WO2015137195A1 - Conductive laminate, method for producing conductive laminate, touch panel and touch switch - Google Patents

Conductive laminate, method for producing conductive laminate, touch panel and touch switch Download PDF

Info

Publication number
WO2015137195A1
WO2015137195A1 PCT/JP2015/056208 JP2015056208W WO2015137195A1 WO 2015137195 A1 WO2015137195 A1 WO 2015137195A1 JP 2015056208 W JP2015056208 W JP 2015056208W WO 2015137195 A1 WO2015137195 A1 WO 2015137195A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
conductive laminate
conductive
undercoat layer
layer
Prior art date
Application number
PCT/JP2015/056208
Other languages
French (fr)
Japanese (ja)
Inventor
今津直樹
増田昇三
渡邊修
太田一善
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to CN201580006821.9A priority Critical patent/CN105960684B/en
Priority to JP2015512925A priority patent/JPWO2015137195A1/en
Publication of WO2015137195A1 publication Critical patent/WO2015137195A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/04Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of carbon-silicon compounds, carbon or silicon

Definitions

  • the present invention relates to a conductive laminate, a method for manufacturing a conductive laminate, a touch panel, and a touch switch. In more detail, it is related with the manufacturing method of the electrically conductive laminated body which is excellent in transparent conductivity, and an electrically conductive laminated body.
  • Conductive laminates are widely used in electronic display devices such as flat panel displays and touch panels.
  • the conductive material used for the conductive laminate is represented by tin-doped indium oxide (hereinafter abbreviated as ITO), and the demand and usage of ITO continue to increase.
  • ITO tin-doped indium oxide
  • indium is a rare metal
  • a new conductive material that replaces indium is required.
  • ITO Alternatively, there is a need for a novel conductive material that compensates for the disadvantages peculiar to conductive laminates using ITO, such as weakness to bending, and difficulty in reducing costs due to vacuum film formation.
  • the CNT has a substantially cylindrical shape by winding one surface of graphite, and a single-layer CNT is wound in one layer, a multi-layer CNT is wound in multiple layers, especially two layers. This was called double-walled CNT.
  • CNTs themselves have excellent intrinsic conductivity and are expected to be used as conductive materials.
  • ionic dispersants are generally insulating materials. There is a problem that the conductivity of the conductive laminate using CNTs is lowered. Therefore, it is thought that it is necessary to remove the ionic dispersant from the conductive layer in order to produce a conductive laminate excellent in transparent conductivity.
  • Patent Document 1 describes a method for producing a conductive film in which a carbon nanotube dispersion liquid is applied on various films to obtain a conductive film.
  • Patent Document 2 describes a production method for obtaining a highly conductive conductive film by removing a surplus ionic dispersant by rinsing with water after coating a carbon nanotube dispersion on the film. Yes.
  • Patent Document 3 in order to stabilize the resistance value of the carbon nanotube transparent conductive laminate, a hydrophilic undercoat layer made of silica fine particles and polysilicate is provided under the carbon nanotube layer, and transparent conductive Examples of improving resistance value stability are also described.
  • Patent Document 4 a porous layer containing fine particles and a resin binder is provided on a support, and a conductive pattern is formed thereon, whereby the adhesion of the conductive pattern is high and excellent.
  • save property was obtained is described.
  • Patent Document 1 does not have a layer configuration that removes the ionic dispersant contained in the conductive layer. Therefore, a highly conductive conductive film cannot be obtained.
  • the present invention has been made in view of the above-mentioned problems and situations, and the object thereof is to provide a conductive laminate that is excellent in transparent conductivity and humidity resistance dependency and is less likely to cause bone appearance when patterned. is there.
  • the present invention provides the following conductive laminate.
  • the undercoat layer (X) contains the organic binder (A) and the particles (B).
  • the content of the particles (B) contained in the undercoat layer (X) is 100% by mass of the entire undercoat layer.
  • the conductive layer (Y) contains carbon nanotubes (C) and a carbon nanotube dispersant (D).
  • the present invention it is possible to provide a conductive laminate that is excellent in transparent conductivity and humidity resistance dependency and is less likely to cause bone appearance when patterned.
  • the conductive laminate of the present invention has an undercoat layer (X) and a conductive layer (Y) on a base material in this order from the base material side, and satisfies the following (i) to (iii): Is the body.
  • the undercoat layer (X) contains the organic binder (A) and the particles (B).
  • the content of the particles (B) contained in the undercoat layer (X) is 100% by mass of the entire undercoat layer.
  • the conductive layer (Y) contains 15% by mass or more and 95% by mass or less of the carbon nanotube (C) and the carbon nanotube dispersant (D).
  • the conductive laminate of the present invention can improve the conductivity of the device when used in an electronic device using the conductive laminate by having such a configuration.
  • the transparent conductivity can be stabilized even when the humidity of the environment where the device is placed changes.
  • the method for producing a conductive laminate of the present invention comprises an undercoat layer (X) forming step of providing an undercoat layer (X) having a wetting tension of 76 to 105 mN / m on a substrate, a carbon nanotube (C) and A conductive layer (Y) forming step of forming a conductive layer (Y) by providing a dispersion containing the carbon nanotube dispersant (D) on the undercoat layer (X).
  • the touch panel of the present invention is a touch panel using the conductive laminate of the present invention or the conductive laminate obtained by the method for producing the conductive laminate of the present invention.
  • the touch switch of the present invention is a touch switch using the conductive laminate of the present invention or the conductive laminate obtained by the manufacturing method of the conductive laminate of the present invention.
  • the conductive laminate of the present invention has a substrate.
  • Resin, glass, etc. can be mentioned as a raw material of the base material used for this invention.
  • the resin include polyethylene terephthalate (hereinafter abbreviated as PET), polyester such as polyethylene naphthalate (PEN), polycarbonate (PC), polymethyl methacrylate (PMMA), polyimide, polyphenylene sulfide, aramid, polypropylene, polyethylene, polylactic acid.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PC polycarbonate
  • PMMA polymethyl methacrylate
  • polyimide polyphenylene sulfide
  • aramid polypropylene
  • polyethylene polylactic acid.
  • Polyvinyl chloride, polymethyl methacrylate, alicyclic acrylic resin, cycloolefin resin, triacetyl cellulose, and the like can be used.
  • soda glass soda glass, white plate glass, non-alkali glass, or the like can be used.
  • these several base materials can also be used in combination.
  • a composite base material such as a base material in which a resin and glass are combined and a base material in which two or more kinds of resins are laminated may be used.
  • the resin film may be provided with a hard coat.
  • the kind of base material is not limited to the base material, and an optimal one can be selected from durability, cost, etc. according to the application.
  • the thickness of the base material is not particularly limited, but when used for a display-related electrode such as a touch panel, a touch switch, a liquid crystal display, organic electroluminescence, and electronic paper, it is preferably in the range of 10 ⁇ m to 1,000 ⁇ m. .
  • the conductive laminate of the present invention has an undercoat layer (X) on the substrate.
  • the undercoat layer (X) includes an organic binder (A) and particles (B).
  • the undercoat layer (X) preferably has a wetting tension of 76 mN / m or more and 105 mN / m or less as defined in ISO 8296 (2003). By setting the wetting tension to 76 mN / m or more, when the CNT dispersion liquid is applied on the undercoat layer (X), it is difficult to cause application repellency and the CNT dispersion liquid can be uniformly applied. preferable.
  • the wetting tension of the undercoat layer (X) is 105 mN / m or less, coating unevenness due to spreading of the coating liquid during coating and coating unevenness affected by wind during drying are less likely to occur, and CNT dispersion This is preferable because the liquid can be uniformly applied.
  • the wetting tension is preferably 76 mN / m or more and 105 mN / m or less, and more preferably 76 mN / m or more and 90 mN / m or less.
  • the wetting tension of the undercoat layer (X) increases the copolymerization amount of the hydrophilic functional group contained in the organic binder (A) in the coating composition forming the undercoat layer (X)
  • the thickness can be increased by increasing the thickness of X). Therefore, the wetting tension of the undercoat layer (X) is appropriately determined depending on the copolymerization amount of the hydrophilic functional group contained in the organic binder (A), the type of the hydrophilic functional group, and the thickness of the undercoat layer (X) described later. Can be adjusted.
  • the thickness of the undercoat layer (X) is not particularly limited as long as it is in a range in which a phenomenon such as curling is unlikely to occur when the conductive laminate is formed.
  • the wettability of the surface of the undercoat layer is preferably within the range of the preferred wetting tension, and the thickness varies depending on the type of organic binder, the type of functional group, the content of functional group, and the amount of particles to be added. . Therefore, it is preferably in the range of 8 nm to 3 ⁇ m.
  • a thickness that can effectively obtain an antireflection effect due to optical interference is preferable because the light transmittance is improved. For this reason, it is more preferable that the thickness combined with the thickness of the overcoat layer described later is in the range of 20 nm to 600 nm.
  • the effect of incorporating the ionic dispersant into the undercoat layer is increased, and therefore it is preferably in the range of 300 nm to 600 nm.
  • the center surface average roughness SRa of the undercoat layer (X) is preferably 2 to 15 nm.
  • SRa is 2 nm or more, the unevenness of the surface of the undercoat layer becomes large, and when the CNT dispersion containing the ionic dispersant is applied, it becomes easy to incorporate the ionic dispersant into the undercoat layer (X). Since the removal of the ionic dispersant from is effectively performed, it is preferable. Further, it is preferable to set SRa to 15 nm or less because the optical characteristics of the conductive laminate can be improved. When it is larger than 15 nm, light scattering at the interface with the CNT layer and the overcoat layer increases, and haze may increase.
  • the SRa of the undercoat layer (X) is preferably 2 nm or more and 15 nm or less, and more preferably 5 nm or more and 15 nm or less.
  • SRa of the undercoat layer (X) in the present invention can be measured using a three-dimensional surface roughness measuring machine.
  • the center plane average roughness SRa of the undercoat layer (X) can be controlled by the following particles (B).
  • the undercoat layer (X) contains a binder because the ionic dispersant can be more adsorbed to the undercoat layer (X).
  • the binder include an organic binder and an inorganic binder, and it is preferable to use the organic binder (A) from the viewpoint that the ionic dispersant can be more adsorbed and the undercoat layer is difficult to crack during patterning.
  • the organic binder (A) contained in the undercoat layer (X) preferably contains an organic compound.
  • An organic compound is a compound in which carbon atoms are assembled as a skeleton, and is a compound in which a molecule having a covalent bond and having two or more kinds of atoms is a minimum unit.
  • the organic compound for example, phenol, silicon, nylon, polyethylene, polyester, olefin, vinyl, acrylic, cellulose and the like are preferable.
  • the organic binder (A) preferably contains an organic binder having a hydrophilic functional group from the viewpoint of applicability to a substrate. Moreover, it is more preferable that an organic binder (A) contains the polyester resin which has a hydrophilic functional group, and / or the acrylic resin which has a hydrophilic functional group from a viewpoint of the applicability
  • the polyester resin having a hydrophilic functional group refers to a polyester resin having a hydrophilic functional group at the terminal or side chain of the polyester resin in order to increase the hydrophilicity of the polyester resin and dissolve or disperse it in an aqueous solvent.
  • hydrophilic functional groups include sulfonate groups and carboxylate groups.
  • the polyester resin In order to make the polyester resin contain a hydrophilic functional group, a dicarboxylic acid having a sulfonate group and an ester-forming derivative thereof, a diol having a sulfonate group and an ester-forming derivative thereof (a compound containing a sulfonate group), A polyvalent carboxylic acid having three or more carboxylate groups and an ester-forming derivative thereof (a compound containing a trivalent or more polyvalent carboxylate group) can be used as a raw material for polyester.
  • Examples of the compound containing a sulfonate group include alkali metal salts, alkaline earth metal salts, and ammonium salts such as sulfoterephthalic acid, 5-sulfoisophthalic acid, 5-sodium sulfoisophthalic acid, and 4-sulfoisophthalic acid. However, it is not limited to these.
  • Examples of the compound containing a trivalent or higher polyvalent carboxylate group include trimellitic acid, trimellitic anhydride, pyromellitic acid, pyromellitic anhydride, 4-methylcyclohexene-1,2,3-tricarboxylic acid, trimesin
  • Examples thereof include alkali metal salts such as acid, 1,2,3,4-butanetetracarboxylic acid, 1,2,3,4-pentanetetracarboxylic acid, alkaline earth metal salts and ammonium salts. It is not limited to.
  • Examples of the carboxylic acid component constituting the polyester include aromatic, aliphatic, and alicyclic dicarboxylic acids and trivalent or higher polyvalent carboxylic acids.
  • Aromatic dicarboxylic acids include terephthalic acid, isophthalic acid, orthophthalic acid, phthalic acid, 2,5-dimethylterephthalic acid, 5-sodium sulfoisophthalic acid, 1,4-naphthalenedicarboxylic acid, and ester-forming derivatives thereof Can be mentioned.
  • glycol component of the polyester ethylene glycol, diethylene glycol, polyethylene glycol, propylene glycol, polypropylene glycol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, neopentyl glycol, etc. should be used. Can do.
  • a compound containing a sulfonate group that is a hydrophilic functional group or a trivalent or higher polyvalent carboxylic acid group is 1 when the total amount of the raw material components of the polyester constituting the polyester resin containing the hydrophilic functional group is 100 mol%. It is preferably ⁇ 25 mol%.
  • a polyester resin containing a hydrophilic functional group can be stably produced by copolymerization by setting a compound containing a sulfonate group that is an aqueous functional group or a trivalent or higher polyvalent carboxylate group to 25 mol% or less. Is preferable.
  • the polyester resin having a hydrophilic functional group can be produced, for example, as follows.
  • a process for producing a polycarboxylic acid component after a first step of esterification or transesterification of a compound containing a dicarboxylic acid component and a glycol component, a sulfonate group or a trivalent or higher polyvalent carboxylate group After the first step of esterifying or transesterifying the dicarboxylic acid component and the glycol component, a compound containing a sulfonate group or a trivalent or higher polyvalent carboxylate group is added to produce a first step reaction. It can manufacture by the method of manufacturing by the process of the 2nd step made to polycondensate with a product.
  • the reaction catalyst for example, alkali metal, alkaline earth metal, manganese, cobalt, zinc, antimony, germanium, titanium compound, or the like can be used.
  • the polyester resin having a hydrophilic functional group obtained by the above production method is preferably dispersed or dissolved in a solvent to form a coating composition.
  • means for dispersing or dissolving in an aqueous solvent include a method in which a polyester resin is dissolved or dispersed in an aqueous solution of an alkaline compound such as ammonia water, sodium hydroxide, potassium hydroxide, and various amines while stirring.
  • an alkaline compound such as ammonia water, sodium hydroxide, potassium hydroxide, and various amines while stirring.
  • a water-soluble organic solvent such as methanol, ethanol, isopropanol, butyl cellosolve, or ethyl cellosolve may be used in combination.
  • the organic binder (A) preferably contains an acrylic resin having a hydrophilic functional group from the viewpoint of applicability to the substrate.
  • Any acrylic resin having a hydrophilic functional group may be used as long as it contains a repeating structural unit derived from an acrylic monomer having a hydrophilic functional group.
  • the acrylic resin having a hydrophilic functional group a repeating structural unit derived from an acrylic monomer having the hydrophilic functional group, and a repeating structural unit derived from an acrylic monomer having no hydrophilic group, Those consisting of are preferred. It is preferable to use an acrylic resin having such a hydrophilic functional group because it is excellent in transparency and can hardly be repelled when a CNT dispersion is applied.
  • an acrylic monomer having a hydrophilic functional group a known acrylic monomer having a hydrophilic group that is a polar atomic group having a strong interaction with water, that is, a cationic group that dissociates as a cation in water. And known acrylic monomers having an anionic group that dissociates as an anion in water, or known acrylic monomers having a nonionic group that does not dissociate in water.
  • acrylic monomer having a cationic group examples include dimethylaminoethyl (meth) acrylate and salts thereof, ethyl trimethylammonium chloride (meth) acrylate, 2-hydroxy-3- (meth) acryloyloxypropyl. Examples include trimethylammonium chloride.
  • acrylic monomer having an anionic group examples include (meth) acrylic acid and its salt, (meth) acrylic acid-2-sulfoethyl and its salt, hydroxyethyl (meth) acryloyl phosphate and its salt, and the like. Can be mentioned.
  • acrylic monomer having a nonionic group examples include hydroxyalkyl (meth) acrylate, polyethylene glycol (meth) acrylate, methoxypolyethylene glycol (meth) acrylate, and the like.
  • (meth) acryl means “acryl” or “methacryl”.
  • acrylic monomer having no hydrophilic functional group examples include, for example, alkyl (meth) acrylate (linear and branched having 1 to 8 carbon atoms) ester, cyclohexyl (meth) acrylate, ( Examples include glycidyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, isobornyl acrylate, (meth) acrylonitrile, and the like.
  • the organic binder preferably contains both a polyester resin having a hydrophilic functional group and an acrylic resin having a hydrophilic functional group from the viewpoint of removing the ionic dispersant.
  • Mass ratio of content (hereinafter referred to as C) of polyester resin having hydrophilic functional group to content (hereinafter referred to as D) of acrylic resin having hydrophilic functional group contained in undercoat layer (X) ( C / D) is preferably from 1/9 to 8/2. If the (C / D) is less than 1/9, the entire undercoat layer becomes hard and may be easily broken. On the other hand, when (C / D) exceeds 8/2, the polyester resin itself having a hydrophilic functional group hardly cures, so that the film may become too soft. Therefore, (C / D) is preferably 1/9 or more and 8/2 or less. More preferably, it is 2/8 or more and 5/5 or less.
  • the content of the polyester resin having a hydrophilic functional group when the entire undercoat layer is 100% by mass is preferably 20% by mass or more and 50% by mass or less.
  • the content of the acrylic resin having a hydrophilic functional group when the entire undercoat layer is 100% by mass is preferably 50% by mass or more and 80% by mass or less.
  • the organic binder (A) having a hydrophilic functional group may be uniformly dispersed by, for example, an emulsifier and in an emulsion state.
  • the organic binder (A) preferably contains a cross-linking agent.
  • An epoxy compound and / or an oxazoline compound is preferably used as a crosslinking agent in order to strengthen the coating film of the undercoat layer (X) and improve the heat and humidity resistance, the adhesion to the substrate, and the like. Only one of the epoxy compound or the oxazoline compound may be used, or both may be used together.
  • Examples of the epoxy compound include a compound containing an epoxy group in the molecule, a prepolymer and a cured product thereof.
  • Examples thereof include condensates of epichlorohydrin with hydroxyl groups and amino groups such as ethylene glycol, polyethylene glycol, glycerin, polyglycerin, and bisphenol A.
  • polyepoxy compound examples include sorbitol, polyglycidyl ether, polyglycerol polyglycidyl ether, pentaerythritol polyglycidyl ether, diglycerol polyglycidyl ether, triglycidyl tris (2-hydroxyethyl) isocyanate, glycerol polyglycidyl ether, trimethylol.
  • examples include propane polyglycidyl ether.
  • Examples of the diepoxy compound include neopentyl glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, resorcin diglycidyl ether, ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, and polypropylene glycol diester. Examples thereof include glycidyl ether and polytetramethylene glycol diglycidyl ether. Examples of the monoepoxy compound include allyl glycidyl ether, 2-ethylhexyl glycidyl ether, and phenyl glycidyl ether.
  • Examples of the glycidylamine compound include N, N, N ′, N ′,-tetraglycidyl-m-xylylenediamine, 1,3-bis (N, N-diglycidylamino) cyclohexane and the like.
  • An oxazoline compound is a compound having an oxazoline group in the molecule.
  • a polymer containing an oxazoline group is preferable, and it can be prepared by polymerization of an addition polymerizable oxazoline group-containing monomer alone or with another monomer.
  • Addition-polymerizable oxazoline group-containing monomers include 2-vinyl-2-oxazoline, 2-vinyl-4-methyl-2-oxazoline, 2-vinyl-5-methyl-2-oxazoline, 2-isopropenyl-2-oxazoline, Examples include 2-isopropenyl-4-methyl-2-oxazoline, 2-isopropenyl-5-ethyl-2-oxazoline, and the like. One or a mixture of two or more of these can be used. Of these, 2-isopropenyl-2-oxazoline is preferred because it is easily available industrially.
  • alkyl (meth) acrylate alkyl groups include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, t-butyl, 2-ethylhexyl, cyclohexyl
  • acrylic acid esters alkyl (meth) acrylate (alkyl groups include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, t-butyl, 2-ethylhexyl, cyclohexyl) And (meth) acrylic acid esters.
  • Unsaturated carboxylic acids such as acrylic acid, methacrylic acid, itaconic acid, maleic acid, fumaric acid, crotonic acid, styrene sulfonic acid and salts thereof (sodium salt, potassium salt, ammonium salt, tertiary amine salt, etc.) It is done. And unsaturated nitriles such as acrylonitrile and methacrylonitrile.
  • Examples thereof include vinyl esters such as vinyl acetate and vinyl propionate.
  • vinyl ethers such as methyl vinyl ether and ethyl vinyl ether.
  • Examples include ⁇ -olefins such as ethylene and propylene.
  • halogen-containing ⁇ , ⁇ -unsaturated monomers such as vinyl chloride, vinylidene chloride, and vinyl fluoride.
  • ⁇ , ⁇ -unsaturated aromatic monomers such as styrene and ⁇ -methylstyrene. These 1 type, or 2 or more types of monomers can be used.
  • the amount of the crosslinking agent charged relative to the binder is preferably 5 to 80 parts by mass, more preferably 10 to 30 parts by mass, and still more preferably 10 to 20 parts by mass when the binder is 100 parts by mass.
  • the undercoat layer may be brittle and may not sufficiently withstand moisture and heat.
  • the amount exceeds 80 parts by mass the resin component containing a hydrophilic functional group is relatively reduced. In some cases, it may be difficult to apply the CNT dispersion, or the adhesion to the substrate may not be stable.
  • the undercoat layer (X) preferably contains particles (B).
  • the surface roughness of the undercoat layer is increased, the incorporation of the ionic dispersant into the undercoat layer (X) becomes effective, and the humidity resistance dependency is improved, which is preferable.
  • antiblocking property can also be provided to undercoat layer (X), it is preferable. That is, when the conductive laminate is manufactured by roll to roll, it may be necessary to wind up the substrate on which the undercoat layer is formed after the undercoat layer is formed. At that time, it is preferable to include particles (B) in the undercoat layer because the undercoat layer is difficult to block.
  • the conductive laminate of the present invention has (ii) the content of the particles (B) contained in the undercoat layer (X). It is preferable that it is 15 mass% or more and 95 mass% or less with respect to the whole undercoat layer.
  • the content of the particles (B) is less than 15% by mass, unevenness on the surface of the undercoat layer is insufficient, and the humidity resistance dependency may not be exhibited.
  • the content of the particles (B) exceeds 95% by mass, the particles (B) may be excessive with respect to the organic binder (A), and the particles (B) may fall off.
  • the content of the particles (B) exceeds 50% by mass, when the overcoat layer described later is applied, depending on the solvent of the overcoat layer, the surface of the undercoat is partially eroded and the particles that have come off fall off and aggregate.
  • the content of the particles (B) is 20% by mass or more, humidity resistance dependency is easily exhibited stably by attaching surface irregularities, which is more preferable.
  • the range is 20 to 50% by mass.
  • a range of 25 to 35% by mass is a more preferable range from the viewpoint of stably exhibiting the humidity resistance dependency and stably suppressing an increase in haze.
  • the preferred range of the particle size of the particles (B) is 5 nm to 500 nm.
  • the thickness is less than 5 nm, it is difficult to uniformly disperse the particles, and conversely, the particles may aggregate to increase the apparent particle size in the undercoat layer.
  • a haze will raise and it may become cloudy white when a conductive laminated body is used for a display body.
  • a particle diameter here means the average particle diameter measured by the dynamic light scattering method.
  • the particles (B) may be organic particles, inorganic particles, or both. That is, the particles (B) are preferably inorganic particles and / or organic particles.
  • the organic particles include particles containing acrylic acid, styrene resin, thermosetting resin, silicone, imide compound, and the like as constituent components. Particles (so-called internal particles) that are precipitated by a catalyst added during the polyester polymerization reaction are also preferably used.
  • styrene / acrylic particles are preferable from the viewpoint of dispersibility in a polyester resin having a hydrophilic functional group and versatility.
  • “Movinyl” registered trademark
  • 972 manufactured by Nippon Synthetic Chemical Industry Co., Ltd.
  • inorganic particles for example, particles made of silica, colloidal silica, alumina, ceria, kaolin, talc, mica, calcium carbonate, barium sulfate, carbon black, zeolite, titanium oxide, and various metal oxides are preferable.
  • inorganic colloidal particles are preferable from the viewpoint of dispersibility in an organic binder, particle hardness, heat resistance, and alkali resistance, and colloidal silica is most preferable.
  • colloidal silica that is dispersed and stable in a solvent due to electrostatic repulsion between colloidal silica is preferable.
  • Colloidal silica which is dispersed and stable in a solvent due to electrostatic repulsion between colloidal silica, has —SiOH groups and —OH 2 ⁇ ions on the surface of colloidal silica, and an electric double layer is formed in a negatively charged state.
  • Colloidal silica that is dispersed and stable in a solvent due to electrostatic repulsion between colloidal silica includes “Snowtex” (registered trademark) series manufactured by Nissan Chemical Industries, Ltd. and “JGC Catalysts Chemical Co., Ltd.” The “Cataloid” series is preferably used.
  • the shape of the particles (B) is not particularly limited.
  • grains of the shape of a primary particle are spherical (a spheroidal shape and a geometric shape (a cube, rod shape, plate shape, fiber shape, tetrapod shape, triangular prism shape) are mentioned).
  • the secondary particle shape is a chain shape (a beaded particle in which isomorphic particles are randomly connected two-dimensionally) or a pearl necklace shape (a beaded particle in which isomorphic particles are randomly connected in three dimensions) ) And the like. From the viewpoint of imparting surface irregularities, a spherical shape, a chain shape, and a pearl necklace shape are preferable. Moreover, these particles can be mixed and used together as necessary.
  • the spherical shape of the particle means that the particle is a three-dimensional spherical particle.
  • Spherical inorganic particles include “Snowtex” “Nanouse”, “CELNAX” (registered trademark) series manufactured by Nissan Chemical Industries, Ltd., “Cataloid” series manufactured by JGC Catalysts & Chemicals Co., Ltd. and Nippon Shokubai Co., Ltd. “Sea Hoster” (registered trademark) series manufactured by Co., Ltd. is preferably used.
  • Spherical organic particles include the “Ganz Pearl” series manufactured by Aika Kogyo Co., Ltd., “Toughtic” (registered trademark) series manufactured by Toyobo Co., Ltd., and “Eposter” manufactured by Nippon Shokubai Co., Ltd. (registered) Trademark) series and the like are preferably used.
  • the chain shape of the particles is a bead-like particle (secondary particle) in which isomorphous particles (primary particles) are randomly connected two-dimensionally, and has a long and narrow shape in which the primary particles are crushed. It means that.
  • As the chain-like inorganic particles “Snowtex” (registered trademark) series manufactured by Nissan Chemical Industries, Ltd., “Cataloid” series manufactured by JGC Catalysts & Chemicals Co., Ltd., etc. are preferably used.
  • As the chain-like organic particles “Toughtic” (registered trademark) series manufactured by Toyobo Co., Ltd. is preferably used.
  • the pearl necklace shape of the particle is a bead-like particle (secondary particle) in which isomorphous particles (primary particles) are randomly connected in three dimensions, and has a structure branched in each direction of three dimensions. Focusing on one pearl necklace-shaped particle, this particle is composed of spherical particles (primary particles) corresponding to beaded spheres and particles (primary particles) corresponding to yarns.
  • this particle is composed of spherical particles (primary particles) corresponding to beaded spheres and particles (primary particles) corresponding to yarns.
  • “Snowtex” (registered trademark) series manufactured by Nissan Chemical Industries, Ltd. and the like are preferably used.
  • As the pearl necklace-shaped organic particles “Toughtic” (registered trademark) series manufactured by Toyobo Co., Ltd. is preferably used. *
  • undercoat layer The organic binder (A), the particles (B), and, if necessary, a coating composition containing an additive and a solvent are applied onto a substrate, and if necessary, By drying the solvent, the undercoat layer (X) can be formed on the substrate.
  • an aqueous solvent as a solvent for the coating composition.
  • an aqueous solvent rapid evaporation of the solvent in the drying step can be suppressed, and not only a uniform undercoat layer (X) can be formed, but also the environmental load is excellent.
  • the aqueous solvent is soluble in water such as water or water and alcohols such as methanol, ethanol, isopropyl alcohol and butanol, ketones such as acetone and methyl ethyl ketone, and glycols such as ethylene glycol, diethylene glycol and propylene glycol.
  • alcohols such as methanol, ethanol, isopropyl alcohol and butanol
  • ketones such as acetone and methyl ethyl ketone
  • glycols such as ethylene glycol, diethylene glycol and propylene glycol.
  • a certain organic solvent is mixed in an arbitrary ratio.
  • the coating method of the coating composition on the substrate either an in-line coating method or an off-coating method can be used.
  • the in-line coating method is a method of applying in the manufacturing process of the substrate. Specifically, it refers to a method of coating at any stage from melt extrusion of the thermoplastic resin constituting the substrate to heat treatment after biaxial stretching, and usually, after melt extrusion, it is rapidly cooled.
  • the off-coating method is a known wet coating method such as spray coating, dip coating, spin coating, knife coating, kiss coating, gravure coating, slot die coating, roll coating, bar coating, screen printing, inkjet printing, pad printing, Other types of printing can be used.
  • a dry coating method may be used.
  • physical vapor deposition such as sputtering or vapor deposition, chemical vapor deposition, or the like can be used.
  • coating may be performed in multiple times and it may combine two different types of application
  • Preferred coating methods are gravure coating, bar coating, and slot die coating, which are wet coatings.
  • the conductive laminate of the present invention has the undercoat layer (X) and the conductive layer (Y) in this order from the substrate side on the substrate.
  • the conductive layer (Y) includes a carbon nanotube (C) and a carbon nanotube dispersant (D).
  • the conductive layer (Y) is a layer that functions as a display-related electrode such as a touch panel, a touch switch, a liquid crystal display, organic electroluminescence, and electronic paper.
  • Carbon nanotube (C) used in the present invention is not particularly limited as long as it has a shape obtained by substantially winding one sheet of graphite into a cylindrical shape. Both single-walled CNTs wound in one layer and multi-walled CNTs wound in multiple layers can be applied. Among them, CNTs in which 50 or more of 100 double-layered CNTs in which one surface of graphite is wound in two layers are included. If it exists, it is preferable from electroconductivity and the dispersibility of CNT in the coating dispersion liquid becoming very high. More preferably, 75 or more of 100 are double-walled CNTs, and most preferably 80 or more of 100 are double-walled CNTs.
  • the fact that 50 double-walled CNTs are contained in 100 may indicate that the ratio of double-walled CNTs is 50%.
  • the surface of the two-walled CNT is functionalized by acid treatment or the like, it is preferable from the viewpoint that the original functions such as conductivity are hardly impaired.
  • CNT is manufactured as follows, for example.
  • a powdered catalyst in which iron is supported on magnesia is present in the entire horizontal cross-sectional direction of the reactor in a vertical reactor, and methane is supplied in the vertical direction into the reactor.
  • CNTs are produced by contacting them at 200 ° C., and then oxidizing the CNTs to obtain CNTs containing single to five layers of CNTs.
  • CNTs can be manufactured and then subjected to an oxidation treatment to increase the ratio of single layers to five layers, particularly the ratio of two layers to five layers.
  • the oxidation treatment is performed, for example, by a nitric acid treatment method.
  • Nitric acid is preferable because it also acts as a dopant for CNT. Dopants are those that give surplus electrons to CNTs or take away electrons to form holes, and improve the conductivity of CNTs by generating carriers that can move freely. is there.
  • the conditions for the nitric acid treatment are not particularly limited as long as the CNTs of the present invention can be obtained, but are usually performed in an oil bath at 140 ° C.
  • the time for nitric acid treatment is not particularly limited, but is preferably in the range of 5 to 50 hours.
  • Carbon nanotube dispersant (D) As the carbon nanotube dispersant (hereinafter referred to as CNT dispersant) (D), a surfactant, various dispersants (water-soluble dispersant, etc.) and the like can be used, but an ionic dispersant having high dispersibility. It is preferable to contain.
  • the ionic dispersant include an anionic dispersant, a cationic dispersant, and an amphoteric dispersant. Any type can be used as long as it has a high CNT dispersibility and can maintain dispersibility, but an anionic dispersant is preferred because of its excellent dispersibility and dispersion retention.
  • carboxymethylcellulose and its salts (sodium salt, ammonium salt, etc.) and polystyrenesulfonic acid salt are preferable because CNT can be efficiently dispersed in the CNT dispersion.
  • the ionic dispersant is preferably carboxymethylcellulose.
  • the whole CNT dispersing agent is 100 mass%, it is preferable to occupy 60 mass% or more.
  • examples of the cationic substance constituting the salt include alkali metal cations such as lithium, sodium and potassium, and alkaline earth such as calcium, magnesium and barium.
  • alkali metal cations such as lithium, sodium and potassium
  • alkaline earth such as calcium, magnesium and barium.
  • Metal cation, ammonium ion, or onium ion of organic amines such as monoethanolamine, diethanolamine, triethanolamine, morpholine, ethylamine, butylamine, coconut oil amine, beef tallow amine, ethylenediamine, hexamethylenediamine, diethylenetriamine, polyethyleneimine, Alternatively, these polyethylene oxide adducts can be used, but are not limited thereto.
  • a method for preparing a CNT dispersion it is performed by surface modification of CNT used as a raw material and / or selection of a CNT dispersant.
  • the method of the CNT surface modification treatment for adjusting the CNT dispersion is not particularly limited, but carboxyl groups, hydroxyl groups can be obtained by physical treatment such as corona treatment, plasma treatment and flame treatment, and chemical treatment such as acid treatment and alkali treatment. It is preferable to introduce an anionic group such as a group into the CNT side wall.
  • the CNT dispersant for adjusting the CNT dispersion liquid any type can be used as long as it has high CNT dispersion ability and can maintain dispersibility.
  • the anionic dispersant described above is most preferable.
  • an anionic dispersant if the pH of the CNT dispersion is 5.5 to 11, an acidic functional group such as a carboxylic acid modifying the CNT surface or a dispersant located around the CNT is used.
  • the ionization degree of acidic functional groups such as carboxylic acid contained is improved, and as a result, the CNT or the dispersant around the CNT has a negative potential.
  • the anionic CNT present in the CNT dispersion is more cationic than the CNT dispersion. It is considered that a highly dispersed state was realized by electrostatic attraction and attracted to the surface of the film. Therefore, similarly, the cationic CNT present in the CNT dispersion is attracted to the surface of the undercoat layer having an anionic property compared to the CNT dispersion, and a high dispersion state is realized by electrostatic adsorption. Is also possible.
  • the weight average molecular weight of the CNT dispersant is preferably 100 or more. This is because when the weight average molecular weight is 100 or more, the interaction with CNT occurs more effectively and the dispersion of CNT becomes better. Although it depends on the length of the CNT, it is preferable that the weight average molecular weight is large because the CNT dispersant interacts with the CNT and improves dispersibility. For example, in the case of a polymer, when the polymer chain becomes long, the polymer is entangled with the CNT, and very stable dispersion is possible. However, if the weight average molecular weight is too large, the dispersibility may be reduced. Therefore, the weight average molecular weight is preferably 10 million or less, and more preferably 1 million or less. The most preferred range of weight average molecular weight is 10,000 to 500,000.
  • the pH of the CNT dispersion liquid can be adjusted by adding an acidic substance or a basic substance defined by Arrhenius to the CNT dispersion liquid.
  • Acidic substances include, for example, inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, borohydrofluoric acid, hydrofluoric acid, perchloric acid, organic carboxylic acids, phenols, organic sulfonic acids, etc. Is mentioned.
  • examples of the organic carboxylic acid include formic acid, acetic acid, succinic acid, benzoic acid, phthalic acid, maleic acid, fumaric acid, malonic acid, tartaric acid, citric acid, lactic acid, succinic acid, monochloroacetic acid, dichloroacetic acid, and trichloroacetic acid. Trifluoroacetic acid, nitroacetic acid, triphenylacetic acid and the like.
  • organic sulfonic acid examples include alkylbenzene sulfonic acid, alkyl naphthalene sulfonic acid, alkyl naphthalene disulfonic acid, naphthalene sulfonic acid formalin polycondensate, melamine sulfonic acid formalin polycondensate, naphthalene disulfonic acid, naphthalene trisulfonic acid, dinaphthylmethane.
  • examples include disulfonic acid, anthraquinone sulfonic acid, anthraquinone disulfonic acid, anthracene sulfonic acid, and pyrene sulfonic acid.
  • volatile acids that volatilize during coating and drying, such as hydrochloric acid and nitric acid.
  • Examples of basic substances include sodium hydroxide, potassium hydroxide, calcium hydroxide, and ammonia.
  • a volatile base that volatilizes during coating and drying, such as ammonia.
  • the pH of the CNT dispersion is adjusted by adding the acidic substance and / or basic substance until the desired pH is reached while measuring the pH.
  • the pH measurement method include a method using a pH test paper such as litmus test paper, a hydrogen electrode method, a quinhydrone electrode method, an antimony electrode method, a glass electrode method, etc.
  • the glass electrode method is simple and requires the required accuracy. Is preferable.
  • a substance having the opposite characteristics may be added to adjust the pH.
  • Nitric acid is preferable as an acidic substance applied for such adjustment
  • ammonia is preferable as a basic substance.
  • the dispersion medium used in the preparation of the CNT dispersion used in the present invention is preferably water from the viewpoint of easy treatment of the waste liquid.
  • the method for preparing the CNT dispersion used in the present invention is not particularly limited, and can be performed, for example, by the following procedure. Since the treatment time at the time of dispersion can be shortened, once a dispersion liquid containing CNT in a concentration range of 0.003 to 0.15 mass% in the dispersion medium is prepared and diluted, a predetermined concentration is obtained. It is preferable.
  • the mass ratio of the dispersion medium to CNT (that is, the mass of the dispersion medium when the mass of CNT is 1) is preferably 10 or less. Within such a preferable range, it is easy to uniformly disperse, but there is little influence of the decrease in conductivity.
  • the mass ratio of the dispersion medium to CNT is more preferably 0.5 to 9, further preferably 1 to 6, and particularly preferably 2 to 3.
  • a CNT and a dispersant are mixed and dispersed in a dispersion medium, which is commonly used for coating liquid production (for example, a ball mill, a bead mill, a sand mill, a roll mill, a homogenizer, an ultrasonic homogenizer, a high-pressure homogenizer, A sonic device, an attritor, a resolver, a paint shaker, etc.).
  • the method of preliminarily dispersing with a vibration ball mill and then dispersing using an ultrasonic device is preferable because the dispersibility of CNT in the obtained coating dispersion liquid is good.
  • Transparent conductivity means having both transparency and conductivity.
  • As an index of transparency there is a carbon nanotube layer light absorptivity (hereinafter sometimes simply referred to as “light absorptance”).
  • the carbon nanotube layer optical absorptance is an index represented by the following formula at a wavelength of 550 nm.
  • a surface resistance value is used as an index of conductivity, and the lower the surface resistance value, the higher the conductivity.
  • Carbon nanotube layer light absorbance (550 nm) 100 ⁇ total light transmittance (550 nm) ⁇ relative reflectance (550 nm).
  • the conductive laminate of the present invention preferably satisfies any one of the following (a) to (h) in terms of light absorption rate and surface resistance value.
  • a typical index of transparency is a light absorptance
  • the light absorptivity of a transparent conductive laminate including one conductive layer has a practical meaning.
  • a representative example of the conductivity index is the surface resistance value of the conductive laminate, and the surface resistance value of the conductive laminate including one conductive layer has a practical meaning.
  • Such conductivity (surface resistance value) and transparency (carbon nanotube layer light absorption rate) can be adjusted by the coating amount of carbon nanotubes.
  • the coating amount of the carbon nanotube is small, the conductivity is low, while the transparency is high.
  • the coating amount is large, the conductivity is high, but the transparency is low. That is, both are in a trade-off relationship, and it is difficult to satisfy both. Because of this relationship, in order to compare the transparent conductivity, it is necessary to fix one index and then compare the other index.
  • the light absorption rate and the surface resistance value satisfy any of the following (a1) to (h1).
  • (A1) Light absorption is 1% or more and less than 2%, surface resistance is 500 ⁇ / ⁇ or more and 1,500 ⁇ / ⁇ or less
  • (b1) Light absorption is 2% or more and less than 3%, and surface resistance is 200 ⁇ .
  • the light absorption rate and the surface resistance value satisfy any of the following (a2) to (h2).
  • the conductive laminate of the present invention preferably has a surface resistance value change rate of 20% or less at 25 ° C. and a relative humidity of 30% to 90%.
  • the relative humidity is 30%, 20 minutes at 50%, 20 minutes at 50%, 30 minutes at 90%, 30 %
  • the surface resistance obtained by the following equation (1) It is the value change rate.
  • Surface resistance value change rate (M ⁇ m) / m ⁇ 100 (1).
  • the surface resistance value change rate is set to 20% or less, which is preferable in that an erroneous operation can be prevented when the touch panel is used. More preferably, the rate of change in the surface resistance value is 15% or less, more preferably 10% or less.
  • an undercoat layer (X) forming step of providing an undercoat layer (X) having a wetting tension of 76 to 105 mN / m on a substrate, a carbon nanotube (C And a conductive layer (Y) forming step of forming a conductive layer (Y) by providing a dispersion containing the carbon nanotube dispersant (D) on the undercoat layer (X) is preferable.
  • Each step will be described below.
  • the conductive layer (Y) is formed through a coating process in which the CNT dispersion is applied on the undercoat layer, and a drying process in which the dispersion medium is subsequently removed.
  • the coating step when the CNT dispersion obtained by the above method is applied on the undercoat layer provided on the substrate, the CNT dispersant having a hydrophilic portion and surrounding the CNT is a hydrophilic undercoat. It is thought to be attracted to the surface of the layer.
  • the dispersion medium is then dried to fix the CNTs on the undercoat layer to form a conductive layer (Y).
  • the dispersion medium remains on the undercoat layer, and the CNT dispersant (D) While being able to move from the conductive layer (Y) to the surface of the undercoat layer, it is considered that the CNT dispersant is attracted and adsorbed to the surface of the undercoat layer having a hydrophilic group as in the case of application.
  • the amount of the CNT dispersant in the conductive layer (Y) is reduced by attracting the dispersant to the undercoat layer (X).
  • the phenomenon of attracting the CNT dispersant to the undercoat layer (X) proceeds more preferably by using a hydrophilic undercoat layer having a wetting tension of 76 to 105 mN / m.
  • the CNT dispersion is applied in a coating thickness range of 1 ⁇ m to 50 ⁇ m and the dispersion medium is removed from the conductive layer (Y) by drying in the range of 0.1 seconds to 100 seconds, this mechanism is used. Since adsorption of a dispersing agent can be produced more effectively, it is preferable.
  • a conductive laminate produced by applying a CNT dispersion onto a substrate and drying it the concentration of the dispersion during drying after application and electrostatic repulsion generated between the CNT dispersion and the substrate are increased. Due to the force, CNTs may be bundled. However, CNTs are negatively charged in the dispersion, and the CNT dispersion is applied onto the undercoat layer and dried, so that the CNT dispersed in the CNT dispersion is electrostatically adsorbed to the undercoat layer. It is preferable because the bundling of CNT that has occurred during drying on the substrate can be suppressed. Thereby, the conductive laminated body excellent in transparent conductivity can be obtained.
  • the method for applying the dispersion onto the substrate is not particularly limited.
  • Known application methods such as spray coating, dip coating, spin coating, knife coating, kiss coating, gravure coating, slot die coating, bar coating, roll coating, screen printing, inkjet printing, pad printing, other types of printing, etc. Available.
  • coating may be performed in multiple times and it may combine two different types of application
  • the coating thickness at the time of applying the CNT dispersion on the substrate depends on the concentration of the CNT dispersion, and therefore may be appropriately adjusted so as to obtain a desired surface resistance value.
  • the amount of CNT applied in the present invention can be easily adjusted in order to achieve various applications that require electrical conductivity. For example, a coating amount of 0.1 mg / m 2 to 30 mg / m 2 is preferable because the light absorption after the formation of the overcoat layer described below can be 20% or less.
  • the conductive laminate of the present invention preferably has an overcoat layer on the conductive layer (Y).
  • an overcoat layer consists of a transparent film in order to improve transparency. It is preferable to have an overcoat layer because the transparent conductivity, heat resistance stability, and heat and humidity resistance can be further improved.
  • both an organic material and an inorganic material can be used, but an inorganic material is preferable from the viewpoint of resistance value stability.
  • the inorganic material include metal oxides such as silica, tin oxide, alumina, zirconia, and titania. Silica is preferable from the viewpoint of resistance value stability.
  • the method for providing the overcoat layer on the conductive layer (Y) is not particularly limited.
  • Known wet coating methods such as spray coating, dip coating, spin coating, knife coating, kiss coating, roll coating, gravure coating, slot die coating, bar coating, screen printing, inkjet printing, pad printing, other types of printing, Or other types of printing can be used.
  • a dry coating method may be used.
  • physical vapor deposition such as sputtering or vapor deposition, chemical vapor deposition, or the like can be used.
  • the operation of providing the overcoat layer on the conductive layer may be performed in a plurality of times, or two different methods may be combined.
  • Preferred methods are gravure coating, bar coating, slot die coating, which are wet coatings.
  • an organic silane compound is preferably used, for example, tetramethoxysilane, tetraethoxysilane, tetra-n-propoxysilane, tetra-iso-propoxysilane, tetra-n-butoxy.
  • a silica sol prepared by hydrolyzing an organosilane compound such as tetraalkoxysilane such as silane dissolved in a solvent the wet coating is performed, and when the solvent is dried, dehydration condensation occurs between silanol groups, The method of forming a silica thin film is mentioned.
  • the thickness of the overcoat layer is controlled by adjusting the silica sol concentration in the coating solution and the coating thickness at the time of coating.
  • the thickness of the overcoat layer is more preferably 10 nm or more and 200 nm or less. When the thickness of the overcoat layer is less than 10 nm, the scattering of dopants such as nitric acid improving the conductivity of the CNTs cannot be suppressed, and the heat resistance may be lowered. If the thickness of the overcoat layer is greater than 200 nm, the difference in the amount of reflected light between where the CNT is present and where it is absent may be visible.
  • the conductive laminate of the present invention can be preferably used as a display-related electrode such as a touch panel, a touch switch, a liquid crystal display, organic electroluminescence, and electronic paper.
  • the conductive laminate of the present invention or the conductive laminate obtained by the production method of the present invention is excellent in transparent conductivity, a touch panel, a touch switch, and the like are preferable.
  • the conductive laminate of the present invention and the method for producing the conductive laminate of the present invention will be specifically described based on examples.
  • the present invention is not limited to the following examples.
  • Wetting tension measurement Wetting tension of the undercoat layer was measured according to the method specified in ISO8296 (2003) Plastics- Film and sheeting-Determination of wetting tension.
  • a variety of wet tension test mixtures with different surface tensions were prepared. After forming an undercoat layer to be described later, a wet tension test mixture was quickly spread on the surface of the undercoat layer using a cotton swab or a brush in an atmosphere of room temperature 23 ° C. and relative humidity 50%. The presence or absence of the wet tension was determined by observing the liquid film of the mixed liquid for the wet tension test and in the state of the liquid film after 2 seconds. A liquid film that has been applied without tearing after 2 seconds is wet, that is, has a wetting tension of its surface tension. If the liquid film after 2 seconds breaks and the applied state is not maintained, it will not be wet.
  • the process further proceeds to a liquid mixture for wet tension test having the next highest surface tension, and conversely if it is not wet, the process proceeds to the next liquid mixture having a lower surface tension. This operation was repeated to determine the highest wetting tension value.
  • the test ink made from Arcotest was used as the liquid mixture for the wet tension test.
  • a touch panel was created using the conductive laminate having the pattern.
  • a transparent adhesive film (TI14A manufactured by Yodogawa Paper Co., Ltd., thickness 25 ⁇ m)
  • a surface having a conductive layer of one conductive laminate and a hard coat film (“Tough” manufactured by Toray Film Processing Co., Ltd.) Laminates were face-to-face facing each other without a hard coat of “top” (registered trademark) THS, thickness 50 ⁇ m).
  • a touch panel was prepared, and a three-wavelength fluorescent tube was installed at a distance of 50 cm directly above the touch panel.
  • the observer stands at a distance of 30 cm with respect to the touch panel, and the angle formed by the line connecting the touch panel and the three-wavelength fluorescent tube and the line connecting the touch panel and the observer is 45 degrees. . If all 5 out of 5 observers cannot see the bones, S, 4 cannot see the bones, and 1 person can see the bones. A, 1 to 3 people can see the bones. B was shown when two or more people could see the bone, and C when all the five people could see the bone.
  • Humidity resistance evaluation The rate of change in surface resistance value at 25 ° C. and a relative humidity of 30% to 90%, that is, the evaluation of humidity resistance dependency was carried out as follows.
  • the resistance value was 5 cm ⁇ 10 cm, and the conductive laminate “ECM” (registered trademark) -100AF manufactured by Taiyo Ink Co., Ltd. was applied to a width of 5 mm at the end of the conductive laminate to a thickness of 80 ⁇ m, and the temperature was 90 ° C. for 60 minutes.
  • the mixture was heated to dryness, and the dried conductive paste part was measured using a custom digital tester CDM-17D.
  • the surface resistance value change rate was determined according to the following formula (1), where m is the minimum value and M is the maximum value of each resistance value measured after holding at each relative humidity and temperature for a predetermined time.
  • Surface resistance value change rate (M ⁇ m) / m ⁇ 100 (1).
  • Substrate A Polyethylene terephthalate film ("Lumirror” (registered trademark) U48 manufactured by Toray Industries, Inc.) -Thickness 50 ⁇ m.
  • Base material B Polycarbonate film (“Iupilon” (registered trademark) FE-2000 manufactured by Mitsubishi Gas Chemical Company, Inc.) -Thickness 100 ⁇ m.
  • Base material C PET pellets (extreme viscosity 0.63 dl / g) substantially free of particles are sufficiently vacuum dried, then supplied to an extruder, melted at 285 ° C., extruded into a sheet form from a T-shaped die, and electrostatically applied Using a casting method, it was wound around a mirror casting drum having a surface temperature of 25 ° C. to be cooled and solidified. This unstretched PET film was heated to 90 ° C. and stretched 3.4 times in the longitudinal direction to obtain a uniaxially stretched PET film.
  • Organic binder (B) Organic binder containing an acrylic resin having a hydrophilic functional group (“Nostra” (registered trademark) DBH, solid content concentration 40% by mass, methanol 1-methoxy-2-propanol (hereinafter referred to as PGME) solvent manufactured by Mitsui Chemicals, Inc.) was diluted with methanol and PGME so that the ratio of methanol to PGME was 5: 5 by mass and the solid content concentration of the resin was 20% by mass.
  • Nostra registered trademark
  • PGME methanol 1-methoxy-2-propanol
  • Organic binder (C) An organic binder containing a polyester resin having a hydrophilic functional group and an acrylic resin having a hydrophilic functional group (A645-GEX manufactured by Takamatsu Yushi Co., Ltd., solid content concentration: 20% by mass, water solvent) is diluted with water and IPA, The ratio of IPA to IPA was 7: 3 by mass, and the solid content concentration of the resin was 5% by mass.
  • Organic binder (D) An organic binder containing a polyester resin having a hydrophilic functional group and an acrylic resin having a hydrophilic functional group (A647-GEX, solid content concentration 20% by mass, water solvent, manufactured by Takamatsu Yushi Co., Ltd.) is diluted with water and IPA to obtain water. The ratio of IPA to IPA was 7: 3 by mass, and the solid content concentration of the resin was 5% by mass.
  • Inorganic binder (E) An inorganic binder containing hydrophilic silica fine particles with a diameter of about 30 nm and polysilicate (Mega Aqua hydrophilic DM coat DM30-26G-N1, solid content concentration 5 mass%, IPA solvent, manufactured by Shukaken Co., Ltd.) is diluted with IPA to obtain a solid resin The partial concentration was adjusted to 0.4% by mass.
  • polysilicate Mega Aqua hydrophilic DM coat DM30-26G-N1, solid content concentration 5 mass%, IPA solvent, manufactured by Shukaken Co., Ltd.
  • Inorganic binder An inorganic binder containing ethyl silicate ("Colcoat” (registered trademark) N103X solid content concentration 2 mass%, IPA solvent) manufactured by Colcoat Co., Ltd., IPA solvent) was diluted with IPA so that the solid content concentration of the resin was 1 mass%. .
  • Organic binder (G) An organic binder containing a polyester resin having no hydrophilic functional group (Pesresin S-180, solid content concentration 20% by mass, water solvent, manufactured by Takamatsu Yushi Co., Ltd.) is diluted with water and IPA, and the ratio of water to IPA Was 7: 3 by mass ratio, and the solid content concentration of the resin was 5 mass%.
  • Organic binder (H) 50 parts by mass of terephthalic acid, 50 parts by mass of isophthalic acid, 50 parts by mass of ethylene glycol, 30 parts by mass of neopentyl glycol, 0.3 parts by mass of antimony trioxide as a polymerization catalyst and 0 zinc acetate
  • the reactor was purged with nitrogen together with 3 parts by mass, and the polymerization reaction was carried out at 190 to 220 ° C. for 12 hours under atmospheric pressure while removing water to obtain polyester glycol.
  • Crosslinking agent A Oxazoline group-containing polymer (“Epocross” (registered trademark) WS-700 manufactured by Nippon Shokubai Co., Ltd.).
  • Particle E Colloidal silica having a particle size of 4 nm to 6 nm (“Snowtex” (registered trademark) ST-OXS, spherical, manufactured by Nissan Chemical Industries, Ltd.).
  • Particle G Colloidal silica particle size 70 nm to 110 nm “Snowtex” (registered trademark) ST-PS-SO, pearl necklace shape, manufactured by Nissan Chemical Industries, Ltd.).
  • Particles H Colloidal silica “Snowtex” (registered trademark) OL (average primary particle size 45 nm, manufactured by Nissan Chemical Industries, Ltd.) on the surface by hydroxyl groups by the following methods (i) to (iv)
  • the introduced acrylic resin was modified on the surface of the silica particles.
  • (I) A method in which a mixture in which an inorganic oxide and an acrylic resin are mixed in advance is added to a solvent and dispersed.
  • IIi A method in which an inorganic oxide and an acrylic resin are sequentially added and dispersed in a solvent.
  • Iii A method in which an inorganic oxide and an acrylic resin are dispersed in advance in separate solvents and the obtained dispersions are mixed.
  • Iv A method of adding an acrylic resin to the obtained dispersion after dispersing the inorganic oxide in the solvent.
  • Catalyst preparation example catalyst metal salt support on magnesia 2.46 g of ammonium iron citrate (manufactured by Wako Pure Chemical Industries, Ltd.) was dissolved in 500 mL of methanol (manufactured by Kanto Chemical Co., Ltd.). To this solution, 100.0 g of magnesium oxide (MJ-30 manufactured by Iwatani Chemical Industry Co., Ltd.) was added, vigorously stirred for 60 minutes with a stirrer, and the suspension was concentrated to dryness at 40 ° C. under reduced pressure. The obtained powder was heated and dried at 120 ° C. to remove methanol, and a catalyst body in which a metal salt was supported on magnesium oxide powder was obtained.
  • methanol manufactured by Kanto Chemical Co., Ltd.
  • the obtained solid content was collected on a sieve with a particle size in the range of 20 to 32 mesh (0.5 to 0.85 mm) while being finely divided in a mortar.
  • the iron content contained in the obtained catalyst body was 0.38% by mass.
  • the bulk density was 0.61 g / mL. The above operation was repeated and subjected to the following experiment.
  • the reactor 503 is a cylindrical quartz tube having an inner diameter of 75 mm and a length of 1,100 mm.
  • a quartz sintered plate 502 is provided at the center, a mixed gas introduction pipe 508 serving as an inert gas and source gas supply line is provided at the lower part of the quartz pipe, and a waste gas pipe 506 is provided at the upper part.
  • three electric furnaces 501 are provided as heaters surrounding the circumference of the reactor so that the reactor can be maintained at an arbitrary temperature.
  • a thermocouple 505 is provided to detect the temperature in the reaction tube.
  • the catalyst layer 504 was formed by taking 132 g of the solid catalyst body prepared in the catalyst preparation example and introducing the solid catalyst body onto the quartz sintered plate at the center of the reactor installed in the vertical direction. While heating the catalyst layer until the temperature in the reaction tube reaches about 860 ° C., nitrogen gas is supplied from the bottom of the reactor toward the top of the reactor using the mass flow controller 507 at 16.5 L / min. It was circulated through the layers. Thereafter, while supplying nitrogen gas, methane gas was further introduced at 0.78 L / min for 60 minutes using the mass flow controller 507, and the gas was passed through the catalyst body layer to cause reaction.
  • the contact time (W / F) obtained by dividing the mass of the solid catalyst body by the flow rate of methane at this time was 169 minutes ⁇ g / L, and the linear velocity of the gas containing methane was 6.55 cm / second.
  • the quartz reaction tube was cooled to room temperature while the introduction of methane gas was stopped and nitrogen gas was passed through at 16.5 L / min.
  • the heating was stopped and the mixture was allowed to stand at room temperature, and after reaching room temperature, the CNT-containing composition containing the catalyst body and CNTs was taken out from the reactor.
  • the CNT-containing composition was stored in a wet state containing water after washing with ion-exchanged water until the suspension of the filtered material became neutral. At this time, the mass of the entire wet CNT-containing composition containing water was 102.7 g (CNT-containing composition concentration: 3.12% by mass).
  • this CNT paste was diluted with ion-exchanged water so that the concentration of CNT was 0.15% by mass, and adjusted to pH 10 with 28% by mass ammonia aqueous solution again with respect to 10 g of the diluted solution.
  • the aqueous solution was subjected to dispersion treatment under ice-cooling for 1.5 minutes (0.6 kW ⁇ min / g) at an output of an ultrasonic homogenizer (manufactured by Ieda Trading Co., Ltd., VCX-130) at 20 W.
  • the liquid temperature during dispersion was adjusted to 10 ° C. or lower.
  • the obtained liquid was centrifuged at 10,000 G for 15 minutes with a high-speed centrifuge (Tomy Seiko Co., Ltd., MX-300) to obtain 9 g of a CNT dispersion. Thereafter, water was added to prepare a CNT dispersion liquid so that the final concentration of the CNT aggregate was 0.03% by mass.
  • Examples 1 to 40 Comparative Examples 1 to 3
  • the organic binders A to D and G, the inorganic binders E and F, and the particles A to G were mixed at a blending ratio shown in the table to prepare a coating material.
  • the prepared paint is applied to one side of the substrate at a transfer speed of 10 m / min using a slit die coat (coating width 550 mm) with a shim (shim thickness 50 ⁇ m) made of stainless steel (sus), dried and undercoated Layers were laminated. Only when the organic binder B was used, it was cured by irradiating with ultraviolet rays at a dose of 95.1 mJ / cm 2 in a nitrogen atmosphere.
  • the substrate surface was subjected to corona treatment under the condition of an E value of 100 W ⁇ s.
  • the CNT dispersion was applied onto the undercoat layer using a slit die coat (coating width 550 mm) with a stainless steel (sus) shim (shim thickness 50 ⁇ m), and dried at 100 ° C. for 1 minute. Conductive components were laminated. Further, a coating speed of 10 m / min using a slit die coat (coating width 550 mm) in which the inorganic binder F is made of a shim (shim thickness 50 ⁇ m) made of the inorganic binder F on the side where the conductive layer is laminated. The coating was carried out under the conditions shown in Table 1 and dried at 125 ° C. for 1 minute to form a laminate.
  • Example 41 to 52 The organic binder H and particles B and H were mixed at a blending ratio shown in the table to prepare a paint.
  • the prepared paint was applied to the corona discharge treated surface of a substrate C (uniaxially stretched film) that had been subjected to a corona discharge treatment in air using a bar coat.
  • the both ends in the width direction of the applied uniaxially stretched film are held by clips and guided to a preheating zone, and after setting the ambient temperature to 75 ° C, the ambient temperature is set to 110 ° C using a radiation heater, and then the ambient temperature is set to 90 ° C.
  • the coating composition was dried to form a composition layer.
  • the thickness of the PET film was 50 ⁇ m.
  • the thickness of the undercoat layer produced by this method was about 40 nm.
  • the CNT dispersion was applied onto the substrates A and B using a slit die coat (coating width 550 mm) with a stainless steel (sus) shim (shim thickness 50 ⁇ m), and dried at 100 ° C. for 1 minute to conduct electricity.
  • the components were laminated. Since the CNT dispersion could not be coated due to insufficient wettability of the substrate, the surface of the substrate was subjected to corona treatment.
  • a coating speed of 10 m / min using a slit die coat (coating width 550 mm) in which the inorganic binder F is made of a shim (shim thickness 50 ⁇ m) made of the inorganic binder F on the side where the conductive layer is laminated was performed under the conditions shown in the table, and the laminate was formed by drying at 125 ° C. for 1 minute.
  • the binder content [% by mass] is the binder content [% by mass] when the entire undercoat layer is 100% by mass.
  • the particle content [% by mass] is the particle content [% by mass] when the entire undercoat layer is taken as 100% by mass.
  • the charged amount [parts by mass] is the charged amount [parts by mass] of the crosslinking agent when the component of the binder is 100 parts by mass.
  • the conductive laminate of the present invention having excellent transparent conductivity can be preferably used as, for example, a display-related electrode such as a touch panel, a touch switch, a liquid crystal display, organic electroluminescence, and electronic paper.
  • a display-related electrode such as a touch panel, a touch switch, a liquid crystal display, organic electroluminescence, and electronic paper.

Abstract

A conductive laminate which comprises, on a base, an undercoat layer (X) and a conductive layer (Y) in this order from the base side, and which satisfies the conditions (i)-(iii) described below. (i) The undercoat layer (X) contains an organic binder (A) and particles (B). (ii) The content of the particles (B) contained in the undercoat layer (X) is from 15% by mass to 95% by mass (inclusive) relative to 100% by mass of the entire undercoat layer. (iii) The conductive layer (Y) contains carbon nanotubes (C) and a carbon nanotube dispersant (D). Provided is a conductive laminate which has excellent laser etching properties and low moisture dependence in addition to excellent transparency and conductivity.

Description

導電積層体、導電積層体の製造方法、タッチパネルおよびタッチスイッチConductive laminate, method for producing conductive laminate, touch panel, and touch switch
 本発明は、導電積層体、導電積層体の製造方法、タッチパネルおよびタッチスイッチに関する。より詳細には、透明導電性に優れる導電積層体および導電積層体の製造方法に関する。 The present invention relates to a conductive laminate, a method for manufacturing a conductive laminate, a touch panel, and a touch switch. In more detail, it is related with the manufacturing method of the electrically conductive laminated body which is excellent in transparent conductivity, and an electrically conductive laminated body.
 導電積層体は、フラットパネルディスプレイやタッチパネルなどの電子表示機器に多く利用されている。導電積層体に用いられる導電材料は錫ドープ酸化インジウム(以下、ITOと略す)に代表され、ITOの需要量および使用量は増え続けている。しかし、インジウムはレアメタルであることからインジウムを代替する新規な導電材料が求められている。あるいは、ITOを用いた導電積層体に特有の短所、たとえば折り曲げに弱い、真空成膜であるために低コスト化が困難であるなどの短所を補う新規な導電材料が求められている。そのような新規な導電材料として、カーボンナノチューブ(以下、CNTと略す)、グラフェン、フラーレンが連なったウィスカーなどのナノカーボン材料の他、導電性ポリマー、金属ナノ粒子、金属ナノワイヤーなどの開発が盛んに行われている。これら新規な導電材料は、折り曲げに強く、大気圧下で塗布できるタイプの材料である。これら新規な導電材料の開発への期待は大きい。 Conductive laminates are widely used in electronic display devices such as flat panel displays and touch panels. The conductive material used for the conductive laminate is represented by tin-doped indium oxide (hereinafter abbreviated as ITO), and the demand and usage of ITO continue to increase. However, since indium is a rare metal, a new conductive material that replaces indium is required. Alternatively, there is a need for a novel conductive material that compensates for the disadvantages peculiar to conductive laminates using ITO, such as weakness to bending, and difficulty in reducing costs due to vacuum film formation. As such new conductive materials, development of conductive polymers, metal nanoparticles, metal nanowires, etc., as well as nanocarbon materials such as whiskers with continuous carbon nanotubes (hereinafter abbreviated as CNT), graphene, and fullerenes, has become popular. Has been done. These novel conductive materials are materials that are resistant to bending and can be applied under atmospheric pressure. There are great expectations for the development of these new conductive materials.
 CNTは実質的にグラファイトの1枚面を巻いて筒状にした形状を有しており、1層に巻いたものを単層CNT、多層に巻いたものを多層CNT、中でも特に2層に巻いたものを2層CNTという。CNTは、それ自体が優れた真性の導電性を有し、導電材料として使用されることが期待されている。 The CNT has a substantially cylindrical shape by winding one surface of graphite, and a single-layer CNT is wound in one layer, a multi-layer CNT is wound in multiple layers, especially two layers. This was called double-walled CNT. CNTs themselves have excellent intrinsic conductivity and are expected to be used as conductive materials.
 CNTを用いた導電積層体を作製するために、CNTを均一に分散液中に分散させる必要がある。一般的には分散性に優れたイオン性分散剤を用いる。 In order to produce a conductive laminate using CNT, it is necessary to uniformly disperse CNT in the dispersion. In general, an ionic dispersant having excellent dispersibility is used.
 しかし、イオン性分散剤は一般的に絶縁性物質である。CNTを用いた導電積層体の導電性を低下させるという問題がある。したがって、透明導電性に優れた導電積層体を作製しようとすると、イオン性分散剤を導電層より取り除く必要があると考えられる。 However, ionic dispersants are generally insulating materials. There is a problem that the conductivity of the conductive laminate using CNTs is lowered. Therefore, it is thought that it is necessary to remove the ionic dispersant from the conductive layer in order to produce a conductive laminate excellent in transparent conductivity.
 別の要求特性として、デバイス形成の際にはパターンニングにより導電ネットワークの絶縁を取る必要がある。パターンニングの際に、無機物等割れやすい材料を用いると、構造破壊に伴いパターンニングの細線が広がり、視認しやすくなってしまう。このことは骨見え(visible pattern)と呼ばれ、一般的に知られている。 As another required characteristic, it is necessary to insulate the conductive network by patterning when forming a device. If a material that is easily broken, such as an inorganic substance, is used during patterning, the fine line of patterning spreads along with the structural destruction, and it becomes easy to visually recognize. This is called “visible pattern” and is generally known.
 例えば、特許文献1には、様々なフィルム上にカーボンナノチューブ分散液を塗布し、導電性フィルムを得る導電性フィルムの製造方法が記載されている。 For example, Patent Document 1 describes a method for producing a conductive film in which a carbon nanotube dispersion liquid is applied on various films to obtain a conductive film.
 また、特許文献2には、カーボンナノチューブ分散液をフィルム上に塗布後、余剰なイオン性分散剤を水によるリンスで除去することで、高導電性の導電性フィルムを得る製造方法が記載されている。 Patent Document 2 describes a production method for obtaining a highly conductive conductive film by removing a surplus ionic dispersant by rinsing with water after coating a carbon nanotube dispersion on the film. Yes.
 また、特許文献3には、カーボンナノチューブ透明導電積層体の抵抗値安定化を図るために、カーボンナノチューブ層の下に、シリカ微粒子とポリシリケートからなる親水性のアンダーコート層を設け、透明導電性および抵抗値安定性を向上させた例が記載されている。 Further, in Patent Document 3, in order to stabilize the resistance value of the carbon nanotube transparent conductive laminate, a hydrophilic undercoat layer made of silica fine particles and polysilicate is provided under the carbon nanotube layer, and transparent conductive Examples of improving resistance value stability are also described.
 さらに、特許文献4には、支持体の上に微粒子と樹脂バインダーを含有する多孔質層を設け、その上に導電性のパターンを形成することで、導電パターンの密着性が高く、かつ優れた導電性と耐熱保存性を有する導電性部材が得られた導電性パターン形成基材が記載されている。 Furthermore, in Patent Document 4, a porous layer containing fine particles and a resin binder is provided on a support, and a conductive pattern is formed thereon, whereby the adhesion of the conductive pattern is high and excellent. The electroconductive pattern formation base material from which the electroconductive member which has electroconductivity and heat-resistant preservation | save property was obtained is described.
特表2004-526838号公報Japanese translation of PCT publication No. 2004-526838 特開2009-149516号公報JP 2009-149516 A 国際公開第2012/057321号パンフレットInternational Publication No. 2012/057321 Pamphlet 特開2014-67952号公報JP 2014-67952 A
 しかしながら、特許文献1に記載の技術においては、導電層に含まれるイオン性分散剤を取り除く層構成になっていない。よって、高導電性の導電性フィルムを得ることができない。 However, the technique described in Patent Document 1 does not have a layer configuration that removes the ionic dispersant contained in the conductive layer. Therefore, a highly conductive conductive film cannot be obtained.
 特許文献2に記載の技術においては、導電層に含まれる余剰なイオン性分散剤を水によるリンスで除去することで、高導電性の導電性フィルムを得ている。しかし、フィルム上でのリンス処理は汎用ウェットコーティング量産機への生産適用が困難である。 In the technique described in Patent Document 2, a highly conductive conductive film is obtained by removing excess ionic dispersant contained in the conductive layer by rinsing with water. However, it is difficult to apply the rinse treatment on the film to a general-purpose wet coating mass production machine.
 特許文献3に記載の技術においては、親水性アンダーコート層を用いることでイオン性分散剤を取り除いている。その結果、導電性および抵抗値安定性は向上した。しかし、無機バインダーを用いてアンダーコート層を形成しているため、レーザーエッチング方式によるパターンニングの際にアンダーコート層が割れて、パターニングの細線が線太りし、骨見えが起こるという課題がある。 In the technique described in Patent Document 3, the ionic dispersant is removed by using a hydrophilic undercoat layer. As a result, conductivity and resistance value stability were improved. However, since the undercoat layer is formed using an inorganic binder, there is a problem that the undercoat layer is cracked during patterning by the laser etching method, the fine line of patterning becomes thick, and bone appearance occurs.
 特許文献4に記載の技術においては、導電層を構成する導電材料としてCNTおよびイオン性分散剤は含まれていない。透明導電性および抵抗値安定性についても具体的な言及がない。 In the technique described in Patent Document 4, CNT and ionic dispersant are not included as the conductive material constituting the conductive layer. There is no specific mention of transparent conductivity and resistance value stability.
 本発明は、前記問題・状況に鑑みてなされたものであり、その課題は、透明導電性および耐湿度依存性に優れ、パターニングした際に骨見えの発生しにくい導電積層体を提供することである。 The present invention has been made in view of the above-mentioned problems and situations, and the object thereof is to provide a conductive laminate that is excellent in transparent conductivity and humidity resistance dependency and is less likely to cause bone appearance when patterned. is there.
 本発明は以下の導電積層体を提供する。 The present invention provides the following conductive laminate.
 基材上にアンダーコート層(X)と導電層(Y)とを基材側からこの順で有し、かつ以下の(i)~(iii)を満たす導電積層体。
(i)アンダーコート層(X)が有機バインダー(A)及び粒子(B)を含む
(ii)アンダーコート層(X)に含まれる粒子(B)の含有量が、アンダーコート層全体100質量%に対して15質量%以上95質量%以下である
(iii)導電層(Y)がカーボンナノチューブ(C)およびカーボンナノチューブ分散剤(D)を含む
A conductive laminate having an undercoat layer (X) and a conductive layer (Y) on a substrate in this order from the substrate side, and satisfying the following (i) to (iii):
(I) The undercoat layer (X) contains the organic binder (A) and the particles (B). (Ii) The content of the particles (B) contained in the undercoat layer (X) is 100% by mass of the entire undercoat layer. (Iii) The conductive layer (Y) contains carbon nanotubes (C) and a carbon nanotube dispersant (D).
 本発明によれば、透明導電性および耐湿度依存性に優れ、パターニングした際に骨見えの発生しにくい導電積層体を提供することができる。 According to the present invention, it is possible to provide a conductive laminate that is excellent in transparent conductivity and humidity resistance dependency and is less likely to cause bone appearance when patterned.
本発明におけるカーボンナノチューブの合成方法を説明する概略図である。It is the schematic explaining the synthesis | combining method of the carbon nanotube in this invention.
 本発明の導電積層体は、基材上にアンダーコート層(X)と導電層(Y)とを基材側からこの順で有し、かつ以下の(i)~(iii)を満たす導電積層体である。
(i)アンダーコート層(X)が有機バインダー(A)および粒子(B)を含む
(ii)アンダーコート層(X)に含まれる粒子(B)の含有量が、アンダーコート層全体100質量%に対して15質量%以上95質量%以下である
(iii)導電層(Y)がカーボンナノチューブ(C)およびカーボンナノチューブ分散剤(D)を含む。
The conductive laminate of the present invention has an undercoat layer (X) and a conductive layer (Y) on a base material in this order from the base material side, and satisfies the following (i) to (iii): Is the body.
(I) The undercoat layer (X) contains the organic binder (A) and the particles (B). (Ii) The content of the particles (B) contained in the undercoat layer (X) is 100% by mass of the entire undercoat layer. (Iii) The conductive layer (Y) contains 15% by mass or more and 95% by mass or less of the carbon nanotube (C) and the carbon nanotube dispersant (D).
 本発明の導電積層体は、かかる構成を有することにより、導電積層体を用いる電子デバイスに用いた場合、デバイスの導電性を向上させることができる。また、デバイスの置かれた環境の湿度が変化しても透明導電性を安定させることができる。さらに、導電積層体を用いたタッチパネルやタッチスイッチに用いた場合、レーザーエッチング性が向上し、骨見えの発生しにくいタッチパネルやタッチスイッチを提供することができる。 The conductive laminate of the present invention can improve the conductivity of the device when used in an electronic device using the conductive laminate by having such a configuration. In addition, the transparent conductivity can be stabilized even when the humidity of the environment where the device is placed changes. Furthermore, when used for a touch panel or a touch switch using a conductive laminate, it is possible to provide a touch panel or a touch switch that has improved laser etching properties and is less likely to cause bone appearance.
 本発明の導電積層体の製造方法は、基材上に、ぬれ張力が76~105mN/mであるアンダーコート層(X)を設けるアンダーコート層(X)形成工程と、カーボンナノチューブ(C)およびカーボンナノチューブ分散剤(D)を含む分散液をアンダーコート層(X)上に設け導電層(Y)を形成する導電層(Y)形成工程とを有する。 The method for producing a conductive laminate of the present invention comprises an undercoat layer (X) forming step of providing an undercoat layer (X) having a wetting tension of 76 to 105 mN / m on a substrate, a carbon nanotube (C) and A conductive layer (Y) forming step of forming a conductive layer (Y) by providing a dispersion containing the carbon nanotube dispersant (D) on the undercoat layer (X).
 本発明のタッチパネルは、本発明の導電積層体または本発明の導電積層体の製造方法によって得られた導電積層体を用いたタッチパネルである。 The touch panel of the present invention is a touch panel using the conductive laminate of the present invention or the conductive laminate obtained by the method for producing the conductive laminate of the present invention.
 本発明のタッチスイッチは、本発明の導電積層体または本発明の導電積層体の製造方法によって得られた導電積層体を用いたタッチスイッチである。 The touch switch of the present invention is a touch switch using the conductive laminate of the present invention or the conductive laminate obtained by the manufacturing method of the conductive laminate of the present invention.
 [基材]
 本発明の導電積層体は、基材を有する。本発明に用いられる基材の素材としては、樹脂、ガラスなどを挙げることができる。樹脂としては、ポリエチレンテレフタレート(以下、PETと略する)、ポリエチレンナフタレート(PEN)などのポリエステル、ポリカーボネート(PC)、ポリメチルメタクリレート(PMMA)、ポリイミド、ポリフェニレンスルフィド、アラミド、ポリプロピレン、ポリエチレン、ポリ乳酸、ポリ塩化ビニル、ポリメタクリル酸メチル、脂環式アクリル樹脂、シクロオレフィン樹脂、トリアセチルセルロースなどを用いることができる。ガラスとしては、ソーダガラス、白板ガラス、無アルカリガラスなどを用いることができる。また、これらの複数の基材を組み合わせて用いることもできる。例えば、樹脂とガラスとを組み合わせた基材、2種以上の樹脂を積層した基材などの複合基材であってもよい。樹脂フィルムにハードコートを設けたようなものであってもよい。基材の種類は前記基材に限定されることはなく、用途に応じて耐久性やコスト等から最適なものを選ぶことができる。基材の厚みは特に限定されるものではないが、タッチパネル、タッチスイッチ、液晶ディスプレイ、有機エレクトロルミネッセンス、電子ペーパーなどのディスプレイ関連の電極に用いる場合、10μm~1,000μmの範囲にあることが好ましい。
[Base material]
The conductive laminate of the present invention has a substrate. Resin, glass, etc. can be mentioned as a raw material of the base material used for this invention. Examples of the resin include polyethylene terephthalate (hereinafter abbreviated as PET), polyester such as polyethylene naphthalate (PEN), polycarbonate (PC), polymethyl methacrylate (PMMA), polyimide, polyphenylene sulfide, aramid, polypropylene, polyethylene, polylactic acid. Polyvinyl chloride, polymethyl methacrylate, alicyclic acrylic resin, cycloolefin resin, triacetyl cellulose, and the like can be used. As the glass, soda glass, white plate glass, non-alkali glass, or the like can be used. Moreover, these several base materials can also be used in combination. For example, a composite base material such as a base material in which a resin and glass are combined and a base material in which two or more kinds of resins are laminated may be used. The resin film may be provided with a hard coat. The kind of base material is not limited to the base material, and an optimal one can be selected from durability, cost, etc. according to the application. The thickness of the base material is not particularly limited, but when used for a display-related electrode such as a touch panel, a touch switch, a liquid crystal display, organic electroluminescence, and electronic paper, it is preferably in the range of 10 μm to 1,000 μm. .
 [アンダーコート層(X)]
 本発明の導電積層体は前記基材上にアンダーコート層(X)を有する。本発明の導電積層体は、(i)アンダーコート層(X)が、有機バインダー(A)および粒子(B)を含む。
[Undercoat layer (X)]
The conductive laminate of the present invention has an undercoat layer (X) on the substrate. In the conductive laminate of the present invention, (i) the undercoat layer (X) includes an organic binder (A) and particles (B).
 (1)アンダーコート層(X)
 アンダーコート層(X)はISO8296(2003)で規定されている、ぬれ張力が76mN/m以上105mN/m以下であることが好ましい。ぬれ張力を76mN/m以上とすることで、アンダーコート層(X)上にCNT分散液を塗布した際に、塗布はじきを生じにくくし、CNT分散液を均一に塗布することが可能となるため好ましい。またアンダーコート層(X)のぬれ張力が105mN/m以下であると、塗布時の塗液の塗れ広がりによる塗布ムラや、乾燥時の風の影響を受けた塗布ムラを生じにくくし、CNT分散液を均一に塗布することが可能となるため好ましい。塗布ムラの観点から、ぬれ張力は76mN/m以上105mN/m以下であることが好ましく、76mN/m以上90mN/m以下であることがより好ましい。
(1) Undercoat layer (X)
The undercoat layer (X) preferably has a wetting tension of 76 mN / m or more and 105 mN / m or less as defined in ISO 8296 (2003). By setting the wetting tension to 76 mN / m or more, when the CNT dispersion liquid is applied on the undercoat layer (X), it is difficult to cause application repellency and the CNT dispersion liquid can be uniformly applied. preferable. Also, if the wetting tension of the undercoat layer (X) is 105 mN / m or less, coating unevenness due to spreading of the coating liquid during coating and coating unevenness affected by wind during drying are less likely to occur, and CNT dispersion This is preferable because the liquid can be uniformly applied. From the viewpoint of uneven coating, the wetting tension is preferably 76 mN / m or more and 105 mN / m or less, and more preferably 76 mN / m or more and 90 mN / m or less.
 アンダーコート層(X)のぬれ張力は、アンダーコート層(X)を形成する塗料組成物中の有機バインダー(A)に含まれる親水性官能基の共重合量を多くしたり、アンダーコート層(X)の厚みを厚くしたりすることにより大きくすることができる。よって、アンダーコート層(X)のぬれ張力は、有機バインダー(A)に含まれる親水性官能基の共重合量、親水性官能基の種類、後述するアンダーコート層(X)の厚みによって、適宜調整することができる。 The wetting tension of the undercoat layer (X) increases the copolymerization amount of the hydrophilic functional group contained in the organic binder (A) in the coating composition forming the undercoat layer (X) The thickness can be increased by increasing the thickness of X). Therefore, the wetting tension of the undercoat layer (X) is appropriately determined depending on the copolymerization amount of the hydrophilic functional group contained in the organic binder (A), the type of the hydrophilic functional group, and the thickness of the undercoat layer (X) described later. Can be adjusted.
 アンダーコート層(X)の厚みは導電積層体としたときにカール等の現象が発生しにくい範囲であれば特に限定されない。また、アンダーコート層表面のぬれ性が前記の好ましいぬれ張力の範囲に入っていることが好ましく、その厚みは有機バインダーの種類、官能基の種類、官能基の含有量、添加する粒子量によって変わる。従って、8nm~3μmの範囲にあることが好ましい。光学干渉による反射防止効果が有効に得られる厚みであれば、光線透過率が向上するため好ましい。このため、後述するオーバーコート層の厚みと合わせた厚みが20nm~600nmの範囲にあることがより好ましい。さらには、後述する耐湿度依存性の観点から、厚みを大きくするとイオン性分散剤をアンダーコート層内に取り込む効果が増大するため、300nm~600nmの範囲にあることが好ましい。 The thickness of the undercoat layer (X) is not particularly limited as long as it is in a range in which a phenomenon such as curling is unlikely to occur when the conductive laminate is formed. The wettability of the surface of the undercoat layer is preferably within the range of the preferred wetting tension, and the thickness varies depending on the type of organic binder, the type of functional group, the content of functional group, and the amount of particles to be added. . Therefore, it is preferably in the range of 8 nm to 3 μm. A thickness that can effectively obtain an antireflection effect due to optical interference is preferable because the light transmittance is improved. For this reason, it is more preferable that the thickness combined with the thickness of the overcoat layer described later is in the range of 20 nm to 600 nm. Furthermore, from the viewpoint of humidity resistance dependency, which will be described later, when the thickness is increased, the effect of incorporating the ionic dispersant into the undercoat layer is increased, and therefore it is preferably in the range of 300 nm to 600 nm.
 アンダーコート層(X)の中心面平均粗さSRaは2~15nmであることが好ましい。SRaを2nm以上にすると、アンダーコート層表面の凹凸が大きくなり、イオン性分散剤を含んだCNT分散液を塗布した際、アンダーコート層(X)にイオン性分散剤を取り込み易くなり、CNT層からのイオン性分散剤の除去が効果的に行われるため好ましい。また、SRaを15nm以下にすることで導電積層体の光学特性を良くすることができるため好ましい。15nmより大きくなると、CNT層、オーバーコート層との界面における光の散乱が増大し、ヘイズが高くなる場合がある。従って、本発明においては、アンダーコート層(X)のSRaを2nm以上15nm以下にすることが好ましく、より好ましくは5nm以上15nm以下である。本発明におけるアンダーコート層(X)のSRaは、三次元表面粗さ測定機を用いて測定することができる。アンダーコート層(X)の中心面平均粗さSRaは下記粒子(B)によって制御することができる。 The center surface average roughness SRa of the undercoat layer (X) is preferably 2 to 15 nm. When SRa is 2 nm or more, the unevenness of the surface of the undercoat layer becomes large, and when the CNT dispersion containing the ionic dispersant is applied, it becomes easy to incorporate the ionic dispersant into the undercoat layer (X). Since the removal of the ionic dispersant from is effectively performed, it is preferable. Further, it is preferable to set SRa to 15 nm or less because the optical characteristics of the conductive laminate can be improved. When it is larger than 15 nm, light scattering at the interface with the CNT layer and the overcoat layer increases, and haze may increase. Therefore, in the present invention, the SRa of the undercoat layer (X) is preferably 2 nm or more and 15 nm or less, and more preferably 5 nm or more and 15 nm or less. SRa of the undercoat layer (X) in the present invention can be measured using a three-dimensional surface roughness measuring machine. The center plane average roughness SRa of the undercoat layer (X) can be controlled by the following particles (B).
 (2)有機バインダー(A)
 アンダーコート層(X)がバインダーを含むことにより、アンダーコート層(X)にイオン性分散剤をより吸着することができるため好ましい。バインダーとしては有機バインダー、無機バインダー等が挙げられるが、イオン性分散剤をより吸着できる点や、パターニング時のアンダーコート層の割れにくさの点から、有機バインダー(A)を用いることが好ましい。
(2) Organic binder (A)
It is preferable that the undercoat layer (X) contains a binder because the ionic dispersant can be more adsorbed to the undercoat layer (X). Examples of the binder include an organic binder and an inorganic binder, and it is preferable to use the organic binder (A) from the viewpoint that the ionic dispersant can be more adsorbed and the undercoat layer is difficult to crack during patterning.
 アンダーコート層(X)に含まれる有機バインダー(A)は、有機化合物を含むことが好ましい。有機化合物は、炭素原子が骨格として組み立てられている化合物であり、共有結合を有し2種類以上の原子からなる分子が最小単位となる化合物である。有機化合物としては、例えばフェノール、シリコン、ナイロン、ポリエチレン、ポリエステル、オレフィン、ビニル、アクリル、セルロースなどが好ましい。 The organic binder (A) contained in the undercoat layer (X) preferably contains an organic compound. An organic compound is a compound in which carbon atoms are assembled as a skeleton, and is a compound in which a molecule having a covalent bond and having two or more kinds of atoms is a minimum unit. As the organic compound, for example, phenol, silicon, nylon, polyethylene, polyester, olefin, vinyl, acrylic, cellulose and the like are preferable.
 有機バインダー(A)は、基材への塗布性の観点より親水性官能基を有する有機バインダーを含むことが好ましい。また、有機バインダー(A)は、基材への塗布性の観点より親水性官能基を有するポリエステル樹脂および/または親水性官能基を有するアクリル樹脂を含むことがより好ましい。すなわち、有機バインダー(A)が親水性官能基を有するポリエステル樹脂または親水性官能基を有するアクリル樹脂のいずれかを含んでもよい。また、親水性官能基を有するポリエステル樹脂および親水性官能基を有するアクリル樹脂の両方を含んでもよい。 The organic binder (A) preferably contains an organic binder having a hydrophilic functional group from the viewpoint of applicability to a substrate. Moreover, it is more preferable that an organic binder (A) contains the polyester resin which has a hydrophilic functional group, and / or the acrylic resin which has a hydrophilic functional group from a viewpoint of the applicability | paintability to a base material. That is, the organic binder (A) may contain either a polyester resin having a hydrophilic functional group or an acrylic resin having a hydrophilic functional group. Moreover, you may include both the polyester resin which has a hydrophilic functional group, and the acrylic resin which has a hydrophilic functional group.
 親水性官能基を有するポリエステル樹脂とは、ポリエステル樹脂の親水性を高め、水系溶媒へ溶解、または分散させるために、ポリエステル樹脂の末端や側鎖に、親水性官能基を有するポリエステル樹脂を指す。親水性官能基としては、スルホン酸塩基やカルボン酸塩基などが挙げられる。 The polyester resin having a hydrophilic functional group refers to a polyester resin having a hydrophilic functional group at the terminal or side chain of the polyester resin in order to increase the hydrophilicity of the polyester resin and dissolve or disperse it in an aqueous solvent. Examples of hydrophilic functional groups include sulfonate groups and carboxylate groups.
 ポリエステル樹脂に親水性官能基を含有させるためには、スルホン酸塩基を有するジカルボン酸およびそのエステル形成性誘導体ならびにスルホン酸塩基を有するジオールおよびそのエステル形成性誘導体(スルホン酸塩基を含む化合物)や、カルボン酸塩基を3つ以上有する多価カルボン酸およびそのエステル形成性誘導体(3価以上の多価カルボン酸塩基を含む化合物)などをポリエステルの原料として用いることができる。 In order to make the polyester resin contain a hydrophilic functional group, a dicarboxylic acid having a sulfonate group and an ester-forming derivative thereof, a diol having a sulfonate group and an ester-forming derivative thereof (a compound containing a sulfonate group), A polyvalent carboxylic acid having three or more carboxylate groups and an ester-forming derivative thereof (a compound containing a trivalent or more polyvalent carboxylate group) can be used as a raw material for polyester.
 スルホン酸塩基を含む化合物としては、例えば、スルホテレフタル酸、5-スルホイソフタル酸、5-ナトリウムスルホイソフタル酸、4-スルホイソフタル酸、などのアルカリ金属塩、アルカリ土類金属塩、アンモニウム塩を挙げることができるが、これらに限定されるものではない。 Examples of the compound containing a sulfonate group include alkali metal salts, alkaline earth metal salts, and ammonium salts such as sulfoterephthalic acid, 5-sulfoisophthalic acid, 5-sodium sulfoisophthalic acid, and 4-sulfoisophthalic acid. However, it is not limited to these.
 3価以上の多価カルボン酸塩基を含む化合物としては、例えば、トリメリット酸、無水トリメリット酸、ピロメリット酸、無水ピロメリット酸、4-メチルシクロヘキセン-1,2,3-トリカルボン酸、トリメシン酸、1,2,3,4-ブタンテトラカルボン酸、1,2,3,4-ペンタンテトラカルボン酸、などのアルカリ金属塩、アルカリ土類金属塩、アンモニウム塩を挙げることができるが、これらに限定されるものではない。 Examples of the compound containing a trivalent or higher polyvalent carboxylate group include trimellitic acid, trimellitic anhydride, pyromellitic acid, pyromellitic anhydride, 4-methylcyclohexene-1,2,3-tricarboxylic acid, trimesin Examples thereof include alkali metal salts such as acid, 1,2,3,4-butanetetracarboxylic acid, 1,2,3,4-pentanetetracarboxylic acid, alkaline earth metal salts and ammonium salts. It is not limited to.
 ポリエステルを構成するカルボン酸成分としては、芳香族、脂肪族、脂環族のジカルボン酸や3価以上の多価カルボン酸を挙げることができる。芳香族ジカルボン酸としては、テレフタル酸、イソフタル酸、オルソフタル酸、フタル酸、2,5-ジメチルテレフタル酸、5-ナトリウムスルホイソフタル酸、1,4-ナフタレンジカルボン酸、およびそれらのエステル形成性誘導体などを挙げることができる。 Examples of the carboxylic acid component constituting the polyester include aromatic, aliphatic, and alicyclic dicarboxylic acids and trivalent or higher polyvalent carboxylic acids. Aromatic dicarboxylic acids include terephthalic acid, isophthalic acid, orthophthalic acid, phthalic acid, 2,5-dimethylterephthalic acid, 5-sodium sulfoisophthalic acid, 1,4-naphthalenedicarboxylic acid, and ester-forming derivatives thereof Can be mentioned.
 ポリエステルのグリコール成分としては、エチレングリコール、ジエチレングリコール、ポリエチレングリコール、プロピレングリコール、ポリプロピレングリコール、1,3-プロパンジオール、1,3-ブタンジオール、1,4-ブタンジオール、ネオペンチルグリコール、などを用いることができる。 As the glycol component of the polyester, ethylene glycol, diethylene glycol, polyethylene glycol, propylene glycol, polypropylene glycol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, neopentyl glycol, etc. should be used. Can do.
 親水性官能基であるスルホン酸塩基や3価以上の多価カルボン酸塩基を含む化合物は、親水性官能基を含有するポリエステル樹脂を構成するポリエステルの原料成分全体を100モル%としたとき、1~25モル%であることが好ましい。親水性官能基であるスルホン酸塩基や3価以上の多価カルボン酸塩基を含む化合物を1モル%以上とすることで、親水性官能基を含有するポリエステル樹脂に親水性を付与することができるだけでなく、水系溶媒へ溶解、または分散が可能となるため好ましい。水性官能基であるスルホン酸塩基や3価以上の多価カルボン酸塩基を含む化合物を25モル%以下とすることで、安定的に親水性官能基を含有するポリエステル樹脂を共重合により製造することができるため好ましい。 A compound containing a sulfonate group that is a hydrophilic functional group or a trivalent or higher polyvalent carboxylic acid group is 1 when the total amount of the raw material components of the polyester constituting the polyester resin containing the hydrophilic functional group is 100 mol%. It is preferably ˜25 mol%. By making the compound containing a sulfonate group that is a hydrophilic functional group or a trivalent or higher polyvalent carboxylate group 1 mol% or more, it is possible to impart hydrophilicity to a polyester resin containing a hydrophilic functional group. It is preferable because it can be dissolved or dispersed in an aqueous solvent. A polyester resin containing a hydrophilic functional group can be stably produced by copolymerization by setting a compound containing a sulfonate group that is an aqueous functional group or a trivalent or higher polyvalent carboxylate group to 25 mol% or less. Is preferable.
 親水性官能基を有するポリエステル樹脂は、例えば次のように製造することができる。例えばジカルボン酸成分とグリコール成分、スルホン酸塩基や3価以上の多価カルボン酸塩基を含む化合物をエステル化反応あるいはエステル交換反応させる第一段階の工程の後、重縮合反応させることによって製造する方法、ジカルボン酸成分とグリコール成分をエステル化反応あるいはエステル交換反応させる第一段階の工程の後、スルホン酸塩基や3価以上の多価カルボン酸塩基を含む化合物を加えて、第一段階の反応生成物と重縮合反応させる第二段階の工程とによって製造する方法などにより製造することができる。この際、反応触媒として、例えば、アルカリ金属、アルカリ土類金属、マンガン、コバルト、亜鉛、アンチモン、ゲルマニウム、チタン化合物などを用いることができる。 The polyester resin having a hydrophilic functional group can be produced, for example, as follows. For example, a process for producing a polycarboxylic acid component after a first step of esterification or transesterification of a compound containing a dicarboxylic acid component and a glycol component, a sulfonate group or a trivalent or higher polyvalent carboxylate group After the first step of esterifying or transesterifying the dicarboxylic acid component and the glycol component, a compound containing a sulfonate group or a trivalent or higher polyvalent carboxylate group is added to produce a first step reaction. It can manufacture by the method of manufacturing by the process of the 2nd step made to polycondensate with a product. At this time, as the reaction catalyst, for example, alkali metal, alkaline earth metal, manganese, cobalt, zinc, antimony, germanium, titanium compound, or the like can be used.
 上記の製造方法により得られた親水性官能基を有するポリエステル樹脂は、溶媒に分散または溶解させて塗料組成物とすることが好ましい。水系溶媒へ分散または溶解させる手段としては、ポリエステル樹脂を、撹拌しながらアンモニア水、水酸化ナトリウム、水酸化カリウム、各種アミン類等のアルカリ性化合物の水溶液に溶解もしくは分散させる方法が挙げられる。この場合、メタノール、エタノール、イソプロパノール、ブチルセロソルブ、エチルセロソルブ等の水溶性有機溶媒を併用してもよい。 The polyester resin having a hydrophilic functional group obtained by the above production method is preferably dispersed or dissolved in a solvent to form a coating composition. Examples of means for dispersing or dissolving in an aqueous solvent include a method in which a polyester resin is dissolved or dispersed in an aqueous solution of an alkaline compound such as ammonia water, sodium hydroxide, potassium hydroxide, and various amines while stirring. In this case, a water-soluble organic solvent such as methanol, ethanol, isopropanol, butyl cellosolve, or ethyl cellosolve may be used in combination.
 また、有機バインダー(A)は、基材への塗布性の観点より親水性官能基を有するアクリル樹脂を含むことが好ましい。親水性官能基を有するアクリル樹脂としては、親水性官能基を有するアクリル系単量体に由来する繰返し構成単位を含むものであればよい。親水性官能基を有するアクリル樹脂としては、該親水性官能基を有するアクリル系単量体に由来する繰返し構成単位と、親水性基を有さないアクリル系単量体に由来する繰返し構成単位とからなるものが好ましい。このような親水性官能基を有するアクリル樹脂を用いることにより、透明性に優れ、CNT分散液を塗布した際に、塗布はじきを生じにくくすることができるため好ましい。 The organic binder (A) preferably contains an acrylic resin having a hydrophilic functional group from the viewpoint of applicability to the substrate. Any acrylic resin having a hydrophilic functional group may be used as long as it contains a repeating structural unit derived from an acrylic monomer having a hydrophilic functional group. As the acrylic resin having a hydrophilic functional group, a repeating structural unit derived from an acrylic monomer having the hydrophilic functional group, and a repeating structural unit derived from an acrylic monomer having no hydrophilic group, Those consisting of are preferred. It is preferable to use an acrylic resin having such a hydrophilic functional group because it is excellent in transparency and can hardly be repelled when a CNT dispersion is applied.
 親水性官能基を有するアクリル系単量体としては、水と相互作用が強い極性の原子団である親水性基、即ち、水中で陽イオンとして解離するカチオン性基を有する公知のアクリル系単量体、水中で陰イオンとして解離するアニオン性基を有する公知のアクリル系単量体、或いは水中で解離しない非イオン性基を有する公知のアクリル系単量体が挙げられる。 As an acrylic monomer having a hydrophilic functional group, a known acrylic monomer having a hydrophilic group that is a polar atomic group having a strong interaction with water, that is, a cationic group that dissociates as a cation in water. And known acrylic monomers having an anionic group that dissociates as an anion in water, or known acrylic monomers having a nonionic group that does not dissociate in water.
 上記カチオン性基を有するアクリル系単量体としては、例えば、(メタ)アクリル酸ジメチルアミノエチル及びその塩、(メタ)アクリル酸エチルトリメチルアンモニウムクロライド、2-ヒドロキシ-3-(メタ)アクリロイルオキシプロピルトリメチルアンモニウムクロライド等が挙げられる。上記アニオン性基を有するアクリル系単量体としては、例えば、(メタ)アクリル酸及びその塩、(メタ)アクリル酸-2-スルホエチル及びその塩、ヒドロキシエチル(メタ)アクリロイルホスフェート及びその塩等が挙げられる。上記非イオン性基を有するアクリル系単量体としては、例えば、ヒドロキシアルキル(メタ)アクリレート、ポリエチレングリコール(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート等が挙げられる。尚、ここで、「(メタ)アクリル」とは、「アクリル」又は「メタクリル」を意味するものとする。 Examples of the acrylic monomer having a cationic group include dimethylaminoethyl (meth) acrylate and salts thereof, ethyl trimethylammonium chloride (meth) acrylate, 2-hydroxy-3- (meth) acryloyloxypropyl. Examples include trimethylammonium chloride. Examples of the acrylic monomer having an anionic group include (meth) acrylic acid and its salt, (meth) acrylic acid-2-sulfoethyl and its salt, hydroxyethyl (meth) acryloyl phosphate and its salt, and the like. Can be mentioned. Examples of the acrylic monomer having a nonionic group include hydroxyalkyl (meth) acrylate, polyethylene glycol (meth) acrylate, methoxypolyethylene glycol (meth) acrylate, and the like. Here, “(meth) acryl” means “acryl” or “methacryl”.
 また、親水性官能基を有さないアクリル系単量体としては、例えば、(メタ)アクリル酸アルキル(炭素数1~8の直鎖状及び分岐状)エステル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸グリシジル、(メタ)アクリル酸テトラヒドロフルフリル、アクリル酸イソボルニル、(メタ)アクリロニトリル等が挙げられる。 Examples of the acrylic monomer having no hydrophilic functional group include, for example, alkyl (meth) acrylate (linear and branched having 1 to 8 carbon atoms) ester, cyclohexyl (meth) acrylate, ( Examples include glycidyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, isobornyl acrylate, (meth) acrylonitrile, and the like.
 また、前記有機バインダーは親水性官能基を有するポリエステル樹脂および親水性官能基を有するアクリル樹脂の両方を含むことがイオン性分散剤除去の点からより好ましい。 The organic binder preferably contains both a polyester resin having a hydrophilic functional group and an acrylic resin having a hydrophilic functional group from the viewpoint of removing the ionic dispersant.
 アンダーコート層(X)に含まれる親水性官能基を有するアクリル樹脂の含有量(以下、Dとする)に対する親水性官能基を有するポリエステル樹脂の含有量(以下、Cとする)の質量比率(C/D)としては1/9以上8/2以下であることが好ましい。(C/D)が1/9未満であると、アンダーコート層全体が硬くなってしまい、割れやすくなってしまう場合がある。また、(C/D)が8/2を超えると、親水性官能基を有するポリエステル樹脂自体はほとんど硬化しないため、膜が柔らかくなりすぎてしまう場合がある。従って、(C/D)は1/9以上8/2以下であることが好ましい。より好ましくは2/8以上5/5以下である。アンダーコート層全体を100質量%としたときの親水性官能基を有するポリエステル樹脂の含有量は20質量%以上50質量%以下であることが好ましい。アンダーコート層全体を100質量%としたときの親水性官能基を有するアクリル樹脂の含有量は50質量%以上80質量%以下であることが好ましい。 Mass ratio of content (hereinafter referred to as C) of polyester resin having hydrophilic functional group to content (hereinafter referred to as D) of acrylic resin having hydrophilic functional group contained in undercoat layer (X) ( C / D) is preferably from 1/9 to 8/2. If the (C / D) is less than 1/9, the entire undercoat layer becomes hard and may be easily broken. On the other hand, when (C / D) exceeds 8/2, the polyester resin itself having a hydrophilic functional group hardly cures, so that the film may become too soft. Therefore, (C / D) is preferably 1/9 or more and 8/2 or less. More preferably, it is 2/8 or more and 5/5 or less. The content of the polyester resin having a hydrophilic functional group when the entire undercoat layer is 100% by mass is preferably 20% by mass or more and 50% by mass or less. The content of the acrylic resin having a hydrophilic functional group when the entire undercoat layer is 100% by mass is preferably 50% by mass or more and 80% by mass or less.
 親水性官能基を有する有機バインダー(A)は、例えば乳化剤により、均一に分散されてエマルジョンの状態になっていても構わない。 The organic binder (A) having a hydrophilic functional group may be uniformly dispersed by, for example, an emulsifier and in an emulsion state.
 また、有機バインダー(A)は架橋剤を含むことが好ましい。アンダーコート層(X)の塗膜を強固にし、耐湿熱性、基材との密着性等を向上させるために、架橋剤としてエポキシ化合物および/またはオキサゾリン化合物を使用することが好ましい。エポキシ化合物またはオキサゾリン化合物のいずれか一方のみを使用してもよいし、両者をともに使用してもよい。 The organic binder (A) preferably contains a cross-linking agent. An epoxy compound and / or an oxazoline compound is preferably used as a crosslinking agent in order to strengthen the coating film of the undercoat layer (X) and improve the heat and humidity resistance, the adhesion to the substrate, and the like. Only one of the epoxy compound or the oxazoline compound may be used, or both may be used together.
 エポキシ化合物としては、例えば、分子内にエポキシ基を含む化合物、そのプレポリマーおよび硬化物が挙げられる。例えば、エピクロロヒドリンとエチレングリコール、ポリエチレングリコール、グリセリン、ポリグリセリン、ビスフェノールA等の水酸基やアミノ基との縮合物が挙げられる。ポリエポキシ化合物、ジエポキシ化合物、モノエポキシ化合物、グリシジルアミン化合物等である。 Examples of the epoxy compound include a compound containing an epoxy group in the molecule, a prepolymer and a cured product thereof. Examples thereof include condensates of epichlorohydrin with hydroxyl groups and amino groups such as ethylene glycol, polyethylene glycol, glycerin, polyglycerin, and bisphenol A. Polyepoxy compounds, diepoxy compounds, monoepoxy compounds, glycidylamine compounds, and the like.
 ポリエポキシ化合物としては、例えば、ソルビトール、ポリグリシジルエーテル、ポリグリセロールポリグリシジルエーテル、ペンタエリスリトールポリグリシジルエーテル、ジグリセロールポリグリシジルエーテル、トリグリシジルトリス(2-ヒドロキシエチル)イソシアネート、グリセロールポリグリシジルエーテル、トリメチロールプロパンポリグリシジルエーテル等が挙げられる。ジエポキシ化合物としては、例えば、ネオペンチルグリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、レゾルシンジグリシジルエーテル、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ポリテトラメチレングリコールジグリシジルエーテル等が挙げられる。モノエポキシ化合物としては、例えば、アリルグリシジルエーテル、2-エチルヘキシルグリシジルエーテル、フェニルグリシジルエーテル等が挙げられる。グリシジルアミン化合物としてはN,N,N’,N’,-テトラグリシジル-m-キシリレンジアミン、1,3-ビス(N,N-ジグリシジルアミノ)シクロヘキサン等が挙げられる。 Examples of the polyepoxy compound include sorbitol, polyglycidyl ether, polyglycerol polyglycidyl ether, pentaerythritol polyglycidyl ether, diglycerol polyglycidyl ether, triglycidyl tris (2-hydroxyethyl) isocyanate, glycerol polyglycidyl ether, trimethylol. Examples include propane polyglycidyl ether. Examples of the diepoxy compound include neopentyl glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, resorcin diglycidyl ether, ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, and polypropylene glycol diester. Examples thereof include glycidyl ether and polytetramethylene glycol diglycidyl ether. Examples of the monoepoxy compound include allyl glycidyl ether, 2-ethylhexyl glycidyl ether, and phenyl glycidyl ether. Examples of the glycidylamine compound include N, N, N ′, N ′,-tetraglycidyl-m-xylylenediamine, 1,3-bis (N, N-diglycidylamino) cyclohexane and the like.
 オキサゾリン化合物とは、分子内にオキサゾリン基を有する化合物である。特にオキサゾリン基を含有する重合体が好ましく、付加重合性オキサゾリン基含有モノマー単独もしくは他のモノマーとの重合によって作成できる。付加重合性オキサゾリン基含有モノマーは、2-ビニル-2-オキサゾリン、2-ビニル-4-メチル-2-オキサゾリン、2-ビニル-5-メチル-2-オキサゾリン、2-イソプロペニル-2-オキサゾリン、2-イソプロペニル-4-メチル-2-オキサゾリン、2-イソプロペニル-5-エチル-2-オキサゾリン等を挙げることができる。これらの1種または2種以上の混合物を使用することができる。これらの中でも2-イソプロペニル-2-オキサゾリンが工業的にも入手しやすく好適である。 An oxazoline compound is a compound having an oxazoline group in the molecule. In particular, a polymer containing an oxazoline group is preferable, and it can be prepared by polymerization of an addition polymerizable oxazoline group-containing monomer alone or with another monomer. Addition-polymerizable oxazoline group-containing monomers include 2-vinyl-2-oxazoline, 2-vinyl-4-methyl-2-oxazoline, 2-vinyl-5-methyl-2-oxazoline, 2-isopropenyl-2-oxazoline, Examples include 2-isopropenyl-4-methyl-2-oxazoline, 2-isopropenyl-5-ethyl-2-oxazoline, and the like. One or a mixture of two or more of these can be used. Of these, 2-isopropenyl-2-oxazoline is preferred because it is easily available industrially.
 他のモノマーは、付加重合性オキサゾリン基含有モノマーと共重合可能なモノマーであれば制限ない。例えばアルキル(メタ)アクリレート(アルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、2-エチルヘキシル基、シクロヘキシル基)等の(メタ)アクリル酸エステル類等が挙げられる。アクリル酸、メタクリル酸、イタコン酸、マレイン酸、フマール酸、クロトン酸、スチレンスルホン酸およびその塩(ナトリウム塩、カリウム塩、アンモニウム塩、第三級アミン塩等)等の不飽和カルボン酸類等が挙げられる。アクリロニトリル、メタクリロニトリル等の不飽和ニトリル類等が挙げられる。(メタ)アクリルアミド、N-アルキル(メタ)アクリルアミド、N,N-ジアルキル(メタ)アクリルアミド、(アルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、2-エチルヘキシル基、シクロヘキシル基等)等の不飽和アミド類等が挙げられる。酢酸ビニル、プロピオン酸ビニル等のビニルエステル類等が挙げられる。メチルビニルエーテル、エチルビニルエーテル等のビニルエーテル類等が挙げられる。エチレン、プロピレン等のα-オレフィン類等が挙げられる。塩化ビニル、塩化ビニリデン、フッ化ビニル等の含ハロゲンα,β-不飽和モノマー類等が挙げられる。スチレン、α-メチルスチレン、等のα,β-不飽和芳香族モノマー類等を挙げることができる。これらの1種または2種以上のモノマーを使用することができる。 Other monomers are not limited as long as they are copolymerizable with addition polymerizable oxazoline group-containing monomers. For example, alkyl (meth) acrylate (alkyl groups include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, t-butyl, 2-ethylhexyl, cyclohexyl) And (meth) acrylic acid esters. Unsaturated carboxylic acids such as acrylic acid, methacrylic acid, itaconic acid, maleic acid, fumaric acid, crotonic acid, styrene sulfonic acid and salts thereof (sodium salt, potassium salt, ammonium salt, tertiary amine salt, etc.) It is done. And unsaturated nitriles such as acrylonitrile and methacrylonitrile. (Meth) acrylamide, N-alkyl (meth) acrylamide, N, N-dialkyl (meth) acrylamide, (As the alkyl group, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group , T-butyl group, 2-ethylhexyl group, cyclohexyl group, etc.) and the like. Examples thereof include vinyl esters such as vinyl acetate and vinyl propionate. And vinyl ethers such as methyl vinyl ether and ethyl vinyl ether. Examples include α-olefins such as ethylene and propylene. And halogen-containing α, β-unsaturated monomers such as vinyl chloride, vinylidene chloride, and vinyl fluoride. Examples include α, β-unsaturated aromatic monomers such as styrene and α-methylstyrene. These 1 type, or 2 or more types of monomers can be used.
 本発明において、バインダーに対する架橋剤の仕込み量は、バインダーを100質量部としたとき、5~80質量部が好ましく、より好ましくは10~30質量部、さらに好ましくは10~20質量部である。5質量部未満の場合は、アンダーコート層がもろくなり、湿気や熱に十分に耐えられない場合があり、80質量部を超える場合は、相対的に親水性官能基を含む樹脂成分が少なくなり、CNT分散液が塗布できにくくなったり、基材との密着性が安定しなくなったりする場合がある。 In the present invention, the amount of the crosslinking agent charged relative to the binder is preferably 5 to 80 parts by mass, more preferably 10 to 30 parts by mass, and still more preferably 10 to 20 parts by mass when the binder is 100 parts by mass. When the amount is less than 5 parts by mass, the undercoat layer may be brittle and may not sufficiently withstand moisture and heat. When the amount exceeds 80 parts by mass, the resin component containing a hydrophilic functional group is relatively reduced. In some cases, it may be difficult to apply the CNT dispersion, or the adhesion to the substrate may not be stable.
 (3)粒子(B)
 アンダーコート層(X)は粒子(B)を含むことが好ましい。粒子(B)を含むことで、アンダーコート層の表面凹凸が大きくなり、イオン性分散剤のアンダーコート層(X)への取り込みが効果的となり、耐湿度依存性が向上するため好ましい。また、アンチブロッキング性もアンダーコート層(X)に付与することができるため好ましい。すなわち、導電積層体をロールツーロール(Roll to Roll)で製造する際、アンダーコート層形成後にアンダーコート層が形成された基材を巻き取る必要が生じる場合がある。その際、アンダーコート層に粒子(B)を含むことで、アンダーコート層がブロッキングしにくくなるため好ましい。従って、粒子(B)の含有量はアンダーコート層全体を100質量%とした場合、本発明の導電積層体は、(ii)アンダーコート層(X)に含まれる粒子(B)の含有量が、アンダーコート層全体に対して15質量%以上95質量%以下であることが好ましい。粒子(B)の含有量が15質量%未満となると、アンダーコート層表面の凹凸が不足し、耐湿度依存性が発揮できない場合がある。一方、粒子(B)の含有量が95質量%を超えると、有機バインダー(A)に対して粒子(B)が過剰となり、粒子(B)の脱落が起こる場合がある。
(3) Particle (B)
The undercoat layer (X) preferably contains particles (B). By including the particles (B), the surface roughness of the undercoat layer is increased, the incorporation of the ionic dispersant into the undercoat layer (X) becomes effective, and the humidity resistance dependency is improved, which is preferable. Moreover, since antiblocking property can also be provided to undercoat layer (X), it is preferable. That is, when the conductive laminate is manufactured by roll to roll, it may be necessary to wind up the substrate on which the undercoat layer is formed after the undercoat layer is formed. At that time, it is preferable to include particles (B) in the undercoat layer because the undercoat layer is difficult to block. Therefore, when the content of the particles (B) is 100% by mass of the entire undercoat layer, the conductive laminate of the present invention has (ii) the content of the particles (B) contained in the undercoat layer (X). It is preferable that it is 15 mass% or more and 95 mass% or less with respect to the whole undercoat layer. When the content of the particles (B) is less than 15% by mass, unevenness on the surface of the undercoat layer is insufficient, and the humidity resistance dependency may not be exhibited. On the other hand, when the content of the particles (B) exceeds 95% by mass, the particles (B) may be excessive with respect to the organic binder (A), and the particles (B) may fall off.
 また、粒子(B)の含有量が50質量%を超えると後述するオーバーコート層を塗布した際にオーバーコート層の溶剤によってはアンダーコート表面が一部侵食されて浮き出た粒子が脱落して凝集し、ヘイズ上昇を引き起こす場合があるため、そして、粒子(B)の含有量が20質量%以上であれば表面凹凸を付けることで耐湿度依存性が安定的に発揮しやすくなるため、より好ましい範囲としては20~50質量%である。耐湿度依存性を安定的に発揮し、かつヘイズ上昇を安定的に抑えるという点から25~35質量%がさらに好ましい範囲である。 Further, when the content of the particles (B) exceeds 50% by mass, when the overcoat layer described later is applied, depending on the solvent of the overcoat layer, the surface of the undercoat is partially eroded and the particles that have come off fall off and aggregate. In addition, since haze increase may be caused, and if the content of the particles (B) is 20% by mass or more, humidity resistance dependency is easily exhibited stably by attaching surface irregularities, which is more preferable. The range is 20 to 50% by mass. A range of 25 to 35% by mass is a more preferable range from the viewpoint of stably exhibiting the humidity resistance dependency and stably suppressing an increase in haze.
 粒子(B)の粒径の好ましい範囲としては5nm~500nmである。5nm未満となると、粒子を均一に分散することが難しくなり、逆に凝集してしまってアンダーコート層内でのみかけ上の粒子の大きさが大きくなる場合がある。また、500nmを超えると、ヘイズが上昇し、導電積層体を表示体に用いた場合に白く濁ってしまう場合がある。より好ましくは、15nm~100nm、さらに好ましくは15nm~40nmである。なお、ここでいう粒径とは動的光散乱法により測定された平均粒径をいう。 The preferred range of the particle size of the particles (B) is 5 nm to 500 nm. When the thickness is less than 5 nm, it is difficult to uniformly disperse the particles, and conversely, the particles may aggregate to increase the apparent particle size in the undercoat layer. Moreover, when it exceeds 500 nm, a haze will raise and it may become cloudy white when a conductive laminated body is used for a display body. More preferably, it is 15 nm to 100 nm, and further preferably 15 nm to 40 nm. In addition, a particle diameter here means the average particle diameter measured by the dynamic light scattering method.
 粒子(B)は、有機粒子であっても無機粒子であっても、その両方を用いても構わない。すなわち、粒子(B)が無機粒子および/または有機粒子であることが好ましい。 The particles (B) may be organic particles, inorganic particles, or both. That is, the particles (B) are preferably inorganic particles and / or organic particles.
 有機粒子としては、例えばアクリル酸類、スチレン樹脂、熱硬化樹脂、シリコーンおよびイミド化合物等を構成成分とする粒子が挙げられる。ポリエステル重合反応時に添加する触媒等によって析出する粒子(いわゆる内部粒子)も好ましく用いられる。特に、親水性官能基を有するポリエステル樹脂への分散性、汎用性の観点から、スチレン/アクリル粒子が好ましい。液中で安定的に分散しているスチレン/アクリル粒子としては、日本合成化学化学工業(株)製“モビニール”(登録商標)972などが好ましく用いられる。 Examples of the organic particles include particles containing acrylic acid, styrene resin, thermosetting resin, silicone, imide compound, and the like as constituent components. Particles (so-called internal particles) that are precipitated by a catalyst added during the polyester polymerization reaction are also preferably used. In particular, styrene / acrylic particles are preferable from the viewpoint of dispersibility in a polyester resin having a hydrophilic functional group and versatility. As the styrene / acryl particles stably dispersed in the liquid, “Movinyl” (registered trademark) 972 manufactured by Nippon Synthetic Chemical Industry Co., Ltd. is preferably used.
 無機粒子としては、例えばシリカ、コロイダルシリカ、アルミナ、セリア、カオリン、タルク、マイカ、炭酸カルシウム、硫酸バリウム、カーボンブラック、ゼオライト、酸化チタン、各種金属酸化物からなる粒子が好ましい。特に、有機バインダーへの分散性や、粒子の硬度、耐熱性、耐アルカリ接着性の点から無機コロイド粒子が好ましく、コロイダルシリカが最も好ましい。さらには、コロイダルシリカ間の静電反発により溶媒中で分散安定しているコロイダルシリカであることが好ましい。 As the inorganic particles, for example, particles made of silica, colloidal silica, alumina, ceria, kaolin, talc, mica, calcium carbonate, barium sulfate, carbon black, zeolite, titanium oxide, and various metal oxides are preferable. In particular, inorganic colloidal particles are preferable from the viewpoint of dispersibility in an organic binder, particle hardness, heat resistance, and alkali resistance, and colloidal silica is most preferable. Furthermore, colloidal silica that is dispersed and stable in a solvent due to electrostatic repulsion between colloidal silica is preferable.
 コロイダルシリカ間の静電反発により溶媒中で分散安定しているコロイダルシリカは、コロイダルシリカ表面に-SiOH基や-OHイオンが存在し、負に帯電した状態で電気二重層が形成されている。コロイダルシリカ間の静電反発により溶媒中で分散安定しているコロイダルシリカとしては、日産化学工業(株)社製の“スノーテックス”(登録商標)シリーズや日揮触媒化成(株)社製の“カタロイド”シリーズなどが好ましく用いられる。 Colloidal silica, which is dispersed and stable in a solvent due to electrostatic repulsion between colloidal silica, has —SiOH groups and —OH 2 ions on the surface of colloidal silica, and an electric double layer is formed in a negatively charged state. . Colloidal silica that is dispersed and stable in a solvent due to electrostatic repulsion between colloidal silica includes “Snowtex” (registered trademark) series manufactured by Nissan Chemical Industries, Ltd. and “JGC Catalysts Chemical Co., Ltd.” The “Cataloid” series is preferably used.
 粒子(B)の形状は、特に限定されない。例えば、1次粒子の形状が球形(回転楕円体形、幾何学的な形状(立方体・ロッド状・板状・繊維状・テトラポッド形・三角柱形)を含む)の粒子が挙げられる。また、2次粒子の形状として、鎖状形(同形粒子がランダムに2次元的につながった数珠状の粒子)、パールネックレス状形(同形粒子がランダムに3次元的につながった数珠状の粒子)などが挙げられる。表面凹凸付与の観点より、球形、鎖状形、パールネックレス状形が好ましい。また、必要に応じてこれらの粒子を混合し併用することができる。 The shape of the particles (B) is not particularly limited. For example, the particle | grains of the shape of a primary particle are spherical (a spheroidal shape and a geometric shape (a cube, rod shape, plate shape, fiber shape, tetrapod shape, triangular prism shape) are mentioned). In addition, the secondary particle shape is a chain shape (a beaded particle in which isomorphic particles are randomly connected two-dimensionally) or a pearl necklace shape (a beaded particle in which isomorphic particles are randomly connected in three dimensions) ) And the like. From the viewpoint of imparting surface irregularities, a spherical shape, a chain shape, and a pearl necklace shape are preferable. Moreover, these particles can be mixed and used together as necessary.
 粒子の形状が球形とは、粒子が立体的な球状の粒子であることをいう。球形の無機粒子としては、日産化学工業(株)社製の“スノーテックス”“ナノユース”、“セルナックス”(登録商標)シリーズや日揮触媒化成(株)社製の“カタロイド”シリーズや日本触媒(株)社製の“シーホスター”(登録商標)シリーズなどが好ましく用いられる。球形の有機粒子としては、アイカ工業(株)社製の“ガンツパール”シリーズや東洋紡(株)社製の“タフチック”(登録商標)シリーズや日本触媒(株)社製の“エポスター”(登録商標)シリーズなどが好ましく用いられる。 The spherical shape of the particle means that the particle is a three-dimensional spherical particle. Spherical inorganic particles include “Snowtex” “Nanouse”, “CELNAX” (registered trademark) series manufactured by Nissan Chemical Industries, Ltd., “Cataloid” series manufactured by JGC Catalysts & Chemicals Co., Ltd. and Nippon Shokubai Co., Ltd. “Sea Hoster” (registered trademark) series manufactured by Co., Ltd. is preferably used. Spherical organic particles include the “Ganz Pearl” series manufactured by Aika Kogyo Co., Ltd., “Toughtic” (registered trademark) series manufactured by Toyobo Co., Ltd., and “Eposter” manufactured by Nippon Shokubai Co., Ltd. (registered) Trademark) series and the like are preferably used.
 粒子の形状が鎖状形とは、同形粒子(1次粒子)がランダムに2次元的につながった数珠状の粒子(2次粒子)であり、1次粒子が押しつぶされた細長い形状を有する形状であることをいう。鎖状形の無機粒子としては、日産化学工業(株)社製の“スノーテックス”(登録商標)シリーズや日揮触媒化成(株)社製の“カタロイド”シリーズなどが好ましく用いられる。鎖状形の有機粒子としては、東洋紡(株)社製の“タフチック”(登録商標)シリーズなどが好ましく用いられる。 The chain shape of the particles is a bead-like particle (secondary particle) in which isomorphous particles (primary particles) are randomly connected two-dimensionally, and has a long and narrow shape in which the primary particles are crushed. It means that. As the chain-like inorganic particles, “Snowtex” (registered trademark) series manufactured by Nissan Chemical Industries, Ltd., “Cataloid” series manufactured by JGC Catalysts & Chemicals Co., Ltd., etc. are preferably used. As the chain-like organic particles, “Toughtic” (registered trademark) series manufactured by Toyobo Co., Ltd. is preferably used.
 粒子の形状がパールネックレス状形とは、同形粒子(1次粒子)がランダムに3次元的につながった数珠状の粒子(2次粒子)であり、3次元の各方向に分岐した構造を有する粒子であり、1個のパールネックレス状形の粒子に着目すると、この粒子は数珠の球に相当する球状粒子(1次粒子)と糸に相当する粒子(1次粒子)とから構成されることをいう。パールネックレス状形の無機粒子としては、日産化学工業(株)社製の“スノーテックス”(登録商標)シリーズなどが好ましく用いられる。パールネックレス状形の有機粒子としては、東洋紡(株)社製の“タフチック”(登録商標)シリーズなどが好ましく用いられる。  The pearl necklace shape of the particle is a bead-like particle (secondary particle) in which isomorphous particles (primary particles) are randomly connected in three dimensions, and has a structure branched in each direction of three dimensions. Focusing on one pearl necklace-shaped particle, this particle is composed of spherical particles (primary particles) corresponding to beaded spheres and particles (primary particles) corresponding to yarns. Say. As the pearl necklace-shaped inorganic particles, “Snowtex” (registered trademark) series manufactured by Nissan Chemical Industries, Ltd. and the like are preferably used. As the pearl necklace-shaped organic particles, “Toughtic” (registered trademark) series manufactured by Toyobo Co., Ltd. is preferably used. *
 (4)アンダーコート層の形成方法
 前述した有機バインダー(A)、粒子(B)、並びに必要に応じて、添加剤や溶媒を含有する塗料組成物を基材上へ塗布し、必要に応じて溶媒を乾燥させることによって、基材上にアンダーコート層(X)を形成することができる。
(4) Forming method of undercoat layer The organic binder (A), the particles (B), and, if necessary, a coating composition containing an additive and a solvent are applied onto a substrate, and if necessary, By drying the solvent, the undercoat layer (X) can be formed on the substrate.
 また、塗料組成物の溶媒として水系溶媒を用いることが好ましい。水系溶媒を用いることで、乾燥工程での溶媒の急激な蒸発を抑制でき、均一なアンダーコート層(X)を形成できるだけでなく、環境負荷の点で優れているためである。 In addition, it is preferable to use an aqueous solvent as a solvent for the coating composition. By using an aqueous solvent, rapid evaporation of the solvent in the drying step can be suppressed, and not only a uniform undercoat layer (X) can be formed, but also the environmental load is excellent.
 ここで、水系溶媒とは水、または水とメタノール、エタノール、イソプロピルアルコール、ブタノール等のアルコール類、アセトン、メチルエチルケトンなどのケトン類、エチレングリコール、ジエチレングリコール、プロピレングリコール等のグリコール類など水に可溶である有機溶媒が任意の比率で混合されているものを指す。 Here, the aqueous solvent is soluble in water such as water or water and alcohols such as methanol, ethanol, isopropyl alcohol and butanol, ketones such as acetone and methyl ethyl ketone, and glycols such as ethylene glycol, diethylene glycol and propylene glycol. A certain organic solvent is mixed in an arbitrary ratio.
 塗料組成物の基材上への塗布方法はインラインコート法、オフコート法のどちらでも用いることができる。 As the coating method of the coating composition on the substrate, either an in-line coating method or an off-coating method can be used.
 インラインコート法とは、基材の製造工程内で塗布を行う方法である。具体的には、基材を構成する熱可塑性樹脂を溶融押し出ししてから二軸延伸後熱処理して巻き上げるまでの任意の段階で塗布を行う方法を指し、通常は、溶融押出し後、急冷して得られる実質的に非晶状態の未延伸(未配向)熱可塑性樹脂フィルム(Aフィルム)、その後に長手方向に延伸された一軸延伸(一軸配向)熱可塑性樹脂フィルム(Bフィルム)、またはさらに幅方向に延伸された熱処理前の二軸延伸(二軸配向)熱可塑性樹脂フィルム(Cフィルム)の何れかのフィルムに塗布する。 The in-line coating method is a method of applying in the manufacturing process of the substrate. Specifically, it refers to a method of coating at any stage from melt extrusion of the thermoplastic resin constituting the substrate to heat treatment after biaxial stretching, and usually, after melt extrusion, it is rapidly cooled. The resulting substantially amorphous unstretched (unoriented) thermoplastic resin film (A film), followed by uniaxially stretched (uniaxially oriented) thermoplastic resin film (B film), or further width It is applied to any film of biaxially stretched (biaxially oriented) thermoplastic resin film (C film) before heat treatment.
 オフコート法とは、既知のウェットコーティング方法、例えば吹き付け塗装、浸漬コーティング、スピンコーティング、ナイフコーティング、キスコーティング、グラビアコーティング、スロットダイコーティング、ロールコーティング、バーコーティング、スクリーン印刷、インクジェット印刷、パット印刷、他の種類の印刷などが利用できる。また、ドライコーティング方法を用いてもよい。乾式コーティング方法としては、スパッタリング、蒸着などの物理気相成長や化学気相成長などが利用できる。また塗布は、複数回に分けて行ってもよく、異なる2種類の塗布方法を組み合わせてもよい。好ましい塗布方法は、ウェットコーティングであるグラビアコーティング、バーコーティング、スロットダイコーティングである。 The off-coating method is a known wet coating method such as spray coating, dip coating, spin coating, knife coating, kiss coating, gravure coating, slot die coating, roll coating, bar coating, screen printing, inkjet printing, pad printing, Other types of printing can be used. Further, a dry coating method may be used. As the dry coating method, physical vapor deposition such as sputtering or vapor deposition, chemical vapor deposition, or the like can be used. Moreover, application | coating may be performed in multiple times and it may combine two different types of application | coating methods. Preferred coating methods are gravure coating, bar coating, and slot die coating, which are wet coatings.
 [導電層(Y)]
 本発明の導電積層体は、前記基材上に前記アンダーコート層(X)と導電層(Y)とを基材側からこの順で有する。導電層(Y)はカーボンナノチューブ(C)およびカーボンナノチューブ分散剤(D)を含む。導電層(Y)は例えば、タッチパネル、タッチスイッチ、液晶ディスプレイ、有機エレクトロルミネッセンス、電子ペーパーなどのディスプレイ関連の電極として機能する層である。
[Conductive layer (Y)]
The conductive laminate of the present invention has the undercoat layer (X) and the conductive layer (Y) in this order from the substrate side on the substrate. The conductive layer (Y) includes a carbon nanotube (C) and a carbon nanotube dispersant (D). The conductive layer (Y) is a layer that functions as a display-related electrode such as a touch panel, a touch switch, a liquid crystal display, organic electroluminescence, and electronic paper.
 (5)カーボンナノチューブ(C)
 本発明において用いられるカーボンナノチューブ(以下、CNT)(C)は、実質的にグラファイトの1枚面を巻いて筒状にした形状を有するものであれば特に限定されず、グラファイトの1枚面を1層に巻いた単層CNT、多層に巻いた多層CNTいずれも適用できるが、中でもグラファイトの1枚面を2層に巻いた2層CNTが100本中に50本以上含まれているCNTであると、導電性ならびに塗布用分散液中でのCNTの分散性が極めて高くなることから好ましい。さらに好ましくは100本中75本以上が2層CNT、最も好ましくは100本中80本以上が2層CNTである。なお、2層CNTが100本中に50本含まれていることを、2層CNTの割合が50%と表示することもある。また、2層CNTは酸処理などによって表面が官能基化された場合でも導電性などの本来の機能が損なわれ難い点からも好ましい。
(5) Carbon nanotube (C)
The carbon nanotube (hereinafter referred to as CNT) (C) used in the present invention is not particularly limited as long as it has a shape obtained by substantially winding one sheet of graphite into a cylindrical shape. Both single-walled CNTs wound in one layer and multi-walled CNTs wound in multiple layers can be applied. Among them, CNTs in which 50 or more of 100 double-layered CNTs in which one surface of graphite is wound in two layers are included. If it exists, it is preferable from electroconductivity and the dispersibility of CNT in the coating dispersion liquid becoming very high. More preferably, 75 or more of 100 are double-walled CNTs, and most preferably 80 or more of 100 are double-walled CNTs. It should be noted that the fact that 50 double-walled CNTs are contained in 100 may indicate that the ratio of double-walled CNTs is 50%. In addition, even when the surface of the two-walled CNT is functionalized by acid treatment or the like, it is preferable from the viewpoint that the original functions such as conductivity are hardly impaired.
 CNTは、例えば次のように製造される。マグネシアに鉄を担持した粉末状の触媒を、縦型反応器中、反応器の水平断面方向全面に存在させ、該反応器内にメタンを鉛直方向に供給し、メタンと前記触媒を500~1,200℃で接触させ、CNTを製造した後、CNTを酸化処理することにより、単層~5層のCNTを含有するCNTを得ることができる。CNTは、製造した後、酸化処理を施すことにより単層~5層の割合を、特に2層~5層の割合を増加させることができる。 CNT is manufactured as follows, for example. A powdered catalyst in which iron is supported on magnesia is present in the entire horizontal cross-sectional direction of the reactor in a vertical reactor, and methane is supplied in the vertical direction into the reactor. CNTs are produced by contacting them at 200 ° C., and then oxidizing the CNTs to obtain CNTs containing single to five layers of CNTs. CNTs can be manufactured and then subjected to an oxidation treatment to increase the ratio of single layers to five layers, particularly the ratio of two layers to five layers.
 酸化処理は例えば、硝酸処理する方法により行われる。硝酸はCNTに対するドーパントとしても作用するため、好ましい。ドーパントとは、CNTに余剰の電子を与える、または電子を奪ってホールを形成する作用をなすものであり、自由に動くことのできるキャリアを生じさせることにより、CNTの導電性を向上させるものである。硝酸処理に当たっての条件は本発明のCNTが得られる限り、特に限定されないが、通常、140℃のオイルバス中で行われる。硝酸処理の時間は特に限定されないが、5時間~50時間の範囲であることが好ましい。 The oxidation treatment is performed, for example, by a nitric acid treatment method. Nitric acid is preferable because it also acts as a dopant for CNT. Dopants are those that give surplus electrons to CNTs or take away electrons to form holes, and improve the conductivity of CNTs by generating carriers that can move freely. is there. The conditions for the nitric acid treatment are not particularly limited as long as the CNTs of the present invention can be obtained, but are usually performed in an oil bath at 140 ° C. The time for nitric acid treatment is not particularly limited, but is preferably in the range of 5 to 50 hours.
 (6)カーボンナノチューブ分散剤(D)
 本発明においてカーボンナノチューブ分散剤(以下、CNT分散剤)(D)としては、界面活性剤、各種分散剤(水溶性分散剤等)等を用いることができるが、分散性が高いイオン性分散剤を含むことが好ましい。イオン性分散剤としてはアニオン性分散剤やカチオン性分散剤、両性分散剤がある。CNT分散能が高く、分散性を保持できるものであればどの種類も用いることができるが、分散性、および分散保持性に優れることから、アニオン性分散剤が好ましい。なかでも、カルボキシメチルセルロースおよびその塩(ナトリウム塩、アンモニウム塩等)、ポリスチレンスルホン酸の塩が、CNT分散液においてCNTを効率的に分散することができるため好ましい。特に、イオン性分散剤がカルボキシメチルセルロースであることが好ましい。なかでも、CNT分散剤全体を100質量%としたとき、60質量%以上を占めることが好ましい。
(6) Carbon nanotube dispersant (D)
In the present invention, as the carbon nanotube dispersant (hereinafter referred to as CNT dispersant) (D), a surfactant, various dispersants (water-soluble dispersant, etc.) and the like can be used, but an ionic dispersant having high dispersibility. It is preferable to contain. Examples of the ionic dispersant include an anionic dispersant, a cationic dispersant, and an amphoteric dispersant. Any type can be used as long as it has a high CNT dispersibility and can maintain dispersibility, but an anionic dispersant is preferred because of its excellent dispersibility and dispersion retention. Of these, carboxymethylcellulose and its salts (sodium salt, ammonium salt, etc.) and polystyrenesulfonic acid salt are preferable because CNT can be efficiently dispersed in the CNT dispersion. In particular, the ionic dispersant is preferably carboxymethylcellulose. Especially, when the whole CNT dispersing agent is 100 mass%, it is preferable to occupy 60 mass% or more.
 本発明において、カルボキシメチルセルロース塩、ポリスチレンスルホン酸塩を用いる場合、塩を構成するカチオン性の物質としては、例えば、リチウム、ナトリウム、カリウム等のアルカリ金属のカチオン、カルシウム、マグネシウム、バリウム等のアルカリ土類金属のカチオン、アンモニウムイオン、あるいはモノエタノールアミン、ジエタノールアミン、トリエタノールアミン、モルホリン、エチルアミン、ブチルアミン、ヤシ油アミン、牛脂アミン、エチレンジアミン、ヘキサメチレンジアミン、ジエチレントリアミン、ポリエチレンイミン等の有機アミンのオニウムイオン、または、これらのポリエチレンオキシド付加物を用いることができるが、これらに限定されるものではない。 In the present invention, when carboxymethyl cellulose salt or polystyrene sulfonate is used, examples of the cationic substance constituting the salt include alkali metal cations such as lithium, sodium and potassium, and alkaline earth such as calcium, magnesium and barium. Metal cation, ammonium ion, or onium ion of organic amines such as monoethanolamine, diethanolamine, triethanolamine, morpholine, ethylamine, butylamine, coconut oil amine, beef tallow amine, ethylenediamine, hexamethylenediamine, diethylenetriamine, polyethyleneimine, Alternatively, these polyethylene oxide adducts can be used, but are not limited thereto.
 CNT分散液を調製する方法としては、原料として使用するCNTの表面改質および/またはCNT分散剤の選択により行われる。 As a method for preparing a CNT dispersion, it is performed by surface modification of CNT used as a raw material and / or selection of a CNT dispersant.
 CNT分散液を調整するためのCNT表面改質処理の方法は特に限定されないが、コロナ処理、プラズマ処理、フレーム処理などの物理処理、酸処理やアルカリ処理などの化学的処理により、カルボキシル基、ヒドロキシル基等のアニオン性基をCNT側壁に導入することが好ましい。 The method of the CNT surface modification treatment for adjusting the CNT dispersion is not particularly limited, but carboxyl groups, hydroxyl groups can be obtained by physical treatment such as corona treatment, plasma treatment and flame treatment, and chemical treatment such as acid treatment and alkali treatment. It is preferable to introduce an anionic group such as a group into the CNT side wall.
 CNT分散液を調整するためのCNT分散剤としては、CNT分散能が高く、分散性を保持できるものであればどの種類も用いることができる。中でも、分散剤として、上記記載のアニオン性分散剤が最も好ましい。アニオン性分散剤を使用した場合、CNT分散液のpHが5.5~11であると、CNT表面を修飾しているカルボン酸など酸性官能基や、CNTの周りに位置している分散剤に含まれるカルボン酸などの酸性官能基の電離度が向上し、その結果、CNT、あるいはCNT周りの分散剤がマイナスの電位を帯びる。以上より、CNT分散液を調製する方法として、静電反発を利用するために、アニオン性のイオン性分散剤を選択することが最も好ましい。 As the CNT dispersant for adjusting the CNT dispersion liquid, any type can be used as long as it has high CNT dispersion ability and can maintain dispersibility. Among these, as the dispersant, the anionic dispersant described above is most preferable. When an anionic dispersant is used, if the pH of the CNT dispersion is 5.5 to 11, an acidic functional group such as a carboxylic acid modifying the CNT surface or a dispersant located around the CNT is used. The ionization degree of acidic functional groups such as carboxylic acid contained is improved, and as a result, the CNT or the dispersant around the CNT has a negative potential. From the above, as a method for preparing the CNT dispersion, it is most preferable to select an anionic ionic dispersant in order to utilize electrostatic repulsion.
 また、前項に示した、CNTの表面改質を組み合わせることで、アニオン性分散剤に限らず、カチオン性分散剤および両性分散剤も用いることができる。 Also, by combining the CNT surface modification shown in the previous section, not only anionic dispersants but also cationic dispersants and amphoteric dispersants can be used.
 本発明では、アンダーコート層とCNT間との静電相互作用を利用するために、CNT分散液中に存在するアニオン性を有するCNTが、CNT分散液と比較してカチオン性を有するアンダーコート層の表面に引き寄せられ、静電吸着により高分散状態が実現できたと考えられる。よって、同様に、CNT分散液中に存在するカチオン性を有するCNTが、CNT分散液と比較してアニオン性を有するアンダーコート層の表面に引き寄せられ、静電吸着により高分散状態を実現することも可能である。 In the present invention, in order to use electrostatic interaction between the undercoat layer and the CNT, the anionic CNT present in the CNT dispersion is more cationic than the CNT dispersion. It is considered that a highly dispersed state was realized by electrostatic attraction and attracted to the surface of the film. Therefore, similarly, the cationic CNT present in the CNT dispersion is attracted to the surface of the undercoat layer having an anionic property compared to the CNT dispersion, and a high dispersion state is realized by electrostatic adsorption. Is also possible.
 CNT分散剤の重量平均分子量は100以上が好ましい。重量平均分子量が100以上であればCNTとの相互作用がより効果的に生じ、CNTの分散がより良好となるためである。CNTの長さにもよるが、重量平均分子量が大きいほどCNT分散剤がCNTと相互作用し分散性が向上するため好ましい。例えば、ポリマーの場合であれば、ポリマー鎖が長くなるとポリマーがCNTにからみつき、非常に安定な分散が可能となる。しかし、重量平均分子量が大きすぎると逆に分散性が低下する場合があるので、重量平均分子量は好ましくは1,000万以下であり、さらに好ましくは、100万以下である。最も好ましい重量平均分子量の範囲は1万~50万である。 The weight average molecular weight of the CNT dispersant is preferably 100 or more. This is because when the weight average molecular weight is 100 or more, the interaction with CNT occurs more effectively and the dispersion of CNT becomes better. Although it depends on the length of the CNT, it is preferable that the weight average molecular weight is large because the CNT dispersant interacts with the CNT and improves dispersibility. For example, in the case of a polymer, when the polymer chain becomes long, the polymer is entangled with the CNT, and very stable dispersion is possible. However, if the weight average molecular weight is too large, the dispersibility may be reduced. Therefore, the weight average molecular weight is preferably 10 million or less, and more preferably 1 million or less. The most preferred range of weight average molecular weight is 10,000 to 500,000.
 CNT分散液のpHは、アレニウスの定義による酸性物質や塩基性物質をCNT分散液に添加することで調整できる。酸性物質は、例えば、プロトン酸としては、塩酸、硫酸、硝酸、リン酸、ホウフッ化水素酸、フッ化水素酸、過塩素酸等の無機酸や、有機カルボン酸、フェノール類、有機スルホン酸等が挙げられる。さらに、有機カルボン酸としては、例えば、ギ酸、酢酸、ショウ酸、安息香酸、フタル酸、マレイン酸、フマル酸、マロン酸、酒石酸、クエン酸、乳酸、コハク酸、モノクロロ酢酸、ジクロロ酢酸、トリクロロ酢酸、トリフルオロ酢酸、ニトロ酢酸、トリフェニル酢酸等が挙げられる。有機スルホン酸としては、例えば、アルキルベンゼンスルホン酸、アルキルナフタレンスルホン酸、アルキルナフタレンジスルホン酸、ナフタレンスルホン酸ホルマリン重縮合物、メラミンスルホン酸ホルマリン重縮合物、ナフタレンジスルホン酸、ナフタレントリスルホン酸、ジナフチルメタンジスルホン酸、アントラキノンスルホン酸、アントラキノンジスルホン酸、アントラセンスルホン酸、ピレンスルホン酸などが挙げられる。この中でも好ましいのは、塗布乾燥時に揮発する揮発酸であり、例えば塩酸、硝酸などである。 The pH of the CNT dispersion liquid can be adjusted by adding an acidic substance or a basic substance defined by Arrhenius to the CNT dispersion liquid. Acidic substances include, for example, inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, borohydrofluoric acid, hydrofluoric acid, perchloric acid, organic carboxylic acids, phenols, organic sulfonic acids, etc. Is mentioned. Furthermore, examples of the organic carboxylic acid include formic acid, acetic acid, succinic acid, benzoic acid, phthalic acid, maleic acid, fumaric acid, malonic acid, tartaric acid, citric acid, lactic acid, succinic acid, monochloroacetic acid, dichloroacetic acid, and trichloroacetic acid. Trifluoroacetic acid, nitroacetic acid, triphenylacetic acid and the like. Examples of the organic sulfonic acid include alkylbenzene sulfonic acid, alkyl naphthalene sulfonic acid, alkyl naphthalene disulfonic acid, naphthalene sulfonic acid formalin polycondensate, melamine sulfonic acid formalin polycondensate, naphthalene disulfonic acid, naphthalene trisulfonic acid, dinaphthylmethane. Examples include disulfonic acid, anthraquinone sulfonic acid, anthraquinone disulfonic acid, anthracene sulfonic acid, and pyrene sulfonic acid. Among these, preferred are volatile acids that volatilize during coating and drying, such as hydrochloric acid and nitric acid.
 塩基性物質としては、例えば、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、アンモニアなどが挙げられる。この中でも好ましいのは、塗布乾燥時に揮発する揮発塩基であり、例えばアンモニアである。 Examples of basic substances include sodium hydroxide, potassium hydroxide, calcium hydroxide, and ammonia. Among these, preferred is a volatile base that volatilizes during coating and drying, such as ammonia.
 CNT分散液のpH調整は、pHを測定しながら、上記酸性物質および/または塩基性物質を所望のpHとなるまで添加することで行う。pH測定法としては、リトマス試験紙などのpH試験紙を用いる方法、水素電極法、キンヒドロン電極法、アンチモン電極法、ガラス電極法などが挙げられるが、この中でもガラス電極法が簡便であり、必要な精度を得られるため好ましい。また、酸性物質、あるいは、塩基性物質を過剰に添加して所望のpH値を超えてしまった場合には、逆の特性を持つ物質を添加してpHを調整すればよい。かかる調整に適用する酸性物質としては硝酸が、塩基性物質としてはアンモニアが好ましい。 The pH of the CNT dispersion is adjusted by adding the acidic substance and / or basic substance until the desired pH is reached while measuring the pH. Examples of the pH measurement method include a method using a pH test paper such as litmus test paper, a hydrogen electrode method, a quinhydrone electrode method, an antimony electrode method, a glass electrode method, etc. Among them, the glass electrode method is simple and requires the required accuracy. Is preferable. In addition, when an excessive amount of an acidic substance or basic substance is added to exceed a desired pH value, a substance having the opposite characteristics may be added to adjust the pH. Nitric acid is preferable as an acidic substance applied for such adjustment, and ammonia is preferable as a basic substance.
 本発明において用いられるCNT分散液の調製に用いる分散媒は、廃液の処理が容易である等の観点から、水が好ましい。 The dispersion medium used in the preparation of the CNT dispersion used in the present invention is preferably water from the viewpoint of easy treatment of the waste liquid.
 本発明において用いるCNT分散液の調製方法は、特に限定されないが、例えば次のような手順で行うことができる。分散時の処理時間が短縮できることから、一旦、分散媒中にCNTを0.003~0.15質量%の濃度範囲で含まれる分散液を調製した後、希釈することで、所定の濃度とすることが好ましい。本発明において、CNTに対する分散媒の質量比(すなわち、CNTの質量を1としたときの分散媒の質量)は10以下であることが好ましい。かかる好ましい範囲であると、均一に分散させることが容易である一方、導電性低下の影響が少ない。CNTに対する分散媒の質量比は0.5~9であることがより好ましく、1~6であることがさらに好ましく、2~3であることが特に好ましい。 The method for preparing the CNT dispersion used in the present invention is not particularly limited, and can be performed, for example, by the following procedure. Since the treatment time at the time of dispersion can be shortened, once a dispersion liquid containing CNT in a concentration range of 0.003 to 0.15 mass% in the dispersion medium is prepared and diluted, a predetermined concentration is obtained. It is preferable. In the present invention, the mass ratio of the dispersion medium to CNT (that is, the mass of the dispersion medium when the mass of CNT is 1) is preferably 10 or less. Within such a preferable range, it is easy to uniformly disperse, but there is little influence of the decrease in conductivity. The mass ratio of the dispersion medium to CNT is more preferably 0.5 to 9, further preferably 1 to 6, and particularly preferably 2 to 3.
 CNT分散液の調製時の分散手段としては、CNTと分散剤を分散媒中で塗液製造に慣用の混合分散機(例えばボールミル、ビーズミル、サンドミル、ロールミル、ホモジナイザー、超音波ホモジナイザー、高圧ホモジナイザー、超音波装置、アトライター、デゾルバー、ペイントシェーカー等)を用いて混合することが挙げられる。また、これら複数の混合分散機を組み合わせて段階的に分散を行ってもよい。中でも、振動ボールミルで予備的に分散を行った後、超音波装置を用いて分散する方法が、得られる塗布用分散液中のCNTの分散性が良好であることから好ましい。 As a dispersion means at the time of preparation of the CNT dispersion liquid, a CNT and a dispersant are mixed and dispersed in a dispersion medium, which is commonly used for coating liquid production (for example, a ball mill, a bead mill, a sand mill, a roll mill, a homogenizer, an ultrasonic homogenizer, a high-pressure homogenizer, A sonic device, an attritor, a resolver, a paint shaker, etc.). Moreover, you may disperse | distribute in steps, combining these some mixing dispersers. Among them, the method of preliminarily dispersing with a vibration ball mill and then dispersing using an ultrasonic device is preferable because the dispersibility of CNT in the obtained coating dispersion liquid is good.
 [透明導電性]
 透明導電性とは透明性と導電性を兼ね備えていることを示す。透明性の指標として、カーボンナノチューブ層光吸収率(以下、単に「光吸収率」と記載することもある)が挙げられる。カーボンナノチューブ層光吸収率は、波長550nmにおける次式で表される指標である。導電性の指標としては表面抵抗値が用いられ、表面抵抗値が低い方が導電性は高い。
[Transparent conductivity]
Transparent conductivity means having both transparency and conductivity. As an index of transparency, there is a carbon nanotube layer light absorptivity (hereinafter sometimes simply referred to as “light absorptance”). The carbon nanotube layer optical absorptance is an index represented by the following formula at a wavelength of 550 nm. A surface resistance value is used as an index of conductivity, and the lower the surface resistance value, the higher the conductivity.
 カーボンナノチューブ層光吸収率(550nm)=100-全光透過率(550nm)-相対反射率(550nm)。 Carbon nanotube layer light absorbance (550 nm) = 100−total light transmittance (550 nm) −relative reflectance (550 nm).
 本発明の導電積層体は、光吸収率および表面抵抗値が以下の(a)~(h)のいずれかを満たすことが好ましい。
(a)光吸収率が1%以上、2%未満、表面抵抗値が500Ω/□以上、2,000Ω/□以下
(b)光吸収率が2%以上、3%未満、表面抵抗値が200Ω/□以上、1,500Ω/□以下
(c)光吸収率が3%以上、4%未満、表面抵抗値が100Ω/□以上、500Ω/□以下
(d)光吸収率が4%以上、5%未満、表面抵抗値が80Ω/□以上、400Ω/□以下
(e)光吸収率が5%以上、7%未満、表面抵抗値が60Ω/□以上、300Ω/□以下
(f)光吸収率が7%以上、9%未満、表面抵抗値が50Ω/□以上、200Ω/□以下
(g)光吸収率が9%以上、11%未満、表面抵抗値が40Ω/□以上、150Ω/□以下
(h)光吸収率が11%以上、20%未満、表面抵抗値が30Ω/□以上、100Ω/□以下。
The conductive laminate of the present invention preferably satisfies any one of the following (a) to (h) in terms of light absorption rate and surface resistance value.
(A) Light absorption is 1% or more and less than 2%, surface resistance is 500Ω / □ or more and 2,000Ω / □ or less (b) Light absorption is 2% or more and less than 3%, and surface resistance is 200Ω / □ or more, 1,500Ω / □ or less (c) Light absorption rate of 3% or more and less than 4%, surface resistance value of 100Ω / □ or more, 500Ω / □ or less (d) Light absorption rate of 4% or more, 5 %, Surface resistance value of 80Ω / □ or more, 400Ω / □ or less (e) Light absorption rate of 5% or more and less than 7%, surface resistance value of 60Ω / □ or more, 300Ω / □ or less (f) Light absorption rate 7% or more, less than 9%, surface resistance value 50Ω / □ or more, 200Ω / □ or less (g) Light absorption rate 9% or more, less than 11%, surface resistance value 40Ω / □ or more, 150Ω / □ or less (H) The light absorption rate is 11% or more and less than 20%, and the surface resistance value is 30Ω / □ or more and 100Ω / □ or less.
 なお、透明性の指標として代表的なものは、光吸収率であり、導電層を1層含んだ透明導電積層体の光吸収率が実用的な意味がある。 Note that a typical index of transparency is a light absorptance, and the light absorptivity of a transparent conductive laminate including one conductive layer has a practical meaning.
 また、導電性の指標として代表的なものは、導電積層体の表面抵抗値であり、導電層を1層含んだ導電積層体の表面抵抗値が実用的な意味がある。 Also, a representative example of the conductivity index is the surface resistance value of the conductive laminate, and the surface resistance value of the conductive laminate including one conductive layer has a practical meaning.
 かかる導電性(表面抵抗値)、及び、透明性(カーボンナノチューブ層光吸収率)は、カーボンナノチューブ塗布量により調整することができる。しかしながら、カーボンナノチューブ塗布量が少ないと、導電性は低くなる一方、透明性は高くなり、塗布量が多いと導電性は高くなる一方、透明性は低くなる。すなわち、両者はトレードオフの関係にあり、両者を共に満たすことは困難である。かかる関係があるため、透明導電性を比較するためには、どちらかの指標を固定化してその上でもう一方の指標を比較する必要がある。 Such conductivity (surface resistance value) and transparency (carbon nanotube layer light absorption rate) can be adjusted by the coating amount of carbon nanotubes. However, when the coating amount of the carbon nanotube is small, the conductivity is low, while the transparency is high. When the coating amount is large, the conductivity is high, but the transparency is low. That is, both are in a trade-off relationship, and it is difficult to satisfy both. Because of this relationship, in order to compare the transparent conductivity, it is necessary to fix one index and then compare the other index.
 より好ましくは光吸収率および表面抵抗値が以下の(a1)~(h1)のいずれかを満たすことである。
(a1)光吸収率が1%以上、2%未満、表面抵抗値が500Ω/□以上、1,500Ω/□以下
(b1)光吸収率が2%以上、3%未満、表面抵抗値が200Ω/□以上、1,200Ω/□以下
(c1)光吸収率が3%以上、4%未満、表面抵抗値が100Ω/□以上、450Ω/□以下
(d1)光吸収率が4%以上、5%未満、表面抵抗値が80Ω/□以上、350Ω/□以下
(e1)光吸収率が5%以上、7%未満、表面抵抗値が60Ω/□以上、250Ω/□以下
(f1)光吸収率が7%以上、9%未満、表面抵抗値が50Ω/□以上、150Ω/□以下
(g1)光吸収率が9%以上、11%未満、表面抵抗値が40Ω/□以上、120Ω/□以下
(h1)光吸収率が11%以上、20%未満、表面抵抗値が30Ω/□以上、80Ω/□以下。
More preferably, the light absorption rate and the surface resistance value satisfy any of the following (a1) to (h1).
(A1) Light absorption is 1% or more and less than 2%, surface resistance is 500Ω / □ or more and 1,500Ω / □ or less (b1) Light absorption is 2% or more and less than 3%, and surface resistance is 200Ω. / □ or more, 1,200Ω / □ or less (c1) Light absorption of 3% or more and less than 4%, surface resistance value of 100Ω / □ or more, 450Ω / □ or less (d1) Light absorption of 4% or more, 5 %, Surface resistance value of 80Ω / □ or more, 350Ω / □ or less (e1) light absorption rate of 5% or more and less than 7%, surface resistance value of 60Ω / □ or more, 250Ω / □ or less (f1) light absorption rate 7% or more, less than 9%, surface resistance value 50Ω / □ or more, 150Ω / □ or less (g1) Light absorption rate 9% or more, less than 11%, surface resistance value 40Ω / □ or more, 120Ω / □ or less (H1) The light absorptance is 11% or more and less than 20%, and the surface resistance value is 30Ω / □ or more and 80Ω / □ or less.
 さらに好ましくは光吸収率と表面抵抗値が以下の(a2)~(h2)のいずれかを満たすことである。
(a2)光吸収率が1%以上、2%未満、表面抵抗値が500Ω/□以上、1,200Ω/□以下
(b2)光吸収率が2%以上、3%未満、表面抵抗値が200Ω/□以上、1,000Ω/□以下
(c2)光吸収率が3%以上、4%未満、表面抵抗値が100Ω/□以上、400Ω/□以下
(d2)光吸収率が4%以上、5%未満、表面抵抗値が80Ω/□以上、300Ω/□以下
(e2)光吸収率が5%以上、7%未満、表面抵抗値が60Ω/□以上、200Ω/□以下
(f2)光吸収率が7%以上、9%未満、表面抵抗値が50Ω/□以上、130Ω/□以下
(g2)光吸収率が9%以上、11%未満、表面抵抗値が40Ω/□以上、100Ω/□以下
(h2)光吸収率が11%以上、20%未満、表面抵抗値が30Ω/□以上、70Ω/□以下。
More preferably, the light absorption rate and the surface resistance value satisfy any of the following (a2) to (h2).
(A2) Light absorption rate of 1% or more and less than 2%, surface resistance value of 500Ω / □ or more, 1,200Ω / □ or less (b2) Light absorption rate of 2% or more and less than 3%, surface resistance value of 200Ω / □ or more, 1,000Ω / □ or less (c2) Light absorption of 3% or more and less than 4%, surface resistance value of 100Ω / □ or more, 400Ω / □ or less (d2) Light absorption of 4% or more, 5 %, Surface resistance value of 80Ω / □ or more, 300Ω / □ or less (e2) light absorption rate of 5% or more and less than 7%, surface resistance value of 60Ω / □ or more, 200Ω / □ or less (f2) light absorption rate 7% or more, less than 9%, surface resistance value 50Ω / □ or more, 130Ω / □ or less (g2) Light absorption rate 9% or more, less than 11%, surface resistance value 40Ω / □ or more, 100Ω / □ or less (H2) The light absorption rate is 11% or more and less than 20%, and the surface resistance value is 30Ω / □ or more and 70Ω / □ or less.
 [耐湿度依存性]
 本発明の導電積層体は、25℃、相対湿度30%~90%における表面抵抗値変化率が20%以下であることが好ましい。ここで相対湿度30%~90%における表面抵抗値変化率とは、実施例の項で詳細を説明するが、相対湿度30%で20分、50%で20分、90%で30分、30%で20分の順で保持し、抵抗値の経時変化を測定したときに、測定した抵抗値の最小値をm、最大値をMとしたとき、以下の式(1)で求められる表面抵抗値変化率のことである。
表面抵抗値変化率=(M-m)/m ×100  ・・・・・(1)。
[Humidity resistance]
The conductive laminate of the present invention preferably has a surface resistance value change rate of 20% or less at 25 ° C. and a relative humidity of 30% to 90%. Here, the rate of change in surface resistance value at a relative humidity of 30% to 90% will be described in detail in the Examples section. The relative humidity is 30%, 20 minutes at 50%, 20 minutes at 50%, 30 minutes at 90%, 30 % In the order of 20 minutes, and when the change in resistance value over time is measured, when the minimum value of the measured resistance value is m and the maximum value is M, the surface resistance obtained by the following equation (1) It is the value change rate.
Surface resistance value change rate = (M−m) / m × 100 (1).
 表面抵抗値変化率を20%以下とすることでタッチパネルとした際の誤操作を防止できる点で好ましい。より好ましくは表面抵抗値変化率が15%以下、さらに好ましくは10%以下である。 The surface resistance value change rate is set to 20% or less, which is preferable in that an erroneous operation can be prevented when the touch panel is used. More preferably, the rate of change in the surface resistance value is 15% or less, more preferably 10% or less.
 [導電積層体の製造方法]
 本発明の導電積層体を製造する方法としては、基材上に、ぬれ張力が76~105mN/mであるアンダーコート層(X)を設けるアンダーコート層(X)形成工程と、カーボンナノチューブ(C)およびカーボンナノチューブ分散剤(D)を含む分散液をアンダーコート層(X)上に設け導電層(Y)を形成する導電層(Y)形成工程とを有する導電積層体の製造方法が好ましい。以下で各工程を説明する。
[Method for producing conductive laminate]
As the method for producing the conductive laminate of the present invention, an undercoat layer (X) forming step of providing an undercoat layer (X) having a wetting tension of 76 to 105 mN / m on a substrate, a carbon nanotube (C And a conductive layer (Y) forming step of forming a conductive layer (Y) by providing a dispersion containing the carbon nanotube dispersant (D) on the undercoat layer (X) is preferable. Each step will be described below.
 [アンダーコート層(X)形成工程]
 前述した[アンダーコート層(X)]の項で説明したとおり、有機バインダー(A)、粒子(B)、並びに必要に応じて、添加剤や溶媒を含有する塗料組成物を基材上へ塗布し、必要に応じて溶媒を乾燥させることによって、基材上にぬれ張力が76~105mN/mであるアンダーコート層(X)を形成することができる。
[Undercoat layer (X) forming step]
As described in the section of [Undercoat layer (X)], a coating composition containing an organic binder (A), particles (B), and, if necessary, an additive and a solvent is applied onto a substrate. Then, the undercoat layer (X) having a wetting tension of 76 to 105 mN / m can be formed on the substrate by drying the solvent as necessary.
 [導電層(Y)形成工程]
 本発明の導電積層体において、導電層(Y)はCNT分散液をアンダーコート層の上に塗布する塗布工程と、その後分散媒を除去する乾燥工程を経て形成される。塗布工程では、前記方法により得たCNT分散液を、基材上に設けたアンダーコート層の上に塗布するとき、親水性の部位を持ちCNTを取り巻くCNT分散剤が、親水性を有するアンダーコート層の表面に引き寄せられると考えられる。
[Conductive layer (Y) formation step]
In the conductive laminate of the present invention, the conductive layer (Y) is formed through a coating process in which the CNT dispersion is applied on the undercoat layer, and a drying process in which the dispersion medium is subsequently removed. In the coating step, when the CNT dispersion obtained by the above method is applied on the undercoat layer provided on the substrate, the CNT dispersant having a hydrophilic portion and surrounding the CNT is a hydrophilic undercoat. It is thought to be attracted to the surface of the layer.
 また、その後分散媒を乾燥させてCNTをアンダーコート層上に固定して導電層(Y)を形成するが、分散媒がアンダーコート層の上に残存しており、CNT分散剤(D)が導電層(Y)からアンダーコート層の表面へ移動可能な状態である間は、塗布時と同様、CNT分散剤が親水基を有するアンダーコート層の表面に引き寄せられ、吸着されると考えられる。 The dispersion medium is then dried to fix the CNTs on the undercoat layer to form a conductive layer (Y). However, the dispersion medium remains on the undercoat layer, and the CNT dispersant (D) While being able to move from the conductive layer (Y) to the surface of the undercoat layer, it is considered that the CNT dispersant is attracted and adsorbed to the surface of the undercoat layer having a hydrophilic group as in the case of application.
 このように、アンダーコート層(X)に分散剤が引き寄せられることで、導電層(Y)のCNT分散剤量が低下しているものと考えられる。かかるアンダーコート層(X)へのCNT分散剤が引き寄せられる現象は、ぬれ張力が76~105mN/mである親水性のアンダーコート層を用いることにより、より好ましく進行する。また、CNT分散液を塗布厚み1μm~50μmの範囲で塗布し、分散媒が導電層(Y)中から乾燥によって除去される時間が0.1秒~100秒の範囲であれば、かかるメカニズムによる分散剤の吸着をより効果的に生じさせることができるため好ましい。 Thus, it is considered that the amount of the CNT dispersant in the conductive layer (Y) is reduced by attracting the dispersant to the undercoat layer (X). The phenomenon of attracting the CNT dispersant to the undercoat layer (X) proceeds more preferably by using a hydrophilic undercoat layer having a wetting tension of 76 to 105 mN / m. In addition, if the CNT dispersion is applied in a coating thickness range of 1 μm to 50 μm and the dispersion medium is removed from the conductive layer (Y) by drying in the range of 0.1 seconds to 100 seconds, this mechanism is used. Since adsorption of a dispersing agent can be produced more effectively, it is preferable.
 また、CNT分散液を基材上に塗布後乾燥させて作製する導電積層体においては、塗布後の乾燥時の分散液の濃度上昇や、CNT分散液と基材との間に生じる静電反発力により、CNTのバンドル化が起こる場合がある。ところが、分散液中においてCNTをマイナスに帯電させるとともに、かかるCNT分散液を、アンダーコート層上に塗布して乾燥させることにより、CNT分散液中に分散したCNTがアンダーコート層に静電吸着され、基材上での乾燥時に起こっていたCNTのバンドル化を抑制することができるため好ましい。これにより、透明導電性に優れた導電積層体を得ることができる。 In addition, in a conductive laminate produced by applying a CNT dispersion onto a substrate and drying it, the concentration of the dispersion during drying after application and electrostatic repulsion generated between the CNT dispersion and the substrate are increased. Due to the force, CNTs may be bundled. However, CNTs are negatively charged in the dispersion, and the CNT dispersion is applied onto the undercoat layer and dried, so that the CNT dispersed in the CNT dispersion is electrostatically adsorbed to the undercoat layer. It is preferable because the bundling of CNT that has occurred during drying on the substrate can be suppressed. Thereby, the conductive laminated body excellent in transparent conductivity can be obtained.
 本発明の導電積層体において、分散液を基材上に塗布する方法は特に限定されない。既知の塗布方法、例えば吹き付け塗装、浸漬コーティング、スピンコーティング、ナイフコーティング、キスコーティング、グラビアコーティング、スロットダイコーティング、バーコーティング、ロールコーティング、スクリーン印刷、インクジェット印刷、パット印刷、他の種類の印刷などが利用できる。また塗布は、複数回に分けて行ってもよく、異なる2種類の塗布方法を組み合わせてもよい。最も好ましい塗布方法は、グラビアコーティング、バーコーティング、スロットダイコーティングである。 In the conductive laminate of the present invention, the method for applying the dispersion onto the substrate is not particularly limited. Known application methods such as spray coating, dip coating, spin coating, knife coating, kiss coating, gravure coating, slot die coating, bar coating, roll coating, screen printing, inkjet printing, pad printing, other types of printing, etc. Available. Moreover, application | coating may be performed in multiple times and it may combine two different types of application | coating methods. The most preferred application methods are gravure coating, bar coating, and slot die coating.
 CNT分散液を基材上に塗布する際の塗布厚みは、CNT分散液の濃度にも依存するため、望む表面抵抗値が得られるように適宜調整すればよい。本発明におけるCNT塗布量は、導電性を必要とする種々の用途を達成するために、容易に調整可能である。例えば、塗布量が0.1mg/m~30mg/mであれば、以下で示すオーバーコート層形成後の光吸収率を20%以下とすることができるため好ましい。 The coating thickness at the time of applying the CNT dispersion on the substrate depends on the concentration of the CNT dispersion, and therefore may be appropriately adjusted so as to obtain a desired surface resistance value. The amount of CNT applied in the present invention can be easily adjusted in order to achieve various applications that require electrical conductivity. For example, a coating amount of 0.1 mg / m 2 to 30 mg / m 2 is preferable because the light absorption after the formation of the overcoat layer described below can be 20% or less.
 [オーバーコート層]
 本発明の導電積層体は導電層(Y)の上にオーバーコート層を有することが好ましい。なお、オーバーコート層は透明性を向上させるために透明被膜からなることが好ましい。オーバーコート層を有することにより、さらに透明導電性や耐熱性安定性、耐湿熱安定性を向上できるため好ましい。
[Overcoat layer]
The conductive laminate of the present invention preferably has an overcoat layer on the conductive layer (Y). In addition, it is preferable that an overcoat layer consists of a transparent film in order to improve transparency. It is preferable to have an overcoat layer because the transparent conductivity, heat resistance stability, and heat and humidity resistance can be further improved.
 オーバーコート層の材料としては有機材料、無機材料ともに用いることができるが、抵抗値安定性の観点から無機材料が好ましい。無機材料としては、シリカ、酸化錫、アルミナ、ジルコニア、チタニア等の金属酸化物が挙げられるが、抵抗値安定性の観点からシリカが好ましい。 As the material for the overcoat layer, both an organic material and an inorganic material can be used, but an inorganic material is preferable from the viewpoint of resistance value stability. Examples of the inorganic material include metal oxides such as silica, tin oxide, alumina, zirconia, and titania. Silica is preferable from the viewpoint of resistance value stability.
 本発明の導電積層体において、オーバーコート層を導電層(Y)の上に設ける方法は特に限定されない。既知のウェットコーティング方法、例えば吹き付け塗装、浸漬コーティング、スピンコーティング、ナイフコーティング、キスコーティング、ロールコーティング、グラビアコーティング、スロットダイコーティング、バーコーティング、スクリーン印刷、インクジェット印刷、パット印刷、他の種類の印刷、または他の種類の印刷などが利用できる。また、乾式コーティング方法を用いてもよい。乾式コーティング方法としては、スパッタリング、蒸着などの物理気相成長や化学気相成長などが利用できる。またオーバーコート層を導電層の上に設ける操作は、複数回に分けて行ってもよく、異なる2種類の方法を組み合わせてもよい。好ましい方法は、ウェットコーティングであるグラビアコーティング、バーコーティング、スロットダイコーティングである。 In the conductive laminate of the present invention, the method for providing the overcoat layer on the conductive layer (Y) is not particularly limited. Known wet coating methods such as spray coating, dip coating, spin coating, knife coating, kiss coating, roll coating, gravure coating, slot die coating, bar coating, screen printing, inkjet printing, pad printing, other types of printing, Or other types of printing can be used. Further, a dry coating method may be used. As the dry coating method, physical vapor deposition such as sputtering or vapor deposition, chemical vapor deposition, or the like can be used. Further, the operation of providing the overcoat layer on the conductive layer may be performed in a plurality of times, or two different methods may be combined. Preferred methods are gravure coating, bar coating, slot die coating, which are wet coatings.
 ウェットコーティングを用いてシリカ層を形成する方法として、有機シラン化合物を用いることが好ましく、例えばテトラメトキシシラン、テトラエトキシシラン、テトラ-n-プロポキシシラン、テトラ-iso-プロポキシシラン、テトラ-n-ブトキシシランなどのテトラアルコキシシランなどの有機シラン化合物を加水分解して作製したシリカゾルを溶媒に溶解したものを塗布液として、前記ウェットコーティングを行い、溶媒乾燥時に、シラノール基同士の脱水縮合を生じさせ、シリカ薄膜を形成させる方法が挙げられる。 As a method for forming a silica layer using a wet coating, an organic silane compound is preferably used, for example, tetramethoxysilane, tetraethoxysilane, tetra-n-propoxysilane, tetra-iso-propoxysilane, tetra-n-butoxy. Using a silica sol prepared by hydrolyzing an organosilane compound such as tetraalkoxysilane such as silane dissolved in a solvent, the wet coating is performed, and when the solvent is dried, dehydration condensation occurs between silanol groups, The method of forming a silica thin film is mentioned.
 オーバーコート層の厚みは、塗布液中のシリカゾル濃度および塗布時の塗布厚みを調整することで制御する。オーバーコート層の厚みとしては、10nm以上200nm以下とすることがより好ましい。オーバーコート層の厚みが10nmより薄いとCNTの導電性を向上させている硝酸などのドーパントの飛散を抑えられず耐熱性が低下する場合がある。オーバーコート層の厚みが200nmより厚いとCNTが有るところと無いところの反射光量の差が大きくなり骨見えする場合がある。 The thickness of the overcoat layer is controlled by adjusting the silica sol concentration in the coating solution and the coating thickness at the time of coating. The thickness of the overcoat layer is more preferably 10 nm or more and 200 nm or less. When the thickness of the overcoat layer is less than 10 nm, the scattering of dopants such as nitric acid improving the conductivity of the CNTs cannot be suppressed, and the heat resistance may be lowered. If the thickness of the overcoat layer is greater than 200 nm, the difference in the amount of reflected light between where the CNT is present and where it is absent may be visible.
 [用途]
 本発明の導電積層体は、例えば、タッチパネル、タッチスイッチ、液晶ディスプレイ、有機エレクトロルミネッセンス、電子ペーパーなどのディスプレイ関連の電極として好ましく用いることができる。
[Usage]
The conductive laminate of the present invention can be preferably used as a display-related electrode such as a touch panel, a touch switch, a liquid crystal display, organic electroluminescence, and electronic paper.
 すなわち、本発明の導電積層体または本発明の製造方法によって得られた導電積層体は透明導電性に優れるため、タッチパネルやタッチスイッチ等が好適な用途として挙げられる。 That is, since the conductive laminate of the present invention or the conductive laminate obtained by the production method of the present invention is excellent in transparent conductivity, a touch panel, a touch switch, and the like are preferable.
 以下、本発明の導電積層体および本発明の導電積層体の製造方法を実施例に基づき具体的に説明する。ただし、本発明は以下の実施例に限定されるものではない。 Hereinafter, the conductive laminate of the present invention and the method for producing the conductive laminate of the present invention will be specifically described based on examples. However, the present invention is not limited to the following examples.
 <各種評価方法>
 (1)導電積層体の光吸収率
 5cm×10cmにサンプリングした導電積層体を(株)島津製作所製の紫外可視赤外分光光度計UV-3150を用いて測定した。導電積層体の導電層が形成された側から垂直に光を入射させ、550nmの全光透過率と相対反射率を測定して下式により光吸収率を算出することで、導電積層体の光吸収率を求めた。
光吸収率(550nm)=100-全光透過率(550nm)-相対反射率(550nm)。
<Various evaluation methods>
(1) Light Absorption Rate of Conductive Laminate A conductive laminate sampled at 5 cm × 10 cm was measured using an ultraviolet-visible infrared spectrophotometer UV-3150 manufactured by Shimadzu Corporation. Light is incident vertically from the side of the conductive laminate on which the conductive layer is formed, and the total light transmittance and relative reflectance at 550 nm are measured. Absorption rate was determined.
Light absorptance (550 nm) = 100−total light transmittance (550 nm) −relative reflectance (550 nm).
 (2)導電積層体の表面抵抗値
 5cm×10cmにサンプリングした導電積層体のCNT層側の中央部にプローブを密着させて、4端子法により室温下で抵抗値を測定した。使用した装置は、ダイアインスツルメンツ(株)製の抵抗率計MCP-T360型、使用したプローブはダイアインスツルメンツ(株)製の4探針プローブMCP-TPO3Pである。
(2) Surface Resistance Value of Conductive Laminate A probe was brought into close contact with the central portion on the CNT layer side of the conductive laminate sampled to 5 cm × 10 cm, and the resistance value was measured at room temperature by a four-terminal method. The apparatus used was a resistivity meter MCP-T360 manufactured by Dia Instruments, and the probe used was a 4-probe probe MCP-TPO3P manufactured by Dia Instruments.
 (3)ぬれ張力測定
 アンダーコート層のぬれ張力の測定はISO8296(2003) Plastics- Film and sheeting-Determination of wetting tensionで規定されている方法に従った。
(3) Wetting tension measurement Wetting tension of the undercoat layer was measured according to the method specified in ISO8296 (2003) Plastics- Film and sheeting-Determination of wetting tension.
 表面張力の異なる、各種のぬれ張力試験用混合液を用意した。後述するアンダーコート層を形成した後、室温23℃、相対湿度50%の雰囲気下で、アンダーコート層表面にぬれ張力試験用混合液を、綿棒又はブラシを用いて速やかに広げた。ぬれ張力の有無の判定は、ぬれ張力試験用混合液の液膜を観察し、2秒後の液膜の状態で行った。2秒後の液膜が破れを生じないで塗布された状態を保っているものは、ぬれている、すなわちその表面張力のぬれ張力を有することになる。2秒後の液膜が破れを生じ、塗布された状態を保っていないものは、ぬれていないことになる。ぬれている場合は、さらに、次に表面張力の高いぬれ張力試験用混合液に進み、また逆に、ぬれていない場合は、次の表面張力の低い混合液に進む。この操作を繰り返して、最も高いぬれ張力の値を定めた。なお、ぬれ張力試験用混合液として、Arcotest社製テストインクを用いた。 A variety of wet tension test mixtures with different surface tensions were prepared. After forming an undercoat layer to be described later, a wet tension test mixture was quickly spread on the surface of the undercoat layer using a cotton swab or a brush in an atmosphere of room temperature 23 ° C. and relative humidity 50%. The presence or absence of the wet tension was determined by observing the liquid film of the mixed liquid for the wet tension test and in the state of the liquid film after 2 seconds. A liquid film that has been applied without tearing after 2 seconds is wet, that is, has a wetting tension of its surface tension. If the liquid film after 2 seconds breaks and the applied state is not maintained, it will not be wet. If it is wet, the process further proceeds to a liquid mixture for wet tension test having the next highest surface tension, and conversely if it is not wet, the process proceeds to the next liquid mixture having a lower surface tension. This operation was repeated to determine the highest wetting tension value. In addition, the test ink made from Arcotest was used as the liquid mixture for the wet tension test.
 (4)タッチパネルの骨見え
 骨見え評価をするため、まずはパターンを有する導電積層体の作成を行った。導電積層体を波長1,064nm、1パルス時間15ns、1パルスエネルギー25μJ、パルス周波数200Hz、操作速度2,000mm/sの条件で、パターン幅を調整するためにレーザーのスポット径を25μmに設定してレーザーエッチングした。
(4) Bone appearance of touch panel In order to evaluate bone appearance, first, a conductive laminate having a pattern was prepared. In order to adjust the pattern width of the conductive laminate under the conditions of wavelength 1,064 nm, pulse time 15 ns, pulse energy 25 μJ, pulse frequency 200 Hz, operation speed 2,000 mm / s, the laser spot diameter is set to 25 μm. And laser etched.
 次に、上記、パターンを有する導電積層体を用いてタッチパネルの作成を実施した。透明粘着フィルム((株)巴川製紙所製TI14A、厚み25μm)を用いて、1枚の導電積層体の導電層がある表面と、1枚のハードコートフィルム(東レフィルム加工(株)製“タフトップ”(登録商標)THS、厚み50μm)のハードコートがない表面を向かい合せてラミネート加工した。 Next, a touch panel was created using the conductive laminate having the pattern. Using a transparent adhesive film (TI14A manufactured by Yodogawa Paper Co., Ltd., thickness 25 μm), a surface having a conductive layer of one conductive laminate and a hard coat film (“Tough” manufactured by Toray Film Processing Co., Ltd.) Laminates were face-to-face facing each other without a hard coat of “top” (registered trademark) THS, thickness 50 μm).
 上記のとおり、タッチパネルを作成し、タッチパネルの真上に50cmの距離で三波長蛍光管を設置した。次にタッチパネルに対し、観察者が30cmの距離に立ち、タッチパネルと三波長蛍光管間で結んだ線と、タッチパネルと観察者を結んだ線のなす角が45度になるように観察を行った。5人の観察者のうち5人全員が骨見えが見えない場合はS、4人が骨見えが見えず、1人が骨見えが見える場合はA、1人以上3人以下が骨見えが見えず、2人以上が骨見えが見える場合はB、5人全員が骨見えが見える場合はCとした。 As described above, a touch panel was prepared, and a three-wavelength fluorescent tube was installed at a distance of 50 cm directly above the touch panel. Next, the observer stands at a distance of 30 cm with respect to the touch panel, and the angle formed by the line connecting the touch panel and the three-wavelength fluorescent tube and the line connecting the touch panel and the observer is 45 degrees. . If all 5 out of 5 observers cannot see the bones, S, 4 cannot see the bones, and 1 person can see the bones. A, 1 to 3 people can see the bones. B was shown when two or more people could see the bone, and C when all the five people could see the bone.
 (5)中心面平均粗さSRa
 三次元表面粗さ測定機(小坂研究所社製)を用いて、以下の条件で各層表面について測定した。
システム:三次元表面粗さ解析システム「i-Face model TDA31」
X軸測定長さ/ピッチ:500μm/1.0μm
Y軸測定長さ/ピッチ:400μm/5.0μm
測定速度:0.1mm/s
測定環境:温度23℃、相対湿度65%RH、大気中。
(5) Center plane average roughness SRa
Using a three-dimensional surface roughness measuring machine (manufactured by Kosaka Laboratory), the surface of each layer was measured under the following conditions.
System: Three-dimensional surface roughness analysis system “i-Face model TDA31”
X-axis measurement length / pitch: 500 μm / 1.0 μm
Y-axis measurement length / pitch: 400 μm / 5.0 μm
Measurement speed: 0.1 mm / s
Measurement environment: temperature 23 ° C., relative humidity 65% RH, in air.
 (6)耐湿度依存性
 25℃、相対湿度30%~90%における表面抵抗値変化率、すなわち耐湿度依存性の評価は以下のようにして実施した。抵抗値は5cm×10cmにサンプリングした導電積層体の端部5mm幅に太陽インキ株式会社製導電ペースト“ECM” (登録商標)-100AFを80μmの厚みになるように塗布し、90℃で60分加熱乾固させ、その乾固した導電ペースト部に株式会社カスタム製デジタルテスタCDM-17Dを用いて測定した。上記サンプルをエスペック株式会社製SH-221小型環境試験機内に入れ、相対湿度30%で20分、50%で20分、90%で30分、30%で20分の順で保持し、抵抗値の経時変化を測定した。各相対湿度・温度で所定時間保持した後に測定した各抵抗値のうち最小値をm、最大値をMとした時、下記の式(1)に従って表面抵抗値変化率を求めた。
表面抵抗値変化率=(M-m)/m ×100  ・・・・・(1)。
(6) Humidity resistance evaluation The rate of change in surface resistance value at 25 ° C. and a relative humidity of 30% to 90%, that is, the evaluation of humidity resistance dependency was carried out as follows. The resistance value was 5 cm × 10 cm, and the conductive laminate “ECM” (registered trademark) -100AF manufactured by Taiyo Ink Co., Ltd. was applied to a width of 5 mm at the end of the conductive laminate to a thickness of 80 μm, and the temperature was 90 ° C. for 60 minutes. The mixture was heated to dryness, and the dried conductive paste part was measured using a custom digital tester CDM-17D. Place the above sample in the SH-221 small environmental testing machine manufactured by Espec Co., Ltd., hold for 20 minutes at 30% relative humidity, 20 minutes at 50%, 30 minutes at 90%, and 20 minutes at 30%. Was measured over time. The surface resistance value change rate was determined according to the following formula (1), where m is the minimum value and M is the maximum value of each resistance value measured after holding at each relative humidity and temperature for a predetermined time.
Surface resistance value change rate = (M−m) / m × 100 (1).
 <基材>
 各実施例及び比較例に使用した基材を以下に示す。
<Base material>
The base materials used in each example and comparative example are shown below.
 (1)基材A
 ・ポリエチレンテレフタレートフィルム(東レ(株)製 “ルミラー”(登録商標)U48)
 ・厚み50μm。
(1) Substrate A
・ Polyethylene terephthalate film ("Lumirror" (registered trademark) U48 manufactured by Toray Industries, Inc.)
-Thickness 50 μm.
 (2)基材B
 ・ポリカーボネートフィルム(三菱ガス化学(株)製 “ユーピロン”(登録商標)FE-2000)
 ・厚み100μm。
(2) Base material B
Polycarbonate film (“Iupilon” (registered trademark) FE-2000 manufactured by Mitsubishi Gas Chemical Company, Inc.)
-Thickness 100 μm.
 (3)基材C
 実質的に粒子を含有しないPETペレット(極限粘度0.63dl/g)を充分に真空乾燥した後、押し出し機に供給し285℃で溶融し、T字型口金よりシート状に押し出し、静電印加キャスト法を用いて表面温度25℃の鏡面キャスティングドラムに巻き付けて冷却固化せしめた。この未延伸PETフィルムを90℃に加熱して長手方向に3.4倍延伸し、一軸延伸PETフィルムとした。
(3) Base material C
PET pellets (extreme viscosity 0.63 dl / g) substantially free of particles are sufficiently vacuum dried, then supplied to an extruder, melted at 285 ° C., extruded into a sheet form from a T-shaped die, and electrostatically applied Using a casting method, it was wound around a mirror casting drum having a surface temperature of 25 ° C. to be cooled and solidified. This unstretched PET film was heated to 90 ° C. and stretched 3.4 times in the longitudinal direction to obtain a uniaxially stretched PET film.
 <バインダー>
 各実施例および比較例に用いた各バインダーを以下に示す。
<Binder>
Each binder used in each example and comparative example is shown below.
 (1)有機バインダー(A):
 親水性官能基を有するポリエステル樹脂を含む有機バインダー(高松油脂(株)製 A640-GEX 固形分濃度20質量%、水溶媒)を水及びイソプロピルアルコール(以下、IPAと記載)で希釈し、水とIPAとの比率が質量比で7:3、樹脂の固形分濃度が5質量%になるようにした。
(1) Organic binder (A):
An organic binder containing a polyester resin having a hydrophilic functional group (A640-GEX manufactured by Takamatsu Yushi Co., Ltd., solid content concentration: 20% by mass, water solvent) is diluted with water and isopropyl alcohol (hereinafter referred to as IPA). The ratio with IPA was 7: 3 by mass ratio, and the solid content concentration of the resin was 5 mass%.
 (2)有機バインダー(B):
 親水性官能基を有するアクリル樹脂を含む有機バインダー(三井化学(株)製 “ノストラ”(登録商標)DBH 固形分濃度40質量%、メタノール 1-メトキシ-2プロパノール(以下、PGMEと記載)溶媒)をメタノール及びPGMEで希釈し、メタノールとPGMEとの比率が質量比で5:5、樹脂の固形分濃度が20質量%になるようにした。
(2) Organic binder (B):
Organic binder containing an acrylic resin having a hydrophilic functional group (“Nostra” (registered trademark) DBH, solid content concentration 40% by mass, methanol 1-methoxy-2-propanol (hereinafter referred to as PGME) solvent manufactured by Mitsui Chemicals, Inc.) Was diluted with methanol and PGME so that the ratio of methanol to PGME was 5: 5 by mass and the solid content concentration of the resin was 20% by mass.
 (3)有機バインダー(C)
 親水性官能基を有するポリエステル樹脂と親水性官能基を有するアクリル樹脂を含む有機バインダー(高松油脂(株)製 A645-GEX 固形分濃度20質量%、水溶媒)を水及びIPAで希釈し、水とIPAとの比率が質量比で7:3、樹脂の固形分濃度が5質量%になるようにした。
(3) Organic binder (C)
An organic binder containing a polyester resin having a hydrophilic functional group and an acrylic resin having a hydrophilic functional group (A645-GEX manufactured by Takamatsu Yushi Co., Ltd., solid content concentration: 20% by mass, water solvent) is diluted with water and IPA, The ratio of IPA to IPA was 7: 3 by mass, and the solid content concentration of the resin was 5% by mass.
 (4)有機バインダー(D)
 親水性官能基を有するポリエステル樹脂と親水性官能基を有するアクリル樹脂を含む有機バインダー(高松油脂(株)製 A647-GEX 固形分濃度20質量%、水溶媒)を水及びIPAで希釈し、水とIPAとの比率が質量比で7:3、樹脂の固形分濃度が5質量%になるようにした。
(4) Organic binder (D)
An organic binder containing a polyester resin having a hydrophilic functional group and an acrylic resin having a hydrophilic functional group (A647-GEX, solid content concentration 20% by mass, water solvent, manufactured by Takamatsu Yushi Co., Ltd.) is diluted with water and IPA to obtain water. The ratio of IPA to IPA was 7: 3 by mass, and the solid content concentration of the resin was 5% by mass.
 (5)無機バインダー(E)
 直径約30nmの親水シリカ微粒子とポリシリケートを含む無機バインダー(司化研(株)製 メガアクア親水DMコート DM30-26G-N1 固形分濃度5質量%、IPA溶媒)をIPAで希釈し、樹脂の固形分濃度が0.4質量%になるようにした。
(5) Inorganic binder (E)
An inorganic binder containing hydrophilic silica fine particles with a diameter of about 30 nm and polysilicate (Mega Aqua hydrophilic DM coat DM30-26G-N1, solid content concentration 5 mass%, IPA solvent, manufactured by Shukaken Co., Ltd.) is diluted with IPA to obtain a solid resin The partial concentration was adjusted to 0.4% by mass.
 (6)無機バインダー(F)
 エチルシリケートを含む無機バインダー(コルコート(株)製 “コルコート”(登録商標)N103X 固形分濃度2質量%、IPA溶媒)をIPAで希釈し、樹脂の固形分濃度が1質量%になるようにした。
(6) Inorganic binder (F)
An inorganic binder containing ethyl silicate ("Colcoat" (registered trademark) N103X solid content concentration 2 mass%, IPA solvent) manufactured by Colcoat Co., Ltd., IPA solvent) was diluted with IPA so that the solid content concentration of the resin was 1 mass%. .
 (7)有機バインダー(G)
 親水性官能基を有さないポリエステル樹脂を含む有機バインダー(高松油脂(株)製 ペスレジンS-180 固形分濃度20質量%、水溶媒)を水及びIPAとで希釈し、水とIPAとの比率が質量比で7:3、樹脂の固形分濃度が5質量%になるようにした。
(7) Organic binder (G)
An organic binder containing a polyester resin having no hydrophilic functional group (Pesresin S-180, solid content concentration 20% by mass, water solvent, manufactured by Takamatsu Yushi Co., Ltd.) is diluted with water and IPA, and the ratio of water to IPA Was 7: 3 by mass ratio, and the solid content concentration of the resin was 5 mass%.
 (8)有機バインダー(H):テレフタル酸50質量部、イソフタル酸50質量部、エチレングリコール50質量部、ネオペンチルグリコール30質量部を重合触媒である三酸化アンチモン0.3質量部と酢酸亜鉛0.3質量部とともに窒素パージした反応器に仕込み、水を除去しながら常圧下で190~220℃で12時間重合反応を行い、ポリエステルグリコールを得た。次に、得られたポリエステルグリコールに5-ナトリウムスルホイソフタル酸を5質量部、溶媒としてキシレンを反応器に仕込み、0.2mmHgの減圧下、260℃にてキシレンを留去しつつ、3時間重合させ、親水性官能基を有するポリエステル樹脂(B)を得た。このポリエステル樹脂(B)を、アンモニア水およびブチルセルロースを含む水に溶解させた。 (8) Organic binder (H): 50 parts by mass of terephthalic acid, 50 parts by mass of isophthalic acid, 50 parts by mass of ethylene glycol, 30 parts by mass of neopentyl glycol, 0.3 parts by mass of antimony trioxide as a polymerization catalyst and 0 zinc acetate The reactor was purged with nitrogen together with 3 parts by mass, and the polymerization reaction was carried out at 190 to 220 ° C. for 12 hours under atmospheric pressure while removing water to obtain polyester glycol. Next, 5 parts by mass of 5-sodium sulfoisophthalic acid and xylene as a solvent were charged into the reactor to the polyester glycol obtained, and polymerization was performed for 3 hours while distilling off xylene at 260 ° C. under a reduced pressure of 0.2 mmHg. To obtain a polyester resin (B) having a hydrophilic functional group. This polyester resin (B) was dissolved in water containing ammonia water and butyl cellulose.
 <架橋剤>
 (1)架橋剤A
 オキサゾリン基含有ポリマー(日本触媒(株)製 “エポクロス”(登録商標)WS-700)。
<Crosslinking agent>
(1) Crosslinking agent A
Oxazoline group-containing polymer (“Epocross” (registered trademark) WS-700 manufactured by Nippon Shokubai Co., Ltd.).
 (2)架橋剤B
 オキサゾリン基含有ポリマー(日本触媒(株)製 “エポクロス”(登録商標)WS-500)。
(2) Crosslinking agent B
Oxazoline group-containing polymer (“Epocross” (registered trademark) WS-500 manufactured by Nippon Shokubai Co., Ltd.).
 (3)架橋剤C
 オキサゾリン基含有ポリマー(日本触媒(株)製 “エポクロス”(登録商標)WS-300)。
(3) Crosslinking agent C
Oxazoline group-containing polymer (“Epocross” (registered trademark) WS-300 manufactured by Nippon Shokubai Co., Ltd.).
 <粒子>
 (1)粒子A
 粒径10nm~15nm コロイダルシリカ(日産化学工業(株)製 “スノーテックス”(登録商標) ST-O、球形)。
<Particle>
(1) Particle A
Colloidal silica having a particle size of 10 nm to 15 nm (“Snowtex” (registered trademark) ST-O, spherical, manufactured by Nissan Chemical Industries, Ltd.).
 (2)粒子B
 粒径40nm~50nm コロイダルシリカ(日産化学工業(株)製 “スノーテックス”(登録商標) ST-OL、球形)。
(2) Particle B
Particle size 40 nm to 50 nm colloidal silica (“Snowtex” (registered trademark) ST-OL, spherical, manufactured by Nissan Chemical Industries, Ltd.).
 (3)粒子C
 粒径150nm スチレン/アクリル粒子(日本合成化学化学工業(株)製 “モビニール”(登録商標) 972、球形)。
(3) Particle C
Particle size 150 nm Styrene / acrylic particles (“Movinyl” (registered trademark) 972, spherical shape, manufactured by Nippon Synthetic Chemical Industry Co., Ltd.).
 (4)粒子D
 粒径10~15nm コロイダルシリカ(日産化学工業(株)製 “オルガノシリカゾル” PGM-ST、球形)。
(4) Particle D
Particle size 10-15 nm Colloidal silica (“organosilica sol” PGM-ST, spherical, manufactured by Nissan Chemical Industries, Ltd.).
 (5)粒子E
 粒径4nm~6nm コロイダルシリカ(日産化学工業(株)製 “スノーテックス”(登録商標) ST-OXS、球形)。
(5) Particle E
Colloidal silica having a particle size of 4 nm to 6 nm (“Snowtex” (registered trademark) ST-OXS, spherical, manufactured by Nissan Chemical Industries, Ltd.).
 (6)粒子F
 粒径40nm~100nm コロイダルシリカ(日産化学工業(株)製 “スノーテックス”(登録商標) ST-OUP、鎖状形)。
(6) Particle F
Particle size 40 nm to 100 nm Colloidal silica (“Snowtex” (registered trademark) ST-OUP, chain shape, manufactured by Nissan Chemical Industries, Ltd.).
 (7)粒子G
 粒径70nm~110nm コロイダルシリカ(日産化学工業(株)製 “スノーテックス”(登録商標) ST-PS-SO、パールネックレス状形)。
(7) Particle G
Colloidal silica (particle size 70 nm to 110 nm “Snowtex” (registered trademark) ST-PS-SO, pearl necklace shape, manufactured by Nissan Chemical Industries, Ltd.).
 (8)粒子H:コロイダルシリカ“スノーテックス”(登録商標)OL(平均1次粒径45nm、日産化学工業(株)製)表面に、以下(i)~(iv)の手法で、水酸基を導入したアクリル樹脂をシリカ粒子表面に修飾した。
(i)無機酸化物とアクリル樹脂とをあらかじめ混合した混合物を溶媒中に添加して分散する方法。
(ii)溶媒中に無機酸化物とアクリル樹脂とを順に添加して分散する方法。
(iii)別々の溶媒中にそれぞれ無機酸化物とアクリル樹脂とをあらかじめ分散し、得られたそれぞれの分散体を混合する方法。
(iv)溶媒中に無機酸化物を分散した後、得られた分散体にアクリル樹脂を添加する方法。
(8) Particles H: Colloidal silica “Snowtex” (registered trademark) OL (average primary particle size 45 nm, manufactured by Nissan Chemical Industries, Ltd.) on the surface by hydroxyl groups by the following methods (i) to (iv) The introduced acrylic resin was modified on the surface of the silica particles.
(I) A method in which a mixture in which an inorganic oxide and an acrylic resin are mixed in advance is added to a solvent and dispersed.
(Ii) A method in which an inorganic oxide and an acrylic resin are sequentially added and dispersed in a solvent.
(Iii) A method in which an inorganic oxide and an acrylic resin are dispersed in advance in separate solvents and the obtained dispersions are mixed.
(Iv) A method of adding an acrylic resin to the obtained dispersion after dispersing the inorganic oxide in the solvent.
 <CNT分散液>
 各実施例および比較例に用いたCNT分散液の製造方法を以下に示す。
<CNT dispersion>
The production method of the CNT dispersion used in each example and comparative example is shown below.
 (1)触媒調製例:マグネシアへの触媒金属塩の担持
 クエン酸アンモニウム鉄(和光純薬工業(株)製)2.46gをメタノール(関東化学(株)製)500mLに溶解した。この溶液に、酸化マグネシウム(岩谷化学工業(株)製 MJ-30)を100.0g加え、撹拌機で60分間激しく撹拌処理し、懸濁液を減圧下、40℃で濃縮乾固した。得られた粉末を120℃で加熱乾燥してメタノールを除去し、酸化マグネシウム粉末に金属塩が担持された触媒体を得た。得られた固形分は篩い上で、乳鉢で細粒化しながら、20~32メッシュ(0.5~0.85mm)の範囲の粒径のものを回収した。得られた触媒体に含まれる鉄含有量は0.38質量%であった。また、かさ密度は、0.61g/mLであった。前記の操作を繰り返し、以下の実験に供した。
(1) Catalyst preparation example: catalyst metal salt support on magnesia 2.46 g of ammonium iron citrate (manufactured by Wako Pure Chemical Industries, Ltd.) was dissolved in 500 mL of methanol (manufactured by Kanto Chemical Co., Ltd.). To this solution, 100.0 g of magnesium oxide (MJ-30 manufactured by Iwatani Chemical Industry Co., Ltd.) was added, vigorously stirred for 60 minutes with a stirrer, and the suspension was concentrated to dryness at 40 ° C. under reduced pressure. The obtained powder was heated and dried at 120 ° C. to remove methanol, and a catalyst body in which a metal salt was supported on magnesium oxide powder was obtained. The obtained solid content was collected on a sieve with a particle size in the range of 20 to 32 mesh (0.5 to 0.85 mm) while being finely divided in a mortar. The iron content contained in the obtained catalyst body was 0.38% by mass. The bulk density was 0.61 g / mL. The above operation was repeated and subjected to the following experiment.
 (2)CNT集合体製造例:CNT集合体の合成
 図1に示した装置を用いてCNTの合成を行った。反応器503は内径75mm、長さは1,100mmの円筒形石英管である。中央部に石英焼結板502を具備し、石英管下方部には、不活性ガスおよび原料ガス供給ラインである混合ガス導入管508、上部には廃ガス管506を具備する。さらに、反応器を任意温度に保持できるように、反応器の円周を取り囲む加熱器として3台の電気炉501を具備する。また反応管内の温度を検知するために熱電対505を具備する。
(2) CNT aggregate production example: synthesis of CNT aggregate CNT was synthesized using the apparatus shown in FIG. The reactor 503 is a cylindrical quartz tube having an inner diameter of 75 mm and a length of 1,100 mm. A quartz sintered plate 502 is provided at the center, a mixed gas introduction pipe 508 serving as an inert gas and source gas supply line is provided at the lower part of the quartz pipe, and a waste gas pipe 506 is provided at the upper part. Further, three electric furnaces 501 are provided as heaters surrounding the circumference of the reactor so that the reactor can be maintained at an arbitrary temperature. A thermocouple 505 is provided to detect the temperature in the reaction tube.
 触媒調製例で調製した固体触媒体132gをとり、鉛直方向に設置した反応器の中央部の石英焼結板上に導入することで触媒層504を形成した。反応管内温度が約860℃になるまで、触媒体層を加熱しながら、反応器底部から反応器上部方向へ向けてマスフローコントローラー507を用いて窒素ガスを16.5L/分で供給し、触媒体層を通過するように流通させた。その後、窒素ガスを供給しながら、さらにマスフローコントローラー507を用いてメタンガスを0.78L/分で60分間導入して触媒体層を通過するように通気し、反応させた。この際の固体触媒体の質量をメタンの流量で割った接触時間(W/F)は、169分・g/L、メタンを含むガスの線速が6.55cm/秒であった。メタンガスの導入を止め、窒素ガスを16.5L/分通気させながら、石英反応管を室温まで冷却した。 The catalyst layer 504 was formed by taking 132 g of the solid catalyst body prepared in the catalyst preparation example and introducing the solid catalyst body onto the quartz sintered plate at the center of the reactor installed in the vertical direction. While heating the catalyst layer until the temperature in the reaction tube reaches about 860 ° C., nitrogen gas is supplied from the bottom of the reactor toward the top of the reactor using the mass flow controller 507 at 16.5 L / min. It was circulated through the layers. Thereafter, while supplying nitrogen gas, methane gas was further introduced at 0.78 L / min for 60 minutes using the mass flow controller 507, and the gas was passed through the catalyst body layer to cause reaction. The contact time (W / F) obtained by dividing the mass of the solid catalyst body by the flow rate of methane at this time was 169 minutes · g / L, and the linear velocity of the gas containing methane was 6.55 cm / second. The quartz reaction tube was cooled to room temperature while the introduction of methane gas was stopped and nitrogen gas was passed through at 16.5 L / min.
 加熱を停止させ室温まで放置し、室温になってから反応器から触媒体とCNTを含有するCNT含有組成物を取り出した。 The heating was stopped and the mixture was allowed to stand at room temperature, and after reaching room temperature, the CNT-containing composition containing the catalyst body and CNTs was taken out from the reactor.
 (3)CNT集合体の精製および酸化処理
 CNT集合体製造例で得られた触媒体とCNTを含有するCNT含有組成物を130g用いて4.8Nの塩酸水溶液2,000mL中で1時間撹拌することで触媒金属である鉄とその担体であるMgOを溶解した。得られた黒色懸濁液は濾過した後、濾取物は再度4.8Nの塩酸水溶液400mLに投入し脱MgO処理をし、濾取した。この操作を3回繰り返した(脱MgO処理)。その後、イオン交換水で濾取物の懸濁液が中性となるまで水洗後、水を含んだウェット状態のままCNT含有組成物を保存した。このとき水を含んだウェット状態のCNT含有組成物全体の質量は102.7gであった(CNT含有組成物濃度:3.12質量%)。
(3) Purification of the CNT aggregate and oxidation treatment Using 130 g of the CNT-containing composition containing the catalyst body and CNT obtained in the CNT aggregate production example, the mixture is stirred in 4.8 mL of a 4.8N hydrochloric acid aqueous solution for 1 hour. As a result, iron as the catalyst metal and MgO as the carrier were dissolved. The obtained black suspension was filtered, and the filtered product was again put into 400 mL of a 4.8N hydrochloric acid aqueous solution, treated with MgO, and collected by filtration. This operation was repeated 3 times (de-MgO treatment). Thereafter, the CNT-containing composition was stored in a wet state containing water after washing with ion-exchanged water until the suspension of the filtered material became neutral. At this time, the mass of the entire wet CNT-containing composition containing water was 102.7 g (CNT-containing composition concentration: 3.12% by mass).
 得られたウェット状態のCNT含有組成物の乾燥質量分に対して、約300倍の質量の濃硝酸(和光純薬工業(株)製、1級、Assay60~61質量%)を添加した。その後、約140℃のオイルバスで25時間攪拌しながら加熱還流した。加熱還流後、CNT含有組成物を含む硝酸溶液をイオン交換水で3倍に希釈して吸引ろ過した。イオン交換水で濾取物の懸濁液が中性となるまで水洗後、水を含んだウェット状態のCNT集合体を得た。このとき水を含んだウェット状態のCNT組成物全体の質量は3.351gあった(CNT含有組成物濃度:5.29質量%)。 About 300 times as much concentrated nitric acid (manufactured by Wako Pure Chemical Industries, Ltd., first grade, Assay 60 to 61% by mass) was added to the dry mass of the obtained wet CNT-containing composition. Thereafter, the mixture was heated to reflux with stirring in an oil bath at about 140 ° C. for 25 hours. After heating to reflux, the nitric acid solution containing the CNT-containing composition was diluted with ion-exchanged water three times and suction filtered. After rinsing with ion-exchanged water until the suspension of the filtered material became neutral, a wet CNT aggregate containing water was obtained. At this time, the mass of the entire wet CNT composition containing water was 3.351 g (CNT-containing composition concentration: 5.29% by mass).
 (4)CNT分散液の調製
 得られたウェット状態のCNT集合体(乾燥質量換算で25mg)、6質量%カルボキシメチルセルロースナトリウム(第一工業製薬(株)製、セロゲン7A(重量平均分子量:20万))水溶液1.04g、イオン交換水0.8g、ジルコニアビーズ(東レ(株)社製、“トレセラム”(登録商標)、ビーズサイズ:0.8mm)13.3gを容器に加え、28質量%アンモニア水溶液(キシダ化学(株)製)を用いてpH10に調整した。(分散剤/CNT質量比=2.5)この容器を振動ボールミル((株)入江商会社製、VS-1、振動数:1,800cpm(60Hz))を用いて2時間振盪させ、CNTペーストを調製した。
(4) Preparation of CNT dispersion liquid The obtained wet CNT aggregate (25 mg in terms of dry mass), 6 mass% sodium carboxymethylcellulose (Daiichi Kogyo Seiyaku Co., Ltd., Serogen 7A (weight average molecular weight: 200,000) )) 1.04 g of aqueous solution, 0.8 g of ion-exchanged water, 13.3 g of zirconia beads (manufactured by Toray Industries, Inc., “Traceram” (registered trademark), bead size: 0.8 mm) were added to the container, and 28% by mass. The pH was adjusted to 10 using an aqueous ammonia solution (manufactured by Kishida Chemical Co., Ltd.). (Dispersant / CNT mass ratio = 2.5) This container was shaken for 2 hours using a vibrating ball mill (VS-1 manufactured by Irie Trading Co., Ltd., vibration frequency: 1,800 cpm (60 Hz)) to obtain a CNT paste. Was prepared.
 次にこのCNTペーストをCNTの濃度が0.15質量%となるようにイオン交換水で希釈し、その希釈液10gに対して再度28質量%アンモニア水溶液でpH10に調整した。その水溶液を超音波ホモジナイザー(家田貿易(株)製、VCX-130)の出力を20Wとし、1.5分間(0.6kW・分/g)、氷冷下分散処理した。分散中液温が10℃以下となるようにした。得られた液を高速遠心分離機((株)トミー精工、MX-300)にて10,000G、15分遠心処理し、CNT分散液9gを得た。その後、水を添加して終濃度でCNT集合体の濃度が0.03質量%となるように調製してCNT分散液とした。 Next, this CNT paste was diluted with ion-exchanged water so that the concentration of CNT was 0.15% by mass, and adjusted to pH 10 with 28% by mass ammonia aqueous solution again with respect to 10 g of the diluted solution. The aqueous solution was subjected to dispersion treatment under ice-cooling for 1.5 minutes (0.6 kW · min / g) at an output of an ultrasonic homogenizer (manufactured by Ieda Trading Co., Ltd., VCX-130) at 20 W. The liquid temperature during dispersion was adjusted to 10 ° C. or lower. The obtained liquid was centrifuged at 10,000 G for 15 minutes with a high-speed centrifuge (Tomy Seiko Co., Ltd., MX-300) to obtain 9 g of a CNT dispersion. Thereafter, water was added to prepare a CNT dispersion liquid so that the final concentration of the CNT aggregate was 0.03% by mass.
 (実施例1~40、比較例1~3)
 有機バインダーA~D、G及び無機バインダーE、Fと粒子A~Gを、表に示す配合比で混合し塗料を調整した。作成した塗料を材質がステンレス(sus)のシム(シム厚み50μm)を装着したスリットダイコート(塗工幅550mm)を使用して搬送速度10m/分で基材の片面に塗布、乾燥し、アンダーコート層を積層した。なお、有機バインダーBを用いた場合のみ、窒素雰囲気下で照射量95.1mJ/cmで紫外線照射を実施して硬化させた。また、有機バインダーGを用いた場合は、アンダーコート層のぬれ性不足により、CNT分散液のコーティングができないため、基材表面をE値100W・sの条件でコロナ処理を施した。
(Examples 1 to 40, Comparative Examples 1 to 3)
The organic binders A to D and G, the inorganic binders E and F, and the particles A to G were mixed at a blending ratio shown in the table to prepare a coating material. The prepared paint is applied to one side of the substrate at a transfer speed of 10 m / min using a slit die coat (coating width 550 mm) with a shim (shim thickness 50 μm) made of stainless steel (sus), dried and undercoated Layers were laminated. Only when the organic binder B was used, it was cured by irradiating with ultraviolet rays at a dose of 95.1 mJ / cm 2 in a nitrogen atmosphere. Moreover, when the organic binder G was used, since the coating of the CNT dispersion liquid was impossible due to insufficient wettability of the undercoat layer, the substrate surface was subjected to corona treatment under the condition of an E value of 100 W · s.
 次に、CNT分散液を材質がステンレス(sus)のシム(シム厚み50μm)を装着したスリットダイコート(塗工幅550mm)を使用してアンダーコート層の上に塗布、100℃で1分間乾燥し導電成分を積層形成した。さらに導電層が積層されている側に前記無機バインダーFを材質がステンレス(sus)のシム(シム厚み50μm)を装着したスリットダイコート(塗工幅550mm)を使用して10m/分の塗工速度で表に示す条件で塗布、125℃で1分間乾燥し、積層形成した。 Next, the CNT dispersion was applied onto the undercoat layer using a slit die coat (coating width 550 mm) with a stainless steel (sus) shim (shim thickness 50 μm), and dried at 100 ° C. for 1 minute. Conductive components were laminated. Further, a coating speed of 10 m / min using a slit die coat (coating width 550 mm) in which the inorganic binder F is made of a shim (shim thickness 50 μm) made of the inorganic binder F on the side where the conductive layer is laminated. The coating was carried out under the conditions shown in Table 1 and dried at 125 ° C. for 1 minute to form a laminate.
 (実施例41~52)
 有機バインダーHと粒子B、Hを、表に示す配合比で混合し塗料を調整した。作成した塗料を空気中でコロナ放電処理を施した基材C(一軸延伸フィルム)のコロナ放電処理面にバーコートを用いて塗布した。塗布した一軸延伸フィルムの幅方向両端部をクリップで把持して予熱ゾーンに導き、雰囲気温度75℃とした後、引き続いてラジエーションヒーターを用いて雰囲気温度を110℃とし、次いで雰囲気温度を90℃として、コーティング用組成物を乾燥させ、組成物層を形成せしめた。引き続き連続的に120℃の加熱ゾーン(延伸ゾーン)で幅方向に3.5倍延伸し、続いて230℃の熱処理ゾーン(熱固定ゾーン)で20秒間熱処理を施し、結晶配向の完了した積層フィルムを得た。得られた積層フィルムにおいてPETフィルムの厚みは50μmであった。この方法で作製したアンダーコート層の厚みは約40nmであった。
(Examples 41 to 52)
The organic binder H and particles B and H were mixed at a blending ratio shown in the table to prepare a paint. The prepared paint was applied to the corona discharge treated surface of a substrate C (uniaxially stretched film) that had been subjected to a corona discharge treatment in air using a bar coat. The both ends in the width direction of the applied uniaxially stretched film are held by clips and guided to a preheating zone, and after setting the ambient temperature to 75 ° C, the ambient temperature is set to 110 ° C using a radiation heater, and then the ambient temperature is set to 90 ° C. The coating composition was dried to form a composition layer. Continuously stretched 3.5 times in the width direction in a heating zone (stretching zone) at 120 ° C, and then heat treated for 20 seconds in a heat treatment zone (heat setting zone) at 230 ° C to complete the crystal orientation. Got. In the obtained laminated film, the thickness of the PET film was 50 μm. The thickness of the undercoat layer produced by this method was about 40 nm.
 (比較例4~5)
 CNT分散液を材質がステンレス(sus)のシム(シム厚み50μm)を装着したスリットダイコート(塗工幅550mm)を使用して基材A、Bの上に塗布、100℃で1分間乾燥し導電成分を積層形成した。基材のぬれ性不足により、CNT分散液のコーティングができないため、基材表面にコロナ処理を施した。さらに導電層が積層されている側に前記無機バインダーFを材質がステンレス(sus)のシム(シム厚み50μm)を装着したスリットダイコート(塗工幅550mm)を使用して10m/分の塗工速度、表に示す条件で塗布、125℃で1分間乾燥し、積層形成した。
(Comparative Examples 4 to 5)
The CNT dispersion was applied onto the substrates A and B using a slit die coat (coating width 550 mm) with a stainless steel (sus) shim (shim thickness 50 μm), and dried at 100 ° C. for 1 minute to conduct electricity. The components were laminated. Since the CNT dispersion could not be coated due to insufficient wettability of the substrate, the surface of the substrate was subjected to corona treatment. Further, a coating speed of 10 m / min using a slit die coat (coating width 550 mm) in which the inorganic binder F is made of a shim (shim thickness 50 μm) made of the inorganic binder F on the side where the conductive layer is laminated. The coating was performed under the conditions shown in the table, and the laminate was formed by drying at 125 ° C. for 1 minute.
 評価結果および詳細な製造条件については表1~6に記載する。バインダーの含有量[質量%]とは、アンダーコート層全体を100質量%としたときのバインダーの含有量[質量%]である。粒子の含有量[質量%]とは、アンダーコート層全体を100質量%としたときの粒子の含有量[質量%]である。仕込み量[質量部]とは、バインダーの成分を100質量部としたときの架橋剤の仕込み量[質量部]である。 Evaluation results and detailed manufacturing conditions are listed in Tables 1-6. The binder content [% by mass] is the binder content [% by mass] when the entire undercoat layer is 100% by mass. The particle content [% by mass] is the particle content [% by mass] when the entire undercoat layer is taken as 100% by mass. The charged amount [parts by mass] is the charged amount [parts by mass] of the crosslinking agent when the component of the binder is 100 parts by mass.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 透明導電性に優れた本発明の導電積層体は、例えば、タッチパネル、タッチスイッチ、液晶ディスプレイ、有機エレクトロルミネッセンス、電子ペーパーなどのディスプレイ関連の電極として好ましく用いることができる。 The conductive laminate of the present invention having excellent transparent conductivity can be preferably used as, for example, a display-related electrode such as a touch panel, a touch switch, a liquid crystal display, organic electroluminescence, and electronic paper.
 501:電気炉
 502:石英焼結板
 503:反応器
 504:触媒層
 505:熱電対
 506:廃ガス管
 507:マスフローコントローラー
 508:ガス導入管
 509:炭化水素
 510:不活性ガス
501: Electric furnace 502: Quartz sintered plate 503: Reactor 504: Catalyst layer 505: Thermocouple 506: Waste gas pipe 507: Mass flow controller 508: Gas introduction pipe 509: Hydrocarbon 510: Inert gas

Claims (13)

  1. 基材上にアンダーコート層(X)と導電層(Y)とを基材側からこの順で有し、かつ以下の(i)~(iii)を満たすことを特徴とする導電積層体。
    (i)アンダーコート層(X)が有機バインダー(A)および粒子(B)を含む
    (ii)アンダーコート層(X)に含まれる粒子(B)の含有量が、アンダーコート層(X)全体100質量%に対して15質量%以上95質量%以下である
    (iii)導電層(Y)がカーボンナノチューブ(C)およびカーボンナノチューブ分散剤(D)を含む
    A conductive laminate comprising an undercoat layer (X) and a conductive layer (Y) on a base material in this order from the base material side, and satisfying the following (i) to (iii):
    (I) The undercoat layer (X) contains an organic binder (A) and particles (B). (Ii) The content of the particles (B) contained in the undercoat layer (X) is the entire undercoat layer (X). (Iii) The conductive layer (Y) contains the carbon nanotube (C) and the carbon nanotube dispersant (D), which is 15% by mass to 95% by mass with respect to 100% by mass.
  2. 前記導電層(Y)の光吸収率および表面抵抗値が以下の(a)~(h)のいずれかを満たすことを特徴とする請求項1に記載の導電積層体。
    (a)光吸収率が1%以上、2%未満、表面抵抗値が500Ω/□以上、2,000Ω/□以下
    (b)光吸収率が2%以上、3%未満、表面抵抗値が200Ω/□以上、1,500Ω/□以下
    (c)光吸収率が3%以上、4%未満、表面抵抗値が100Ω/□以上、500Ω/□以下
    (d)光吸収率が4%以上、5%未満、表面抵抗値が80Ω/□以上、400Ω/□以下
    (e)光吸収率が5%以上、7%未満、表面抵抗値が60Ω/□以上、300Ω/□以下
    (f)光吸収率が7%以上、9%未満、表面抵抗値が50Ω/□以上、200Ω/□以下
    (g)光吸収率が9%以上、11%未満、表面抵抗値が40Ω/□以上、150Ω/□以下
    (h)光吸収率が11%以上、20%未満、表面抵抗値が30Ω/□以上、100Ω/□以下
    The conductive laminate according to claim 1, wherein the light absorptivity and surface resistance of the conductive layer (Y) satisfy any of the following (a) to (h).
    (A) Light absorption is 1% or more and less than 2%, surface resistance is 500Ω / □ or more and 2,000Ω / □ or less (b) Light absorption is 2% or more and less than 3%, and surface resistance is 200Ω / □ or more, 1,500Ω / □ or less (c) Light absorption rate of 3% or more and less than 4%, surface resistance value of 100Ω / □ or more, 500Ω / □ or less (d) Light absorption rate of 4% or more, 5 %, Surface resistance value of 80Ω / □ or more, 400Ω / □ or less (e) Light absorption rate of 5% or more and less than 7%, surface resistance value of 60Ω / □ or more, 300Ω / □ or less (f) Light absorption rate 7% or more, less than 9%, surface resistance value 50Ω / □ or more, 200Ω / □ or less (g) Light absorption rate 9% or more, less than 11%, surface resistance value 40Ω / □ or more, 150Ω / □ or less (H) Light absorption is 11% or more and less than 20%, and surface resistance is 30Ω / □ or more and 100Ω / □ or less.
  3. 前記粒子(B)が無機粒子および/または有機粒子であることを特徴とする請求項1または2に記載の導電積層体。 The conductive laminate according to claim 1, wherein the particles (B) are inorganic particles and / or organic particles.
  4. 前記粒子(B)の形状が球形、鎖状形およびパールネックレス状形からなる群より選ばれる少なくとも1つの形状であることを特徴とする請求項1~3のいずれかに記載の導電積層体。 The conductive laminate according to any one of claims 1 to 3, wherein the shape of the particles (B) is at least one shape selected from the group consisting of a spherical shape, a chain shape, and a pearl necklace shape.
  5. 前記有機バインダー(A)が親水性官能基を有するポリエステル樹脂および/または親水性官能基を有するアクリル樹脂を含むことを特徴とする請求項1~4のいずれかに記載の導電積層体。 The conductive laminate according to any one of claims 1 to 4, wherein the organic binder (A) contains a polyester resin having a hydrophilic functional group and / or an acrylic resin having a hydrophilic functional group.
  6. 前記カーボンナノチューブ分散剤(D)がイオン性分散剤を含むことを特徴とする請求項1~5のいずれかに記載の導電積層体。 The conductive laminate according to any one of claims 1 to 5, wherein the carbon nanotube dispersant (D) contains an ionic dispersant.
  7. 前記イオン性分散剤がカルボキシメチルセルロースであることを特徴とする請求項6に記載の導電積層体。 The conductive laminate according to claim 6, wherein the ionic dispersant is carboxymethylcellulose.
  8. 前記導電層(Y)上にオーバーコート層を有することを特徴とする請求項1~7のいずれかに記載の導電積層体。 The conductive laminate according to any one of claims 1 to 7, further comprising an overcoat layer on the conductive layer (Y).
  9. 25℃、相対湿度30%~90%における表面抵抗値変化率が20%以下であることを特徴とする請求項1~8のいずれかに記載の導電積層体。 The conductive laminate according to any one of claims 1 to 8, wherein the rate of change in surface resistance at 25 ° C and a relative humidity of 30% to 90% is 20% or less.
  10. 基材上に、ぬれ張力が76~105mN/mであるアンダーコート層(X)を設けるアンダーコート層(X)形成工程と、カーボンナノチューブ(C)およびカーボンナノチューブ分散剤(D)を含む分散液をアンダーコート層(X)上に設け導電層(Y)を形成する導電層(Y)形成工程とを有することを特徴とする導電積層体の製造方法。 An undercoat layer (X) forming step in which an undercoat layer (X) having a wetting tension of 76 to 105 mN / m is formed on a substrate, and a dispersion containing carbon nanotubes (C) and a carbon nanotube dispersant (D) And a conductive layer (Y) forming step of forming a conductive layer (Y) on the undercoat layer (X).
  11. 前記アンダーコート層(X)の中心面平均粗さSRaが2~15nmであることを特徴とする請求項10に記載の導電積層体の製造方法。 The method for producing a conductive laminate according to claim 10, wherein the center coat average roughness SRa of the undercoat layer (X) is 2 to 15 nm.
  12. 請求項1~8のいずれかに記載の導電積層体または請求項10もしくは11に記載の導電積層体の製造方法によって得られた導電積層体を用いたタッチパネル。 A touch panel using the conductive laminate according to any one of claims 1 to 8, or the conductive laminate obtained by the method for producing a conductive laminate according to claim 10 or 11.
  13. 請求項1~8のいずれかに記載の導電積層体または請求項10もしくは11に記載の導電積層体の製造方法によって得られた導電積層体を用いたタッチスイッチ。 A touch switch using the conductive laminate according to any one of claims 1 to 8 or the conductive laminate obtained by the method for producing a conductive laminate according to claim 10 or 11.
PCT/JP2015/056208 2014-03-12 2015-03-03 Conductive laminate, method for producing conductive laminate, touch panel and touch switch WO2015137195A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201580006821.9A CN105960684B (en) 2014-03-12 2015-03-03 Electroconductive laminate, the manufacture method of electroconductive laminate, touch panel and soft-touch control
JP2015512925A JPWO2015137195A1 (en) 2014-03-12 2015-03-03 Conductive laminate, method for producing conductive laminate, touch panel, and touch switch

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2014048507 2014-03-12
JP2014-048507 2014-03-12
JP2014198081 2014-09-29
JP2014-198081 2014-09-29
JP2015-016447 2015-01-30
JP2015016447 2015-01-30

Publications (1)

Publication Number Publication Date
WO2015137195A1 true WO2015137195A1 (en) 2015-09-17

Family

ID=54071643

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/056208 WO2015137195A1 (en) 2014-03-12 2015-03-03 Conductive laminate, method for producing conductive laminate, touch panel and touch switch

Country Status (4)

Country Link
JP (1) JPWO2015137195A1 (en)
CN (1) CN105960684B (en)
TW (1) TW201603050A (en)
WO (1) WO2015137195A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109328327A (en) * 2016-03-02 2019-02-12 氧化树脂涂料有限公司 Touch sensitive control system for non-electronic display substrate surface
JP2022060234A (en) * 2015-12-15 2022-04-14 エージーシー ケミカルズ アメリカズ,インコーポレイテッド Layered tube, and layer for layered tube

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110941358A (en) * 2018-09-21 2020-03-31 宸鸿光电科技股份有限公司 Touch panel, manufacturing method thereof and touch sensor tape
CN111384270B (en) * 2018-12-29 2021-07-30 Tcl科技集团股份有限公司 Preparation method of quantum dot light-emitting diode
JP6656450B1 (en) * 2019-04-25 2020-03-04 株式会社マルアイ Sheet for electronic component transport tray / carrier tape and electronic component transport tray / carrier tape using the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011078231A1 (en) * 2009-12-24 2011-06-30 日本写真印刷株式会社 Capacitance type touch sensor, electronic device, and method of manufacturing transparent conductive-film laminate
WO2012057321A1 (en) * 2010-10-29 2012-05-03 東レ株式会社 Transparent electrically conductive laminate and process for production thereof
WO2013047341A1 (en) * 2011-09-29 2013-04-04 国立大学法人九州大学 Transparent conductor and method for producing same
WO2013115123A1 (en) * 2012-01-31 2013-08-08 東レ株式会社 Transparent electroconductive laminate, method for manufacturing same, electronic paper using same, and touch panel using same
WO2013115310A1 (en) * 2012-02-03 2013-08-08 株式会社きもと Base with transparent conductive film and touch panel
JP2013161704A (en) * 2012-02-07 2013-08-19 Shin Etsu Polymer Co Ltd Light transmissive conductive sheet and method of manufacturing the same, capacitance type touch switch, and touch panel
JP2014029831A (en) * 2012-05-11 2014-02-13 Toray Ind Inc Transparent conductor and manufacturing method of the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4896637B2 (en) * 2006-09-05 2012-03-14 帝人デュポンフィルム株式会社 Conductive film

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011078231A1 (en) * 2009-12-24 2011-06-30 日本写真印刷株式会社 Capacitance type touch sensor, electronic device, and method of manufacturing transparent conductive-film laminate
WO2012057321A1 (en) * 2010-10-29 2012-05-03 東レ株式会社 Transparent electrically conductive laminate and process for production thereof
WO2013047341A1 (en) * 2011-09-29 2013-04-04 国立大学法人九州大学 Transparent conductor and method for producing same
WO2013115123A1 (en) * 2012-01-31 2013-08-08 東レ株式会社 Transparent electroconductive laminate, method for manufacturing same, electronic paper using same, and touch panel using same
WO2013115310A1 (en) * 2012-02-03 2013-08-08 株式会社きもと Base with transparent conductive film and touch panel
JP2013161704A (en) * 2012-02-07 2013-08-19 Shin Etsu Polymer Co Ltd Light transmissive conductive sheet and method of manufacturing the same, capacitance type touch switch, and touch panel
JP2014029831A (en) * 2012-05-11 2014-02-13 Toray Ind Inc Transparent conductor and manufacturing method of the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022060234A (en) * 2015-12-15 2022-04-14 エージーシー ケミカルズ アメリカズ,インコーポレイテッド Layered tube, and layer for layered tube
CN109328327A (en) * 2016-03-02 2019-02-12 氧化树脂涂料有限公司 Touch sensitive control system for non-electronic display substrate surface
CN109328327B (en) * 2016-03-02 2022-12-06 氧化树脂涂料有限公司 Touch sensitive control system for non-electronic display substrate surfaces

Also Published As

Publication number Publication date
CN105960684A (en) 2016-09-21
CN105960684B (en) 2017-11-14
JPWO2015137195A1 (en) 2017-04-06
TW201603050A (en) 2016-01-16

Similar Documents

Publication Publication Date Title
JP5413538B1 (en) Transparent conductive laminate, manufacturing method thereof, electronic paper using the same, and touch panel using the same
JP5316653B2 (en) Transparent conductive laminate and method for producing the same
WO2015137195A1 (en) Conductive laminate, method for producing conductive laminate, touch panel and touch switch
JP2017065964A (en) Dispersion liquid containing carbon nanotube and conductive laminate using the same
AU2009260690B2 (en) Carbon nanotube-transparent conductive inorganic nanoparticles hybrid thin films for transparent conductive applications
JP6124099B1 (en) Conductive laminate, molded body using the same, capacitive touch sensor and planar heating element, and method for manufacturing molded body
CN105555849B (en) Laminate film and its manufacturing method
WO2016114389A1 (en) Electroconductive laminate and method for manufacturing electroconductive laminate
JP2016027463A (en) Conductive laminate and method for manufacturing conductive laminate
JP2016168809A (en) Conductive laminate
JP2014029831A (en) Transparent conductor and manufacturing method of the same
WO2018043046A1 (en) Substrate with functional fine line and method for forming functional fine line
JP2017065056A (en) Conductive laminate and method for manufacturing conductive laminate
JP2016072244A (en) Conductive laminate
JP2017065055A (en) Conductive laminate and method for manufacturing conductive laminate
WO2015083610A1 (en) Transparent electroconductive laminate and touch panel using same
JP2016136455A (en) Conductive laminate and method for producing conductive laminate
WO2014148287A1 (en) Conductive laminate and manufacturing method therefor
JP2016173714A (en) Conductive laminate and touch panel prepared therewith
JP2016040769A (en) Transparent conductive laminate and method for producing the same
JP2019034532A (en) Laminate film and method for production thereof
JP2014029841A (en) Method for producing transparent conductor
ฐิ มา ภร ณ์ ชาญ ณรงค์ Effect of surfactants and thickness of carbon nanotube film on conductive property for touch screen
JP2016168810A (en) Conductive laminate
JP2017007312A (en) Conductive laminated body and method for producing conductive laminated body

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015512925

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15762175

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15762175

Country of ref document: EP

Kind code of ref document: A1