WO2015136833A1 - Drainage pump - Google Patents

Drainage pump Download PDF

Info

Publication number
WO2015136833A1
WO2015136833A1 PCT/JP2015/000520 JP2015000520W WO2015136833A1 WO 2015136833 A1 WO2015136833 A1 WO 2015136833A1 JP 2015000520 W JP2015000520 W JP 2015000520W WO 2015136833 A1 WO2015136833 A1 WO 2015136833A1
Authority
WO
WIPO (PCT)
Prior art keywords
pump
rotor
support plate
wall
pieces
Prior art date
Application number
PCT/JP2015/000520
Other languages
French (fr)
Japanese (ja)
Inventor
正吾 濱田
中野 誠一
Original Assignee
株式会社鷺宮製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社鷺宮製作所 filed Critical 株式会社鷺宮製作所
Priority to JP2016507285A priority Critical patent/JPWO2015136833A1/en
Priority to CN201580003409.1A priority patent/CN105849413A/en
Publication of WO2015136833A1 publication Critical patent/WO2015136833A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/18Rotors
    • F04D29/22Rotors specially for centrifugal pumps
    • F04D29/2261Rotors specially for centrifugal pumps with special measures
    • F04D29/2277Rotors specially for centrifugal pumps with special measures for increasing NPSH or dealing with liquids near boiling-point
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/18Rotors
    • F04D29/22Rotors specially for centrifugal pumps
    • F04D29/2238Special flow patterns
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/18Rotors
    • F04D29/22Rotors specially for centrifugal pumps
    • F04D29/2261Rotors specially for centrifugal pumps with special measures

Definitions

  • the present invention relates to a drainage pump having a pump rotor.
  • Air conditioning equipment is provided with a drainage pump that discharges the water collected in the drain pan to the outside.
  • the drainage pump has a lower housing having a suction pipe forming a suction port at the lower end of the center (referred to as a casing in Patent Document 1 and Patent Document 2). ), A rotor that is rotatably disposed in the rotor housing chamber of the lower housing, and an upper housing that forms a rotor housing chamber (pump chamber) together with the inner peripheral portion of the lower housing (in Patent Literature 1 and Patent Literature 2) And a driving motor that is supported by the upper housing and drives the rotor.
  • the inner periphery of the lower housing is formed so as to spread in a funnel shape with the suction port as the center.
  • One end of the suction port is arranged in the drain pan.
  • a discharge port extends on the side wall of the lower housing along a direction orthogonal to the central axis of the suction port.
  • the discharge port for discharging the fluid in the rotor housing chamber is composed of a small diameter portion and a large diameter portion communicating with the rotor housing chamber of the lower housing.
  • the cylindrical portion formed at the lower end of the upper housing is connected to the open end of the upper end portion of the lower housing via an O-ring.
  • a cylindrical partition wall is formed on the bottom wall of the lower housing in order to reduce noise caused by bubbles at the discharge port. There is a case where it is provided so as to protrude. Thereby, a gap is formed between the side wall of the lower housing and the partition wall. Further, the fluid is guided to the discharge port through the annular gap. In that case, since the bubble which exists in the upper peripheral edge of a pump chamber is suppressed by the above-mentioned partition wall to a discharge outlet, the noise by the bubble in a discharge outlet is reduced.
  • the rotor is composed of a truncated cone portion having a shaft portion inserted into the suction port at the lower end and a plurality of pins formed integrally with the truncated cone portion.
  • a hub member to which the output shaft of the drive motor is connected is arranged in the hole at the center of the truncated cone portion.
  • Each of the plurality of pins has a regular quadrangular prism shape. As shown in FIG. 8 in Patent Document 2, each pin is provided along the central axis of the hub member on the annular surface of the truncated cone portion adjacent to each communication hole.
  • the plurality of pins are arranged at predetermined intervals vertically and horizontally around the hub member.
  • the rotor when the rotor is rotated, for example, when the drainage pump has a low head and the discharge amount increases, the back pressure from the discharge port side with respect to the fluid sucked from the suction port is higher than that at the high head. Since it becomes small, the air layer contained in the sucked fluid spreads upward from the position directly above the hole. That is, the gas-liquid interface, which is the interface between the liquid and the air, moves toward a plurality of pins located on the outermost side. Thereby, an air field is expanded.
  • the air region expands, so the air layer and the fluid liquid layer mix, and the vicinity of the pin where the bubbles are located relatively outside of the plurality of pins May occur.
  • the relative speed between the plurality of pins located relatively outside and the gas-liquid boundary surface increases, and the contact area between the plurality of pins and the gas-liquid boundary surface increases, so the so-called water scraping sound is generated by the drainage pump.
  • the impeller has a drain water rectifying ring and a drain water guide portion. Proposed.
  • the outer periphery of the blade does not stir the free surface spread radially outward by the centrifugal force, so that the generation of bubbles is suppressed.
  • a rotating blade integrally having an outer ring surrounding the maximum diameter portion of the blade plate has been proposed. .
  • the present invention is a drainage pump having a pump rotor, and when the drainage capacity is increased, the sound pressure level of the water scraping sound caused by the pump rotor is reduced even at a low head. It aims at providing the drainage pump which can be reduced.
  • a drainage pump includes a pump housing having a suction port and a discharge port, and a fluid that is rotatably disposed in a rotor housing chamber of the pump housing, and fluid introduced through the suction port.
  • a support plate formed with a plurality of projections formed at predetermined intervals, and a plurality of projection pieces for applying centrifugal force to the fluid introduced through the opening when rotated by the rotation driving means;
  • a pump rotor having an annular outer wall surrounding an outermost array along the radial direction of the support plate in the protruding piece.
  • the fluid introduced through the suction port passes between the plurality of projecting pieces and then flows out to the discharge port over the outer wall.
  • the pump rotor is formed with an opening through which the fluid introduced through the suction port passes and a plurality of projecting pieces that impart centrifugal force to the fluid introduced through the opening at predetermined intervals. And a ring-shaped outer wall that is supported by the support plate and surrounds the outermost array along the radial direction of the support plate in the plurality of projection pieces, thereby suppressing the ripple of the fluid by the plurality of projection pieces.
  • the fluid is rectified by the outer wall, when the drainage capacity of the drainage pump is increased, the sound pressure level of watering noise caused by the pump rotor can be reduced even at a low head.
  • FIG. 1 is a perspective view showing a pump rotor used in an example of a drainage pump according to the present invention.
  • FIG. 2 is a schematic configuration diagram showing a principal part of an example of the drainage pump according to the present invention by breaking it.
  • FIG. 3 is a plan view showing the example shown in FIG. 2 with the upper housing removed.
  • FIG. 4 is a partial cross-sectional view taken along line IV-IV in FIG.
  • FIG. 5 is a partially enlarged view showing a V portion in FIG. 4 in an enlarged manner.
  • FIG. 6A is a perspective view showing a pump rotor in a comparative example.
  • FIG. 6B is a perspective view showing a pump rotor in a comparative example.
  • FIG. 6A is a perspective view showing a pump rotor in a comparative example.
  • FIG. 6B is a perspective view showing a pump rotor in a comparative example.
  • FIG. 6C is a perspective view showing a pump rotor in a comparative example.
  • FIG. 7 is a diagram for explaining a performance experiment in an example of the drainage pump according to the present invention.
  • FIG. 8 is a characteristic diagram showing the characteristics of the sound pressure level of noise in one example of the drainage pump according to the present invention and each comparative example.
  • FIG. 2 shows a configuration of an example of a drainage pump according to the present invention.
  • the drainage pump includes a lower housing 10 having a suction pipe forming a suction port 10 a at the lower end of the central portion, a pump rotor 12 that is rotatably disposed in the lower housing 10, and an inner periphery of the lower housing 10.
  • the upper housing 14 which forms a rotor accommodating chamber together with the portion, and a drive motor 15 which is arranged in the upper housing 14 and drives the pump rotor 12 are mainly included.
  • a discharge port 10 ⁇ / b> D extends along the direction orthogonal to the central axis of the suction port 10 a on the discharge port side, which will be described later, of the upper side wall 10 ⁇ / b> US in the lower housing 10.
  • the discharge port 10 ⁇ / b> D includes a small-diameter portion 10 b and a large-diameter portion 10 c that communicate with the rotor housing chamber of the lower housing 10.
  • the cylindrical portion formed at the lower end of the upper housing 14 is connected to the open end of the upper end portion of the lower housing 10 via an O-ring 18.
  • An output shaft 15S and a pump rotor 12 (to be described later) are formed in a through hole 14a formed in the central portion of the flat portion 14W of the cylindrical portion of the upper housing 14 and communicating with the rotor accommodating chamber (hereinafter also referred to as a pump chamber).
  • the hub member 22 is inserted. Therefore, the pump housing is formed by the lower housing 10 and the upper housing 14.
  • the driving motor 15 is, for example, a flat DC brushless motor, and is supported on the upper housing 14.
  • the rotation speed of the output shaft 15S of the drive motor 15 is controlled by a control board (not shown) according to the discharge flow rate.
  • a control board not shown
  • the upper housing 14 has an air
  • the drive motor 15 is not limited to such an example, and may be an AC motor capable of controlling the rotation speed, for example, a take-up motor with an encoder.
  • a mounting bracket 16 is provided above the drive motor 15.
  • the resin material may be, for example, a transparent one, a black or white resin material, or a mixture of other colors.
  • the support plate 12A has a shaft portion 12B to be inserted into the suction port 10a at the center of the lower end.
  • the shaft portion 12B has a cross-shaped projection 12b extending along the central axis.
  • a hub member 22 to which the output shaft 15S of the drive motor 15 is connected is disposed in the central through hole 12a of the support plate 12A having a diameter of about 41 mm.
  • the hub member 22 is integrally formed on a central axis common to the central axis of the shaft portion 12B, and protrudes so as to penetrate the above-described through hole 14a. That is, the hub member 22 is formed substantially perpendicular to the support surface of the support plate 12A.
  • the hub member 22 is connected to the periphery of the through hole 12a as an opening by connecting pieces 12R1, 12R2, 12R3, and 12R4.
  • Each of the connecting pieces 12R1 to 12R4 branches into four places at equal intervals along the circumferential direction, and is integrally formed at the end of the shaft portion 12B.
  • the quantity of a connection piece is not restricted to such an example, For example, you may provide 3 or less, or 5 or more.
  • the 52 protruding pieces 20ai are formed of, for example, a resin material integrally with the support plate 12A, and have a rectangular cross section of about 1.8 mm square.
  • the protruding pieces 20ai are formed vertically and horizontally at predetermined intervals around the through hole 12a of the support plate 12A.
  • the array of the projecting pieces 20ai includes a substantially rectangular first array serving as a reference having seven lines on one side at a predetermined interval, for example, as shown in FIG. 3 at a position closest to the through hole 12a. .
  • the second array is formed like a similar shape surrounding the first array.
  • the second array faces each protrusion piece 20ai in the first array serving as a reference in a direction away from the through hole 12a, and includes seven protrusion pieces 20ai on one side.
  • two protrusion pieces 20ai facing the protrusion pieces 20ai at the corners of each side in the reference first array face and are adjacent to the inner peripheral surface of the annular outer wall 12PW described later. It is formed to be a position.
  • the protruding pieces 20bi as the third array are formed so as to face the protruding pieces 20ai on each side of the second array.
  • five protruding pieces 20bi are formed at predetermined intervals.
  • Each protrusion piece 20bi is integrally formed along the inner peripheral surface of the outer wall 12PW at a predetermined interval in a direction away from the through hole 12a in parallel with each side of the second array.
  • corrugation which consists of the gap
  • each projection piece 20ai is such that the top end position of the projection piece 20ai is located on a common plane, as shown in FIG. Unlike, it becomes shorter as it goes to the outer wall 12PW.
  • the average length along the axis of each projection piece 20ai is, for example, 5 to 10 mm.
  • a predetermined gap is formed between the uppermost end of the protruding piece 20ai and the surface of the flat portion 14W of the upper housing 14 facing the pump chamber. Further, a predetermined gap is formed between the outer peripheral surface of the outer wall 12PW of the pump rotor 12 and the inner peripheral surface of the upper side wall 10US of the lower housing 10.
  • each projection piece 20bi is set to be substantially the same as the length along the axis of the shortest projection piece 20ai or smaller than the length along the axis of the shortest projection piece 20ai.
  • the position of the upper end of the outer wall 12PW is on the same plane as the upper end of each projection piece 20bi.
  • the reference first array is formed in a rectangular shape, but is not necessarily formed in this manner.
  • the reference first array is formed in a circular shape and the second array is formed.
  • the third array may be formed at predetermined equal intervals so as to have a similar shape following the reference first array.
  • the driving motor 15 when the driving motor 15 is in an operating state, the fluid sucked from the suction port 10a along the direction indicated by the arrow in FIG. A space formed by the inner peripheral portion and the inner peripheral portion at the lower end of the upper housing 14, that is, guided to the rotor accommodating chamber through the through hole 12a, and along the direction indicated by the arrow through the small diameter portion 10b and the large diameter portion 10c. It is discharged outside.
  • the rotation direction of the pump rotor 12 by the drive motor 15 may be either a clockwise direction or a counterclockwise direction.
  • the liquid in the rotor housing chamber is guided by centrifugal force to the inner peripheral portion of the lower housing 10 and the inner peripheral portion of the lower end of the upper housing 14, and the arrows shown in FIG. 5 through the small diameter portion 10b and the large diameter portion 10c. It is discharged outside along the path indicated by F. Therefore, the movement of the gas-liquid boundary surface BP to the inner peripheral surface of the upper side wall 10US of the lower housing 10 is suppressed by the outer wall 12PW, and the speed at which the generated bubbles collide with the upper side wall 10US of the lower housing 10 is suppressed. be able to. In addition, the generation of the throttle vortex is suppressed by the rectifying action of the outer wall 12PW in the liquid outflow path. Furthermore, the occurrence of liquid undulation (swell) is also suppressed by the plurality of projection pieces 20ai and 20bi.
  • FIG. 8 shows a comparative example 1, a comparative example 2, and a comparative example 3 and a pump, which will be described later, using the example shown in FIG. 2 (hereinafter also referred to as a drain pump A) which is an example of the drain pump according to the present invention.
  • a drain pump A which is an example of the drain pump according to the present invention.
  • the drainage pump A includes a pump rotor 12 having a support plate 12A having a diameter of about 41 mm and an outer wall 12PW.
  • the support plate 12A has 52 projection pieces 20ai of 1.8 mm square and 20 projection pieces 20bi formed integrally with the outer wall 12PW.
  • the distance between the adjacent protrusions 20ai is set to 1.5 mm, for example.
  • the zero point of the above-mentioned head is a liquid level position that is a predetermined distance De (about 10 mm) below the suction port end of the drain pump A when the flow rate of the drain pump A is zero and in a balanced state (FIG. 7).
  • the pump rotor 32 (Comparative Example 1), the pump rotor 34 (Comparative Example 2), and the pump rotor 36 (Comparative Example 3) having different shapes from each other. ) was mounted on the drainage pump A, the sound generated in each was measured as shown in FIG. The generated sound was measured at a predetermined distance Le from the suction port, for example, by a noise meter (LA5120 manufactured by Ono Sokki Co., Ltd.) in an anechoic box at a distance of about 500 mm in the A characteristic and the slow range.
  • a noise meter LA5120 manufactured by Ono Sokki Co., Ltd.
  • the drainage pump A having a discharge port connected to the pipe Du is held so that the suction port is disposed in a drain pan DP filled with a liquid having a water level De, for example, a depth Dmax of about 10 mm or more.
  • the method of such an experiment is a state in which the discharge of water stops at an arbitrary head while changing the head by changing the position of one end of the pipe Du connected to the discharge port of the drainage pump A, a so-called balance state. Then, the sound generated from the vicinity of the discharge port was measured by a sound level meter.
  • the diameters of the pump rotor 32 (Comparative Example 1), the pump rotor 34 (Comparative Example 2), and the pump rotor 36 (Comparative Example 3) are the same as the diameter of the pump rotor 12, respectively.
  • the pump rotor 32 has a plurality of skewer-shaped projecting pieces 30ai and 30bi constituting a stirrer that applies centrifugal force to the fluid, and a shaft portion 32B inserted into the suction port 10a at the lower end, and the projecting pieces 30ai and 30bi.
  • the support plate 32A has a shaft portion 32B inserted into the suction port 10a described above at the lower end.
  • the shaft portion 32B has a cross-shaped projection 32b extending along the central axis.
  • a hub member 42 to which the output shaft 15S of the driving motor 15 is connected is disposed in the through hole 32a at the center of the support plate 32A.
  • the hub member 42 is integrally formed on a central axis common to the central axis of the shaft portion 32B, and protrudes so as to penetrate the above-described through hole 14a. That is, the hub member 42 is formed substantially perpendicular to the support surface of the support plate 32A.
  • the hub member 42 is connected to the periphery of the through hole 32a by connection pieces 32R1, 32R2, 32R3, and 32R4.
  • Each of the connecting pieces 32R1 to 32R4 branches into four places at equal intervals along the circumferential direction, and is integrally formed at the end of the shaft portion 32B. In FIG. 6A, the connecting pieces 32R2 and 32R3 are not shown.
  • the protrusion piece 30ai is formed integrally with the support plate 32A, for example, with a resin material, and has a rectangular cross section of about 1.8 mm square.
  • the protruding pieces 30ai are formed vertically and horizontally at predetermined intervals around the through hole 32a of the support plate 32A.
  • communication holes 32C are formed at predetermined positions between the adjacent protrusions 30ai.
  • the two projection pieces 30bi located at both ends of the five projection pieces 30bi are chamfered at the corners.
  • the pump rotor 34 has a plurality of blade plates 40A and 40B constituting a stirrer that applies centrifugal force to the fluid, and a shaft portion 34B inserted into the suction port 10a at the lower end, and the lower ends of the blade plates 40A and 40B.
  • the support plate 34A has a shaft part 34B inserted into the suction port 10a described above at the lower end.
  • the shaft portion 34B has a cross-shaped protrusion 34b extending along the central axis.
  • a hub member 44 to which the output shaft 15S of the drive motor 15 is connected is disposed in the through hole 34a at the center of the support plate 34A.
  • the hub member 44 is integrally formed on a central axis common to the central axis of the shaft portion 34B, and protrudes so as to penetrate the above-described through hole 14a. That is, the hub member 44 is formed substantially perpendicular to the support surface of the support plate 34A.
  • the hub member 44 is connected to the periphery of the through hole 34a by connecting pieces 34R1, 34R2, 34R3, and 34R4.
  • Each of the connecting pieces 34R1 to 34R4 is branched into four portions at equal intervals along the circumferential direction, and is integrally formed at the end of the shaft portion 34B.
  • the four blade plates 40A and the four blade plates 40B are arranged radially on the periphery of the through hole 34a.
  • the length of the blade plate 40A along the radial direction of the support plate 34A is set larger than the length of the corresponding blade plate 40B.
  • the pump rotor 36 has a plurality of blade plates 50A and 50B constituting a stirring body that imparts centrifugal force to the fluid, and a shaft portion 36B inserted into the suction port 10a at the lower end, and the lower ends of the blade plates 50A and 50B.
  • It includes a truncated cone-shaped support plate 36A that is integrally formed, and an annular outer wall 36PW that is formed integrally with one end of the support plate 36A and the blade plates 50A and 50B and surrounds the blade plates 50A and 50B. Yes.
  • the support plate 36A has a shaft portion 36B inserted into the above-described suction port 10a at the lower end.
  • the shaft portion 36B has a cross-shaped protrusion 36b extending along the central axis.
  • a hub member 46 to which the output shaft 15S of the drive motor 15 is connected is disposed in the through hole 36a in the center of the support plate 36A.
  • the hub member 46 is integrally formed on a central axis common to the central axis of the shaft portion 36B, and protrudes so as to penetrate the above-described through hole 14a. That is, the hub member 46 is formed substantially perpendicular to the support surface of the support plate 36A.
  • the hub member 46 is disposed in the through hole 36a and connected to the inner peripheral portion of the outer wall 36PW by the blade 50A.
  • the four blade plates 50A are formed at four locations at equal intervals along the circumferential direction between the hub member 46 and the outer wall 36PW.
  • the four blades 50B are arranged radially on the periphery of the through hole 36a with a predetermined interval between the adjacent blades 50A.
  • the length of the blade plate 50A along the radial direction of the support plate 36A is set larger than the length of the corresponding blade plate 50B.
  • a protruding piece 50C is formed between the blade 50A and the blade 50B adjacent to the inner peripheral portion of the outer wall 36PW.
  • the sound pressure level (logarithmic noise value) (dB) is taken on the vertical axis
  • the lift (mm) is taken on the horizontal axis
  • the curve L0 showing the change in the sound pressure level in the drainage pump A according to the lift.
  • 0 (dB) is the maximum value of the sound pressure level of the conventional product.
  • a curve L0 indicates a change in sound pressure level when the pump rotor 12 used in the example of the drainage pump according to the present invention is mounted, and the curves L4, L2, L3 are respectively Comparative Example 1, Comparative Example 2, The change of the sound pressure level in the comparative example 3 is shown.
  • the curve L1 is not shown, the pump rotor 32 is different from the pump rotor 32 described above only in that the communication hole 32C is not provided, and is a characteristic line when the drainage pump A is mounted. .
  • the sound pressure level is the same as that of the conventional product, Comparative Example 1, Comparative Example 2, and Comparative Example. It was confirmed to be lower than 3. Thereby, when the pump rotor 12 was attached to the drainage pump A, it was confirmed that the sound pressure level was further reduced at a lower head than the conventional pump rotor.
  • the pump rotor 12 has an annular shape that surrounds the plurality of skewer-shaped projection pieces 20ai that impart centrifugal force to the fluid and the plurality of projection pieces 20ai adjacent to each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

A drainage pump which has a pump rotor (12), the pump rotor (12) being configured by including: a plurality of tandem protrusion pieces (20ai) that constitute an agitator body for applying centrifugal force to fluid; protrusion pieces (20bi); an annular outer wall (12PW) that surrounds the periphery of the plurality of protrusion pieces (20ai) adjacent thereto; and a truncated cone-shaped supporting plate (12A) integrally formed with the lower ends of the protrusion pieces (20ai) and lower ends of the outer wall (12PW) and the protrusion pieces (20bi), the supporting plate (12A) having a lower end with a shaft portion (12B) inserted into a suction opening (10a).

Description

排水ポンプDrainage pump
 本発明は、ポンプロータを有する排水ポンプに関する。 The present invention relates to a drainage pump having a pump rotor.
 空調機器においては、ドレンパンに溜まった水等を外部に排出する排水ポンプが設けられている。排水ポンプは、例えば、特許文献1および特許文献2にも示されるように、吸入口を形成する吸入管を中央部下端に有するロアハウジング(特許文献1および特許文献2においてはケーシングと呼称される)と、ロアハウジングのロータ収容室内に回動可能に配されるロータと、ロアハウジングの内周部とともにロータ収容室(ポンプ室)を形成するアッパハウジング(特許文献1および特許文献2においては、カバーと呼称される)と、アッパハウジングに支持されロータを駆動する駆動用モータとを主な要素として含んで構成されている。 Air conditioning equipment is provided with a drainage pump that discharges the water collected in the drain pan to the outside. For example, as shown in Patent Document 1 and Patent Document 2, the drainage pump has a lower housing having a suction pipe forming a suction port at the lower end of the center (referred to as a casing in Patent Document 1 and Patent Document 2). ), A rotor that is rotatably disposed in the rotor housing chamber of the lower housing, and an upper housing that forms a rotor housing chamber (pump chamber) together with the inner peripheral portion of the lower housing (in Patent Literature 1 and Patent Literature 2) And a driving motor that is supported by the upper housing and drives the rotor.
 ロアハウジングの内周部は、吸入口を中心として漏斗状に広がるように形成されている。その吸入口の一端が、ドレンパン内に配されている。これにより、後述されるロータが作動状態とされる場合、ドレンパン内の水等がロータ収容室に導入される。また、ロアハウジングの側壁には、吸入口の中心軸線に直交する方向に沿って吐出口が延びている。ロータ収容室内の流体を吐出する吐出口は、ロアハウジングのロータ収容室に連通する小径部および大径部から構成されている。 The inner periphery of the lower housing is formed so as to spread in a funnel shape with the suction port as the center. One end of the suction port is arranged in the drain pan. Thereby, when the rotor mentioned later is made into an operation state, the water etc. in a drain pan are introduced into a rotor storage chamber. Further, a discharge port extends on the side wall of the lower housing along a direction orthogonal to the central axis of the suction port. The discharge port for discharging the fluid in the rotor housing chamber is composed of a small diameter portion and a large diameter portion communicating with the rotor housing chamber of the lower housing.
 アッパハウジングの下端に形成される円筒状部は、Oリングを介してロアハウジングにおける上端部の開口端に接続されている。アッパハウジングの底板の外周縁部には、例えば、特許文献1および特許文献2に示されるように、筒状の仕切り壁が、吐出口における気泡による騒音を低減するためにロアハウジングの底壁に向けて突出するように設けられる場合がある。これにより、ロアハウジングの側壁と仕切り壁との間に隙間が形成されている。また、その環状の隙間を通じて流体が吐出口に導かれる。その際、ポンプ室の上部周縁に存在する気泡が、上述の仕切り壁により吐出口に導かれることが抑制されるので吐出口における気泡による騒音が低減される。 The cylindrical portion formed at the lower end of the upper housing is connected to the open end of the upper end portion of the lower housing via an O-ring. At the outer peripheral edge of the bottom plate of the upper housing, for example, as shown in Patent Document 1 and Patent Document 2, a cylindrical partition wall is formed on the bottom wall of the lower housing in order to reduce noise caused by bubbles at the discharge port. There is a case where it is provided so as to protrude. Thereby, a gap is formed between the side wall of the lower housing and the partition wall. Further, the fluid is guided to the discharge port through the annular gap. In that case, since the bubble which exists in the upper peripheral edge of a pump chamber is suppressed by the above-mentioned partition wall to a discharge outlet, the noise by the bubble in a discharge outlet is reduced.
 ロータは、吸入口内に挿入される軸部を下端に有する円錐台状部と、円錐台状部に一体に形成される複数のピンとから構成されている。 The rotor is composed of a truncated cone portion having a shaft portion inserted into the suction port at the lower end and a plurality of pins formed integrally with the truncated cone portion.
 円錐台状部の中央部の孔には、駆動用モータの出力軸が接続されるハブ部材が配されている。複数のピンは、それぞれ、正四角柱状を有している。各ピンは、特許文献2において図8に示されるように、円錐台状部における環状面に各連通孔に隣接してハブ部材の中心軸線に沿って設けられている。複数のピンは、ハブ部材の周りに縦横に所定の間隔で配列されている。このように複数のピンが配列されることにより、キャビテーションの発生が抑制されるのでキャビテーションに起因した騒音が低減される。 A hub member to which the output shaft of the drive motor is connected is arranged in the hole at the center of the truncated cone portion. Each of the plurality of pins has a regular quadrangular prism shape. As shown in FIG. 8 in Patent Document 2, each pin is provided along the central axis of the hub member on the annular surface of the truncated cone portion adjacent to each communication hole. The plurality of pins are arranged at predetermined intervals vertically and horizontally around the hub member. By arranging a plurality of pins in this way, the occurrence of cavitation is suppressed, so that noise caused by cavitation is reduced.
 斯かる構成において、ロータが回動される場合、例えば、排水ポンプが高揚程となり、吐出量が減少するとき、吸入口から吸い込まれる流体に対し吐出口側からの高い背圧が作用するので吸い込まれた流体に含まれる空気層が、上述の孔の真上であって最も内側の複数のピンよりも内側となるロータのハブ部材近傍に滞留せしめられる。 In such a configuration, when the rotor is rotated, for example, when the drainage pump has a high head and the discharge amount is reduced, a high back pressure from the discharge port side acts on the fluid sucked from the suction port. The air layer contained in the fluid is retained in the vicinity of the hub member of the rotor, which is directly above the above-described hole and inside the plurality of innermost pins.
 一方、ロータが回動される場合、例えば、排水ポンプが低揚程となり、吐出量が増大するとき、吸入口から吸い込まれる流体に対し吐出口側からの背圧が、高揚程のときに比べて小となるので吸い込まれた流体に含まれる空気層が、孔の真上位置から上方に向けて末広がりとなる。即ち、液体と空気との境界面である気液境界面が、最も外側に位置する複数のピンに向けて移行することとなる。これにより、空気領域が、拡大される。 On the other hand, when the rotor is rotated, for example, when the drainage pump has a low head and the discharge amount increases, the back pressure from the discharge port side with respect to the fluid sucked from the suction port is higher than that at the high head. Since it becomes small, the air layer contained in the sucked fluid spreads upward from the position directly above the hole. That is, the gas-liquid interface, which is the interface between the liquid and the air, moves toward a plurality of pins located on the outermost side. Thereby, an air field is expanded.
 上述したように排水ポンプにおいて、排水ポンプが低揚程となるとき、空気領域が拡大するので空気層と流体の液体層とが混じり合い、気泡が複数のピンのうち比較的外側に位置するピン近傍に発生する場合がある。このような場合、比較的外側に位置する複数のピンと気液境界面との相対速度が速くなり、その複数のピンと気液境界面との接触面積が増大するので所謂、水掻き音は、排水ポンプが高揚程となるときに比べて大きくなるという問題を伴う。 As described above, in the drainage pump, when the drainage pump has a low head, the air region expands, so the air layer and the fluid liquid layer mix, and the vicinity of the pin where the bubbles are located relatively outside of the plurality of pins May occur. In such a case, the relative speed between the plurality of pins located relatively outside and the gas-liquid boundary surface increases, and the contact area between the plurality of pins and the gas-liquid boundary surface increases, so the so-called water scraping sound is generated by the drainage pump. With the problem that becomes larger than when it becomes a high head.
 水掻き音の音圧レベルを低減させるようにポンプ室内の気泡の発生を抑制すべく、例えば、特許文献3にも示されるように、インペラが、ドレン水整流環およびドレン水ガイド部を有するものが提案されている。そのようなドレン水整流環の作用により、遠心力によって半径方向外側に広げられた自由表面を羽根外周が撹拌することが無くなるので気泡の発生が抑制される。また、ポンプ室内の気泡の発生を抑制すべく、例えば、特許文献4にも示されるように、回転羽根が、羽根板の最大径部を包囲する外輪を一体的に有するものも提案されている。このように外輪を設けることにより、液層と空気層との境界面が均一に保たれるので気泡の発生が少なくなる。 In order to suppress the generation of bubbles in the pump chamber so as to reduce the sound pressure level of the water scraping sound, for example, as shown in Patent Document 3, the impeller has a drain water rectifying ring and a drain water guide portion. Proposed. By such an action of the drain water rectification ring, the outer periphery of the blade does not stir the free surface spread radially outward by the centrifugal force, so that the generation of bubbles is suppressed. Further, in order to suppress the generation of bubbles in the pump chamber, for example, as shown in Patent Document 4, a rotating blade integrally having an outer ring surrounding the maximum diameter portion of the blade plate has been proposed. . By providing the outer ring in this way, the boundary surface between the liquid layer and the air layer is kept uniform, so that the generation of bubbles is reduced.
特許第3723556号公報Japanese Patent No. 3723556 特許第4680922号公報Japanese Patent No. 4680922 特許第3511044号公報Japanese Patent No. 3511044 特許第3254325号公報Japanese Patent No. 3254325
 排水ポンプの仕様においては、設計上、排水ポンプの配置の自由度を高めるべく排出能力を高めることが要望される場合がある。このような場合、仕様点の変更に伴い排水ポンプのロータの最大回転数をさらに上げる必要があるので特に、低揚程のとき、水掻き音の音圧レベルの上昇が問題となる。 In the specification of the drainage pump, there is a case where it is desired to increase the discharge capacity in order to increase the degree of freedom in the arrangement of the drainage pump. In such a case, it is necessary to further increase the maximum number of rotations of the rotor of the drainage pump in accordance with the change of the specification point. Therefore, particularly at a low head, an increase in the sound pressure level of the water scraping sound becomes a problem.
 以上の問題点を考慮し、本発明は、ポンプロータを有する排水ポンプであって、排水能力を高めた場合、低揚程のときであっても、ポンプロータに起因した水掻き音の音圧レベルを低減することができる排水ポンプを提供することを目的とする。 In view of the above problems, the present invention is a drainage pump having a pump rotor, and when the drainage capacity is increased, the sound pressure level of the water scraping sound caused by the pump rotor is reduced even at a low head. It aims at providing the drainage pump which can be reduced.
 上述の目的を達成するために、本発明に係る排水ポンプは、吸入口および吐出口を有するポンプハウジングと、ポンプハウジングにおけるロータ収容室内に回動可能に配され、吸入口を通じて導入された流体が通過する開口と、回転駆動手段により回動されるとき、開口を通じて導入された流体に遠心力を付与する複数の突起片が所定の間隔で形成される支持板と、支持板に支持され複数の突起片における支持板の半径方向に沿った最も外側の配列を囲む環状の外壁と、を有するポンプロータと、を備えて構成される。また、吸入口を通じて導入された流体は、複数の突起片の相互間を通過した後、外壁を越えて前記吐出口に流出する。 In order to achieve the above-described object, a drainage pump according to the present invention includes a pump housing having a suction port and a discharge port, and a fluid that is rotatably disposed in a rotor housing chamber of the pump housing, and fluid introduced through the suction port. A support plate formed with a plurality of projections formed at predetermined intervals, and a plurality of projection pieces for applying centrifugal force to the fluid introduced through the opening when rotated by the rotation driving means; And a pump rotor having an annular outer wall surrounding an outermost array along the radial direction of the support plate in the protruding piece. In addition, the fluid introduced through the suction port passes between the plurality of projecting pieces and then flows out to the discharge port over the outer wall.
 本発明に係る排水ポンプによれば、ポンプロータが、吸入口を通じて導入された流体が通過する開口と、開口を通じて導入された流体に遠心力を付与する複数の突起片が所定の間隔で形成される支持板と、支持板に支持され複数の突起片における支持板の半径方向に沿った最も外側の配列を囲む環状の外壁と、を有することによって、複数の突起片により流体の波立ちが抑制されるとともに、外壁により流体が整流されるので排水ポンプの排水能力を高めた場合、低揚程のときであっても、ポンプロータに起因した水掻き音の音圧レベルを低減することができる。 According to the drainage pump according to the present invention, the pump rotor is formed with an opening through which the fluid introduced through the suction port passes and a plurality of projecting pieces that impart centrifugal force to the fluid introduced through the opening at predetermined intervals. And a ring-shaped outer wall that is supported by the support plate and surrounds the outermost array along the radial direction of the support plate in the plurality of projection pieces, thereby suppressing the ripple of the fluid by the plurality of projection pieces. In addition, since the fluid is rectified by the outer wall, when the drainage capacity of the drainage pump is increased, the sound pressure level of watering noise caused by the pump rotor can be reduced even at a low head.
図1は、本発明に係る排水ポンプの一例に用いられるポンプロータを示す斜視図である。FIG. 1 is a perspective view showing a pump rotor used in an example of a drainage pump according to the present invention. 図2は、本発明に係る排水ポンプの一例の要部を破断して示す概略構成図である。FIG. 2 is a schematic configuration diagram showing a principal part of an example of the drainage pump according to the present invention by breaking it. 図3は、図2に示される例においてアッパハウジングを外した状態で示す平面図である。FIG. 3 is a plan view showing the example shown in FIG. 2 with the upper housing removed. 図4は、図3におけるIV-IV線に沿って示される部分断面図である。FIG. 4 is a partial cross-sectional view taken along line IV-IV in FIG. 図5は、図4におけるV部を拡大して示す部分拡大図である。FIG. 5 is a partially enlarged view showing a V portion in FIG. 4 in an enlarged manner. 図6Aは、比較例におけるポンプロータを示す斜視図である。FIG. 6A is a perspective view showing a pump rotor in a comparative example. 図6Bは、比較例におけるポンプロータを示す斜視図である。FIG. 6B is a perspective view showing a pump rotor in a comparative example. 図6Cは、比較例におけるポンプロータを示す斜視図である。FIG. 6C is a perspective view showing a pump rotor in a comparative example. 図7は、本発明に係る排水ポンプの一例における性能実験の説明に供される図である。FIG. 7 is a diagram for explaining a performance experiment in an example of the drainage pump according to the present invention. 図8は、本発明に係る排水ポンプの一例および各比較例における騒音の音圧レベルの特性を示す特性図である。FIG. 8 is a characteristic diagram showing the characteristics of the sound pressure level of noise in one example of the drainage pump according to the present invention and each comparative example.
 図2は、本発明に係る排水ポンプの一例の構成を示す。 FIG. 2 shows a configuration of an example of a drainage pump according to the present invention.
 図2において、排水ポンプは、吸入口10aを形成する吸入管を中央部下端に有するロアハウジング10と、ロアハウジング10内に回動可能に配されるポンプロータ12と、ロアハウジング10の内周部とともにロータ収容室を形成するアッパハウジング14と、アッパハウジング14に配されポンプロータ12を駆動する駆動用モータ15とを主な要素として含んで構成されている。 In FIG. 2, the drainage pump includes a lower housing 10 having a suction pipe forming a suction port 10 a at the lower end of the central portion, a pump rotor 12 that is rotatably disposed in the lower housing 10, and an inner periphery of the lower housing 10. The upper housing 14 which forms a rotor accommodating chamber together with the portion, and a drive motor 15 which is arranged in the upper housing 14 and drives the pump rotor 12 are mainly included.
 ロアハウジング10の吸入口10aの一端は、例えば、ドレンパンDP(図7参照)に配される。ロアハウジング10の内周部は、吸入口10aを中心として漏斗状に広がるように形成されている。また、ロアハウジング10における上部側壁10USの後述する吐出口側には、図2および図3に示されるように、吸入口10aの中心軸線に直交する方向に沿って吐出口10Dが延びている。吐出口10Dは、ロアハウジング10のロータ収容室に連通する小径部10bおよび大径部10cから構成されている。 One end of the suction port 10a of the lower housing 10 is disposed, for example, in a drain pan DP (see FIG. 7). The inner peripheral portion of the lower housing 10 is formed so as to spread in a funnel shape with the suction port 10a as a center. Further, as shown in FIGS. 2 and 3, a discharge port 10 </ b> D extends along the direction orthogonal to the central axis of the suction port 10 a on the discharge port side, which will be described later, of the upper side wall 10 </ b> US in the lower housing 10. The discharge port 10 </ b> D includes a small-diameter portion 10 b and a large-diameter portion 10 c that communicate with the rotor housing chamber of the lower housing 10.
 アッパハウジング14の下端に形成される円筒状部は、Oリング18を介してロアハウジング10における上端部の開口端に接続されている。アッパハウジング14における円筒状部の平坦部14Wの中央部に形成され、ロータ収容室(以下、ポンプ室ともいう)内に連通している貫通孔14aには、出力軸15Sおよび後述するポンプロータ12のハブ部材22が挿入されている。従って、ポンプハウジングは、ロアハウジング10およびアッパハウジング14により形成されることとなる。 The cylindrical portion formed at the lower end of the upper housing 14 is connected to the open end of the upper end portion of the lower housing 10 via an O-ring 18. An output shaft 15S and a pump rotor 12 (to be described later) are formed in a through hole 14a formed in the central portion of the flat portion 14W of the cylindrical portion of the upper housing 14 and communicating with the rotor accommodating chamber (hereinafter also referred to as a pump chamber). The hub member 22 is inserted. Therefore, the pump housing is formed by the lower housing 10 and the upper housing 14.
 駆動用モータ15は、例えば、扁平型のDCブラシレスモータとされ、アッパハウジング14の上部に支持されている。また、駆動用モータ15の出力軸15Sの回転数は、吐出流量に応じて図示が省略される制御基板により制御される。また、アッパハウジング14は、図示が省略されるが、大気連通孔を数箇所に有している。なお、駆動用モータ15は、斯かる例に限られることなく、回転数制御可能なACモータ、例えば、エンコーダ付きの隈取モータであってもよい。駆動用モータ15の上部には、取付用ブラケット16が設けられている。 The driving motor 15 is, for example, a flat DC brushless motor, and is supported on the upper housing 14. The rotation speed of the output shaft 15S of the drive motor 15 is controlled by a control board (not shown) according to the discharge flow rate. Moreover, although illustration is abbreviate | omitted, the upper housing 14 has an air | atmosphere communication hole in several places. The drive motor 15 is not limited to such an example, and may be an AC motor capable of controlling the rotation speed, for example, a take-up motor with an encoder. A mounting bracket 16 is provided above the drive motor 15.
 ポンプロータ12は、図1および図3に示されるように、例えば、樹脂材料で一体に形成され、流体に遠心力を付与する撹拌体を構成する複数の串形の突起片20ai(i=1~52)と、複数の突起片20aiの周囲を隣接して包囲する環状の外壁12PWと、外壁12PWと一体に形成されている突起片20bi(i=1~20)と、吸入口10a内に挿入される軸部12Bを下端に有し突起片20aiの下端と、外壁12PWおよび突起片20biの下端と一体に形成される円錐台状の支持板12Aと、を含んで構成されている。樹脂材料は、例えば、透明性のあるもの、または、黒色、白色の樹脂材料、あるいは、その他の色が混合されたものであってもよい。 As shown in FIG. 1 and FIG. 3, the pump rotor 12 is formed of, for example, a resin material integrally, and a plurality of skewer-shaped projecting pieces 20ai (i = 1) constituting a stirring body that imparts centrifugal force to the fluid. 52), an annular outer wall 12PW that surrounds and surrounds the plurality of protruding pieces 20ai, a protruding piece 20bi (i = 1 to 20) formed integrally with the outer wall 12PW, and the suction port 10a It has a shaft portion 12B to be inserted at the lower end, and includes a lower end of the projecting piece 20ai and a truncated cone-shaped support plate 12A formed integrally with the outer wall 12PW and the lower ends of the projecting pieces 20bi. The resin material may be, for example, a transparent one, a black or white resin material, or a mixture of other colors.
 支持板12Aは、吸入口10a内に挿入される軸部12Bを下端中央部に有している。軸部12Bは、中心軸線に沿って延びる十字形の突起12bを有している。 The support plate 12A has a shaft portion 12B to be inserted into the suction port 10a at the center of the lower end. The shaft portion 12B has a cross-shaped projection 12b extending along the central axis.
 約41mmの直径を有する支持板12Aの中央部の貫通孔12aには、図3に示されるように、駆動用モータ15の出力軸15Sが接続されるハブ部材22が配されている。ハブ部材22は、軸部12Bの中心軸線と共通の中心軸線上に一体に形成され、上述の貫通孔14aを貫通するように突出している。即ち、ハブ部材22は、支持板12Aの支持面に対し略垂直に形成されている。ハブ部材22は、連結片12R1、12R2、12R3、および、12R4により、開口としての貫通孔12aの周縁に連結されている。連結片12R1~12R4は、それぞれ、その円周方向に沿って均等間隔で4箇所に分岐し軸部12Bの端部に一体形成されている。なお、連結片の数量は、斯かる例に限られることなく、例えば、3本以下、あるいは、5本以上設けられても良い。 As shown in FIG. 3, a hub member 22 to which the output shaft 15S of the drive motor 15 is connected is disposed in the central through hole 12a of the support plate 12A having a diameter of about 41 mm. The hub member 22 is integrally formed on a central axis common to the central axis of the shaft portion 12B, and protrudes so as to penetrate the above-described through hole 14a. That is, the hub member 22 is formed substantially perpendicular to the support surface of the support plate 12A. The hub member 22 is connected to the periphery of the through hole 12a as an opening by connecting pieces 12R1, 12R2, 12R3, and 12R4. Each of the connecting pieces 12R1 to 12R4 branches into four places at equal intervals along the circumferential direction, and is integrally formed at the end of the shaft portion 12B. In addition, the quantity of a connection piece is not restricted to such an example, For example, you may provide 3 or less, or 5 or more.
 52本の突起片20aiは、例えば、樹脂材料で支持板12Aと一体に形成され、約1.8mm角の矩形断面を有している。突起片20aiは、支持板12Aの貫通孔12aの周囲に所定の間隔で縦横に形成されている。突起片20aiの配列は、貫通孔12aの最も近傍の位置に例えば、図3に示されるように、所定の間隔で一辺に7本を有する基準となる略矩形の第1の配列を含んでいる。また、第2の配列が、第1の配列を囲う相似形のように形成されている。第2の配列は、貫通孔12aから離れる方向に基準となる第1の配列における各突起片20aiに向かい合い、一辺に7本の突起片20aiからなる。その際、第2の配列は、基準となる第1の配列における各辺の角の突起片20aiに向かい合う2本の突起片20aiが、後述する環状の外壁12PWの内周面に向かい合って隣接する位置となるように形成されている。さらに、第3の配列としての突起片20biが、第2の配列の各辺の突起片20aiに向かい合うように、それぞれ、形成されている。第3の配列の各辺は、5本の突起片20biが所定の間隔で形成されている。各突起片20biは、第2の配列の各辺に対し平行に貫通孔12aから離れる方向に所定の間隔で、外壁12PWの内周面に沿って一体に形成されている。これにより、突起片20biおよび隣接する突起片20bi相互間の間隙からなる凹凸が、第2の配列の各辺に対し向かい合って円周方向に所定の長さだけ形成されることとなる。 The 52 protruding pieces 20ai are formed of, for example, a resin material integrally with the support plate 12A, and have a rectangular cross section of about 1.8 mm square. The protruding pieces 20ai are formed vertically and horizontally at predetermined intervals around the through hole 12a of the support plate 12A. The array of the projecting pieces 20ai includes a substantially rectangular first array serving as a reference having seven lines on one side at a predetermined interval, for example, as shown in FIG. 3 at a position closest to the through hole 12a. . Further, the second array is formed like a similar shape surrounding the first array. The second array faces each protrusion piece 20ai in the first array serving as a reference in a direction away from the through hole 12a, and includes seven protrusion pieces 20ai on one side. At that time, in the second array, two protrusion pieces 20ai facing the protrusion pieces 20ai at the corners of each side in the reference first array face and are adjacent to the inner peripheral surface of the annular outer wall 12PW described later. It is formed to be a position. Further, the protruding pieces 20bi as the third array are formed so as to face the protruding pieces 20ai on each side of the second array. On each side of the third array, five protruding pieces 20bi are formed at predetermined intervals. Each protrusion piece 20bi is integrally formed along the inner peripheral surface of the outer wall 12PW at a predetermined interval in a direction away from the through hole 12a in parallel with each side of the second array. Thereby, the unevenness | corrugation which consists of the gap | interval between protrusion piece 20bi and adjacent protrusion piece 20bi faces only each edge | side of a 2nd arrangement | sequence, and is formed only predetermined length in the circumferential direction.
 第1の配列および第2の配列において、それぞれ、各突起片20aiの軸線に沿った長さは、図4に示されるように、突起片20aiの最上端位置が共通の平面上に位置するように異なり、外壁12PWに向かうにつれて短くなる。各突起片20aiの軸線に沿った平均長さは、例えば、5~10mmとされる。突起片20aiの最上端とアッパハウジング14の平坦部14Wにおけるポンプ室に対向する面との間には、所定の隙間が形成されている。また、ポンプロータ12の外壁12PWの外周面とロアハウジング10の上部側壁10USの内周面との間には、所定の隙間が形成されている。各突起片20biの軸線に沿った長さは、最も短い突起片20aiの軸線に沿った長さと略同一、もしくは、最も短い突起片20aiの軸線に沿った長さよりも小に設定されている。外壁12PWの上端の位置は、各突起片20biの上端と共通の平面上にある。 In each of the first array and the second array, the length along the axis of each projection piece 20ai is such that the top end position of the projection piece 20ai is located on a common plane, as shown in FIG. Unlike, it becomes shorter as it goes to the outer wall 12PW. The average length along the axis of each projection piece 20ai is, for example, 5 to 10 mm. A predetermined gap is formed between the uppermost end of the protruding piece 20ai and the surface of the flat portion 14W of the upper housing 14 facing the pump chamber. Further, a predetermined gap is formed between the outer peripheral surface of the outer wall 12PW of the pump rotor 12 and the inner peripheral surface of the upper side wall 10US of the lower housing 10. The length along the axis of each projection piece 20bi is set to be substantially the same as the length along the axis of the shortest projection piece 20ai or smaller than the length along the axis of the shortest projection piece 20ai. The position of the upper end of the outer wall 12PW is on the same plane as the upper end of each projection piece 20bi.
 なお、基準となる第1の配列は、矩形に形成されているが、必ずしも、このようになされる必要がなく、例えば、基準となる第1の配列は、円形に形成され、第2の配列、第3の配列がその基準となる第1の配列に倣う相似形となるように所定の均等間隔で形成されてもよい。 The reference first array is formed in a rectangular shape, but is not necessarily formed in this manner. For example, the reference first array is formed in a circular shape and the second array is formed. The third array may be formed at predetermined equal intervals so as to have a similar shape following the reference first array.
 これにより、駆動用モータ15が作動状態の場合、回動されるポンプロータ12による遠心力により、図2において、矢印の示す方向に沿って吸入口10aから吸い込まれた流体は、ロアハウジング10の内周部およびアッパハウジング14の下端の内周部により形成される空間、即ち、ロータ収容室に貫通孔12aを介して導かれ、小径部10bおよび大径部10cを通じて矢印の示す方向に沿って外部に吐出される。なお、駆動用モータ15によるポンプロータ12の回転方向は、時計回り方向または反時計回り方向のいずれの方向であってもよい。 Thereby, when the driving motor 15 is in an operating state, the fluid sucked from the suction port 10a along the direction indicated by the arrow in FIG. A space formed by the inner peripheral portion and the inner peripheral portion at the lower end of the upper housing 14, that is, guided to the rotor accommodating chamber through the through hole 12a, and along the direction indicated by the arrow through the small diameter portion 10b and the large diameter portion 10c. It is discharged outside. Note that the rotation direction of the pump rotor 12 by the drive motor 15 may be either a clockwise direction or a counterclockwise direction.
 斯かる構成において、駆動用モータ15の出力軸の回転数が制御されることより、ポンプロータ12の回転数が制御される場合、例えば、150mm程度の低揚程のとき、図4に示されるように、吸入口10aおよび貫通孔12aを通じて吸い込まれた流体である環状の液体層の内側に、気液境界面BPを境に大気連通孔(不図示)および貫通孔14aを介して侵入した空気により気相APHが形成される。気液境界面BPを介して気相APHの回りに、液相LPHが形成される。気液境界面BPは、作動中のポンプロータ12による遠心力と吐出口からの水頭圧および遠心力に起因したロアハウジング10の内周部からの反作用力との釣り合いにより形成される。 In such a configuration, when the rotational speed of the pump rotor 12 is controlled by controlling the rotational speed of the output shaft of the drive motor 15, for example, when the head is about 150 mm low, as shown in FIG. Further, air that has entered the inside of the annular liquid layer, which is the fluid sucked through the suction port 10a and the through hole 12a, through the air communication hole (not shown) and the through hole 14a with the gas-liquid boundary surface BP as a boundary. A gas phase APH is formed. A liquid phase LPH is formed around the gas phase APH via the gas-liquid interface BP. The gas-liquid interface BP is formed by a balance between the centrifugal force generated by the pump rotor 12 in operation, the hydraulic head pressure from the discharge port, and the reaction force from the inner peripheral portion of the lower housing 10 caused by the centrifugal force.
 これにより、ロータ収容室内の液体は、遠心力により、ロアハウジング10の内周部およびアッパハウジング14の下端の内周部に導かれ、小径部10bおよび大径部10cを通じて図5に示される矢印Fが示す経路に沿って外部に吐出される。従って、気液境界面BPのロアハウジング10の上部側壁10USの内周面への移動が外壁12PWにより抑制され、且つ、発生した気泡が、ロアハウジング10の上部側壁10USに衝突する速度を抑制することができる。また、液体の流出経路において外壁12PWの整流作用により絞り渦の発生も抑制される。さらに、複数の突起片20ai、および、20biにより、液体の波立ち(うねり)が発生することも、抑制される。 Thereby, the liquid in the rotor housing chamber is guided by centrifugal force to the inner peripheral portion of the lower housing 10 and the inner peripheral portion of the lower end of the upper housing 14, and the arrows shown in FIG. 5 through the small diameter portion 10b and the large diameter portion 10c. It is discharged outside along the path indicated by F. Therefore, the movement of the gas-liquid boundary surface BP to the inner peripheral surface of the upper side wall 10US of the lower housing 10 is suppressed by the outer wall 12PW, and the speed at which the generated bubbles collide with the upper side wall 10US of the lower housing 10 is suppressed. be able to. In addition, the generation of the throttle vortex is suppressed by the rectifying action of the outer wall 12PW in the liquid outflow path. Furthermore, the occurrence of liquid undulation (swell) is also suppressed by the plurality of projection pieces 20ai and 20bi.
 図8は、本発明に係る排水ポンプの一例である図2に示される一例(以下、排水ポンプAともいう)を用いて、後述する比較例1、比較例2、および、比較例3とポンプロータ12とを比較して上述のポンプロータ12における音圧レベル(対数騒音)の低減効果について検証された結果を示す。 FIG. 8 shows a comparative example 1, a comparative example 2, and a comparative example 3 and a pump, which will be described later, using the example shown in FIG. 2 (hereinafter also referred to as a drain pump A) which is an example of the drain pump according to the present invention. The result verified by comparing with the rotor 12 about the reduction effect of the sound pressure level (logarithmic noise) in the pump rotor 12 mentioned above is shown.
 排水ポンプAは、直径約41mmの支持板12Aおよび外壁12PWを有するポンプロータ12を含んで構成される。支持板12Aは、1.8mm角の52本の突起片20ai、および、外壁12PWと一体に形成された20本の突起片20biを有するものとされる。隣接する突起片20aiの相互間距離は、例えば、1.5mmに設定されている。 The drainage pump A includes a pump rotor 12 having a support plate 12A having a diameter of about 41 mm and an outer wall 12PW. The support plate 12A has 52 projection pieces 20ai of 1.8 mm square and 20 projection pieces 20bi formed integrally with the outer wall 12PW. The distance between the adjacent protrusions 20ai is set to 1.5 mm, for example.
 斯かる実験においては、排水ポンプAの揚程が、水頭圧(揚程)150mm程度の低揚程から水頭圧1200mm程度の高揚程まで変化するとき、排水ポンプAから発生した音を計測する。 In such an experiment, when the head of the drainage pump A changes from a low head having a head pressure (head) of about 150 mm to a high head having a head pressure of about 1200 mm, the sound generated from the drain pump A is measured.
 なお、上述の揚程のゼロ点は、排水ポンプAの流量が零でバランス状態であるとき、排水ポンプAの吸入口端部から所定距離De(約10mm)下方の液面位置とされる(図7参照)。 The zero point of the above-mentioned head is a liquid level position that is a predetermined distance De (about 10 mm) below the suction port end of the drain pump A when the flow rate of the drain pump A is zero and in a balanced state (FIG. 7).
 また、従来品とされる図6A、6B、および、6Cに示されるような、互いに形状の異なるポンプロータ32(比較例1)、ポンプロータ34(比較例2)、ポンプロータ36(比較例3)を排水ポンプAに装着したとき、図7に示されるように、それぞれにおいて発生した音を測定した。発生した音は、吸入口から所定距離Le、例えば、500mm程度離れた無響箱内の騒音計(小野測器(株)社製:LA5120)により、A特性、スローレンジで測定された。吐出口が配管Duに接続された排水ポンプAは、吸入口が水位De、例えば、約10mm以上の深さDmaxを有する液体が満たされたドレンパンDP内に配置されるように保持されている。斯かる実験の方法は、排水ポンプAの吐出口に接続される配管Duの一端の位置を変化させることによって揚程を変化させながら、任意の揚程において水の排出が止まった状態、所謂、バランス状態となった時、吐出口近傍から発生した音が、騒音計により測定されることにより、行われた。 Further, as shown in FIGS. 6A, 6B, and 6C, which are conventional products, the pump rotor 32 (Comparative Example 1), the pump rotor 34 (Comparative Example 2), and the pump rotor 36 (Comparative Example 3) having different shapes from each other. ) Was mounted on the drainage pump A, the sound generated in each was measured as shown in FIG. The generated sound was measured at a predetermined distance Le from the suction port, for example, by a noise meter (LA5120 manufactured by Ono Sokki Co., Ltd.) in an anechoic box at a distance of about 500 mm in the A characteristic and the slow range. The drainage pump A having a discharge port connected to the pipe Du is held so that the suction port is disposed in a drain pan DP filled with a liquid having a water level De, for example, a depth Dmax of about 10 mm or more. The method of such an experiment is a state in which the discharge of water stops at an arbitrary head while changing the head by changing the position of one end of the pipe Du connected to the discharge port of the drainage pump A, a so-called balance state. Then, the sound generated from the vicinity of the discharge port was measured by a sound level meter.
 ポンプロータ32(比較例1)、ポンプロータ34(比較例2)、ポンプロータ36(比較例3)の直径は、それぞれ、ポンプロータ12の直径と同一である。 The diameters of the pump rotor 32 (Comparative Example 1), the pump rotor 34 (Comparative Example 2), and the pump rotor 36 (Comparative Example 3) are the same as the diameter of the pump rotor 12, respectively.
 ポンプロータ32は、図6Aに示されるように、例えば、樹脂材料で一体に形成され、ポンプロータ12のような複数の串形の突起片30ai(i=1~52)および突起片30bi(i=1~20)を有する点で共通しているが、ポンプロータ12のような環状の外壁を有しない点で相違する。ポンプロータ32は、流体に遠心力を付与する撹拌体を構成する複数の串形の突起片30aiおよび30biと、吸入口10a内に挿入される軸部32Bを下端に有し突起片30aiおよび30biの下端と一体に形成される円錐台状の支持板32Aと、を含んで構成されている。 As shown in FIG. 6A, the pump rotor 32 is integrally formed of, for example, a resin material, and has a plurality of skewer-shaped projecting pieces 30ai (i = 1 to 52) and projecting pieces 30bi (i = 1 to 20), but is different in that it does not have an annular outer wall like the pump rotor 12. The pump rotor 32 has a plurality of skewer-shaped projecting pieces 30ai and 30bi constituting a stirrer that applies centrifugal force to the fluid, and a shaft portion 32B inserted into the suction port 10a at the lower end, and the projecting pieces 30ai and 30bi. And a frustoconical support plate 32 </ b> A formed integrally with the lower end of each.
 支持板32Aは、上述の吸入口10a内に挿入される軸部32Bを下端に有している。軸部32Bは、中心軸線に沿って延びる十字形の突起32bを有している。 The support plate 32A has a shaft portion 32B inserted into the suction port 10a described above at the lower end. The shaft portion 32B has a cross-shaped projection 32b extending along the central axis.
 支持板32Aの中央部の貫通孔32aには、駆動用モータ15の出力軸15Sが接続されるハブ部材42が配されている。ハブ部材42は、軸部32Bの中心軸線と共通の中心軸線上に一体に形成され、上述の貫通孔14aを貫通するように突出している。即ち、ハブ部材42は、支持板32Aの支持面に対し略垂直に形成されている。ハブ部材42は、連結片32R1、32R2、32R3、および、32R4により貫通孔32aの周縁に連結されている。連結片32R1~32R4は、それぞれ、その円周方向に沿って均等間隔で4箇所に分岐し軸部32Bの端部に一体形成されている。なお、図6Aにおいて、連結片32R2、32R3は、示されていない。 A hub member 42 to which the output shaft 15S of the driving motor 15 is connected is disposed in the through hole 32a at the center of the support plate 32A. The hub member 42 is integrally formed on a central axis common to the central axis of the shaft portion 32B, and protrudes so as to penetrate the above-described through hole 14a. That is, the hub member 42 is formed substantially perpendicular to the support surface of the support plate 32A. The hub member 42 is connected to the periphery of the through hole 32a by connection pieces 32R1, 32R2, 32R3, and 32R4. Each of the connecting pieces 32R1 to 32R4 branches into four places at equal intervals along the circumferential direction, and is integrally formed at the end of the shaft portion 32B. In FIG. 6A, the connecting pieces 32R2 and 32R3 are not shown.
 突起片30aiは、例えば、樹脂材料で支持板32Aと一体に形成され、約1.8mm角の矩形断面を有している。突起片30aiは、支持板32Aの貫通孔32aの周囲に所定の間隔で縦横に形成されている。隣接する突起片30ai相互間には、図6Aに示されるように、連通孔32Cが所定の位置に形成されている。5本の突起片30biのうち両端に位置する2本の突起片30biは、それぞれ、他の突起片30biおよび突起片30aiとは異なり、面取りが角に施されている。 The protrusion piece 30ai is formed integrally with the support plate 32A, for example, with a resin material, and has a rectangular cross section of about 1.8 mm square. The protruding pieces 30ai are formed vertically and horizontally at predetermined intervals around the through hole 32a of the support plate 32A. As shown in FIG. 6A, communication holes 32C are formed at predetermined positions between the adjacent protrusions 30ai. Unlike the other projection pieces 30bi and 30ai, the two projection pieces 30bi located at both ends of the five projection pieces 30bi are chamfered at the corners.
 ポンプロータ34は、図6Bに示されるように、例えば、樹脂材料で一体に形成され、ポンプロータ12のような環状の外壁を有する点で共通しているが、ポンプロータ12のような複数の串形の突起片20ai(i=1~52)および20bi(i=1~20)を有しない点で相違する。ポンプロータ34は、流体に遠心力を付与する撹拌体を構成する複数の羽根板40A、40Bと、吸入口10a内に挿入される軸部34Bを下端に有し羽根板40A、40Bの下端と一体に形成される円錐台状の支持板34Aと、支持板34Aおよび羽根板40A、40Bの一端と一体に形成され羽根板40A、40Bを包囲する環状の外壁34PWとを含んで構成されている。 As shown in FIG. 6B, the pump rotor 34 is commonly formed by, for example, a resin material and has an annular outer wall like the pump rotor 12. The difference is that the skewer-shaped protrusions 20ai (i = 1 to 52) and 20bi (i = 1 to 20) are not provided. The pump rotor 34 has a plurality of blade plates 40A and 40B constituting a stirrer that applies centrifugal force to the fluid, and a shaft portion 34B inserted into the suction port 10a at the lower end, and the lower ends of the blade plates 40A and 40B. A truncated cone-shaped support plate 34A that is integrally formed, and an annular outer wall 34PW that is formed integrally with one end of the support plate 34A and the blade plates 40A and 40B and surrounds the blade plates 40A and 40B. .
 支持板34Aは、上述の吸入口10a内に挿入される軸部34Bを下端に有している。軸部34Bは、中心軸線に沿って延びる十字形の突起34bを有している。 The support plate 34A has a shaft part 34B inserted into the suction port 10a described above at the lower end. The shaft portion 34B has a cross-shaped protrusion 34b extending along the central axis.
 支持板34Aの中央部の貫通孔34aには、駆動用モータ15の出力軸15Sが接続されるハブ部材44が配されている。ハブ部材44は、軸部34Bの中心軸線と共通の中心軸線上に一体に形成され、上述の貫通孔14aを貫通するように突出している。即ち、ハブ部材44は、支持板34Aの支持面に対し略垂直に形成されている。ハブ部材44は、連結片34R1、34R2、34R3、34R4により貫通孔34aの周縁に連結されている。連結片34R1~34R4は、それぞれ、その円周方向に沿って均等間隔で4箇所に分岐し軸部34Bの端部に一体形成されている。4枚の羽根板40A、4枚の羽根板40Bは、貫通孔34aの周縁に放射状に配されている。羽根板40Aにおける支持板34Aの半径方向に沿った長さは、対応する羽根板40Bの長さに比して大に設定されている。 A hub member 44 to which the output shaft 15S of the drive motor 15 is connected is disposed in the through hole 34a at the center of the support plate 34A. The hub member 44 is integrally formed on a central axis common to the central axis of the shaft portion 34B, and protrudes so as to penetrate the above-described through hole 14a. That is, the hub member 44 is formed substantially perpendicular to the support surface of the support plate 34A. The hub member 44 is connected to the periphery of the through hole 34a by connecting pieces 34R1, 34R2, 34R3, and 34R4. Each of the connecting pieces 34R1 to 34R4 is branched into four portions at equal intervals along the circumferential direction, and is integrally formed at the end of the shaft portion 34B. The four blade plates 40A and the four blade plates 40B are arranged radially on the periphery of the through hole 34a. The length of the blade plate 40A along the radial direction of the support plate 34A is set larger than the length of the corresponding blade plate 40B.
 ポンプロータ36は、図6Cに示されるように、例えば、樹脂材料で一体に形成され、ポンプロータ12のような環状の外壁を有する点で共通しているが、ポンプロータ12のような複数の串形の突起片20ai(i=1~52)および20bi(i=1~20)を有しない点で相違する。ポンプロータ36は、流体に遠心力を付与する撹拌体を構成する複数の羽根板50A、50Bと、吸入口10a内に挿入される軸部36Bを下端に有し羽根板50A、50Bの下端と一体に形成される円錐台状の支持板36Aと、支持板36Aおよび羽根板50A、50Bの一端と一体に形成され、羽根板50A、50Bを包囲する環状の外壁36PWとを含んで構成されている。 As shown in FIG. 6C, the pump rotor 36 is common in that, for example, the pump rotor 36 is integrally formed of a resin material and has an annular outer wall like the pump rotor 12. The difference is that the skewer-shaped protrusions 20ai (i = 1 to 52) and 20bi (i = 1 to 20) are not provided. The pump rotor 36 has a plurality of blade plates 50A and 50B constituting a stirring body that imparts centrifugal force to the fluid, and a shaft portion 36B inserted into the suction port 10a at the lower end, and the lower ends of the blade plates 50A and 50B. It includes a truncated cone-shaped support plate 36A that is integrally formed, and an annular outer wall 36PW that is formed integrally with one end of the support plate 36A and the blade plates 50A and 50B and surrounds the blade plates 50A and 50B. Yes.
 支持板36Aは、上述の吸入口10a内に挿入される軸部36Bを下端に有している。軸部36Bは、中心軸線に沿って延びる十字形の突起36bを有している。 The support plate 36A has a shaft portion 36B inserted into the above-described suction port 10a at the lower end. The shaft portion 36B has a cross-shaped protrusion 36b extending along the central axis.
 支持板36Aの中央部の貫通孔36aには、駆動用モータ15の出力軸15Sが接続されるハブ部材46が配されている。ハブ部材46は、軸部36Bの中心軸線と共通の中心軸線上に一体に形成され、上述の貫通孔14aを貫通するように突出している。即ち、ハブ部材46は、支持板36Aの支持面に対し略垂直に形成されている。ハブ部材46は、貫通孔36aに配され羽根板50Aにより外壁36PWの内周部に連結されている。4枚の羽根板50Aは、それぞれ、ハブ部材46と外壁36PWとの間でその円周方向に沿って均等間隔で4箇所に形成されている。4枚の羽根板50Bは、隣接する羽根板50A相互間に所定の間隔をもって貫通孔36aの周縁に放射状に配されている。羽根板50Aにおける支持板36Aの半径方向に沿った長さは、対応する羽根板50Bの長さに比して大に設定されている。また、羽根板50Aと羽根板50Bとの間には、外壁36PWの内周部に隣接して突起片50Cが形成されている。 A hub member 46 to which the output shaft 15S of the drive motor 15 is connected is disposed in the through hole 36a in the center of the support plate 36A. The hub member 46 is integrally formed on a central axis common to the central axis of the shaft portion 36B, and protrudes so as to penetrate the above-described through hole 14a. That is, the hub member 46 is formed substantially perpendicular to the support surface of the support plate 36A. The hub member 46 is disposed in the through hole 36a and connected to the inner peripheral portion of the outer wall 36PW by the blade 50A. The four blade plates 50A are formed at four locations at equal intervals along the circumferential direction between the hub member 46 and the outer wall 36PW. The four blades 50B are arranged radially on the periphery of the through hole 36a with a predetermined interval between the adjacent blades 50A. The length of the blade plate 50A along the radial direction of the support plate 36A is set larger than the length of the corresponding blade plate 50B. Further, a protruding piece 50C is formed between the blade 50A and the blade 50B adjacent to the inner peripheral portion of the outer wall 36PW.
 図8は、縦軸に音圧レベル(対数騒音値)(dB)がとられ、横軸に揚程(mm)がとられ、揚程に応じた排水ポンプAにおける音圧レベルの変化を示す曲線L0、L1、L2、L3、および、L4を示す。但し、0(dB)は、従来品の音圧レベルの最大値とされる。 In FIG. 8, the sound pressure level (logarithmic noise value) (dB) is taken on the vertical axis, the lift (mm) is taken on the horizontal axis, and the curve L0 showing the change in the sound pressure level in the drainage pump A according to the lift. , L1, L2, L3, and L4. However, 0 (dB) is the maximum value of the sound pressure level of the conventional product.
 曲線L0は、本発明に係る排水ポンプの一例に用いられるポンプロータ12を装着した場合における音圧レベルの変化を示し、曲線L4、L2、L3、は、それぞれ、比較例1、比較例2、比較例3における音圧レベルの変化を示す。なお、曲線L1は、図示が省略されるが、上述したポンプロータ32において、連通孔32Cが設けられていない点だけが異なるポンプロータが、排水ポンプAに装着された場合における特性線とされる。 A curve L0 indicates a change in sound pressure level when the pump rotor 12 used in the example of the drainage pump according to the present invention is mounted, and the curves L4, L2, L3 are respectively Comparative Example 1, Comparative Example 2, The change of the sound pressure level in the comparative example 3 is shown. Although the curve L1 is not shown, the pump rotor 32 is different from the pump rotor 32 described above only in that the communication hole 32C is not provided, and is a characteristic line when the drainage pump A is mounted. .
 図8において、曲線L0から明らかなように、揚程が150mm~450mmの範囲において、即ち、低揚程において、音圧レベルが、従来品と同等のものである比較例1、比較例2、比較例3に比べて低いことが確認された。これにより、ポンプロータ12を排水ポンプAに装着した場合、従来のポンプロータに比べて低揚程において音圧レベルがさらに低減されることが確認された。 In FIG. 8, as apparent from the curve L0, in the range where the head is 150 mm to 450 mm, that is, in the low head, the sound pressure level is the same as that of the conventional product, Comparative Example 1, Comparative Example 2, and Comparative Example. It was confirmed to be lower than 3. Thereby, when the pump rotor 12 was attached to the drainage pump A, it was confirmed that the sound pressure level was further reduced at a lower head than the conventional pump rotor.
 従って、本発明に係る排水ポンプの一例においては、ポンプロータ12が、流体に遠心力を付与する複数の串形の突起片20aiと、複数の突起片20aiの周囲を隣接して包囲する環状の外壁12PWと、外壁12PWと一体に形成された突起片20biと、を有することにより、排水ポンプの排水能力を高めた場合、低揚程のときであっても、ポンプロータに起因した水掻き音の音圧レベルを低減することができる。 Therefore, in an example of the drainage pump according to the present invention, the pump rotor 12 has an annular shape that surrounds the plurality of skewer-shaped projection pieces 20ai that impart centrifugal force to the fluid and the plurality of projection pieces 20ai adjacent to each other. When the drainage capacity of the drainage pump is increased by having the outer wall 12PW and the protruding piece 20bi formed integrally with the outer wall 12PW, even when the head is at a low head, the sound of the water scraping noise caused by the pump rotor The pressure level can be reduced.

Claims (2)

  1.  吸入口および吐出口を有するポンプハウジングと、
     前記ポンプハウジングにおけるロータ収容室内に回動可能に配され、前記吸入口を通じて導入された流体が通過する開口と、回転駆動手段により回動されるとき、該開口を通じて導入された流体に遠心力を付与する複数の突起片が所定の間隔で形成される支持板と、該支持板に支持され該複数の突起片における該支持板の半径方向に沿った最も外側の配列を囲む環状の外壁と、を有するポンプロータと、
     を具備して構成される排水ポンプ。
    A pump housing having a suction port and a discharge port;
    An opening that is pivotably disposed in a rotor housing chamber of the pump housing and through which the fluid introduced through the suction port passes, and when rotated by rotation driving means, centrifugal force is applied to the fluid introduced through the opening. A support plate on which a plurality of projection pieces to be applied are formed at a predetermined interval; and an annular outer wall supported by the support plate and surrounding an outermost array along the radial direction of the support plate in the plurality of projection pieces; A pump rotor having
    A drainage pump comprising:
  2.  前記開口を通じて導入された流体は、前記複数の突起片の相互間を通過した後、前記外壁を越えて前記吐出口に流出することを特徴とする請求項1記載の排水ポンプ。 The drainage pump according to claim 1, wherein the fluid introduced through the opening flows between the plurality of projecting pieces and then flows out to the discharge port over the outer wall.
PCT/JP2015/000520 2014-03-11 2015-02-05 Drainage pump WO2015136833A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016507285A JPWO2015136833A1 (en) 2014-03-11 2015-02-05 Drainage pump
CN201580003409.1A CN105849413A (en) 2014-03-11 2015-02-05 Drainage pump

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-047949 2014-03-11
JP2014047949 2014-03-11

Publications (1)

Publication Number Publication Date
WO2015136833A1 true WO2015136833A1 (en) 2015-09-17

Family

ID=54071296

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/000520 WO2015136833A1 (en) 2014-03-11 2015-02-05 Drainage pump

Country Status (3)

Country Link
JP (1) JPWO2015136833A1 (en)
CN (1) CN105849413A (en)
WO (1) WO2015136833A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017106388A (en) * 2015-12-10 2017-06-15 株式会社鷺宮製作所 Pump rotor and drain pump
KR102128892B1 (en) * 2019-03-22 2020-07-01 캐비트론 주식회사 High pressure centrifugal pump
US11371530B2 (en) * 2019-10-08 2022-06-28 Delta Electronics, Inc. Fan and fan impeller thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005249234A (en) * 2004-03-01 2005-09-15 Daikin Ind Ltd Drain pump and air conditioner having the same
JP2010007909A (en) * 2008-06-25 2010-01-14 Fujitsu General Ltd Drain pump and air conditioner equipped with the same
JP2011017262A (en) * 2009-07-07 2011-01-27 Fuji Koki Corp Drain pump
JP2011080477A (en) * 2010-12-07 2011-04-21 Saginomiya Seisakusho Inc Vertical type centrifugal pump and air conditioner using the same
JP2011144691A (en) * 2010-01-12 2011-07-28 Saginomiya Seisakusho Inc Water discharge pump

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN87202365U (en) * 1987-02-27 1988-01-13 余自强 Oxygen-increasing device lifting water in different depths
JP3658652B2 (en) * 1992-12-24 2005-06-08 株式会社日立製作所 Centrifugal pump for discharging dehumidified water from air conditioners
CN2255513Y (en) * 1995-09-02 1997-06-04 申乃先 Quick water-inducing centrifugal pump
JP3890684B2 (en) * 1997-07-10 2007-03-07 松下電工株式会社 Electric pump and method for preventing idling of electric pump
JP4267340B2 (en) * 2003-02-10 2009-05-27 株式会社鷺宮製作所 Discharge pump and air conditioner equipped with the same
JP4739748B2 (en) * 2004-12-27 2011-08-03 株式会社鷺宮製作所 Vertical shaft centrifugal pump and air conditioner using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005249234A (en) * 2004-03-01 2005-09-15 Daikin Ind Ltd Drain pump and air conditioner having the same
JP2010007909A (en) * 2008-06-25 2010-01-14 Fujitsu General Ltd Drain pump and air conditioner equipped with the same
JP2011017262A (en) * 2009-07-07 2011-01-27 Fuji Koki Corp Drain pump
JP2011144691A (en) * 2010-01-12 2011-07-28 Saginomiya Seisakusho Inc Water discharge pump
JP2011080477A (en) * 2010-12-07 2011-04-21 Saginomiya Seisakusho Inc Vertical type centrifugal pump and air conditioner using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017106388A (en) * 2015-12-10 2017-06-15 株式会社鷺宮製作所 Pump rotor and drain pump
CN106870445A (en) * 2015-12-10 2017-06-20 株式会社鹭宫制作所 Pump rotor and possesses the draining pump of the pump rotor
KR102128892B1 (en) * 2019-03-22 2020-07-01 캐비트론 주식회사 High pressure centrifugal pump
US11371530B2 (en) * 2019-10-08 2022-06-28 Delta Electronics, Inc. Fan and fan impeller thereof

Also Published As

Publication number Publication date
CN105849413A (en) 2016-08-10
JPWO2015136833A1 (en) 2017-04-06

Similar Documents

Publication Publication Date Title
WO2015136833A1 (en) Drainage pump
EP3147512B1 (en) Impeller structure with improved rotation stability
JP3168366U (en) Pump impeller
KR20070058489A (en) Vertical shaft centrifugal pump, rotor for the pump, and air conditioner
JP2001123977A (en) Drainage pump
KR100724234B1 (en) Drain pump and air conditioner with the same
JP6374150B2 (en) Low head small drain pump
JP6602008B2 (en) Drainage pump
JP6001708B2 (en) Drain pump
WO2021241340A1 (en) Drain pump
JP4459706B2 (en) Drainage pump
JP2005233192A (en) Drain pump and air conditioning system equipped therewith
CN210106238U (en) Drainage impeller with balance holes
JPH0910507A (en) Rotor type defoaming device for reaction tank
JP2001248591A (en) Impeller for submerged pump
WO2019186926A1 (en) Underwater aerator
JP2017025807A (en) Vortex suppressing device, pump system, and pump facility
JP2013253583A (en) Drain pump
JP2005248732A (en) Drain pump and air conditioner having the same
JP4974605B2 (en) Impeller and underwater mixer
JP6001709B2 (en) Drain pump
JPH0975610A (en) Rotary blade type defoaming apparatus of reaction tank
JP2017106388A (en) Pump rotor and drain pump
JP2005233191A (en) Drain pump and air conditioning system equipped therewith
JP6427428B2 (en) Drainage pump

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15761523

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016507285

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15761523

Country of ref document: EP

Kind code of ref document: A1