WO2015133430A1 - 熱電変換モジュール - Google Patents

熱電変換モジュール Download PDF

Info

Publication number
WO2015133430A1
WO2015133430A1 PCT/JP2015/056074 JP2015056074W WO2015133430A1 WO 2015133430 A1 WO2015133430 A1 WO 2015133430A1 JP 2015056074 W JP2015056074 W JP 2015056074W WO 2015133430 A1 WO2015133430 A1 WO 2015133430A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoelectric conversion
conversion module
temperature side
side electrode
type
Prior art date
Application number
PCT/JP2015/056074
Other languages
English (en)
French (fr)
Inventor
藤原 伸一
知丈 東平
石島 善三
孝広 地主
昌尚 冨永
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to US15/037,334 priority Critical patent/US20160293823A1/en
Priority to DE112015000195.6T priority patent/DE112015000195T5/de
Priority to CN201580002730.8A priority patent/CN105765749A/zh
Publication of WO2015133430A1 publication Critical patent/WO2015133430A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/81Structural details of the junction
    • H10N10/817Structural details of the junction the junction being non-separable, e.g. being cemented, sintered or soldered

Definitions

  • the present invention relates to a thermoelectric conversion module that converts heat into electricity.
  • thermoelectric conversion modules used by being attached to piping of industrial furnaces such as blast furnaces and incinerators and exhaust pipes of automobiles are used in a high temperature environment of 300 to 600 ° C.
  • stress is generated at the joint between the thermoelectric conversion element and the electrode due to the difference in thermal expansion between the thermoelectric conversion element and the electrode, and the joint and the thermoelectric conversion element are destroyed.
  • thermoelectric conversion module is formed with a pair of electrode-side joining surfaces that are spaced apart from each other and a connecting portion that connects each electrode-side joining surface.
  • Each thermoelectric conversion element has a prismatic shape.
  • Each element-side bonding surface is similar to each electrode-side bonding surface, and each electrode-side bonding surface is formed to have a smaller area than each element-side bonding surface.
  • each electrode-side joining surface and the element-side joining surface are joined by solder, and each electrode-side joining surface and the element-side joining surface are joined by solder, whereby the thermoelectric conversion element In all corners C and outer periphery L, the solder is formed thinner than the other parts ”(see summary).
  • Patent Document 1 describes the structure of a thermoelectric conversion module. However, although it is described that the thermoelectric conversion module of Patent Document 1 can relieve the stress generated in the element portion, it cannot relieve the strain on the solder. In such a thermoelectric conversion module, since the solder joint at the end is thin, if a temperature change occurs, strain concentrates in the solder, and it is difficult to ensure the heat fatigue reliability of the joint.
  • An object of the present invention is to provide a thermoelectric conversion module that realizes relaxation of stress and strain in the element and in the junction in the vicinity of the element / high temperature side electrode junction where stress is concentrated.
  • the present invention includes a plurality of means for solving the above-described problems.
  • electrodes arranged on the high temperature side and the low temperature side, and P-type and N-type thermoelectric conversions include an end face to which a high temperature side electrode is connected, an end face to which a low temperature side electrode is connected, and the high temperature side electrode.
  • an end surface to which the low temperature side electrode is connected, and an area of the end surface to which the high temperature side electrode is connected is smaller than an area of the end surface to which the low temperature side electrode is connected.
  • the parallel portion having the side surfaces formed in parallel and a small-diameter portion whose cross-sectional area decreases toward the end surface to which the high temperature side electrode is connected.
  • thermoelectric conversion module of the present invention may have a notch formed by removing the outer periphery of the high-temperature side joint of the P-type and N-type thermoelectric conversion elements.
  • thermoelectric conversion module of the present invention thermoelectric conversion in which electrodes arranged on the high temperature side and the low temperature side and P-type and N-type thermoelectric conversion elements are connected via a bonding layer.
  • the area of the portion of the high-temperature side electrode connected to the end faces of the P-type and N-type thermoelectric conversion elements is larger than the area of the portion of the low-temperature side electrode connected to the end faces of the P-type and N-type thermoelectric conversion elements. Is also small.
  • thermoelectric conversion module of the present invention may be one in which a portion of the high temperature side electrode facing the outer periphery of the high temperature side junction of the thermoelectric conversion element is removed to form a notch.
  • thermoelectric conversion module stress and strain generated in the element and in the junction in the vicinity of the element / electrode junction where stress is concentrated are alleviated, and cracks in the element and fracture of the junction are suppressed. be able to.
  • thermoelectric conversion module in Example 1 of this invention It is the side view which extracted the element vicinity of the thermoelectric conversion module in Example 1 of this invention. It is a figure which shows the notch part of the thermoelectric conversion element in Example 1 of this invention. It is a figure which shows the stress reduction effect of the notch width and notch depth of the thermoelectric conversion element in Example 1 of this invention. It is a flow side view which shows a series of flows of the manufacturing method of the thermoelectric conversion element assembly in Example 1 of this invention. It is a perspective view of an example of the thermoelectric conversion module in Example 1 of the present invention.
  • FIG. 4 is a plan view of the element shape on the high-temperature bonding side of the thermoelectric conversion module in Examples 1 to 3 of the present invention. It is the side view which extracted the element vicinity of the thermoelectric conversion module in Example 4 of this invention. It is the side view which extracted the element vicinity of the conventional thermoelectric conversion module.
  • FIG. 1 shows a side view of the vicinity of the elements of the thermoelectric conversion module of Example 1 of the present invention.
  • a thermoelectric conversion element 11 which is a P-type thermoelectric conversion element and an N-type thermoelectric conversion element is bonded to a low temperature side electrode 21 and a high temperature side electrode 22 by a bonding material 30.
  • a notch 111 is formed on the outer periphery of the thermoelectric conversion element 11 on the high temperature side electrode 22 side so that the high temperature side element junction area 112 is smaller than the low temperature side element junction area 113.
  • the P-type and N-type thermoelectric conversion elements 11 have an end face to which the high temperature side electrode 22 is connected, an end face to which the low temperature side electrode 21 is connected, an end face to which the high temperature side electrode is connected, and an end face to which the low temperature side electrode is connected.
  • An end surface area 112 to which the high temperature side electrode is connected is formed smaller than an end surface area 113 to which the low temperature side electrode is connected, and a parallel portion in which the side surfaces are formed in parallel, and a high temperature It consists of a small-diameter portion where the area of the cross section decreases toward the end face to which the side electrode is connected.
  • thermoelectric conversion module uses the Seebeck effect in which electrons move to generate a current by giving a temperature difference to each side surface of the P-type and N-type thermoelectric conversion elements. This movement of electrons has a function of converting heat into electricity.
  • FIG. 1 is a diagram when the upper surface is made low and the lower surface is made high.
  • the electric current forms an electric circuit by joining a P-type thermoelectric conversion element and an N-type thermoelectric conversion element in series.
  • the thermoelectric conversion element assembly 1 is configured by joining a plurality of such thermoelectric conversion elements connected in series in a planar shape or a line shape.
  • thermoelectric conversion element 11 differs depending on the environmental temperature in which the module is used. Silicon-germanium, iron-silicon, bismuth-tellurium, magnesium-silicon, lead-tellurium, cobalt-antimony, bismuth- There are antimony, Heusler alloy, and half-Heusler alloy.
  • thermoelectric conversion module 1 since the thermoelectric conversion module 1 needs to have a temperature difference between the upper and lower surfaces, the thermoelectric conversion element 11 has an element / electrode junction, particularly a high temperature side junction, due to a thermal load during bonding and a temperature change during operation. It is conceivable that stress concentrates on the surface. If stress is generated in the joint and exceeds the destructive stress of the element or the joint, a crack occurs in the element or the joint, and there is a problem that joint reliability is greatly reduced.
  • the bonding material for joining the thermoelectric conversion element and the electrode.
  • the bonding temperature is as high as 600 to 800 ° C., and a structure that reduces the stress generated in the bonded portion during the cooling process of the bonding process is required.
  • soft solder since the joining temperature is 300 ° C. or less, the stress of the joining process can be reduced as compared with hard solder, but since the melting point is 300 ° C. or less, the use is limited only to low-temperature thermoelectric conversion modules.
  • the low temperature side electrode 21 and the high temperature side electrode 22 are preferably nickel, molybdenum, titanium, iron, copper, manganese, tungsten, or an alloy containing any one of these metals as a main component.
  • the thermoelectric conversion element material and the linear expansion coefficient of the electrode are different, stress is generated in the vicinity of the joint when a temperature change occurs. Therefore, for the purpose of reducing the stress in the vicinity of the joint, the thermoelectric conversion element The reliability of bonding can be improved by selecting a material having a smaller difference in linear expansion coefficient as the electrode.
  • the bonding material 30 is preferably aluminum, nickel, tin, copper, zinc, germanium, magnesium, gold, silver, indium, lead, bismuth, tellurium, or an alloy containing any one of these metals as a main component. .
  • the linear expansion coefficient of a silicon-germanium element as an example of the thermoelectric conversion element 11 is 4.5 ppm / ° C.
  • the linear expansion coefficient of a silicon-magnesium element is 15.5 ppm / ° C.
  • the linear expansion coefficient of the thermoelectric conversion element 11 is The coefficient is described as ⁇ ppm / ° C.
  • the materials of the low temperature side electrode 21 and the high temperature side electrode 22 include molybdenum (linear expansion coefficient 5.8 ppm / ° C.), nickel (linear expansion coefficient 15.2 ppm / ° C.), etc.
  • the linear expansion coefficient ⁇ ppm / ° C It is described as a material.
  • thermoelectric conversion module 1 Since only the high temperature side electrode 22 is heated in the thermoelectric conversion module 1, the high temperature side thermoelectric conversion element 11 and the high temperature side electrode 22 are stretched as the temperature rises.
  • the length that the thermoelectric conversion module 1 and the high temperature side electrode 22 extend when the temperature rises is ⁇ ⁇ ⁇ T ⁇ L and ⁇ ⁇ ⁇ T ⁇ L, respectively, where L is the distance from the center of the junction.
  • causes stress in the vicinity of the joint. Since the material of the thermoelectric conversion element 11 and the use environment temperature are determined by the target product, it can be said that ⁇ , ⁇ , and ⁇ T are determined by the product.
  • the outer periphery of the high-temperature side joint of the thermoelectric conversion element 11 is removed to form the notch 111, thereby shortening the distance L from the center of the joint, and the high-temperature side joint area.
  • the bonding reliability can be improved by making 112 smaller than the low-temperature side bonding area 113.
  • the low temperature side electrode 21 is cooled in the low temperature side junction part, a temperature rise is suppressed compared with the high temperature side junction part. In order to improve the thermoelectric conversion characteristics, it is better to increase the junction area as much as possible, so the junction area is secured on the low temperature side.
  • the high-temperature side bonding area 112 is determined by the removal length a (in FIG. 1) of the outer periphery.
  • the temperature difference ⁇ T from the use environment temperature and the thermoelectric conversion element 11 and the high-temperature side electrode 22 are derived from the difference in linear expansion coefficient ⁇ - ⁇ , and the stress a is determined so that the stress value is smaller than the fracture stress of the thermoelectric conversion element 11.
  • the shape of the bonding material 30 on the high-temperature bonding side is described as the same size as the high-temperature bonding area 112, but this is not restrictive.
  • the deletion of the outer peripheral portion may be performed by dicing blade or laser processing when dicing the element, or may be performed after being divided into individual pieces.
  • FIG. 2 shows the shape of the notch 111 from which the outer periphery of the high temperature side joint of the thermoelectric conversion element 11 is removed.
  • FIG. 2B when the notch 111 has a right-angled portion, stress concentrates on the right-angled portion, and cracks and breaks tend to occur.
  • FIG. 2A by making the notch into a curved surface that is recessed toward the thermoelectric conversion element, stress is dispersed, and cracks and breakage are less likely to occur.
  • the horizontal axis represents the notch width a (mm)
  • the vertical axis represents the stress ratio when the vertical tensile stress on the side surface of the thermoelectric conversion element without the notch is 1.
  • a thermoelectric conversion element having a height of 2.3 mm is formed between electrodes via a bonding material having a thickness of 0.05 mm, and when the temperature is lowered from 600 ° C. to 25 ° C., the thermoelectric The stress generated in the vertical direction on the side surface of the conversion element is evaluated. From FIG.
  • the notch width a is 0.1 mm, the stress value is reduced by approximately 40%. Moreover, since the junction area of the thermoelectric conversion element 11 and the high temperature side electrode 22 will become small if notch width a is enlarged too much, it will affect the thermoelectric conversion characteristic. Accordingly, the notch width a is 0.1 mm or more, and the bonding area between the thermoelectric conversion element 11 and the high temperature side electrode 22 is not longer than a length that ensures 50% or more of the bonding area between the thermoelectric conversion element 11 and the low temperature side electrode 21. It is desirable to do.
  • the area of the end face connected to the high temperature side electrode is suitably 50 to 95% of the area of the end face connected to the low temperature side electrode.
  • FIG. 3B shows the stress ratio when the cut depth b (mm) is plotted on the horizontal axis and the vertical tensile stress on the side surface of the thermoelectric conversion element when the notch is not cut is 1.
  • the simulation conditions are the same as in FIG. From FIG. 3 (b), it can be seen that if the cut depth b (mm) is 0.05 mm, the stress value is reduced by approximately 30%. On the other hand, if the cutting depth b is too large, the volume of the thermoelectric conversion element 11 is reduced and the thermoelectric conversion characteristics are affected. From these, the cutting depth b is 0.05 mm or more, and is preferably 50% or less of the height of the thermoelectric conversion element 11.
  • FIG. 8 shows a conventional heat conversion module having no notch.
  • stress is applied to the outer peripheral portion of the joint between the thermoelectric conversion element 11 and the high temperature side electrode 22 surrounded by a dotted line.
  • FIG. 4 is a flow side view showing a series of flows of the manufacturing method of the thermoelectric conversion element assembly in Embodiment 1 of the present invention. Note that description of elements already described in FIG. 1 is omitted.
  • the high temperature side electrode 22 is installed on the support jig 40.
  • the support jig 40 may be any material that does not melt in the joining process, such as ceramic or metal, and it is desirable to suppress the reaction by forming a material that does not react with the joining material 30 or a layer that does not react with the surface.
  • the bonding material 30 and the thermoelectric conversion element 11 are aligned and installed on the high temperature side electrode 22 in this order.
  • the bonding material 30 is again installed on each thermoelectric conversion element, and the low temperature side electrode 21 is arranged on the thermoelectric conversion element 11.
  • the bonding material 30 is described as a metal foil, but the thickness of the bonding material 30 is preferably 1 to 500 ⁇ m.
  • a jig (not shown) may be installed in a lump or may be installed individually, and any method may be used.
  • the notch in the thermoelectric conversion element 11 is formed by dicing blade, laser processing or wire saw when dividing the thermoelectric element wafer into individual pieces, or by cutting or grinding after dividing into individual pieces. Can be considered.
  • a method using a dicing blade is shown below as an example of forming from a thermoelectric element wafer when dividing individual pieces. First, a groove is formed with a blade having a large blade width on the dicing line of the thermoelectric element wafer to form a notch. After that, the thermoelectric conversion element 11 with a notch can be formed by dicing on the same line with a blade having a thin blade width and dividing into pieces.
  • dicing may be performed from the front and back of the thermoelectric element wafer.
  • the notch may be formed with a thick blade after dicing with a thin blade in advance.
  • the dicing blade is taken as an example, but the same processing can be performed by changing the output when laser processing is performed and changing the wire diameter when using a wire saw.
  • the pressure jig 41 is pressed and heated from above to melt the bonding material 30, and the low temperature side electrode 21, the thermoelectric conversion element 11, and the high temperature
  • the side electrode 22 and the thermoelectric conversion element 11 are bonded via the bonding material 30.
  • the load applied to the thermoelectric conversion element is preferably 0.12 kPa or more.
  • the thermoelectric conversion module 1 can be formed by detaching from the pressing jig 41 and the supporting jig 40.
  • the joining process is the same as the conventional process, and no new process is required.
  • thermoelectric conversion module 1 may be formed by bonding the element 11 and the high temperature side electrode 22 and then bonding the upper surface of the thermoelectric conversion element 11 and the low temperature side electrode 21 with the bonding material 30.
  • the applied pressure is set to 0.12 kPa or more to prevent the thermoelectric conversion element 11 from being tilted at the time of bonding, and to the bonding melted from the interface between the thermoelectric conversion element 11, the low temperature side electrode 21, and the high temperature side electrode 22. This is to discharge the material 30 as much as possible.
  • the upper limit of the applied pressure is not particularly limited, but is set to be less than the crushing strength of the element because it is necessary that the element is not destroyed. Specifically, it may be about 1000 MPa or less, but in this embodiment, a sufficient effect can be obtained with a pressure of about several MPa.
  • the bonding atmosphere may be a non-oxidizing atmosphere, and specifically, a vacuum atmosphere, a nitrogen atmosphere, a nitrogen-hydrogen mixed atmosphere, or the like can be used.
  • a metal foil is taken as an example of the bonding material 30, but the bonding material 30 may be powder or alloy powder.
  • the compact formed by compacting only the powder may be disposed only at the location where the thermoelectric conversion element 11 is joined, or the powder is applied only to the location where the thermoelectric conversion element is joined in advance. Further, it may be arranged by applying powder paste made using a resin or the like to a portion where thermoelectric conversion elements are to be joined. Since the step of installing the foil can be omitted by applying the powder in advance, the manufacturing process can be further simplified.
  • FIG. 5 shows a perspective view of an example of the thermoelectric conversion module according to the first embodiment of the present invention, in which 62 thermoelectric conversion elements are aligned and joined in a grid pattern.
  • Reference numeral 23 denotes a lead-out wiring, but the other elements are already described with reference to FIG.
  • the lead-out wiring 23 is a wiring for taking out the electric power generated in the thermoelectric conversion element, and any material may be used as long as it is an energized material.
  • the process shown in FIG. 4 is applied to form the thermoelectric conversion module shown in FIG. This thermoelectric conversion module may be used by being enclosed in a case, or may be used as it is. As shown in FIG.
  • thermoelectric conversion elements 11 are alternately connected by a low temperature side electrode 21 and a high temperature side electrode 22 and are electrically connected in series.
  • a lead-out wiring 23 is formed from both ends of the series connection, and an electromotive force is taken out to the outside.
  • the thermoelectric conversion element 11 is represented as a quadrangular prism, and the shape seen from the high temperature side electrode is as shown in FIG.
  • the shape of the thermoelectric conversion element is not limited to a rectangular column, and may be a columnar shape such as a triangular column, a polygonal column, a cylinder, or an elliptical column.
  • thermoelectric conversion element 11 and the high temperature side electrode 22 are smaller than the bonding area between the thermoelectric conversion element 11 and the low temperature side electrode 21 as shown in the first embodiment, for example, by removing the outer periphery.
  • the thermoelectric conversion element As a structure in which the junction area between the thermoelectric conversion element and the high temperature side electrode is smaller than the junction area between the thermoelectric conversion element and the low temperature side electrode, the thermoelectric conversion element has a conical shape, and the junction area between the high temperature side electrode and the low temperature side electrode It is conceivable to make it smaller than the bonding area. However, when the thermoelectric conversion element has a conical shape, the volume of the element decreases, and the power generation efficiency decreases. According to the present embodiment, the thermoelectric conversion element includes a parallel portion having side surfaces formed in parallel and a small-diameter portion whose cross-sectional area decreases toward the end surface to which the high temperature side electrode is connected. The thermal stress generated between the thermoelectric conversion element and the electrode can be suppressed without lowering.
  • FIG. 6 (b) is a plan view excerpting the element shape on the high-temperature bonding side of the thermoelectric conversion module in Example 2 of the present invention.
  • the quadrangular prism-shaped thermoelectric conversion element 11 as shown in FIGS. 5 and 6A is used, but in the second embodiment, a cylindrical shape is used.
  • the cylindrical shape By using the cylindrical shape in this way, the stress generated in the outer peripheral portion can be made uniform, and an improvement in bonding reliability is expected.
  • the thermoelectric conversion module can be manufactured by the process shown in FIG. 4, and there is no process newly required due to the element shape of this example.
  • FIG. 6 (c) is a plan view excerpting the element shape on the high-temperature bonding side of the thermoelectric conversion module in Example 3 of the present invention.
  • the thermoelectric conversion element 11 has a quadrangular prism shape as shown in FIGS. 5 and 6A.
  • a hexagonal prism shape is used.
  • stress that tends to concentrate on the corner portion can be dispersed, and joint reliability is expected to be improved.
  • the number of wafers taken from one wafer can be improved, and the unit price of the element can be reduced.
  • a hexagonal column is described as an example of a polygonal column, but it may be a polygonal column. Even when the thermoelectric conversion element having the shape of Example 3 is used, the thermoelectric conversion module can be manufactured by the process shown in FIG. 4, and there is no process newly required due to the element shape of this example.
  • FIG. 7 is a side view of the vicinity of the elements of the thermoelectric conversion module in Example 4 of the present invention. Description of elements already described in FIG. 1 is omitted.
  • a cutout portion is formed in the high temperature side electrode 22. That is, the notched portion 221 is formed by removing the portion of the high temperature side electrode 22 facing the outer periphery of the high temperature side bonding portion of the thermoelectric conversion element 11.
  • the notch 221 is formed with a curved surface that is recessed toward the high temperature side electrode 22.
  • thermoelectric conversion module 1 By making the thermoelectric conversion module 1 using the high temperature side electrode 22 having the notch 221, the high temperature side electrode bonding area 222 is made smaller than the low temperature side electrode bonding area 223, thereby causing stress generated in the vicinity of the bonding portion. The same effect as in the first embodiment can be obtained. In addition, since the bonding area is adjusted on the electrode side, processing to the thermoelectric conversion element 11 is not necessary.
  • the shape of the notch 221 is not limited, but it is only necessary that the high temperature side electrode bonding area 222 can be controlled to be smaller than the low temperature side electrode bonding area 223.
  • thermoelectric conversion element 11 may be a quadrangular column, a cylinder, or a polygonal column as shown in the first to third embodiments.
  • manufacturing process of the thermoelectric conversion module 1 is realizable by the same process as Example 1 of FIG.
  • thermoelectric conversion module in the thermoelectric conversion module, stress and strain generated in the element and in the junction in the vicinity of the element / electrode junction where stress is concentrated are alleviated, and cracks in the element and fracture of the junction are suppressed. be able to. Therefore, the thermoelectric conversion module of the present invention can be used for power generation under a high-temperature environment, for example, by attaching it to a piping of an industrial furnace such as a blast furnace or an incinerator or an exhaust pipe of an automobile.
  • an industrial furnace such as a blast furnace or an incinerator or an exhaust pipe of an automobile.
  • Thermoelectric conversion module 11 Thermoelectric conversion element 21 Low temperature side electrode 22 High temperature side electrode 23 Lead wiring 30 Joining material 40 Support jig 41 Pressing jig 111 Notch part 112 High temperature side element junction area 113 Low temperature side element junction area 221 Notch Part 222 High temperature side electrode bonding area 223 Low temperature side electrode bonding area

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

 応力が集中する素子/高温側電極の接合部近傍において、素子内および接合部の応力やひずみの緩和を実現する熱電変換モジュールを提供する。 高温側および低温側に配置される電極と、P型およびN型の熱電変換素子とが接合層を介して接続される熱電変換モジュールにおいて、前記P型およびN型の熱電変換素子と高温側電極が接合する面積が、前記P型およびN型の熱電変換素子と低温側電極が接合する面積よりも小さいことを特徴とする。そのために、熱電変換素子の高温側接合部の外周、或いは、熱電変換素子の高温側接合部の外周に対向する高温側電極の部分を除去して切り欠き部を形成する。

Description

熱電変換モジュール
 本発明は、熱を電気に変換する熱電変換モジュールに関する。
 例えば、溶鉱炉、焼却炉等の工業炉の配管や自動車の排気管に取り付けて用いられる熱電変換モジュールは、300~600℃の高温の環境下で用いられる。このような熱電変換モジュール稼働環境下において、熱電変換素子と電極の接合部では、熱電変換素子と電極間の熱膨張差により接合部に応力が発生し、接合部や熱電変換素子内の破壊が懸念される。
 熱電変換素子の接合構造の背景技術として、特開2012-204623号公報(特許文献1)がある。この公報には「熱電変換モジュールにおける電極板は、相互に離間する一対の電極側接合面と、各電極側接合面を連結する連結部がそれぞれ形成されている。また各熱電変換素子は角柱状であり、各素子側接合面が矩形状となっている。各電極側接合面と各素子側接合面とは相似であり、各電極側接合面は各素子側接合面よりも面積が小さく形成されている。各電極側接合面と素子側接合面とは、はんだによって接合されており、各電極側接合面と素子側接合面とは、はんだによって接合されている。これらにより、熱電変換素子の全て角部C及び外周辺Lでは、他の部分と比較してはんだが薄く形成される。」と記載されている(要約参照)。
特開2012-204623号公報
 特許文献1には、熱電変換モジュールの構造が記載されている。しかし、特許文献1の熱電変換モジュールは、素子部へ発生する応力を緩和することができると記載されているが、はんだへのひずみを緩和することはできない。このような熱電変換モジュールでは、端部のはんだ接合部が薄いため温度変化が生じるとはんだ内にひずみが集中し、接合部の耐熱疲労信頼性を確保することが難しい。
 自動車等の稼動/非稼動時の温度差が大きい環境では、電極と素子間に発生する熱ストレスの低減が必須である。
 本発明は、応力が集中する素子/高温側電極の接合部近傍において、素子内および接合部の応力やひずみの緩和を実現する熱電変換モジュールを提供することを目的とする。
 上記目的を達成するために、本発明は特許請求の範囲に記載の構成を採用する。
 本発明は、上記課題を解決する手段を複数含んでいるが、本発明の熱電変換モジュールの一例を挙げるならば、高温側および低温側に配置される電極と、P型およびN型の熱電変換素子とが接合層を介して接続される熱電変換モジュールにおいて、前記P型およびN型の熱電変換素子は、高温側電極が接続する端面と、低温側電極が接続する端面と、前記高温側電極が接続する端面および低温側電極が接続する端面を接続する側面とを有し、前記高温側電極が接続する端面の面積が、前記低温側電極が接続する端面の面積よりも小さく形成されるとともに、前記側面が平行に形成された平行部と、前記高温側電極が接続する端面に向けて断面の面積が縮小する径小部とからなることを特徴とするものである。
 本発明の熱電変換モジュールは、前記P型およびN型の熱電変換素子の高温側接合部の外周を除去して切り欠き部を形成したものでよい。
 また、本発明の熱電変換モジュールの他の一例を挙げるならば、高温側および低温側に配置される電極と、P型およびN型の熱電変換素子とが接合層を介して接続される熱電変換モジュールにおいて、前記高温側電極の前記P型およびN型熱電変換素子の端面と接続する部分の面積が、前記低温側電極の前記P型およびN型熱電変換素子の端面と接続する部分の面積よりも小さいことを特徴とするものである。
 本発明の熱電変換モジュールは、前記熱電変換素子の高温側接合部の外周に対向する、前記高温側の電極の部分を除去して切り欠き部を形成したものでよい。
 本発明によれば、熱電変換モジュールにおいて、応力が集中する素子/電極の接合部近傍における、素子内および接合部に発生する応力やひずみを緩和し、素子内クラックや接合部の破断を抑制することができる。
本発明の実施例1における熱電変換モジュールの素子近傍を抜粋した側面図である。 本発明の実施例1における熱電変換素子の切り欠き部を示す図である。 本発明の実施例1における熱電変換素子の切り欠き幅と切り込み深さの応力低減効果を示す図である。 本発明の実施例1における熱電変換素子組立体の製造方法の一連の流れを示すフロー側面図である。 本発明の実施例1における熱電変換モジュールの一例の斜視図である。 本発明の実施例1~3における熱電変換モジュールの高温接合側の素子形状を抜粋した平面図である。 本発明の実施例4における熱電変換モジュールの素子近傍を抜粋した側面図である。 従来の熱電変換モジュールの素子近傍を抜粋した側面図である。
 以下、本発明の実施の形態を、図面を用いて説明する。なお、実施の形態を説明するための各図において、同一の機能を有する要素には同一の名称、符号を付して、その繰り返しの説明を省略する。
 図1に、本発明の実施例1の熱電変換モジュールの素子近傍を抜粋した側面図を示す。図1において、P型熱電変換素子およびN型熱電変換素子である熱電変換素子11を接合材30により低温側電極21と高温側電極22に接合している。そして、熱電変換素子11の高温側電極22側の外周に切り欠き部111を形成して、低温側素子接合面積113に比較して高温側素子接合面積112が小さい構造となっている。すなわち、P型およびN型の熱電変換素子11は、高温側電極22が接続する端面と、低温側電極21が接続する端面と、高温側電極が接続する端面および低温側電極が接続する端面を接続する側面とを有し、高温側電極が接続する端面の面積112が、低温側電極が接続する端面の面積113よりも小さく形成されるとともに、側面が平行に形成された平行部と、高温側電極が接続する端面に向けて断面の面積が縮小する径小部とからなっている。
 熱電変換モジュールは、P型およびN型の熱電変換素子の各々の側面に温度差を与えることによって電子が移動して電流を発生するゼーベック効果を利用している。この電子の移動により、熱を電気に変換する機能を有する。図1は、上面を低温に下面を高温にした場合の図である。電流は、P型熱電変換素子とN型熱電変換素子を直列に接合することで電気的な回路を形成する。このように直列に接続した熱電変換素子を平面状、ライン状などに複数接合することで熱電変換素子組立体1を構成する。
 熱電変換素子11はモジュールを使用する環境温度により最適な材料が異なり、シリコン-ゲルマニウム系、鉄-シリコン系、ビスマス-テルル系、マグネシウム-シリコン系、鉛-テルル系、コバルト-アンチモン系、ビスマス-アンチモン系やホイスラー合金系、ハーフホイスラー合金系などがある。
 前記のように、熱電変換モジュール1では上下面で温度差をつける必要があるため、熱電変換素子11は接合時の熱負荷や稼動時の温度変化により素子/電極接合部、特に高温側接合部に応力が集中することが考えられる。接合部に応力が発生し、素子や接合部の破壊応力を上回ると素子や接合部で亀裂が発生し、接合信頼性が大きく低下するという課題がある。
 そのため熱電変換素子と電極の接合には、硬ろうやはんだ、軟ろうなどが接合材として用いられることが多い。硬ろうの場合、接合温度が600~800℃と高く、接合プロセスの冷却過程で接合部に発生する応力を低減する構造が必要である。軟ろうの場合、接合温度が300℃以下であるため接合プロセスの応力は硬ろうよりも低減できるが、融点が300℃以下であるため、低温系の熱電変換モジュールのみに用途が限られる。
 低温側電極21および高温側電極22は、ニッケル、モリブデン、チタン、鉄、銅、マンガン、タングステン、またはこれらの金属のうち、いずれかを主成分とする合金であることが望ましい。特に、熱電変換素子材料の線膨張係数と電極の線膨張係数が異なると、温度変化が生じた場合に接合部近傍に応力が発生するため、接合部近傍の応力低減を目的として、熱電変換素子と線膨張係数差が小さい材料を電極に選択する方が接合信頼性を向上できる。接合材30は、アルミニウム、ニッケル、錫、銅、亜鉛、ゲルマニウム、マグネシウム、金、銀、インジウム、鉛、ビスマス、テルルまたはこれらの金属のうち、いずれかを主成分とする合金であることが望ましい。
 熱電変換素子11の一例であるシリコン-ゲルマニウム素子の線膨張係数は4.5ppm/℃、シリコン-マグネシウム素子の線膨張係数は15.5ppm/℃であるが、本実施例では熱電変換素子11の線膨張係数をαppm/℃として記載する。同様に低温側電極21と高温側電極22の材料はモリブデン(線膨張係数5.8ppm/℃)、ニッケル(線膨張係数15.2ppm/℃)などがあるが、本実施例では線膨張係数βppm/℃の材料として記載する。
 熱電変換モジュール1は高温側電極22のみ加熱されるため、高温側の熱電変換素子11と高温側電極22では温度上昇に伴う伸びが生じる。温度が上昇した際に熱電変換モジュール1と高温側電極22が伸びる長さは、接合部中心からの距離をLとすると、夫々α×△T×L、β×△T×Lとなる。この伸びの差である|(α-β)×△T×L|が接合部近傍に応力を発生させる原因となる。対象製品により熱電変換素子11の材料と使用環境温度が決定するため、α、β、△Tは製品により決定するといえる。そのため、高温側電極22に発生する応力を低減するためには接合部中心からの距離Lを短くすることが効果的である。本実施例は、図1に示すように熱電変換素子11の高温側接合部の外周を除去して切り欠き部111を形成することで接合部中心からの距離Lを短くし、高温側接合面積112を低温側接合面積113よりも小さくすることで接合信頼性を向上させることができる。一方、低温側接合部では低温側電極21を冷却しているため、高温側接合部に比べて温度上昇は抑制される。熱電変換特性を高めるためには、接合面積は極力大きくした方が良いため、低温側では接合面積を確保してある。
 高温側接合面積112は外周の除去長さa(図1中)により決定されるが、熱電変換素子11へのクラックを防止するためには、使用環境温度との温度差△Tと熱電変換素子11および高温側電極22の線膨張係数差α-βから素子内へ発生する応力を導出し、その応力値が熱電変換素子11の破壊応力よりも小さい値となるようにaを決定すればよい。
  また、本実施例では接合材30の高温接合側の形状を高温側接合面積112と同サイズで記載しているが、その限りではない。
 外周部の削除は、素子をダイシングする際にダイシングブレードやレーザ加工などで行っても良いし、個片に分割した後に行っても問題ない。
 図2に、熱電変換素子11の高温側接合部の外周を除去した切り欠き部111の形状を示す。図2(b)に示すように、切り欠き部111が直角な部分を有する場合には、直角な部分に応力が集中して、クラックや破断が生じやすくなる。図2(a)に示すように、切り欠き部を熱電変換素子の側に向けてくぼむ曲面とすることにより、応力が分散し、クラックや破断が生じにくくなる。
 ここで、図1中の切欠き部の長さaおよびbの効果の一例を図3を用いて説明する。図3(a)は横軸に切欠き幅a(mm)、縦軸は切欠きなし時の熱電変換素子側面の垂直方向引張応力を1とした場合の応力比を示している。本シミュレーションでは、電極間に高さ2.3mmの熱電変換素子が厚さ0.05mmの接合材を介して接合された2次元モデルを形成し、600℃から25℃に温度を低下させた場合に熱電変換素子側面の垂直方向に発生する応力を評価したものである。図3(a)から、切欠き幅aは0.1mm確保すると応力値をおよそ40%低減する効果があることがわかる。また、切欠き幅aを大きくしすぎると熱電変換素子11と高温側電極22の接合面積が小さくなるため、熱電変換特性に影響を及ぼす。これらから、切欠き幅aは0.1mm以上であり、熱電変換素子11と高温側電極22の接合面積が熱電変換素子11と低温側電極21の接合面積の50%以上を確保する長さ以下とすることが望ましい。そして、高温側電極が接続する端面の面積が、低温側電極が接続する端面の面積の50~95%が適当である。
 図3(b)は横軸に切り込み深さb(mm)、縦軸は切欠きなし時の熱電変換素子側面の垂直方向引張応力を1とした場合の応力比を示している。シミュレーション条件は図3(a)と同様である。図3(b)から、切り込み深さb(mm)は0.05mm確保すると応力値をおよそ30%低減する効果があることがわかる。また、切り込み深さbを大きくしすぎると熱電変換素子11の体積が減少し熱電変換特性に影響を与える。これらから、切り込み深さbは0.05mm以上であり、熱電変換素子11高さの50%以下とすることが望ましい。
 比較のために、図8に切り欠き部を有さない従来の熱変換モジュールを示す。切り欠き部を有さない熱変換モジュールでは、点線で囲んだ、熱電変換素子11の高温側電極22との接合部の外周部分に応力がかかってくる。
 図4は、本発明の実施例1における熱電変換素子組立体の製造方法の一連の流れを示すフロー側面図である。なお、図1で説明済みの要素については説明を省略する。
 先ず、図4の(a)に示すように、支持治具40上に高温側電極22を設置する。本組立プロセスでは支持治具40は、セラミックや金属など、接合プロセスで溶融しない材料であればよく、接合材30と反応しない材料、もしくは表面に反応しない層を形成し反応を抑制することが望ましい。次に、高温側電極22上に接合材30、熱電変換素子11の順に位置合せおよび設置を行う。各熱電変換素子上に再度接合材30を設置し、熱電変換素子11上に低温側電極21を配置する。ここでは接合材30を金属箔として説明するが、接合材30の厚さは、1~500μmが望ましい。これらの設置には、治具(図示せず)を用いて一括で設置しても良いし、個別に設置してもよく、方法は問わない。
 熱電変換素子11への切欠きは、熱電素子ウェハから個片に分割する際にダイシングブレード、レーザ加工やワイヤソーで形成する方法、個片に分割したのちに切削加工、研削加工などで形成する方法が考えられる。熱電素子ウェハから個片分割時に形成する一例として、ダイシングブレードによる方法を以下に示す。まず熱電素子ウェハのダイシングラインに対して、ブレード幅の厚いブレードで溝加工を行い、切欠き部を形成する。そののち、同一ライン上をブレード幅の薄いブレードでダイシングし、個片化することにより切欠き付の熱電変換素子11を形成することができる。上記では、幅の厚いブレード、薄いブレード共、同一方向からダイシングする例を記載したが、熱電素子ウェハの表裏からダイシングを行ってもよい。また、予め幅の薄いブレードでダイシングしたのち幅の厚いブレードで切欠き部を形成してもよい。ここではダイシングブレードを例に挙げたが、レーザ加工であれば出力を、ワイヤソーであればワイヤ径を変化させることで同様な加工が可能である。
 次に、図4の(b)に示すように、上方から加圧治具41により加圧を行うと共に加熱を行い、接合材30を溶融させて、低温側電極21と熱電変換素子11、高温側電極22と熱電変換素子11を、接合材30を介して接合させる。この際の熱電変換素子にかかる荷重は0.12kPa以上として接合することが望ましい。そののち、図4の(c)に示すように、加圧治具41と支持治具40から取り外すことにより、熱電変換モジュール1が形成できる。このように、接合プロセスは従来プロセスと同様であり、新たなプロセスは不要である。
 図4を用いた説明では、上下面の接合材30を一括して接合するプロセスを示したが、いずれか一方を予め接合したのち、他方を接合してもよい。たとえば、図4の(a)のステップにおいて、支持治具40側の接合材30と熱電変換素子11のみを設置し、下側の支持治具40を加熱し接合材30を溶融して熱電変換素子11と高温側電極22とを接合させ、その後、熱電変換素子11の上面と低温側電極21を接合材30で接合して熱電変換モジュール1を形成してもよい。
 ここで、加圧力を0.12kPa以上としたのは、接合時に熱電変換素子11が傾くのを防止することと、熱電変換素子11と低温側電極21、高温側電極22の界面から溶融した接合材30を極力排出するためである。加圧力の上限は特に限定しないが、素子が破壊しない程度とする必要があるため素子の圧壊強さ未満とする。具体的には1000MPa程度以下であればよいが、本実施例では、数MPa程度の圧力で十分に効果を得ることができる。
 接合雰囲気は、非酸化性雰囲気であればよく、具体的に、真空雰囲気、窒素雰囲気、窒素水素混合雰囲気等を用いることができる。
 本実施例では、接合材30として金属箔を例としたが、接合材30は粉末や合金粉末を用いてもよい。この場合、単一の粉末として用いてもよく、各々の粉末から形成される層を積層してもよく、これらの混合粉末を用いてもよい。このような粉末を用いる場合、粉末のみを圧粉成形した成形体を熱電変換素子11の接合を行う箇所のみに配置してもよく、あるいは予め熱電変換素子の接合を行う箇所のみに粉末を塗布しておいてもよく、さらに樹脂等を用いてペースト化した粉末を熱電変換素子の接合を行う部分に塗布することで配置してもよい。予め粉末を塗布しておくことで箔を設置する工程が省略できるため、製造プロセスをより簡易にすることができる。
 図5は、本発明の実施例1における熱電変換モジュールの一例の斜視図を示しており、62個の熱電変換素子を格子状に整列して接合したものである。23は引き出し配線であるが、その他の要素は図1で説明済みのため、説明は省略する。引き出し配線23は、熱電変換素子で発生した電力を取り出すための配線であり、材質は通電する材料であればどのような材料でも良い。図4に示したプロセスを適用し、図5に示す熱電変換モジュールを形成する。この熱電変換モジュールは、ケースに封入して使用しても良いし、このまま使用しても良い。図5に示すように、熱電変換素子11は低温側電極21と高温側電極22により交互に接続されて、電気的に直列に接続されている。直列接続の両端から引き出し配線23を形成し、外部へ起電力を取り出す構造とする。図5においては、熱電変換素子11を四角柱として表しており、高温側電極からみた形状は図6(a)のようになる。熱電変換素子の形状は、四角柱に限らず、三角柱、多角柱、円柱、楕円柱など柱状であればよい。
 本実施例1に示すような、熱電変換素子11と高温側電極22の接合面積を熱電変換素子11と低温側電極21の接合面積よりも小さくした構造、例えば外周を除去した構造とすることにより、高温環境下や温度変動環境下で熱電素子と電極間に発生する熱応力を抑制し、実使用環境下でも高い信頼性を確保することが可能となる。
 熱電変換素子と高温側電極の接合面積を熱電変換素子と低温側電極の接合面積よりも小さくした構造としては、熱電変換素子を円錐形状として、高温側電極との接合面積を低温側電極との接合面積よりも小さくすることが考えられる。しかし、熱電変換素子を円錐形状とすると素子の体積が減少し、発電効率が低下する。本実施例によれば、熱電変換素子が、側面が平行に形成された平行部と、高温側電極が接続する端面に向けて断面の面積が縮小する径小部とからなるので、発電効率を低下することなく、熱電変換素子と電極間に発生する熱応力を抑制することができる。
 図6(b)は、本発明の実施例2における熱電変換モジュールの高温接合側の素子形状を抜粋した平面図である。実施例1では、図5および図6(a)に示すような四角柱形状の熱電変換素子11であったが、実施例2では円柱形状としている。このように円柱形状とすることにより外周部に発生する応力を均一化することができ、接合信頼性の向上が見込まれる。実施例2の形状の熱電変換素子を使用した場合でも、図4に示したプロセスで熱電変換モジュールを作製することができ、本実施例の素子形状により新たに必要となるプロセスはない。
 図6(c)は、本発明の実施例3における熱電変換モジュールの高温接合側の素子形状を抜粋した平面図である。実施例1では、図5および図6(a)に示すような四角柱形状の熱電変換素子11であったが、実施例3では六角柱形状としている。このように六角柱形状とすることによりコーナー部に集中しやすい応力を分散することができ、接合信頼性の向上が見込まれる。また、一枚のウェハからの取り数も向上でき、素子単価の低減が可能である。ここでは多角柱の例として六角柱を記載したが、多角柱であればよい。実施例3の形状の熱電変換素子を使用した場合でも、図4に示したプロセスで熱電変換モジュールを作製することができ、本実施例の素子形状により新たに必要となるプロセスはない。
 図7は、本発明の実施例4における熱電変換モジュールの素子近傍を抜粋した側面図である。図1で説明済みの要素については説明を省略する。本実施例は、高温側電極22に切り欠き部を形成したものである。すなわち、熱電変換素子11の高温側接合部の外周に対向する、高温側電極22の部分を除去して切り欠き部221を形成したものである。この実施例では、切り欠き部221を、高温側電極22の側に向けてくぼむ曲面で形成したものである。切り欠き部221を有する高温側電極22を用いた熱電変換モジュール1とすることで、低温側電極接合面積223よりも高温側電極接合面積222を小さくすることにより、接合部近傍に発生する応力を低減し、実施例1と同様な効果を得ることができる。また、電極側で接合面積を調整するため、熱電変換素子11への加工は不要となる。
 切り欠き部221は形状に制限を設けないが、高温側電極接合面積222が低温側電極接合面積223よりも小さくなるように制御できれば良い。
 図7の実施例では側面図を記載しているが、熱電変換素子11の形状は、実施例1乃至実施例3で示したような四角柱、円柱、多角柱でよい。また、熱電変換モジュール1の製造プロセスは、図4の実施例1と同プロセスで実現可能である。
 本発明によれば、熱電変換モジュールにおいて、応力が集中する素子/電極の接合部近傍における、素子内および接合部に発生する応力やひずみを緩和し、素子内クラックや接合部の破断を抑制することができる。そのため、本発明の熱電変換モジュールは、高温の環境下において、例えば、溶鉱炉、焼却炉等の工業炉の配管や自動車の排気管などに取り付けて、発電に用いることができる。
1 熱電変換モジュール
11 熱電変換素子
21 低温側電極
22 高温側電極
23 引き出し配線
30 接合材
40 支持治具
41 加圧治具
111 切り欠き部
112 高温側素子接合面積
113 低温側素子接合面積
221 切り欠き部
222 高温側電極接合面積
223 低温側電極接合面積

Claims (15)

  1.  高温側および低温側に配置される電極と、P型およびN型の熱電変換素子とが接合層を介して接続される熱電変換モジュールにおいて、
     前記P型およびN型の熱電変換素子は、高温側電極が接続する端面と、低温側電極が接続する端面と、前記高温側電極が接続する端面および低温側電極が接続する端面を接続する側面とを有し、前記高温側電極が接続する端面の面積が、前記低温側電極が接続する端面の面積よりも小さく形成されるとともに、前記側面が平行に形成された平行部と、前記高温側電極が接続する端面に向けて断面の面積が縮小する径小部とからなることを特徴とする熱電変換モジュール。
  2.  高温側および低温側に配置される電極と、P型およびN型の熱電変換素子とが接合層を介して接続される熱電変換モジュールにおいて、
     前記高温側電極の前記P型およびN型熱電変換素子の端面と接続する部分の面積が、前記低温側電極の前記P型およびN型熱電変換素子の端面と接続する部分の面積よりも小さいことを特徴とする熱電変換モジュール。
  3.  請求項1または請求項2に記載の熱電変換モジュールにおいて、
     前記高温側電極が接続する端面の面積もしくは前記高温側電極の前記P型およびN型熱電変換素子の端面と接続する部分の面積が、前記低温側電極が接続する端面の面積の50~95%であることを特徴とする熱電変換モジュール。
  4.  請求項1に記載の熱電変換モジュールにおいて、
     前記P型およびN型の熱電変換素子の高温側接合部の外周を除去して切り欠き部を形成したことを特徴とする熱電変換モジュール。
  5.  請求項2に記載の熱電変換モジュールにおいて、
     前記熱電変換素子の高温側接合部の外周に対向する、前記高温側の電極の部分を除去して切り欠き部を形成したことを特徴とする熱電変換モジュール。
  6.  請求項4に記載の熱電変換モジュールにおいて、
     前記切り欠き部は、前記熱電変換素子の側に向けてくぼむ曲面で形成されていることを特徴とする熱電変換モジュール。
  7.  請求項5に記載の熱電変換モジュールにおいて、
     前記切り欠き部は、前記高温側の電極の側に向けてくぼむ曲面で形成されていることを特徴とする熱電変換モジュール。
  8.  請求項6に記載の熱電変換モジュールにおいて、
     前記切り欠き部の深さが0.05mm以上であり、熱電変換素子高さの50%以下であり、かつ前記切り欠き部の端部からの長さが0.1mm以上であり、熱電変換素子と高温側電極の接合面積が熱電変換素子と低温側電極の接合面積の50%以上を確保する長さ以下であることを特徴とする熱電変換モジュール。
  9.  請求項4~8のいずれか1つに記載の熱電変換モジュールにおいて、
    前記切り欠き部を切削加工により形成したものであることを特徴とする熱電変換モジュール。
  10.  請求項4~8のいずれか1つに記載の熱電変換モジュールにおいて、
    前記切り欠き部を研削加工により形成したものであることを特徴とする熱電変換モジュール。
  11.  請求項4~8のいずれか1つに記載の熱電変換モジュールにおいて、
     前記切り欠き部は、ダイシングブレードを用いるダイシングにより形成したものであることを特徴とする熱電変換モジュール。
  12.  請求項4~8のいずれか1つに記載の熱電変換モジュールにおいて、
     前記切り欠き部は、レーザ加工により形成したものであることを特徴とする熱電変換モジュール。
  13.  請求項1~12の何れか1つに記載の熱電変換モジュールにおいて、
     前記熱電変換素子の形状が四角柱、円柱、多角柱のいずれかの形状であることを特徴とする熱電変換モジュール。
  14.  請求項1~13の何れか1つに記載の熱電変換モジュールにおいて、
     前記P型およびN型の熱電変換素子が、シリコン-ゲルマニウム系、鉄-シリコン系、ビスマス-テルル系、マグネシウム-シリコン系、鉛-テルル系、コバルト-アンチモン系、ビスマス-アンチモン系やホイスラー合金系、ハーフホイスラー合金系のいずれかの組合せであることを特徴とする熱電変換モジュール。
  15.  請求項1~13の何れか1つに記載の熱電変換モジュールにおいて、
     複数のP型およびN型の熱電変換素子を格子状に整列して接合し、前記複数のP型およびN型の熱電変換素子の一部もしくは全てを電気的に直列に接続したことを特徴とする熱電変換モジュール。
PCT/JP2015/056074 2014-03-04 2015-03-02 熱電変換モジュール WO2015133430A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/037,334 US20160293823A1 (en) 2014-03-04 2015-03-02 Thermoelectric Conversion Module
DE112015000195.6T DE112015000195T5 (de) 2014-03-04 2015-03-02 Thermoelektrisches Umwandlungsmodul
CN201580002730.8A CN105765749A (zh) 2014-03-04 2015-03-02 热电转换模块

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014041613A JP6225756B2 (ja) 2014-03-04 2014-03-04 熱電変換モジュール
JP2014-041613 2014-03-04

Publications (1)

Publication Number Publication Date
WO2015133430A1 true WO2015133430A1 (ja) 2015-09-11

Family

ID=54055236

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/056074 WO2015133430A1 (ja) 2014-03-04 2015-03-02 熱電変換モジュール

Country Status (5)

Country Link
US (1) US20160293823A1 (ja)
JP (1) JP6225756B2 (ja)
CN (1) CN105765749A (ja)
DE (1) DE112015000195T5 (ja)
WO (1) WO2015133430A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017107925A (ja) * 2015-12-08 2017-06-15 日立化成株式会社 熱電変換モジュールおよびその製造方法
JP2017163034A (ja) * 2016-03-10 2017-09-14 株式会社アツミテック 熱電変換モジュール及び熱電変換素子
CN107180909B (zh) * 2017-07-05 2019-05-03 东北大学 倾斜式多面体结构的热电臂
CN112602202A (zh) * 2018-08-28 2021-04-02 琳得科株式会社 热电转换材料的芯片的制造方法、以及使用了通过该制造方法得到的芯片的热电转换组件的制造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10229223A (ja) * 1997-02-17 1998-08-25 Tekunisuko:Kk 熱電素子
JP2001237465A (ja) * 2000-02-23 2001-08-31 Citizen Watch Co Ltd 熱電素子とその製造方法
JP2005302783A (ja) * 2004-04-06 2005-10-27 Toshiba Corp 熱電変換モジュール及びその形状評価装置及び形状評価方法
JP2012222031A (ja) * 2011-04-05 2012-11-12 Mitsubishi Electric Corp 電子装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001223394A (ja) * 2000-02-10 2001-08-17 Tokyo Ika Denki Seisakusho:Kk ペルチェ素子
JP2004165366A (ja) * 2002-11-12 2004-06-10 Seiko Instruments Inc 熱電変換素子とその製造方法
CN101515628B (zh) * 2005-08-02 2011-03-09 株式会社东芝 热电装置及其制造方法
JP2009099686A (ja) * 2007-10-15 2009-05-07 Sumitomo Chemical Co Ltd 熱電変換モジュール
US9082928B2 (en) * 2010-12-09 2015-07-14 Brian Isaac Ashkenazi Next generation thermoelectric device designs and methods of using same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10229223A (ja) * 1997-02-17 1998-08-25 Tekunisuko:Kk 熱電素子
JP2001237465A (ja) * 2000-02-23 2001-08-31 Citizen Watch Co Ltd 熱電素子とその製造方法
JP2005302783A (ja) * 2004-04-06 2005-10-27 Toshiba Corp 熱電変換モジュール及びその形状評価装置及び形状評価方法
JP2012222031A (ja) * 2011-04-05 2012-11-12 Mitsubishi Electric Corp 電子装置

Also Published As

Publication number Publication date
JP2015167195A (ja) 2015-09-24
DE112015000195T5 (de) 2016-07-14
CN105765749A (zh) 2016-07-13
JP6225756B2 (ja) 2017-11-08
US20160293823A1 (en) 2016-10-06

Similar Documents

Publication Publication Date Title
JP6171513B2 (ja) 熱電変換モジュールおよびその製造方法
JP6094136B2 (ja) 熱電変換素子組立体及び熱電変換モジュール及びその製造方法
WO2016013366A1 (ja) 熱電変換モジュールおよびその製造方法
US8841540B2 (en) High temperature thermoelectrics
WO2015133430A1 (ja) 熱電変換モジュール
JP4850083B2 (ja) 熱電変換モジュール及びそれを用いた発電装置及び冷却装置
WO2010103949A1 (ja) 熱電変換素子の製造方法
JP2007109942A (ja) 熱電モジュール及び熱電モジュールの製造方法
JP2011029295A (ja) 熱電変換モジュール及びその製造方法
JPWO2016056278A1 (ja) 熱電変換素子、その製造方法および熱電変換モジュール
JP2017130596A (ja) 熱電変換モジュールおよびその製造方法
JP2016174114A (ja) 熱電変換モジュール
JP2016157749A (ja) 熱電変換モジュール
CN109065697B (zh) 一种环形热电发电器件
JP6115047B2 (ja) 熱電変換モジュールおよびその製造方法
JP5084553B2 (ja) セグメント型熱電素子、熱電モジュール、発電装置および温度調節装置
JP2017143111A (ja) 熱電変換モジュールおよびその製造方法
JP2008109054A (ja) 熱電変換モジュール及び熱電変換モジュールの製造方法
JP2018037485A (ja) 熱電変換モジュールの製造方法
JP6010941B2 (ja) 気密ケース入り熱電変換モジュール
JP7047244B2 (ja) 熱電変換モジュールの製造方法
JP2010238741A (ja) 熱電変換素子の製造方法及び装置
WO2017130461A1 (ja) 熱電変換モジュールおよびその製造方法
JP5153247B2 (ja) セグメント型熱電素子、熱電モジュール、発電装置および温度調節装置
JP2008166638A (ja) 熱電素子モジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15758749

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15037334

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112015000195

Country of ref document: DE

Ref document number: 1120150001956

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15758749

Country of ref document: EP

Kind code of ref document: A1