WO2015133862A1 - Optical modulation apparatus - Google Patents

Optical modulation apparatus Download PDF

Info

Publication number
WO2015133862A1
WO2015133862A1 PCT/KR2015/002187 KR2015002187W WO2015133862A1 WO 2015133862 A1 WO2015133862 A1 WO 2015133862A1 KR 2015002187 W KR2015002187 W KR 2015002187W WO 2015133862 A1 WO2015133862 A1 WO 2015133862A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
oxide layer
light
metal
liquid crystal
Prior art date
Application number
PCT/KR2015/002187
Other languages
French (fr)
Korean (ko)
Inventor
민성준
김수진
송두훈
임진형
오동현
김기환
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201580003218.5A priority Critical patent/CN105874379B/en
Priority to JP2016533588A priority patent/JP6450998B2/en
Priority to US15/122,267 priority patent/US9904129B2/en
Priority to EP15759163.7A priority patent/EP3115834B1/en
Priority claimed from KR1020150031541A external-priority patent/KR101630118B1/en
Publication of WO2015133862A1 publication Critical patent/WO2015133862A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B9/00Screening or protective devices for wall or similar openings, with or without operating or securing mechanisms; Closures of similar construction
    • E06B9/24Screens or other constructions affording protection against light, especially against sunshine; Similar screens for privacy or appearance; Slat blinds
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B9/00Screening or protective devices for wall or similar openings, with or without operating or securing mechanisms; Closures of similar construction
    • E06B9/24Screens or other constructions affording protection against light, especially against sunshine; Similar screens for privacy or appearance; Slat blinds
    • E06B2009/2464Screens or other constructions affording protection against light, especially against sunshine; Similar screens for privacy or appearance; Slat blinds featuring transparency control by applying voltage, e.g. LCD, electrochromic panels
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/06Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the phase of light
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • G02F1/133521Interference filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/08Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 light absorbing layer
    • G02F2201/083Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 light absorbing layer infrared absorbing

Definitions

  • the present application relates to the use of an optical modulation device and an optical modulation device.
  • a smart window refers to a window that can freely adjust the transmittance of sunlight, and is also called an electronic curtain, a variable transmittance glass, a dimming glass, or the like.
  • the smart window includes, for example, a light transmittance adjusting layer capable of adjusting the amount of light transmitted, and a driving circuit for applying and controlling a signal to the light transmittance adjusting layer.
  • the smart window configured as described above prevents light from penetrating or transmitting the entire glass according to the state of the applied voltage, and adjusts the amount of transmission to vary the contrast.
  • Patent Document 1 Korean Patent Publication No. 2012-00922474
  • a low emission (Low Emissivity, Low-e) coating layer or electrochromism is applied to the smart window.
  • EC Low Emissivity, Low-e
  • the prior art has a limit in satisfying the securing of the field of view according to the change of sunlight, the effective blocking of ultraviolet rays and infrared rays and the blocking of leakage of heating heat generated in the inside at the same time.
  • the present application provides the use of an optical modulation device and an optical modulation device.
  • An exemplary optical modulation device of the present application includes a composite layer including an optical modulation layer and a first oxide layer, a metal layer, and a second oxide layer.
  • the composite layer may be disposed on one side or both sides of the light modulation layer.
  • the first oxide layer, the metal layer, and the second oxide layer may be sequentially formed.
  • the optical modulation device of FIG. 1 is a composite including an optical modulation layer 101 and one side of the optical modulation layer, including a first oxide layer 1021, a metal layer 1022, and a second oxide layer 1023 sequentially formed.
  • the optical modulation device of FIG. 2 is a composite including an optical modulation layer 101 and a first oxide layer 1021, a metal layer 1022, and a second oxide layer 1023 sequentially formed on both sides of the optical modulation layer. Layer 102.
  • the "light modulator” may mean a device that is driven by a signal applied from the outside, for example, the light transmittance is variable.
  • the signal applied by the outside may be applied by, for example, the composite layer.
  • the optical modulation device has a transmission mode in which the light modulation layer has a transmittance of 40% to 90% of the visible region and a transmittance of 5% to 30% of the visible region according to whether a voltage is applied by the composite layer. It is possible to switch between in blocking modes.
  • the optical modulator may be in a blocking mode when no voltage is applied in the transmissive mode while a voltage is applied, or in a transmissive mode when no voltage is applied in the blocking mode when the voltage is applied. Can be. This is possible by suitably adjusting the initial orientation state of the liquid crystal compound and / or anisotropic dye mentioned later.
  • permeability range of the visible light region of an optical modulation device is not restrict
  • the light modulation layer may be a liquid crystal layer including a liquid crystal compound.
  • the “liquid crystal layer” may mean a layer formed by encapsulating a liquid crystal compound between two substrates.
  • the liquid crystal compound may be present in the light modulation layer so that the alignment direction may be changed by, for example, a signal applied from the outside.
  • the signal applied by the outside means all kinds of signals performed to change the alignment of the liquid crystal compound, and a representative example is application of voltage.
  • the liquid crystal compound may exist in an aligned state in an initial state, or may exist in an unaligned state.
  • the “initial state” may refer to a state in which an external signal that may affect the alignment of the liquid crystal compound is not applied.
  • the liquid crystal layer may switch between various modes by adjusting an initial alignment state of the liquid crystal compound and applying an external signal such as a voltage. In one example, when the liquid crystal compound is present in the aligned state from the initial state, it may be switched between the blocking mode or the transmission mode. In another example, when the liquid crystal compound is present in an unaligned state in an initial state, it may be switched between a scattering mode or a transmission mode.
  • liquid crystal compound any kind of liquid crystal compound can be used as long as its orientation can be changed by external signal application.
  • a smectic liquid crystal compound, a nematic liquid crystal compound, or a cholesteric liquid crystal compound may be used as the liquid crystal compound.
  • the liquid crystal compound may be, for example, a compound having no polymerizable group or a crosslinkable group so that the orientation direction thereof may be changed by external signal application.
  • the light modulation layer may be a polymer dispersed liquid crystal, a pixel-isolated liquid crystal, a suspended particle device, or an electrochromic device. May be).
  • the polymer dispersed liquid crystal layer is a higher concept including a polymer network liquid crystal layer, a polymer stabilized liquid crystal layer, or the like.
  • the polymer dispersed liquid crystal layer (PDLC) may include, for example, a liquid crystal region including a polymer network and a liquid crystal compound dispersed in a phase separated state from the polymer network.
  • the liquid crystal compound may exist in the polymer network such that the orientation is switchable.
  • the polymer network may be a polymer network of precursors including a polymerizable or crosslinkable compound, and the polymerizable or crosslinkable compound may form a polymer network in a polymerized state or in a crosslinked state.
  • a polymerizable compound for example, a compound having at least one polymerizable or crosslinkable functional group known to be capable of forming a polymer network of so-called PDLC can be used.
  • polymerizable or crosslinkable functional group for example, an alkenyl group, an epoxy group, a cyano group, a carboxyl group, a (meth) acryloyl group, a (meth) acryloyloxy group, and the like can be exemplified, and an embodiment of the present application According to, it may be used a compound having a (meth) acryloyl group, but is not limited thereto.
  • the content described in the section of the liquid crystal layer including the liquid crystal compound may be equally applied to the liquid crystal compound. That is, a smectic liquid crystal compound, a nematic liquid crystal compound, or a cholesteric liquid crystal compound may be used as the liquid crystal compound in the polymer dispersed liquid crystal layer.
  • the liquid crystal compound is not bonded to the polymer network, and may have a form in which an orientation may be changed according to a voltage applied from the outside.
  • the liquid crystal compound may use a liquid crystal compound having no polymerizable group or a crosslinkable group.
  • a liquid crystal compound usually exists in an unaligned state. Therefore.
  • the polymer dispersed liquid crystal layer is a cloudy opaque state when no voltage is applied, and this state may be referred to as a scattering mode.
  • the liquid crystal compounds are aligned accordingly, and the transparent liquid crystal compound is used, and thus, the transmission mode and the scattering mode can be switched.
  • the state in the voltage-free state of the polymer dispersed liquid crystal layer is not limited to the above, and the liquid crystal compound may exist in an aligned state by arranging an alignment film adjacent to the polymer dispersed liquid crystal layer or by using an oriented polymer network. There is also.
  • the pixel-isolated liquid crystal layer means, for example, a liquid crystal layer in which a partition structure for maintaining a gap of a cell is introduced for each pixel.
  • the pixel-isolated liquid crystal layer may include a liquid crystal compound whose alignment direction may be changed by a signal applied from the outside.
  • the pixel isolated liquid crystal layer can also adjust the light transmittance by using the alignment state of such a liquid crystal compound.
  • the floating particle device includes, for example, a structure in which a thin film laminate of nano-sized rod-shaped particles is suspended in a liquid crystal.
  • the suspended particle device may, for example, exist in an unaligned state in which no floating signal is present to block and absorb light, and cause the floating particles to align and pass light in the state where an external signal is applied. Can be.
  • the electrochromic device refers to a device using a phenomenon in which the light transmittance of the electrochromic material is changed by, for example, an electrochemical redox reaction.
  • the electrochromic material included in the electrochromic device may be colored in the state in which the electrical signal is applied, and may be colored in the state in which the electrical signal is applied, thereby adjusting the light transmittance.
  • the light modulation layer may comprise an anisotropic dye.
  • the light modulation layer may serve as a guest-host type light modulation layer. That is, the guest-host type optical modulation layer may exhibit anisotropic light absorption effect by anisotropic dyes are arranged together according to the arrangement of the liquid crystal compound to absorb light parallel to the alignment direction of the dye and transmit vertical light.
  • the term “dye” may mean a material capable of intensively absorbing and / or modifying light in at least part or the entire range within the visible light region, for example, in the 400 nm to 700 nm wavelength range
  • the term “anisotropic dye” may refer to a material capable of anisotropic absorption of light in at least part or the entire range of the visible light region.
  • the anisotropic dye is not particularly limited, but for example, a black dye or a color dye may be used.
  • the anisotropic dye has a dichroic ratio, that is, a value obtained by dividing the absorption of polarized light parallel to the long axis direction of the anisotropic dye by the absorption of polarized light parallel to the direction perpendicular to the long axis direction.
  • Dyes can be used.
  • the dye may satisfy the dichroic ratio at at least some of the wavelengths or at any one within the wavelength range of the visible region, for example, in the wavelength range of about 380 nm to 700 nm or about 400 nm to 700 nm.
  • the upper limit of the dichroic ratio may be about 20, 18, 16 or 14, for example.
  • the kind of the anisotropic dye is not particularly limited, and for example, all kinds of dyes known to have properties as described above and can be oriented according to the orientation of the liquid crystal compound may be used.
  • the composite layer may serve as an electrode layer capable of applying an external signal, for example, a voltage, to the light modulation layer.
  • the composite layer has high transmittance with respect to light in the visible light region, high electrical conductivity and low sheet resistance.
  • the composite layer since the composite layer has a low transmittance with respect to light in the infrared region, there is an effect of blocking heat. Therefore, such a composite layer can save energy and can be usefully used as an electrode layer of a light modulation device.
  • the composite layer may have a transmittance of at least 80%, at least 85%, or at least 90% for visible light, for example, light of any wavelength or 550 nm wavelength in the range of about 400 nm to 700 nm.
  • the composite layer satisfying the numerical range may be usefully used as a transparent electrode in an optical modulation device.
  • the light transmittance of the visible light region of the composite layer is not limited to the above numerical range, and may have a light transmittance of the visible light region that is generally applicable to the transparent electrode.
  • the composite layer can have a transmittance of 70% or less, 65% or less, or 60% or less for light at any wavelength in the infrared region, for example, in the range from about 700 nm to 1000 nm, or at least 780 nm. Since the composite layer satisfying the numerical range can block heat in the infrared region, for example, energy saving can be achieved.
  • the lower limit of the light transmittance of the infrared region of the composite layer is not particularly limited. For example, when the composite layer is used as an electrode layer of the smart window, the lower limit may be 0% to 5%.
  • the composite layer may have a sheet resistance value of 20 ⁇ / ⁇ or less, 15 ⁇ / ⁇ or less, or 10 ⁇ / ⁇ or less, and the lower limit is not particularly limited, but may be 0.1 ⁇ / ⁇ or more.
  • the sheet resistance value may be measured by a sheet resistance meter known in the art.
  • the light modulation device of the present application includes a composite layer.
  • the composite layer may include a first oxide layer, a metal layer, and a second oxide layer sequentially formed. Characteristics such as light transmittance and sheet resistance of the visible and / or infrared region of the composite layer may be adjusted by, for example, refractive index, thickness, electrical conductivity, or material of the first oxide layer, the metal layer, and the second oxide layer. .
  • the "oxide layer” may mean a layer containing an oxide as a main component
  • the "metal layer” may mean a layer containing a metal as a main component.
  • the oxide layer may mean a layer containing about 80% by weight or more of oxide
  • the metal layer may mean a layer including about 80% by weight or more of metal.
  • the refractive index of the first oxide layer may be higher than that of the second oxide layer, and the refractive index of the metal layer may be lower than that of the second oxide layer.
  • the metal layer may have a refractive index of 0.1 to 1.0 for a wavelength of 550 nm. More specifically, the refractive index of the metal layer with respect to light having a wavelength of 550 nm may be 0.1 or more, or more, 0.15 or more, 0.2 or more, 0.25 or more, 0.3 or more, 0.35 or more, 0.4 or more, 0.45 or more, or 0.5 or more, 1.0 or less, 0.95 Or less, 0.9 or less, 0.85 or less, 0.8 or less, 0.75 or less, 0.7 or less, 0.65 or less, 0.6 or less, or 0.55 or less.
  • the refractive index of the light of the wavelength of 550 nm of the first oxide layer is in the range of 1.2 to 2.8 or 1.9 to 2.75, more specifically the refractive index of the light of the wavelength of 550 nm of the first oxide layer is 1.2 or more.
  • the refractive index of the light having a wavelength of 550 nm of the second oxide layer may be in the range of 1.5 to 2.5.
  • the refractive index of the second oxide layer with respect to light having a wavelength of 550 nm is 1.5 or more, 1.55 or more, 1.6 or more, 1.65 or more, 1.7 or more, 1.75 or more, 1.8 or more, 1.85 or more, 1.9 or more, 1.95 or more, or 2.0. Or less, 2.5 or less, 2.45 or less, 2.4 or less, 2.35 or less, 2.3 or less, 2.25 or less, 2.2 or less, 2.15 or less, 2.1 or less, or 2.0 or less.
  • the refractive index is, for example, M-2000 [manufacturer: J. A. Woollam Co., Inc. (USA)].
  • the composite layer has high light transmittance in the visible region and low light transmittance in the infrared region, which is useful as a transparent electrode layer in an energy-saving optical modulation device. Can be used.
  • the refractive indices of the first oxide layer, the metal layer, and the second oxide layer may be adjusted by, for example, thickness. Alternatively, it can be controlled by adjusting the deposition process of each layer. Specifically, the degree of crystallinity may be adjusted by adjusting the deposition conditions of each layer, and thus the refractive index may be different even with the same thickness and material.
  • the deposition process may be performed by a known deposition method, for example, may be performed by a sputtering method. More specifically, the first oxide layer and the second oxide layer may be deposited by, for example, RF sputtering, and the metal layer may be deposited by, for example, DC sputtering.
  • the thickness of the metal layer may be in the range of 5 nm to 20 nm. More specifically, the thickness of the metal layer may be 5 nm or more, 6 nm or more, 7 nm or more, 8 nm or more, 9 nm or more, 10 nm or more, 11 nm or more, or 12 nm or more, 20 nm or less, 19 nm or less, 18 It may be less than or equal to 17 nm, less than or equal to 16 nm, less than or equal to 15 nm, less than or equal to 14 nm, or less than or equal to 13 nm.
  • the thickness of the metal layer When the thickness of the metal layer is in the above range, it is easy to adjust the refractive index of the metal layer in the above-described range. In addition, when the thickness of the metal layer is within the above thickness range, since a continuous film of the metal layer is easily formed, excellent electrical conductivity and low resistance may be realized, and light transmittance may be increased in the visible light region of the optical modulation device.
  • the metal layer may include a conductive metal having a sheet resistance value of 20 ⁇ / ⁇ or less, preferably 10 ⁇ / ⁇ or less.
  • the sheet resistance value of the composite layer may be lowered, thereby increasing the efficiency of the light modulation device.
  • the metal layer may include a metal such as silver (Ag), aluminum (Al), platinum (Pt), copper (Cu), or gold (Au).
  • the metal layer may include silver, for example.
  • some of the silver oxide may be included in the metal layer by contact with air and moisture in the manufacturing process of the composite layer or the process in which the composite layer is included and used in the optical modulator.
  • the metal layer includes silver and silver oxide, the silver oxide may be included in an amount of 0.1 wt% or more and 50 wt% or less with respect to 100 wt% of the metal layer.
  • the thickness of the first oxide layer may be in the range of 20 nm to 60 nm or 40 nm to 50 nm. More specifically, the thickness of the first oxide layer may be 20 nm or more, 25 nm or more, 30 nm or more, 35 nm or more or 40 nm or more, 60 nm or less, 55 nm or less, 50 nm or less, or 45 nm or less. .
  • the thickness of the first oxide layer is in the above range, it is easy to adjust the transmittance or refractive index with respect to the light of the first oxide layer in the above-described range, and the defective rate of deposition of the metal layer formed on the first oxide layer is Can be lowered.
  • the thickness of the second oxide layer may be in the range of 10 nm to 100 nm, preferably 20 nm to 60 nm. More specifically, the thickness of the second oxide layer may be 10 nm or more, 15 nm or more, 20 nm or more, 25 nm or more, 30 nm or more, 35 nm or more, 40 nm or more, 45 nm or more or 50 nm or more, 100 nm 95 nm or less, 90 nm or less, 85 nm or less, 80 nm or less, 75 nm or less, 70 nm or less, 65 nm or less, 60 nm or less, or 55 nm or less.
  • the thickness of the second oxide layer is in the above range, it is easy to adjust the transmittance or refractive index of the second oxide layer to light in the above-described range, and there is an advantage in that it can have excellent electrical conductivity and low resistance value. .
  • the resistivity value of the second oxide layer may be in the range of 1.0 ⁇ 10 ⁇ 5 ⁇ cm to 1.0 ⁇ 10 5 ⁇ cm, preferably 1.0 ⁇ 10 ⁇ 4 ⁇ cm to 1.0 ⁇ 10 4 ⁇ cm.
  • the sheet resistance value of the composite layer can be lowered, thereby increasing the efficiency of the optical modulation device.
  • the first oxide layer and the second oxide layer are antimony (Sb), barium (Ba), gallium (Ga), germanium (Ge), hafnium (Hf), indium (In), and lanthanum (La), respectively.
  • Sb antimony
  • Ba barium
  • Ga gallium
  • Ge germanium
  • Hf hafnium
  • La lanthanum
  • Magnesium (Mg) selenium (Se), silicon (Si), tantalum (Ta), titanium (Ti), vanadium (V), yttrium (Y), zinc (Zn) and zirconium (Zr)
  • It may include a metal oxide comprising a metal comprising at least one selected.
  • the second oxide layer is gallium (Ga), aluminum (Al), zirconium (Zr), titanium (Ti), niobium (Nb), tantalum (Ta), indium (In) and vanadium (V). It may further comprise one or more second metals selected from the group consisting of.
  • the metal included in the second oxide layer may be a doping material.
  • the second oxide layer further includes a second metal to improve electron mobility when used as an electrode layer in an optical modulation device, and has a high refractive index like the first oxide layer.
  • the light transmittance of the visible region can be increased and the light transmittance of the infrared region can be lowered.
  • the second oxide layer since the second oxide layer has an electrical conductivity, the second oxide layer does not inhibit the electrical conductivity of the metal layer and allows the composite layer to serve as a transparent electrode having a low emission function (Low-E) in various light modulation devices.
  • Low-E low emission function
  • the content of the second metal in the second oxide layer may be 0.1 wt% or more and 10 wt% or less.
  • the refractive index of the second oxide layer may vary by, for example, the content of the second metal. Therefore, it is necessary to adjust the content of the second metal in the second oxide layer to maximize the light transmittance of the visible light region of the composite layer.
  • the second metal included in the second oxide layer affects the electrical conductivity of the second oxide layer. When the content in the second oxide layer of the second metal satisfies the above range, the second oxide layer may realize an optimum refractive index and electrical conductivity.
  • the thickness of the composite layer can be appropriately adjusted to characterize the desired light modulation device.
  • the thickness of the composite layer may be adjusted within the range of 50 nm to 300 nm or 70 nm to 200 nm, for example, in order to exhibit high light transmittance in the visible region, low light transmittance in the infrared region, excellent electrical conductivity and low resistance characteristics. Can be.
  • the composite layer may further include a substrate layer, for example, a first oxide layer may be adjacent to the substrate layer.
  • 3 and 4 show an exemplary light modulation device including a base layer.
  • the modulation layer 101 may be formed sequentially.
  • the light modulation layer 101, the second oxide layer 1023, the metal layer 1022, the first oxide layer 1021, and the base layer 401B may be sequentially formed.
  • a base material layer a well-known raw material can be used without a restriction
  • inorganic films, plastic films, etc. such as a glass film, a crystalline or amorphous silicon film, a quartz, or an Indium Tin Oxide (ITO) film, can be used.
  • the optically isotropic base material layer the optically anisotropic base material layer like a retardation layer, a polarizing plate, a color filter substrate, etc. can be used.
  • the polarizing layer is present inside the base layer, that is, between the liquid crystal layer and the base layer, even when an anisotropic base layer is used as the base layer, an element having an appropriate performance can be realized.
  • plastic substrate layer examples include triacetyl cellulose (TAC); COP (cyclo olefin copolymer) such as norbornene derivatives; Poly (methyl methacrylate); PC (polycarbonate); PE (polyethylene); PP (polypropylene); PVA (polyvinyl alcohol); DAC (diacetyl cellulose); Pac (Polyacrylate); PES (poly ether sulfone); PEEK (polyetheretherketon PPS (polyphenylsulfone), PEI (polyetherimide); PEN (polyethylenemaphthatlate); PET (polyethyleneterephtalate); PI (polyimide); PSF (polysulfone); PAR (polyarylate) or amorphous fluorine resin
  • the substrate layer may include a coating layer of a silicon compound such as gold, silver, silicon dioxide or silicon monoxide, or a coating layer such as an antireflection layer, if necessary.
  • the optical modulation device may have a second oxide layer adjacent to the light modulation layer as compared to the first oxide layer.
  • the first oxide layer 1021, the metal layer 1022, the second oxide layer 1023, and the light modulation layer 101 are formed. It may be formed sequentially.
  • the first oxide layer 1021, the metal layer 1022, the second oxide layer 1023, and the light modulation layer 101 are shown.
  • the second oxide layer 1023, the metal layer 1022, and the first oxide layer 1021 may be sequentially formed.
  • the optical modulation device may have a composite layer on both sides of the light modulation layer, for example, as shown in FIG. That is, the light modulation layer may be disposed between two composite layers disposed opposite to each other.
  • the composite layers present at both sides may have the same structure having the same refractive index, thickness, sheet resistance, or the like, or may have an independent structure having different refractive index, thickness, sheet resistance, or the like.
  • the present application also relates to the use of the optical modulation device.
  • the use of the optical modulation device may be exemplified by, for example, a smart window, a window protective film, a flexible display device, an active retarder for displaying 3D images, a viewing angle adjusting film, and the like, but is not limited thereto.
  • the manner of configuring such an optical modulation device is not particularly limited, and a conventional method may be applied as long as the optical modulation device is used.
  • the optical modulation device of the present application may apply an external signal by a composite layer having a high transmittance in the visible region, a low transmittance in the infrared region, and a low sheet resistance value.
  • the optical modulation device may be applied to various applications such as a smart window, a window protective film, a flexible display device, an active retarder for viewing 3D images, or a viewing angle adjusting film.
  • 1-4 show exemplary light modulation devices.
  • FIG. 5 shows the transmittance and reflectance of the optical modulation device of Example 1.
  • FIG. 6 shows the transmittance and reflectance of the light modulator of Comparative Example 1.
  • Example 7 shows the characteristics according to the wavelengths of the metal layers of Example 1 and Comparative Example 2.
  • CeO 2 was deposited to a thickness of 35 nm on the glass substrate by using an RF Sputter method to form a first metal oxide layer.
  • a metal layer made of Ag was deposited to a thickness of 10 nm on the first metal oxide layer by using a DC sputter method under a condition of 1.5 W / cm 2 and 3 mTorr, and doped Ga as the second metal oxide layer on the metal layer.
  • One zinc oxide layer (GZO) was deposited to a thickness of 45 nm to prepare a composite layer.
  • the refractive index of each layer was measured using an M-2000 device manufactured by J. A. Woollam Co., Inc. (USA)], the refractive index of the first oxide layer was 2.34 at a wavelength of 550 nm, the refractive index of the metal layer was 0.19 at a wavelength of 550 nm, and the refractive index of the zinc oxide layer was 1.94 at a wavelength of 550 nm.
  • the visible light transmittance of the composite layer was measured using a UV-vis spectrometer, and the transmittance was 87.2% at a wavelength of 550 nm.
  • the sheet resistance of the composite layer with a sheet resistance meter it showed less than 10 ⁇ / ⁇ .
  • Urethane acrylate polyfunctional oligomer (SU530, Mw: 5,000, Soltec Co., Ltd.) 100 mg, bifunctional acrylate (HDDA, made by aldrich) 300 mg, trifunctional acrylate (PETA, made by aldrich) 20 mg, monofunctional acrylate ( EHA, TCI Co., Ltd.) 570 mg, anisotropic dye (X12, BASF Co., Ltd.) 23mg and photoinitiator (Zs-539, manufactured by Fuji Film Co., Ltd.) were mixed to prepare a polymer precursor, and a liquid crystal compound (HPC21600, After HCCH) 2.3g and 20mg of anisotropic dye (X12, BASF) were added, 20mg of ball-type spacers of 25 micrometers in diameter were put, and it stirred in the stirrer for 7 hours, and prepared the liquid crystal composition.
  • HPC21600 After HCCH
  • anisotropic dye X12, BASF
  • liquid crystal composition was bar-coated on the surface of the prepared second metal oxide layer using a mayer bar (# 14). After stacking the second metal oxide layer of the composite layer prepared on the coated liquid crystal composition in contact with the UV light for 20 seconds under a high-pressure mercury lamp of 30 mW to prepare a polymer dispersed liquid crystal layer in which a black dye was introduced.
  • a smart window of Example 2 was prepared in the same manner as in Example 1, except that the prepared composite layer was used as the composite layer.
  • CeO 2 was deposited to a thickness of 30 nm on the glass substrate by using an RF Sputter method to form a first metal oxide layer.
  • a metal layer made of Ag was deposited to a thickness of 10 nm on the first metal oxide layer by using a DC sputter method under a condition of 1.5 W / cm 2 and 3 mTorr, and doped Al as the second metal oxide layer on the metal layer.
  • One zinc oxide layer (AZO) was deposited to a thickness of 50 nm to prepare a composite layer.
  • the refractive index of the first metal oxide layer was 2.34 at a wavelength of 550 nm
  • the refractive index of the metal layer was 0.19 at a wavelength of 550 nm
  • the refractive index of the second metal oxide layer was 1.89 at a wavelength of 550 nm.
  • the visible light transmittance of the composite layer was measured using a UV-vis spectrometer, and the transmittance was 85.5% at a wavelength of 550 nm.
  • the sheet resistance of the composite layer with a sheet resistance meter it showed less than 10 ⁇ / ⁇ .
  • a smart window of Comparative Example 1 was prepared in the same manner as in Example 1, except that the ITO transparent electrode layer was used as the composite layer.
  • a smart window of Comparative Example 2 was prepared in the same manner as in Example 1, except that the composite layer prepared below was used as the composite layer.
  • CeO 2 was deposited to a thickness of 35 nm on the glass substrate by using an RF Sputter method to form a first metal oxide layer.
  • Ag was deposited to a thickness of 10 nm on the first metal oxide layer under a condition of 0.5 W / cm 2 and 15 mTorr by DC sputter method to form a metal layer, and then doped Ga as the second metal oxide layer on the metal layer.
  • One zinc oxide layer (GZO) was deposited to a thickness of 45 nm to prepare a composite layer.
  • the refractive index of the first oxide layer was 2.34 at a wavelength of 550 nm
  • the refractive index of the metal layer was 1.95 at a wavelength of 550 nm
  • the refractive index of the zinc oxide layer was 1.94 at a wavelength of 550 nm.
  • a value of more than 10 ⁇ / ⁇ was measured.
  • the transmittance of 46.8% was measured at a wavelength of 550 nm. Indicated.
  • the composite layer showed a transmittance of 79.1% at a wavelength of 550 nm, and the sheet resistance of the composite layer was measured using a sheet resistance meter. Indicated.
  • Example 3 Smart of Comparative Example 3 was carried out in the same manner as in Example 2, except that the first metal oxide layer was formed at 10 nm, and the thickness of the second metal oxide layer was formed at 80 nm. The window was prepared.
  • the transmittance of 72.6% was obtained at the wavelength of 550 nm, and the sheet resistance of the composite layer was measured using a sheet resistance meter. It was.
  • Transmittance and reflectivity were measured with no voltage applied to the optical modulation devices manufactured in Examples and Comparative Examples. Specifically, the measurement was performed using a Solid Spec-3700 (manufacturer: shimadzu (JAPAN)) device, and the results are shown in FIGS. 5 (Example 1) and 6 (Comparative Example 1), respectively.
  • the optical modulation device of the example in which the composite layer of the present application uses the transparent electrode layer has a similar light transmittance in the visible region compared with the light modulation device of Comparative Example 1 using the ITO transparent electrode layer.
  • the infrared light shows a significantly low light transmittance.
  • n denotes a refractive index according to the wavelength of light of the metal layer
  • denotes a wavelength of light
  • k denotes an absorption coefficient according to the wavelength of light of the metal layer.
  • Evaluation example 3 first and second metal Oxide layer Refractive index Composite Transmittance evaluation
  • An optical modulator was manufactured in the same manner as in Examples 1 and 2, but the transmittance of light of 550 nm wavelength of the composite layer according to the refractive index was evaluated while changing the refractive indices of the first metal oxide layer and the second metal oxide layer. Is shown in FIG. 8. As shown in FIG. 8, it can be seen that the light transmittance of the composite layer is affected by the refractive indices of the first metal oxide layer and the second metal oxide layer, and in particular, the refractive index range of the first metal oxide layer and the second metal oxide layer. When it is within the scope of the present application it can be seen that the excellent light transmittance of about 80% or more for the light of the 550nm wavelength.

Abstract

The present application relates to an optical modulation apparatus and the use of the optical modulation apparatus. The optical modulation apparatus of the present application can apply an external signal by a complex layer having high transmissivity in a visible light area, having low transmissivity in an infrared-ray area, and having a low surface resistance value. Such an optical modulation apparatus can be applied to various uses such as a smart window, a window protection film, a flexible display device, an active retarder for displaying a 3D image, or a viewing angle adjustment film.

Description

광변조 장치Light modulation device
본 출원은, 광변조 장치 및 광변조 장치의 용도에 관한 것이다The present application relates to the use of an optical modulation device and an optical modulation device.
스마트 윈도우는 태양광의 투과도를 자유롭게 조절할 수 있는 윈도우를 말하는 것으로, 전자 커튼, 투과도 가변 유리, 조광 유리 등으로도 불린다.A smart window refers to a window that can freely adjust the transmittance of sunlight, and is also called an electronic curtain, a variable transmittance glass, a dimming glass, or the like.
스마트 윈도우는, 예를 들면, 광의 투과량을 조절할 수 있는 광투과량 조절층과, 상기 광투과량 조절층에 신호를 인가하여 제어하는 구동회로로 이루어진다. 상기와 같이 구성된 스마트 윈도우는 인가된 전압의 상태에 따라 유리 전체를 빛이 투과하거나 투과하지 못하도록 하고, 또 투과량을 조정하여 명암을 달리한다.The smart window includes, for example, a light transmittance adjusting layer capable of adjusting the amount of light transmitted, and a driving circuit for applying and controlling a signal to the light transmittance adjusting layer. The smart window configured as described above prevents light from penetrating or transmitting the entire glass according to the state of the applied voltage, and adjusts the amount of transmission to vary the contrast.
최근에는 에너지 절감형 스마트 윈도우에 대한 관심이 높아지면서 특허문헌 1(한국공개특허 제2012-00922474호)에 개시된 바와 같이, 스마트 윈도우에 저방사(Low Emissivity, Low-e) 코팅층 또는 전기 변색(Electrochromism, EC) 코팅층을 형성하는 기술이 개발되고 있으나, 상기 종래 기술은 태양광의 가변에 따른 시야의 확보와, 자외선 및 적외선의 효과적인 차단과 내에서 발생하는 난방열의 누설 차단을 동시에 만족시키는데 한계가 있다. Recently, as interest in energy-saving smart windows increases, as disclosed in Patent Document 1 (Korean Patent Publication No. 2012-00922474), a low emission (Low Emissivity, Low-e) coating layer or electrochromism is applied to the smart window. , EC) has been developed to form a coating layer, but the prior art has a limit in satisfying the securing of the field of view according to the change of sunlight, the effective blocking of ultraviolet rays and infrared rays and the blocking of leakage of heating heat generated in the inside at the same time.
본 출원은, 광변조 장치 및 광변조 장치의 용도를 제공한다. The present application provides the use of an optical modulation device and an optical modulation device.
본 출원의 예시적인 광변조 장치는, 광변조층과 제 1 산화물층, 금속층 및 제 2 산화물층을 포함하는 복합층을 포함한다. 하나의 예시에서, 복합층은 광변조층의 일측 또는 양측에 배치될 수 있다. 또한, 제 1 산화물층, 금속층 및 제 2 산화물층은 순차로 형성될 수 있다. An exemplary optical modulation device of the present application includes a composite layer including an optical modulation layer and a first oxide layer, a metal layer, and a second oxide layer. In one example, the composite layer may be disposed on one side or both sides of the light modulation layer. In addition, the first oxide layer, the metal layer, and the second oxide layer may be sequentially formed.
도 1 및 도 2는 본 출원의 예시적인 광변조 장치의 모식도이다. 도 1의 광변조 장치는 광변조층(101)과 상기 광변조층의 일측에 배치되고, 순차 형성된 제 1 산화물층(1021), 금속층(1022) 및 제 2 산화물층(1023)을 포함하는 복합층(102)을 포함한다. 도 2 의 광변조 장치는 광변조층(101)과 상기 광변조층의 양측에 배치되고, 순차 형성된 제 1 산화물층(1021), 금속층(1022) 및 제 2 산화물층(1023)을 포함하는 복합층(102)을 포함한다. 1 and 2 are schematic views of an exemplary light modulation device of the present application. The optical modulation device of FIG. 1 is a composite including an optical modulation layer 101 and one side of the optical modulation layer, including a first oxide layer 1021, a metal layer 1022, and a second oxide layer 1023 sequentially formed. Layer 102. The optical modulation device of FIG. 2 is a composite including an optical modulation layer 101 and a first oxide layer 1021, a metal layer 1022, and a second oxide layer 1023 sequentially formed on both sides of the optical modulation layer. Layer 102.
본 출원에서 「광변조 장치」는 외부에 의해 인가되는 신호에 의해 구동, 예를 들면, 광 투과도가 가변하는 장치를 의미할 수 있다. 상기 외부에 의해 인가되는 신호는, 예를 들면, 상기 복합층에 의해 인가될 수 있다. In the present application, the "light modulator" may mean a device that is driven by a signal applied from the outside, for example, the light transmittance is variable. The signal applied by the outside may be applied by, for example, the composite layer.
하나의 예시에서, 광변조 장치는, 복합층에 의해 전압이 인가 여부에 따라 광변조층이 가시광 영역의 투과율이 40% 내지 90% 범위인 투과모드 및 가시광 영역의 투과율이 5% 내지 30%범위인 차단모드 사이를 스위칭할 수 있다. 상기 광변조 장치는, 전압이 인가된 상태에서 투과모드인 경우 전압이 인가되지 않은 상태에서는 차단 모드일 수 있고, 또는 전압이 인가된 상태에서 차단 모드인 경우 전압이 인가되지 않은 상태에서 투과모드일 수 있다. 이는 후술하는 액정 화합물 및/또는 이방성 염료의 초기 배향 상태를 적절히 조절하는 것에 의하여 가능하다. 또한, 광 변조 장치의 가시광 영역의 투과율 범위는 상기에 제한되는 것은 아니고, 액정 화합물 또는 후술하는 이방성 염료의 배향 특성을 적절히 조절함으로써 보다 다양한 범위로 조절할 수 있다. In one example, the optical modulation device has a transmission mode in which the light modulation layer has a transmittance of 40% to 90% of the visible region and a transmittance of 5% to 30% of the visible region according to whether a voltage is applied by the composite layer. It is possible to switch between in blocking modes. The optical modulator may be in a blocking mode when no voltage is applied in the transmissive mode while a voltage is applied, or in a transmissive mode when no voltage is applied in the blocking mode when the voltage is applied. Can be. This is possible by suitably adjusting the initial orientation state of the liquid crystal compound and / or anisotropic dye mentioned later. In addition, the transmittance | permeability range of the visible light region of an optical modulation device is not restrict | limited above, It can adjust to a more various range by suitably adjusting the orientation characteristic of a liquid crystal compound or the anisotropic dye mentioned later.
하나의 예시에서, 광변조층은 액정 화합물을 포함하는 액정층일 수 있다. 본 출원에서 「액정층」은 두 기판 사이에 액정 화합물이 봉입되어 형성된 층을 의미할 수 있다. 액정 화합물은, 예를 들면, 외부에 의해 인가되는 신호에 의해 정렬 방향이 변환될 수 있도록 광변조층에 존재할 수 있다. 이 경우에 상기 외부에 의해 인가되는 신호는 액정 화합물의 정렬을 변경시킬 수 있도록 수행되는 모든 종류의 신호를 의미하고, 대표적인 예로는 전압의 인가가 있다. In one example, the light modulation layer may be a liquid crystal layer including a liquid crystal compound. In the present application, the “liquid crystal layer” may mean a layer formed by encapsulating a liquid crystal compound between two substrates. The liquid crystal compound may be present in the light modulation layer so that the alignment direction may be changed by, for example, a signal applied from the outside. In this case, the signal applied by the outside means all kinds of signals performed to change the alignment of the liquid crystal compound, and a representative example is application of voltage.
상기 액정 화합물은 초기 상태에서 정렬된 상태로 존재하거나, 또는 정렬되지 않은 상태로 존재할 수 있다. 본 출원에서 「초기 상태」는, 액정 화합물의 배향에 영향을 미칠 수 있는 외부 신호가 인가되지 않은 상태를 의미할 수 있다. 액정 화합물의 초기 정렬 상태를 조절하고, 전압과 같은 외부 신호의 인가를 통해 상기 액정층은 다양한 모드 사이를 스위칭할 수 있다. 하나의 예시에서, 액정 화합물이 초기 상태에서 정렬된 상태로 존재하는 경우 차단 모드 또는 투과 모드 사이를 스위칭 할 수 있다. 다른 하나의 예시에서, 액정 화합물이 초기 상태에서 정렬되지 않은 상태로 존재하는 경우 산란 모드 또는 투과 모드 사이를 스위칭 할 수 있다. The liquid crystal compound may exist in an aligned state in an initial state, or may exist in an unaligned state. In the present application, the “initial state” may refer to a state in which an external signal that may affect the alignment of the liquid crystal compound is not applied. The liquid crystal layer may switch between various modes by adjusting an initial alignment state of the liquid crystal compound and applying an external signal such as a voltage. In one example, when the liquid crystal compound is present in the aligned state from the initial state, it may be switched between the blocking mode or the transmission mode. In another example, when the liquid crystal compound is present in an unaligned state in an initial state, it may be switched between a scattering mode or a transmission mode.
액정 화합물로는 외부 신호 인가에 의하여 그 배향 방향이 변경될 수 있는 것이라면 모든 종류의 액정 화합물을 사용할 수 있다. 예를 들며, 액정 화합물로는 스멕틱(smectic) 액정 화합물, 네마틱(nematic) 액정 화합물 또는 콜레스테릭(cholesteric) 액정 화합물 등을 사용할 수 있다. 또한, 외부 신호 인가에 의하여 그 배향 방향이 변경될 수 있도록, 액정 화합물은 예를 들어 중합성기 또는 가교성기를 가지지 않는 화합물일 수 있다.  As the liquid crystal compound, any kind of liquid crystal compound can be used as long as its orientation can be changed by external signal application. For example, a smectic liquid crystal compound, a nematic liquid crystal compound, or a cholesteric liquid crystal compound may be used as the liquid crystal compound. In addition, the liquid crystal compound may be, for example, a compound having no polymerizable group or a crosslinkable group so that the orientation direction thereof may be changed by external signal application.
다른 하나의 예시에서, 광변조층은 고분자 분산형 액정층(Polymer Dispersed Liquid Crystal), 화소 고립형 액정층(Pixcel-isolated Liquid Crystal), 부유 입자 디바이스(Suspended Particle Deivice) 또는 전기변색 디스플레이(Electrochromic device)일 수 있다. In another example, the light modulation layer may be a polymer dispersed liquid crystal, a pixel-isolated liquid crystal, a suspended particle device, or an electrochromic device. May be).
본 명세서에서 고분자 분산형 액정층(PDLC)은 소위 고분자 네트워크 액정층(Polymer Network Liquid Crystal )이나 고분자 안정화 액정층(Polymer Stablized Liquid Crystal) 등을 포함하는 상위 개념이다. 고분자 분산형 액정층(PDLC)은, 예를 들면, 고분자 네트워크 및 상기 고분자 네트워크와 상분리된 상태로 분산되어 있는 액정 화합물을 포함하는 액정 영역을 포함할 수 있다. 상기에서 액정 화합물은 고분자 네트워크 내에 배향이 스위칭 가능하도록 존재할 수 있다. In the present specification, the polymer dispersed liquid crystal layer (PDLC) is a higher concept including a polymer network liquid crystal layer, a polymer stabilized liquid crystal layer, or the like. The polymer dispersed liquid crystal layer (PDLC) may include, for example, a liquid crystal region including a polymer network and a liquid crystal compound dispersed in a phase separated state from the polymer network. In the above, the liquid crystal compound may exist in the polymer network such that the orientation is switchable.
상기 고분자 네트워크는 중합성 또는 가교성 화합물을 포함하는 전구 물질의 폴리머 네트워크일 수 있고, 상기 중합성 또는 가교성 화합물은 중합된 상태 또는 가교된 상태로 고분자 네트워크를 형성할 수 있다. 중합성 화합물로는, 예를 들어, 소위 PDLC의 고분자 네트워크를 형성할 수 있는 것으로 알려진 하나 이상의 중합성 또는 가교성 관능기를 가지는 화합물을 사용할 수 있다. 중합성 또는 가교성 관능기로는 예를 들어, 알케닐기, 에폭시기, 시아노기, 카복실기, (메타)아크릴로일기 또는 (메타)아크릴로일옥시기 등이 예시될 수 있고, 본 출원의 일 실시예에 따르면, (메타)아크릴로일기를 가지는 화합물을 사용할 수 있으나, 이에 제한되는 것은 아니다, The polymer network may be a polymer network of precursors including a polymerizable or crosslinkable compound, and the polymerizable or crosslinkable compound may form a polymer network in a polymerized state or in a crosslinked state. As the polymerizable compound, for example, a compound having at least one polymerizable or crosslinkable functional group known to be capable of forming a polymer network of so-called PDLC can be used. As the polymerizable or crosslinkable functional group, for example, an alkenyl group, an epoxy group, a cyano group, a carboxyl group, a (meth) acryloyl group, a (meth) acryloyloxy group, and the like can be exemplified, and an embodiment of the present application According to, it may be used a compound having a (meth) acryloyl group, but is not limited thereto.
고분자 분산형 액정층에서, 액정 화합물로는 상기 액정 화합물을 포함하는 액정층의 항목에서 기술한 내용이 동일하게 적용될 수 있다. 즉, 고분자 분산형 액정층에서 액정 화합물로는 스멕틱(smectic) 액정 화합물, 네마틱(nematic) 액정 화합물 또는 콜레스테릭(cholesteric) 액정 화합물 등을 사용할 수 있다. 액정 화합물은, 폴리머 네트워크와는 결합되어 있지 않으며, 외부에서 전압이 인가될 경우에 그에 따라서 배향이 변경될 수 있는 형태일 수 있다. 이를 위하여, 예를 들면, 액정 화합물은, 중합성기 또는 가교성기를 가지지 않는 액정 화합물을 사용할 수 있다. In the polymer dispersed liquid crystal layer, the content described in the section of the liquid crystal layer including the liquid crystal compound may be equally applied to the liquid crystal compound. That is, a smectic liquid crystal compound, a nematic liquid crystal compound, or a cholesteric liquid crystal compound may be used as the liquid crystal compound in the polymer dispersed liquid crystal layer. The liquid crystal compound is not bonded to the polymer network, and may have a form in which an orientation may be changed according to a voltage applied from the outside. For this purpose, for example, the liquid crystal compound may use a liquid crystal compound having no polymerizable group or a crosslinkable group.
일반적으로, 고분자 분산형 액정층 내에서 통상 액정 화합물은 배향되어 있지 않은 상태로 존재한다. 따라서. 고분자 분산형 액정층은 전압이 인가되지 않은 상태에서는 뿌연 불투명 상태이고, 이러한 상태는 소위 산란 모드로 호칭될 수 있다. 고분자 분산형 액정층에 전압이 인가되면, 액정 화합물이 그에 따라 정렬되어 투명한 상태가 되는데, 이를 이용하여 투과 모드와 산란 모드의 스위칭이 가능하다. 그러나, 고분자 분산형 액정층의 전압 무인가 상태에서의 상태는 상기에 제한되는 것은 아니고, 고분자 분산형 액정층과 인접하는 배향막을 배치하거나 또는 배향성 고분자 네트워크를 사용함으로써 액정 화합물이 배향된 상태로 존재할 수 도 있다. Generally, in a polymer dispersed liquid crystal layer, a liquid crystal compound usually exists in an unaligned state. therefore. The polymer dispersed liquid crystal layer is a cloudy opaque state when no voltage is applied, and this state may be referred to as a scattering mode. When a voltage is applied to the polymer dispersed liquid crystal layer, the liquid crystal compounds are aligned accordingly, and the transparent liquid crystal compound is used, and thus, the transmission mode and the scattering mode can be switched. However, the state in the voltage-free state of the polymer dispersed liquid crystal layer is not limited to the above, and the liquid crystal compound may exist in an aligned state by arranging an alignment film adjacent to the polymer dispersed liquid crystal layer or by using an oriented polymer network. There is also.
본 명세서서 화소 고립형 액정층은, 예를 들면, 화소 별로 셀의 갭을 유지하기 위한 격벽 구조가 도입된 액정층을 의미한다. 화소 고립형 액정층은, 외부에 의해 인가되는 신호에 의해 정렬 방향이 변환될 수 있는 액정 화합물을 포함할 수 있다. 화소 고립형 액정층도, 이러한 액정 화합물의 정렬 상태를 이용하여 광투과도를 조절할 수 있다. In the present specification, the pixel-isolated liquid crystal layer means, for example, a liquid crystal layer in which a partition structure for maintaining a gap of a cell is introduced for each pixel. The pixel-isolated liquid crystal layer may include a liquid crystal compound whose alignment direction may be changed by a signal applied from the outside. The pixel isolated liquid crystal layer can also adjust the light transmittance by using the alignment state of such a liquid crystal compound.
본 명세서에서 부유입자디바이스는, 예를 들면, 나노 크기의 봉상 입자의 박막 적층체가 액정에 부유되어 있는 구조를 포함한다. 부유입자디바이스는, 예를 들면, 외부 신호가 인가되지 않은 상태에서 부유 입자가 정렬되지 않은 상태로 존재하여 빛을 차단 및 흡수하고, 외부 신호가 인가된 상태에서 부유 입자가 정렬하여 빛을 통과시킬 수 있다. In the present specification, the floating particle device includes, for example, a structure in which a thin film laminate of nano-sized rod-shaped particles is suspended in a liquid crystal. The suspended particle device may, for example, exist in an unaligned state in which no floating signal is present to block and absorb light, and cause the floating particles to align and pass light in the state where an external signal is applied. Can be.
본 명세서에서 전기 변색 디바이스는, 예를 들면, 전기화학적 산화 환원 반응에 의하여 전기변색물질의 광투과도가 변하는 현상을 이용한 소자를 의미한다. 전기 변색 디바이스에 포함되는, 전기변색물질은 전기적 신호가 인가되지 상태에서 색을 띠지 않고, 전기적 신호가 인가된 상태에서 색을 띠게 될 수 있으므로, 광투과도를 조절할 수 있다. In the present specification, the electrochromic device refers to a device using a phenomenon in which the light transmittance of the electrochromic material is changed by, for example, an electrochemical redox reaction. The electrochromic material included in the electrochromic device may be colored in the state in which the electrical signal is applied, and may be colored in the state in which the electrical signal is applied, thereby adjusting the light transmittance.
하나의 예시에서, 광변조층은 이방성 염료를 포함할 수 있다. 광변조층이 액정 화합물 및 이방성 염료를 모두 포함하는 경우에 상기 광변조층은 게스트-호스트형 광변조층으로 작용할 수 있다. 즉, 상기 게스트-호스트형 광변조층은 액정 화합물의 배열에 따라 이방성 염료가 함께 배열되어 염료의 정렬 방향에 평행한 광은 흡수하고 수직한 광은 투과시킴으로써 비등방성 광흡수 효과를 나타낼 수 있다. In one example, the light modulation layer may comprise an anisotropic dye. When the light modulation layer includes both a liquid crystal compound and an anisotropic dye, the light modulation layer may serve as a guest-host type light modulation layer. That is, the guest-host type optical modulation layer may exhibit anisotropic light absorption effect by anisotropic dyes are arranged together according to the arrangement of the liquid crystal compound to absorb light parallel to the alignment direction of the dye and transmit vertical light.
본 명세서에서 용어 「염료」는, 가시광 영역, 예를 들면, 400 nm 내지 700 nm 파장 범위 내에서 적어도 일부 또는 전체 범위 내의 광을 집중적으로 흡수 및/또는 변형시킬 수 있는 물질을 의미할 수 있고, 용어 「이방성 염료」는 상기 가시광 영역의 적어도 일부 또는 전체 범위에서 광의 이방성 흡수가 가능한 물질을 의미할 수 있다. 상기와 같은 이방성 염료의 사용을 통해서 광변조층이 광변조 장치에 적용되었을 경우에 컬러를 구현 및 광 투과도를 조절할 수 있다. 이방성 염료로는 특별히 제한되지 않으나, 예를 들면 흑색 염료(black dye) 또는 컬러 염료(color dye)를 사용할 수 있다. 상기 이방성 염료는, 이색비(dichroic ratio), 즉 이방성 염료의 장축 방향에 평행한 편광의 흡수를 상기 장축 방향에 수직하는 방향에 평행한 편광의 흡수로 나눈 값이 5 이상, 6 이상 또는 7 이상인 염료를 사용할 수 있다. 상기 염료는 가시광 영역의 파장 범위 내, 예를 들면, 약 380 nm 내지 700 nm 또는 약 400 nm 내지 700 nm의 파장 범위 내에서 적어도 일부의 파장 또는 어느 한 파장에서 상기 이색비를 만족할 수 있다. 상기 이색비는 높을수록 차단율 개선 또는 컬러 구현에 효과적이므로 상한은 특별히 제한되지 않고 의도하는 컬러 구현의 정도를 고려하여 적절한 이색비를 가지는 이방성 염료를 선택하여 사용할 수 있다. 이색비의 상한은, 예를 들면 20, 18, 16 또는 14 정도일 수 있다. 이방성 염료의 종류는 특별히 제한되지 않으며, 예를 들면, 상기와 같은 특성을 가지면서 액정 화합물의 배향에 따라 배향될 수 있는 특성을 가지는 것으로 공지된 모든 종류의 염료가 사용될 수 있다.As used herein, the term "dye" may mean a material capable of intensively absorbing and / or modifying light in at least part or the entire range within the visible light region, for example, in the 400 nm to 700 nm wavelength range, The term "anisotropic dye" may refer to a material capable of anisotropic absorption of light in at least part or the entire range of the visible light region. When the optical modulation layer is applied to the optical modulation device through the use of the anisotropic dye as described above it is possible to implement the color and to adjust the light transmittance. The anisotropic dye is not particularly limited, but for example, a black dye or a color dye may be used. The anisotropic dye has a dichroic ratio, that is, a value obtained by dividing the absorption of polarized light parallel to the long axis direction of the anisotropic dye by the absorption of polarized light parallel to the direction perpendicular to the long axis direction. Dyes can be used. The dye may satisfy the dichroic ratio at at least some of the wavelengths or at any one within the wavelength range of the visible region, for example, in the wavelength range of about 380 nm to 700 nm or about 400 nm to 700 nm. The higher the dichroic ratio, the more effective the blocking rate or color implementation, and thus the upper limit is not particularly limited, and an anisotropic dye having an appropriate dichroic ratio may be selected and used in consideration of the degree of intended color implementation. The upper limit of the dichroic ratio may be about 20, 18, 16 or 14, for example. The kind of the anisotropic dye is not particularly limited, and for example, all kinds of dyes known to have properties as described above and can be oriented according to the orientation of the liquid crystal compound may be used.
본 출원에서 복합층은, 광변조층에 외부 신호, 예를 들면, 전압을 인가할 수 있는 전극층의 역할을 수행할 수 있다. 상기 복합층은, 가시광 영역의 광에 대하여 높은 투과도를 가지고, 높은 전기 전도도 및 낮은 면저항 값을 가진다. 또한, 상기 복합층은 적외선 영역의 광에 대해서는 낮은 투과도를 가지므로, 열을 차단하는 효과가 있다. 따라서, 이러한 복합층은 에너지 절감이 가능하고 광변조 장치의 전극층으로 유용하게 사용될 수 있다. In the present application, the composite layer may serve as an electrode layer capable of applying an external signal, for example, a voltage, to the light modulation layer. The composite layer has high transmittance with respect to light in the visible light region, high electrical conductivity and low sheet resistance. In addition, since the composite layer has a low transmittance with respect to light in the infrared region, there is an effect of blocking heat. Therefore, such a composite layer can save energy and can be usefully used as an electrode layer of a light modulation device.
하나의 예시에서, 복합층은 가시광 영역, 예를 들면, 약 400 nm 내지 700 nm 범위 내의 어느 한 파장 또는 550 nm 파장의 광에 대한 투과율이 80% 이상, 85% 이상 또는 90% 이상일 수 있다. 상기 수치범위를 만족하는 복합층은 광변조 장치에서 투명 전극으로 유용하게 사용될 수 있다. 그러나, 복합층의 가시광 영역의 광투과율이 상기 수치범위에 제한되는 것은 아니고, 통상 투명 전극으로 적용 가능한 정도의 가시광 영역의 광 투과도를 가질 수 있다. In one example, the composite layer may have a transmittance of at least 80%, at least 85%, or at least 90% for visible light, for example, light of any wavelength or 550 nm wavelength in the range of about 400 nm to 700 nm. The composite layer satisfying the numerical range may be usefully used as a transparent electrode in an optical modulation device. However, the light transmittance of the visible light region of the composite layer is not limited to the above numerical range, and may have a light transmittance of the visible light region that is generally applicable to the transparent electrode.
하나의 예시에서, 복합층은 적외선 영역, 예를 들면, 약 700 nm 내지 1000 nm 범위 내의 어느 한 파장 또는 780 nm 이상의 광에 대한 투과율이 70% 이하, 65% 이하 또는 60% 이하일 수 있다. 상기 수치범위를 만족하는 복합층은 적외선 영역의 열을 차단할 수 있으므로, 예를 들면, 에너지 절감이 가능하다. 복합층의 적외선 영역의 광투과율의 하한은, 특별히 제한되지 않으나, 예를 들면, 상기 복합층이 스마트 윈도우의 전극층으로 사용될 경우에는 하한이 0% 내지 5% 일 수 있다. In one example, the composite layer can have a transmittance of 70% or less, 65% or less, or 60% or less for light at any wavelength in the infrared region, for example, in the range from about 700 nm to 1000 nm, or at least 780 nm. Since the composite layer satisfying the numerical range can block heat in the infrared region, for example, energy saving can be achieved. The lower limit of the light transmittance of the infrared region of the composite layer is not particularly limited. For example, when the composite layer is used as an electrode layer of the smart window, the lower limit may be 0% to 5%.
하나의 예시에서, 복합층은 면저항 값이 20 Ω/□ 이하, 15 Ω/□ 이하 또는 10 Ω/□ 이하일 수 있고, 하한은 특별히 제한되지 않으나, 0.1 Ω/□ 이상일 수 있다. 상기 수치범위의 면저항 값을 가지는 복합층이 광변조 장치에 적용될 경우 소비 전력을 최소화할 수 있으므로 광변조 장치의 효율을 높일 수 있는 장점이 있다. 본 명세서에서, 상기 면저항 값은 당 업계에 일반적으로 알려진 공지의 면저항 측정기로 측정될 수 있다. In one example, the composite layer may have a sheet resistance value of 20 Ω / □ or less, 15 Ω / □ or less, or 10 Ω / □ or less, and the lower limit is not particularly limited, but may be 0.1 Ω / □ or more. When the composite layer having the sheet resistance value in the numerical range is applied to the optical modulator, power consumption can be minimized, thereby increasing the efficiency of the optical modulator. In the present specification, the sheet resistance value may be measured by a sheet resistance meter known in the art.
본 출원의 광변조 장치는 복합층을 포함한다. 복합층은 순차 형성된 제 1 산화물층, 금속층 및 제 2 산화물층을 포함할 수 있다. 복합층의 가시광 영역 및/또는 적외선 영역의 광투과율, 면저항 등의 특성은, 예를 들면, 제 1 산화물층, 금속층 및 제 2 산화물층의 굴절률, 두께, 전기전도도 또는 재료 등에 의하여 조절될 수 있다. The light modulation device of the present application includes a composite layer. The composite layer may include a first oxide layer, a metal layer, and a second oxide layer sequentially formed. Characteristics such as light transmittance and sheet resistance of the visible and / or infrared region of the composite layer may be adjusted by, for example, refractive index, thickness, electrical conductivity, or material of the first oxide layer, the metal layer, and the second oxide layer. .
본 출원에서 「산화물층」은 산화물을 주성분으로 포함하는 층을 의미할 수 있고, 「금속층」은 금속을 주성분으로 포함하는 층을 의미할 수 있다. 하나의 예시에서, 산화물층은 산화물을 약 80 중량%이상 포함하는 층을 의미할 수 있고, 금속층은 금속을 약 80 중량%이상 포함하는 층을 의미할 수 있다. In the present application, the "oxide layer" may mean a layer containing an oxide as a main component, and the "metal layer" may mean a layer containing a metal as a main component. In one example, the oxide layer may mean a layer containing about 80% by weight or more of oxide, and the metal layer may mean a layer including about 80% by weight or more of metal.
하나의 예시에서, 제 1 산화물층의 굴절률은 제 2 산화물층에 비하여 높을 수 있고, 금속층의 굴절률은 제 2 산화물층의 굴절률에 비해 낮을 수 있다. In one example, the refractive index of the first oxide layer may be higher than that of the second oxide layer, and the refractive index of the metal layer may be lower than that of the second oxide layer.
하나의 예시에서, 상기 금속층은 550 nm의 파장에 대한 굴절률이 0.1 내지 1.0 범위 내일 수 있다. 보다 구체적으로 상기 금속층의 550nm의 파장의 광에 대한 굴절률은 0.1 이상, 이상, 0.15 이상, 0.2 이상, 0.25 이상, 0.3 이상, 0.35 이상, 0.4 이상, 0.45 이상 또는 0.5 이상일 수 있고, 1.0 이하, 0.95 이하, 0.9 이하, 0.85 이하, 0.8 이하, 0.75 이하, 0.7 이하, 0.65 이하, 0.6 이하 또는 0.55 이하일 수 있다. 또한, 상기 제 1 산화물층의 550 nm의 파장의 광에 대한 굴절률은 1.2 내지 2.8 또는 1.9 내지 2.75의 범위 내에 있고, 보다 구체적으로 상기 제 1 산화물층의 550nm의 파장의 광에 대한 굴절률은 1.2 이상, 1.25 이상, 1.3 이상, 1.35 이상, 1.4 이상, 1.45 이상, 1.5 이상, 1.55 이상, 1.6 이상, 1.65 이상, 1.7 이상, 1.75 이상, 1.8 이상, 1.85 이상, 1.9 이상, 1.95 이상 또는 2.0 이상일 수 있고. 2.8 이하, 2.75 이하, 2.7 이하, 2.65 이하, 2.6 이하, 2.55 이하, 2.5 이하, 2.45 이하, 2.4 이하, 2.35 이하, 2.3 이하, 2.25 이하, 2.2 이하, 2.15 이하, 2.1 이하 또는 2.05 이하일 수 있다. 또한, 상기 제 2 산화물층의 550nm의 파장의 광에 대한 굴절률은 1.5 내지 2.5의 범위 내에 있을 수 있다. 보다 구체적으로, 상기 제 2 산화물층의 550nm의 파장의 광에 대한 굴절률은 1.5 이상, 1.55 이상, 1.6 이상, 1.65 이상, 1.7 이상, 1.75 이상, 1.8 이상, 1.85 이상, 1.9 이상, 1.95 이상 또는 2.0 이상일 수 있고, 2.5 이하, 2.45 이하, 2.4 이하, 2.35 이하, 2.3 이하, 2.25 이하, 2.2 이하, 2.15 이하, 2.1 이하 또는 2.0 이하일 수 있다. 상기 굴절률은, 예를 들면, M-2000 장치 [제조사: J. A. Woollam Co., Inc. (USA)]를 사용하여 측정할 수 있다. In one example, the metal layer may have a refractive index of 0.1 to 1.0 for a wavelength of 550 nm. More specifically, the refractive index of the metal layer with respect to light having a wavelength of 550 nm may be 0.1 or more, or more, 0.15 or more, 0.2 or more, 0.25 or more, 0.3 or more, 0.35 or more, 0.4 or more, 0.45 or more, or 0.5 or more, 1.0 or less, 0.95 Or less, 0.9 or less, 0.85 or less, 0.8 or less, 0.75 or less, 0.7 or less, 0.65 or less, 0.6 or less, or 0.55 or less. In addition, the refractive index of the light of the wavelength of 550 nm of the first oxide layer is in the range of 1.2 to 2.8 or 1.9 to 2.75, more specifically the refractive index of the light of the wavelength of 550 nm of the first oxide layer is 1.2 or more. Can be at least 1.25, at least 1.3, at least 1.35, at least 1.4, at least 1.45, at least 1.5, at least 1.55, at least 1.6, at least 1.65, at least 1.7, at least 1.75, at least 1.8, at least 1.85, at least 1.9, at least 1.95, or at least 2.0. . 2.8 or less, 2.75 or less, 2.7 or less, 2.65 or less, 2.6 or less, 2.55 or less, 2.5 or less, 2.45 or less, 2.4 or less, 2.35 or less, 2.3 or less, 2.25 or less, 2.2 or less, 2.15 or less, 2.1 or less, or 2.05 or less. In addition, the refractive index of the light having a wavelength of 550 nm of the second oxide layer may be in the range of 1.5 to 2.5. More specifically, the refractive index of the second oxide layer with respect to light having a wavelength of 550 nm is 1.5 or more, 1.55 or more, 1.6 or more, 1.65 or more, 1.7 or more, 1.75 or more, 1.8 or more, 1.85 or more, 1.9 or more, 1.95 or more, or 2.0. Or less, 2.5 or less, 2.45 or less, 2.4 or less, 2.35 or less, 2.3 or less, 2.25 or less, 2.2 or less, 2.15 or less, 2.1 or less, or 2.0 or less. The refractive index is, for example, M-2000 [manufacturer: J. A. Woollam Co., Inc. (USA)].
금속층, 제 1 산화물층 및 제 2 산화물층이 각각 상기 굴절률 범위를 만족하는 경우에 복합층은 가시광 영역의 광투과율은 높고 적외선 영역의 광투과율은 낮으므로 에너지 절감형 광변조 장치에서 투명 전극층으로 유용하게 사용될 수 있다. When the metal layer, the first oxide layer, and the second oxide layer each satisfy the refractive index range, the composite layer has high light transmittance in the visible region and low light transmittance in the infrared region, which is useful as a transparent electrode layer in an energy-saving optical modulation device. Can be used.
상기 제 1 산화물층, 금속층 및 제 2 산화물층의 굴절률은, 예를 들면, 두께에 의하여 조절될 수 있다. 또는, 각 층의 증착 공정을 조절하는 것에 의하여 조절될 수 있다. 구체적으로, 각 층의 증착 조건을 조절하여 결정화도를 조절할 수 있으며, 이에 따라 동일한 두께 및 재료라고 하더라도 굴절률이 상이할 수 있게 된다. 상기 증착 공정은, 공지의 증착 방법에 의하여 수행될 수 있고, 예를 들면, 스퍼터 방식에 의하여 수행될 수 있다. 보다 구체적으로, 제 1 산화물층 및 제 2 산화물층은, 예를 들면, RF 스퍼터 방식에 의해 증착될 수 있고, 금속층은, 예를 들면, DC 스퍼터 방식에 의하여 증착될 수 있다. The refractive indices of the first oxide layer, the metal layer, and the second oxide layer may be adjusted by, for example, thickness. Alternatively, it can be controlled by adjusting the deposition process of each layer. Specifically, the degree of crystallinity may be adjusted by adjusting the deposition conditions of each layer, and thus the refractive index may be different even with the same thickness and material. The deposition process may be performed by a known deposition method, for example, may be performed by a sputtering method. More specifically, the first oxide layer and the second oxide layer may be deposited by, for example, RF sputtering, and the metal layer may be deposited by, for example, DC sputtering.
하나의 예시에서, 금속층의 두께는 5 nm 내지 20 nm의 범위 내에 있을 수 있다. 보다 구체적으로 금속층의 두께는 5 nm이상, 6 nm이상, 7 nm이상, 8 nm이상, 9 nm이상, 10 nm이상, 11 nm이상 또는 12 nm이상일 수 있고, 20 nm이하, 19 nm이하, 18 nm이하, 17 nm이하, 16 nm이하, 15 nm이하, 14 nm이하 또는 13 nm이하일 수 있다. 금속층의 두께를 상기 범위로 하는 경우, 금속층의 굴절률을 상기 기술한 범위로 조절하는 것이 용이하다. 또한, 금속층의 두께를 상기 두께 범위로 하는 경우, 금속층의 연속적인 막이 형성되기 용이하므로 우수한 전기 전도도 및 낮은 저항을 구현할 수 있으며 광변조 장치의 가시광 영역에서 광투과율을 높일 수 있다. In one example, the thickness of the metal layer may be in the range of 5 nm to 20 nm. More specifically, the thickness of the metal layer may be 5 nm or more, 6 nm or more, 7 nm or more, 8 nm or more, 9 nm or more, 10 nm or more, 11 nm or more, or 12 nm or more, 20 nm or less, 19 nm or less, 18 It may be less than or equal to 17 nm, less than or equal to 16 nm, less than or equal to 15 nm, less than or equal to 14 nm, or less than or equal to 13 nm. When the thickness of the metal layer is in the above range, it is easy to adjust the refractive index of the metal layer in the above-described range. In addition, when the thickness of the metal layer is within the above thickness range, since a continuous film of the metal layer is easily formed, excellent electrical conductivity and low resistance may be realized, and light transmittance may be increased in the visible light region of the optical modulation device.
하나의 예시에서, 금속층은 면저항 값이 20 Ω/□ 이하, 바람직하게는 10 Ω/□ 이하인 전도성 금속을 포함할 수 있다. 금속층에 포함되는 전도성 금속의 전기 전도도가 상기 범위인 경우, 복합층의 면저항 값을 낮출 수 있으므로, 광변조 장치의 효율을 높일 수 있는 장점이 있다.In one example, the metal layer may include a conductive metal having a sheet resistance value of 20 Ω / □ or less, preferably 10 Ω / □ or less. When the electrical conductivity of the conductive metal included in the metal layer is within the above range, the sheet resistance value of the composite layer may be lowered, thereby increasing the efficiency of the light modulation device.
하나의 예시에서, 금속층은 은(Ag), 알루미늄(Al), 백금(Pt), 구리(Cu) 또는 금(Au) 등의 금속을 포함할 수 있다. 금속층은, 예를 들면, 은을 포함할 수 있다. 이 경우에, 복합층의 제조과정 또는 복합층이 광변조 장치에 포함되어 사용되는 과정에서 공기 및 수분과의 접촉에 의하여, 금속층 내에 은 산화물이 일부 포함될 수 있다. 금속층이 은 및 은 산화물을 포함하는 경우에, 상기 은 산화물은 상기 금속층 100 중량%에 대하여 0.1 중량% 이상 50 중량% 이하로 포함될 수 있다. In one example, the metal layer may include a metal such as silver (Ag), aluminum (Al), platinum (Pt), copper (Cu), or gold (Au). The metal layer may include silver, for example. In this case, some of the silver oxide may be included in the metal layer by contact with air and moisture in the manufacturing process of the composite layer or the process in which the composite layer is included and used in the optical modulator. When the metal layer includes silver and silver oxide, the silver oxide may be included in an amount of 0.1 wt% or more and 50 wt% or less with respect to 100 wt% of the metal layer.
하나의 예시에서, 제 1 산화물층의 두께는 20 nm 내지 60 nm 또는 40 nm 내지 50 nm의 범위 내에 있을 수 있다. 보다 구체적으로, 제 1 산화물층의 두께는 20 nm이상, 25 nm이상, 30 nm이상, 35 nm이상 또는 40 nm이상일 수 있고, 60 nm이하, 55 nm이하, 50 nm이하 또는 45 nm이하일 수 있다. 제 1 산화물층의 두께를 상기 범위로 하는 경우, 제 1 산화물층의 광에 대한 투과율 또는 굴절률을 상기 기술한 범위로 조절하는 것이 용이하고, 제 1 산화물층 상에 형성되는 금속층의 증착의 불량률을 낮출 수 있다. In one example, the thickness of the first oxide layer may be in the range of 20 nm to 60 nm or 40 nm to 50 nm. More specifically, the thickness of the first oxide layer may be 20 nm or more, 25 nm or more, 30 nm or more, 35 nm or more or 40 nm or more, 60 nm or less, 55 nm or less, 50 nm or less, or 45 nm or less. . When the thickness of the first oxide layer is in the above range, it is easy to adjust the transmittance or refractive index with respect to the light of the first oxide layer in the above-described range, and the defective rate of deposition of the metal layer formed on the first oxide layer is Can be lowered.
하나의 예시에서, 제 2 산화물층의 두께는 10 nm 내지 100 nm, 바람직하게는 20 nm 내지 60 nm의 범위 내에 있을 수 있다. 보다 구체적으로 제 2 산화물층의 두께는 10 nm이상, 15 nm이상, 20 nm이상, 25 nm이상, 30 nm이상, 35 nm이상, 40 nm이상, 45 nm이상 또는 50 nm이상일 수 있고, 100 nm이하, 95 nm이하, 90 nm이하, 85 nm이하, 80 nm이하, 75 nm이하, 70 nm이하, 65 nm이하, 60 nm이하 또는 55 nm이하일 수 있다. 제 2 산화물층의 두께를 상기 범위로 하는 경우, 제 2 산화물층의 광에 대한 투과율 또는 굴절률을 상기 기술한 범위로 조절하는 것이 용이하고, 우수한 전기 전도도 및 낮은 저항값을 가질 수 있는 장점이 있다. In one example, the thickness of the second oxide layer may be in the range of 10 nm to 100 nm, preferably 20 nm to 60 nm. More specifically, the thickness of the second oxide layer may be 10 nm or more, 15 nm or more, 20 nm or more, 25 nm or more, 30 nm or more, 35 nm or more, 40 nm or more, 45 nm or more or 50 nm or more, 100 nm 95 nm or less, 90 nm or less, 85 nm or less, 80 nm or less, 75 nm or less, 70 nm or less, 65 nm or less, 60 nm or less, or 55 nm or less. When the thickness of the second oxide layer is in the above range, it is easy to adjust the transmittance or refractive index of the second oxide layer to light in the above-described range, and there is an advantage in that it can have excellent electrical conductivity and low resistance value. .
하나의 예시에서, 제 2 산화물층의 비저항 값은 1.0 x 10-5 Ωcm 내지 1.0 x 105 Ωcm, 바람직하게 1.0 x 10-4 Ωcm 내지 1.0 x 104 Ωcm 범위 내에 있을 수 있다. 제 2 산화물층의 비저항 값을 상기 범위로 하는 경우, 복합층의 면저항 값을 낮출 수 있으므로, 광변조 장치의 효율을 높일 수 있는 장점이 있다.In one example, the resistivity value of the second oxide layer may be in the range of 1.0 × 10 −5 Ωcm to 1.0 × 10 5 Ωcm, preferably 1.0 × 10 −4 Ωcm to 1.0 × 10 4 Ωcm. In the case where the specific resistance value of the second oxide layer is within the above range, the sheet resistance value of the composite layer can be lowered, thereby increasing the efficiency of the optical modulation device.
하나의 예시에서, 제 1 산화물층 및 제 2 산화물층은 각각 안티몬(Sb), 바륨(Ba), 갈륨(Ga), 게르마늄(Ge), 하프늄(Hf), 인듐(In), 란티늄(La), 마그네슘(Mg), 셀렌(Se), 규소(Si), 탄탈(Ta), 티타늄(Ti), 바나듐(V), 이트륨(Y), 아연(Zn) 및 지르코늄(Zr)으로 이루어진 군으로부터 선택되는 1종 이상을 포함하는 금속을 포함하는 금속 산화물을 포함할 수 있다.In one example, the first oxide layer and the second oxide layer are antimony (Sb), barium (Ba), gallium (Ga), germanium (Ge), hafnium (Hf), indium (In), and lanthanum (La), respectively. ), Magnesium (Mg), selenium (Se), silicon (Si), tantalum (Ta), titanium (Ti), vanadium (V), yttrium (Y), zinc (Zn) and zirconium (Zr) It may include a metal oxide comprising a metal comprising at least one selected.
하나의 예시에서, 제 2 산화물층은 갈륨(Ga), 알루미늄(Al), 지르코늄(Zr), 티타늄(Ti), 니오븀(Nb), 탄탈(Ta), 인듐(In) 및 바나듐(V)으로 이루어진 군으로부터 선택되는 1종 이상의 제 2 금속을 추가로 포함할 수 있다. In one example, the second oxide layer is gallium (Ga), aluminum (Al), zirconium (Zr), titanium (Ti), niobium (Nb), tantalum (Ta), indium (In) and vanadium (V). It may further comprise one or more second metals selected from the group consisting of.
제 2 산화물층에 포함되는 금속은 도핑 물질일 수 있다. 제 2 산화물층은 제 2 금속을 더 포함하여 광변조 장치에서 전극층으로 사용될 경우 전자 이동성을 향상시킬 수 있으며, 상기 제 1 산화물층과 마찬가지로 고굴절의 특성을 가지고 있으므로, 광학 설계를 통하여 상기 복합층의 가시광 영역의 광투과율을 높이고 적외선 영역의 광투과율을 낮출 수 있다. 또한, 제 2 산화물층은 전기 전도도를 가지고 있으므로 금속층의 전기 전도도를 저해하지 않으며 상기 복합층을 다양한 광변조 장치에서 저방사 기능((Low-E)을 하는 투명 전극으로서의 역할을 할 수 있게 한다. The metal included in the second oxide layer may be a doping material. The second oxide layer further includes a second metal to improve electron mobility when used as an electrode layer in an optical modulation device, and has a high refractive index like the first oxide layer. The light transmittance of the visible region can be increased and the light transmittance of the infrared region can be lowered. In addition, since the second oxide layer has an electrical conductivity, the second oxide layer does not inhibit the electrical conductivity of the metal layer and allows the composite layer to serve as a transparent electrode having a low emission function (Low-E) in various light modulation devices.
하나의 예시에서, 제 2 금속의 제 2 산화물층 내에서의 함량은0.1 중량% 이상 10 중량% 이하일 수 있다. 제 2 산화물층의 굴절률은, 예를 들면, 상기 제 2 금속의 함량에 의하여 변화할 수 있다. 따라서, 상기 복합층의 가시광 영역의 광투과율을 최대로 구현할 수 있도록 제 2 산화물층 내에 제 2 금속의 함량을 조절할 필요가 있다. 또한, 제 2 산화물층에 포함되는 제 2 금속은 제 2 산화물층의 전기 전도도에 영향을 미친다. 제 2 금속의 제 2 산화물층 내에서의 함량이 상기 범위를 만족하는 경우, 제 2 산화물층은 최적의 굴절률 및 전기 전도도를 구현할 수 있다. In one example, the content of the second metal in the second oxide layer may be 0.1 wt% or more and 10 wt% or less. The refractive index of the second oxide layer may vary by, for example, the content of the second metal. Therefore, it is necessary to adjust the content of the second metal in the second oxide layer to maximize the light transmittance of the visible light region of the composite layer. In addition, the second metal included in the second oxide layer affects the electrical conductivity of the second oxide layer. When the content in the second oxide layer of the second metal satisfies the above range, the second oxide layer may realize an optimum refractive index and electrical conductivity.
하나의 예시에서, 복합층의 두께는 목적하는 광변조 장치의 특성을 나타내기 위하여 적절히 조절될 수 있다. 복합층의 두께는, 예를 들면, 가시광 영역에서 높은 광투과율, 적외선 영역에서 낮은 광투과율, 우수한 전기 전도도 및 낮은 저항 특성을 나타내기 위하여, 50 nm 내지 300 nm 또는 70nm 내지 200 nm 범위 내로 조절될 수 있다. In one example, the thickness of the composite layer can be appropriately adjusted to characterize the desired light modulation device. The thickness of the composite layer may be adjusted within the range of 50 nm to 300 nm or 70 nm to 200 nm, for example, in order to exhibit high light transmittance in the visible region, low light transmittance in the infrared region, excellent electrical conductivity and low resistance characteristics. Can be.
복합층은, 기재층을 추가로 포함할 수 있고, 예를 들면, 제 1 산화물층이 상기 기재층에 인접하게 존재할 수 있다. 도 3 및 도 4은 기재층을 포함하는 예시적인 광변조 장치를 나타낸다. 예를 들어, 복합층이 광변조층의 일측에 존재할 경우 도 3에 나타낸 바와 같이, 기재층(301), 제 1 산화물층(1021), 금속층(1022), 제 2 산화물층(1023) 및 광변조층(101)이 순차로 형성되어 있을 수 있다. 또는, 예를 들면, 복합층이 광변조층의 양측에 존재할 경우, 도 4에 나타낸 바와 같이 기재층(401A), 제 1 산화물층(1021), 금속층(1022), 제 2 산화물층(1023), 광변조층(101), 제 2 산화물층(1023), 금속층(1022), 제 1 산화물층(1021) 및 기재층(401B)이 순차로 형성되어 있을 수 있다.The composite layer may further include a substrate layer, for example, a first oxide layer may be adjacent to the substrate layer. 3 and 4 show an exemplary light modulation device including a base layer. For example, when the composite layer is present on one side of the light modulation layer, as shown in FIG. 3, the base layer 301, the first oxide layer 1021, the metal layer 1022, the second oxide layer 1023, and the light The modulation layer 101 may be formed sequentially. Or, for example, when the composite layer exists on both sides of the light modulation layer, as shown in FIG. 4, the base layer 401A, the first oxide layer 1021, the metal layer 1022, and the second oxide layer 1023. The light modulation layer 101, the second oxide layer 1023, the metal layer 1022, the first oxide layer 1021, and the base layer 401B may be sequentially formed.
기재층으로는, 특별한 제한 없이 공지의 소재를 사용할 수 있다. 예를 들면, 유리 필름, 결정성 또는 비결정성 실리콘 필름, 석영 또는 ITO(Indium Tin Oxide) 필름 등의 무기계 필름이나 플라스틱 필름 등을 사용할 수 있다. 기재층으로는, 광학적으로 등방성인 기재층이나, 위상차층과 같이 광학적으로 이방성인 기재층 또는 편광판이나 컬러 필터 기판 등을 사용할 수 있다. 예를 들어, 편광층이 기재층의 내측, 즉 액정층과 기재층의 사이에 존재하는 경우에는 기재층으로서 이방성 기재층이 사용되는 경우에도 적절한 성능의 소자가 구현될 수 있다.As a base material layer, a well-known raw material can be used without a restriction | limiting in particular. For example, inorganic films, plastic films, etc., such as a glass film, a crystalline or amorphous silicon film, a quartz, or an Indium Tin Oxide (ITO) film, can be used. As a base material layer, the optically isotropic base material layer, the optically anisotropic base material layer like a retardation layer, a polarizing plate, a color filter substrate, etc. can be used. For example, when the polarizing layer is present inside the base layer, that is, between the liquid crystal layer and the base layer, even when an anisotropic base layer is used as the base layer, an element having an appropriate performance can be realized.
플라스틱 기재층으로는, TAC(triacetyl cellulose); 노르보르넨 유도체 등의 COP(cyclo olefin copolymer); PMMA(poly(methyl methacrylate); PC(polycarbonate); PE(polyethylene); PP(polypropylene); PVA(polyvinyl alcohol); DAC(diacetyl cellulose); Pac(Polyacrylate); PES(poly ether sulfone); PEEK(polyetheretherketon); PPS(polyphenylsulfone), PEI(polyetherimide); PEN(polyethylenemaphthatlate); PET(polyethyleneterephtalate); PI(polyimide); PSF(polysulfone); PAR(polyarylate) 또는 비정질 불소 수지 등을 포함하는 기재층을 사용할 수 있지만 이에 제한되는 것은 아니다. 기재층에는, 필요에 따라서 금, 은, 이산화 규소 또는 일산화 규소 등의 규소 화합물의 코팅층이나, 반사 방지층 등의 코팅층이 존재할 수도 있다. Examples of the plastic substrate layer include triacetyl cellulose (TAC); COP (cyclo olefin copolymer) such as norbornene derivatives; Poly (methyl methacrylate); PC (polycarbonate); PE (polyethylene); PP (polypropylene); PVA (polyvinyl alcohol); DAC (diacetyl cellulose); Pac (Polyacrylate); PES (poly ether sulfone); PEEK (polyetheretherketon PPS (polyphenylsulfone), PEI (polyetherimide); PEN (polyethylenemaphthatlate); PET (polyethyleneterephtalate); PI (polyimide); PSF (polysulfone); PAR (polyarylate) or amorphous fluorine resin The substrate layer may include a coating layer of a silicon compound such as gold, silver, silicon dioxide or silicon monoxide, or a coating layer such as an antireflection layer, if necessary.
하나의 예시에서, 광변조 장치는 제 2 산화물층이 제 1 산화물층에 비하여 광변조층에 인접하여 존재할 수 있다. 예를 들어, 복합층이 광변조층의 일측에 존재할 경우 도 1에 나타낸 바와 같이, 제 1 산화물층(1021), 금속층(1022), 제 2 산화물층(1023) 및 광변조층(101)이 순차로 형성되어 있을 수 있다. 또는, 예를 들면, 복합층이 광변조층의 양측에 존재할 경우, 도 2에 나타낸 바와 같이 제 1 산화물층(1021), 금속층(1022), 제 2 산화물층(1023), 광변조층(101), 제 2 산화물층(1023), 금속층(1022) 및 제 1 산화물층(1021)이 순차로 형성되어 있을 수 있다. In one example, the optical modulation device may have a second oxide layer adjacent to the light modulation layer as compared to the first oxide layer. For example, when the composite layer is present on one side of the light modulation layer, as shown in FIG. 1, the first oxide layer 1021, the metal layer 1022, the second oxide layer 1023, and the light modulation layer 101 are formed. It may be formed sequentially. Alternatively, for example, when the composite layer exists on both sides of the light modulation layer, as shown in FIG. 2, the first oxide layer 1021, the metal layer 1022, the second oxide layer 1023, and the light modulation layer 101 are shown. ), The second oxide layer 1023, the metal layer 1022, and the first oxide layer 1021 may be sequentially formed.
하나의 예시에서, 광변조 장치는, 예를 들면, 도 2에 나타낸 바와 같이, 복합층이 광변조층의 양측에 존재할 수 있다. 즉, 광변조층은 대향 배치된 2개의 복합층 사이에 배치될 수 있다. 이 경우에, 양측에 존재하는 복합층은 동일한 굴절률, 두께 또는 면저항 등을 가지는 동일한 구조이거나 또는 상이한 굴절률, 두께 또는 면저항 등을 가지는 독립적인 구조를 가질 수 있다. In one example, the optical modulation device may have a composite layer on both sides of the light modulation layer, for example, as shown in FIG. That is, the light modulation layer may be disposed between two composite layers disposed opposite to each other. In this case, the composite layers present at both sides may have the same structure having the same refractive index, thickness, sheet resistance, or the like, or may have an independent structure having different refractive index, thickness, sheet resistance, or the like.
본 출원은 또한, 상기 광변조 장치의 용도에 대한 것이다. 광변조 장치의 용도는, 예를 들면, 스마트 윈도우, 윈도우 보호막, 플렉서블 디스플레이 소자, 3D 영상 표시용 액티브 리타더(active retarder) 또는 시야각 조절 필름 등으로 예시될 수 있으나, 이에 제한되는 것은 아니다. 상기와 같은 광변조 장치를 구성하는 방식은 특별히 제한되지 않고, 상기 광변조 장치가 사용되는 한 통상적인 방식이 적용될 수 있다.The present application also relates to the use of the optical modulation device. The use of the optical modulation device may be exemplified by, for example, a smart window, a window protective film, a flexible display device, an active retarder for displaying 3D images, a viewing angle adjusting film, and the like, but is not limited thereto. The manner of configuring such an optical modulation device is not particularly limited, and a conventional method may be applied as long as the optical modulation device is used.
본 출원의 광변조 장치는 가시광 영역에서 높은 투과율을 가지고 적외선 영역에서 낮은 투과율을 가지며 낮은 면저항 값을 가지는 복합층에 의하여 외부 신호를 인가할 수 있다. 이러한 광변조 장치는 스마트 윈도우, 윈도우 보호막, 플렉서블 디스플레이 소자, 3D 영상 표시용 액티브 리타더(active retarder) 또는 시야각 조절 필름 등과 같은 다양한 용도로 적용될 수 있다.The optical modulation device of the present application may apply an external signal by a composite layer having a high transmittance in the visible region, a low transmittance in the infrared region, and a low sheet resistance value. The optical modulation device may be applied to various applications such as a smart window, a window protective film, a flexible display device, an active retarder for viewing 3D images, or a viewing angle adjusting film.
도 1 내지 4는 예시적인 광변조 장치를 나타낸다. 1-4 show exemplary light modulation devices.
도 5는 실시예 1의 광변조 장치의 투과율 및 반사율을 나타낸다.5 shows the transmittance and reflectance of the optical modulation device of Example 1. FIG.
도 6은 비교예 1의 광변조 장치의 투과율 및 반사율을 나타낸다. 6 shows the transmittance and reflectance of the light modulator of Comparative Example 1. FIG.
도 7은 실시예 1 및 비교예 2의 금속층의 파장에 따른 특성을 나타낸다. 7 shows the characteristics according to the wavelengths of the metal layers of Example 1 and Comparative Example 2.
도 8은 제 1 금속 산화물층 및 제 2 금속 산화물층의 굴절률에 따른 광 투과율 평가 결과를 나타낸다. 8 shows light transmittance evaluation results according to refractive indices of the first metal oxide layer and the second metal oxide layer.
이하 실시예 및 비교예를 통하여 상기 기술한 내용을 보다 구체적으로 설명하지만 본 출원의 범위가 하기 제시된 내용에 의해 제한되는 것은 아니다.The above description will be described in more detail with reference to the following Examples and Comparative Examples, but the scope of the present application is not limited by the contents given below.
실시예 1Example 1
복합층의 제조Preparation of Composite Layer
유리 기판 상에 RF Sputter 방식을 이용하여 CeO2를 35 nm의 두께로 증착하여 제 1 금속 산화물층을 형성하였다. 상기 제 1 금속 산화물층 상에 DC sputter 방식을 이용하여 1.5 W/cm2 및 3 mTorr의 조건에서 Ag로 이루어진 금속층을 10 nm 두께로 증착하고, 상기 금속층 상에 제 2 금속 산화물층으로서 Ga을 도핑한 산화 아연층(GZO)을 45 nm 두께로 증착하여 복합층을 제조하였다. CeO 2 was deposited to a thickness of 35 nm on the glass substrate by using an RF Sputter method to form a first metal oxide layer. A metal layer made of Ag was deposited to a thickness of 10 nm on the first metal oxide layer by using a DC sputter method under a condition of 1.5 W / cm 2 and 3 mTorr, and doped Ga as the second metal oxide layer on the metal layer. One zinc oxide layer (GZO) was deposited to a thickness of 45 nm to prepare a composite layer.
각 층의 굴절률을 M-2000 장치[제조사: J. A. Woollam Co., Inc. (USA)]를 이용하여 측정한 결과, 제 1 산화물층의 굴절률은 550 nm의 파장에서 2.34, 금속층의 굴절률은 550 nm의 파장에서 0.19 , 산화 아연층의 굴절률은 550 nm의 파장에서 1.94였다. 또한, 상기 복합층을 UV-vis spectrometer를 이용하여 가시광 투과율을 측정한 결과 550 nm의 파장에서 87.2%의 투과율을 나타내었다. 또한, 상기 복합층의 면저항을 면저항 측정기로 측정한 결과 10 Ω/□ 미만을 나타내었다.The refractive index of each layer was measured using an M-2000 device manufactured by J. A. Woollam Co., Inc. (USA)], the refractive index of the first oxide layer was 2.34 at a wavelength of 550 nm, the refractive index of the metal layer was 0.19 at a wavelength of 550 nm, and the refractive index of the zinc oxide layer was 1.94 at a wavelength of 550 nm. In addition, the visible light transmittance of the composite layer was measured using a UV-vis spectrometer, and the transmittance was 87.2% at a wavelength of 550 nm. In addition, as a result of measuring the sheet resistance of the composite layer with a sheet resistance meter, it showed less than 10 Ω / □.
광변조 장치의 제조Manufacture of Light Modulation Device
우레탄 아크릴레이트 다관능성 올리고머(SU530, Mw: 5,000, 솔텍사제) 100mg, 2관능성 아크릴레이트(HDDA, aldrich사제) 300mg, 3관능성 아크릴레이트(PETA, aldrich사제) 20 mg, 일관능성 아크릴레이트(EHA, TCI사제) 570 mg, 이방성 염료(X12, BASF사제) 23mg 및 광 개시제(Zs-539, fuji film사제) 10 mg을 혼합하여 고분자 전구 물질을 제조하고, 상기 전구 물질에 액정 화합물 (HPC21600, HCCH사제) 2.3g 및 이방성 염료(X12, BASF사제) 20mg을 첨가한 후, 직경 25㎛의 볼타입의 스페이서 20 mg 넣고, 7시간 동안 교반기에서 교반한 후, 액정 조성물을 제조하였다. 그 후, 상기 제조된 복합층의 제 2 금속 산화물 층 표면에 상기 액정 조성물을 mayer bar(#14)를 이용하여 바 코팅하였다. 코팅된 액정 조성물 상에 상기 제조된 복합층의 제 2 금속 산화물 층이 접하도록 적층한 후에 30 mW의 고압 수은등 하에서 20초 동안 UV를 조사하여 흑색 염료가 도입된 고분자 분산형 액정층을 제조하였다.Urethane acrylate polyfunctional oligomer (SU530, Mw: 5,000, Soltec Co., Ltd.) 100 mg, bifunctional acrylate (HDDA, made by aldrich) 300 mg, trifunctional acrylate (PETA, made by aldrich) 20 mg, monofunctional acrylate ( EHA, TCI Co., Ltd.) 570 mg, anisotropic dye (X12, BASF Co., Ltd.) 23mg and photoinitiator (Zs-539, manufactured by Fuji Film Co., Ltd.) were mixed to prepare a polymer precursor, and a liquid crystal compound (HPC21600, After HCCH) 2.3g and 20mg of anisotropic dye (X12, BASF) were added, 20mg of ball-type spacers of 25 micrometers in diameter were put, and it stirred in the stirrer for 7 hours, and prepared the liquid crystal composition. Thereafter, the liquid crystal composition was bar-coated on the surface of the prepared second metal oxide layer using a mayer bar (# 14). After stacking the second metal oxide layer of the composite layer prepared on the coated liquid crystal composition in contact with the UV light for 20 seconds under a high-pressure mercury lamp of 30 mW to prepare a polymer dispersed liquid crystal layer in which a black dye was introduced.
실시예 2Example 2
복합층으로 하기 제조된 복합층을 사용한 것을 제외하고는, 실시예 1과 동일한 방법을 수행하여 실시예 2의 스마트 윈도우를 제조하였다. A smart window of Example 2 was prepared in the same manner as in Example 1, except that the prepared composite layer was used as the composite layer.
복합층의 제조Preparation of Composite Layer
유리 기판 상에 RF Sputter 방식을 이용하여 CeO2를 30 nm의 두께로 증착하여 제 1 금속 산화물층을 형성하였다. 상기 제 1 금속 산화물층 상에 DC sputter 방식을 이용하여 1.5 W/cm2 및 3 mTorr의 조건에서 Ag로 이루어진 금속층을 10 nm 두께로 증착하고, 상기 금속층 상에 제 2 금속 산화물층으로서 Al을 도핑한 산화 아연층(AZO)을 50 nm 두께로 증착하여 복합층을 제조하였다. CeO 2 was deposited to a thickness of 30 nm on the glass substrate by using an RF Sputter method to form a first metal oxide layer. A metal layer made of Ag was deposited to a thickness of 10 nm on the first metal oxide layer by using a DC sputter method under a condition of 1.5 W / cm 2 and 3 mTorr, and doped Al as the second metal oxide layer on the metal layer. One zinc oxide layer (AZO) was deposited to a thickness of 50 nm to prepare a composite layer.
이 경우, 제 1 금속 산화물층의 굴절률은 550 nm의 파장에서 2.34, 금속층의 굴절률은 550 nm의 파장에서 0.19, 제 2 금속 산화물층의 굴절률은 550 nm의 파장에서 1.89였다. 또한, 상기 복합층을 UV-vis spectrometer를 이용하여 가시광 투과율을 측정한 결과 550 nm의 파장에서 85.5%의 투과율을 나타내었다. 또한, 상기 복합층의 면저항을 면저항 측정기로 측정한 결과 10 Ω/□ 미만을 나타내었다.In this case, the refractive index of the first metal oxide layer was 2.34 at a wavelength of 550 nm, the refractive index of the metal layer was 0.19 at a wavelength of 550 nm, and the refractive index of the second metal oxide layer was 1.89 at a wavelength of 550 nm. In addition, the visible light transmittance of the composite layer was measured using a UV-vis spectrometer, and the transmittance was 85.5% at a wavelength of 550 nm. In addition, as a result of measuring the sheet resistance of the composite layer with a sheet resistance meter, it showed less than 10 Ω / □.
비교예 1Comparative Example 1
복합층으로 ITO 투명 전극층을 사용한 것을 제외하고는, 실시예 1과 동일한 방법을 수행하여 비교예 1의 스마트 윈도우를 제조하였다. A smart window of Comparative Example 1 was prepared in the same manner as in Example 1, except that the ITO transparent electrode layer was used as the composite layer.
비교예 2Comparative Example 2
복합층으로 하기 제조된 복합층을 사용한 것을 제외하고는, 실시예 1과 동일한 방법을 수행하여 비교예 2의 스마트 윈도우를 제조하였다. A smart window of Comparative Example 2 was prepared in the same manner as in Example 1, except that the composite layer prepared below was used as the composite layer.
복합층의 제조Preparation of Composite Layer
유리 기판 상에 RF Sputter 방식을 이용하여 CeO2를 35 nm의 두께로 증착하여 제 1 금속 산화물층을 형성하였다. 상기 제 1 금속 산화물층 상에 DC sputter 방식으로 0.5W/cm2 및 15 mTorr의 조건에서 Ag를 10 nm 두께로 증착하여 금속층을 형성한 후, 상기 금속층 상에 제 2 금속 산화물층으로서 Ga을 도핑한 산화 아연층(GZO)을 45 nm 두께로 증착하여 복합층을 제조하였다. CeO 2 was deposited to a thickness of 35 nm on the glass substrate by using an RF Sputter method to form a first metal oxide layer. Ag was deposited to a thickness of 10 nm on the first metal oxide layer under a condition of 0.5 W / cm 2 and 15 mTorr by DC sputter method to form a metal layer, and then doped Ga as the second metal oxide layer on the metal layer. One zinc oxide layer (GZO) was deposited to a thickness of 45 nm to prepare a composite layer.
이 경우, 제 1 산화물층의 굴절률은 550 nm의 파장에서 2.34, 금속층의 굴절률은 550 nm의 파장에서 1.95, 산화 아연층의 굴절률은 550 nm의 파장에서 1.94였다. 또한, 상기 금속층의 면저항을 면저항 측정기로 측정한 결과 10 Ω/□ 초과의 값을 나타내었고, 상기 금속층을 UV-vis spectrometer를 이용하여 가시광 투과율을 측정한 결과 550 nm의 파장에서 46.8%의 투과율을 나타내었다. 또한, 상기 복합층을 UV-vis spectrometer를 이용하여 가시광 투과율을 측정한 결과 550 nm의 파장에서 79.1%의 투과율을 나타내었고, 복합층의 면저항을 면저항 측정기로 측정한 결과 10 Ω/□ 초과의 값을 나타내었다.In this case, the refractive index of the first oxide layer was 2.34 at a wavelength of 550 nm, the refractive index of the metal layer was 1.95 at a wavelength of 550 nm, and the refractive index of the zinc oxide layer was 1.94 at a wavelength of 550 nm. In addition, as a result of measuring the sheet resistance of the metal layer with a sheet resistance meter, a value of more than 10 Ω / □ was measured. As a result of measuring visible light transmittance using the UV-vis spectrometer, the transmittance of 46.8% was measured at a wavelength of 550 nm. Indicated. In addition, when the visible light transmittance was measured using a UV-vis spectrometer, the composite layer showed a transmittance of 79.1% at a wavelength of 550 nm, and the sheet resistance of the composite layer was measured using a sheet resistance meter. Indicated.
비교예 3Comparative Example 3
복합층의 제조시에 제1 금속 산화물층을 10 nm로 형성하고, 제2 금속 산화물층의 두께를 80 nm로 형성한 것을 제외하고는, 실시예 2와 동일한 방법을 수행하여 비교예 3의 스마트 윈도우를 제조하였다.Smart of Comparative Example 3 was carried out in the same manner as in Example 2, except that the first metal oxide layer was formed at 10 nm, and the thickness of the second metal oxide layer was formed at 80 nm. The window was prepared.
상기 복합층을 UV-vis spectrometer를 이용하여 가시광 투과율을 측정한 결과 550 nm의 파장에서 72.6%의 투과율을 내었고, 복합층의 면저항을 면저항 측정기로 측정한 결과 10 Ω/□ 초과의 값을 나타내었다.As a result of measuring the visible light transmittance using the UV-vis spectrometer, the transmittance of 72.6% was obtained at the wavelength of 550 nm, and the sheet resistance of the composite layer was measured using a sheet resistance meter. It was.
평가예 1: 광 변조 장치의 투과도 및 반사도 평가 Evaluation Example 1 Evaluation of Transmittance and Reflectance of an Optical Modulation Apparatus
실시예 및 비교예에서 제조된 광 변조 장치대하여 전압이 인가되지 않은 상태에서 투과도 및 반사도를 측정하였다. 구체적으로 Solid Spec-3700 [제조사: shimadzu (JAPAN)] 장치를 이용하여 측정하였고, 그 결과를 도 5(실시예 1) 및 도 6(비교예 1)에 각각 나타내었다. 도 5 및 도 6에 나타낸 바와 같이, 본 출원의 복합층을 투명 전극층을 사용한 실시예의 광변조 장치는, ITO 투명 전극층을 사용한 비교예 1의 광변조 장치와 비교하여, 가시광 영역에서는 광투과율이 유사한 반면, 적외선 영역에서는 현저히 낮은 광 투과율을 보임을 확인할 수 있다. Transmittance and reflectivity were measured with no voltage applied to the optical modulation devices manufactured in Examples and Comparative Examples. Specifically, the measurement was performed using a Solid Spec-3700 (manufacturer: shimadzu (JAPAN)) device, and the results are shown in FIGS. 5 (Example 1) and 6 (Comparative Example 1), respectively. As shown in Fig. 5 and Fig. 6, the optical modulation device of the example in which the composite layer of the present application uses the transparent electrode layer has a similar light transmittance in the visible region compared with the light modulation device of Comparative Example 1 using the ITO transparent electrode layer. On the other hand, it can be seen that the infrared light shows a significantly low light transmittance.
평가예 2: 금속층의 파장에 따른 굴절률 및 흡수 계수 평가Evaluation Example 2 Evaluation of Refractive Index and Absorption Coefficient According to the Wavelength of the Metal Layer
실시예 1 및 비교예 2에서 제조된 금속층에 대하여 굴절률에 따른 굴절률 및 흡수 계수를 평가하고 그 결과를 도 7에 나타내었다. 도 7에서 n은 금속층의 빛의 파장에 따른 굴절률을 의미하고, λ는 빛의 파장을 의미하며, k는 금속층의 빛의 파장에 따른 흡수 계수를 의미한다. 도 7에 나타낸 바와 같이, 동일한 두께로 금속층을 형성하더라도 금속층의 형성 조건에 따라 굴절률 및 흡수 계수가 상이한 것을 확인할 수 있다. The refractive index and the absorption coefficient according to the refractive index of the metal layers prepared in Example 1 and Comparative Example 2 were evaluated and the results are shown in FIG. 7. In FIG. 7, n denotes a refractive index according to the wavelength of light of the metal layer, λ denotes a wavelength of light, and k denotes an absorption coefficient according to the wavelength of light of the metal layer. As shown in FIG. 7, even when the metal layer is formed with the same thickness, it can be confirmed that the refractive index and the absorption coefficient are different depending on the formation conditions of the metal layer.
평가예Evaluation example 3: 제 1 및 제 2 금속  3: first and second metal 산화물 층의Oxide layer 굴절률에 따른  Refractive index 복합층의Composite 투과율 평가  Transmittance evaluation
실시예 1 및 2와 동일하게 광변조 장치를 제조하되, 제 1 금속 산화물층 및 제 2 금속 산화물층의 굴절률을 변화시키면서, 굴절률에 따른 복합층의 550nm 파장의 광에 대한 투과율을 평가하고 그 결과를 도 8에 나타내었다. 도 8에 나타낸 바와 같이, 복합층의 광 투과율은 제1 금속 산화물층 및 제2 금속 산화물층의 굴절률에 영향을 받는 것을 확인할 수 있고, 특히 제 1 금속 산화물층 및 제2 금속 산화물층의 굴절률 범위가 본 출원의 범위 내에 속하는 경우 550nm 파장의 빛에 대하여 약 80% 이상의 우수한 광 투과율을 나타내는 것을 확인할 수 있다. An optical modulator was manufactured in the same manner as in Examples 1 and 2, but the transmittance of light of 550 nm wavelength of the composite layer according to the refractive index was evaluated while changing the refractive indices of the first metal oxide layer and the second metal oxide layer. Is shown in FIG. 8. As shown in FIG. 8, it can be seen that the light transmittance of the composite layer is affected by the refractive indices of the first metal oxide layer and the second metal oxide layer, and in particular, the refractive index range of the first metal oxide layer and the second metal oxide layer. When it is within the scope of the present application it can be seen that the excellent light transmittance of about 80% or more for the light of the 550nm wavelength.
[부호의 설명][Description of the code]
101: 광변조층101: light modulation layer
102: 복합층102: composite layer
1021: 제 1 산화물층1021: first oxide layer
1022: 금속층1022: metal layer
1023: 제 2 산화물층1023: second oxide layer
301, 401A, 401B: 기재층301, 401A, 401B: substrate layer

Claims (22)

  1. 광변조층; 및 상기 광변조층의 일측 또는 양측에 배치되고, 순차 형성된 제 1 산화물층, 금속층 및 제 2 산화물층을 포함하며, 550 nm 파장의 광에 대한 투과율이 80% 이상이고, 780 nm 이상의 광에 대한 투과율은 70% 이하인 복합층을 포함하며, 상기 광변조층은 상기 복합층에 의해 인가되는 신호에 의해 구동하도록 설치되어 있는 광변조 장치.Light modulation layer; And a first oxide layer, a metal layer, and a second oxide layer disposed on one side or both sides of the light modulation layer, and having a transmittance of 80% or more for light having a wavelength of 550 nm, and for light of 780 nm or more. And a transmittance of 70% or less, wherein the light modulation layer is provided to drive by a signal applied by the compound layer.
  2. 제 1 항에 있어서, 광변조층은 복합층에 의한 전압 인가 여부에 따라 가시광 영역의 투과율이 40% 내지 90% 범위인 투과모드 및 가시광 영역의 투과율이 5% 내지 30% 범위인 차단모드 사이를 스위칭할 수 있는 광변조 장치.The method of claim 1, wherein the light modulation layer is between the transmission mode of the visible light region in the range of 40% to 90% and the blocking mode of the visible light region in the range of 5% to 30% depending on whether the voltage applied by the composite layer. Switchable light modulation device.
  3. 제 1 항에 있어서, 광변조층은 액정 화합물을 포함하는 액정층인 광변조 장치.The optical modulation device of claim 1, wherein the light modulation layer is a liquid crystal layer containing a liquid crystal compound.
  4. 제 1 항에 있어서, 광변조층은 고분자 분산형 액정층(PDLC), 화소고립형 액정층(PILC), 부유 입자 디바이스(SPD) 또는 전기변색 디스플레이(ECD)인 광변조 장치.The optical modulation device according to claim 1, wherein the light modulation layer is a polymer dispersed liquid crystal layer (PDLC), a pixel isolated liquid crystal layer (PILC), a suspended particle device (SPD), or an electrochromic display (ECD).
  5. 제 1 항에 있어서, 광변조층은 이방성 염료를 포함하는 광변조 장치. The light modulation device of claim 1, wherein the light modulation layer comprises an anisotropic dye.
  6. 제 5 항에 있어서, 이방성 염료는 흑색 염료인 광변조 장치.6. The light modulator of claim 5, wherein the anisotropic dye is a black dye.
  7. 제 1 항에 있어서, 복합층은 면 저항이 20 Ω/□ 이하인 광변조 장치.The optical modulator according to claim 1, wherein the composite layer has a sheet resistance of 20 Ω / square or less.
  8. 제 1 항에 있어서, 제 1 산화물층의 굴절률이 제 2 산화물층의 굴절률에 비하여 높고, 금속층의 굴절률이 제 2 산화물층의 굴절률에 비해 낮은 광변조 장치.The optical modulation device according to claim 1, wherein the refractive index of the first oxide layer is higher than that of the second oxide layer, and the refractive index of the metal layer is lower than that of the second oxide layer.
  9. 제 8 항에 있어서, 금속층은 550 nm의 파장에 대한 굴절률이 0.1 내지 1의 범위 내에 있는 광변조 장치.9. The light modulator of claim 8, wherein the metal layer has a refractive index in the range of 0.1 to 1 for a wavelength of 550 nm.
  10. 제 1 항에 있어서, 금속층은 두께가 5 nm 내지 20 nm의 범위 내에 있는 광변조 장치.The light modulator of claim 1, wherein the metal layer has a thickness in a range of 5 nm to 20 nm.
  11. 제 1 항에 있어서, 금속층은 면저항 값이 20 Ω/□ 이하인 전도성 금속을 포함하는 광변조 장치.The optical modulator of claim 1, wherein the metal layer comprises a conductive metal having a sheet resistance value of 20 Ω / □ or less.
  12. 제 8 항에 있어서, 제 1 산화물층의 550 nm의 파장의 광에 대한 굴절률은 1.2 내지 2.8의 범위 내에 있고, 제 2 산화물층의 굴절률은 1.5 내지 2.5의 범위 내에 있는 광변조 장치.9. The optical modulator of claim 8, wherein the refractive index of the first oxide layer for light at a wavelength of 550 nm is in the range of 1.2 to 2.8, and the refractive index of the second oxide layer is in the range of 1.5 to 2.5.
  13. 제 1 항에 있어서, 제 1 산화물층은 두께가 20 nm 내지 60 nm의 범위 내에 있는 광변조 장치.The light modulator of claim 1, wherein the first oxide layer has a thickness in the range of 20 nm to 60 nm.
  14. 제 1 항에 있어서, 제 2 산화물층은 두께가 10 nm 내지 100 nm의 범위 내에 있는 광변조 장치.The light modulator of claim 1, wherein the second oxide layer has a thickness in the range of 10 nm to 100 nm.
  15. 제 1 항에 있어서, 제 2 산화물층은 비저항 값이 1.0 x 10-5 Ωcm 내지 1.0 x 105 Ωcm 의 범위 내에 있는 광변조 장치.The optical modulator of claim 1, wherein the second oxide layer has a specific resistance in the range of 1.0 × 10 −5 Ωcm to 1.0 × 10 5 Ωcm.
  16. 제 1 항에 있어서, 제 1 산화물층 및 상기 제 2 산화물층은 각각 안티몬(Sb), 바륨(Ba), 갈륨(Ga), 게르마늄(Ge), 하프늄(Hf), 인듐(In), 란티늄(La), 마그네슘(Mg), 셀렌(Se), 규소(Si), 탄탈(Ta), 티타늄(Ti), 바나듐(V), 이트륨(Y), 아연(Zn) 및 지르코늄(Zr)으로 이루어진 군으로부터 선택되는 1종 이상을 포함하는 금속을 포함하는 금속 산화물층인 광변조 장치.The method of claim 1, wherein the first oxide layer and the second oxide layer are antimony (Sb), barium (Ba), gallium (Ga), germanium (Ge), hafnium (Hf), indium (In), and lanthanum, respectively. (La), magnesium (Mg), selenium (Se), silicon (Si), tantalum (Ta), titanium (Ti), vanadium (V), yttrium (Y), zinc (Zn) and zirconium (Zr) The optical modulation device which is a metal oxide layer containing the metal containing 1 or more types chosen from the group.
  17. 제 16 항에 있어서, 제 2 산화물층은 갈륨(Ga), 알루미늄(Al), 지르코늄(Zr), 티타늄(Ti), 니오븀(Nb), 탄탈(Ta), 인듐(In) 및 바나듐(V)으로 이루어진 군으로부터 선택되는 1종 이상의 제 2 금속을 추가로 포함하는 광변조 장치.The method of claim 16, wherein the second oxide layer is gallium (Ga), aluminum (Al), zirconium (Zr), titanium (Ti), niobium (Nb), tantalum (Ta), indium (In) and vanadium (V). An optical modulator further comprising at least one second metal selected from the group consisting of:
  18. 제 17 항에 있어서, 제 2 금속의 제 2 산화물층 내에서의 함량은 0.1 중량% 이상 10 중량% 이하인 광변조 장치.18. The light modulator of claim 17, wherein the content of the second metal in the second oxide layer is 0.1 wt% or more and 10 wt% or less.
  19. 제 1 항에 있어서, 제 2 산화물층이 제 1 산화물층에 비하여 광변조층에 인접하여 존재하는 광변조 장치.2. The light modulator of claim 1, wherein the second oxide layer is adjacent to the light modulating layer compared to the first oxide layer.
  20. 제 1 항에 있어서, 광변조층의 양측에 복합층이 존재하는 광변조 장치.The optical modulator according to claim 1, wherein a composite layer exists on both sides of the optical modulator layer.
  21. 제 1 항에 있어서, 복합층은 두께가 50 nm 내지 300 nm의 범위 내에 있는 광변조 장치.The optical modulator of claim 1, wherein the composite layer has a thickness in a range of 50 nm to 300 nm.
  22. 제 1 항의 광변조 장치를 포함하는 스마트 윈도우.Smart window comprising the optical modulation device of claim 1.
PCT/KR2015/002187 2014-03-07 2015-03-06 Optical modulation apparatus WO2015133862A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201580003218.5A CN105874379B (en) 2014-03-07 2015-03-06 Optic modulating device
JP2016533588A JP6450998B2 (en) 2014-03-07 2015-03-06 Light modulation device {LIGHT MODULATION DEVICE}
US15/122,267 US9904129B2 (en) 2014-03-07 2015-03-06 Light modulation device
EP15759163.7A EP3115834B1 (en) 2014-03-07 2015-03-06 Optical modulation apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2014-0027222 2014-03-07
KR20140027222 2014-03-07
KR1020150031541A KR101630118B1 (en) 2014-03-07 2015-03-06 Light modulation device
KR10-2015-0031541 2015-03-06

Publications (1)

Publication Number Publication Date
WO2015133862A1 true WO2015133862A1 (en) 2015-09-11

Family

ID=54055589

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/002187 WO2015133862A1 (en) 2014-03-07 2015-03-06 Optical modulation apparatus

Country Status (1)

Country Link
WO (1) WO2015133862A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI741440B (en) * 2019-07-31 2021-10-01 清華大學 An optical modulation micro-nano structure, micro integrated spectroscope and spectrum modulation method
CN114200692A (en) * 2021-12-10 2022-03-18 武汉华星光电技术有限公司 Display module and display device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000155308A (en) * 1998-06-10 2000-06-06 Saint Gobain Vitrage Electrically controllable assembly with variable optical characteristic
US20070206263A1 (en) * 2006-03-03 2007-09-06 Neuman George A Electro-Optical Element Including IMI Coatings
KR20100005549A (en) * 2008-07-07 2010-01-15 주식회사 큐시스 Electrically conducting polymer coating composition for producing electrically conducting electrodes of polymer dispersed liquid crystal smart window
KR20120045543A (en) * 2010-10-29 2012-05-09 엘지전자 주식회사 Smart window apparatus
KR20130063485A (en) * 2011-12-06 2013-06-14 주식회사 엘지화학 Liquid crystal cell

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000155308A (en) * 1998-06-10 2000-06-06 Saint Gobain Vitrage Electrically controllable assembly with variable optical characteristic
US20070206263A1 (en) * 2006-03-03 2007-09-06 Neuman George A Electro-Optical Element Including IMI Coatings
KR20100005549A (en) * 2008-07-07 2010-01-15 주식회사 큐시스 Electrically conducting polymer coating composition for producing electrically conducting electrodes of polymer dispersed liquid crystal smart window
KR20120045543A (en) * 2010-10-29 2012-05-09 엘지전자 주식회사 Smart window apparatus
KR20130063485A (en) * 2011-12-06 2013-06-14 주식회사 엘지화학 Liquid crystal cell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI741440B (en) * 2019-07-31 2021-10-01 清華大學 An optical modulation micro-nano structure, micro integrated spectroscope and spectrum modulation method
CN114200692A (en) * 2021-12-10 2022-03-18 武汉华星光电技术有限公司 Display module and display device
US11953777B2 (en) 2021-12-10 2024-04-09 Wuhan China Star Optoelectronics Technology Co., Ltd. Display module and display device

Similar Documents

Publication Publication Date Title
US9904129B2 (en) Light modulation device
US9840668B2 (en) Liquid crystal device
JP6762813B2 (en) Liquid crystal display device
JP5525213B2 (en) Polarizing film, laminate, and liquid crystal display device
WO2015133878A1 (en) Optical element
JP2006522955A (en) Liquid crystal display device with internal polarizer
WO2012033583A1 (en) Switchable privacy filter
CN104246586A (en) Liquid crystal display device
US20210339609A1 (en) Multifunctional switchable film and constructions including such a film
WO2015133862A1 (en) Optical modulation apparatus
CN110858039B (en) Liquid crystal panel
KR101987371B1 (en) Vertical alignment layer and liquid crystal device comprising the same
JP7222177B2 (en) Light control film, light control device and light control apparatus
WO2020180086A1 (en) Optical modulation element
WO2020175793A1 (en) Optical device
WO2018117721A1 (en) Variable reflectivity mirror
KR102118362B1 (en) Precursor composition for liquid crystal layer
KR20200050750A (en) Polarizing plates and liquid crystal display devices
EP3933458B1 (en) Optical device
KR20070120855A (en) Polarizer including conducting layer and liquid crystal dispaly device having thereof
JP3921012B2 (en) Reflective liquid crystal display element
KR20200103378A (en) Optical Device
Young et al. Fabrication of simultaneous RGB reflector using single-pitched cholesteric liquid crystals and its electro-optical application
KR20060067350A (en) Optical filter for plasma display device, method for preparating the same, and plasma display device comprising the same
JP2002006306A (en) Reflection type liquid crystal display element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15759163

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015759163

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015759163

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016533588

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15122267

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE