WO2015136872A1 - 基板処理システムおよび配管洗浄方法 - Google Patents

基板処理システムおよび配管洗浄方法 Download PDF

Info

Publication number
WO2015136872A1
WO2015136872A1 PCT/JP2015/001010 JP2015001010W WO2015136872A1 WO 2015136872 A1 WO2015136872 A1 WO 2015136872A1 JP 2015001010 W JP2015001010 W JP 2015001010W WO 2015136872 A1 WO2015136872 A1 WO 2015136872A1
Authority
WO
WIPO (PCT)
Prior art keywords
cleaning
processing
liquid
pipe
cleaning liquid
Prior art date
Application number
PCT/JP2015/001010
Other languages
English (en)
French (fr)
Inventor
鮎美 樋口
恵理 藤田
吉田 祥司
真志 野村
Original Assignee
株式会社Screenホールディングス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2014046373A external-priority patent/JP2015167938A/ja
Priority claimed from JP2014065621A external-priority patent/JP6186298B2/ja
Application filed by 株式会社Screenホールディングス filed Critical 株式会社Screenホールディングス
Priority to KR1020187037875A priority Critical patent/KR102049193B1/ko
Priority to KR1020167028100A priority patent/KR101842824B1/ko
Priority to KR1020187007915A priority patent/KR20180033594A/ko
Priority to CN201580012432.7A priority patent/CN106104762B/zh
Priority to US15/124,252 priority patent/US20170014873A1/en
Publication of WO2015136872A1 publication Critical patent/WO2015136872A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02043Cleaning before device manufacture, i.e. Begin-Of-Line process
    • H01L21/02052Wet cleaning only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B9/00Cleaning hollow articles by methods or apparatus specially adapted thereto 
    • B08B9/02Cleaning pipes or tubes or systems of pipes or tubes
    • B08B9/027Cleaning the internal surfaces; Removal of blockages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • H01L21/6704Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing
    • H01L21/67051Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing using mainly spraying means, e.g. nozzles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/6715Apparatus for applying a liquid, a resin, an ink or the like

Definitions

  • the present invention relates to a substrate processing system for processing a substrate and a piping cleaning method for cleaning piping.
  • a substrate processing apparatus is used to perform various processes on a substrate such as a semiconductor wafer.
  • the substrate processing apparatus described in Patent Document 1 includes a plurality of processing units that process a substrate with a processing liquid, and a processing liquid supply unit that supplies the processing liquid to these processing units.
  • the processing liquid supply unit includes a plurality of processing liquid supply modules. At the time of processing the substrate, the processing liquid is supplied from one of the plurality of processing liquid modules to the nozzle of each processing unit through the pipe. A processing liquid is discharged from the nozzle onto the substrate.
  • a three-way valve is provided in the processing liquid supply module.
  • a processing liquid supply pipe and a cleaning liquid supply pipe are connected to the three-way valve.
  • the three-way valve is switched so that the processing liquid supplied from the processing liquid supply pipe is supplied to the processing unit.
  • the three-way valve is switched so that the cleaning liquid supplied from the cleaning liquid supply pipe is supplied to the processing unit.
  • An object of the present invention is to provide a substrate processing system and a pipe cleaning method capable of shortening a cleaning time when a pipe is cleaned using a plurality of cleaning liquids.
  • a substrate processing system includes a substrate processing apparatus that performs processing on a substrate, a processing liquid supply unit that supplies a processing liquid to the substrate processing apparatus through a pipe, and a cleaning unit.
  • the unit includes a processing liquid tank that stores a processing liquid when the substrate is processed, and the substrate processing apparatus includes a processing unit that supplies the processing liquid to the substrate when the substrate is processed.
  • the processing liquid tank and the processing unit are piped.
  • the cleaning unit supplies the first cleaning liquid to the processing liquid tank of the processing liquid supply unit and then prepares the second cleaning liquid and supplies the prepared second cleaning liquid to the processing liquid tank when the pipe is cleaned.
  • the processing liquid supply unit is configured to store the first cleaning liquid supplied from the cleaning unit in the processing liquid tank at the time of cleaning the pipe, and then the first cleaning in the processing liquid tank. Is supplied to the processing unit through the pipe, the second cleaning liquid supplied from the cleaning unit is stored in the processing liquid tank, and then the second cleaning liquid in the processing liquid tank is supplied to the processing unit through the pipe.
  • the cleaning unit is configured to prepare the second cleaning liquid in parallel with the cleaning of the pipe with the first cleaning liquid.
  • the processing liquid is stored in the processing liquid tank of the processing liquid supply unit when the substrate is processed.
  • the processing liquid stored in the processing liquid tank is supplied to the substrate processing apparatus through the piping.
  • the supplied processing liquid is supplied to the substrate by the processing unit, and the substrate is processed.
  • the first cleaning liquid is supplied from the cleaning unit to the processing liquid tank of the processing liquid supply unit.
  • the processing liquid supply unit after the first cleaning liquid supplied from the cleaning unit is stored in the processing liquid tank, the first cleaning liquid in the processing liquid tank is supplied to the processing unit through a pipe. Thereby, the piping is cleaned with the first cleaning liquid.
  • the second cleaning liquid is prepared in parallel with the cleaning of the pipe with the first cleaning liquid.
  • the prepared second cleaning liquid is supplied to the processing liquid tank of the processing liquid supply unit.
  • the processing liquid supply unit after the second cleaning liquid supplied from the cleaning unit is stored in the processing liquid tank, the second cleaning liquid in the processing liquid tank is supplied to the processing unit through a pipe. Thereby, the piping is cleaned with the second cleaning liquid.
  • the pipe cleaning with the first cleaning liquid and the preparation of the second cleaning liquid are performed in parallel, the time required for cleaning the pipe with the first cleaning liquid and the second cleaning liquid can be shortened. As a result, it is possible to shorten the cleaning time when the pipe is cleaned using a plurality of cleaning liquids.
  • the substrate processing system further includes a supply path for supplying the first cleaning liquid and the second cleaning liquid from the cleaning unit to the processing liquid tank, and an open / close device that opens and closes the supply path.
  • the supply path may be opened when the first cleaning liquid is supplied to the processing liquid tank, and the supply path may be closed after the first cleaning liquid is supplied to the processing liquid tank.
  • the cleaning unit and the processing liquid tank are separated from each other. Therefore, the preparation of the second cleaning liquid can be started in the cleaning unit immediately after the supply of the first cleaning liquid from the cleaning unit to the processing liquid tank. Thereby, it becomes possible to further reduce the cleaning time when the pipe is cleaned using a plurality of cleaning liquids.
  • the substrate processing system may further include an inert gas supply unit that supplies an inert gas into the supply path and the cleaning unit after the piping is cleaned with the second cleaning liquid.
  • the cleaning unit may be provided so that it can be connected to and disconnected from the processing liquid supply unit.
  • the cleaning unit can be connected to the processing liquid supply unit when the pipe is cleaned, and the cleaning unit can be disconnected from the processing liquid supply unit after the pipe is cleaned. Therefore, by sequentially connecting the cleaning units to the plurality of processing liquid supply units, it is possible to sequentially clean the piping in the plurality of processing liquid supply units and the plurality of substrate processing apparatuses. Further, since the cleaning unit can be separated during the processing of the substrate, an increase in the size of the substrate processing system is suppressed.
  • the processing liquid supply unit may include a plurality of processing liquid tanks, and the cleaning unit may be configured to be connectable to the plurality of processing liquid tanks.
  • a plurality of pipes connecting the plurality of processing liquid tanks and the substrate processing apparatus can be cleaned by a single cleaning unit.
  • the processing liquid supply unit further includes a circulation path for circulating the first cleaning liquid in the processing liquid tank through the filter, and the cleaning unit prepares the second cleaning liquid in parallel with the circulation of the first cleaning liquid through the circulation path. May be.
  • the second cleaning liquid is prepared in parallel with the circulation of the first cleaning liquid through the circulation path and the cleaning of the pipe with the first cleaning liquid. Therefore, even when the preparation of the second cleaning liquid requires a relatively long time, an increase in the time required for cleaning the pipe with the first cleaning liquid and the second cleaning liquid is suppressed.
  • the substrate processing system is configured to supply gas to the pipe in at least one of a first period in which the first cleaning liquid is supplied to the pipe and a second period in which the second cleaning liquid is supplied to the pipe.
  • the gas supply system may be further provided.
  • the piping can be cleaned sufficiently sufficiently by the action of the gas continuously supplied to the first cleaning liquid or the second cleaning liquid.
  • the gas supply system is configured to continuously supply an amount of gas equal to or greater than the supply amount of the first cleaning liquid per unit time to the first cleaning liquid supplied to the pipe in the first period. May be.
  • the pipe can be cleaned sufficiently cleanly by the action of the gas continuously supplied to the first cleaning liquid.
  • the gas supply system is configured to continuously supply an amount of gas equal to or greater than the supply amount of the second cleaning liquid per unit time to the second cleaning liquid supplied to the pipe in the second period. May be.
  • the pipe can be cleaned sufficiently cleanly by the action of the gas continuously supplied to the second cleaning liquid.
  • the pipe constitutes a circulation path for returning the processing liquid sent from the processing liquid tank to the processing liquid tank, and a discharge path for supplying the processing liquid from the circulation path to the processing unit, and the gas supply system is at least one of In this period, the gas may be supplied to the circulation path.
  • the flow rate of the first cleaning liquid or the second cleaning liquid circulating in the circulation path can be increased by the action of the gas.
  • the discharge path can be effectively cleaned.
  • the substrate processing apparatus includes a processing chamber and a nozzle that discharges the processing liquid supplied from the circulation path through the discharge path to the substrate in the processing chamber.
  • a valve is provided in the discharge path, and the valve opens intermittently. Accordingly, the cleaning liquid circulating in the circulation path may be intermittently discharged from the nozzle.
  • the substrate processing apparatus includes a plurality of processing chambers and a plurality of nozzles respectively provided in the plurality of processing chambers, and the piping configures a plurality of discharge paths, and a plurality of valves are provided in the plurality of discharge paths, respectively.
  • the plurality of valves may be opened at different timings in at least one period.
  • the gas supply system continuously supplies a larger amount of gas than the amount of the first cleaning liquid or the second cleaning liquid supplied per unit time in at least one period so that the gas is discharged from the plurality of nozzles. May be supplied.
  • the gas supply system supplies the gas in the same direction as the flow direction of the first cleaning liquid or the second cleaning liquid to the first cleaning liquid or the second cleaning liquid circulating in the circulation path in at least one period.
  • the conduit may have an inner diameter that is smaller than the inner diameter of the circulation path.
  • the gas can be supplied to the first cleaning liquid or the second cleaning liquid circulating in the circulation path without causing backflow and pressure loss.
  • the gas can be supplied to the first cleaning liquid or the second cleaning liquid circulating in the circulation path without causing backflow and pressure loss.
  • it is possible to increase the circulation rate of the first cleaning liquid or the second cleaning liquid that circulates in the circulation path.
  • a pipe cleaning method is a pipe cleaning method for cleaning pipes in a substrate processing apparatus and a processing liquid supply unit, wherein the processing liquid supply unit is a processing liquid supply unit when processing a substrate.
  • the processing liquid is supplied from the processing liquid tank to the processing unit of the substrate processing apparatus through the pipe, and the pipe cleaning method is configured to supply the first cleaning liquid from the cleaning unit to the processing liquid tank of the processing liquid supply unit when cleaning the pipe.
  • a step of supplying, a step of cleaning the pipe by supplying the first cleaning liquid from the processing liquid tank to the processing unit of the substrate processing apparatus through the pipe after the supply of the first cleaning liquid to the processing liquid tank, and a pipe using the first cleaning liquid The step of preparing the second cleaning liquid in the cleaning unit in parallel with the cleaning of the pipe, and the cleaning unit after the pipe cleaning with the first cleaning liquid. Supplying the second cleaning liquid from the processing liquid tank to the processing liquid tank and cleaning the pipe by supplying the second cleaning liquid from the processing liquid tank through the pipe to the processing unit after the second cleaning liquid is supplied to the processing liquid tank. Is included.
  • the pipe cleaning method since the pipe cleaning with the first cleaning liquid and the preparation of the second cleaning liquid are performed in parallel, the cleaning time when shortening the time required for cleaning the pipe with the first cleaning liquid and the second cleaning liquid is reduced. Can be shortened. As a result, it is possible to shorten the cleaning time when the pipe is cleaned using a plurality of cleaning liquids.
  • FIG. 1 is a schematic diagram showing a configuration of a substrate processing system according to a first embodiment of the present invention.
  • FIG. 2 is a flowchart showing a pipe cleaning operation under the control of the control unit of FIG.
  • FIG. 3 is a schematic diagram showing a pipe cleaning operation of the substrate processing system in each step of FIG.
  • FIG. 4 is a schematic diagram showing a pipe cleaning operation of the substrate processing system in each step of FIG.
  • FIG. 5 is a schematic diagram showing a pipe cleaning operation of the substrate processing system in each step of FIG.
  • FIG. 6 is a schematic diagram showing a pipe cleaning operation of the substrate processing system in each step of FIG.
  • FIG. 7 is a schematic diagram showing a pipe cleaning operation of the substrate processing system in each step of FIG. FIG.
  • FIG. 8 is a schematic diagram showing the pipe cleaning operation of the substrate processing system in each step of FIG.
  • FIG. 9 is a schematic diagram showing a pipe cleaning operation of the substrate processing system in each step of FIG.
  • FIG. 10 is a schematic diagram showing a pipe cleaning operation of the substrate processing system in each step of FIG.
  • FIG. 11 is a schematic diagram showing a pipe cleaning operation of the substrate processing system in each step of FIG.
  • FIG. 12 is a schematic diagram showing a configuration of a substrate processing system according to the second embodiment of the present invention.
  • FIG. 13 is a schematic diagram showing the configuration of the cleaning unit according to the third embodiment of the present invention.
  • FIG. 14 is a schematic diagram showing a configuration of a substrate processing system including another example of the cleaning unit.
  • FIG. 15 is an explanatory view showing a state in which nitrogen gas is mixed in the circulating cleaning liquid at the connection portion.
  • FIG. 16 is a schematic diagram showing a state of the cleaning liquid flowing through the pipe when nitrogen gas is not supplied.
  • FIG. 17 is a schematic diagram showing a state of the cleaning liquid flowing through the pipe when nitrogen gas is supplied.
  • FIG. 18 is a flowchart showing a cleaning procedure for piping of a substrate processing system using the cleaning unit and the substrate processing apparatus of FIG.
  • FIG. 19 is a schematic diagram showing the configuration of the main part of the processing liquid supply unit in the fourth embodiment.
  • FIG. 20 is a schematic diagram showing the configuration of the main part of the processing liquid supply unit in the fifth embodiment.
  • a substrate means a semiconductor wafer, a glass substrate for a photomask, a glass substrate for a liquid crystal display device, a glass substrate for a plasma display, an optical disk substrate, a magnetic disk substrate, a magneto-optical disk substrate, or the like.
  • FIG. 1 is a schematic diagram showing a configuration of a substrate processing system according to a first embodiment of the present invention.
  • the substrate processing system 100 in FIG. 1 includes a portable cleaning unit 1, a plurality of processing liquid supply units 2, and a substrate processing apparatus 3.
  • the substrate processing apparatus 3 includes a plurality of processing units (processing chambers) 31. In FIG. 1, two processing units 31 are illustrated. In each processing unit 31, processing using a processing liquid is performed on the substrate W.
  • the cleaning unit 1 includes a cleaning liquid tank 11, weighing tanks 12 and 13, a pump 14, a filter 15, a specific resistance meter 16, and a control unit 17.
  • a liquid circulation pipe P ⁇ b> 1 is connected between the liquid inlet and the liquid outlet of the cleaning liquid tank 11.
  • Valve V1, pump 14, and filter 15 are inserted in piping P1.
  • a pipe P2 is provided so as to branch from the pipe P1.
  • the pipe P2 is connected to the connection portion C1 of the processing liquid supply unit 2.
  • the weighing tanks 12 and 13 are connected to the liquid inlet of the cleaning liquid tank 11 through the pipes P3 and P4, respectively. Valves V2 and V3 are inserted in the pipes P3 and P4, respectively. Chemical liquid supply units 41 and 42 are connected to the weighing tanks 12 and 13 through pipes P5 and P6, respectively. A pure water supply source 43 is connected to the liquid inlet of the cleaning liquid tank 11 through the pipe P7. A valve V4 is inserted in the pipe P7.
  • the first chemical solution is supplied from the chemical solution supply unit 41 to the weighing tank 12, and the second chemical solution is supplied from the chemical solution supply unit 42 to the weighing tank 13.
  • the first chemical solution is, for example, ammonia
  • the second chemical solution is, for example, hydrogen peroxide solution.
  • SC1 a mixed liquid of ammonia and hydrogen peroxide
  • SC2 a mixed solution of hydrochloric acid and hydrogen peroxide solution
  • pure water is supplied from the pure water supply source 43 to the cleaning liquid tank 11.
  • pure water is used as the cleaning liquid.
  • a rinse liquid other than pure water may be used as the cleaning liquid.
  • the rinse liquid for example, carbonated water, ozone water, magnetic water, reduced water (hydrogen water) or ionic water, or an organic solvent such as IPA (isopropyl alcohol) may be used.
  • the liquid outlet of the cleaning liquid tank 11 is connected to the resistivity meter 16 through the pipe P8.
  • a valve V5 is inserted in the pipe P8.
  • a pipe P9 is connected to the specific resistance meter 16.
  • a valve V6 is inserted in the pipe P9.
  • the pipe P9 is connected to the connection portion C2 of the processing liquid supply unit 2.
  • the specific resistance meter 16 is connected to a drain pipe P10.
  • the control unit 17 controls operations of the cleaning unit 1 such as opening and closing of the valves V1 to V6 and operation of the pump 14.
  • the processing liquid supply unit 2 includes one or a plurality of processing liquid tanks 21 and a control unit 24.
  • one processing liquid tank 21 is provided.
  • a pipe P11 is connected between the liquid inlet of the processing liquid tank 21 and the connection portion C1. Valves V7 and V8 are inserted in the pipe P11.
  • a pipe P12 is connected to the pipe P11 between the valves V7 and V8.
  • a valve V9 is inserted in the pipe P12. Nitrogen gas can be supplied to the pipe P11 through the pipe P12.
  • a liquid circulation pipe P13 is connected between the liquid inlet and the liquid outlet of the treatment liquid tank 21.
  • a valve V10, a pump 22 and a filter 23 are inserted in the pipe P13.
  • a pipe P14 is provided to branch from the pipe P13.
  • a valve V11 is inserted in the pipe P14.
  • the pipe P14 is connected to the connection part C2.
  • a pipe P15 is provided so as to branch from the pipe P13.
  • a valve V12 is inserted in the pipe P15.
  • a plurality of pipes P16 are branched from the pipe P15.
  • the processing liquid is stored in the processing liquid tank 21 of the processing liquid supply unit 2.
  • a chemical liquid or a rinse liquid is used as the treatment liquid.
  • the chemical solution include aqueous solutions such as buffered hydrofluoric acid (BHF), dilute hydrofluoric acid (DHF), hydrofluoric acid (hydrogen fluoride water: HF), hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, acetic acid, oxalic acid, or aqueous ammonia. Or a mixed solution thereof.
  • BHF buffered hydrofluoric acid
  • DHF dilute hydrofluoric acid
  • HF hydrofluoric acid
  • hydrochloric acid sulfuric acid, nitric acid, phosphoric acid, acetic acid, oxalic acid, or aqueous ammonia.
  • the processing solution may be a photoresist solution or a developing solution.
  • the control unit 24 controls the operation of the processing liquid supply unit 2 such as the opening and closing of the valves V7 to V12 and the operation of the pump 22.
  • the substrate processing apparatus 3 includes a plurality of processing units 31. Each processing unit 31 includes a substrate holder 32 that holds the substrate W, a cup 33, and a nozzle 34. The nozzle 34 is connected to the pipe P16. A valve V13 is inserted in each pipe P16. A pipe P ⁇ b> 17 is connected to the discharge port of each processing unit 31. A valve V14 is inserted in the pipe P17. The pipe P17 is connected to the specific resistance meter 16 of the cleaning unit 1.
  • the control unit 35 controls the operation of the substrate processing apparatus 3 such as opening and closing of the valves V13 and V14.
  • the cleaning unit 1 can be connected to and disconnected from the processing liquid supply unit 2 at the connection portions C1 and C2. During the pipe cleaning operation described below, the cleaning unit 1 is connected to the processing liquid supply unit 2. Further, when the substrate W is processed, the cleaning unit 1 is separated from the processing liquid supply unit 2.
  • FIG. 2 is a flowchart showing a pipe cleaning operation under the control of the control units 17, 24, and 35 in FIG. 3 to 11 are schematic views showing the pipe cleaning operation of the substrate processing system 100 in each step of FIG.
  • the processing liquid supply unit 2 and the piping of the substrate processing apparatus 3 are cleaned using the first cleaning liquid, the second cleaning liquid, and the third cleaning liquid
  • the first cleaning liquid is SC1
  • the second cleaning liquid is pure water
  • the third cleaning liquid is also pure water.
  • the cleaning unit 1 prepares the first cleaning liquid under the control of the control unit 17 (step S1 in FIG. 2).
  • the control unit 17 opens the valves V2 and V3 in FIG.
  • ammonia is supplied from the weighing tank 12 to the cleaning liquid tank 11 as the first chemical liquid
  • hydrogen peroxide water is supplied from the weighing tank 13 as the second chemical liquid to the cleaning liquid tank 11.
  • ammonia and hydrogen peroxide solution are mixed.
  • SC1 is generated as the first cleaning liquid.
  • the control unit 17 closes the valves V2 and V3, opens the valve V1 in FIG.
  • the first cleaning liquid circulates in the pipe P1 as indicated by the thick solid arrow in FIG.
  • particles in the cleaning liquid tank 11 and particles contained in the first cleaning liquid are removed by the filter 15.
  • the first cleaning liquid is supplied from the cleaning liquid tank 11 to the processing liquid tank 21 under the control of the control unit 24 (step S2).
  • the control unit 17 closes the valve V1 of FIG. 1 to stop the return of the first cleaning liquid to the cleaning liquid tank 11, and then the control unit 24 opens the valves V7 and V8 of FIG.
  • the first cleaning liquid is supplied from the pipe P1 to the processing liquid tank 21 through the pipe P11.
  • step S3 circulation of the first cleaning liquid and preparation for cleaning are performed under the control of the control unit 24 (step S3).
  • the control unit 24 closes the valves V7 and V8 in FIG. 1, opens the valve V10, and operates the pump 22.
  • the first cleaning liquid circulates through the pipe P ⁇ b> 13, and particles in the processing liquid tank 21 and particles contained in the first cleaning liquid are removed by the filter 23.
  • step S4 pipe cleaning is performed under the control of the control unit 24 and the control unit 35 (step S4).
  • the control unit 24 opens the valve V12 in FIG. 1, and the control unit 35 opens the valves V13 and V14 in FIG.
  • the first cleaning liquid is supplied from the pipe P13 through the pipes P15 and P16 and the nozzle 34 into each processing unit 31.
  • the first cleaning liquid in each processing unit 31 is discharged through the pipings P17 and P10. Accordingly, the pipes P13, P15 to P17, the valves V12 to V14, and the nozzle 34 are cleaned with the first cleaning liquid.
  • the control unit 24 closes the valves V10 and V12, and the control unit 35 closes the valves V13 and V14.
  • the second cleaning liquid is prepared under the control of the control unit 17 (step S5).
  • the control unit 17 opens the valves V1, V4, and V5 shown in FIG.
  • pure water is supplied as the second cleaning liquid from the pure water supply source 43 to the cleaning liquid tank 11 through the pipe P7, and FIGS.
  • the first cleaning liquid in the cleaning liquid tank 11 is discharged through the pipes P8 and P10. Further, the second cleaning liquid circulates through the pipe P1.
  • the control unit 17 measures the specific resistance of the second cleaning liquid using the specific resistance meter 16. When the specific resistance reaches a predetermined value, the control unit 17 closes the valve V ⁇ b> 5 of FIG. 1 and stores the second cleaning liquid in the cleaning liquid tank 11. Thereafter, the control unit 17 closes the valve V4 in FIG.
  • the second cleaning liquid is supplied from the cleaning liquid tank 11 to the processing liquid tank 21 under the control of the control unit 24 (step S6).
  • the control unit 17 closes the valve V1 in FIG. 1 to stop returning the second cleaning liquid to the cleaning liquid tank 11, and then the control unit 24 opens the valves V7 and V8 in FIG.
  • the second cleaning liquid is supplied from the pipe P1 to the processing liquid tank 21 through the pipe P11 as indicated by a thick dashed line arrow in FIG.
  • the control unit 24 opens the valve V10. Accordingly, the second cleaning liquid circulates through the pipe P13, and the first cleaning liquid in the cleaning liquid tank 11, the pipe P13, the filter 15, and the pump 14 is washed away with the second cleaning liquid.
  • step S7 pipe cleaning is performed under the control of the control unit 24 and the control unit 35 (step S7).
  • the control unit 24 opens the valve V12 in FIG. 1
  • the control unit 35 opens the valves V13 and V14 in FIG.
  • the second cleaning liquid is supplied from the pipe P13 through the pipes P15 and P16 and the nozzle 34 into each processing unit 31.
  • the second cleaning liquid in each processing unit 31 is discharged through the pipes P17 and P10. Accordingly, the pipes P13, P15 to P17, the valves V12 to V14, and the nozzle 34 are cleaned with the second cleaning liquid.
  • step S8 it is determined whether or not the specific resistance of the second cleaning liquid is a predetermined value under the control of the control unit 17 (step S8).
  • the control unit 17 measures the specific resistance of the second cleaning liquid using the specific resistance meter 16. If the specific resistance is not a predetermined value, the process returns to step S6, and the second cleaning liquid is supplied from the cleaning liquid tank 11 to the processing liquid tank 21 and the pipe is cleaned with the second cleaning liquid.
  • the control unit 24 closes the valves V10 and V12 in FIG. 1, and the control unit 35 closes the valves V13 and V14.
  • the third cleaning liquid is prepared under the control of the control unit 17 (step S9).
  • the control unit 17 opens the valves V1, V4, and V5 shown in FIG.
  • pure water is supplied as the third cleaning liquid from the pure water supply source 43 to the cleaning liquid tank 11 through the pipe P7, and in FIG.
  • the second cleaning liquid in the cleaning liquid tank 11 is discharged through the pipes P8 and P10.
  • the third cleaning liquid circulates through the pipe P1.
  • the second cleaning liquid in the cleaning liquid tank 11, the pipe P1, the pump 14, and the filter 15 is replaced with the third cleaning liquid.
  • control unit 17 measures the specific resistance of the third cleaning liquid using the specific resistance meter 16. When the specific resistance reaches a predetermined value, the control unit 17 closes the valve V ⁇ b> 5 of FIG. 1 and stores the third cleaning liquid in the cleaning liquid tank 11. Thereafter, the control unit 17 closes the valve V4.
  • the third cleaning liquid is supplied from the cleaning liquid tank 11 to the processing liquid tank 21 and the processing liquid tank 21 is cleaned under the control of the control unit 24 (step S10).
  • the control unit 17 closes the valve V1 in FIG. 1 to stop the return of the third cleaning liquid to the cleaning liquid tank 11, and then the control unit 24 opens the valves V7 and V8 in FIG.
  • the third cleaning liquid is supplied from the pipe P1 to the processing liquid tank 21 through the pipe P11.
  • the control unit 24 opens the valve V10 of FIG. Accordingly, the third cleaning liquid circulates through the pipe P13, and the second cleaning liquid of the cleaning liquid tank 11, the pipe P13, the filter 15, and the pump 14 is washed away with the third cleaning liquid.
  • step S11 it is determined whether or not the specific resistance of the third cleaning liquid is a predetermined value under the control of the control unit 17 and the control unit 24 (step S11).
  • the control unit 17 opens the valve V6 in FIG. 1, and the control unit 24 opens the valve V11 in FIG.
  • the controller 17 measures the specific resistance of the third cleaning liquid using the specific resistance meter 16. If the specific resistance is not a predetermined value, the process returns to step S10, and the third cleaning liquid is supplied from the cleaning liquid tank 11 to the processing liquid tank 21 and the third cleaning liquid is circulated.
  • the third cleaning liquid in the processing liquid tank 21 and the pipes P13, P14, P9, and P10 is discharged under the control of the control unit 24 and the control unit 17 (step S12).
  • the control unit 24 closes the valves V6, V10, V11 in FIG.
  • the inside of the processing liquid tank 21 can be sufficiently cleaned by the above steps S9 to S12.
  • step S13 nitrogen gas is sealed under the control of the control unit 24 (step S13).
  • the control unit 24 opens the valves V7 and V9, and the control unit 17 opens the valve V1.
  • nitrogen gas is sealed in the pipes P11, P2 and P1 and the cleaning liquid tank 11 as indicated by thick broken arrows in FIG.
  • the cleaning unit 1 prepares the second cleaning liquid (step S5) in parallel with the cleaning of the pipes P13, P15 to P17 with the first cleaning liquid (step S4). )It can be performed.
  • the cleaning unit 1 can prepare the third cleaning liquid (step S9). Therefore, the time required for cleaning the pipes P13, P15 to P17 with the first cleaning liquid and the second cleaning liquid can be shortened. As a result, the pipes P13, P15 to P17 can be cleaned in a short time using a plurality of cleaning liquids.
  • the cleaning unit 1 can prepare the third cleaning liquid (step S9).
  • the time required for cleaning the pipes P13, P15 to P17 with the first cleaning liquid and the second cleaning liquid can be further shortened.
  • valves V7 and V8 inserted in the pipe P11 are closed after the supply of the first cleaning liquid from the cleaning unit 1 to the processing liquid tank 21, the supply of the first cleaning liquid from the cleaning unit 1 to the processing liquid tank 21 is closed. Immediately after the end, preparation of the second cleaning liquid can be started in the cleaning unit 1. Accordingly, the pipes P13, P15 to P17 can be cleaned with the first cleaning liquid and the second cleaning liquid in a shorter time.
  • the cleaning unit 1 can be connected to and disconnected from the processing liquid supply unit 2, the cleaning unit 1 is disconnected from the processing liquid supply unit 2 after the cleaning of the pipes P13 and P15 to P17, and another processing liquid supply is performed. Can be connected to unit 2. Thereby, the piping of the plurality of processing liquid supply units 2 and the plurality of substrate processing apparatuses 3 can be sequentially cleaned by the single cleaning unit 1. Moreover, since the cleaning unit 1 can be separated from the processing liquid supply unit 2 when the substrate processing apparatus 3 processes the substrate W, an increase in the size of the substrate processing system 100 during operation of the substrate processing apparatus 3 is suppressed.
  • FIG. 12 is a schematic diagram showing a configuration of a substrate processing system according to a second embodiment of the present invention.
  • the configuration and operation of the substrate processing system 100 according to the second embodiment are the same as the configuration and operation of the substrate processing system 100 according to the first embodiment except for the following points.
  • the processing liquid supply unit 2 is provided with a processing liquid tank 21a in addition to the processing liquid tank 21 of FIG.
  • a pipe P11a is provided so as to branch from the part of the pipe P11 between the valve V7 and the connection portion C1.
  • the pipe P11a is connected to the liquid inlet of the processing liquid tank 21a. Valves V7a and V8a are inserted in the pipe P11a.
  • a pipe P12a is provided so as to branch from a portion of the pipe P12 on the upstream side of the valve V9.
  • a pipe P12a is connected to the pipe P11a between the valves V7a and V8a.
  • a valve V9a is inserted in the pipe P12a. Nitrogen gas can be supplied to the pipe P11a through the pipe P12a.
  • a pipe P13a for circulating liquid is connected between the liquid inlet and the liquid outlet of the treatment liquid tank 21a.
  • a valve V10a, a pump 22a, and a filter 23a are inserted in the pipe P13a.
  • a pipe P14a is provided so as to branch from the pipe P13a.
  • a valve V11a is inserted in the pipe P14a.
  • the pipe P14a is connected to the connection part C2.
  • a pipe P15a is provided so as to branch from the pipe P13a.
  • a valve V12a is inserted in the pipe P15a.
  • a plurality of pipes P16a are branched from the pipe P15a.
  • the control unit 24 controls operations of the processing liquid supply unit 2 such as opening and closing of the valves V7 to V12 and V7a to V12a and operation of the pumps 22 and 22a.
  • the processing liquid is stored in the processing liquid tanks 21 and 21a.
  • Different types of processing liquids may be stored in the processing liquid tanks 21 and 21a.
  • treatment liquids having the same components and different concentrations may be stored in the treatment liquid tanks 21 and 21a.
  • Each processing unit 31 of the substrate processing apparatus 3 includes a nozzle 34 a in addition to the substrate holding part 32, the cup 33 and the nozzle 34.
  • the nozzle 34a is connected to the pipe P16a.
  • a valve V13a is inserted in each pipe P16a.
  • the control unit 35 controls operations of the substrate processing apparatus 3 such as opening and closing of the valves V13, V13a, and V14.
  • the cleaning liquid is simultaneously supplied from the cleaning unit 1 to the two processing liquid tanks 21 and 21a.
  • the valves V10, V10a, V12, and V12a are opened while the cleaning liquid is stored in the two processing liquid tanks 21 and 21a
  • the cleaning liquid in the processing liquid tanks 21 and 21a is piped P15, P15a, P16, and P16a. And it supplies in each processing unit 31 through the nozzles 34 and 34a. Accordingly, the two processing liquid tanks 21 and 21a and the pipes P11 to P16 and P11a to P16a of the processing liquid supply unit 2 can be cleaned at the same time.
  • cleaning liquids can be supplied from the cleaning unit 1 to the processing liquid tanks 21 and 21a of the processing liquid supply unit 2, respectively.
  • the cleaning liquid can be supplied from the cleaning unit 1 to the processing liquid tank 21 by opening the valves V7 and V8. Further, the cleaning liquid can be supplied from the cleaning unit 1 to the processing liquid tank 21a by opening the valves V7a and V8a.
  • SC1 is supplied as the first cleaning liquid to the processing liquid tank 21
  • pure water is supplied as the second cleaning liquid to the processing liquid tank 21.
  • SC2 is supplied as the first cleaning liquid to the processing liquid tank 21a, and then pure water is supplied as the second cleaning liquid to the processing liquid tank 21a.
  • pure water is prepared in the cleaning unit 1 in parallel with the pipe cleaning by SC1
  • SC2 is prepared in the cleaning unit 1 in parallel with pipe cleaning by pure water
  • pure water is supplied in parallel with pipe cleaning by SC2.
  • a substrate processing system according to a third embodiment has the same configuration as the substrate processing system 100 according to the first embodiment except for the configuration of the cleaning unit 1.
  • FIG. 13 is a schematic diagram showing the configuration of the main part of the cleaning unit according to the third embodiment of the present invention.
  • the cleaning unit 1 in the present embodiment includes a cleaning liquid tank 11 a in addition to the cleaning liquid tank 11.
  • a pipe P1a for circulating liquid is connected to the cleaning liquid tank 11a.
  • a valve V1a, a pump 14a, and a filter 15a are inserted in the pipe P1a.
  • a pipe P2a is provided so as to branch from the pipe P1a.
  • the pipe P2a is connected to the pipe P2.
  • different types of cleaning liquids or cleaning liquids having different concentrations can be stored in the cleaning liquid tanks 11 and 11a.
  • SC1 is used as the first cleaning liquid
  • pure water is used as the second cleaning liquid
  • SC2 is used as the third cleaning liquid
  • pure water is used as the fourth cleaning liquid.
  • the second cleaning liquid can be prepared in the cleaning liquid tank 11 in parallel with the pipe cleaning with the first cleaning liquid.
  • the fourth cleaning liquid can be prepared in the cleaning liquid tank 11a in parallel with the pipe cleaning with the third cleaning liquid. Therefore, it is possible to clean the piping in a short time using a plurality of cleaning liquids.
  • FIG. 14 is a schematic diagram showing a configuration of a substrate processing system including another example of the cleaning unit.
  • the substrate processing system 100a includes a substrate processing apparatus 3a, a first processing liquid tank T21, a second processing liquid tank T22, a processing liquid supply path (processing liquid supply mechanism), and a cleaning unit 1A.
  • the cleaning unit 1A of the substrate processing system 100a has a configuration that can be attached to and detached from the substrate processing apparatus 3a. However, since the cleaning unit 1A may be included in the substrate processing apparatus 3a, in FIG. Piping is shown as an integral part.
  • the substrate processing apparatus 3a may include a first processing liquid tank T21, a second processing liquid tank T22, and a processing liquid supply path.
  • the substrate processing apparatus 3a includes first and second processing chambers (processing units) U11 and U12.
  • a processing liquid is supplied to a substrate such as a semiconductor wafer that is held and rotated by a spin chuck (substrate holding unit) (not shown).
  • the first processing liquid tank T21 stores an acidic processing liquid such as HF, for example.
  • the second processing liquid tank T22 stores an alkaline processing liquid such as SC1.
  • the processing liquid supply path supplies the processing liquid from the first processing liquid tank T21 and the second processing liquid tank T22 to the first and second processing chambers U11 and U12.
  • the acidic treatment liquid circulation path 101 is connected to the first treatment liquid tank T21.
  • the circulation path 101 is provided with a valve V51, a pump P52, a filter F53, and a valve V57.
  • the acidic processing liquid is sent from the first processing liquid tank T21 and then returned to the first processing liquid tank T21 through the circulation path 101.
  • the circulation path 101 is connected to an acidic process liquid discharge path 103 and an acidic process liquid discharge path 104.
  • the discharge path 103 is connected to the nozzle N13 in the first processing chamber U11 through valves V61 and V66.
  • the discharge path 104 is connected to the nozzle N15 in the second processing chamber U12 through valves V62 and V68.
  • the alkaline treatment liquid circulation path 102 is connected to the second treatment liquid tank T22.
  • the circulation path 102 is provided with a valve V54, a pump P55, a filter F56, and a valve V58.
  • the alkaline processing liquid is sent from the second processing liquid tank T22 and then returned to the second processing liquid tank T22 through the circulation path 102.
  • the circulation path 102 is connected to an alkaline processing liquid discharge path 105 and an alkaline processing liquid discharge path 106.
  • the discharge path 105 is connected to the nozzle N14 in the first processing chamber U11 through valves V63 and V67.
  • the discharge path 106 is connected to the nozzle N16 in the second processing chamber U12 through valves V64 and V69.
  • the first treatment liquid tank T21 is connected to the vent pipe 111 through the valve V46.
  • the second treatment liquid tank T22 is connected to the vent pipe 111 through the valve V47.
  • the vent pipe 111 is connected to the exhaust part E48.
  • valve V46 is normally closed.
  • the valve V46 is opened and a part of the gas in the first processing liquid tank T21 passes through the vent piping 111. It is discharged to the outside from the exhaust part E48.
  • valve V47 is normally closed.
  • the valve V47 is opened and a part of the gas in the second processing liquid tank T22 passes through the vent piping 111. It is discharged to the outside from the exhaust part E48.
  • the acidic processing liquid in the first processing liquid tank T21 circulates in the circulation path 101 by driving the pump P52 with the valve V51 and the valve V57 being opened. That is, the acidic processing liquid stored in the first processing liquid tank T21 is sent from the first processing liquid tank T21 by the pump P52, then moves in the circulation path 101, and is returned to the first processing liquid tank T21. It is. In this state, when the valve V61 and the valve V66 are opened, the acidic processing liquid circulating in the circulation path 101 rotates in the first processing chamber U11 from the nozzle N13 through the discharge path 103. Supplied to the substrate.
  • the acidic processing liquid is supplied from the nozzle N15 through the discharge path 104 to the substrate that rotates in the second processing chamber U12.
  • These acidic processing liquids are recovered from the first processing chamber U11 or the second processing chamber U12 to the first processing liquid tank T21 through a recovery path (not shown).
  • the acidic processing liquid used for processing the substrate may be discarded as it is.
  • the alkaline processing liquid in the second processing liquid tank T22 circulates in the circulation path 102. That is, the alkaline processing liquid stored in the second processing liquid tank T22 is sent from the second processing liquid tank T22 by the pump P55, then moves in the circulation path 102, and is returned to the second processing liquid tank T22. It is. In this state, when the valve V63 and the valve V67 are opened, the alkaline processing liquid is supplied from the nozzle N14 to the rotating substrate in the first processing chamber U11 through the discharge path 105.
  • the alkaline processing liquid is supplied from the nozzle N16 through the discharge path 106 to the substrate that rotates in the second processing chamber U12.
  • These alkaline processing liquids are recovered from the first processing chamber U11 or the second processing chamber U12 to the second processing liquid tank T22 through a recovery path (not shown).
  • the alkaline processing liquid used for processing the substrate may be discarded as it is.
  • the processing liquid supply path includes circulation paths 101 and 102 and discharge paths 103 to 106.
  • the valves V31 to V33, V42, V43, V46, V47, V51, V54, V57, V58, and V61 to V69 are open / close valves.
  • the substrate processing apparatus 3a of this example has two processing chambers (first and second processing chambers U11 and U12), but the number of processing chambers is not limited to two. The number of processing chambers may be about 4 to 12. For example, if the substrate processing apparatus 3a has eight processing chambers, eight acidic processing liquid discharge paths and eight alkaline processing liquid discharge paths are required. Further, in the substrate processing system 100a of this example, the substrate is processed by two kinds of acidic and alkaline processing liquids, but a larger number of types of processing liquids may be supplied to the substrate. May be processed.
  • the cleaning unit 1A of the substrate processing system 100a includes a cleaning liquid tank T11 that stores a cleaning liquid.
  • the cleaning liquid in the cleaning liquid tank T11 is sent from the cleaning liquid tank T11 through the valve V33 and the pump P34, and then supplied to the first processing liquid tank T21 through the cleaning liquid supply path 107 having the valve V32 and the cleaning liquid supply having the valve V31.
  • the liquid is supplied to the second processing liquid tank T22 through the path.
  • the cleaning unit 1A has a supply part S41 of nitrogen gas as an inert gas.
  • the supply unit S41 is connected to the circulation path 101 at the connection part C44 through the nitrogen gas supply path 109 having the valve V42. For this reason, as will be described later, nitrogen gas can be mixed into the cleaning liquid circulating through the circulation path 101 from the connection portion C44.
  • the supply part S41 is connected to the circulation path 102 at the connection part C45 through the nitrogen gas supply path 110 having the valve V43. For this reason, as will be described later, nitrogen gas can be mixed into the cleaning liquid circulating in the circulation path 102 from the connection portion C45.
  • the substrate processing system 100a includes a control unit CNT that integrally controls the cleaning unit 1A and the substrate processing apparatus 3a.
  • the control unit CNT includes the above-described valves V31 to V33, a nitrogen gas supply unit S41, valves V42, V43, V46, V47, V51, V54, V57, V58, V61 to V64, V66 to V69, and pumps P34, P52, By controlling P55 and the like, a cleaning process for piping constituting a processing liquid supply path of the substrate processing system 100a described later is executed.
  • FIG. 15 is an explanatory view showing a state in which nitrogen gas is mixed into the circulating cleaning liquid at the connecting portions C44 and C45.
  • a T-shaped tube P71 having a small diameter portion and a large diameter portion is used for the connecting portions C44 and C45.
  • the large diameter portion of the T-shaped pipe P71 is connected to the pipe P72 by a nut 74.
  • the pipe P72 constitutes a circulation path 101 for the acidic treatment liquid or a circulation path 102 for the alkaline treatment liquid.
  • the small diameter portion of the T-shaped pipe P71 is connected to the pipe P73 by a nut 74.
  • the pipe P73 constitutes the nitrogen gas supply path 109 or the nitrogen gas supply path 110.
  • the acidic or alkaline processing liquid that moves inside the pipe P72 (circulation paths 101 and 102) is indicated by the symbol A, and moves inside the pipe P73 (the nitrogen gas supply path 109 or the nitrogen gas supply path 110).
  • the nitrogen gas to be used is indicated by the symbol B.
  • the pipe P73 has a smaller inner diameter than the pipe P72.
  • nitrogen gas is supplied in the same direction as the flow of the cleaning liquid circulating through the pipe P72 from the pipe P73 having an inner diameter smaller than the pipe P72 constituting the circulation path 101 or the circulation path 102. .
  • the nitrogen gas B can be supplied to the cleaning liquid A circulating in the pipe P72 without causing a backflow and a pressure loss. Thereby, it becomes possible to increase the circulation speed of the cleaning liquid circulating through the pipe P72.
  • the cleaning liquid tank T11 to the first processing liquid tank T21 and the first processing liquid tank T21 of the cleaning unit 1A are used.
  • a necessary amount of cleaning liquid is supplied to the two processing liquid tank T22. That is, the control unit CNT opens the valve V33 and drives the pump P34 with all the valves closed.
  • the control unit CNT supplies the cleaning liquid to the first processing liquid tank T21 by opening the valve V32, and supplies the cleaning liquid to the second processing liquid tank T22 by opening the valve V31.
  • the control unit CNT closes the valves V31, V32, V33 and stops driving the pump P34.
  • control unit CNT opens the valve V51 and the valve V57 and drives the pump P52 to circulate the cleaning liquid in the acidic treatment liquid circulation path 101. Further, the control unit CNT opens the valve V42 in a state where the cleaning liquid circulates, and supplies nitrogen gas into the cleaning liquid that circulates through the circulation path 101 from the connection part C44. As a result, the flow rate of the cleaning liquid circulating in the circulation path 101 is increased by the action of nitrogen gas. At this time, the supply amount of nitrogen gas per unit time (for example, 7 to 28 liters / minute) is equal to or higher than the supply amount of cleaning liquid supplied to the circulation path 101 per unit time (for example, 7 liters / minute). ing.
  • control unit CNT opens the valve V54 and the valve V58 and drives the pump P55 to circulate the cleaning liquid in the circulation path 102 of the alkaline processing liquid. Further, the control unit CNT opens the valve V43 in a state in which the cleaning liquid circulates, and supplies nitrogen gas into the cleaning liquid that circulates through the circulation path 102 from the connection part C45. As a result, the flow rate of the cleaning liquid circulating in the circulation path 102 is increased by the action of nitrogen gas. At this time, the supply amount of nitrogen gas per unit time (for example, 7 to 28 liters / minute) is also greater than or equal to the supply amount of cleaning liquid supplied to the circulation path 102 per unit time (for example, 7 liters / minute). ing.
  • FIG. 16 is a schematic diagram showing a state of the cleaning liquid flowing through the pipe P72 when nitrogen gas is not supplied.
  • FIG. 17 is a schematic diagram showing the state of the cleaning liquid flowing through the pipe P72 when nitrogen gas is supplied.
  • the cleaning liquid w moves at a low speed while being in close contact with the inner wall of the pipe P72. In this case, since a large physical force does not act on the particles P attached to the inner wall of the pipe P72, these particles P cannot be removed efficiently.
  • connection part C44 (C45) nitrogen gas having a volume equal to or larger than the supply amount per unit time of the cleaning liquid supplied to the circulation path 101 (102) is generated in the pipe P72. Is supplied to the cleaning liquid flowing through Thereby, in the connection part C44 (C45), the cleaning liquid breaks up into a plurality of droplets d (FIG. 17) smaller than the inner diameter of the pipe P72 and accelerates greatly. As shown in FIG. 17, the plurality of droplets d move at high speed while repeatedly colliding with the inner wall of the pipe P72 downstream from the connection portion C44 (C45).
  • the cleaning unit 1A of the present example the cleaning liquid is split into droplets that are smaller than the inner diameter of the pipe P72 and move at a high speed by the nitrogen gas supplied from the connection C44 and the connection C45. Therefore, a large physical force can be applied to minute particles adhering to the uneven portion or joint portion of the inner wall of the pipe P72. Thereby, the minute particles adhering in the pipe P72 can be removed with high efficiency.
  • FIG. 18 is a flowchart showing a cleaning procedure for piping of the substrate processing system 100a using the cleaning unit 1A and the substrate processing apparatus 3a of FIG. A procedure for cleaning the piping of the substrate processing system 100a will be described with reference to FIGS.
  • control unit CNT opens the valves V31 to V33 while the valves V51 and V54 are closed, and operates the pump P34 to supply a predetermined amount of cleaning liquid supplied from the cleaning liquid tank T11.
  • the first treatment liquid tank T21 and the second treatment liquid tank T22 are stored (step S21).
  • the controller CNT opens the valves V51 and V57 with the valves V61 and V62 closed, and starts the operation of the pump P52, thereby starting the circulation of the cleaning liquid in the acidic treatment liquid circulation path 101. To do. At the same time, the control unit CNT opens the valves V54 and V58 while the valves V63 and V64 are closed, and starts the operation of the pump P55, thereby starting the circulation of the cleaning liquid in the circulation path 102 of the alkaline processing liquid. (Step S22).
  • the control unit CNT When the inside of the circulation path 101 is filled with the cleaning liquid, the control unit CNT continuously opens the valve V42 and starts supplying nitrogen gas to the circulation path 101. Similarly, when the inside of the circulation path 102 is filled with the cleaning liquid, the control unit CNT continuously opens the valve V43 and starts supplying nitrogen gas to the circulation path 102 (step S23). As described above, the inner walls of the circulation paths 101 and 102 start to be efficiently cleaned by the plurality of droplets of the cleaning liquid.
  • the supply of nitrogen gas at the connection C44 (C45) increases the internal pressure of the nitrogen gas in the circulation path 101 (102) including the processing liquid tank T21 (T22).
  • the control unit CNT opens and closes the valve V46 (V47) at an appropriate timing, excess nitrogen gas is discharged (vented) from the exhaust unit E48. Therefore, the internal pressure of the nitrogen gas in the circulation path 101 (102) is kept constant. If the internal pressure of the nitrogen gas becomes too high, it becomes difficult to supply the nitrogen gas from the connecting portions C44 and C45.
  • the control unit CNT vents by controlling the valves V46 and V47 to open and close at an appropriate timing, so that nitrogen gas is continuously supplied from the connection units C44 and C45 to the circulation paths 101 and 102. Can do.
  • the control unit CNT discharges the cleaning liquid from the nozzle N13 by opening the valves V61 and V66 (step S24). Accordingly, a first discharge path cleaning operation is performed to clean the acidic process liquid discharge path 103 connected to the nozzle N13 in the first processing chamber U11.
  • control unit CNT causes the cleaning liquid to be discharged from the nozzle N15 by opening the valves V62 and V68 (step S25). Accordingly, a second discharge path cleaning operation for cleaning the acidic process liquid discharge path 104 connected to the nozzle N15 in the second processing chamber U12 is executed.
  • valves V61, V62, V66, and V68 are continuously opened, the cleaning liquid and the nitrogen gas are continuously discharged from the nozzle N13 and the nozzle N15. In this case, the internal pressure of the nitrogen gas in the circulation path 101 and the discharge paths 103 and 104 may decrease.
  • valve V61 (V66) and the valve V62 (V68) are intermittently opened and closed, if the discharge timing of the cleaning liquid or the like from the nozzle N13 and the nozzle N15 overlaps, the circulation path 101 and the discharge path 103, There is a possibility that the internal pressure of the nitrogen gas in 104 will decrease. In this case, since the flow velocity of the cleaning liquid droplets flowing through the circulation path 101 and the discharge paths 103 and 104 is lowered, a sufficient cleaning effect cannot be obtained. This phenomenon becomes more prominent as the number of discharge paths 103 and 104 connected to the same circulation path 101 increases.
  • valves V61, V62, V66, and V68 are used so that the cleaning liquid and the like are intermittently discharged from the nozzles N13 and N15, and the discharge timings of the cleaning liquid and the like from the nozzles N13 and N15 are not overlapped.
  • the opening / closing timing is controlled. For this reason, it is possible to effectively prevent a decrease in the internal pressure of the nitrogen gas in the circulation path 101 and the discharge paths 103 and 104 and a decrease in the flow velocity of the cleaning liquid droplets.
  • the control unit CNT repeatedly executes Step S24 and Step S25 until the cleaning of the inner walls of the discharge path 103 and the discharge path 104 is completed (Step S26).
  • steps S27 to S29 are executed.
  • the control unit CNT discharges the cleaning liquid from the nozzle N14 by opening the valves V63 and V67 (step S27). Accordingly, a third discharge path cleaning operation for cleaning the discharge path 105 of the alkaline processing liquid connected to the nozzle N14 in the first processing chamber U11 is executed.
  • control unit CNT causes the cleaning liquid to be discharged from the nozzle N16 by opening the valves V64 and V69 (step S28).
  • a fourth discharge path cleaning operation for cleaning the alkaline process liquid discharge path 106 connected to the nozzle N16 in the second processing chamber U12 is executed.
  • control unit CNT repeatedly executes step S27 and step S28 until the cleaning of the inner walls of the discharge path 105 and the discharge path 106 is completed (step S29).
  • the opening / closing timings of the valves V63, V64, V67, V69 are controlled so that the nozzle N14 and the nozzle N16 intermittently discharge the cleaning liquid and the like. Further, the discharge timing of the cleaning liquid or the like from the nozzle N14 and the nozzle N16 is shifted. These controls are based on the same reason as the control of the discharge operation of the cleaning liquid or the like from the nozzle N13 and the nozzle N15.
  • the cleaning liquid for cleaning the acidic processing liquid supply path (circulation path 101 and discharge paths 103 and 104) and the cleaning liquid for cleaning the alkaline processing liquid supply path (circulation path 102 and discharge paths 105 and 106) are used. You may want to collect them separately.
  • the timings of the first discharge path cleaning operation (step S24) and the third discharge path cleaning operation (step S27) are shifted, and the second discharge path cleaning operation (step S25) and the fourth The timing of the discharge path cleaning operation (step S28) may be shifted.
  • the pipe P72 constituting the circulation path 101 or the circulation path 102 is supplied to the pipe P72 per unit time so that a sufficient amount of nitrogen gas is discharged together with the cleaning liquid from the nozzles N13, N14, N15, and N16. It is necessary to continuously supply an amount of nitrogen gas sufficiently larger than the supply amount of the cleaning liquid. For this reason, the supply amount per unit time of the nitrogen gas supplied to the pipe P72 is preferably set to be several times or more the supply amount per unit time of the cleaning liquid supplied to the pipe P72.
  • the supply amount refers to the volume of nitrogen gas and cleaning liquid under atmospheric pressure.
  • control unit CNT closes the valves V42 and V43 to end the supply of nitrogen gas (step S30).
  • the control unit CNT stops the operation of the pumps P52 and P55 and ends the circulation of the cleaning liquid in the circulation paths 101 and 102 (step S31).
  • the controller CNT discharges the cleaning liquid from the first processing liquid tank T21 and the second processing liquid tank T22, closes all the valves, and ends the cleaning operation (step S32). The operator removes the cleaning unit 1A of the substrate processing system 100a from the substrate processing apparatus 3a as necessary.
  • the substrate processing system 100a that processes a substrate using two types of processing liquids, an acidic processing liquid and an alkaline processing liquid, is cleaned, but the substrate is processed with a single processing liquid.
  • the substrate processing system may be cleaned by the cleaning unit 1A of this example.
  • a substrate processing system for processing a substrate with three or more kinds of processing liquids may be cleaned by the cleaning unit 1A of this example.
  • FIG. 19 is a schematic diagram showing the configuration of the main part of the processing liquid supply unit in the fourth embodiment.
  • the treatment liquid supply unit 2 is provided with a supply unit S41 of nitrogen gas as an inert gas.
  • Supply part S41 is connected with the piping P13 in the connection part C44 through the nitrogen gas supply path 109 which has the valve
  • the pipe P13 in FIG. 1 constitutes the circulation path 101 in FIG. 14, and the pipes P15 and P16 in FIG. 1 constitute the discharge paths 103 and 104 in FIG.
  • the valves V12 and V13 in FIG. 1 correspond to the valves V61, V62, V66, and V68 in FIG.
  • Such a configuration makes it possible to mix nitrogen gas from the connection portion C44 into the first cleaning liquid circulating in the pipe P13 in steps S3 and S4 in FIG. Moreover, it becomes possible to mix nitrogen gas from the connection part C44 in the 2nd washing
  • FIG. 20 is a schematic diagram showing the configuration of the main part of the processing liquid supply unit in the fifth embodiment.
  • the treatment liquid supply unit 2 is provided with a supply unit S41 of nitrogen gas as an inert gas.
  • Supply part S41 is connected with the piping P13 in the connection part C44 through the nitrogen gas supply path 109 which has the valve
  • the supply part S41 is connected to the pipe P13a at the connection part C45 through the nitrogen gas supply path 110 having the valve V43.
  • the pipe P13 in FIG. 12 constitutes the circulation path 101 in FIG. 14
  • the pipe P13a in FIG. 12 constitutes the circulation path 102 in FIG. 14
  • the pipes P15 and P16 in FIG. 104, and the pipes P15a and P16a in FIG. 12 constitute the discharge paths 105 and 106 in FIG.
  • valves V12 and V13 in FIG. 12 correspond to the valves V61, V62, V66, and V68 in FIG. 14, and the valves V12a and V13a in FIG. 12 correspond to the valves V63, V64, V67, and V69 in FIG.
  • Such a configuration makes it possible to mix nitrogen gas from the connection portions C44 and C45 into the first cleaning liquid circulating through the pipes P13 and P13a in steps S3 and S4 in FIG. Moreover, it becomes possible to mix nitrogen gas from the connection parts C44 and C45 in the 2nd washing
  • the pipe P2 and the pipe P2a may be provided separately without being connected. Further, in the treatment liquid supply unit 2 of FIG. 12, the pipe P11 and the pipe P11a may be provided separately without being connected. In this case, the pipes P2 and P2a of the cleaning unit 1 can be connected to the pipes P11 and P11a of the processing liquid supply unit 2, respectively.
  • the cleaning liquid is supplied from the cleaning liquid tank 11 of FIG. 13 to the processing liquid tank 21 of FIG. 12 through the pipe P2, and the processing liquid is supplied from the cleaning liquid tank 11a of FIG. 13 to the processing liquid tank 21a of FIG. .
  • control units 17, 24, and 35 are provided in the cleaning unit 1, the processing liquid supply unit 2, and the substrate processing apparatus 3, respectively, but the present invention is not limited to this. Instead of the plurality of control units 17, 24, and 35, a single control unit that controls the cleaning unit 1, the processing liquid supply unit 2, and the substrate processing apparatus 3 may be provided.
  • the substrate processing apparatus 3 is an example of a substrate processing apparatus
  • the processing liquid supply units 2 and 2a are examples of a processing liquid supply unit
  • the cleaning unit 1 is an example of a processing unit
  • the tanks 21 and 21a are examples of processing liquid tanks
  • the processing unit 31 is an example of a processing unit
  • the pipes P13, P15. P16, P13a, P15a, and P16a are examples of piping.
  • Pipes P2, P11, and P2a are examples of supply paths
  • valves V7, V8, V7a, and V8a are examples of switchgear
  • nitrogen gas is an example of an inert gas or gas
  • pipe P12 is inert. It is an example of a gas supply part
  • piping P13, P13a is an example of a circulation path.
  • the nitrogen gas supply paths 109 and 110 are examples of a gas supply system
  • the period of steps S3 and S4 is an example of the first period
  • the period of steps S6 and S7 is an example of the second period.
  • Piping P15. P16, P15a, and P16a are examples of discharge paths
  • the processing unit 31 is an example of a processing chamber
  • the nozzle 34 is an example of a nozzle
  • the valves V12, V13, V12a, and V13a are examples of valves, and are T-shaped.
  • the small diameter part of the pipe P71 is an example of a pipe line.
  • the present invention can be used for cleaning piping in a substrate processing system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Cleaning By Liquid Or Steam (AREA)

Abstract

 基板処理システムは、洗浄ユニット、複数の処理液供給ユニットおよび基板処理装置により構成される。洗浄ユニットは、配管の洗浄時に、第1洗浄液を処理液供給ユニットの処理ユニットに供給する。処理液供給ユニットは、洗浄ユニットから供給された第1洗浄液を処理液タンク内に貯留した後、処理液タンク内の第1洗浄液を配管を通して基板処理装置の処理ユニットに供給する。洗浄ユニットは、第1洗浄液による配管の洗浄と並行して、第2洗浄液の準備を行い、準備された第2洗浄液を処理液タンクに供給する。

Description

基板処理システムおよび配管洗浄方法
 本発明は、基板に処理を行う基板処理システムおよび配管を洗浄する配管洗浄方法に関する。
 半導体ウエハ等の基板に種々の処理を行うために基板処理装置が用いられている。例えば、特許文献1に記載された基板処理装置は、処理液で基板を処理する複数の処理ユニットと、これらの処理ユニットに処理液を供給する処理液供給部とを含む。処理液供給部は、複数の処理液供給モジュールを含む。基板の処理時には、複数の処理液モジュールのいずれかから配管を通して各処理ユニットのノズルに処理液が供給される。ノズルから処理液が基板に吐出される。
 このような基板処理装置を工場等に設置した場合には、基板処理装置の稼動前に、配管およびノズル等の内部に存在するパーティクル(塵埃)等の汚染物を除去しなければならない。また、基板処理装置の使用により配管等への付着物を適当な時期に除去しなければならない。そのため、基板処理装置の配管等を洗浄する必要がある。
 特許文献1に記載された基板処理装置では、処理液供給モジュール内に三方弁が設けられる。三方弁には、処理液供給管および洗浄液供給管が接続される。基板の処理時には、処理液供給管から供給される処理液が処理ユニットに供給されるように三方弁が切り替えられる。配管等の洗浄時には、洗浄液供給管から供給される洗浄液が処理ユニットに供給されるように三方弁が切り替えられる。それにより、配管等が洗浄される。
特開2010-147212号公報
 特許文献1に記載された基板処理装置では、洗浄液として例えば純水が用いられる。しかしながら、配管等の内部の汚染物が純水のみで除去されない場合がある。その場合には、薬液からなる洗浄液を用いて洗浄を行う必要がある。例えば、複数の薬液の混合液からなる洗浄液を用いる場合には、洗浄液の準備に時間を要する。また、混合液での洗浄後に、洗浄液としてリンス液を用いて混合液を洗い流す必要がある。このように、複数の洗浄液を用いて配管等を洗浄する場合には、洗浄工程に要する時間が長くなる。
 本発明の目的は、複数の洗浄液を用いて配管を洗浄する場合の洗浄時間を短縮することが可能な基板処理システムおよび配管洗浄方法を提供することである。
 (1)本発明の一局面に従う基板処理システムは、基板に処理を行う基板処理装置と、基板処理装置に配管を通して処理液を供給する処理液供給ユニットと、洗浄ユニットとを備え、処理液供給ユニットは、基板の処理時に、処理液を貯留する処理液タンクを含み、基板処理装置は、基板の処理時に、基板に処理液を供給する処理ユニットを含み、処理液タンクと処理ユニットとは配管により接続され、洗浄ユニットは、配管の洗浄時に、第1洗浄液を処理液供給ユニットの処理液タンクに供給した後に、第2洗浄液の準備を行い、準備された第2洗浄液を処理液タンクに供給するように構成され、処理液供給ユニットは、配管の洗浄時に、洗浄ユニットから供給された第1洗浄液を処理液タンクに貯留した後、処理液タンク内の第1洗浄液を配管を通して処理ユニットに供給することにより配管を洗浄し、洗浄ユニットから供給された第2洗浄液を処理液タンクに貯留した後、処理液タンク内の第2洗浄液を配管を通して処理ユニットに供給することにより配管を洗浄するように構成され、洗浄ユニットは、第1洗浄液による配管の洗浄と並行して第2洗浄液の準備を行うものである。
 その基板処理システムにおいては、基板の処理時に、処理液供給ユニットの処理液タンクに処理液が貯留される。処理液タンクに貯留された処理液が配管を通して基板処理装置に供給される。基板処理装置においては、供給された処理液が処理ユニットにより基板に供給され、基板が処理される。
 配管の洗浄時には、洗浄ユニットから処理液供給ユニットの処理液タンクに第1洗浄液が供給される。処理液供給ユニットにおいては、洗浄ユニットから供給された第1洗浄液が処理液タンクに貯留された後、処理液タンク内の第1洗浄液が配管を通して処理ユニットに供給される。それにより、配管が第1洗浄液により洗浄される。
 洗浄ユニットにおいては、第1洗浄液が処理液タンクに供給された後、第1洗浄液による配管の洗浄と並行して第2洗浄液の準備が行われる。準備された第2洗浄液は処理液供給ユニットの処理液タンクに供給される。処理液供給ユニットにおいては、洗浄ユニットから供給された第2洗浄液が処理液タンクに貯留された後、処理液タンク内の第2洗浄液が配管を通して処理ユニットに供給される。それにより、配管が第2洗浄液により洗浄される。
 このように、第1洗浄液による配管の洗浄と第2洗浄液の準備とが並行して行われるので、第1洗浄液および第2洗浄液による配管の洗浄に要する時間を短縮することができる。その結果、複数の洗浄液を用いて配管を洗浄する場合の洗浄時間を短縮することが可能になる。
 (2)基板処理システムは、洗浄ユニットから処理液タンクへ第1洗浄液および第2洗浄液を供給するための供給経路と、供給経路を開閉する開閉装置とをさらに備え、開閉装置は、洗浄ユニットから処理液タンクへの第1洗浄液の供給時に供給経路を開き、処理液タンクへの第1洗浄液の供給後に供給経路を閉じてもよい。
 この場合、第1洗浄液の供給後に、洗浄ユニットと処理液タンクとが互いに分離される。そのため、洗浄ユニットから処理液タンクへの第1洗浄液の供給終了直後に洗浄ユニットにおいて第2洗浄液の準備を開始することができる。それにより、複数の洗浄液を用いて配管を洗浄する場合の洗浄時間をより短縮することが可能になる。
 (3)基板処理システムは、第2洗浄液による配管の洗浄後に、供給経路および洗浄ユニット内に不活性ガスを供給する不活性ガス供給部をさらに備えてもよい。
 この場合、配管の洗浄後に、供給経路および処理ユニット内に不活性ガスが封入されるので、パーティクル等の浸入による供給経路および洗浄ユニット内の汚染が防止される。
 (4)洗浄ユニットは、処理液供給ユニットに対して接続および切り離し可能に設けられてもよい。
 この場合、配管の洗浄時に洗浄ユニットを処理液供給ユニットに接続し、配管の洗浄後に洗浄ユニットを処理液供給ユニットから切り離すことができる。したがって、複数の処理液供給ユニットに洗浄ユニットを順次接続することにより複数の処理液供給ユニットおよび複数の基板処理装置における配管を順次洗浄することができる。また、基板の処理時には、洗浄ユニットを切り離すことができるので、基板処理システムの大型化が抑制される。
 (5)処理液供給ユニットは、複数の処理液タンクを含み、洗浄ユニットは、複数の処理液タンクに接続可能に構成されてもよい。
 この場合、複数の処理液タンクと基板処理装置とを接続する複数の配管を単一の洗浄ユニットにより洗浄することができる。
 (6)処理液供給ユニットは、処理液タンクの第1洗浄液をフィルタを通して循環させる循環経路をさらに含み、洗浄ユニットは、循環経路による第1洗浄液の循環と並行して第2洗浄液の準備を行ってもよい。
 この場合、第1洗浄液に混入したパーティクルがフィルタにより除去される。また、循環経路による第1洗浄液の循環および第1洗浄液による配管の洗浄と並行して第2洗浄液の準備が行われる。したがって、第2洗浄液の準備に比較的長い時間を要する場合でも、第1洗浄液および第2洗浄液による配管の洗浄に要する時間の増加が抑制される。
 (7)基板処理システムは、配管に第1洗浄液が供給される第1の期間および配管に第2洗浄液が供給される第2の期間の少なくとも一方の期間に配管に気体を供給するように構成される気体供給系をさらに備えてもよい。
 この場合、第1洗浄液または第2洗浄液に対して連続的に供給される気体の作用により、配管を十分清浄に洗浄することが可能となる。
 (8)気体供給系は、第1の期間に配管に供給される第1洗浄液に対して、単位時間当たりの第1洗浄液の供給量以上の量の気体を連続的に供給するように構成されてもよい。
 この場合、第1洗浄液に対して連続的に供給される気体の作用により、配管を十分清浄に洗浄することが可能となる。
 (9)気体供給系は、第2の期間に配管に供給される第2洗浄液に対して、単位時間当たりの第2洗浄液の供給量以上の量の気体を連続的に供給するように構成されてもよい。
 この場合、第2洗浄液に対して連続的に供給される気体の作用により、配管を十分清浄に洗浄することが可能となる。
 (10)配管は、処理液タンクから送出される処理液を処理液タンクに戻す循環経路と、循環経路から処理液を処理ユニットに供給する吐出経路とを構成し、気体供給系は、少なくとも一方の期間において循環経路に気体を供給するように構成されてもよい。
 この場合、循環経路を循環する第1洗浄液または第2洗浄液の流速を気体の作用により増加させることができる。この洗浄液を吐出経路に供給することにより吐出経路を効果的に洗浄することが可能となる。
 (11)基板処理装置は、処理室と、循環経路から吐出経路を通して供給される処理液を処理室内で基板に吐出するノズルとを含み、吐出経路にバルブが設けられ、バルブが間欠的に開かれることにより循環経路を循環する洗浄液がノズルから間欠的に吐出されてもよい。
 この場合、循環経路を循環する第1洗浄液または第2洗浄液の圧力および速度を低下させることなく、ノズルおよび吐出経路を十分清浄に洗浄することが可能となる。
 (12)基板処理装置は、複数の処理室と、複数の処理室にそれぞれ設けられる複数のノズルとを含み、配管は、複数の吐出経路を構成し、複数の吐出経路にそれぞれ複数のバルブが設けられ、少なくとも一方の期間において複数のバルブが互いに異なるタイミングで開かれてもよい。
 この場合、複数の吐出経路から第1洗浄液または第2洗浄液が同時に吐出されないので、循環経路を循環する第1洗浄液または第2洗浄液の圧力および速度の低下を防止することができる。それにより、各ノズルおよび各吐出経路を十分清浄に洗浄することが可能となる。
 (13)気体供給系は、複数のノズルから気体が吐出されるように、少なくとも一方の期間において単位時間当たりに供給される第1洗浄液または第2洗浄液の量よりも多い量の気体を連続的に供給してもよい。
 この場合、多量に供給される気体の作用により、複数の吐出経路を構成する配管を効果的に洗浄することが可能となる。
 (14)気体供給系は、少なくとも一方の期間において循環経路を循環する第1洗浄液または第2洗浄液に対して、第1洗浄液または第2洗浄液の流れの方向と同じ方向に気体を供給する管路をさらに含み、管路は、循環経路の内径よりも小さな内径を有してもよい。
 この場合、循環経路を循環する第1洗浄液または第2洗浄液に対して逆流および圧力損失を生じさせることなく気体を供給することができる。その結果、循環経路を循環する第1洗浄液または第2洗浄液の循環速度を増加させることが可能となる。
 (15)本発明の他の局面に従う配管洗浄方法は、基板処理装置および処理液供給ユニットにおける配管を洗浄する配管洗浄方法であって、処理液供給ユニットは、基板の処理時に、処理液供給ユニットの処理液タンクから配管を通して基板処理装置の処理ユニットに処理液を供給するように構成され、配管洗浄方法は、配管の洗浄時に、洗浄ユニットから処理液供給ユニットの処理液タンクに第1洗浄液を供給するステップと、処理液タンクへの第1洗浄液の供給後、処理液タンクから配管を通して基板処理装置の処理ユニットに第1洗浄液を供給することにより配管を洗浄するステップと、第1洗浄液による配管の洗浄と並行して洗浄ユニットにおいて第2洗浄液の準備を行うステップと、第1洗浄液による配管の洗浄後、洗浄ユニットから処理液タンクに第2洗浄液を供給するステップと、処理液タンクへの第2洗浄液の供給後、処理液タンクから配管を通して処理ユニットに第2洗浄液を供給することにより配管を洗浄するステップとを含むものである。
 その配管洗浄方法においては、第1洗浄液による配管の洗浄と第2洗浄液の準備とが並行して行われるので、第1洗浄液および第2洗浄液による配管の洗浄に要する時間を短縮する場合における洗浄時間を短縮ことができる。その結果、複数の洗浄液を用いて配管を洗浄する場合における洗浄時間を短縮することが可能になる。
 本発明によれば、複数の洗浄液を用いて配管を洗浄する場合における洗浄時間を短縮することが可能になる。
図1は本発明の第1の実施の形態に係る基板処理システムの構成を示す模式図である。 図2は図1の制御部の制御による配管洗浄動作を示すフローチャートである。 図3は図2の各ステップにおける基板処理システムの配管洗浄動作を示す模式図である。 図4は図2の各ステップにおける基板処理システムの配管洗浄動作を示す模式図である。 図5は図2の各ステップにおける基板処理システムの配管洗浄動作を示す模式図である。 図6は図2の各ステップにおける基板処理システムの配管洗浄動作を示す模式図である。 図7は図2の各ステップにおける基板処理システムの配管洗浄動作を示す模式図である。 図8は図2の各ステップにおける基板処理システムの配管洗浄動作を示す模式図である。 図9は図2の各ステップにおける基板処理システムの配管洗浄動作を示す模式図である。 図10は図2の各ステップにおける基板処理システムの配管洗浄動作を示す模式図である。 図11は図2の各ステップにおける基板処理システムの配管洗浄動作を示す模式図である。 図12は本発明の第2の実施の形態に係る基板処理システムの構成を示す模式図である。 図13は本発明の第3の実施の形態における洗浄ユニットの構成を示す模式図である。 図14は洗浄ユニットの他の例を含む基板処理システムの構成を示す模式図である。 図15は循環する洗浄液内に接続部において窒素ガスが混入される状態を示す説明図である。 図16は窒素ガスが供給されない場合に配管を流れる洗浄液の状態を示す模式図である。 図17は窒素ガスが供給される場合に配管を流れる洗浄液の状態を示す模式図である。 図18は図14の洗浄ユニットおよび基板処理装置を用いた基板処理システムの配管の洗浄手順を示すフローチャートである。 図19は第4の実施の形態における処理液供給ユニットの主要部の構成を示す模式図である。 図20は第5の実施の形態における処理液供給ユニットの主要部の構成を示す模式図である。
 以下、本発明の一実施の形態に係る基板処理システムおよび配管洗浄方法について説明する。以下の説明において、基板とは、半導体ウエハ、フォトマスク用ガラス基板、液晶表示装置用ガラス基板、プラズマディスプレイ用ガラス基板、光ディスク用基板、磁気ディスク用基板、光磁気ディスク用基板等をいう。
 [1]第1の実施の形態
 (1)基板処理システムの全体の構成
 図1は本発明の第1の実施の形態に係る基板処理システムの構成を示す模式図である。
 図1の基板処理システム100は、可搬式の洗浄ユニット1、複数の処理液供給ユニット2および基板処理装置3により構成される。基板処理装置3は、複数の処理ユニット(処理室)31を含む。図1には、2つの処理ユニット31が図示される。各処理ユニット31では、基板Wに処理液を用いた処理が行われる。
 洗浄ユニット1は、洗浄液タンク11、秤量タンク12,13、ポンプ14、フィルタ15、比抵抗計16および制御部17を含む。洗浄液タンク11の液入口と液出口との間に液循環用の配管P1が接続される。配管P1には、バルブV1、ポンプ14およびフィルタ15が介挿される。配管P1から分岐するように配管P2が設けられる。配管P2は処理液供給ユニット2の接続部C1に接続される。
 秤量タンク12,13は、それぞれ配管P3,P4を通して洗浄液タンク11の液入口に接続される。配管P3,P4にはそれぞれバルブV2,V3が介挿される。秤量タンク12,13には、それぞれ配管P5,P6を通して薬液供給ユニット41,42が接続される。また、純水供給源43が配管P7を通して洗浄液タンク11の液入口に接続される。配管P7にはバルブV4が介挿される。
 薬液供給ユニット41から秤量タンク12に第1の薬液が供給され、薬液供給ユニット42から秤量タンク13に第2の薬液が供給される。この場合、バルブV2,V3が開くと、秤量タンク12,13の第1および第2の薬液が洗浄液タンク11に供給され、第1および第2の薬液が混合される。それにより、洗浄液が生成される。第1の薬液は、例えばアンモニアであり、第2の薬液は、例えば過酸化水素水である。この場合、アンモニアと過酸化水素水との混合液(以下、SC1と呼ぶ。)が洗浄液として生成される。第1の薬液が塩酸(HCl)であり、第2の薬液が過酸化水素水である場合には、塩酸と過酸化水素水との混合液(以下、SC2と呼ぶ)が洗浄液として生成される。
 バルブV4が開くと、純水供給源43から洗浄液タンク11に純水が供給される。その場合、純水が洗浄液として用いられる。純水の代わりに、純水以外のリンス液が洗浄液として用いられてもよい。この場合、リンス液としては、例えば炭酸水、オゾン水、磁気水、還元水(水素水)もしくはイオン水、またはIPA(イソプロピルアルコール)等の有機溶剤が用いられてもよい。
 洗浄液タンク11の液出口は配管P8を通して比抵抗計16に接続される。配管P8にはバルブV5が介挿される。比抵抗計16には配管P9が接続される。配管P9にはバルブV6が介挿される。配管P9は処理液供給ユニット2の接続部C2に接続される。また、比抵抗計16にはドレイン用の配管P10が接続される。制御部17は、バルブV1~V6の開閉およびポンプ14の作動等の洗浄ユニット1の動作を制御する。
 処理液供給ユニット2は、一または複数の処理液タンク21および制御部24を含む。本実施の形態では、1つの処理液タンク21が設けられる。処理液タンク21の液入口と接続部C1との間に配管P11が接続される。配管P11にはバルブV7,V8が介挿される。バルブV7,V8間で配管P11の部分には配管P12が接続される。配管P12にはバルブV9が介挿される。配管P12を通して窒素ガスが配管P11に供給可能となっている。
 処理液タンク21の液入口と液出口との間に液循環用の配管P13が接続される。配管P13には、バルブV10、ポンプ22およびフィルタ23が介挿される。配管P13から分岐するように配管P14が設けられる。配管P14にはバルブV11が介挿される。配管P14は接続部C2に接続される。
 また、配管P13から分岐するように配管P15が設けられる。配管P15にはバルブV12が介挿される。配管P15から複数の配管P16が分岐している。
 基板処理装置3における基板の処理時には、処理液供給ユニット2の処理液タンク21に、処理液が貯留される。処理液としては、薬液またはリンス液が用いられる。薬液としては、例えばバッファードフッ酸(BHF)、希フッ酸(DHF)、フッ酸(フッ化水素水:HF)、塩酸、硫酸、硝酸、リン酸、酢酸、シュウ酸もしくはアンモニア水等の水溶液、またはそれらの混合溶液等が用いられる。処理液がフォトレジスト液または現像液等であってもよい。
 制御部24は、バルブV7~V12の開閉およびポンプ22の作動等の処理液供給ユニット2の動作を制御する。基板処理装置3は、複数の処理ユニット31を含む。各処理ユニット31は、基板Wを保持する基板保持部32、カップ33およびノズル34を含む。ノズル34は配管P16に接続される。各配管P16にはバルブV13が介挿される。各処理ユニット31の排出口には配管P17が接続される。配管P17にはバルブV14が介挿される。配管P17は洗浄ユニット1の比抵抗計16に接続される。制御部35は、バルブV13,V14の開閉等の基板処理装置3の動作を制御する。
 洗浄ユニット1は、接続部C1,C2で処理液供給ユニット2に対して接続および切り離し可能である。以下に説明する配管洗浄動作時には、洗浄ユニット1が処理液供給ユニット2に接続される。また、基板Wの処理時には、洗浄ユニット1が処理液供給ユニット2から切り離される。
 (2)配管洗浄動作
 次に、基板処理システム100における配管洗浄動作について説明する。洗浄ユニット1の制御部17、処理液供給ユニット2の制御部24および基板処理装置3の制御部35は、相互に通信を行いつつそれぞれ洗浄ユニット1、処理液供給ユニット2および基板処理装置3の動作を制御する。
 図2は図1の制御部17,24,35の制御による配管洗浄動作を示すフローチャートである。図3~図11は図2の各ステップにおける基板処理システム100の配管洗浄動作を示す模式図である。
 ここでは、第1洗浄液、第2洗浄液および第3洗浄液を用いて処理液供給ユニット2および基板処理装置3の配管を洗浄する例について説明する。本例では、第1洗浄液はSC1であり、第2洗浄液は純水であり、第3洗浄液も純水である。なお、初期状態では、バルブV1~V14が閉じているものとする。
 まず、制御部17の制御により洗浄ユニット1が第1洗浄液の準備を行う(図2のステップS1)。この場合、制御部17は、図1のバルブV2,V3を開く。それにより、図3に太い点線の矢印で示すように、秤量タンク12から第1の薬液としてアンモニアが洗浄液タンク11に供給されかつ秤量タンク13から第2の薬液として過酸化水素水が洗浄液タンク11に供給され、アンモニアと過酸化水素水とが混合される。その結果、第1洗浄液としてSC1が生成される。その後、制御部17は、バルブV2,V3を閉じ、図1のバルブV1を開くとともにポンプ14を作動させる。それにより、図3に太い実線の矢印で示すように、第1洗浄液が配管P1を循環する。その結果、洗浄液タンク11内のパーティクルおよび第1洗浄液に含まれるパーティクルがフィルタ15により除去される。
 次に、制御部24の制御により第1洗浄液を洗浄液タンク11から処理液タンク21に供給する(ステップS2)。この場合、制御部17が図1のバルブV1を閉じて洗浄液タンク11への第1洗浄液の帰還を停止した上で、制御部24は図1のバルブV7,V8を開く。それにより、図4に太い実線の矢印で示すように、配管P1から配管P11を通して処理液タンク21に第1洗浄液が供給される。
 その後、制御部24の制御により第1洗浄液の循環および洗浄準備を行う(ステップS3)。この場合、制御部24は、図1のバルブV7,V8を閉じ、バルブV10を開くとともに、ポンプ22を作動させる。それにより、図5に太い実線の矢印で示すように、第1洗浄液が配管P13を循環し、処理液タンク21内のパーティクルおよび第1洗浄液に含まれるパーティクルがフィルタ23により除去される。
 次に、制御部24および制御部35の制御により配管洗浄を行う(ステップS4)。この場合、制御部24は図1のバルブV12を開き、制御部35は図1のバルブV13,V14を開く。それにより、図6に太い実線の矢印で示すように、配管P13から配管P15,P16およびノズル34を通して第1洗浄液が各処理ユニット31内に供給される。各処理ユニット31内の第1洗浄液は、配管P17,P10を通して排出される。それにより、配管P13,P15~P17、バルブV12~V14およびノズル34が第1洗浄液により洗浄される。第1洗浄液による配管洗浄終了後に、制御部24はバルブV10,V12を閉じ、制御部35はバルブV13,V14を閉じる。
 ステップS3の第1洗浄液の循環および洗浄準備ならびにステップS4の配管洗浄と並行して、制御部17の制御により第2洗浄液の準備を行う(ステップS5)。この場合、制御部17は、図1のバルブV1,V4,V5を開く。それにより、図5および図6に太い一点鎖線の矢印で示すように、純水供給源43から配管P7を通して洗浄液タンク11に第2洗浄液として純水が供給されるとともに、図5および図6に白抜きの矢印で示すように、洗浄液タンク11内の第1洗浄液が配管P8,P10を通して排出される。また、第2洗浄液が配管P1を循環する。その結果、洗浄液タンク11、配管P1、ポンプ14およびフィルタ15内の第1洗浄液が第2洗浄液で置換される。また、制御部17は、比抵抗計16により第2洗浄液の比抵抗を測定する。比抵抗が所定値になると、制御部17は図1のバルブV5を閉じ、洗浄液タンク11に第2洗浄液を貯留する。その後、制御部17は図1のバルブV4を閉じる。
 次に、制御部24の制御により第2洗浄液を洗浄液タンク11から処理液タンク21に供給する(ステップS6)。この場合、制御部17が図1のバルブV1を閉じて洗浄液タンク11への第2洗浄液の帰還を停止した上で、制御部24は図1のバルブV7,V8を開く。それにより、図7に太い一点鎖線の矢印で示すように、配管P1から配管P11を通して処理液タンク21に第2洗浄液が供給される。また、制御部24は、バルブV10を開く。それにより、第2洗浄液が配管P13を循環し、洗浄液タンク11、配管P13、フィルタ15およびポンプ14の第1洗浄液が第2洗浄液で洗い流される。
 次に、制御部24および制御部35の制御により配管洗浄を行う(ステップS7)。この場合、制御部24は図1のバルブV12を開き、制御部35は図1のバルブV13,V14を開く。それにより、図8に太い一点鎖線の矢印で示すように、配管P13から配管P15,P16およびノズル34を通して第2洗浄液が各処理ユニット31内に供給される。各処理ユニット31内の第2洗浄液は、配管P17,P10を通して排出される。それにより、配管P13,P15~P17、バルブV12~V14およびノズル34が第2洗浄液により洗浄される。
 また、制御部17の制御により第2洗浄液の比抵抗が所定値であるか否かを判定する(ステップS8)。この場合、制御部17は、比抵抗計16により第2洗浄液の比抵抗を測定する。比抵抗が所定値でない場合には、ステップS6に戻り、洗浄液タンク11から処理液タンク21への第2洗浄液の供給および第2洗浄液による配管洗浄を行う。比抵抗が所定値になると、制御部24は図1のバルブV10,V12を閉じ、制御部35はバルブV13,V14を閉じる。
 ステップS7の配管洗浄と並行して、制御部17の制御により第3洗浄液の準備を行う(ステップS9)。この場合、制御部17は、図1のバルブV1,V4,V5を開く。それにより、図8に太い二点鎖線の矢印で示すように、純水供給源43から配管P7を通して洗浄液タンク11に第3洗浄液として純水が供給されるとともに、図8に白抜きの矢印で示すように、洗浄液タンク11内の第2洗浄液が配管P8,P10を通して排出される。また、第3洗浄液が配管P1を循環する。その結果、洗浄液タンク11、配管P1、ポンプ14およびフィルタ15内の第2洗浄液が第3洗浄液で置換される。また、制御部17は、比抵抗計16により第3洗浄液の比抵抗を測定する。比抵抗が所定値になると、制御部17は図1のバルブV5を閉じ、洗浄液タンク11に第3洗浄液を貯留する。その後、制御部17はバルブV4を閉じる。
 次に、制御部24の制御により洗浄液タンク11から処理液タンク21への第3洗浄液の供給および処理液タンク21の洗浄を行う(ステップS10)。この場合、制御部17が図1のバルブV1を閉じて洗浄液タンク11への第3洗浄液の帰還を停止した上で、制御部24は図1のバルブV7,V8を開く。それにより、図9に太い二点鎖線の矢印で示すように、配管P1から配管P11を通して処理液タンク21に第3洗浄液が供給される。また、制御部24は、図1のバルブV10を開く。それにより、第3洗浄液が配管P13を循環し、洗浄液タンク11、配管P13、フィルタ15およびポンプ14の第2洗浄液が第3洗浄液で洗い流される。
 また、制御部17および制御部24の制御により第3洗浄液の比抵抗が所定値であるか否かを判定する(ステップS11)。この場合、制御部17は図1のバルブV6を開き、制御部24は図1のバルブV11を開く。それにより、図10に太い二点鎖線の矢印で示すように、処理液タンク21内および配管P13内の第3洗浄液が配管P14,P9,P10を通して排出される。制御部17は、比抵抗計16により第3洗浄液の比抵抗を測定する。比抵抗が所定値でない場合には、ステップS10に戻り、洗浄液タンク11から処理液タンク21への第3洗浄液の供給および第3洗浄液の循環を行う。
 比抵抗が所定値になると、制御部24および制御部17の制御により処理液タンク21、配管P13,P14,P9,P10内の第3洗浄液を排出する(ステップS12)。処理液タンク21、配管P13,P14,P9,P10内の第3洗浄液の排出後、制御部24は図1のバルブV6,V10,V11を閉じる。
 上記のステップS9~S12により処理液タンク21内を十分に洗浄することができる。
 その後、制御部24の制御により窒素ガスの封入を行う(ステップS13)。この場合、制御部24がバルブV7,V9を開き、制御部17がバルブV1を開く。それにより、図11に太い破線の矢印で示すように、配管P11,P2,P1および洗浄液タンク11内に窒素ガスが封入される。
 (3)効果
 本実施の形態に係る基板処理システム100においては、第1洗浄液による配管P13,P15~P17の洗浄(ステップS4)と並行して、洗浄ユニット1において第2洗浄液の準備(ステップS5)を行うことができる。また、第2洗浄液による配管P13,P15~P17の洗浄(ステップS7)と並行して、洗浄ユニット1において第3洗浄液の準備(ステップS9)を行うことができる。したがって、第1洗浄液および第2洗浄液による配管P13,P15~P17の洗浄に要する時間を短縮することができる。その結果、複数の洗浄液を用いて短時間で配管P13,P15~P17を洗浄することが可能になる。
 さらに、処理液供給ユニット2における第1洗浄液の循環および洗浄準備(ステップS3)と並行して、洗浄ユニット1において第3洗浄液の準備(ステップS9)を行うことも可能である。この場合、第1洗浄液および第2洗浄液による配管P13,P15~P17の洗浄に要する時間をさらに短縮することができる。
 また、洗浄ユニット1から処理液タンク21への第1洗浄液の供給終了後に配管P11に介挿されたバルブV7,V8が閉じられるので、洗浄ユニット1から処理液タンク21への第1洗浄液の供給終了直後に洗浄ユニット1において第2洗浄液の準備を開始することができる。それにより、第1洗浄液および第2洗浄液による配管P13,P15~P17の洗浄をより短時間で行うことが可能となる。
 また、配管P13,P15~P17および処理液タンク21の洗浄後に、洗浄ユニット1の洗浄液タンク11内および配管P2,P11内に窒素ガスが封入されるので、パーティクル等の浸入による配管P2,P11および洗浄液タンク11内の汚染が防止される。
 さらに、洗浄ユニット1は、処理液供給ユニット2に対して接続および切り離し可能であるため、配管P13,P15~P17の洗浄終了後に洗浄ユニット1を処理液供給ユニット2から切り離し、他の処理液供給ユニット2に接続することができる。それにより、単一の洗浄ユニット1により複数の処理液供給ユニット2および複数の基板処理装置3の配管を順次洗浄することができる。また、基板処理装置3による基板Wの処理時には、処理液供給ユニット2から洗浄ユニット1を切り離すことができるので、基板処理装置3の稼動時における基板処理システム100の大型化が抑制される。
 [2]第2の実施の形態
 図12は本発明の第2の実施の形態に係る基板処理システムの構成を示す模式図である。第2の実施の形態に係る基板処理システム100の構成および動作は、以下の点を除いて第1の実施の形態に係る基板処理システム100の構成および動作と同様である。
 図12に示すように、本実施の形態では、処理液供給ユニット2に、図1の処理液タンク21に加えて処理液タンク21aが設けられる。バルブV7と接続部C1との間の配管P11の部分から分岐するように、配管P11aが設けられる。
 配管P11aは処理液タンク21aの液入口に接続される。配管P11aには、バルブV7a,V8aが介挿される。バルブV9の上流側の配管P12の部分から分岐するように、配管P12aが設けられる。バルブV7a,V8a間で配管P11aの部分に配管P12aが接続される。配管P12aにはバルブV9aが介挿される。配管P12aを通して窒素ガスが配管P11aに供給可能となっている。
 処理液タンク21aの液入口と液出口との間に液循環用の配管P13aが接続される。配管P13aには、バルブV10a、ポンプ22aおよびフィルタ23aが介挿される。配管P13aから分岐するように配管P14aが設けられる。配管P14aにはバルブV11aが介挿される。配管P14aは接続部C2に接続される。また、配管P13aから分岐するように配管P15aが設けられる。配管P15aにはバルブV12aが介挿される。配管P15aから複数の配管P16aが分岐している。
 制御部24は、バルブV7~V12,V7a~V12aの開閉およびポンプ22,22aの作動等の処理液供給ユニット2の動作を制御する。
 基板処理装置3における基板の処理時には、処理液タンク21,21aに処理液が貯留される。処理液タンク21,21aに互いに異なる種類の処理液が貯留されてもよい。あるいは、処理液タンク21,21aに同じ成分を有しかつ互いに異なる濃度の処理液が貯留されてもよい。
 基板処理装置3の各処理ユニット31は、基板保持部32、カップ33およびノズル34に加えてノズル34aを含む。ノズル34aは配管P16aに接続される。各配管P16aにはバルブV13aが介挿される。制御部35は、バルブV13,V13a,V14の開閉等の基板処理装置3の動作を制御する。
 図12の基板処理システム100においては、バルブV7,V8,V7a,V8aが開かれると、洗浄ユニット1から2つの処理液タンク21,21aに洗浄液が同時に供給される。また、2つの処理液タンク21,21aに洗浄液が貯留された状態で、バルブV10,V10a,V12,V12aが開かれると、処理液タンク21,21a内の洗浄液が配管P15,P15a,P16,P16aおよびノズル34,34aを通して各処理ユニット31内に供給される。それにより、処理液供給ユニット2の2つの処理液タンク21,21aおよび配管P11~P16,P11a~P16aを同時に洗浄することができる。
 また、洗浄ユニット1から処理液供給ユニット2の処理液タンク21,21aにそれぞれ異なる洗浄液を供給することができる。この場合、バルブV7,V8を開くことにより、洗浄ユニット1から処理液タンク21に洗浄液を供給することができる。また、バルブV7a,V8aを開くことにより、洗浄ユニット1から処理液タンク21aに洗浄液を供給することができる。例えば、処理液タンク21に第1洗浄液としてSC1を供給した後、処理液タンク21に第2洗浄液として純水を供給する。その後、処理液タンク21aに第1洗浄液としてSC2を供給した後、処理液タンク21aに第2洗浄液として純水を供給する。
 この場合、SC1による配管洗浄と並行して洗浄ユニット1において純水を準備し、純水による配管洗浄と並行して洗浄ユニット1においてSC2を準備し、SC2による配管洗浄と並行して純水を準備することができる。それにより、SC1および純水による処理液タンク21および配管P13,P15~P17の洗浄に要する時間を短縮することができるとともに、SC2および純水による処理液タンク21aおよび配管P13a,P15a~P17aの洗浄に要する時間を短縮することができる。
 [3]第3の実施の形態
 第3の実施の形態に係る基板処理システムは、洗浄ユニット1の構成を除いて第1の実施の形態に係る基板処理システム100と同じ構成を有する。図13は本発明の第3の実施の形態における洗浄ユニットの主要部の構成を示す模式図である。
 図13に示すように、本実施の形態における洗浄ユニット1は、洗浄液タンク11に加えて洗浄液タンク11aを含む。洗浄液タンク11aには、液循環用の配管P1aが接続される。配管P1aには、バルブV1a、ポンプ14aおよびフィルタ15aが介挿される。配管P1aから分岐するように配管P2aが設けられる。配管P2aは配管P2に接続される。
 図13では、図1の秤量タンク12,13、配管P5~P10、バルブV4~V6、比抵抗計16および制御部17の図示が省略されている。また、洗浄液タンク11aに接続される秤量タンク、バルブおよび配管の図示も省略されている。
 図13の洗浄ユニット1においては、洗浄液タンク11,11aに互いに異なる種類の洗浄液または互いに異なる濃度の洗浄液を貯留することができる。例えば、第1洗浄液としてSC1を用い、第2洗浄液として純水を用い、第3洗浄液としてSC2を用い、第4洗浄液として純水を用いる。この場合、第1洗浄液による配管洗浄と並行して洗浄液タンク11において第2洗浄液の準備を行うことができる。また、第3洗浄液による配管洗浄と並行して洗浄液タンク11aにおいて第4洗浄液の準備を行うことができる。したがって、複数の洗浄液を用いて短時間で配管を洗浄することが可能になる。
 [4]洗浄ユニットの他の例を含む基板処理システム
 図14は洗浄ユニットの他の例を含む基板処理システムの構成を示す模式図である。基板処理システム100aは、基板処理装置3a、第1処理液タンクT21、第2処理液タンクT22、処理液供給経路(処理液供給機構)および洗浄ユニット1Aを含む。
 なお、基板処理システム100aの洗浄ユニット1Aは、基板処理装置3aに対して着脱可能な構成を有するが、洗浄ユニット1Aが基板処理装置3aに内在してもよいため、図14においては、両者の配管が一体として示される。基板処理装置3aが第1処理液タンクT21、第2処理液タンクT22および処理液供給経路を含んでもよい。
 基板処理装置3aは、第1および第2の処理室(処理ユニット)U11,U12を含む。第1および第2の処理室U11,U12では、図示しないスピンチャック(基板保持部)に保持されて回転する半導体ウエハ等の基板に対して処理液が供給される。それにより、基板が処理される。第1処理液タンクT21は、例えば、HF等の酸性の処理液を貯留する。第2処理液タンクT22は、例えば、SC1等のアルカリ性の処理液を貯留する。以下に示す構成により、処理液供給経路は、第1処理液タンクT21および第2処理液タンクT22から第1および第2の処理室U11,U12に処理液を供給する。
 第1処理液タンクT21には、酸性の処理液の循環経路101が接続される。循環経路101には、バルブV51、ポンプP52、フィルタF53およびバルブV57が設けられる。酸性の処理液は、第1処理液タンクT21から送出された後、循環経路101を通して第1処理液タンクT21に戻される。循環経路101は、酸性の処理液の吐出経路103と酸性の処理液の吐出経路104とに接続される。吐出経路103は、バルブV61,V66を通して第1の処理室U11内のノズルN13に接続される。吐出経路104は、バルブV62,V68を通して第2の処理室U12内のノズルN15に接続される。
 第2処理液タンクT22には、アルカリ性の処理液の循環経路102が接続される。循環経路102には、バルブV54、ポンプP55、フィルタF56およびバルブV58が設けられる。アルカリ性の処理液は、第2処理液タンクT22から送出された後、循環経路102を通して第2処理液タンクT22に戻される。循環経路102は、アルカリ性の処理液の吐出経路105とアルカリ性の処理液の吐出経路106とに接続される。吐出経路105は、バルブV63,V67を通して第1の処理室U11内のノズルN14に接続される。吐出経路106は、バルブV64,V69を通して第2の処理室U12内のノズルN16に接続される。
 第1処理液タンクT21は、バルブV46を通してベント用配管111と接続される。第2処理液タンクT22は、バルブV47を通してベント用配管111と接続される。ベント用配管111は排気部E48に接続される。
 バルブV46は通常は閉じられている。後述する窒素ガスの供給により第1処理液タンクT21の内部圧力が所定値以上になると、バルブV46が開かれて第1処理液タンクT21内の気体の一部がベント用配管111を経由して排気部E48から外部に放出される。同様に、バルブV47は通常は閉じられている。後述する窒素ガスの供給により第2処理液タンクT22の内部圧力が所定値以上になると、バルブV47が開かれて第2処理液タンクT22内の気体の一部がベント用配管111を経由して排気部E48から外部に放出される。
 この基板処理システム100aにおいては、バルブV51およびバルブV57が開かれた状態でポンプP52が駆動されることにより、第1処理液タンクT21内の酸性の処理液が循環経路101を循環する。すなわち、第1処理液タンクT21内に貯留された酸性の処理液は、ポンプP52によって第1処理液タンクT21から送出された後、循環経路101内を移動し、第1処理液タンクT21に戻される。この状態において、バルブV61およびバルブV66が開かれた場合には、循環経路101内を循環している酸性の処理液は、吐出経路103を通してノズルN13から、第1の処理室U11内において回転する基板に供給される。また、バルブV62およびバルブV68が開かれた場合には、酸性の処理液は、吐出経路104を通してノズルN15から、第2の処理室U12内において回転する基板に供給される。これらの酸性の処理液は、第1の処理室U11または第2の処理室U12から、図示されない回収経路を通して第1処理液タンクT21に回収される。基板の処理に用いられた酸性の処理液がそのまま廃棄されてもよい。
 一方、バルブV54およびバルブV58が開かれた状態でポンプP55が駆動されることにより、第2処理液タンクT22内のアルカリ性の処理液が循環経路102を循環する。すなわち、第2処理液タンクT22内に貯留されたアルカリ性の処理液は、ポンプP55により第2処理液タンクT22から送出された後、循環経路102内を移動し、第2処理液タンクT22に戻される。この状態において、バルブV63およびバルブV67が開かれた場合には、アルカリ性の処理液は、吐出経路105を通してノズルN14から、第1の処理室U11内において回転する基板に供給される。また、バルブV64およびバルブV69が開かれた場合には、アルカリ性の処理液は、吐出経路106を通してノズルN16から、第2の処理室U12内において回転する基板に供給される。これらのアルカリ性の処理液は、第1の処理室U11または第2の処理室U12から、図示されない回収経路を通して第2処理液タンクT22に回収される。基板の処理に用いられたアルカリ性の処理液がそのまま廃棄されてもよい。
 処理液供給経路は、循環経路101,102および吐出経路103~106を含む。本例では、バルブV31~V33,V42,V43,V46,V47,V51,V54,V57,V58,V61~V69は開閉バルブである。なお、本例の基板処理装置3aは、2個の処理室(第1および第2の処理室U11,U12)を有するが、処理室の数は2個に限定されない。処理室の数が4~12個程度であってもよい。例えば、基板処理装置3aが8個の処理室を有する場合には、8個の酸性の処理液の吐出経路および8個のアルカリ性の処理液の吐出経路が必要である。また、本例の基板処理システム100aでは、酸性およびアルカリ性の2種類の処理液により基板が処理されるが、さらに多数の種類の処理液が基板に供給されてもよく、それらの処理液により基板が処理されてもよい。
 基板処理システム100aの洗浄ユニット1Aは、洗浄液を貯留する洗浄液タンクT11を含む。洗浄液タンクT11内の洗浄液は、バルブV33およびポンプP34を通して洗浄液タンクT11から送出された後、バルブV32を有する洗浄液供給経路107を通して第1処理液タンクT21に供給されるとともに、バルブV31を有する洗浄液供給経路108を通して第2処理液タンクT22に供給される。
 また、洗浄ユニット1Aは、不活性ガスとしての窒素ガスの供給部S41を有する。供給部S41は、バルブV42を有する窒素ガス供給経路109を通して接続部C44において循環経路101と接続される。このため、後述するように、循環経路101を循環する洗浄液内に接続部C44から窒素ガスを混入させることが可能となる。
 同様に、供給部S41は、バルブV43を有する窒素ガス供給経路110を通して接続部C45において循環経路102と接続される。このため、後述するように、循環経路102を循環する洗浄液内に接続部C45から窒素ガスを混入させることが可能となる。
 さらに、基板処理システム100aは、洗浄ユニット1Aおよび基板処理装置3aを一体的に制御する制御部CNTを有する。制御部CNTは、上述のバルブV31~V33、窒素ガスの供給部S41、バルブV42,V43,V46,V47,V51,V54,V57,V58,V61~V64,V66~V69、およびポンプP34,P52,P55等を制御して、後述する基板処理システム100aの処理液供給経路を構成する配管の洗浄処理を実行する。
 図15は循環する洗浄液内に接続部C44,C45において窒素ガスが混入される状態を示す説明図である。
 接続部C44,C45には、小径部および大径部を有するT字管P71が使用される。T字管P71の大径部は、ナット74により配管P72と接続される。配管P72は、酸性の処理液の循環経路101またはアルカリ性の処理液の循環経路102を構成する。T字管P71の小径部は、ナット74により配管P73と接続される。配管P73は、窒素ガス供給経路109または窒素ガス供給経路110を構成する。図15では、配管P72(循環経路101,102)の内部を移動する酸性またはアルカリ性の処理液が符号Aで示され、配管P73(窒素ガス供給経路109または窒素ガス供給経路110)の内部を移動する窒素ガスが符号Bで示される。配管P73は、配管P72より小さな内径を有する。接続部C44,C45においては、循環経路101または循環経路102を構成する配管P72より小さな内径を有する配管P73から、配管P72を循環する洗浄液の流れと同方向に窒素ガスが供給されることになる。このため、配管P72を循環する洗浄液Aに対して逆流および圧力損失を生じることなく窒素ガスBを供給することができる。それにより、配管P72を循環する洗浄液の循環速度を増加させることが可能となる。
 以上のような構成を有する基板処理システム100aの洗浄ユニット1Aにより基板処理システム100aの処理液供給経路を洗浄する場合には、まず、洗浄ユニット1Aの洗浄液タンクT11から第1処理液タンクT21および第2処理液タンクT22に必要な量の洗浄液が供給される。すなわち、制御部CNTは、全てのバルブが閉じられた状態で、バルブV33を開くとともに、ポンプP34を駆動する。これと同時に、制御部CNTは、バルブV32を開くことにより第1処理液タンクT21に洗浄液を供給するとともに、バルブV31を開くことにより第2処理液タンクT22に洗浄液を供給する。第1処理液タンクT21および第2処理液タンクT22に必要な量の洗浄液が供給されると、制御部CNTは、バルブV31,V32,V33を閉じるとともに、ポンプP34の駆動を停止する。
 次に、制御部CNTは、バルブV51およびバルブV57を開くとともに、ポンプP52を駆動して、酸性の処理液の循環経路101において洗浄液を循環させる。また、制御部CNTは、洗浄液が循環する状態でバルブV42を開いて、接続部C44から循環経路101を循環する洗浄液中に窒素ガスを供給する。これにより、循環経路101を循環する洗浄液の流速が窒素ガスの作用により増加する。なお、このときの窒素ガスの単位時間当たりの供給量(例えば7~28リットル/分)は、循環経路101に供給される洗浄液の単位時間当たりの供給量(例えば7リットル/分)以上となっている。
 また、制御部CNTは、バルブV54およびバルブV58を開くとともに、ポンプP55を駆動して、アルカリ性の処理液の循環経路102において洗浄液を循環させる。また、制御部CNTは、洗浄液が循環する状態でバルブV43を開いて、接続部C45から循環経路102を循環する洗浄液中に窒素ガスを供給する。これにより、循環経路102を循環する洗浄液の流速が窒素ガスの作用により増加する。なお、このときの窒素ガスの単位時間当たりの供給量(例えば7~28リットル/分)も、循環経路102に供給される洗浄液の単位時間当たりの供給量(例えば7リットル/分)以上となっている。
 図16は窒素ガスが供給されない場合に配管P72を流れる洗浄液の状態を示す模式図である。図17は窒素ガスが供給される場合に配管P72を流れる洗浄液の状態を示す模式図である。
 図16の例に示すように、窒素ガスが供給されない場合、洗浄液wは配管P72の内壁に密着した状態で低速で移動する。この場合、配管P72の内壁に付着したパーティクルPに大きな物理力が作用しないため、これらのパーティクルPを効率的に除去することができない。
 一方、図15を用いて上述したように、接続部C44(C45)においては、循環経路101(102)に供給される洗浄液の単位時間当たりの供給量以上の体積の窒素ガスが、配管P72内を流れる洗浄液中に向けて供給される。これにより、接続部C44(C45)において、洗浄液は配管P72の内径より小さい複数の液滴d(図17)に***するとともに大きく加速する。図17に示すように、複数の液滴dは、接続部C44(C45)より下流で配管P72の内壁に繰り返し衝突しながら高速に移動する。洗浄液の液滴dは、配管P72の内壁に衝突する度に配管P72の内壁に付着しているパーティクルPに大きな物理力を作用させる。これにより、パーティクルPが配管P72の内壁から引き剥がされて除去される。図17では、除去後のパーティクルに符号P’が付される。
 図16の例の場合には、配管P72の内壁の凹凸部または継手部分等に付着した微小なパーティクルに大きな物理力を作用させることができず、これらのパーティクルを十分に除去することができない場合がある。これに対して、本例の洗浄ユニット1Aでは、接続部C44および接続部C45から供給される窒素ガスにより、洗浄液が配管P72の内径より小さくかつ高速で移動する液滴に***される。そのため、配管P72の内壁の凹凸部または継手部分等に付着した微小なパーティクルに大きな物理力を作用させることができる。これにより、配管P72内に付着した微小なパーティクルを高い効率で除去することができる。
 図18は図14の洗浄ユニット1Aおよび基板処理装置3aを用いた基板処理システム100aの配管の洗浄手順を示すフローチャートである。図14および図18を用いて基板処理システム100aの配管の洗浄手順を説明する。
 まず、上述したように、制御部CNTは、バルブV51,V54が閉じられた状態でバルブV31~V33を開くとともにポンプP34を作動させることにより、洗浄液タンクT11から供給される所定量の洗浄液を第1処理液タンクT21および第2処理液タンクT22に貯留させる(ステップS21)。
 次に、制御部CNTは、バルブV61,V62が閉じられた状態でバルブV51,V57を開くとともにポンプP52の作動を開始させることにより、酸性の処理液の循環経路101での洗浄液の循環を開始する。同時に、制御部CNTは、バルブV63,V64が閉じられた状態でバルブV54,V58を開くとともにポンプP55の作動を開始されることにより、アルカリ性の処理液の循環経路102での洗浄液の循環を開始する(ステップS22)。
 循環経路101の内部が洗浄液で満たされると、制御部CNTは、バルブV42を連続的に開いて循環経路101への窒素ガスの供給を開始する。同様に、循環経路102の内部が洗浄液で満たされると、制御部CNTは、バルブV43を連続的に開いて循環経路102への窒素ガスの供給を開始する(ステップS23)。上述したように、洗浄液の複数の液滴により循環経路101,102の内壁が効率的に洗浄され始める。
 なお、接続部C44(C45)における窒素ガスの供給により、処理液タンクT21(T22)を含む循環経路101(102)内の窒素ガスの内部圧力が上昇する。しかし、制御部CNTがバルブV46(V47)を適宜のタイミングで開閉することにより、余分な窒素ガスが排気部E48から排出(ベント)される。そのため、循環経路101(102)内の窒素ガスの内部圧力が一定に保たれる。仮に、窒素ガスの内部圧力が高くなりすぎると、接続部C44,C45からの窒素ガスの供給が困難になる。しかし、本例では、制御部CNTがバルブV46,V47を適宜のタイミングで開閉制御することによりベントを行うため、接続部C44,C45から循環経路101,102へ窒素ガスを連続的に供給することができる。
 洗浄液が窒素ガスとともに循環経路101または循環経路102を十分に循環すると、制御部CNTは、バルブV61,V66を開くことによりノズルN13から洗浄液を吐出させる(ステップS24)。それにより、第1の処理室U11内のノズルN13に接続される酸性の処理液の吐出経路103を洗浄する第1の吐出経路洗浄動作が実行される。
 次に、制御部CNTは、バルブV62,V68を開くことによりノズルN15から洗浄液を吐出させる(ステップS25)。それにより、第2の処理室U12内のノズルN15に接続される酸性の処理液の吐出経路104を洗浄する第2の吐出経路洗浄動作が実行される。
 仮に、バルブV61,V62,V66,V68が連続的に開かれると、ノズルN13およびノズルN15から洗浄液および窒素ガスが連続的に吐出される。この場合、循環経路101および吐出経路103,104内の窒素ガスの内部圧力が低下する可能性がある。
 また、バルブV61(V66)およびバルブV62(V68)がそれぞれ間欠的に開閉されたとしても、ノズルN13およびノズルN15からの洗浄液等の吐出タイミングが重なってしまうと、循環経路101および吐出経路103,104内の窒素ガスの内部圧力が低下する可能性がある。この場合、循環経路101および吐出経路103,104内を流れる洗浄液の液滴の流速が下がるため、十分な洗浄効果が得られなくなる。この現象は、同一の循環経路101に接続された吐出経路103,104の数が増加するほど顕著になる。
 本例では、ノズルN13およびノズルN15から洗浄液等が間欠的に吐出されるように、かつ、ノズルN13およびノズルN15からの洗浄液等の吐出タイミングが重ならないように、バルブV61,V62,V66,V68の開閉タイミングが制御される。このため、循環経路101および吐出経路103,104内の窒素ガスの内部圧力の低下および洗浄液の液滴の流速の低下を有効に防止することができる。
 制御部CNTは、吐出経路103および吐出経路104の内壁の洗浄が完了するまでステップS24およびステップS25を繰り返し実行する(ステップS26)。
 ステップS24~S26と並行して、ステップS27~S29が実行される。すなわち、制御部CNTは、バルブV63,V67を開くことによりノズルN14から洗浄液を吐出させる(ステップS27)。それにより、第1の処理室U11内のノズルN14に接続されるアルカリ性の処理液の吐出経路105を洗浄する第3の吐出経路洗浄動作が実行される。
 次に、制御部CNTは、バルブV64,V69を開くことによりノズルN16から洗浄液を吐出させる(ステップS28)。それにより、第2の処理室U12内のノズルN16に接続されるアルカリ性の処理液の吐出経路106を洗浄する第4の吐出経路洗浄動作が実行される。
 制御部CNTは、吐出経路105および吐出経路106の内壁の洗浄が完了するまでステップS27およびステップS28を繰り返し実行する(ステップS29)。
 この場合、ノズルN14およびノズルN16が間欠的に洗浄液等を吐出するようにバルブV63,V64,V67,V69の開閉タイミングが制御される。また、ノズルN14およびノズルN16からの洗浄液等の吐出タイミングがずらされる。これらの制御は、ノズルN13およびノズルN15からの洗浄液等の吐出動作の制御と同じ理由に基づく。
 なお、ここで、酸性の処理液供給経路(循環経路101および吐出経路103,104)を洗浄した洗浄液とアルカリ性の処理液供給経路(循環経路102および吐出経路105,106)を洗浄した洗浄液とを別々に回収したい場合がある。この場合には、第1の吐出経路洗浄動作(ステップS24)と第3の吐出経路洗浄動作(ステップS27)とのタイミングがずらされるとともに、第2の吐出経路洗浄動作(ステップS25)と第4の吐出経路洗浄動作(ステップS28)とをタイミングがずらされてもよい。
 各ノズルN13,N14,N15,N16から洗浄液とともに十分な量の窒素ガスが吐出されるように、循環経路101または循環経路102を構成する配管P72には、配管P72に単位時間当たりに供給される洗浄液の供給量よりも十分多い量の窒素ガスを連続的に供給する必要がある。このため、配管P72に供給される窒素ガスの単位時間当たりの供給量は、配管P72に供給される洗浄液の単位時間当たりの供給量の数倍以上に設定することが好ましい。なお、供給量とは、大気圧下における窒素ガスおよび洗浄液の体積を指す。
 以上の動作が終了すると、制御部CNTは、バルブV42,V43を閉じて窒素ガスの供給を終了させる(ステップS30)。次に、制御部CNTは、ポンプP52,P55の作動を停止させて循環経路101,102での洗浄液の循環を終了させる(ステップS31)。最後に、制御部CNTは、第1処理液タンクT21および第2処理液タンクT22から洗浄液を排出させるとともに、全てのバルブを閉じて洗浄動作を終了する(ステップS32)。作業者は、必要に応じて、基板処理システム100aの洗浄ユニット1Aを基板処理装置3aから取り外す。
 なお、本例においては、酸性の処理液とアルカリ性の処理液との二種類の処理液を用いて基板を処理する基板処理システム100aが洗浄されるが、単一の処理液により基板を処理する基板処理システムが本例の洗浄ユニット1Aにより洗浄されてもよい。また、三種類以上の処理液により基板を処理する基板処理システムが本例の洗浄ユニット1Aにより洗浄されてもよい。
 [5]第4の実施の形態
 第4の実施の形態に係る基板処理システムでは、第1の実施の形態に係る基板処理システム100(図1)の処理液供給ユニット2に図14~図18の洗浄ユニット1Aの構成の一部が適用される。図19は第4の実施の形態における処理液供給ユニットの主要部の構成を示す模式図である。
 図19に示すように、処理液供給ユニット2に不活性ガスとしての窒素ガスの供給部S41が設けられる。供給部S41は、バルブV42を有する窒素ガス供給経路109を通して接続部C44において配管P13と接続される。この場合、図1の配管P13が図14の循環経路101を構成し、図1の配管P15,P16が図14の吐出経路103,104を構成する。また、図1のバルブV12,V13が図14のバルブV61,V62,V66,V68に相当する。
 このような構成により、図2のステップS3,S4において配管P13を循環する第1洗浄液内に接続部C44から窒素ガスを混入させることが可能となる。また、図2のステップS6,S7において配管P13を循環する第2洗浄液内に接続部C44から窒素ガスを混入させることが可能となる。さらに、図2のステップS10,S11において配管P13を循環する第3洗浄液内に接続部C44から窒素ガスを混入させることが可能となる。それにより、配管P13,P15,P16,P14,P9(図1)の内壁に付着した微小なパーティクルを高い効率で除去することができる。
 [6]第5の実施の形態
 第5の実施の形態に係る基板処理システムでは、第2の実施の形態に係る基板処理システム100(図12)の処理液供給ユニット2に図14~図18の洗浄ユニット1Aの構成が適用される。図20は第5の実施の形態における処理液供給ユニットの主要部の構成を示す模式図である。
 図20に示すように、処理液供給ユニット2に不活性ガスとしての窒素ガスの供給部S41が設けられる。供給部S41は、バルブV42を有する窒素ガス供給経路109を通して接続部C44において配管P13と接続される。また、供給部S41は、バルブV43を有する窒素ガス供給経路110を通して接続部C45において配管P13aと接続される。この場合、図12の配管P13が図14の循環経路101を構成し、図12の配管P13aが図14の循環経路102を構成し、図12の配管P15,P16が図14の吐出経路103,104を構成し、図12の配管P15a,P16aが図14の吐出経路105,106を構成する。また、図12のバルブV12,V13が図14のバルブV61,V62,V66,V68に相当し、図12のバルブV12a,V13aが図14のバルブV63,V64,V67,V69に相当する。
 このような構成により、図2のステップS3,S4において配管P13,P13aを循環する第1洗浄液内に接続部C44,C45から窒素ガスを混入させることが可能となる。また、図2のステップS6,S7において配管P13,P13aを循環する第2洗浄液内に接続部C44,C45から窒素ガスを混入させることが可能となる。さらに、2のステップS10,S11において配管P13,P13aを循環する第3洗浄液内に接続部C44,C45から窒素ガスを混入させることが可能となる。それにより、配管P13,P13a,P15,P15a,P16,P16a,P14,P14a,P9(図12)の内壁に付着した微小なパーティクルを高い効率で除去することができる。
 [7]他の実施の形態
 (a)上記の第1の実施の形態において、第1洗浄液としてSC1を用い、第2洗浄液として純水を用い、第3洗浄液としてSC2を用い、第4洗浄液として純水を用いてもよい。この場合には、第1洗浄液および第2洗浄液について図2のステップS1~S8を行った後、第3洗浄液および第4洗浄液についてステップS1~S8を行い、その後、ステップS9~S13を行う。それにより、SC1を用いて処理液タンク21および配管P13,P15~P17のパーティクルを洗浄し、SC2を用いて処理液タンク21および配管P13,P15~P17の金属系汚染物を洗浄することができる。
 (b)図13の洗浄ユニット1において、配管P2と配管P2aとが接続されずにそれぞれ別個に設けられてもよい。また、図12の処理液供給ユニット2において、配管P11と配管P11aとが接続されずにそれぞれ別個に設けられてもよい。この場合、洗浄ユニット1の配管P2,P2aを処理液供給ユニット2の配管P11,P11aにそれぞれ接続することができる。この場合、図13の洗浄液タンク11から配管P2を通して図12の処理液タンク21に洗浄液が供給され、図13の洗浄液タンク11aから配管P2aを通して図12の処理液タンク21aに処理液が供給される。
 (c)上記の実施の形態では、洗浄ユニット1、処理液供給ユニット2および基板処理装置3にそれぞれ制御部17,24,35が設けられるが、本発明はこれに限定されない。複数の制御部17,24,35に代わりに洗浄ユニット1、処理液供給ユニット2および基板処理装置3を制御する単一の制御部が設けられてもよい。
 [8]請求項の各構成要素と実施の形態の各部との対応関係
 以下、請求項の各構成要素と実施の形態の各部との対応の例について説明するが、本発明は下記の例に限定されない。
 上記実施の形態においては、基板処理装置3が基板処理装置の例であり、処理液供給ユニット2,2aが処理液供給ユニットの例であり、洗浄ユニット1が処理ユニットの例であり、処理液タンク21,21aが処理液タンクの例であり、処理ユニット31が処理ユニットの例であり、配管P13,P15.P16,P13a,P15a,P16aが配管の例である。
 また、配管P2,P11,P2aが供給経路の例であり、バルブV7,V8,V7a,V8aが開閉装置の例であり、窒素ガスが不活性ガスまたは気体の例であり、配管P12が不活性ガス供給部の例であり、配管P13,P13aが循環経路の例である。
 さらに、窒素ガス供給経路109,110が気体供給系の例であり、ステップS3,S4の期間が第1の期間の例であり、ステップS6,S7の期間が第2の期間の例であり、配管P15.P16,P15a,P16aが吐出経路の例であり、処理ユニット31が処理室の例であり、ノズル34がノズルの例であり、バルブV12,V13,V12a,V13aがバルブの例であり、T字管P71の小径部が管路の例である。
 請求項の各構成要素として、請求項に記載されている構成または機能を有する他の種々の要素を用いることもできる。
 本発明は、基板処理システムにおける配管の洗浄に利用することができる。

Claims (15)

  1. 基板に処理を行う基板処理装置と、
     前記基板処理装置に配管を通して処理液を供給する処理液供給ユニットと、
     洗浄ユニットとを備え、
     前記処理液供給ユニットは、基板の処理時に、前記処理液を貯留する処理液タンクを含み、
     前記基板処理装置は、基板の処理時に、基板に前記処理液を供給する処理ユニットを含み、
     前記処理液タンクと前記処理ユニットとは前記配管により接続され、
     前記洗浄ユニットは、前記配管の洗浄時に、第1洗浄液を前記処理液供給ユニットの前記処理液タンクに供給した後に、第2洗浄液の準備を行い、準備された前記第2洗浄液を前記処理液タンクに供給するように構成され、
     前記処理液供給ユニットは、前記配管の洗浄時に、前記洗浄ユニットから供給された前記第1洗浄液を前記処理液タンクに貯留した後、前記処理液タンク内の前記第1洗浄液を前記配管を通して前記処理ユニットに供給することにより前記配管を洗浄し、前記洗浄ユニットから供給された前記第2洗浄液を前記処理液タンクに貯留した後、前記処理液タンク内の前記第2洗浄液を前記配管を通して前記処理ユニットに供給することにより前記配管を洗浄するように構成され、
     前記洗浄ユニットは、前記第1洗浄液による前記配管の洗浄と並行して前記第2洗浄液の準備を行う、基板処理システム。
  2. 前記洗浄ユニットから前記処理液タンクへ前記第1洗浄液および前記第2洗浄液を供給するための供給経路と、
     前記供給経路を開閉する開閉装置とをさらに備え、
     前記開閉装置は、前記洗浄ユニットから前記処理液タンクへの前記第1洗浄液の供給時に前記供給経路を開き、前記処理液タンクへの前記第1洗浄液の供給後に前記供給経路を閉じる、請求項1記載の基板処理システム。
  3. 前記第2洗浄液による前記配管の洗浄後に、前記供給経路および洗浄ユニット内に不活性ガスを供給する不活性ガス供給部をさらに備える、請求項2記載の基板処理システム。
  4. 前記洗浄ユニットは、前記処理液供給ユニットに対して接続および切り離し可能に設けられる、請求項1~3のいずれか一項に記載の基板処理システム。
  5. 前記処理液供給ユニットは、複数の前記処理液タンクを含み、
     前記洗浄ユニットは、前記複数の処理液タンクに接続可能に構成される、請求項1~4のいずれかに記載の基板処理システム。
  6. 前記処理液供給ユニットは、前記処理液タンクの前記第1洗浄液をフィルタを通して循環させる循環経路をさらに含み、
     前記洗浄ユニットは、前記循環経路による前記第1洗浄液の循環と並行して前記第2洗浄液の準備を行う、請求項1~5のいずれか一項に記載の基板処理システム。
  7. 前記配管に第1洗浄液が供給される第1の期間および前記配管に第2洗浄液が供給される第2の期間の少なくとも一方の期間に前記配管に気体を供給するように構成される気体供給系をさらに備える、請求項1~5のいずれか一項に記載の基板処理システム。
  8. 前記気体供給系は、前記第1の期間に前記配管に供給される第1洗浄液に対して、単位時間当たりの第1洗浄液の供給量以上の量の気体を連続的に供給するように構成される、請求項7記載の基板処理システム。
  9. 前記気体供給系は、前記第2の期間に前記配管に供給される第2洗浄液に対して、単位時間当たりの第2洗浄液の供給量以上の量の気体を連続的に供給するように構成される、請求項7または8記載の基板処理システム。
  10. 前記配管は、前記処理液タンクから送出される処理液を前記処理液タンクに戻す循環経路と、前記循環経路から処理液を前記処理ユニットに供給する吐出経路とを構成し、
     前記気体供給系は、前記少なくとも一方の期間において前記循環経路に気体を供給するように構成される、請求項7~9のいずれか一項に記載の基板処理システム。
  11. 前記基板処理装置は、
     処理室と、
     前記循環経路から前記吐出経路を通して供給される処理液を前記処理室内で基板に吐出するノズルとを含み、
     前記吐出経路にバルブが設けられ、
     前記バルブが間欠的に開かれることにより前記循環経路を循環する洗浄液が前記ノズルから間欠的に吐出される、請求項10記載の基板処理システム。
  12. 前記基板処理装置は、
     複数の前記処理室と、
     前記複数の前記処理室にそれぞれ設けられる複数の前記ノズルとを含み、
     前記配管は、複数の前記吐出経路を構成し、
     前記複数の吐出経路にそれぞれ複数の前記バルブが設けられ、
     前記少なくとも一方の期間において前記複数のバルブが互いに異なるタイミングで開かれる、請求項11記載の基板処理システム。
  13. 前記気体供給系は、前記複数のノズルから気体が吐出されるように、前記少なくとも一方の期間において単位時間当たりに供給される第1洗浄液または第2洗浄液の量よりも多い量の気体を連続的に供給する、請求項12記載の基板処理システム。
  14. 前記気体供給系は、前記少なくとも一方の期間において前記循環経路を循環する第1洗浄液または第2洗浄液に対して、第1洗浄液または第2洗浄液の流れの方向と同じ方向に気体を供給する管路をさらに含み、
     前記管路は、前記循環経路の内径よりも小さな内径を有する、請求項10~13のいずれか一項に記載の基板処理システム。
  15. 基板処理装置および処理液供給ユニットにおける配管を洗浄する配管洗浄方法であって、
     前記処理液供給ユニットは、基板の処理時に、前記処理液供給ユニットの処理液タンクから配管を通して前記基板処理装置の処理ユニットに処理液を供給するように構成され、
     前記配管洗浄方法は、
     前記配管の洗浄時に、洗浄ユニットから前記処理液供給ユニットの前記処理液タンクに第1洗浄液を供給するステップと、
     前記処理液タンクへの前記第1洗浄液の供給後、前記処理液タンクから前記配管を通して前記基板処理装置の前記処理ユニットに前記第1洗浄液を供給することにより前記配管を洗浄するステップと、
     前記第1洗浄液による前記配管の洗浄と並行して前記洗浄ユニットにおいて第2洗浄液の準備を行うステップと、
     前記第1洗浄液による前記配管の洗浄後、前記洗浄ユニットから前記処理液タンクに前記第2洗浄液を供給するステップと、
     前記処理液タンクへの前記第2洗浄液の供給後、前記処理液タンクから前記配管を通して前記処理ユニットに前記第2洗浄液を供給することにより前記配管を洗浄するステップとを含む、配管洗浄方法。
PCT/JP2015/001010 2014-03-10 2015-02-26 基板処理システムおよび配管洗浄方法 WO2015136872A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020187037875A KR102049193B1 (ko) 2014-03-10 2015-02-26 기판 처리 시스템 및 배관 세정 방법
KR1020167028100A KR101842824B1 (ko) 2014-03-10 2015-02-26 기판 처리 시스템 및 배관 세정 방법
KR1020187007915A KR20180033594A (ko) 2014-03-10 2015-02-26 기판 처리 시스템 및 배관 세정 방법
CN201580012432.7A CN106104762B (zh) 2014-03-10 2015-02-26 基板处理***以及管道清洗方法
US15/124,252 US20170014873A1 (en) 2014-03-10 2015-02-26 Substrate processing system and pipe cleaning method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014046373A JP2015167938A (ja) 2014-03-10 2014-03-10 基板処理装置
JP2014-046373 2014-03-10
JP2014-065621 2014-03-27
JP2014065621A JP6186298B2 (ja) 2014-03-27 2014-03-27 基板処理システムおよび配管洗浄方法

Publications (1)

Publication Number Publication Date
WO2015136872A1 true WO2015136872A1 (ja) 2015-09-17

Family

ID=54071332

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/001010 WO2015136872A1 (ja) 2014-03-10 2015-02-26 基板処理システムおよび配管洗浄方法

Country Status (5)

Country Link
US (1) US20170014873A1 (ja)
KR (3) KR20180033594A (ja)
CN (2) CN106104762B (ja)
TW (3) TWI760883B (ja)
WO (1) WO2015136872A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9972513B2 (en) 2016-03-07 2018-05-15 Shibaura Mechatronics Corporation Device and method for treating a substrate with hydrofluoric and nitric acid
WO2018135138A1 (ja) * 2017-01-18 2018-07-26 株式会社Screenホールディングス 基板処理装置および基板処理方法
CN110653131A (zh) * 2018-06-29 2020-01-07 夏普株式会社 处理液供给装置
US20200402818A1 (en) * 2019-06-24 2020-12-24 Semes Co., Ltd. Unit for supplying liquid, apparatus and method for treating substrate having the unit
TWI733977B (zh) * 2017-02-22 2021-07-21 日商斯庫林集團股份有限公司 基板處理裝置
JP7461288B2 (ja) 2020-12-28 2024-04-03 株式会社Screenホールディングス 基板処理装置、洗浄ユニット、および、多連弁洗浄方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6359925B2 (ja) * 2014-09-18 2018-07-18 株式会社Screenホールディングス 基板処理装置
JP6685754B2 (ja) * 2016-02-16 2020-04-22 株式会社Screenホールディングス ポンプ装置および基板処理装置
JP6107987B1 (ja) * 2016-02-22 2017-04-05 栗田工業株式会社 超純水製造システムの洗浄方法
JP6903446B2 (ja) * 2016-03-07 2021-07-14 芝浦メカトロニクス株式会社 基板処理装置及び基板処理方法
JP6605394B2 (ja) * 2016-05-17 2019-11-13 東京エレクトロン株式会社 基板液処理装置、タンク洗浄方法及び記憶媒体
JP6535649B2 (ja) 2016-12-12 2019-06-26 株式会社荏原製作所 基板処理装置、排出方法およびプログラム
JP6975018B2 (ja) 2017-02-22 2021-12-01 株式会社Screenホールディングス 基板処理装置
US10717117B2 (en) 2017-02-22 2020-07-21 SCREEN Holdings Co., Ltd. Substrate processing apparatus and substrate processing method
JP7058094B2 (ja) * 2017-09-19 2022-04-21 株式会社Screenホールディングス 基板処理装置および基板処理方法
JP2022148186A (ja) * 2021-03-24 2022-10-06 株式会社Screenホールディングス 基板処理装置および配管着脱パーツ洗浄方法
CN114623384B (zh) * 2022-03-14 2023-10-20 长鑫存储技术有限公司 一种储液瓶的处理***及其处理储液瓶的方法
CN115815241A (zh) * 2023-01-10 2023-03-21 中国万宝工程有限公司 一种管道清洗装置及清洗方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004267965A (ja) * 2003-03-11 2004-09-30 Dainippon Screen Mfg Co Ltd 基板処理装置及び処理液切替方法
JP2012200712A (ja) * 2011-03-28 2012-10-22 Kuraray Co Ltd 配管の洗浄方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49116868A (ja) * 1973-03-10 1974-11-08
CN1299333C (zh) * 1996-08-20 2007-02-07 奥加诺株式会社 清洗电子元件或其制造设备的元件的方法和装置
JP2000350957A (ja) * 1999-06-10 2000-12-19 Sony Corp 薬液吐出装置
JP4005326B2 (ja) * 2000-09-22 2007-11-07 大日本スクリーン製造株式会社 基板処理装置および基板処理方法
US7080651B2 (en) * 2001-05-17 2006-07-25 Dainippon Screen Mfg. Co., Ltd. High pressure processing apparatus and method
JP3982812B2 (ja) * 2002-10-31 2007-09-26 株式会社アドバンスト・ディスプレイ エアーナイフの洗浄方法、エアーナイフ及びウェットエッチング装置
JP2007073610A (ja) * 2005-09-05 2007-03-22 Seiko Epson Corp 部品洗浄装置、及び、部品洗浄方法
JP4869957B2 (ja) * 2006-03-22 2012-02-08 大日本スクリーン製造株式会社 基板処理装置
CN100483621C (zh) * 2006-03-22 2009-04-29 大日本网目版制造株式会社 基板处理装置和基板处理方法
JP4849958B2 (ja) * 2006-05-26 2012-01-11 東京エレクトロン株式会社 基板処理ユニットおよび基板処理方法
JP4917965B2 (ja) * 2007-05-28 2012-04-18 ソニー株式会社 基板洗浄方法および基板洗浄装置
JP5173500B2 (ja) * 2008-03-11 2013-04-03 大日本スクリーン製造株式会社 処理液供給装置およびそれを備えた基板処理装置
JP5406518B2 (ja) 2008-12-18 2014-02-05 大日本スクリーン製造株式会社 基板処理装置
CN101794086B (zh) * 2009-02-02 2012-07-25 和舰科技(苏州)有限公司 一种分离显影液废液与di水的分离装置及分离方法
JP2010240550A (ja) * 2009-04-03 2010-10-28 Dainippon Screen Mfg Co Ltd 基板処理装置
JP5528927B2 (ja) * 2010-07-09 2014-06-25 東京エレクトロン株式会社 基板洗浄装置および基板洗浄方法
JP5743853B2 (ja) * 2010-12-28 2015-07-01 東京エレクトロン株式会社 液処理装置および液処理方法
JP5642574B2 (ja) * 2011-01-25 2014-12-17 東京エレクトロン株式会社 液処理装置および液処理方法
JP5782317B2 (ja) * 2011-07-12 2015-09-24 株式会社Screenホールディングス 基板処理装置
JP5979700B2 (ja) * 2011-09-28 2016-08-24 株式会社Screenホールディングス 基板処理方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004267965A (ja) * 2003-03-11 2004-09-30 Dainippon Screen Mfg Co Ltd 基板処理装置及び処理液切替方法
JP2012200712A (ja) * 2011-03-28 2012-10-22 Kuraray Co Ltd 配管の洗浄方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9972513B2 (en) 2016-03-07 2018-05-15 Shibaura Mechatronics Corporation Device and method for treating a substrate with hydrofluoric and nitric acid
WO2018135138A1 (ja) * 2017-01-18 2018-07-26 株式会社Screenホールディングス 基板処理装置および基板処理方法
KR20190085101A (ko) * 2017-01-18 2019-07-17 가부시키가이샤 스크린 홀딩스 기판 처리 장치 및 기판 처리 방법
KR102180862B1 (ko) 2017-01-18 2020-11-19 가부시키가이샤 스크린 홀딩스 기판 처리 장치 및 기판 처리 방법
US11881417B2 (en) 2017-01-18 2024-01-23 SCREEN Holdings Co., Ltd. Substrate processing apparatus and substrate processing method
TWI733977B (zh) * 2017-02-22 2021-07-21 日商斯庫林集團股份有限公司 基板處理裝置
CN110653131A (zh) * 2018-06-29 2020-01-07 夏普株式会社 处理液供给装置
US20200402818A1 (en) * 2019-06-24 2020-12-24 Semes Co., Ltd. Unit for supplying liquid, apparatus and method for treating substrate having the unit
US11658048B2 (en) * 2019-06-24 2023-05-23 Semes Co., Ltd. Unit for supplying liquid, apparatus and method for treating substrate having the unit
JP7461288B2 (ja) 2020-12-28 2024-04-03 株式会社Screenホールディングス 基板処理装置、洗浄ユニット、および、多連弁洗浄方法

Also Published As

Publication number Publication date
TWI628007B (zh) 2018-07-01
CN106104762A (zh) 2016-11-09
TW202110545A (zh) 2021-03-16
TW201836722A (zh) 2018-10-16
KR20190003822A (ko) 2019-01-09
TW201542301A (zh) 2015-11-16
US20170014873A1 (en) 2017-01-19
CN109285800B (zh) 2022-02-08
KR102049193B1 (ko) 2019-11-26
KR20180033594A (ko) 2018-04-03
CN106104762B (zh) 2018-12-11
KR20160131100A (ko) 2016-11-15
CN109285800A (zh) 2019-01-29
TWI709443B (zh) 2020-11-11
KR101842824B1 (ko) 2018-03-27
TWI760883B (zh) 2022-04-11

Similar Documents

Publication Publication Date Title
WO2015136872A1 (ja) 基板処理システムおよび配管洗浄方法
JP2007149891A (ja) 基板処理装置および基板処理方法
JP2007258462A (ja) 基板処理装置および基板処理方法
US7169253B2 (en) Process sequence for photoresist stripping and/or cleaning of photomasks for integrated circuit manufacturing
US20070119476A1 (en) Substrate processing apparatus and substrate processing method
TWI393177B (zh) 用以在一或多個晶圓上實行液體及隨後的乾燥處理之系統及方法
JP2010109384A (ja) スクラバ中の金属を除去する方法
JP2009543344A (ja) 液体メニスカスによるポストエッチウエハ表面洗浄
JP2006093334A (ja) 基板処理装置
JP6186298B2 (ja) 基板処理システムおよび配管洗浄方法
KR20090029408A (ko) 기판 처리 장치 및 방법
JP2007317927A (ja) 基板処理ユニットおよび基板処理方法
JP2010056208A (ja) 基板洗浄装置
JP2015191897A5 (ja)
JP6347875B2 (ja) 基板処理システムおよび配管洗浄方法
JP6759087B2 (ja) 基板処理方法、送液方法、および、基板処理装置
JP2002270592A (ja) 基板処理装置および基板処理方法
JP2022171462A (ja) 配管着脱部材洗浄装置、基板処理システム、基板処理装置、および、配管着脱部材洗浄方法
US20080202564A1 (en) Processing system with in-situ chemical solution generation
US20080163897A1 (en) Two step process for post ash cleaning for cu/low-k dual damascene structure with metal hard mask

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15761676

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15124252

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167028100

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 15761676

Country of ref document: EP

Kind code of ref document: A1