
Talc: “DS-34” (made by Fuji Talc Industrial Co., Ltd.)
 なお、参考例5、比較例6のものは、3分以内で生産停止になり、ペレットが得られなかった。このため耐トラッキング指数、曲げ強度、流動性試験は評価不能となった。 In addition, the production of Reference Example 5 and Comparative Example 6 was stopped within 3 minutes, and no pellet was obtained. For this reason, the tracking resistance index, bending strength, and fluidity test could not be evaluated.

Claims (10)

  1. ポリアリーレンスルフィド樹脂(A)と、見かけ比重0.7以上の水酸化マグネシウム(B)とを、ポリアリーレンスルフィド樹脂(A)の30~70質量部に対して、前記水酸化マグネシウム(B)を70~30質量部の範囲で溶融混練押出機に投入し、吐出量100(kg/hr)以上なる混練条件下に溶融混練することを特徴とするポリアリーレンスルフィド樹脂組成物の製造方法。 The polyarylene sulfide resin (A) and the magnesium hydroxide (B) having an apparent specific gravity of 0.7 or more are mixed with the magnesium hydroxide (B) with respect to 30 to 70 parts by mass of the polyarylene sulfide resin (A). A method for producing a polyarylene sulfide resin composition, which is introduced into a melt-kneading extruder in a range of 70 to 30 parts by mass and melt-kneaded under a kneading condition with a discharge amount of 100 (kg / hr) or more.
  2. 吐出量(kg/hr)とスクリュー回転数(rpm)との比率(吐出量/スクリュー回転数)が0.4(kg/hr/rpm)以上なる混練条件下で溶融混練する請求項1記載のポリアリーレンスルフィド樹脂組成物の製造方法。 The melt kneading according to claim 1, wherein the ratio of the discharge amount (kg / hr) to the screw rotation speed (rpm) (discharge amount / screw rotation speed) is 0.4 (kg / hr / rpm) or more. A method for producing a polyarylene sulfide resin composition.
  3. ポリアリーレンスルフィド樹脂(A)と、見かけ比重0.7以上の水酸化マグネシウム(B)に加え、さらに繊維状強化材(C)を、ポリアリーレンスルフィド樹脂(A)及び前記水酸化マグネシウム(B)の合計100質量部に対して10~50質量部の範囲で溶融混練押出機に投入する請求項1又は2記載のポリアリーレンスルフィド樹脂組成物の製造方法。 In addition to the polyarylene sulfide resin (A) and magnesium hydroxide (B) having an apparent specific gravity of 0.7 or more, a fibrous reinforcing material (C) is further added to the polyarylene sulfide resin (A) and the magnesium hydroxide (B). The method for producing a polyarylene sulfide resin composition according to claim 1 or 2, wherein the composition is added to a melt-kneading extruder in a range of 10 to 50 parts by mass with respect to 100 parts by mass in total.
  4. ポリアリーレンスルフィド樹脂(A)と、見かけ比重0.7以上の水酸化マグネシウム(B)に加え、さらに粘土鉱物(D)を、ポリアリーレンスルフィド樹脂(A)及び前記水酸化マグネシウム(B)の合計100質量部に対して1~25質量部の範囲で溶融混練押出機に投入する請求項1~3のいずれか一項記載のポリアリーレンスルフィド樹脂組成物の製造方法。 In addition to the polyarylene sulfide resin (A) and the magnesium hydroxide (B) having an apparent specific gravity of 0.7 or more, a clay mineral (D) is further added to the polyarylene sulfide resin (A) and the magnesium hydroxide (B). The method for producing a polyarylene sulfide resin composition according to any one of claims 1 to 3, which is charged into a melt-kneading extruder in an amount of 1 to 25 parts by mass with respect to 100 parts by mass.
  5. ポリアリーレンスルフィド樹脂(A)と、見かけ比重0.7以上の水酸化マグネシウム(B)とを必須成分とするポリアリーレンスルフィド樹脂組成物であって、
     ポリアリーレンスルフィド樹脂(A)が30~70質量部に対して、前記水酸化マグネシウム(B)が70~30質量部の範囲であることを特徴とするポリアリーレンスルフィド樹脂組成物。
    A polyarylene sulfide resin composition comprising, as essential components, a polyarylene sulfide resin (A) and magnesium hydroxide (B) having an apparent specific gravity of 0.7 or more,
    A polyarylene sulfide resin composition, wherein the polyarylene sulfide resin (A) is in the range of 30 to 70 parts by mass and the magnesium hydroxide (B) is in the range of 70 to 30 parts by mass.
  6. ポリアリーレンスルフィド樹脂(A)と、見かけ比重0.7以上の水酸化マグネシウム(B)に加え、さらに繊維状強化材(C)を含み、繊維状強化材(C)が、ポリアリーレンスルフィド樹脂(A)及び前記水酸化マグネシウム(B)の合計100質量部に対して10~50質量部の範囲である請求項5記載のポリアリーレンスルフィド樹脂組成物。 In addition to the polyarylene sulfide resin (A) and magnesium hydroxide (B) having an apparent specific gravity of 0.7 or more, it further includes a fibrous reinforcing material (C). The fibrous reinforcing material (C) is a polyarylene sulfide resin ( The polyarylene sulfide resin composition according to claim 5, wherein the composition is in the range of 10 to 50 parts by mass with respect to 100 parts by mass in total of A) and magnesium hydroxide (B).
  7. ポリアリーレンスルフィド樹脂(A)と、見かけ比重0.7以上の水酸化マグネシウム(B)に加え、さらに粘土鉱物(D)を含み、前記粘土鉱物(D)が、ポリアリーレンスルフィド樹脂(A)及び前記水酸化マグネシウム(B)の合計100質量部に対して1~25質量部の範囲である請求項5又は6記載のポリアリーレンスルフィド樹脂組成物。 In addition to the polyarylene sulfide resin (A) and magnesium hydroxide (B) having an apparent specific gravity of 0.7 or more, it further contains a clay mineral (D), and the clay mineral (D) comprises the polyarylene sulfide resin (A) and The polyarylene sulfide resin composition according to claim 5 or 6, wherein the polyarylene sulfide resin composition is in the range of 1 to 25 parts by mass with respect to 100 parts by mass in total of the magnesium hydroxide (B).
  8. 溶融混練物である請求項5~7記載の何れか一項記載のポリアリーレンスルフィド樹脂組成物。 The polyarylene sulfide resin composition according to any one of claims 5 to 7, which is a melt-kneaded product.
  9. 請求項5~8記載の何れか一項記載のポリアリーレンスルフィド樹脂組成物を成形してなる成形体。 A molded article obtained by molding the polyarylene sulfide resin composition according to any one of claims 5 to 8.
  10. 耐トラッキング性(CTI)が600〔V〕以上の範囲である請求項9記載の成形体。 The molded article according to claim 9, wherein the tracking resistance (CTI) is in a range of 600 [V] or more.
PCT/JP2015/056488 2014-03-10 2015-03-05 Polyarylene sulfide resin composition, method for producing same, and molded body WO2015137228A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016507485A JP6570077B2 (en) 2014-03-10 2015-03-05 Polyarylene sulfide resin composition, method for producing the same, and molded article

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-046307 2014-03-10
JP2014046307 2014-03-10

Publications (1)

Publication Number Publication Date
WO2015137228A1 true WO2015137228A1 (en) 2015-09-17

Family

ID=54071674

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/056488 WO2015137228A1 (en) 2014-03-10 2015-03-05 Polyarylene sulfide resin composition, method for producing same, and molded body

Country Status (2)

Country Link
JP (1) JP6570077B2 (en)
WO (1) WO2015137228A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230242762A1 (en) * 2020-07-10 2023-08-03 Polyplastics Co., Ltd. Method of suppressing burr of polyarylene sulfide resin composition

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10298430A (en) * 1997-04-25 1998-11-10 Toray Ind Inc Polyphenylene sulfide resin composition
JP2011228685A (en) * 2010-03-31 2011-11-10 Toray Ind Inc Led heat radiating member
JP2012036386A (en) * 2010-07-16 2012-02-23 Toray Ind Inc Heat radiation member for motor cooling

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10298430A (en) * 1997-04-25 1998-11-10 Toray Ind Inc Polyphenylene sulfide resin composition
JP2011228685A (en) * 2010-03-31 2011-11-10 Toray Ind Inc Led heat radiating member
JP2012036386A (en) * 2010-07-16 2012-02-23 Toray Ind Inc Heat radiation member for motor cooling

Also Published As

Publication number Publication date
JP6570077B2 (en) 2019-09-04
JPWO2015137228A1 (en) 2017-04-06

Similar Documents

Publication Publication Date Title
WO2011070968A1 (en) Polyarylene sulfide resin composition and insert-molded article
JP5114879B2 (en) Polyarylene sulfide composition
JP5879932B2 (en) Polyarylene sulfide composition
JPWO2019208377A1 (en) Polyarylene sulfide resin composition, molded product, composite molded product and method for producing them
WO2020171164A1 (en) Polyarylene sulfide resin composition, molded body of same, method for producing polyarylene sulfide resin composition, and method for producing molded body
JP6809083B2 (en) Polyarylene sulfide resin compositions, molded articles and methods for producing them
JP6570077B2 (en) Polyarylene sulfide resin composition, method for producing the same, and molded article
JP2013076039A (en) Polyarylene sulfide-based composition
JP5834725B2 (en) High heat dissipation polyarylene sulfide resin composition and molded article
JP6876261B2 (en) Resin composition and its molded product
JP7139571B2 (en) Polyarylene sulfide resin composition and molded article
JP6056504B2 (en) High-strength polyarylene sulfide composition
JP6753470B2 (en) Polyarylene sulfide resin composition, molded product and manufacturing method
JP2012111877A (en) Polyarylene sulfide composition
WO2013191207A1 (en) Highly heat dissipating polyarylene sulfide resin composition and molded body
WO2013161844A1 (en) Resin composition having high thermal conductivity
JP2016050247A (en) Flame-retardant polyamide resin composition and molding thereof
JP7311051B2 (en) Polyarylene sulfide resin composition, molded article and method for producing the same
JP7136394B1 (en) Polyarylene sulfide resin composition, molded article and method for producing the same
JP6040706B2 (en) Polyarylene sulfide composition
JP6213219B2 (en) High heat dissipation polyarylene sulfide resin composition, method for producing the same, and molded article
JP7136372B2 (en) Polyarylene sulfide resin composition, molded article and method for producing the same
JP6435604B2 (en) High heat dissipation thermoplastic resin composition and molded article
WO2023218850A1 (en) Polyarylene sulfide resin composition, molded article, and methods for producing said polyarylene sulfide resin composition and molded article
JP6919178B2 (en) Polyarylene sulfide resin composition and molded article

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15761859

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016507485

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15761859

Country of ref document: EP

Kind code of ref document: A1