WO2015133405A1 - 光学活性アゼチジノン化合物の製造方法 - Google Patents

光学活性アゼチジノン化合物の製造方法 Download PDF

Info

Publication number
WO2015133405A1
WO2015133405A1 PCT/JP2015/055924 JP2015055924W WO2015133405A1 WO 2015133405 A1 WO2015133405 A1 WO 2015133405A1 JP 2015055924 W JP2015055924 W JP 2015055924W WO 2015133405 A1 WO2015133405 A1 WO 2015133405A1
Authority
WO
WIPO (PCT)
Prior art keywords
optically active
compound
formula
azetidinone compound
group
Prior art date
Application number
PCT/JP2015/055924
Other languages
English (en)
French (fr)
Inventor
内藤 真也
浩英 橘山
繁生 中村
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Priority to US15/120,842 priority Critical patent/US20160362369A1/en
Priority to JP2016506463A priority patent/JP6795974B2/ja
Publication of WO2015133405A1 publication Critical patent/WO2015133405A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D205/00Heterocyclic compounds containing four-membered rings with one nitrogen atom as the only ring hetero atom
    • C07D205/02Heterocyclic compounds containing four-membered rings with one nitrogen atom as the only ring hetero atom not condensed with other rings
    • C07D205/06Heterocyclic compounds containing four-membered rings with one nitrogen atom as the only ring hetero atom not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member
    • C07D205/08Heterocyclic compounds containing four-membered rings with one nitrogen atom as the only ring hetero atom not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with one oxygen atom directly attached in position 2, e.g. beta-lactams
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B53/00Asymmetric syntheses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/18Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
    • C07F7/1804Compounds having Si-O-C linkages
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Definitions

  • the present invention relates to a method for producing an optically active azetidinone compound.
  • the azetidinone compound (compound (1)) represented by the formula (1) is useful as a therapeutic agent for hyperlipidemia (see Non-Patent Document 1).
  • the azetidinone compound (compound (4)) represented by formula (4) which is one of the precursors of compound (1), reduces the ketone compound (compound (2)) represented by formula (2).
  • the presence of an asymmetric reduction catalyst such as RuCl 2 ((R) -xylBinap) ((R) -daipen) represented by formula (3) A method of reducing under is reported (see Patent Document 1).
  • Patent Document 1 describes that the reaction conversion rate is lowered and the reaction time is extended by reducing the amount of the catalyst. Further, the hydrogen pressure during the reaction is described as 2 to 3 MPa, which is a condition requiring special equipment. Therefore, an industrially suitable improved manufacturing method has been desired.
  • the present invention provides a production precursor of compound (1) and a further production method of compound (1).
  • the present inventors have conducted an intensive study aimed at providing a high yield, high stereoselective and industrially useful production method of an optically active azetidinone compound.
  • the inventors have found a production method capable of obtaining an optically active azetidinone compound with selectivity and high yield, and completed the present invention.
  • the present invention relates to the following [1] to [10].
  • Formula (5) (Wherein R represents a hydrogen atom or a hydroxy protecting group), a ketone compound represented by formula (6): (In the formula, Ar represents a 3,5-dimethylphenyl group.)
  • an optically active ruthenium catalyst represented by formula (7) The manufacturing method of the optically active azetidinone compound represented by these.
  • an optically active azetidinone compound represented by the formula (7) useful as a pharmaceutical intermediate can be produced in large quantities with high selectivity and high yield, and the present invention is useful as an industrial production method. Is expensive.
  • n- is normal, “t-” is tertiary, “c-” is cyclo, “o-” is ortho, “Bn” is benzyl, “TBS”. Means t-butyldimethylsilyl.
  • optically active azetidinone compounds (7) and (1) The production method of the optically active azetidinone compounds (7) and (1) will be described in detail below.
  • the amount of the asymmetric reduction catalyst used is 1 / 100,000 mol% to 100 mol%, preferably 0.01 mol% to 5 mol% with respect to the ketone compound (5).
  • a base can be added to accelerate the reaction.
  • the base used include alkali metal salts of alcohols. More preferred bases are sodium methoxide, sodium ethoxide, potassium t-butoxide, and most preferred is potassium t-butoxide.
  • the amount of the base to be added may be the same amount or more with respect to the asymmetric reduction catalyst to be used, and preferably 10 to 500 equivalents with respect to the catalyst.
  • the solvent used in this reaction is not limited as long as it does not inhibit the progress of the reaction.
  • Preferred examples include water, aprotic polar organic solvents (for example, N, N-dimethylformamide, dimethyl sulfoxide, N, N -Dimethylacetamide, tetramethylurea, sulfolane, N-methylpyrrolidone, N, N-dimethylimidazolidinone, etc.), ether solvents (eg, diethyl ether, diisopropyl ether, t-butyl methyl ether, tetrahydrofuran, dioxane, etc.), fat Aromatic hydrocarbon solvents (eg, pentane, n-hexane, c-hexane, octane, decane, decalin, petroleum ether, etc.), aromatic hydrocarbon solvents (benzene, chlorobenzene, o-dichlorobenzene, nitrobenzene,
  • the reaction temperature is preferably about 10 to 50 ° C, more preferably about 20 to 30 ° C.
  • the reducing agent that can be used is not particularly limited as long as it is a reducing agent that is used as a reagent, and examples thereof include hydrogen gas.
  • the hydrogen pressure at the time of carrying out the reaction can be carried out at an arbitrary pressure, but it is preferably in the range of 0.1 to 4.0 MPa, more preferably 0 from the viewpoint of contribution to the reaction and adaptation to industrial production.
  • the range is from 1 to 1.0 MPa.
  • Hydroxy protecting groups can be used in deprotection reactions (eg, Protective Groups Organic Synthesis, Fourth edition, TWGreene), John Wiley and Sons. Incorporated (see John Wiley & Sons Inc. (2006) etc.) can be removed.
  • the hydroxy protecting group in this production method is not limited as long as it does not inhibit the progress of the reaction, and a protecting group usually used in organic synthesis can be used.
  • Preferred hydroxy protecting groups include, for example, benzyl group, methyl group, methoxymethyl group, acetyl group, trimethylsilyl group, t-butyldimethylsilyl group, allyl group, etc., preferably benzyl group, t-butyldimethylsilyl group Or an allyl group.
  • Ketone compounds (2) and (8) are known compounds and can be synthesized according to methods described in the literature, for example, methods described in International Publication No. 2007/119106, International Publication No. 2007/072088 and the like.
  • the conversion rate from the compound (2) to the compound (4) was 100.00%.
  • To the obtained solution was added 423.7 mg (7.06 mmol) of acetic acid and stirred, and then insoluble matter was filtered off.
  • the obtained filtrate was concentrated to 104.78 g under reduced pressure, then 327.82 g of ethanol was added and heated to 71 ° C. After cooling to 22 ° C., 54.00 g of water was added and cooled to 1 ° C.
  • the precipitated solid was filtered, washed with a mixed solution of 43.23 g of ethanol and 10.94 g of water, further washed with a mixed solution of 43.28 g of ethanol and 10.82 g of ion-exchanged water, and 49.73 g of Compound (4) as a white solid.
  • the chemical purity of the obtained compound (4) was 99.96%, and the diastereomeric excess was 99.88% de.
  • Example 3 The same operation as in Example 3 was carried out except that the hydrogen pressure was changed to 500 kPa in Example 3, to obtain 1.89 g of Compound (4).
  • the conversion rate from compound (2) to compound (4) after stirring for 1 hour was 97.44%, and the diastereomeric excess was 100.00% de.
  • the present invention is useful in that an optically active azetidinone compound useful as a pharmaceutical intermediate can be produced with high yield and high stereoselectivity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

【課題】立体選択的な光学活性アゼチジノン化合物の新規な製造方法を提供する。 【解決手段】 式(5)で表されるケトン化合物から、高収率かつ高選択性で式(7)で表される光学活性アゼチジノン化合物を製造することができ、工業的に有用な製造方法を提供できる。 (式中Rは水素原子又はヒドロキシ保護基を表す。)

Description

光学活性アゼチジノン化合物の製造方法
 本発明は光学活性アゼチジノン化合物の製造方法に関する。
 式(1)で表されるアゼチジノン化合物(化合物(1))は、高脂血症に対する治療薬として有用である(非特許文献1参照)。
Figure JPOXMLDOC01-appb-C000008
 化合物(1)の前駆体の一つである式(4)で表されるアゼチジノン化合物(化合物(4))は、式(2)で表されるケトン化合物(化合物(2))を還元することで得られ、その高収率かつ高立体選択的な製造方法として、式(3)で示されるRuCl2((R)-xylBinap)((R)-daipen)の様な不斉還元触媒の存在下で還元する方法が報告されている(特許文献1参照)。
Figure JPOXMLDOC01-appb-C000009
中国特許公開第102952055号
ジャーナル オブ メディシナルケミストリー、1998年、41巻、973-980頁
 特許文献1には、触媒量を低減することにより、反応転化率が低下することや反応時間が延長することが記載されている。また、反応を行う際の水素圧は2~3MPaと記載されており、特殊な設備を必要とする条件となっている。そのため、工業的に適した、改良された製造方法が望まれていた。本発明は、化合物(1)の製造前駆体、及び化合物(1)の更なる製造方法を提供する。
 本発明者らは上記事情に鑑みて、光学活性アゼチジノン化合物の、高収率、高立体選択的かつ工業的に有用な製造方法を提供することを目的とし、鋭意検討した結果、非常に高い立体選択性及び高収率で光学活性アゼチジノン化合物が得られる製造方法を見出し、本発明を完成した。
 すなわち、本発明は、下記〔1〕~〔10〕に関するものである。
  〔1〕
 式(5):
Figure JPOXMLDOC01-appb-C000010
(式中、Rは、水素原子又はヒドロキシ保護基を表す。)で表されるケトン化合物に、式(6):
Figure JPOXMLDOC01-appb-C000011
(式中、Arは、3,5-ジメチルフェニル基を表す。)
で表される光学活性ルテニウム触媒の存在下、水素ガスを反応させることを特徴とする、式(7):
Figure JPOXMLDOC01-appb-C000012
で表される光学活性アゼチジノン化合物の製造方法。
  〔2〕
 Rが水素原子である、上記〔1〕記載の光学活性アゼチジノン化合物の製造方法。
  〔3〕
 Rがヒドロキシ保護基である、上記〔1〕記載の光学活性アゼチジノン化合物の製造方法。
  〔4〕
 Rがベンジル基である、上記〔3〕記載の光学活性アゼチジノン化合物の製造方法。
  〔5〕
 Rがt-ブチルジメチルシリル基である、上記〔3〕記載の光学活性アゼチジノン化合物の製造方法。
  〔6〕
 Rがアリル基である、上記〔3〕記載の光学活性アゼチジノン化合物の製造方法。
  〔7〕
 式(5):
Figure JPOXMLDOC01-appb-C000013
(式中、Rは、ヒドロキシ保護基を表す。)で表されるケトン化合物に、式(6):
Figure JPOXMLDOC01-appb-C000014
(式中、Arは、3,5-ジメチルフェニル基を表す。)
で表される光学活性ルテニウム触媒の存在下、水素ガスを反応させ、
式(7):
Figure JPOXMLDOC01-appb-C000015
で表される光学活性アゼチジノン化合物へ誘導し、さらに脱保護反応を行うことを特徴とする、
式(1):
Figure JPOXMLDOC01-appb-C000016

で表される光学活性アゼチジノン化合物の製造方法。
  〔8〕
 Rがベンジル基である、上記〔7〕記載の光学活性アゼチジノン化合物の製造方法。
  〔9〕
 Rがt-ブチルジメチルシリル基である、上記〔7〕記載の光学活性アゼチジノン化合物の製造方法。
  〔10〕
 Rがアリル基である、上記〔7〕記載の光学活性アゼチジノン化合物の製造方法。
 本発明によれば、医薬品中間体として有用な式(7)で表される光学活性アゼチジノン化合物を高選択的かつ高収率で大量に製造することができ、本発明は工業的製法として利用価値が高い。
 以下に、本発明についてさらに詳しく説明する。
 なお、本明細書中の「n-」はノルマルを、「t-」はターシャリーを、「c-」はシクロを、「o-」はオルトを、「Bn」はベンジルを、「TBS」はt-ブチルジメチルシリルを意味する。
 光学活性アゼチジノン化合物(7)及び(1)の製造方法について、以下に詳細に説明する。
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
 ケトン化合物(5)(式中Rは前記と同じ意味を表す。)を、式(6)(式中、Arは、3,5-ジメチルフェニル基を表す。)で表される、市販品として入手可能なRUCY(登録商標)-XylBINAP(高砂香料工業株式会社製品)の存在下、水素ガスを反応させることにより、光学活性アゼチジノン化合物(7)(式中Rは前記と同じ意味を表す。)を合成することができる。
 用いる不斉還元触媒の量は、ケトン化合物(5)に対して10万分の1mol%乃至100mol%、好ましくは0.01mol%乃至5mol%である。
 本発明製造方法では、反応を促進するために塩基を添加する事ができる。用いる塩基の好ましい例としては、アルコールのアルカリ金属塩が挙げられる。さらに好ましい塩基は、ナトリウムメトキシド、ナトリウムエトキシド、カリウム t-ブトキシドであり、最も好ましくはカリウム t-ブトキシドである。
 添加する塩基の量は、用いる不斉還元触媒に対して同量以上あれば良く、好ましくは触媒に対して10~500当量である。
 本反応に用いる溶媒は、反応の進行を阻害しないものであれば制限はされないが、好ましい例としては、水、非プロトン性極性有機溶媒(例えばN,N-ジメチルホルムアミド、ジメチルスルホキシド、N,N-ジメチルアセトアミド、テトラメチルウレア、スルホラン、N-メチルピロリドンやN,N-ジメチルイミダゾリジノン等)、エーテル系溶媒(例えばジエチルエーテル、ジイソプロピルエーテル、t-ブチルメチルエーテル、テトラヒドロフランやジオキサン等)、脂肪族炭化水素系溶媒(例えばペンタン、n-ヘキサン、c-ヘキサン、オクタン、デカン、デカリンや石油エーテル等)、芳香族炭化水素系溶媒(ベンゼン、クロロベンゼン、o-ジクロロベンゼン、ニトロベンゼン、トルエン、キシレン、メシチレンやテトラリン等)、ハロゲン化炭化水素系溶媒(例えばクロロホルム、ジクロロメタン、ジクロロエタンや四塩化炭素等)、低級脂肪族酸エステル系溶媒(例えば酢酸メチル、酢酸エチル、酢酸ブチルやプロピオン酸メチル等)、アルコキシアルカン系溶媒(例えばジメトキシエタンやジエトキシエタン等)、アルコール系溶媒(例えばメタノール、エタノールや1-プロパノール、2-プロパノール等)、カルボン酸系溶媒(酢酸等)等の溶媒が挙げられる。その中でもアルコール系溶媒が好ましい。用いるアルコール系溶媒は1種類の溶媒を単体で用いても、2種類以上の混合物を用いても良い。
 反応温度については、10~50℃程度が好ましく、20~30℃程度がより好ましい。
 用いることができる還元剤としては、試薬として用いられている還元剤であれば特に制限は無いが、例えば水素ガスが挙げられる。
 反応を行う際の水素圧は任意の圧力で実施する事が出来るが、反応への寄与及び工業的製造への適合の観点から、好ましくは0.1~4.0MPaの範囲、より好ましくは0.1~1.0MPaの範囲である。
 ヒドロキシ保護基は、脱保護反応(例えば、プロテクティブ・グループス・イン・オーガニック・シンセシス第4版(Protective Groups in Organic Synthesis, Fourth edition)、グリーン(T.W.Greene)著、ジョン・ワイリー・アンド・サンズ・インコーポレイテッド(John Wiley & Sons Inc.)(2006年)など参照)を行うことにより除去することができる。
 本製造方法におけるヒドロキシ保護基としては、反応の進行を阻害しないものであれば制限はされず、有機合成において通常用いる保護基を用いることができる。好ましいヒドロキシ保護基としては、例えば、ベンジル基、メチル基、メトキシメチル基、アセチル基、トリメチルシリル基、t-ブチルジメチルシリル基、アリル基などが挙げられ、好ましくはベンジル基、t-ブチルジメチルシリル基、又はアリル基である。
 本明細書中「アリル基」は、CH2=CH-CH2-で表される1価の置換基を表す。
 ケトン化合物(2)及び(8)は公知化合物であり、文献記載の方法、例えば国際公開第2007/119106号、国際公開第2007/072088号等に記載の方法に準じて合成することができる。
 以下、実施例を挙げて、本発明をより具体的に説明するが、本発明は下記の実施例に限定されるものではない。なお、核磁気共鳴スペクトル(1H-NMR)、高速液体クロマトグラフィー分析(HPLC)は、以下の機器および条件で測定した。なお、(V/V/V)との記載におけるVは体積を意味する。
[1]1H-NMR
機種:ECP300(日本電子株式会社製品)
測定溶媒:DMSO-d6
[2]HPLC
(1)HPLC分析条件1(化学純度及び反応転化率の測定に使用)
装置:アジレント1260
カラム:L-Column ODS(財団法人化学物質評価研究機構製品)
250×4.6mmI.D. 5μm
カラムオーブン温度:40℃
溶離液:アセトニトリル、10mM酢酸アンモニウム水溶液混合溶媒
グラジェント条件(アセトニトリル体積比):20%(0min.)→20%(10min.)→50%(15min.)→50%(30min.)→95%(40min.)→95%(50min.)
かっこ内のタイムプログラムは分析開始からの総時間を表す。
流速:1.0mL/min.
検出器:紫外可視吸光光度計233nm
(2)HPLC分析条件2(光学純度の測定に使用)
装置:島津20A
カラム:CHIRALPAK IC(株式会社ダイセル製品)
250mm×4.6mmI.D. 5μm
カラムオーブン温度:35℃
溶離液:ヘキサン/2-プロパノール/トリフルオロ酢酸=900/100/1(V/V/V)
流速:1.0mL/min.
検出器:紫外可視吸光光度計233nm
実施例1:化合物(1)の合成
Figure JPOXMLDOC01-appb-C000019
 国際公開第2007/072088号に記載の方法に準じて合成した化合物(8)2.09g(4.01mmol)をエタノール20.91gに溶解し、カリウム t-ブトキシド22.4mg(0.20mmol)、(R)-RUCY(登録商標)-XylBINAP(高砂香料工業株式会社製品)4.7mg(0.004mmol、化合物(8)に対して0.1mol%)を加え、溶解させた。反応容器を水素ガスに置換後、水素圧500kPa、反応温度26℃にて3時間撹拌した。その後、酢酸15.0mg(0.25mmol)を加え、減圧下溶媒留去し、3.81gの残渣を得た。残渣を酢酸エチル10.48gに溶解させ、活性炭(特製白鷺、日本エンバイロケミカルズ株式会社製品)0.10gを加え、室温下、40分間撹拌し、活性炭をろ過、酢酸エチル2.1gで洗いこんだ。ろ洗液を混合し、減圧下溶媒留去して、残渣3.28gを得た。残渣を2-プロパノール20.92gに溶解し、再度減圧下溶媒留去して、溶液総量10.56gとし、化合物(9)の2-プロパノール溶液を得た。
 ここへ20%硫酸水溶液1.37g(2.79mmol)を加えて、58~59℃で1時間撹拌後、放冷したところ、白色の固体が析出した。ここへ水8.46gを滴下し、更に、0~3℃で3時間撹拌して、析出した固体をろ過した。2-プロパノール2.09gと水2.09gの混液、2-プロパノール2.11gと水2.10gの混液、水2.11gで洗浄し、50℃で減圧乾燥して、化合物(1)1.34gを白色固体として得た。
HPLC分析条件1にて化学純度を測定したところ、97.49%であった。
 また、HPLC分析条件2にてジアステレオマー過剰率を測定したところ、99.01%deであった。さらに、その保持時間は、特許第3640888号に記載の方法に準じて合成した化合物(1)の保持時間と一致した(保持時間:19.7分、ジアステレオマーの保持時間:24.6分)。
 また、2段階反応の生成物である(1)のジアステレオマー過剰率が99.01%deであり、2工程目でジアステレオマー過剰率が保持されると考えられることから、1段階目生成物の化合物(9)のジアステレオマー過剰率は99.01%de以上であることが分かる。
1H-NMR分析:(300MHz,DMSO―d6)δppm:1.72-1.88(4H,m),3.06-3.08(1H,m),4.49(1H,s),4.80(1H,d,J=2.2Hz),5.28(1H,br),6.76(2H,d,J=8.5Hz),7.09-7.16(4H,m),7.19-7.24(4H,m),7.28-7.33(2H,m),9.53(1H,s)
実施例2:化合物(4)の合成
Figure JPOXMLDOC01-appb-C000020
 特表平8-509989号に記載の方法に準じて合成した化合物(2)54.00g(108.1mmol)をエタノール540.19gとテトラヒドロフラン270.20gに溶解し、カリウム t-ブトキシド587.3mg(5.23mmol)、(R)-RUCY(登録商標)-XylBINAP(高砂香料工業株式会社製品)127.5mg(0.1076mmol、化合物(2)に対して0.1mol%)を加え、溶解させた。反応容器を水素ガスに置換後、水素圧500kPa、11℃から21℃で6時間撹拌した。化合物(2)から化合物(4)への転化率は100.00%であった。得られた溶液に酢酸423.7mg(7.06mmol)を加え撹拌した後、不溶物をろ過した。得られたろ液を104.78gまで減圧下濃縮した後、エタノール327.82gを加え71℃まで加熱した。22℃まで冷却した後、水54.00gを加え、1℃まで冷却した。析出した固体をろ過し、エタノール43.23gと水10.94gの混液で洗浄し、さらにエタノール43.28gとイオン交換水10.82gの混液で洗浄し、化合物(4)49.73gを白色固体として得た。得られた化合物(4)の化学純度は99.96%であり、ジアステレオマー過剰率は99.88%deであった。
1H-NMR分析:(300MHz,CDCl3)δppm:1.84-1.99(4H,m),2.38(1H,d,J=2.9Hz),3.00(1H,d,J=5.2Hz),4.56(1H,br),4.64(1H,br),5.04(2H,s),6.88-7.03(6H,m),7.20-7.42(11H,m)
実施例3:化合物(4)の合成
 実施例2と同様に得た化合物(2)2.00g(4.00mmol)とカリウム t-ブトキシド22.4mg(0.20mmolをエタノール29mLに懸濁させた後、(R)-RUCY(登録商標)-XylBINAP(高砂香料工業株式会社製品)9.6mg(0.0081mmol)をエタノール10mLに溶解させて調製した溶液のうち1mL(0.81μmol、化合物(2)に対して0.02mol%)を加えた。反応容器を水素ガスに置換後、水素圧2000kPa、反応温度44℃にて1時間撹拌した。化合物(2)から化合物(4)への転化率は99.21%であり、ジアステレオマー過剰率は99.78%deであった。この溶液を減圧下濃縮し、化合物(4)1.99gを白色固体として得た。
実施例4:化合物(4)の合成
 実施例3において、水素圧を500kPaとした以外は実施例3と同様の操作を行い、化合物(4)1.89gを得た.
 攪拌1時間後の化合物(2)から化合物(4)への転化率は97.44%であり、ジアステレオマー過剰率は100.00%deであった。
実施例5:化合物(1)の合成
Figure JPOXMLDOC01-appb-C000021
 実施例2に準じて合成した化合物(4)13.00g(26.02mmol)を酢酸エチル78.12g、メタノール37.70gに溶解させた後、酢酸3.13g(52.12mmol)、パラジウム炭素(水分54.10%)1.42gを加えた。この溶液にギ酸アンモニウム6.00gとメタノール94.00gより調製した6%ギ酸アンモニウムメタノール溶液27.35g(26.02mmol)を滴下し、撹拌した。さらに6%ギ酸アンモニウムメタノール溶液を、6.5時間後に3.01g(2.86mmol)、9時間後に1.97g(1.87mmol)、10時間後に1.91g(1.82mmol)を加え、反応を完結させた後セライトろ過を行い、パラジウム炭素を除去した。酢酸エチル13.11g、12.96g、13.06gでセライトを洗浄し、溶媒を減圧留去して37.79gまで濃縮した後、酢酸エチル104.06g加えた。再度減圧下溶媒を留去して78.15gまで濃縮した後、5%炭酸水素ナトリウム水溶液52.21gを加え、分液した。得られた有機層に水39.03gを加えて再度分液し、得られた有機層をろ過した後、溶媒を減圧留去して45.60gまで濃縮した。38℃でヘプタン5.07gを滴下し、撹拌したところ、固体が析出した。さらにヘプタン25.35gを滴下後、-1℃まで冷却し、固体をろ過した。酢酸エチル4.82gとヘプタン9.65gの混液で、得られた固体を洗浄し、50℃で減圧乾燥して、化合物(1)9.79gを白色固体として得た。得られた化合物(1)の化学純度は99.82%であった。また、HPLC分析条件2にてジアステレオマー過剰率を測定したところ、99.78%deであった。さらに、その保持時間は、特許第3640888号に記載の方法に準じて合成した化合物(1)の保持時間と一致した(保持時間:20.6分、ジアステレオマーの保持時間:26.1分)。
 また、この白色固体のXRDを測定したところ、特表2007-526251号に記載のフォームAの回折パターンと一致した。
実施例6:化合物(11)の合成
Figure JPOXMLDOC01-appb-C000022
 国際公開第2009/157019号に記載の方法に準じて合成した化合物(10)2.00g(4.47mmol)に(R)-RUCY(登録商標)-XylBINAP(高砂香料工業株式会社製品)5.3mg(0.0045mmol)、エタノール10.04gを加え懸濁させた後、ジアザビシクロウンデセン34.0mg(0.2235mmol)を加えた。反応容器を水素ガスに置換後、水素圧500kPa、反応温度20℃にて7時間撹拌した。得られた溶液に酢酸33.5mg(0.5587mmol)を加え攪拌した後、減圧下溶媒留去して、化合物(11)1.98gを淡茶色固体として得た。得られた化合物(11)の化学純度は96.50%で、ジアステレオマー過剰率は99.87%deであった。
1H-NMR分析:(300MHz,CDCl3)δppm:1.85-2.02(4H,m),2.24(1H,d,J=3.8Hz),3.05-3.10(1H,m)4.51-4.54(2H,m),4.57(2H,d,J=16.7Hz),4.71-4.73(1H,m)5.27-5.44(2H,m),5.98-6.10(1H,m)6.89-7.05(6H,m),7.19-7.31(6H,m)
実施例7:化合物(1)の合成
Figure JPOXMLDOC01-appb-C000023
 実施例6で合成した化合物(11)1.97g(4.38mmol)を酢酸エチル20.06gに溶解させた後、ギ酸411.5mg(8.94mmol)、モルホリン583.7mg(6.70mmol)、テトラキス(トリフェニルホスフィン)パラジウム31.3mg(0.0268mmol)を加え55℃から60℃で50分間攪拌した。24℃まで冷却した後に、1M塩酸6.02gを加え分液した。得られた有機層20.36gに水4.02gを加え分液し、有機層19.55gを得た。溶媒を減圧留去し3.43gとした後に、2-プロパノール20.28gを加えた。溶媒を減圧留去し3.65gとした後に2-プロパノールを加え5.22gとした。55℃から56℃で水1.75gを加え攪拌したところ、固体が析出した。1℃まで冷却して固体をろ過、2-プロパノール0.88gと水0.89gの混液で洗浄し、50℃で減圧乾燥して、化合物(1)1.48gを淡黄色固体として得た。得られた化合物の化学純度は96.93%であった。また、ジアステレオマー過剰率は100.00%deであった。さらに、その保持時間は、特許第3640888号に記載の方法に準じて合成した化合物(1)の保持時間と一致した(保持時間:20.1分、ジアステレオマーの保持時間:25.0分)。
 本発明は、医薬品中間体として有用な光学活性アゼチジノン化合物を高収率、高立体選択的に製造できる点で有用である。

Claims (10)

  1.  式(5):
    Figure JPOXMLDOC01-appb-C000001
    (式中、Rは、水素原子又はヒドロキシ保護基を表す。)で表されるケトン化合物に、式(6):
    Figure JPOXMLDOC01-appb-C000002
    (式中、Arは、3,5-ジメチルフェニル基を表す。)
    で表される光学活性ルテニウム触媒の存在下、水素ガスを反応させることを特徴とする、式(7):
    Figure JPOXMLDOC01-appb-C000003
    で表される光学活性アゼチジノン化合物の製造方法。
  2.  Rが水素原子である、請求項1記載の光学活性アゼチジノン化合物の製造方法。
  3.  Rがヒドロキシ保護基である、請求項1記載の光学活性アゼチジノン化合物の製造方法。
  4.  Rがベンジル基である、請求項3記載の光学活性アゼチジノン化合物の製造方法。
  5.  Rがt-ブチルジメチルシリル基である、請求項3記載の光学活性アゼチジノン化合物の製造方法。
  6.  Rがアリル基である、請求項3記載の光学活性アゼチジノン化合物の製造方法。
  7.  式(5):
    Figure JPOXMLDOC01-appb-C000004
    (式中、Rは、ヒドロキシ保護基を表す。)で表されるケトン化合物に、式(6):
    Figure JPOXMLDOC01-appb-C000005
    (式中、Arは、3,5-ジメチルフェニル基を表す。)
    で表される光学活性ルテニウム触媒の存在下、水素ガスを反応させ、
    式(7):
    Figure JPOXMLDOC01-appb-C000006
    で表される光学活性アゼチジノン化合物へ誘導し、さらに脱保護反応を行うことを特徴とする、
    式(1):
    Figure JPOXMLDOC01-appb-C000007
    で表される光学活性アゼチジノン化合物の製造方法。
  8.  Rがベンジル基である、請求項7記載の光学活性アゼチジノン化合物の製造方法。
  9.  Rがt-ブチルジメチルシリル基である、請求項7記載の光学活性アゼチジノン化合物の製造方法。
  10.  Rがアリル基である、請求項7記載の光学活性アゼチジノン化合物の製造方法。
PCT/JP2015/055924 2014-03-06 2015-02-27 光学活性アゼチジノン化合物の製造方法 WO2015133405A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/120,842 US20160362369A1 (en) 2014-03-06 2015-02-27 Method for producing optically active azetidinone compound
JP2016506463A JP6795974B2 (ja) 2014-03-06 2015-02-27 光学活性アゼチジノン化合物の製造方法

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2014043966 2014-03-06
JP2014-043966 2014-03-06
JP2014147387 2014-07-18
JP2014-147387 2014-07-18
JP2015-022124 2015-02-06
JP2015022124 2015-02-06

Publications (1)

Publication Number Publication Date
WO2015133405A1 true WO2015133405A1 (ja) 2015-09-11

Family

ID=54055212

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/055924 WO2015133405A1 (ja) 2014-03-06 2015-02-27 光学活性アゼチジノン化合物の製造方法

Country Status (3)

Country Link
US (1) US20160362369A1 (ja)
JP (1) JP6795974B2 (ja)
WO (1) WO2015133405A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020195437A1 (ja) * 2019-03-27 2020-10-01 協和ファーマケミカル株式会社 プロスタグランジンの製造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007120824A2 (en) * 2006-04-10 2007-10-25 Teva Pharmaceutical Industries Ltd. Processes for the synthesis of azetidinone
JP2008517951A (ja) * 2005-09-08 2008-05-29 テバ ファーマシューティカル インダストリーズ リミティド (3r,4s)−4−((4−ベンジルオキシ)フェニル)−1−(4−フルオロフェニル)−3−((s)−3−(4−フルオロフェニル)−3−ヒドロキシプロピル)−2−アゼチジノン、すなわちエゼチミベの合成のための中間体の調製方法
WO2009157019A2 (en) * 2008-06-23 2009-12-30 Ind-Swift Laboratories Limited Process for preparing ezetimibe using novel allyl intermediates
JP2011246435A (ja) * 2010-04-28 2011-12-08 Takasago Internatl Corp 新規ルテニウム錯体及びこれを触媒とする光学活性アルコール化合物の製造方法
WO2012137460A1 (ja) * 2011-04-06 2012-10-11 高砂香料工業株式会社 新規ルテニウム錯体及びこれを触媒とする光学活性アルコール化合物の製造方法
WO2012165164A1 (ja) * 2011-06-01 2012-12-06 高砂香料工業株式会社 ワインラクトンの製造方法
CN102952055A (zh) * 2011-08-16 2013-03-06 凯瑞斯德生化(苏州)有限公司 一种依泽替米贝和其中间体的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008517951A (ja) * 2005-09-08 2008-05-29 テバ ファーマシューティカル インダストリーズ リミティド (3r,4s)−4−((4−ベンジルオキシ)フェニル)−1−(4−フルオロフェニル)−3−((s)−3−(4−フルオロフェニル)−3−ヒドロキシプロピル)−2−アゼチジノン、すなわちエゼチミベの合成のための中間体の調製方法
WO2007120824A2 (en) * 2006-04-10 2007-10-25 Teva Pharmaceutical Industries Ltd. Processes for the synthesis of azetidinone
WO2009157019A2 (en) * 2008-06-23 2009-12-30 Ind-Swift Laboratories Limited Process for preparing ezetimibe using novel allyl intermediates
JP2011246435A (ja) * 2010-04-28 2011-12-08 Takasago Internatl Corp 新規ルテニウム錯体及びこれを触媒とする光学活性アルコール化合物の製造方法
WO2012137460A1 (ja) * 2011-04-06 2012-10-11 高砂香料工業株式会社 新規ルテニウム錯体及びこれを触媒とする光学活性アルコール化合物の製造方法
WO2012165164A1 (ja) * 2011-06-01 2012-12-06 高砂香料工業株式会社 ワインラクトンの製造方法
CN102952055A (zh) * 2011-08-16 2013-03-06 凯瑞斯德生化(苏州)有限公司 一种依泽替米贝和其中间体的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MATSUMURA, K. ET AL.: "Chiral Ruthenabicyclic Complexes: Precatalysts for Rapid, Enantioselective, and Wide-Scope Hydrogenation of Ketones", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 133, no. 28, 2011, pages 10696 - 10699, XP055131776 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020195437A1 (ja) * 2019-03-27 2020-10-01 協和ファーマケミカル株式会社 プロスタグランジンの製造方法

Also Published As

Publication number Publication date
JP6795974B2 (ja) 2020-12-02
JPWO2015133405A1 (ja) 2017-04-06
US20160362369A1 (en) 2016-12-15

Similar Documents

Publication Publication Date Title
EP2150533B1 (en) Process for the preparation of optically active ethenylphenyl alcohols
CN113227061A (zh) 贝派地酸的新盐和多晶型物
JP2007326784A (ja) 1−置換−5−フルオロアルキルピラゾール−4−カルボン酸エステルの製造方法
JP2023011667A (ja) スルホンアミド構造のキナーゼ阻害剤の製造方法
KR101653025B1 (ko) 2-아미노-4-트리플루오로메틸피리딘류의 제조 방법
JP6795974B2 (ja) 光学活性アゼチジノン化合物の製造方法
CN108484508B (zh) 一种5-三氟甲基尿嘧啶的合成方法
JP2008201739A (ja) エダラボンの製造方法
WO2016199688A1 (ja) カーバメート化合物の製造方法
CN108017522B (zh) 一种2,6-二溴苯甲磺酰氯的制备工艺
WO2014157021A1 (ja) ピリダジノン化合物の製造方法
US11866393B2 (en) 7,7′-dihalo-3,3,3′,3′-tetramethyl-1,1′-spirobiindane and preparation method thereof
WO2011152442A1 (ja) 2-クロロ-6-フルオロベンゾオキサゾールの製造方法
JP4258658B2 (ja) アセチレン化合物の製造方法
JP5507147B2 (ja) ピリミジニルアルコール誘導体の製造方法及びその合成中間体
CN106995366A (zh) 一种3‑氨基‑2‑羟基苯乙酮的制备新方法
KR102157528B1 (ko) 2-아미노니코틴산 벤질에스테르 유도체의 제조 방법
KR20210049293A (ko) (z)-오론 및 그 유도체 화합물의 제조방법
JP5280187B2 (ja) リオニレシノール又はその類似体の製造方法
JP5071689B2 (ja) 3−アルコキシカルボニル−6,7−クロロメチレンジオキシクマリン化合物、及びその製造方法。
JP4483183B2 (ja) 6,7−ジヒドロキシクマリン−3−カルボン酸誘導体の製法及びその中間体
JP4078975B2 (ja) 3,4−ジヒドロキシベンゾニトリルの製法
CN110903245A (zh) 一种合成1-烷基-2-三氟甲基-5-氨基-1h-咪唑的关键中间体及其制备方法
JP2019521965A (ja) ラミブジン及びエムトリシタビンの生産方法
KR20140142789A (ko) 게피티닙의 중간체 화합물 및 그의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15758778

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016506463

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15120842

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15758778

Country of ref document: EP

Kind code of ref document: A1