WO2015132818A1 - 異物検出装置、送電装置、受電装置、および無線電力伝送システム - Google Patents

異物検出装置、送電装置、受電装置、および無線電力伝送システム Download PDF

Info

Publication number
WO2015132818A1
WO2015132818A1 PCT/JP2014/001211 JP2014001211W WO2015132818A1 WO 2015132818 A1 WO2015132818 A1 WO 2015132818A1 JP 2014001211 W JP2014001211 W JP 2014001211W WO 2015132818 A1 WO2015132818 A1 WO 2015132818A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
coil
foreign object
voltage
power transmission
Prior art date
Application number
PCT/JP2014/001211
Other languages
English (en)
French (fr)
Inventor
健一 浅沼
山本 温
山本 浩司
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to EP14884962.3A priority Critical patent/EP3009866B1/en
Priority to US14/904,581 priority patent/US10020692B2/en
Priority to JP2015562966A priority patent/JP5915953B2/ja
Priority to PCT/JP2014/001211 priority patent/WO2015132818A1/ja
Priority to CN201480039975.3A priority patent/CN105452904B/zh
Publication of WO2015132818A1 publication Critical patent/WO2015132818A1/ja
Priority to JP2016059398A priority patent/JP6307756B2/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/08Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices
    • G01V3/10Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices using induction coils
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/60Circuit arrangements or systems for wireless supply or distribution of electric power responsive to the presence of foreign objects, e.g. detection of living beings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00302Overcharge protection

Definitions

  • the present disclosure relates to a foreign object detection device that detects a foreign object close to a coil.
  • the present disclosure also relates to a power transmission device, a power reception device, and a wireless power transmission system for wireless power transmission that includes such a foreign object detection device and transmits power without contact.
  • the wireless power transmission system includes a power transmission device including a power transmission coil (power transmission antenna) and a power reception device including a power reception coil (power reception antenna).
  • the power reception coil captures a magnetic field generated by the power transmission coil, thereby It is possible to transmit electric power without directly touching.
  • Patent Document 1 discloses an example of such a wireless power transmission system.
  • a metal foreign object comes close to a power transmission coil or a power receiving coil during power transmission, an eddy current is generated in the metal foreign object, resulting in a risk of heating. Further, if a human body or the like is in proximity to the power transmission coil or the power reception coil during power transmission, there is a risk that an induced current is generated in the human body. Therefore, the detection of a foreign object such as a metal or a human body in the vicinity of the coil is an indispensable function for wireless power transmission safely and efficiently.
  • Patent Document 1 measures the primary Q value of a circuit including a primary coil that is electromagnetically coupled to the secondary coil, and determines the power transmission efficiency as the Q value of the primary coil. And detecting the state of electromagnetic coupling with the secondary coil based on the obtained correction value.
  • Patent Document 1 uses an AC voltage for Q-factor measurement, and detects a foreign object close to the coil using only the change of the AC component as an index, so there is a problem that the detection sensitivity of the foreign object is low. .
  • Embodiment of this indication provides the foreign material detection apparatus which can detect foreign materials, such as a metal and a human body which adjoined to the coil, with high sensitivity.
  • the embodiment of the present disclosure also provides a power transmission device and a power reception device for wireless power transmission, and a wireless power transmission system including such a foreign object detection device.
  • a foreign object detection device includes a coil and a resonant capacitor, and outputs a voltage including an AC component and a DC component having a positive cycle and a negative cycle.
  • An oscillation circuit configured as described above, and an electrical circuit that detects a change in the AC component and a change in the DC component in the voltage output from the oscillation circuit when a foreign object approaches the coil. Yes.
  • the change in the DC component is further reduced.
  • a foreign substance close to the coil can be detected with high sensitivity.
  • FIG. 1 is a circuit diagram illustrating a schematic configuration of a foreign object detection device according to a first embodiment of the present disclosure.
  • 3 is a diagram illustrating an example of a time change of an output voltage Vin_X at an output terminal X of the oscillation circuit 100.
  • FIG. It is a circuit diagram which shows schematic structure of the foreign material detection apparatus which concerns on Embodiment 2 of this indication.
  • It is a circuit diagram which shows schematic structure of the oscillation circuit in the foreign material detection apparatus which concerns on Embodiment 3 of this indication.
  • It is a figure which shows the 1st example of a connection between terminal AB in an oscillation circuit.
  • It is a figure which shows the 2nd example of connection between terminal AB in an oscillation circuit.
  • FIG. 10 is a diagram illustrating a fourth connection example between the terminals AB in the oscillation circuit. It is a circuit diagram which shows an example of schematic structure of the oscillation circuit in the foreign material detection apparatus which concerns on Embodiment 4 of this indication.
  • FIG. 10 is a diagram for explaining a first circuit example and an operation in the fourth embodiment.
  • A shows the circuit configuration
  • (b) shows an example of the time change of the voltage Vin_X at the point X
  • (c) shows an example of the time change of the voltage Vin_X when a metal foreign object approaches the coil 110. Yes.
  • FIG. 10 is a diagram for explaining a second circuit example and an operation in the fourth embodiment.
  • FIG. 10 is a diagram for explaining a third circuit example and an operation in the fourth embodiment.
  • (A) shows the circuit configuration
  • (b) shows an example of the time change of the voltage Vin_X ′ at the point X ′
  • (c) shows an example of the time change of the voltage Vin_X ′ when a metal foreign object approaches the coil 110. Is shown.
  • FIG. 10 is a diagram for explaining a third circuit example and an operation in the fourth embodiment.
  • (A) shows the circuit configuration
  • (b) shows an example of the time change of the voltage Vin_X ′ at the point X ′
  • (c) shows an example of the time change of the voltage Vin_X ′ when a metal foreign object approaches the coil 110.
  • 10 is a circuit diagram illustrating a schematic configuration of a foreign object detection device according to a fifth embodiment of the present disclosure. It is a block diagram which shows schematic structure of the wireless power transmission system which concerns on Embodiment 6 of this indication. 10 is a flowchart illustrating an example of processing of a power transmission device according to a sixth embodiment. It is a block diagram which shows schematic structure of the wireless power transmission system which concerns on Embodiment 7 of this indication. 10 is a flowchart illustrating an example of processing of a power receiving device according to Embodiment 7. It is a figure which shows the measurement result in 1st Example of this indication. It is a figure which shows the simulation result in 2nd Example of this indication. It is a figure which shows the simulation result in 2nd Example of this indication.
  • the oscillation circuit is configured so that the direct current component also changes in addition to the alternating current component of the oscillation voltage, and measurement capable of measuring changes in both the alternating current component and the direct current component.
  • a circuit is used.
  • a foreign object detection device includes a coil and a resonance capacitor, and is configured to output a voltage including an AC component and a DC component having a positive cycle and a negative cycle.
  • the electric circuit includes a rectifier circuit that rectifies and outputs the voltage output from the oscillation circuit, and the rectifier circuit rectifies the voltage of the positive cycle.
  • a rectifying element a first capacitor that reduces the DC component; and a second rectifying element that rectifies the voltage of the negative cycle that has become smaller than 0 by reducing the DC component.
  • the rectifier circuit further includes a second capacitor for smoothing a voltage output from the first rectifier element, and the first capacitor and the second capacitor When the partial pressure ratio is U, 0 ⁇ U ⁇ 0.5 is satisfied.
  • the electric circuit further includes a measurement circuit that directly or indirectly measures a voltage output from the oscillation circuit.
  • the electric circuit further includes a measurement circuit that measures a voltage output from the rectifier circuit.
  • the oscillating circuit further includes a resistor Rd arranged to reduce the voltage output from the oscillating circuit, and the resistor Rd is configured so that the foreign matter is sufficiently removed from the coil. If the voltage input to the measurement circuit is within the measurable range of the measurement circuit and a foreign object larger than the coil is in close contact with the coil, the voltage can be measured. It is set to be within the lower limit of the range.
  • the measurement circuit outputs information indicating that the foreign object exists when a difference between a voltage input to the measurement circuit and a predetermined reference voltage is equal to or greater than a predetermined threshold.
  • the oscillation circuit when the resonant capacitor is a first resonant capacitor, the oscillation circuit further includes a second resonant capacitor having a capacitance different from that of the first resonant capacitor, One electrode of the first resonance capacitor is connected to the coil and the output terminal of the oscillation circuit, and the first and second resonance capacitors are connected in parallel to the coil.
  • the coil is configured to function also as a power transmission coil that wirelessly transmits power
  • the foreign object detection device switches an electrical connection between the coil and the oscillation circuit.
  • the switch is further configured to electrically connect the coil and the oscillation circuit in the foreign object detection mode, and to electrically disconnect the coil and the oscillation circuit in the power transmission mode.
  • the coil is configured to function also as a power receiving coil that wirelessly receives power
  • the foreign object detection device is a switch that switches an electrical connection between the coil and the oscillation circuit.
  • the switch is configured to electrically connect the coil and the oscillation circuit in the foreign object detection mode, and to electrically disconnect the coil and the oscillation circuit in the power transmission mode.
  • a power transmission device is a power transmission device that wirelessly transmits power, and the foreign object detection device according to any one of (1) to (11), and the foreign object detection device.
  • a control circuit that determines a transmission frequency and a transmission voltage in accordance with the detection result.
  • a power receiving device is a power receiving device that receives power wirelessly transmitted from a power transmitting device, and detects foreign matter according to (1) to (10) or (12) above. And a control circuit that generates and outputs information for power transmission control according to the detection result of the foreign object detection device.
  • a wireless power transmission system includes a power transmission device that wirelessly transmits power, and a power reception device that receives the power transmitted from the power transmission device, and the power transmission device includes: It is a power transmission apparatus as described in said (13).
  • a wireless power transmission system includes a power transmission device that wirelessly transmits power, and a power reception device that receives the power transmitted from the power transmission device, wherein the power reception device includes: The power receiving device according to (14) above.
  • FIG. 1 is a circuit diagram illustrating a schematic configuration of a foreign object detection device according to Embodiment 1 of the present disclosure.
  • the foreign object detection device can be used for detecting the proximity of a foreign object such as a metal or a human body (including animals) in a power transmission device or a power reception device of a wireless power transmission system, for example.
  • the foreign object detection device includes an oscillation circuit 100 that outputs a voltage that oscillates at a predetermined period, and an electric circuit 150 that includes a measurement circuit 300 that measures the voltage output from the oscillation circuit 100.
  • the oscillation circuit 100 includes a coil 110 and resonant capacitors Cx and Cy, and includes an AC component including a positive cycle and a negative cycle, and a DC component (sometimes referred to as “DC voltage” in this specification). It is comprised so that the voltage which contains may be output. By measuring this voltage change, the measurement circuit 300 can detect the proximity of a foreign object such as a metal or a human body to the coil 110 and the resonance capacitors Cx and Cy. Hereinafter, a description will be given focusing on the detection of a metallic foreign object.
  • FIG. 2 is a diagram illustrating an example of a time change of the output voltage Vin_X (hereinafter sometimes referred to as “oscillation waveform”) from the output terminal X when the oscillation circuit 100 is oscillating for the foreign object detection operation. It is.
  • the waveform of the voltage Vin_X is a sinusoidal waveform with a certain voltage Vdc as the center of vibration.
  • the voltage Vin_X the voltage Vdc that is the center of vibration is referred to as a “DC voltage”.
  • DC voltage not only represents a voltage itself whose positive and negative values do not change with time, but also means a “DC component” included in a certain voltage.
  • a period in which the voltage is higher than the voltage Vdc is referred to as a “positive cycle”, and a period in which the voltage is lower than the voltage Vdc is referred to as a “negative cycle”.
  • the output waveform in this oscillation circuit is an example, and the waveform of the output voltage includes all waveforms that change periodically, such as a triangular wave and a rectangular wave.
  • the oscillation circuit 100 includes an inverter INV and resistors Rf and Rd in addition to the coil 110 and the resonance capacitors Cx and Cy.
  • the inverter INV is a circuit element that amplifies and outputs an input waveform with power supplied from a power source (not shown).
  • the resistors Rf and Rd included in the oscillation circuit 100 are elements that adjust the excitation level of the circuit.
  • One electrode of the resonant capacitor Cx is connected to the coil 110 and the output terminal of the oscillation circuit 100 (terminal connected to the electronic circuit 150).
  • the two resonance capacitors Cx and Cy are connected in parallel to the coil 110, and one of the electrodes is grounded.
  • the measurement circuit 300 is configured to output information indicating that a metallic foreign object exists when the voltage output from the oscillation circuit 100 is equal to or lower than a predetermined threshold value. Information indicating this detection result can be output to a display element (not shown) or transmitted to a control circuit of the wireless power transmission system and used for power transmission control, for example. Examples of such control will be described later in Embodiments 6 and 7.
  • the measurement circuit 300 can be realized by, for example, an analog / digital conversion circuit (ADC) or a comparator, or a microcontroller unit (MCU) or a digital signal processor (DSP) including the analog / digital conversion circuit (ADC) or comparator.
  • ADC analog / digital conversion circuit
  • MCU microcontroller unit
  • DSP digital signal processor
  • a gate oscillation circuit that operates with the power supply voltage Vdd is used.
  • the foreign object detection device extracts the output voltage from the connection point X between the coil 110 and the capacitor Cx, and measures it with the measurement circuit 300. It is assumed that the measurement circuit 300 can measure a voltage in the range of 0 ⁇ Vout ⁇ Vcc.
  • the measurement circuit 300 in the present embodiment is a circuit element included in the electric circuit 150.
  • the electric circuit 150 detects a change in the AC component having a positive cycle and a negative cycle in the voltage output from the oscillation circuit 100 by the measurement circuit 300 and a change in the DC component.
  • “change” includes any waveform change such as a decrease in amplitude, an increase in amplitude, or waveform distortion of the oscillation waveform.
  • Vin_X Vdc (Q) + Vac (Q) ⁇ sin ( ⁇ t) (1)
  • t time
  • the angular frequency of the oscillation waveform
  • Vdc DC voltage that varies with the Q value
  • Vac amplitude value of the oscillation waveform that varies with the Q value.
  • Vac and Vdc can be calculated digitally by the calculation of the following equation.
  • Vac (max (Vin_X) ⁇ min (Vin_X)) / 2
  • Vdc avg (Vin_X) (3)
  • max (•) represents the maximum value of the measured value
  • min (•) represents the minimum value of the measured value
  • avg (•) represents the average value of the measured values for one period of the oscillation waveform.
  • a method of measuring the amplitude value Vac of the oscillation waveform in an analog manner there is a method using a peak hold circuit.
  • a method for measuring the DC voltage Vdc in an analog manner there is a method using a low-pass filter.
  • a non-contact measurement method in which a magnetic sensor such as a Hall element is brought close to the connection point X of the oscillation circuit 100 and the obtained output voltage is amplified.
  • the oscillation circuit 100 is configured so that not only the AC component but also the DC component changes, and a measurement circuit that can measure changes in Vac and Vdc is provided. Also made it possible to detect foreign matter with high sensitivity. A specific degree of improvement in detection sensitivity will be described later in Example 1.
  • the output voltage range can be further expanded by selecting different values for the capacitors Cx and Cy.
  • the capacity of the resonant capacitor Cx connected to the point X shown in FIG. 1 is Cx
  • the voltage is Vx
  • the voltage is Vy
  • Vx
  • the oscillation voltage of the oscillation circuit 100 is not sufficiently large, or when the range of the measurable voltage of the measurement circuit 300 is larger than the power supply voltage of the oscillation circuit 100, the capacitance ratio of the capacitors is unbalanced.
  • the input voltage to the measurement circuit 300 can be increased.
  • can be set to a value within a range of 0.01 ⁇ ⁇ ⁇ 1, for example. If the balance between Cx and Cy is lost too much, the stability of oscillation decreases, and the value of ⁇ needs to be appropriately selected according to the system configuration.
  • the oscillation circuit 100 uses a known oscillation circuit based on the LC resonance principle, such as a Colpitts oscillation circuit, a Hartley oscillation circuit, a Clap oscillation circuit, or a Franklin oscillation circuit. be able to.
  • the oscillation circuit 100 may have at least one coil and a resonance capacitor constituting the resonance circuit, and may be configured to output a voltage including a positive cycle, a negative cycle, and a DC voltage.
  • the damping resistor Rd is set to an appropriate value according to other circuit constants and the detection performance of the measurement circuit 300. For example, when the metal foreign object is sufficiently separated from the coil 110, the voltage Vout input to the measurement circuit 300 is within the measurable range of the measurement circuit 300 and the metal foreign object larger than the coil 110 is the coil 110.
  • the voltage Vout can be set so as to be equal to or higher than the lower limit value of the measurable range.
  • the damping resistor Rd is connected to the output stage of the oscillation circuit 100 (between the inverter INV and the connection point X), but may be connected to another position.
  • the damping resistor Rd may be provided at any position in the input stage, the output stage, or both as long as it is arranged to reduce the voltage output from the oscillation circuit 100.
  • FIG. 3 is a circuit diagram illustrating a schematic configuration of the foreign object detection device according to the second embodiment of the present disclosure.
  • the present embodiment is different from the first embodiment in that a current limiting circuit 400 is further provided between the amplifying unit (amplifying circuit) in the oscillation circuit 100 and the power supply Vdd.
  • the amplifying unit amplifying circuit
  • the power supply of the amplification unit of the oscillation circuit does not include the current limiting circuit 400. Therefore, when energy loss occurs due to the proximity of foreign matter to the coil, the oscillation voltage drops. In that case, the amplification unit of the oscillation circuit operates to amplify the electric power so that the lost energy is compensated for and the oscillation is continued.
  • the power supply voltage of the amplifier circuit is constant, the current is increased to compensate for the lost energy, and the current value flowing from the power supply into the amplifier circuit increases.
  • the oscillation circuit 100 operates so as to lower the power supply voltage Vdd 'of the amplifying unit and reduce the energy loss lost due to the proximity of foreign matter to the coil in order to maintain the oscillation.
  • the positive cycle voltage, the negative cycle voltage, and the DC voltage are simultaneously decreased, and the measurement circuit 300 can detect the decrease in these voltages. Based on the above principle, the proximity of a foreign object can be detected with higher sensitivity.
  • FIGS. 4A to 4E are circuit diagrams illustrating a schematic configuration of an oscillation circuit in the foreign object detection device according to the third embodiment of the present disclosure. This embodiment is different from the first embodiment in that there are a plurality of coils in the oscillation circuit. Hereinafter, a description will be given focusing on differences from the first embodiment.
  • the detection area When expanding the detection area, the detection area can be expanded spatially and planarly by arranging a plurality of coils.
  • an oscillation circuit is prepared for each coil, there is a problem that the cost increases and the circuit area increases. Therefore, in the present embodiment, as shown in FIG. 4A, a plurality of coils are connected between the terminals AB with the terminals AB as connection points with the oscillation circuit. Below are some examples of possible connections.
  • FIG. 4B shows a configuration example in which two coils # 1 and # 2 are connected in series.
  • the overall inductance is increased as compared to the case where the same single coil is used. For this reason, when it is desired to fix the oscillation frequency, there is an effect that the capacity of the resonance capacitor can be reduced.
  • the time constant until oscillation is stabilized is determined by the product of the capacity of the resonance capacitor and the damping resistance. For this reason, there is an effect that the time until the oscillation starts can be shortened by reducing the capacity of the resonant capacitor.
  • FIG. 4C shows a configuration example in which two coils # 1 and # 2 are connected in parallel.
  • FIG. 4D shows a configuration example in which a plurality of coils # 1 to #N and a selector (multiplexer or switch) are connected between terminals AB.
  • a selector multiplexer or switch
  • FIG. 4E is a block diagram showing a generalized configuration of the present embodiment.
  • the electrical characteristics of the N coils can be represented by an N ⁇ N impedance matrix Z including self-impedance and mutual impedance.
  • the impedance matrix Z L (capacitor, inductor, resistance, open / short circuit) is placed at the end of the N coil terminals.
  • FIG. 5 is a circuit diagram illustrating an example (third circuit example described later) of a schematic configuration of the foreign object detection device according to the fourth embodiment of the present disclosure.
  • the present embodiment is different from the first embodiment in that a rectifier circuit 200 is further provided between the output point X of the oscillation circuit 100 and the measurement circuit 300.
  • the electric circuit 150 is configured by the rectifier circuit 200 and the measurement circuit 300.
  • the measurement circuit 300 may be an external element used by being connected to the foreign material detection apparatus.
  • the rectifier circuit 200 includes a first rectifier element D1 that rectifies a positive cycle voltage in the voltage Vin output from the oscillation circuit 100, a first capacitor C1 that lowers the DC voltage, and a zero voltage due to a decrease in the DC voltage.
  • a second rectifier element D2 that rectifies the voltage of the negative cycle that has become smaller, and a second capacitor C2 that smoothes the voltage output from the first rectifier element D1.
  • the rectifying elements D1 and D2 can be realized using a semiconductor element such as a diode or a transistor, for example.
  • FIGS. 6 to 8 are diagrams (circuit examples) for explaining the configuration and operation of the foreign object detection device according to the present embodiment.
  • FIG. 6 shows a first circuit example
  • FIG. 7 shows a second circuit example
  • FIG. 8 shows a third circuit example.
  • the configuration shown in FIG. 8 is the best configuration in the present embodiment.
  • a gate oscillation circuit that operates at the power supply voltage Vdd is used as an example of the oscillation circuit 100.
  • the foreign object detection device takes out the output voltage from the connection point X between the coil 110 and the capacitor Cx, smoothes it with the capacitor C2 through the rectifying element D1, and measures the voltage Vout (Vout_a or Vout_b in FIGS. 6 and 7) from the output terminal. Measure at 300. It is assumed that the measurement circuit 300 can measure a voltage in the range of 0 ⁇ Vout ⁇ Vcc.
  • the first circuit example shown in FIG. 6A is a half-wave rectifier circuit including a diode (rectifier element) D1.
  • FIG. 6B shows an example of the time change of the voltage Vin_X at the connection point X
  • FIG. 6C shows an example of the time change of the voltage Vin_X when a metal foreign object comes close to the coil 110.
  • the diode D1 mainly rectifies a positive cycle voltage and a DC voltage when the oscillation circuit 100 is oscillating. Therefore, the change in the voltage obtained by the change in the Q value of the resonance circuit accompanying the proximity of the metal foreign object mainly occurs in the positive cycle of the AC voltage and the DC voltage.
  • the second circuit example shown in FIG. 7A is a rectifier circuit having a configuration in which a capacitor C1 is added to the half-wave rectifier circuit in the first circuit example (FIG. 6).
  • the capacitor C1 is connected in series between the connection point X and the diode D1.
  • FIG. 7B shows an example of the time change of the voltage Vin_X ′ at the point X ′ between the capacitor C1 and the diode D1
  • FIG. 7C shows the case where a metal foreign object approaches the coil 110.
  • An example of a time change of the voltage Vin_X ′ is shown.
  • the capacitor C1 may be referred to as a “voltage dividing capacitor”. Due to the effect of the voltage dividing capacitor C1, the DC voltage at the point X ′ is lower than the DC voltage at the connection point X as shown in FIGS. However, since the rectifier element D1 mainly rectifies a positive cycle and a DC voltage, the range of Vout_b is U ⁇ Vdd / 2 ⁇ Vout_b ⁇ U ⁇ Vdd when the forward voltage VF of the diode is ignored.
  • the third circuit example shown in FIG. 8A further includes a diode D2 connected between the connection point X ′ and the ground, in addition to the components of the rectifier circuit in the second circuit example (FIG. 7).
  • FIG. 8B shows an example of the time change of the voltage Vin_X ′ at the connection point X ′
  • FIG. 8C shows an example of the time change of the voltage Vin_X ′ when a metal foreign object comes close to the coil 110. Is shown.
  • the DC voltage Vdc decreases due to the effect of the voltage dividing capacitor C1
  • the DC voltage Vdc also decreases due to a decrease in the Q value accompanying the approach of a foreign object.
  • the diode D2 has an effect of rectifying a negative cycle voltage that has become smaller than 0 due to a decrease in the DC voltage (DC component) by the voltage dividing capacitor C1. Therefore, the maximum output voltage after rectification is 2 ⁇ Vac ⁇ Vdd by combining the components of both positive and negative cycles.
  • the operation mode approaches the second circuit example (FIG. 7). Therefore, the minimum output voltage obtained by rectification is U ⁇ Vdd / 2.
  • the range of the final output voltage Vout in the present embodiment is U ⁇ Vdd / 2 ⁇ Vout ⁇ Vdd.
  • the measurement circuit 300 can measure the voltage in the range of 0 ⁇ Vout ⁇ Vcc. It can be seen that the partial pressure ratio U may be reduced in order to maximize the foreign matter detection sensitivity. That is, by making the voltage division ratio U close to 0, the lower limit value U ⁇ Vdd / 2 of the output voltage can be lowered to around 0V.
  • U may be set to a value larger than 0 and less than 1.
  • U may be set to 0.001 or more and 0.5 or less.
  • the range of Vout is 2.5 mV ⁇ Vout ⁇ 5V.
  • the measurement circuit 300 is an ADC having detection performance of 10 bits (1024 steps), it has a resolution of 5 ⁇ 1024 ⁇ 4.88 mV per bit. In this case, the output range of the ADC is 1 to 1023, and it is possible to measure almost in the full range, thereby achieving high detection sensitivity.
  • the foreign object detection device includes the coil 110 and the resonance capacitors Cx and Cy, and is configured to output a voltage including a positive cycle, a negative cycle, and a DC voltage.
  • An oscillation circuit 100 and a rectification circuit 200 connected to the oscillation circuit 100 and rectifying and outputting a voltage output from the oscillation circuit 100 are provided.
  • the rectifier circuit 200 is configured to detect a positive cycle amplitude, a negative cycle amplitude, and a decrease in DC voltage in the voltage output from the oscillation circuit 100 when a metal foreign object approaches the coil 110.
  • the rectifier circuit 200 includes a first rectifier element D1 that rectifies a positive cycle voltage, and a first capacitor C1 that reduces a DC voltage. And a second rectifying element D2 that rectifies a negative cycle voltage that has become smaller than 0 due to a drop in the DC voltage.
  • the rectifier circuit 200 further includes a second capacitor C2 that smoothes the voltage output from the first rectifier element D1, and U is the voltage division ratio between the first capacitor C1 and the second capacitor C2. For example, 0 ⁇ U ⁇ 0.5 is satisfied.
  • the detection performance of the measurement circuit 300 can be used effectively and the detection sensitivity can be increased.
  • the detection sensitivity can be increased without providing an amplifier circuit in front of the measurement circuit 300, a highly sensitive foreign object detection device can be realized with an inexpensive circuit configuration.
  • the foreign object detection device in the present embodiment is not limited to the configuration shown in FIGS. 5 to 8 and may be modified as appropriate.
  • the smoothing capacitor C2 may be omitted from the third circuit example.
  • the voltage Vout input to the measurement circuit 300 is an AC voltage
  • an ADC having a relatively high sampling rate that can measure a change in the AC voltage needs to be used as the measurement circuit 300.
  • the rectifier circuit 200 is not limited to the configuration shown in FIGS. 5 to 9, and when a metal foreign object approaches the coil 110, the positive cycle amplitude, the negative cycle amplitude in the voltage output from the oscillation circuit 100, and What is necessary is just to be comprised so that the fall of DC voltage can be detected.
  • FIG. 10 is a circuit diagram illustrating a schematic configuration of a foreign object detection device according to Embodiment 5 of the present disclosure.
  • the foreign object detection device of the present embodiment includes a rectifier circuit 200a having a multi-stage configuration of the rectifier circuit 200 of the fourth embodiment, and increases the value of the damping resistor Rd to measure the voltage Vout input to the measurement circuit 300.
  • the difference is that the circuit 300 is configured to be within the measurable range.
  • the oscillation level of the oscillation circuit 100 used for foreign object detection is high, noise may be radiated from the coil components, which may affect external electronic devices.
  • the oscillation level can be kept small by setting the value of the damping resistor Rd as large as several k ⁇ .
  • the foreign matter detection sensitivity also decreases.
  • the output voltage that can be extracted can be increased by 2 to 4 times by using a multi-stage rectifier circuit, and both high sensitivity and low noise can be achieved.
  • FIG. 11 is a block diagram illustrating a schematic configuration of a wireless power transmission system according to the fifth embodiment of the present disclosure.
  • This wireless power transmission system includes a power transmission device 500 and a power reception device 600, and can transmit power wirelessly from the power transmission device 500 to the power reception device 600.
  • the power transmission device 500 is, for example, a wireless charger, and the power reception device 600 may be a device including a secondary battery such as a portable information terminal or an electric vehicle.
  • the foreign object detection device according to any of the embodiments described above is provided on the power transmission device 500 side.
  • the power transmission device 500 not only transmits power to the power reception device 600 but also can detect whether or not there is a metal foreign object 2000 between the power reception coil 610 and the power transmission coil 510 in the power reception device 600.
  • the detection result can be notified to the user as light information from the light source 570 or the light source 670 provided in the power transmission device 500 or the power reception device 600, for example.
  • a foreign object detection result may be notified to the user as information such as light, video, and sound using a display element such as a display or a speaker.
  • the “display element” is not limited to an element that presents visual information, but includes a wide range of elements that present only auditory information (sound or voice).
  • the user when the user brings the power receiving device 600 close to the power transmission device 500, the user can determine whether there is a foreign object between the power receiving coil 610 and the power transmission coil 510. Since it can be known, a safe transmission state can be ensured.
  • the power transmission device 500 in this embodiment includes a power transmission coil 510, a power transmission circuit 520, a power source 530, an oscillation circuit 100, a rectifier circuit 200, a measurement circuit 300, and a light source 570.
  • the power transmission coil 510, the oscillation circuit 100, the rectification circuit 200, and the measurement circuit 300 constitute a foreign object detection device.
  • the power transmission coil 510 corresponds to the coil 110 in the above-described embodiment, and is depicted as an element independent of the oscillation circuit 100 in FIG.
  • the power transmission coil 510 forms a power transmission resonator together with a capacitor (not shown), and wirelessly transmits the AC power supplied from the power transmission circuit 520.
  • a thin coil formed of a substrate pattern, a winding coil using a copper wire, a litz wire, a twisted wire, or the like can be used.
  • the Q value of the coil L1 can be set to 100 or more, for example, but may be set to a value smaller than 100.
  • the power transmission resonator may not include a capacitor if it is unnecessary, and may form a power transmission resonator including the self-resonance characteristics of the coil 510 itself.
  • the oscillation circuit 100, the rectifier circuit 200, and the measurement circuit 300 are the same as those in any of the embodiments described above.
  • the measurement circuit 300 detects a metallic foreign object close to the power transmission coil 510 based on a change in voltage output from the rectifier circuit 200. Then, information indicating the detection result is notified to the control circuit 540 directly or indirectly via a recording medium such as a memory (not shown).
  • the power transmission circuit 520 is a circuit that outputs AC energy for power transmission after the foreign object detection is completed.
  • the power transmission circuit 520 may be a full-bridge type inverter or another type of power transmission circuit such as class D or class E.
  • various sensors for measuring a modulation / demodulation circuit for communication and voltage / current may be included.
  • the power source 530 includes a commercial power source, a primary battery, a secondary battery, a solar cell, a fuel cell, a USB (Universal Serial Bus) power source, a high-capacity capacitor (for example, an electric double layer capacitor), a voltage converter connected to the commercial power source, Or it includes all power sources that can be implemented using a combination thereof.
  • a commercial power source a primary battery, a secondary battery, a solar cell, a fuel cell, a USB (Universal Serial Bus) power source, a high-capacity capacitor (for example, an electric double layer capacitor), a voltage converter connected to the commercial power source, Or it includes all power sources that can be implemented using a combination thereof.
  • USB Universal Serial Bus
  • the power transmission control circuit 540 is a processor that controls the operation of the entire power transmission apparatus 500, and can be realized by, for example, a combination of a CPU and a memory that stores a computer program.
  • the power transmission control circuit 540 may be dedicated hardware configured to realize the operation of the present embodiment.
  • the power transmission control circuit 540 performs switching of the oscillation frequency of the oscillation circuit 100, power transmission control by the power transmission circuit 520 (adjustment of power transmission state), and control for causing the display element 570 to emit light based on the detection result of the measurement circuit 300. Specifically, in the foreign object detection mode, the operation of the power transmission circuit 520 is stopped and the oscillation circuit 100 is driven. In the power transmission mode, the operation of the oscillation circuit 100 is stopped and the power transmission circuit 520 is driven.
  • the power transmission control circuit 540 determines the power transmission start frequency and the power transmission voltage according to the measurement result of the foreign object detection device.
  • a known oscillation circuit based on the LC resonance principle such as a Colpitts oscillation circuit, a Hartley oscillation circuit, a Clapp oscillation circuit, or a Franklin oscillation circuit, can be used for the oscillation circuit 100.
  • the measurement circuit 300 can be a measuring instrument such as an ADC used to measure the voltage output from the rectifier circuit 200 as described above.
  • ADC an ADC used to measure the voltage output from the rectifier circuit 200 as described above.
  • at least a part of the function of the measurement circuit 300 and at least a part of the function of the power transmission control circuit 540 may be realized by a semiconductor package (for example, a microcontroller or a custom IC).
  • the light source 570 is configured to notify the user of the detection result by the measurement circuit 300.
  • the light source 570 may be configured by a light source such as an LED or an organic EL, or may be an aggregate of a plurality of light sources.
  • the light source 570 emits different light sources from among the plurality of light sources or the number of light sources to be emitted stepwise according to the distance between the power transmission coil L1 and the power reception coil L2 and the degree of proximity of the metal foreign object. It may be varied.
  • a display such as a liquid crystal display element or an organic EL display element may be used. When the display is used, the detection result can be displayed as an image or characters. Such a display element may be configured to display the detection result with sound or sound together with light or instead of light.
  • the power transmission apparatus 500 can operate in two modes: a “foreign object detection mode” in which a foreign object is detected using a foreign object detection apparatus and a “power transmission mode” in which power transmission is performed using a power transmission circuit 520.
  • the power transmission device 500 includes switches S1 and S2 that switch between a power transmission mode and a foreign object detection mode.
  • the power transmission control circuit 540 electrically connects the power transmission coil 510 and the oscillation circuit 100 in the foreign object detection mode, and electrically connects the switches S1 and S2 so as to electrically disconnect the power transmission coil 510 and the oscillation circuit 100 in the power transmission mode. Control the state.
  • the power receiving apparatus 600 includes a power receiving coil 610 that receives at least a part of the power transmitted from the power transmitting coil 510, a load 630, a power receiving circuit 620 that rectifies the received power and supplies the received power to the load 630, and a foreign object detection result.
  • a light source 670 for transmission and a power reception control circuit 640 for controlling each part of the power reception device 600 are provided.
  • the power receiving coil 610 constitutes a power receiving resonator together with a capacitor (not shown), and is electromagnetically coupled to the power transmitting resonator.
  • the power receiving coil 610 and the capacitor may be the same as or different from the power transmitting coil and capacitor, respectively. Note that the power receiving resonator does not need to include a capacitor if it is not necessary, and the power receiving resonator may be formed including the self-resonance characteristics of the coil 610 itself.
  • the power reception circuit 620 includes various circuits such as a rectifier circuit, a frequency conversion circuit, a constant voltage / constant current control circuit, and a modulation / demodulation circuit for communication, and the received AC energy can be used for the DC energy or low frequency that the load 630 can use. It is comprised so that it may convert into alternating current energy.
  • Various sensors for measuring the voltage / current of the power receiving resonator 610 may be included in the power receiving circuit 620.
  • the load 630 is, for example, a secondary battery or a high-capacity capacitor, and can be charged and supplied with power output from the power receiving circuit 620.
  • the power reception control circuit 640 is a processor that controls the operation of the entire power receiving apparatus 600, and can be realized by, for example, a combination of a CPU and a memory storing a computer program.
  • the power reception control circuit 640 is not limited to this example, and may be dedicated hardware configured to realize the operation of the present embodiment.
  • the power reception control circuit 640 performs charge / power supply control to the load 650 and control of the light source 670.
  • the foreign object detection coil and the power transmission coil are shared.
  • coil components can be shared, and the power transmission device 500 can be downsized.
  • the use of the power transmission coil as a foreign object detection coil has an advantage that the loading state of the foreign material on the power transmission coil 510 can be directly detected. Thereby, based on the voltage value which the measurement circuit 300 measured, the transmission frequency and transmission power (transmission voltage or transmission current) can be adjusted. For example, if it is determined that there is a foreign object, if power transmission is immediately stopped or power transmission is not started, charging cannot be performed, and user convenience may be reduced. Therefore, even if the evaluation value that is the determination criterion for the presence or absence of foreign matter is equal to or less than a predetermined threshold, power may be transmitted while applying power transmission control so that the temperature of the foreign matter is equal to or lower than the predetermined threshold.
  • intermittent transmission is performed at predetermined time intervals using parameters determined based on data obtained experimentally or analytically in advance, or the transmission power is reduced at a predetermined reduction rate.
  • the power may be transmitted (power limit mode), a temperature sensor may be disposed in the vicinity of the power transmission coil 510, and the transmitted power may be adjusted while monitoring the temperature.
  • FIG. 12 is a flowchart illustrating an example of processing of the power transmission device 500 according to the present embodiment.
  • the measurement circuit 300 measures the voltage output from the rectifier circuit 200.
  • the measurement circuit 300 determines whether or not the measured voltage is greater than or equal to the first threshold value. If the measured voltage is equal to or higher than the first threshold value, there is no foreign matter, so the process proceeds to step S112 and power transmission is started (normal power transmission). If the voltage is less than the first threshold value, it is presumed that a foreign substance is present, so the process proceeds to step S113, and the measurement circuit 300 determines whether or not the voltage is equal to or higher than the second threshold value.
  • the measurement circuit 300 determines that the heat generation is a small foreign object that does not cause a problem, and notifies the power transmission control circuit 540 of information to that effect.
  • the power transmission control circuit 540 sets the above power limit mode and starts power transmission (step S114). If the voltage is less than the second threshold value in step S113, the measurement circuit 300 determines that there is a large foreign object, and notifies the power transmission control circuit 540 of information to that effect.
  • the power transmission control circuit 540 notifies the user that there is a foreign object by blinking the light source 570 (for example, LED) (step S115).
  • the power transmission coil 510 During wireless power transmission, for example, several watts to several kW of power is transmitted from the power transmission coil 510 to the power reception coil 610. Therefore, when the power transmission mode is shifted to the foreign object detection mode during power transmission, the accumulated energy of the coil is detected as a foreign object. May flow into the circuit for use and burn out beyond the withstand voltage of the circuit for detecting foreign matter. Therefore, in this embodiment, the energy stored in the power transmission coil 510 during wireless power transmission is released to the ground, and then the foreign substance detection mode is entered. By doing so, it is possible to prevent the foreign matter detection circuit from being burned out.
  • the switch of the switching element for example, MOSFET
  • the switch of the switching element directly connected to the ground is turned ON.
  • the energy accumulated in the power transmission coil 510 can be released to the ground.
  • the foreign object detection mode may be started after a predetermined time has elapsed.
  • the power transmission coil 510 is configured to function as a foreign object detection coil.
  • the present invention is not limited to this example, and the power transmission coil and the foreign object detection coil are individually provided. It may be provided.
  • FIG. 13 is a block diagram illustrating a schematic configuration of a wireless power transmission system according to the seventh embodiment of the present disclosure.
  • the present embodiment is different from the sixth embodiment in that the power receiving device 600 includes a foreign object detection device including the oscillation circuit 100, the rectifier circuit 200, and the measurement circuit 300.
  • the power receiving device 600 according to the present embodiment can operate in two modes, a power receiving mode and a foreign object detection mode. Switches S1 and S2 for switching between the power receiving mode and the foreign object detection mode, a power receiving coil 610, and an oscillation circuit 100 are provided. And prepare for.
  • Each component of the power transmission device 500 and the power reception device 600 in the present embodiment is the same as the corresponding component in the sixth embodiment.
  • the foreign object detection device of the fourth embodiment having the rectifier circuit 200 is also illustrated in the present embodiment, the foreign object detection device that does not include the rectifier circuit may be provided.
  • Such a configuration has the effect that the coil components can be shared and the power receiving device 600 can be miniaturized.
  • the power receiving coil 610 as a foreign object detection coil, there is an advantage that it is possible to directly detect the loading state of the foreign objects existing under the power receiving coil 610 or the like.
  • the power transmission apparatus 500 it is possible to request the power transmission apparatus 500 to adjust the transmission frequency and the transmission power (voltage or current) according to the voltage value detected by the measurement circuit 300.
  • Such a request may be executed by a communication circuit included in the power receiving circuit 620, for example. For example, if the measurement circuit 300 determines that there is a foreign object, if the power transmission control circuit 540 immediately stops power transmission or does not start power transmission, charging cannot be performed and user convenience is impaired.
  • power may be transmitted while applying power transmission control so that the temperature of the foreign matter is equal to or lower than the predetermined threshold.
  • power transmission control so that the temperature of the foreign matter is equal to or lower than the predetermined threshold.
  • intermittent transmission is performed at predetermined time intervals using parameters determined based on data obtained experimentally or analytically in advance, or the transmission power is reduced at a predetermined reduction rate.
  • the power may be transmitted (power limit mode), or a temperature sensor may be disposed in the vicinity of the power receiving coil 610 and the transmitted power may be adjusted while monitoring the temperature.
  • FIG. 14 is a flowchart illustrating an example of processing of the power receiving device 600 according to the present embodiment.
  • the measurement circuit 300 measures the voltage output from the rectifier circuit 200.
  • the measurement circuit 300 determines whether or not the measured voltage is greater than or equal to the first threshold value. If the measured voltage is above the first threshold, there is no foreign matter, so the process proceeds to step S132, and a power transmission start request is sent to the power transmission device 500 side (normal power transmission). If the voltage is less than the first threshold value, it is presumed that a foreign substance is present, so the process proceeds to step S133, and the measurement circuit 300 determines whether or not the voltage is equal to or greater than the second threshold value.
  • the measurement circuit 300 determines that the heat generation is a small foreign object that does not cause a problem, and sends information to that effect (transmission start request) to the power transmission control circuit 540 of the power transmission device 500. Send (step S134).
  • the power transmission control circuit 540 sets the above power limit mode and starts power transmission. If the voltage is less than the second threshold value in step S133, the measurement circuit 300 determines that there is a large foreign object, and notifies the power reception control circuit 640 of that fact. In response to the notification, the power reception control circuit 640 notifies the user that there is a foreign object by blinking the light source 670 (for example, LED) (step S135).
  • the power transmission coil 510 During wireless power transmission, for example, several watts to several kW of power is transmitted from the power transmission coil 510 to the power reception coil 610. Therefore, when the power transfer mode is changed to the foreign object detection mode during power transmission, the accumulated energy of the coil is detected as a foreign object. May flow into the circuit for use and burn out beyond the withstand voltage of the circuit for detecting foreign matter. Therefore, in the present embodiment, the energy accumulated in the power receiving coil 610 during wireless power transmission is transferred to the ground and then the foreign object detection mode is entered. By doing so, it is possible to prevent the foreign matter detection circuit from being burned out.
  • the rectifier circuit included in the power receiving circuit 620 is a synchronous rectifier circuit
  • the switching elements included in the power receiving circuit 620 are directly connected to the ground. Turn on the switching element. Thereby, the energy accumulated in the coil in the power receiving coil 610 is released to the ground. Thereafter, the foreign object detection mode may be started after a predetermined time has elapsed.
  • the power receiving coil 610 is configured to function also as a foreign object detection coil.
  • the present invention is not limited to this example, and the power transmission coil and the foreign object detection coil are individually provided. It may be provided.
  • Example 1 Examples according to Embodiment 1 and Embodiment 2 of the present disclosure will be described.
  • the measurement circuit 300 was an ADC of 2 Gsample / sec.
  • the measurement waveform was stored in a memory, and the amplitude value Vac and the DC voltage Vdc of the oscillation waveform were calculated using the equations (2) and (3).
  • Two types of iron and aluminum foil were selected as evaluation foreign substances, and the measured values of the oscillation waveforms when they were brought close to the coil and separated from the coil (no foreign substance) were compared.
  • the current limit value of the current limit circuit 400 was set to 8 mA, and when it exceeded 8 mA, the operation was performed in the constant current mode. .
  • the case without constant current circuit corresponds to the first embodiment
  • the case with constant current circuit corresponds to the second embodiment.
  • the numbers in parentheses in the table are the difference between the voltage value when there is no foreign object and the voltage value when there is a foreign object.
  • the amplitude of the AC voltage is reduced by 541 mV due to the proximity of the foreign object.
  • Example 2 An example according to the fourth embodiment of the present disclosure will be described.
  • 16A and 16B are graphs showing the relationship between the Q value and the output voltage in the three circuit examples described with reference to FIGS. 6 to 8 in the fourth embodiment.
  • Vdd 5V
  • C1 1nF
  • Rf 1M ⁇
  • Rd 470 ⁇
  • Lp 6.5uH
  • simulating that the resistance Rp of the coil changes when a foreign object is loaded on the coil Rp 25 to 5000 m ⁇
  • the simulation result includes the characteristic of the forward voltage VF of the diode.
  • the lower limit voltage is U ⁇ Vdd / 2 ⁇ 1.2 V, as in Circuit Example 2, and the upper limit voltage is a circuit example as the Q value increases. It can be seen that the upper limit voltage Vdd at 1 is approaching 5 dd. Therefore, as described in the fourth embodiment, it is considered that the lower limit voltage can be reduced and the detection dynamic range can be increased by reducing the voltage division ratio U.
  • the present invention is not limited to these numerical values and circuit configurations.
  • the present invention in order to focus on the gist of the present invention, the description of an example of an oscillation circuit that operates at a single frequency has been made.
  • the present invention further includes a capacitor with a switch or an inductor with a switch. It is easy to expand to a “multi-frequency oscillation circuit” that dynamically changes the resonance frequency of the LC resonance circuit by switching on and off. These can use the existing switching method, and can further improve the detection accuracy of the foreign object detection device of the present disclosure by measuring the voltage at a plurality of frequencies and determining the amount of change in the voltage for each frequency. Is possible.
  • the foreign object detection device and the wireless power transmission system of the present disclosure can be widely applied to, for example, applications that charge or supply power to electric vehicles, AV devices, batteries, medical devices, and the like. According to the embodiment of the present disclosure, it is possible to detect a foreign object such as a metal or a human body close to the coil with high sensitivity, and to avoid the risk of abnormal heat generation of the metal or human exposure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Electromagnetism (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

 異物検出装置は、コイル110および共振コンデンサCx、Cyを有し、正のサイクルおよび負のサイクルを有する交流成分と直流成分とを含む電圧を出力するように構成された発振回路100と、コイル110に異物が接近したとき、発振回路100から出力される前記電圧における前記交流成分の変化と前記直流成分の変化とを検知する電気回路とを備える。

Description

異物検出装置、送電装置、受電装置、および無線電力伝送システム
 本開示は、コイルに近接した異物を検出する異物検出装置に関する。また、本開示は、このような異物検出装置を備え、かつ、非接触で電力を伝送する無線電力伝送のための送電装置および受電装置ならび無線電力伝送システムにも関する。
 近年、携帯電話機や電気自動車などの移動性を伴う電子機器やEV機器において、無線充電を行うために、コイル間の誘導結合を用いた無線電力伝送技術の開発が進んでいる。無線電力伝送システムは、送電コイル(送電アンテナ)を備えた送電装置と、受電コイル(受電アンテナ)を備えた受電装置とを含み、送電コイルによって生じた磁界を受電コイルが捕捉することにより、電極を直接に接触させることなく電力を伝送することができる。
 特許文献1は、このような無線電力伝送システムの一例を開示している。
特開2012-244732号公報
 無線電力伝送システムにおいて、電力伝送を行う際に送電コイルまたは受電コイルに金属異物が近接すると、金属異物に渦電流が発生し、加熱させるリスクを生じる。また、電力伝送中に送電コイルまたは受電コイルに人体などが近接すると、人体に誘導電流が発生するリスクを生じる。従って、コイルに近接した金属や人体などの異物検出は、安全かつ高効率に無線電力伝送をするために必須の機能である。
 このような課題に対し、特許文献1は、2次側コイルと電磁的に結合する1次側コイルを含む回路の1次側Q値を測定し、電力伝送効率を1次側コイルのQ値で補正し、得られた補正値に基づいて2次側コイルとの電磁結合している状態を検知することを開示している。
 しかし、特許文献1の方法では、Q値測定のために交流電圧を用いており、交流成分の変化のみを指標としてコイルに近接した異物を検出するため、異物の検出感度が低いという課題がある。
 本開示の実施形態は、コイルに近接した金属や人体などの異物を高い感度で検出できる異物検出装置を提供する。また、本開示の実施形態は、そのような異物検出装置を備える無線電力伝送のための送電装置および受電装置、ならびに無線電力伝送システムを提供する。
 上記の課題を解決するために、本開示の一態様に係る異物検出装置は、コイルおよび共振コンデンサを有し、正のサイクルおよび負のサイクルを有する交流成分と直流成分とを含む電圧を出力するように構成された発振回路と、前記コイルに異物が接近したときに前記発振回路から出力される前記電圧における前記交流成分の変化と前記直流成分の変化とを検知する電気回路と、を備えている。
 上述の一般的かつ特定の態様は、システム、方法およびコンピュータプログラムを用いて実装され、またはシステム、方法およびコンピュータプログラムの組み合わせを用いて実現され得る。
 本開示の実施形態によれば、金属や人体などの異物がコイルに近接した際の、電圧の交流成分(正のサイクルおよび/または負のサイクル)の変化に加え、さらに、直流成分の変化を検知することで、コイルに近接した異物を高い感度で検出できる。
本開示の実施形態1に係る異物検出装置の概略構成を示す回路図である。 発振回路100の出力端Xにおける出力電圧Vin_Xの時間変化の一例を示す図である。 本開示の実施形態2に係る異物検出装置の概略構成を示す回路図である。 本開示の実施形態3に係る異物検出装置における発振回路の概略構成を示す回路図である。 発振回路における端子A-B間の第1の接続例を示す図である。 発振回路における端子A-B間の第2の接続例を示す図である。 発振回路における端子A-B間の第3の接続例を示す図である。 発振回路における端子A-B間の第4の接続例を示す図である。 本開示の実施形態4に係る異物検出装置における発振回路の概略構成の一例を示す回路図である。 実施形態4における第1の回路例および動作を説明するための図である。(a)は回路構成を示し、(b)は点Xにおける電圧Vin_Xの時間変化の一例を示し、(c)はコイル110に金属異物が近接したときの電圧Vin_Xの時間変化の一例を示している。 実施形態4における第2の回路例および動作を説明するための図である。(a)は回路構成を示し、(b)は点X’における電圧Vin_X’の時間変化の一例を示し、(c)はコイル110に金属異物が近接したときの電圧Vin_X’の時間変化の一例を示している。 実施形態4における第3の回路例および動作を説明するための図である。(a)は回路構成を示し、(b)は点X’における電圧Vin_X’の時間変化の一例を示し、(c)はコイル110に金属異物が近接したときの電圧Vin_X’の時間変化の一例を示している。 実施形態4の変形例を示す図である。 本開示の実施形態5に係る異物検出装置の概略構成を示す回路図である。 本開示の実施形態6に係る無線電力伝送システムの概略構成を示すブロック図である。 実施形態6における送電装置の処理の一例を示すフローチャートである。 本開示の実施形態7に係る無線電力伝送システムの概略構成を示すブロック図である。 実施形態7における受電装置の処理の一例を示すフローチャートである。 本開示の第1の実施例における測定結果を示す図である。 本開示の第2の実施例におけるシミュレーション結果を示す図である。 本開示の第2の実施例におけるシミュレーション結果を示す図である。
 上述のように、無線電力伝送システムにおいては、コイルに近接した金属や人体(動物を含む)などの異物を確実に検出する必要がある。この要請に対し、特許文献1に代表される従来の検知回路では、金属異物がコイルに近接したときに発振電圧の交流成分が変化する点に着目した判定方法が主流であった。本願の実施形態では、異物がコイルに近接したときに、発振電圧の交流成分に加えて直流成分も変化するように発振回路を構成し、交流成分および直流成分の両方の変化を測定可能な測定回路が用いられる。このような構成により、本開示の実施形態では、コイルに近接した異物を高い感度で検出できる。また、本開示の実施形態は、そのような異物検出装置を備える無線電力伝送のための送電装置および受電装置、ならびに無線電力伝送システムを実現できる。
 本願の実施形態の概要は、以下の通りである。
 (1)本開示の一態様に係る異物検出装置は、コイルおよび共振コンデンサを有し、正のサイクルおよび負のサイクルを有する交流成分と直流成分とを含む電圧を出力するように構成された発振回路と、前記コイルに異物が接近したときに前記発振回路から出力される前記電圧における前記交流成分の変化と前記直流成分の変化とを検知する電気回路とを備えている。
 (2)ある実施形態において、前記電気回路は、前記発振回路から出力された前記電圧を整流して出力する整流回路を備え、前記整流回路は、前記正のサイクルの電圧を整流する第1の整流素子と、前記直流成分を低下させる第1のコンデンサと、前記直流成分を低下させることによって0よりも小さくなった前記負のサイクルの電圧を整流する第2の整流素子と、を有する。
 (3)ある実施形態において、前記整流回路は、前記第1の整流素子から出力された電圧を平滑化する第2のコンデンサをさらに有し、前記第1のコンデンサと前記第2のコンデンサとの分圧比をUとするとき、0<U≦0.5を満足する。
 (4)ある実施形態において、前記電気回路は、前記発振回路から出力される電圧を直接的あるいは間接的に測定する測定回路をさらに備える。
 (5)ある実施形態において、前記電気回路は、前記整流回路から出力される電圧を測定する測定回路をさらに備える。
 (6)ある実施形態において、前記発振回路は、前記発振回路から出力される前記電圧を低下させるように配置された抵抗Rdをさらに有し、前記抵抗Rdは、前記異物が前記コイルから十分に離れている場合において、前記測定回路に入力される電圧が、前記測定回路の測定可能範囲内に収まり、かつ、前記コイルよりも大きい異物がコイルに密着した場合に、前記電圧が、前記測定可能範囲の下限値以上に収まるように設定されている。
 (7)ある実施形態において、前記測定回路は、前記測定回路に入力される電圧と所定の基準電圧との差が、所定の閾値以上のとき、前記異物が存在することを示す情報を出力する。
 (8)ある実施形態において、前記共振コンデンサを第1の共振コンデンサとするとき、前記発振回路は、前記第1の共振コンデンサの容量とは異なる容量を有する第2の共振コンデンサをさらに備え、前記第1の共振コンデンサの一方の電極は、前記コイルおよび前記発振回路の出力端子に接続されており、前記第1および第2の共振コンデンサは、前記コイルに対して並列に接続されている。
 (9)ある実施形態において、前記第1の共振コンデンサの容量をCx、前記第2の共振コンデンサの容量をCy=αCxとするとき、αは1≦α<100の範囲内の値に設定されている。
 (10)ある実施形態において、前記第1の共振コンデンサの容量をCx、前記第2の共振コンデンサの容量をCy=αCxとするとき、αは0.01≦α<1の範囲内の値に設定されている。
 (11)ある実施形態において、前記コイルは、無線で電力を送出する送電コイルとしても機能するように構成され、前記異物検出装置は、前記コイルと前記発振回路との間の電気的接続を切替えるスイッチをさらに備え、前記スイッチは、異物検出モードでは前記コイルと前記発振回路とを電気的に接続し、送電モードでは前記コイルと前記発振回路とを電気的に切断するように構成されている。
 (12)ある実施形態において、前記コイルは、無線で電力を受け取る受電コイルとしても機能するように構成され、前記異物検出装置は、前記コイルと前記発振回路との間の電気的接続を切替えるスイッチをさらに備え、前記スイッチは、異物検出モードでは前記コイルと前記発振回路とを電気的に接続し、送電モードでは前記コイルと前記発振回路とを電気的に切断するように構成されている。
 (13)本開示の他の態様に係る送電装置は、電力を無線で送出する送電装置であって、上記(1)から(11)のいずれかに記載の異物検出装置と、前記異物検出装置の検出結果に応じて送電周波数および送電電圧を決定する制御回路と、を備える。
 (14)本開示の他の態様に係る受電装置は、送電装置から無線で送出された電力を受け取る受電装置であって、上記(1)から(10)、または(12)に記載の異物検出装置と、前記異物検出装置の検出結果に応じて送電制御のための情報を生成して出力する制御回路と、を備える。
 (15)本開示の他の態様に係る無線電力伝送システムは、電力を無線で送出する送電装置と、前記送電装置から送出された前記電力を受け取る受電装置と、を備え、前記送電装置は、上記(13)に記載の送電装置である。
 (16)本開示の他の態様に係る無線電力伝送システムは、電力を無線で送出する送電装置と、前記送電装置から送出された前記電力を受け取る受電装置と、を備え、前記受電装置は、上記(14)に記載の受電装置である。
 以下、本発明の具体的な実施形態について図面を参照しながら説明する。なお、同様の構成要素については同一の符号を付している。
 (実施形態1)
 図1は、本開示の実施形態1に係る異物検出装置の概略構成を示す回路図である。この異物検出装置は、例えば無線電力伝送システムの送電装置または受電装置において、金属や人体(動物を含む)などの異物の近接を検出する用途で用いられ得る。異物検出装置は、所定の周期で振動する電圧を出力する発振回路100と、発振回路100から出力された電圧を測定する測定回路300を含む電気回路150とを備えている。発振回路100は、コイル110および共振コンデンサCx、Cyを有し、正のサイクルおよび負のサイクルを含む交流成分、および直流成分(本明細書において、「直流電圧」と称することがある。)を含む電圧を出力するように構成されている。この電圧の変化を測定回路300が測定することにより、コイル110および共振コンデンサCx、Cyへの金属や人体などの異物の近接を検出することができる。以下、金属異物の検出に焦点を絞って説明する。
 図2は、発振回路100が異物検出動作のために発振しているときの出力端Xからの出力電圧Vin_X(以下、「発振波形」と称することがある。)の時間変化の一例を示す図である。図1に示す回路構成では、電圧Vin_Xの波形は、ある電圧Vdcを振動の中心とする正弦波状の波形となる。電圧Vin_Xにおいて、振動の中心となる電圧Vdcを、「直流電圧」と呼ぶ。このように、本明細書では、「直流電圧」の用語を、時間によって正負が変化しない電圧そのものを表すだけでなく、ある電圧に含まれる「直流成分」の意味でも使用する。また、電圧Vin_Xにおいて、電圧Vdcよりも電圧が大きくなる期間を「正のサイクル」と呼び、電圧Vdcよりも電圧が小さくなる期間を「負のサイクル」と呼ぶ。本発振回路における出力波形は一例であり、上記出力電圧の波形は三角波や矩形波など周期的に変化するすべての波形を含む。
 発振回路100は、コイル110および共振コンデンサCx、Cyの他、インバータINVと、抵抗Rf、Rdとを備えている。インバータINVは、不図示の電源から供給された電力により入力波形を増幅して出力する回路要素である。発振回路100が有する抵抗Rfおよび抵抗Rdは、回路の励振レベルを調整する素子である。共振コンデンサCxの一方の電極は、コイル110および発振回路100の出力端子(電子回路150に接続される端子)に接続されている。2つの共振コンデンサCx、Cyは、コイル110に対して並列に接続され、それぞれの電極の一方は接地されている。
 測定回路300は、発振回路100から出力された電圧が所定の閾値以下のとき、金属異物が存在することを示す情報を出力するように構成されている。この検出結果を示す情報は、例えば不図示の表示素子に出力されたり、無線電力伝送システムの制御回路に伝達され、送電制御のために利用され得る。そのような制御の例は、実施形態6、7において後述する。測定回路300は、例えば、アナログ・デジタル変換回路(ADC)もしくはコンパレータ、またはそれらを備えたマイクロコントローラユニット(MCU)もしくはデジタルシグナルプロセッサ(DSP)などによって実現され得る。
 以下、図1および図2を参照しながら、本実施形態の異物検出装置の動作原理をより詳細に説明する。
 まず、図1では、発振回路100の一例として、電源電圧Vddで動作するゲート発振回路を用いている。異物検出装置は、コイル110とコンデンサCxとの接続点Xから出力電圧を取り出し、測定回路300で測定する。測定回路300は、0≦Vout<Vccの範囲で電圧を測定できるものとする。
 本実施形態における測定回路300は、電気回路150に含まれる回路要素である。電気回路150は、測定回路300によって発振回路100から出力される電圧における正のサイクルおよび負のサイクルを有する交流成分の変化と、直流成分の変化とを検知する。ここで、「変化」とは発振波形の振幅低下や振幅増加や波形歪みなどのあらゆる波形の変化を含む。
 発振回路100が発振し定常状態に達した時、時間tの経過に伴い、発振波形のサイクルの正負が角周波数ωで変化する。このため、接続点Xにおける電圧Vin_Xは、以下の式(1)で表される。
  Vin_X=Vdc(Q)+Vac(Q)×sin(ωt)  (1)
ここで、tは時間、ωは発振波形の角周波数、VdcはQ値によって変化する直流電圧、VacはQ値によって変化する発振波形の振幅値である。図2にも示すように、Vac(Q)×sin(ωt)>0になる期間が正のサイクルであり、Vac(Q)×sin(ωt)<0になる期間が負のサイクルである。VdcはインバータINVにCMOSインバータを用いた場合、理想的条件化であればVdc=Vdd/2であるが、半導体のばらつきや損失の影響などで一般にVdd/2より低くなる。この発振回路100の構成例では、コイル110に金属異物が近接することによってコイル110および共振コンデンサCx、Cyから構成される共振回路のQ値が低下すると、発振回路の安定性が低下し、VdcとVacが低下する。すなわち、正のサイクルおよび負のサイクルを有する交流成分と、直流成分が変化している。
 振幅値Vacと直流電圧Vdcを測定する方法としては、発振波形の周期に比べて十分なサンプリングレートを有するADCを用いる方法がある。例えば、発振回路100の出力波形Vin_Xを直接サンプリングした上で、次式の演算によりデジタル的にVacおよびVdcを算出することができる。
  Vac=(max(Vin_X)-min(Vin_X))÷2
                                                         (2)
  Vdc=avg(Vin_X)               (3)
ここで、max(・)は測定値の最大値、min(・)は測定値の最小値、avg(・)は発振波形1周期分の測定値の平均値を表す。
 また、発振波形の振幅値Vacをアナログ的に測定する方法としては、ピークホールド回路を用いる方法などがある。直流電圧Vdcをアナログ的に測定する方法としてはローパスフィルタを用いる方法などがある。あるいは、ホール素子などの磁気センサを、発振回路100の接続点Xに近接させ、得られた出力電圧を増幅するなどの非接触で測定する方法もある。
 従来方式では、金属異物がコイルに近接した時に交流電圧の振幅値Vacが変化することに主眼を置いた検知方法が主流であった。本願では、金属異物がコイルに近接した時に、交流成分だけでなく直流成分も変化するよう発振回路100を構成し、かつ、VacとVdcの変化を測定できる測定回路を備えることで、従来方式よりも高感度に異物を検知可能にした。具体的な検知感度の改善の度合いについては実施例1にて後述する。
 なお、図1において、コンデンサCx、Cyの容量を異なる値に選定することで、上記の出力電圧の範囲をさらに拡大することも可能である。具体的には、図1に示す点Xに接続された共振コンデンサCxの容量をCx、電圧をVxとし、点Yに接続された共振コンデンサCyの容量をCy=αCx、電圧をVyとすると、Vx=α|Vy|となる。よって、電気回路150への入力電圧Vin_Xは、Vyのα倍となる。発振回路100の発振電圧が十分に大きくない場合や、測定回路300の測定可能な電圧の範囲が発振回路100の電源電圧よりも大きい場合は、上記コンデンサの容量の比をアンバランスにすることで、測定回路300への入力電圧を増加させることができる。αの設定範囲は、Cx=Cyである場合も含めて、例えば1≦α≦100に設定され得る。また、逆に、測定回路300への入力電圧Vinを低く抑えたい場合は、αは、例えば0.01≦α<1の範囲内の値に設定され得る。CxとCyとのバランスを崩しすぎると発振の安定度が低下するため、上記αの値はシステムの構成に応じて適切に選定する必要がある。
 また、発振回路100は、図1に示すようなゲート発振回路以外にも、例えばコルピッツ発振回路や、ハートレー発振回路、クラップ発振回路、フランクリン発振回路など、LC共振原理に基づく公知の発振回路を用いることができる。発振回路100は、共振回路を構成するコイルと共振コンデンサとを少なくとも1つずつ有し、正のサイクル、負のサイクル、および直流電圧を含む電圧を出力するように構成されていればよい。
 ダンピング抵抗Rdは、他の回路定数や測定回路300の検出性能に応じて適当な値に設定される。例えば、金属異物がコイル110から十分に離れている場合において、測定回路300に入力される電圧Voutが、測定回路300の測定可能範囲内に収まり、かつ、コイル110よりも大きい金属異物がコイル110に密着した場合に、電圧Voutが、上記測定可能範囲の下限値以上に収まるように設定され得る。
 なお、図1に示す例では、ダンピング抵抗Rdは、発振回路100の出力段(インバータINVと接続点Xとの間)に接続されているが、他の位置に接続されていてもよい。ダンピング抵抗Rdは、発振回路100から出力される電圧を低下させるように配置されている限り、入力段、出力段、あるいはその両方のどの位置に設けられていてもよい。
 (実施形態2)
 図3は、本開示の実施形態2に係る異物検出装置の概略構成を示す回路図である。本実施形態では、発振回路100における増幅部(増幅回路)と電源Vddとの間に電流制限回路400をさらに備えている点で実施形態1と異なっている。これにより、発振回路100から出力される電圧Vinにおける正のサイクルの振幅、負のサイクルの振幅、および直流電圧が、異物の近接によってさらに変化するように構成できる。
 通常、発振回路の増幅部の電源は電流制限回路400を備えていない。そのため、コイルへの異物の近接によってエネルギーの損失が生じると、発振電圧の降下が生じる。その場合、発振回路の増幅部は、失ったエネルギーを補って発振が持続するように電力を増幅させるように動作する。増幅回路の電源電圧が一定の場合、失ったエネルギーを補うため、電流を増加させることになり、電源から増幅回路に流入する電流値が増加する。
 本実施形態では、電源と増幅部との間に電流制限回路400を接続することにより、異物の近接の有無に係らず増幅部に流入する電流値の上限値を設定することができる。この場合、発振回路100は、発振を持続させるため、増幅部の電源電圧Vdd’を低下させ、コイルへの異物の近接によって失われるエネルギー損失を低下させるように動作する。その結果、正のサイクルの電圧、負のサイクルの電圧、および直流電圧の3つが同時に低下することにつながり、測定回路300がこれらの電圧の低下を検出できる。以上の原理により、異物の近接をより高感度に検出することができる。
 (実施形態3)
 図4A~4Eは、本開示の実施形態3に係る異物検出装置における発振回路の概略構成を示す回路図である。本実施の形態は、発振回路におけるコイルが複数である点で実施形態1と異なっている。以下、実施形態1と異なる点を中心に説明する。
 検知エリアを拡大する場合、複数のコイルを配列することで空間的・平面的に検知エリアを拡大することができる。しかし、コイルごとに発振回路を用意するとコストアップおよび回路面積の増大に繋がるという課題がある。そこで、本実施形態では、図4Aに示すように、端子A-Bを発振回路との接続点として、端子A-B間に複数のコイルを接続する。以下、想定される接続例をいくつか挙げる。
 図4Bは、2つのコイル#1、#2を直列に接続した構成例を示している。複数のコイルを直列に接続することにより、同じ1つのコイルを用いた場合と比べて全体のインダクタンスが増加する。このため、発振周波数を固定したい場合に、共振コンデンサの容量を小さくすることができるという効果がある。また、発振が安定するまでの時定数は、共振コンデンサの容量とダンピング抵抗の積で決まる。このため、共振コンデンサの容量が小さくなることで、発振が開始するまでの時間を短縮できるという効果もある。
 図4Cは、2つのコイル#1、#2を並列に接続した構成例を示している。複数のコイルを並列に接続することにより、同じ1つのコイルを用いた時と比べて全体のインダクタンスが低下する。このため、共振コンデンサの容量を固定したい場合に、発振周波数を高く設定できるという効果がある。発振周波数を高くすると、異物の表皮厚さが薄くなっていくため、渦電流損失も増大し、検知のさらなる高感度化を実現できるという格別の効果がある。
 図4Dは、複数のコイル#1~#Nと、セレクタ(マルチプレクサやスイッチ)とが端子A-B間に接続された構成例を示している。セレクタによって複数のコイルの中から少なくとも1つのコイルを選択することにより、異物が近接したコイルを知ることができる。例えば、異物検出装置が無線電力伝送システムにおける送電装置(充電台など)に搭載されており、その送電装置上に金属異物が積載された場合、その異物に近接したコイルを特定することができる。このため、異物検出用のコイルが送電コイルとしても機能するように構成されている場合に、異物の近接が検出されたコイル以外のコイルを用いて安全に送電できるという効果がある。また、異物検出用のコイルと送電コイルとを共用しない構成であっても、異物の近接が検出されたコイルから離れた位置にある送電用コイルを選択して安全に送電できるという効果がある。
 図4Eは、本実施形態の構成を一般化して図示したブロック図である。N個のコイルの電気特性は自己インピーダンスおよび相互インピーダンスを含むN×Nのインピーダンス行列Zで表すことができ、N個のコイル端子の先にインピーダンス行列ZL(コンデンサ、インダクタ、抵抗、開放・短絡を含む)を接続したモデルで表現できる。本開示の趣旨から外れるので、詳細は割愛するが、基本的には複数のコイルであっても、端子A-B間がインダクティブ(誘導性)に見えるように接続端子を引き出せば、どのようなコイル配列であっても、広い目標検知エリアに対して異物の高感度検知ができるという効果がある。
 (実施形態4)
 図5は、本開示の実施形態4に係る異物検出装置の概略構成の一例(後述する第3の回路例)を示す回路図である。本実施形態では、発振回路100の出力点Xと測定回路300との間に整流回路200をさらに備えている点で実施形態1と異なっている。図5の構成例では、整流回路200および測定回路300によって電気回路150が構成されている。なお、本実施形態における異物検出装置は測定回路300を備えているが、測定回路300は異物検出装置に接続されて利用される外部の要素であってもよい。
 整流回路200は、発振回路100から出力された電圧Vinにおける正のサイクルの電圧を整流する第1の整流素子D1と、直流電圧を低下させる第1のコンデンサC1と、直流電圧の低下によって0よりも小さくなった負のサイクルの電圧を整流する第2の整流素子D2と、第1の整流素子D1から出力された電圧を平滑化する第2のコンデンサC2とを有している。整流素子D1、D2は、例えばダイオードやトランジスタなどの半導体素子を用いて実現され得る。
 図6~図8は、本実施形態における異物検出装置の構成および動作を説明するための図(回路例)である。以下、図6~図8を参照しながら、本実施形態の異物検出装置の動作原理をより詳細に説明する。図6は第1の回路例を、図7は第2の回路例を、図8は第3の回路例を示している。図8に示す構成が本実施の形態における最良の構成となる。
 図6~図8の全ての構成に共通する動作の概要を説明する。これらの例では、発振回路100の一例として、電源電圧Vddで動作するゲート発振回路を用いている。異物検出装置は、コイル110とコンデンサCxとの接続点Xから出力電圧を取り出し、整流素子D1を通してコンデンサC2で平滑化し、出力端子から電圧Vout(図6および図7ではVout_aまたはVout_b)を測定回路300で測定する。測定回路300は、0≦Vout<Vccの範囲で電圧を測定できるものとする。
 次に、整流回路200の回路例について、図6~図8の順に説明する。
 図6(a)に示す第1の回路例は、ダイオード(整流素子)D1を含む半波整流回路である。図6(b)は、接続点Xにおける電圧Vin_Xの時間変化の一例を示しており、図6(c)は、コイル110に金属異物が近接したときの電圧Vin_Xの時間変化の一例を示している。ダイオードD1は、発振回路100が発振しているとき、主として正のサイクルの電圧および直流電圧を整流する。よって、金属異物の近接に伴う共振回路のQ値の変化によって得られる電圧の変化は、主として交流電圧の正のサイクルと直流電圧で生じる。最終的な出力電圧Vout_aの範囲は、ダイオードD1の順方向電圧VFなどを無視すると、Vdd/2≦Vout_a<Vddとなる。したがって、電源電圧Vdd=Vccの場合、測定回路の測定可能範囲である0≦Vout<Vccの全範囲で動作させることは不可能であるものの、少ない部品点数で高感度の検知ができるという効果がある。
 図7(a)に示す第2の回路例は、第1の回路例(図6)における半波整流回路にコンデンサC1が追加された構成を有した整流回路である。コンデンサC1は、接続点XとダイオードD1との間に直列に接続されている。図7(b)は、コンデンサC1とダイオードD1との間の点X’における電圧Vin_X’の時間変化の一例を示しており、図7(c)は、コイル110に金属異物が近接したときの電圧Vin_X’の時間変化の一例を示している。この回路の出力電圧Vout_bは、図6に示す整流回路の出力電圧Vout_aとの間に、以下の式(4)で表される関係がある。
  Vout_b=C1/(C1+C2)×Vout_a  (4)
 すなわち、コンデンサC1は、平滑コンデンサC2と共に、分圧比U=C1/(C1+C2)を定める分圧コンデンサとして機能する。このため、本明細書では、コンデンサC1を「分圧コンデンサ」と呼ぶことがある。この分圧コンデンサC1の効果により、図7(b)(c)に示すように、点X’における直流電圧は、接続点Xにおける直流電圧に比べて低下する。ただし、整流素子D1は主として正のサイクルと直流電圧を整流するので、Vout_bの範囲は、ダイオードの順方向電圧VFなどを無視すると、U×Vdd/2≦Vout_b<U×Vddとなる。したがって、電源電圧Vcc=Vddの場合、測定回路の測定可能範囲である0≦Vout<Vccの全範囲で動作させることは不可能であるものの、測定回路の電源電圧がVcc=U×Vddと低電圧動作をしている場合は、高感度の検知ができ、かつ、測定回路の消費電力を低減できるという効果も得られる。
 図8(a)に示す第3の回路例は、第2の回路例(図7)における整流回路の構成要素に加えて、接続点X’とグランドとの間に接続されたダイオードD2を更に備えている。図8(b)は、接続点X’における電圧Vin_X’の時間変化の一例を示しており、図8(c)は、コイル110に金属異物が近接したときの電圧Vin_X’の時間変化の一例を示している。本回路例でも、第2の回路例と同様、分圧コンデンサC1の効果により、直流電圧Vdcが低下し、かつ、異物の接近に伴うQ値の低下によっても直流電圧Vdcが低下する。ダイオードD2は、分圧コンデンサC1による直流電圧(直流成分)の低下によって0よりも小さくなった負のサイクルの電圧を整流する効果をもつ。したがって、整流後の最大の出力電圧は、正負両サイクルの成分の合成により、2×Vac≒Vddである。ただし、Q値の低下に伴い、ダイオードD2の整流効果が小さくなるため、動作モードは第2の回路例(図7)に近づいていく。したがって、整流で得られる最小の出力電圧は、U×Vdd/2となる。まとめると、本実施形態における最終的な出力電圧Voutの範囲は、U×Vdd/2≦Vout<Vddとなる。
 さて、測定回路300は、0≦Vout<Vccの範囲で電圧を測定できる。異物の検知感度を最大限に高めるためには、分圧比Uを小さくすればよいことがわかる。すなわち、分圧比Uを0に近づけることより、出力電圧の下限値U×Vdd/2を0V付近にまで低下させることができる。下限値を第1の回路例(図6)における下限値よりも小さくするためには、Uを0よりも大きく、かつ1未満の値に設定すればよい。第1の回路例における下限値よりも大幅に下限値を下げるためには、Uを0よりも大きく、かつ0.5以下に設定することが望ましい。さらに望ましくは、Uを0.001以上かつ0.5以下に設定すればよい。例えば、Vdd=5V、U=0.001とすると、Voutの範囲は2.5mV≦Vout<5Vとなる。測定回路300が、例えば10ビット(1024段階)の検出性能をもつADCだとすると、1ビットあたり5÷1024≒4.88mVの分解能を有する。この場合、ADCの出力範囲は1~1023となり、ほぼフルレンジで測定可能となり、検知の高感度化を達成できる。
 以上のように、本実施形態の異物検出装置によれば、コイル110および共振コンデンサCx、Cyを有し、正のサイクル、負のサイクル、および直流電圧を含む電圧を出力するように構成された発振回路100と、発振回路100に接続され、発振回路100から出力された電圧を整流して出力する整流回路200とを備える。整流回路200は、コイル110に金属異物が接近したとき、発振回路100から出力される電圧における正のサイクルの振幅、負のサイクルの振幅、および直流電圧の低下を検知するよう構成されている。最良の構成である第3の回路例に関して、より具体的に述べると、整流回路200は、正のサイクルの電圧を整流する第1の整流素子D1と、直流電圧を低下させる第1のコンデンサC1と、直流電圧の低下によって0よりも小さくなった負のサイクルの電圧を整流する第2の整流素子D2とを有する。整流回路200は、第1の整流素子D1から出力された電圧を平滑化する第2のコンデンサC2をさらに有し、第1のコンデンサC1と第2のコンデンサC2との分圧比をUとするとき、例えば0<U≦0.5を満足するように構成されている。
 このような構成により、整流回路200から出力される電圧の下限値を下げることができるため、測定回路300の検出性能を有効に利用でき、検出感度を高めることができる。本実施形態によれば、測定回路300の前段に増幅回路を設けることなく、検出感度を高くすることができるため、安価な回路構成で感度の高い異物検出装置を実現できる。
 なお、本実施形態における異物検出装置は、図5~図8に示す構成に限定されず、適宜改変を行ってもよい。例えば、図9に示すように、第3の回路例から平滑コンデンサC2を省略してもよい。この場合、測定回路300に入力される電圧Voutが交流電圧になるため、交流電圧の変化を測定できる比較的サンプリングレートの高いADCを測定回路300として用いる必要がある。
 整流回路200は、図5~図9に示す構成に限定されず、コイル110に金属異物が接近したとき、発振回路100から出力される電圧における正のサイクルの振幅、負のサイクルの振幅、および直流電圧の低下を検出できるよう構成されていればよい。
 (実施形態5)
 図10は本開示の実施形態5に係る異物検出装置の概略構成を示す回路図である。本実施形態の異物検出装置は、実施形態4の整流回路200を多段構成にした整流回路200aを備え、かつ、ダンピング抵抗Rdの値を増加させて、測定回路300に入力される電圧Voutが測定回路300の測定可能範囲内に収まるように構成されている点が異なる。以下、実施形態4と異なる点のみを説明し、共通する点についての説明は省略する。
 異物検出に用いる発振回路100の発振レベルが大きいと、コイル部品からノイズを輻射し、外部の電子機器に影響を与える恐れがある。この場合、ダンピング抵抗Rdの値を数kΩと大きく設定することで、発振レベルを小さく抑えることができる。しかし同時に異物の検知感度も低下する。このような課題を解決するため、本実施形態では整流回路を多段構成にすることで、取り出せる出力電圧を2倍、4倍と増加させることができ、高感度化と低ノイズ性を両立できるという利点がある。
 (実施形態6)
 図11は、本開示の実施形態5に係る無線電力伝送システムの概略構成を示すブロック図である。この無線電力伝送システムは、送電装置500と受電装置600とを備え、送電装置500から受電装置600へ無線で電力を伝送することができる。送電装置500は、例えばワイヤレス充電器であり、受電装置600は、例えば携帯情報端末や電気自動車などの二次電池を備えた機器であり得る。本実施形態では、前述したいずれかの実施形態に係る異物検出装置が送電装置500の側に設けられている。このため、送電装置500は、受電装置600に送電するだけでなく、受電装置600における受電コイル610と送電コイル510との間に金属異物2000があるか否かを検出することができる。その検出結果は、例えば送電装置500または受電装置600に設けられた光源570または光源670から光の情報として使用者に通知され得る。なお、光源570、670に限らず、例えばディスプレイやスピーカなどの表示素子を用いて光、映像、音声などの情報として異物の検出結果を使用者に通知してもよい。「表示素子」は、視覚的情報を提示する素子に限定されず、聴覚的情報(音または音声)のみを提示する素子をも広く含む。
 本実施形態の無線電力伝送システムが備える異物検出装置のこのような機能により、使用者は、受電装置600を送電装置500に近づける際、受電コイル610と送電コイル510との間の異物の有無を知ることができるため、安全な伝送状態を確保することができる。
 以下、整流回路200を有する実施形態4の異物検出装置を備える場合を例に、本実施形態の構成および動作を説明する。
 図11に示されるように、本実施形態における送電装置500は、送電コイル510と、送電回路520と、電源530と、発振回路100と、整流回路200と、測定回路300と、光源570とを備える。これらの構成要素のうち、送電コイル510、発振回路100、整流回路200、および測定回路300によって異物検出装置が構成されている。
 送電コイル510は、上述した実施形態におけるコイル110に対応し、図11では発振回路100から独立した要素として描かれている。送電コイル510は、不図示のコンデンサとともに送電共振器を構成し、送電回路520から供給された交流電力を無線で伝送する。送電コイル510は、基板パターンで形成された薄型の平面コイルのほか、銅線やリッツ線、ツイスト線などを用いた巻き線コイルなどを用いることができる。十分な検出感度を確保するためには、コイルL1のQ値は、例えば100以上に設定され得るが、100よりも小さい値に設定されていてもよい。なお、送電共振器は、不要であればコンデンサを含まなくても良く、コイル510自身が有する自己共振特性を含めて送電共振器を形成しても良い。
 発振回路100、整流回路200、および測定回路300は、上述したいずれかの実施形態におけるものと同じである。測定回路300は、送電コイル510に近接した金属異物を、整流回路200から出力された電圧の変化に基づいて検出する。そして、その検出結果を示す情報を直接的に、または不図示のメモリ等の記録媒体を介して間接的に制御回路540に通知する。
 送電回路520は、異物検出完了後に送電のための交流エネルギを出力する回路である。送電回路520は、フルブリッジ型のインバータや、D級、E級などの他の種類の送電回路であってもよい。また、通信用の変復調回路や電圧・電流などを測定する各種センサを含めても良い。
 電源530は、商用電源、一次電池、二次電池、太陽電池、燃料電池、USB(Universal Serial Bus)電源、高容量のキャパシタ(例えば電気二重層キャパシタ)、商用電源に接続された電圧変換器、または、それらの組み合わせを用いて実現され得る全ての電源を含む。
 送電制御回路540は、送電装置500全体の動作を制御するプロセッサであり、例えばCPUとコンピュータプログラムを格納したメモリとの組み合わせによって実現され得る。送電制御回路540は、本実施形態の動作を実現するように構成された専用のハードウェアであってもよい。送電制御回路540は、発振回路100の発振周波数の切替や、送電回路520による送電制御(送電状態の調整)や、測定回路300の検出結果に基づいて表示素子570を発光させる制御を行う。具体的には異物検出モードにおいては、送電回路520の動作を停止し、発振回路100を駆動する。送電モードにおいては、発振回路100の動作を停止し、送電回路520を駆動する。送電制御回路540は、異物検出装置の測定結果に応じて送電開始周波数および送電電圧を決定する。
 発振回路100には、前述したゲート発振回路の他、例えばコルピッツ発振回路や、ハートレー発振回路、クラップ発振回路、フランクリン発振回路など、LC共振原理に基づく公知の発振回路を用いることができる。
 測定回路300は、前述のように、整流回路200から出力された電圧を測定するために用いられるADCなどの測定器であり得る。なお、図示しないが、測定回路300の少なくとも一部の機能と送電制御回路540の少なくとも一部の機能とは、半導体パッケージ(例えばマイクロコントローラやカスタムIC)によって実現されてもよい。
 光源570は、測定回路300による検出結果を使用者に通知するように構成されている。光源570は、例えばLEDまたは有機ELなどの光源によって構成され得るし、複数の光源の集合体であってもよい。光源570は、送電コイルL1と受電コイルL2との間の距離や、金属異物の近接の程度に応じて、複数の光源のうちの異なる光源を発光させたり、発光させる光源の数を段階的に変動させてもよい。また、光源570の代わりに、液晶表示素子または有機EL表示素子のようなディスプレイを用いてもよい。ディスプレイを用いると、画像または文字などで検出結果を表示させることができる。そのような表示素子は、光とともに、または光に代えて、音や音声で検出結果を表示するように構成されていてもよい。
 送電装置500は、異物検出装置を用いて異物を検出する「異物検出モード」と、送電回路520を用いて送電を行う「送電モード」の2つのモードで動作することができる。送電装置500は、送電モードと異物検出モードとを切り換えるスイッチS1、S2を備えている。送電制御回路540は、異物検出モードでは送電コイル510と発振回路100とを電気的に接続し、送電モードでは送電コイル510と発振回路100とを電気的に切断するようにスイッチS1、S2の導通状態を制御する。
 受電装置600は、送電コイル510から伝送された電力の少なくとも一部を受け取る受電コイル610と、負荷630と、受け取った電力を整流して負荷630に供給する受電回路620と、異物の検出結果を伝える光源670と、受電装置600の各部を制御する受電制御回路640とを備えている。
 受電コイル610は、不図示のコンデンサとともに受電共振器を構成し、送電共振器と電磁的に結合する。受電コイル610およびコンデンサは、それぞれ、送電側のコイルおよびコンデンサと同様のものであってもよいし、異なっていてもよい。なお、受電共振器は、不要であればコンデンサを含まなくても良く、コイル610自身が有する自己共振特性を含めて受電共振器を形成しても良い。
 受電回路620は、整流回路や周波数変換回路、定電圧・定電流制御回路、通信用の変復調回路などの各種の回路を含み、受け取った交流エネルギを負荷630が利用可能な直流エネルギまたは低周波の交流エネルギに変換するように構成されている。また、受電共振器610の電圧・電流などを測定する各種センサを受電回路620中に含めてもよい。
 負荷630は、例えば二次電池や高容量キャパシタであり、受電回路620から出力された電力によって充給電され得る。
 受電制御回路640は、受電装置600全体の動作を制御するプロセッサであり、例えばCPUとコンピュータプログラムを格納したメモリとの組み合わせによって実現され得る。受電制御回路640は、この例に限定されず、本実施形態の動作を実現するように構成された専用のハードウェアであってもよい。受電制御回路640は、負荷650への充給電制御や、光源670の制御を行う。
 以上のように、本実施形態では、異物検出用のコイルと送電用のコイルとを共用している。このような構成にすることで、コイル部品を共用化することができ、送電装置500を小型化できるという効果がある。
 また、送電コイルを異物検出用のコイルとしても用いることで、送電コイル510上の異物の積載状態を直接検知できるという利点がある。これにより、測定回路300が測定した電圧値に基づいて、送電周波数および送電電力(送電電圧または送電電流)を調整することができる。例えば、異物が存在すると判断した場合、即座に送電を停止する、あるいは送電を開始しないとすると、充電できず、ユーザーの利便性を低下させる恐れがある。そこで、異物の有無の判定基準となる評価値が所定の閾値以下であっても、異物の温度が所定の閾値以下となるように送電制御を加えながら送電するようにしてもよい。そのような制御により、安全性を確保しながら送電を継続することができる。具体的には、予め実験的または解析的に得られたデータに基づいて決定されたパラメータを用いて所定の時間間隔で間欠的に送電したり、送電電力を所定の低減率で低減させた上で送電したり(電力制限モード)、送電コイル510の近傍に温度センサを配置し、温度をモニターしながら送電電力を調整するなどの方法を採用してもよい。
 図12は、本実施形態における送電装置500の処理の一例を示すフローチャートである。異物検出モードを開始すると、まず、ステップS110において、測定回路300は、整流回路200から出力された電圧を測定する。次に、ステップS111において、測定回路300は、測定した電圧が第1の閾値以上か否かを判断する。測定した電圧が第1の閾値以上ならば、異物が存在しないので、ステップS112に進み、送電を開始する(通常送電)。電圧が第1の閾値未満ならば、異物が存在すると推定されるので、ステップS113に進み、測定回路300は、その電圧が第2の閾値以上であるか否かを判定する。ここで、電圧が第2の閾値以上ならば、測定回路300は、発熱が問題にならない小さい異物であると判定し、その旨の情報を送電制御回路540に通知する。送電制御回路540は、その情報を受けると、上述の電力制限モードに設定して送電を開始する(ステップS114)。ステップS113において電圧が第2の閾値未満ならば、測定回路300は、大きい異物が存在すると判定し、その旨の情報を送電制御回路540に通知する。送電制御回路540は、その通知を受けて光源570(例えばLED)を点滅させるなどして、ユーザーに異物が存在することを通告する(ステップS115)。
 なお、無線電力伝送時には、例えば数W~数kWの電力が送電コイル510から受電コイル610に伝送されるため、電力伝送中に送電モードから異物検出モードに移行すると、コイルの蓄積エネルギが異物検出用の回路に流入し、異物検出用の回路の耐圧を越えて焼損する可能性が生じる。そこで、本実施形態では、無線電力伝送中に送電コイル510に蓄積されたエネルギをグランドに逃がしてから異物検出モードに移行する。こうすることにより、異物検出用の回路の焼損を防ぐことができる。具体的には、送電モードから異物検出モードに切り替える場合、まず、送電回路520に含まれるインバータのうち、グランドに直結されているスイッチング素子(例えばMOSFET)のスイッチをONにする。これにより、送電コイル510に蓄積されていたエネルギをグランドに逃がすことができる。その後、所定の時間経過後に異物検出モードを開始すればよい。
 なお、本実施形態では、送電コイル510が異物検出用のコイルとしても機能するように構成されているが、このような例に限らず、送電用のコイルと異物検出用のコイルとを個別に設けてもよい。
 (実施形態7)
 図13は、本開示の実施形態7に係る無線電力伝送システムの概略構成を示すブロック図である。本実施の形態では、受電装置600が、発振回路100、整流回路200、および測定回路300を含む異物検出装置を有している点で実施形態6と異なっている。本実施形態における受電装置600は、受電モードおよび異物検出モードの2つのモードで動作することができ、受電モードと異物検出モードとを切り換えるためのスイッチS1、S2を、受電コイル610と発振回路100との間に備えている。本実施形態における送電装置500および受電装置600の各構成要素は、実施形態6における対応する構成要素と同じものである。なお、本実施形態でも整流回路200を有する実施形態4の異物検出装置を備える場合を例示しているが、整流回路を有しない異物検出装置を備えていてもよい。
 このような構成にすることで、コイル部品を共用化することができ、受電装置600を小型化できるという効果がある。また、受電コイル610を異物検出用のコイルとしても使用することで、受電コイル610の下などに存在する異物の積載状態を直接検知できるという利点がある。これにより、測定回路300が検知した電圧値に応じて、送電周波数および送電電力(電圧または電流)を調整するように送電装置500側に要求することができる。そのような要求は、例えば受電回路620に含まれる通信回路によって実行され得る。例えば、測定回路300が異物が存在すると判断した場合、送電制御回路540が即座に送電を停止する、あるいは送電を開始しないとすると、充電できず、ユーザーの利便性が損なわれる。そこで、異物の有無の判定基準となる評価値が所定の閾値以下であっても、異物の温度が所定の閾値以下となるように送電制御を加えながら送電するようにしてもよい。そのような制御により、安全性を確保しながら送電を継続することができる。具体的には、予め実験的または解析的に得られたデータに基づいて決定されたパラメータを用いて所定の時間間隔で間欠的に送電したり、送電電力を所定の低減率で低減させた上で送電したり(電力制限モード)、受電コイル610の近傍に温度センサを配置し、温度をモニターしながら送電電力を調整するなどの方法を採用してもよい。
 図14は、本実施形態における受電装置600の処理の一例を示すフローチャートである。異物検知モードを開始すると、まず、ステップ130において、測定回路300は、整流回路200から出力された電圧を測定する。次に、ステップS131において、測定回路300は、測定した電圧が第1の閾値以上か否かを判断する。測定した電圧が第1の閾値上ならば、異物が存在しないので、ステップS132に進み、送電装置500側に送電開始要求を送る(通常送電)。電圧が第1の閾値未満ならば、異物が存在すると推定されるので、ステップS133に進み、測定回路300は、その電圧が第2の閾値以上であるか否かを判定する。ここで、電圧が第2の閾値以上ならば、測定回路300は、発熱が問題にならない小さい異物であると判定し、その旨の情報(送電開始要求)を送電装置500の送電制御回路540に送る(ステップS134)。送電制御回路540は、送電開始要求を受けると、上述の電力制限モードに設定して送電を開始する。ステップS133において電圧が第2の閾値未満ならば、測定回路300は、大きい異物が存在すると判定し、その旨の情報を受電制御回路640に通知する。受電制御回路640は、その通知を受けて光源670(例えばLED)を点滅させるなどして、ユーザーに異物が存在することを通告する(ステップS135)。
 なお、無線電力伝送時には、例えば数W~数kWの電力が送電コイル510から受電コイル610に伝送されるため、電力伝送中に受電モードから異物検出モードに移行すると、コイルの蓄積エネルギが異物検出用の回路に流入し、異物検出用の回路の耐圧を越えて焼損する可能性が生じる。そこで、本実施形態では、無線電力伝送中に受電コイル610に蓄積されたエネルギをグランドに逃がしてから異物検出モードに移行する。こうすることにより、異物検出用の回路の焼損を防ぐことができる。具体的には、受電回路620に含まれる整流回路が同期整流回路の場合、受電モードから異物検出モードに切り替える際に、まず、受電回路620に含まれるスイッチング素子のうち、グランドに直結されているスイッチング素子をONにする。これにより、受電コイル610内のコイルに蓄積されていたエネルギをグランドに逃がす。その後、所定の時間経過後に異物検出モードを開始すればよい。
 なお、本実施形態では、受電コイル610が異物検出用のコイルとしても機能するように構成されているが、このような例に限らず、送電用のコイルと異物検出用のコイルとを個別に設けてもよい。
 (実施例1)
 本開示の実施形態1および実施形態2に係る実施例を説明する。
 図1および図3において、Vdd=5V、Lp=6.5uH、Cx=Cy=33nF、Rd=270Ω、Rf=1MΩとして異物検出回路を試作し実験した。測定回路300は2Gサンプル/secのADCで、測定波形を一端メモリに格納した上、発振波形の振幅値Vacと直流電圧Vdcを式(2)(3)を用いて算出した。鉄とアルミホイルの2種を評価異物として選定し、コイルに近接させた時、コイルから離した時(異物なし)の発振波形の測定値を比較した。コイルに異物が近接していない時の電源Vddから供給される電流値が7mAだったため、電流制限回路400の電流制限値は8mAとし、8mAを越えた場合に定電流モードで動作するようにした。
 評価結果を図15の表にまとめる。
 表の2列目において、定電流回路なしが実施形態1、定電流回路ありが実施形態2に該当する。表中の丸括弧内の数字は、異物なしの時の電圧値と異物ありの時の電圧値との差分である。例えば、評価異物が鉄、定電流回路なしの場合のVacの差分は、1313-772=541mVとなり、異物の近接により交流電圧の振幅が541mV低下していることになる。
 評価結果より、異物の材質に係らず、金属異物をコイルに近接させることで、振幅Vacと直流電圧Vdcがともに低下することがわかる。また、定電流回路を備えることでその低下量も増大することがわかる。従来の検知方式では主に交流電圧の振幅Vacの変化のみを検知対象としていたが、本願ではこれに加え、直流電圧Vdcの変化も検知の対象とすることができる。
 例えば、評価異物をアルミホイル、定電流回路あり、とした実施形態2の構成例の場合、従来方式は電圧低下量が900mVとなるが、本願の電圧低下量は900+381=1281mVであり、約42%検知感度を向上することができた。
 (実施例2)
 本開示の実施形態4に係る実施例を説明する。
 図16A、16Bは、実施形態4において図6~8を参照して説明した3つの回路例におけるQ値と出力電圧との関係を示すグラフである。Vdd=5V、C1=1nF、Rf=1MΩ、Rd=470Ω、Cx=Cy=27nF、Lp=6.5uHとし、異物がコイル上に積載された際にコイルの抵抗Rpが変化することを模擬してRp=25~5000mΩの範囲で変化させ、Q=0.6~134の範囲を計算対象とした。また、C2=1nF、10nFの2種類を検討し、異なる分圧比U=0.5、0.091における出力電圧Voutの違いを、回路シミュレーションを用いて算出した。なお、シミュレーション結果にはダイオードの順方向電圧VFの特性が含まれている。
 はじめに、図16Aに示すC1=1nF、C2=1nFとした分圧比U=0.5の結果について確認する。図6(第1の回路例)の回路構成における下限電圧はVdd/2≒2.5Vであり、図7(第2の回路例)の回路構成における下限電圧はU×Vdd/2≒1.2Vとなることがわかる。測定回路300が0≦Vout<5Vの範囲で測定可能であるならば、図6および図7に示す回路構成ではその50%しか検知能力を利用できないことになる。一方、図8(第3の回路例)の回路構成では、下限電圧は回路例2と同様、U×Vdd/2≒1.2Vであり、上限電圧は、Q値の増加に伴い、回路例1における上限電圧Vdd=5Vに近づく様子が確認できる。従って、実施形態4で説明したように、分圧比Uを低下させることで、下限電圧を低下させ、検知のダイナミックレンジを増加させることができると考えられる。
 この考え方に基づき、図16Bに示すC1=1nF、C2=10nFとした分圧比U=0.091の結果について確認した。回路例2および回路例3の下限電圧がU×Vdd/2≒0.2Vまで低下していることがわかる。結果として、回路例3では、Q≒0~134の範囲において、Vout≒0~5Vの範囲で測定可能であり、回路例1、2の回路構成に比べて更なる高感度化を実現できることが明らかになった。
 以上、本明細書では金属検出に焦点を絞って説明をしたが、本発明の実施形態においては人体検出も可能である。具体的にはコイルに人体(=誘電体)が近接すると、コイルのインピーダンスが変化し、Q値が変化する。Q値が変化すると前述のとおり発振波形の交流成分と直流成分が変化するため、これを測定回路200で検出すればよい。検出結果に基づき、送電制御回路は送電停止処理や電力低減処理を加えることができる。こうすることで、コイルに近接した人体を検出することができ、電磁波に対する人体曝露のリスクを回避できる。
 なお、本明細書で提示した数値や回路構成は一例であり、本願発明はこれらの数値や回路構成に限定されるものではない。また、本願では、本発明の趣旨に焦点を絞るため、単一の周波数で動作する発振回路例の説明にとどめたが、スイッチ付きのキャパシタ、あるいはスイッチ付きのインダクタなどを更に備え、これらのスイッチのオン・オフを切替えてLC共振回路の共振周波数を動的に変更する「多周波発振回路」への拡張は容易である。これらは既存の切替手法を用いることができ、複数の周波数で電圧を測定し、各周波数ごとの電圧の変化量を判定することで、本開示の異物検出装置の検出精度をさらに向上させることも可能である。
 本開示の異物検出装置、および無線電力伝送システムは、例えば、電気自動車、AV機器、電池、医療機器などへの充電あるいは給電を行う用途に広く適用可能である。本開示の実施形態によれば、コイルに近接した金属や人体などの異物を高感度に検知し、金属の異常発熱や人体曝露のリスクを回避することができる。
 100 発振回路
 110 コイル
 150 電気回路
 200、200a 整流回路
 300 測定回路
 400 電流制限回路
 500 送電装置
 510 送電コイル
 520 送電回路
 530 電源
 540 送電制御回路
 570 光源
 600 受電装置
 610 受電コイル
 620 受電回路
 630 負荷
 640 受電制御回路
 670 光源
 Lp コイルのインダクタンス
 Rp コイルの抵抗
 Rd ダンピング抵抗
 Cx 共振コンデンサ
 Cy 共振コンデンサ
 C1 分圧コンデンサ
 C2 平滑コンデンサ
 D1 整流素子
 D2 整流素子
 INV インバータ
 S1、S2 スイッチ

Claims (16)

  1.  コイルおよび共振コンデンサを有し、正のサイクルおよび負のサイクルを有する交流成分と直流成分とを含む電圧を出力するように構成された発振回路と、
     前記コイルに異物が接近したときに前記発振回路から出力される前記電圧における前記交流成分の変化と前記直流成分の変化とを検知する電気回路と、
    を備えた異物検出装置。
  2.  前記電気回路は、前記発振回路から出力された前記電圧を整流して出力する整流回路を備え、
     前記整流回路は、
     前記正のサイクルの電圧を整流する第1の整流素子と、
     前記直流成分を低下させる第1のコンデンサと、
     前記直流成分を低下させることによって0よりも小さくなった前記負のサイクルの電圧を整流する第2の整流素子と、
    を有する、請求項1に記載の異物検出装置。
  3.  前記整流回路は、前記第1の整流素子から出力された電圧を平滑化する第2のコンデンサをさらに有し、
     前記第1のコンデンサと前記第2のコンデンサとの分圧比をUとするとき、0<U≦0.5を満足する、
    請求項2に記載の異物検出装置。
  4.  前記電気回路は、前記発振回路から出力される電圧を直接的あるいは間接的に測定する測定回路をさらに備える、請求項1から3のいずれかに記載の異物検出装置。
  5.  前記電気回路は、前記整流回路から出力される電圧を測定する測定回路をさらに備える、請求項2に記載の異物検出装置。
  6.  前記発振回路は、前記発振回路から出力される前記電圧を低下させるように配置された抵抗Rdをさらに有し、
     前記抵抗Rdは、前記異物が前記コイルから十分に離れている場合において、前記測定回路に入力される電圧が、前記測定回路の測定可能範囲内に収まり、かつ、前記コイルよりも大きい異物がコイルに密着した場合に、前記電圧が、前記測定可能範囲の下限値以上に収まるように設定されている、
    請求項4または5に記載の異物検出装置。
  7.  前記測定回路は、前記測定回路に入力される電圧と所定の基準電圧との差が、所定の閾値以上の場合、前記異物が存在することを示す情報を出力する、請求項4から6のいずれかに記載の異物検出装置。
  8.  前記共振コンデンサを第1の共振コンデンサとするとき、
     前記発振回路は、前記第1の共振コンデンサの容量とは異なる容量を有する第2の共振コンデンサをさらに備え、
     前記第1の共振コンデンサの一方の電極は、前記コイルおよび前記発振回路の出力端子に接続されており、
     前記第1および第2の共振コンデンサは、前記コイルに対して並列に接続されている、
    請求項1から6のいずれかに記載の異物検出装置。
  9.  前記第1の共振コンデンサの容量をCx、前記第2の共振コンデンサの容量をCy=αCxとするとき、αは1≦α<100の範囲内の値に設定されている、請求項8に記載の異物検出装置。
  10.  前記第1の共振コンデンサの容量をCx、前記第2の共振コンデンサの容量をCy=αCxとするとき、αは0.01≦α<1の範囲内の値に設定されている、請求項8に記載の異物検出装置。
  11.  前記コイルは、無線で電力を送出する送電コイルとしても機能するように構成され、
     前記異物検出装置は、前記コイルと前記発振回路との間の電気的接続を切替えるスイッチをさらに備え、
     前記スイッチは、異物検出モードでは前記コイルと前記発振回路とを電気的に接続し、送電モードでは前記コイルと前記発振回路とを電気的に切断するように構成されている、
    請求項1から10のいずれかに記載の異物検出装置。
  12.  前記コイルは、無線で電力を受け取る受電コイルとしても機能するように構成され、
     前記異物検出装置は、前記コイルと前記発振回路との間の電気的接続を切替えるスイッチをさらに備え、
     前記スイッチは、異物検出モードでは前記コイルと前記発振回路とを電気的に接続し、送電モードでは前記コイルと前記発振回路とを電気的に切断するように構成されている、
    請求項1から10のいずれかに記載の異物検出装置。
  13.  電力を無線で送出する送電装置であって、
     請求項1から11のいずれかに記載の異物検出装置と、
     前記異物検出装置の検出結果に応じて送電周波数および送電電圧を決定する制御回路と、
    を備える送電装置。
  14.  送電装置から無線で送出された電力を受け取る受電装置であって、
     請求項1から10、または12に記載の異物検出装置と、
     前記異物検出装置の検出結果に応じて送電制御のための情報を生成して出力する制御回路と、
    を備える受電装置。
  15.  電力を無線で送出する送電装置と、
     前記送電装置から送出された前記電力を受け取る受電装置と、
    を備え、
     前記送電装置は、請求項13に記載の送電装置である、
    無線電力伝送システム。
  16.  電力を無線で送出する送電装置と、
     前記送電装置から送出された前記電力を受け取る受電装置と、
    を備え、
     前記受電装置は、請求項14に記載の受電装置である、
    無線電力伝送システム。
PCT/JP2014/001211 2014-03-05 2014-03-05 異物検出装置、送電装置、受電装置、および無線電力伝送システム WO2015132818A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP14884962.3A EP3009866B1 (en) 2014-03-05 2014-03-05 Foreign object detector, power transmitter, power receiver, and wireless power transmission system
US14/904,581 US10020692B2 (en) 2014-03-05 2014-03-05 Foreign object detector, power transmitter, power receiver, and wireless power transmission system
JP2015562966A JP5915953B2 (ja) 2014-03-05 2014-03-05 異物検出装置、送電装置、受電装置、および無線電力伝送システム
PCT/JP2014/001211 WO2015132818A1 (ja) 2014-03-05 2014-03-05 異物検出装置、送電装置、受電装置、および無線電力伝送システム
CN201480039975.3A CN105452904B (zh) 2014-03-05 2014-03-05 异物检测装置、送电装置、受电装置以及无线电力传输***
JP2016059398A JP6307756B2 (ja) 2014-03-05 2016-03-24 異物検出装置、送電装置、受電装置、および無線電力伝送システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/JP2014/001211 WO2015132818A1 (ja) 2014-03-05 2014-03-05 異物検出装置、送電装置、受電装置、および無線電力伝送システム
JP2016059398A JP6307756B2 (ja) 2014-03-05 2016-03-24 異物検出装置、送電装置、受電装置、および無線電力伝送システム

Publications (1)

Publication Number Publication Date
WO2015132818A1 true WO2015132818A1 (ja) 2015-09-11

Family

ID=61002423

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/001211 WO2015132818A1 (ja) 2014-03-05 2014-03-05 異物検出装置、送電装置、受電装置、および無線電力伝送システム

Country Status (4)

Country Link
US (1) US10020692B2 (ja)
JP (2) JP5915953B2 (ja)
CN (1) CN105452904B (ja)
WO (1) WO2015132818A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018123769A1 (ja) * 2016-12-27 2018-07-05 Tdk株式会社 金属異物検出装置、ワイヤレス給電装置、ワイヤレス受電装置、及びワイヤレス電力伝送システム
JP2018110465A (ja) * 2016-12-28 2018-07-12 株式会社Lixil 設備装置
JP2021502047A (ja) * 2017-11-02 2021-01-21 エルジー イノテック カンパニー リミテッド 無線充電方法およびそのための装置
JP7414501B2 (ja) 2019-12-10 2024-01-16 キヤノン株式会社 受電装置、送電装置、およびそれらの制御方法、プログラム

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9300147B2 (en) * 2011-06-29 2016-03-29 Lg Electronics Inc. Method for avoiding signal collision in wireless power transfer
JP6075118B2 (ja) * 2013-02-28 2017-02-08 株式会社デンソー 無線給電情報提供システム
JP6315382B2 (ja) * 2013-12-19 2018-04-25 パナソニックIpマネジメント株式会社 無線電力伝送のための送電装置および受電装置ならびに無線電力伝送システム
JP6248785B2 (ja) * 2014-04-25 2017-12-20 トヨタ自動車株式会社 送電装置および受電装置
KR20160143044A (ko) * 2015-06-04 2016-12-14 엘지이노텍 주식회사 무전전력전송 시스템 및 이의 구동 방법.
TWI565187B (zh) * 2015-09-15 2017-01-01 至美科技股份有限公司 Llc充電器及其控制方法與發射-接收變壓器
CN106560730B (zh) * 2016-04-18 2019-03-26 中兴新能源汽车有限责任公司 金属异物检测装置、检测方法、判断装置及无线充电***
JP7122688B2 (ja) * 2016-12-14 2022-08-22 パナソニックIpマネジメント株式会社 無線電力伝送システムにおける送電装置の制御方法、異物検知方法、および送電装置
JP6740895B2 (ja) * 2016-12-27 2020-08-19 Tdk株式会社 金属異物検出装置、ワイヤレス給電装置、ワイヤレス受電装置、及びワイヤレス電力伝送システム
US10511197B2 (en) * 2017-02-02 2019-12-17 Apple Inc. Wireless charging system with object detection
SG10201708902RA (en) * 2017-02-02 2018-09-27 Apple Inc Wireless Charging System With Object Detection
JP6566580B2 (ja) * 2017-04-28 2019-08-28 株式会社Subaru 車両のサブモビリティ充電システム
EP3410568A1 (en) * 2017-05-30 2018-12-05 Koninklijke Philips N.V. Foreign object detection in a wireless power transfer system
EP3425763B1 (en) * 2017-07-03 2020-11-18 France Brevets Coupling interface and method of operation
TWI650633B (zh) * 2017-10-06 2019-02-11 財團法人國家實驗研究院 模組化電子組合裝置
CN109917467A (zh) * 2017-12-13 2019-06-21 中惠创智(深圳)无线供电技术有限公司 检测金属异物的***、无线发射机及无线供电***
CN108173359A (zh) * 2018-02-06 2018-06-15 深圳劲芯微电子有限公司 基于q值判别无线充电异物的方法及其电路
JP2019146439A (ja) * 2018-02-23 2019-08-29 京セラ株式会社 無線送電システム、受電機、送電機、及び無線送電方法
EP3534493B1 (en) * 2018-02-28 2023-09-13 Delta Electronics (Thailand) Public Co., Ltd. Wireless power transfer control
JP7003221B2 (ja) * 2018-03-22 2022-01-20 マクセル株式会社 非接触送電装置および非接触送受電システム
DE102018206339A1 (de) * 2018-04-25 2019-10-31 Continental Automotive Gmbh Vorrichtung und Verfahren zur Funktionsprüfung eines Antennensystems zur Fremdmetallerkennung
US10855117B2 (en) * 2018-05-22 2020-12-01 WitTricity Corporation Extended foreign object detection signal processing
US10473273B1 (en) * 2018-06-15 2019-11-12 Ledvance Llc Lamp with inductive connection to light engine
CN111313569A (zh) * 2018-12-11 2020-06-19 恩智浦美国有限公司 无线充电***中的异物检测电路的q因子确定
TWI707542B (zh) * 2019-10-21 2020-10-11 立錡科技股份有限公司 介面控制電路及其控制方法
EP3902085B1 (en) * 2020-04-23 2023-03-08 Ningbo Geely Automobile Research & Development Co. Ltd. A wireless power transfer pad
CN111682653B (zh) * 2020-05-11 2023-03-24 哈尔滨工业大学 无线电能传输异物检测与活体检测共用***与识别方法
JP2022025563A (ja) * 2020-07-29 2022-02-10 Tdk株式会社 送電装置、ワイヤレス電力伝送システム及び情報通信システム
CN112858390B (zh) * 2020-12-31 2022-11-15 云谷(固安)科技有限公司 异物测试装置和异物测试方法
CN114123550A (zh) * 2021-10-20 2022-03-01 伏达半导体(合肥)有限公司 异物检测电路及异物检测方法
US11936207B2 (en) * 2022-02-10 2024-03-19 Cypress Semiconductor Corporation Foreign object detection using decay counter for Q-estimation

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005140701A (ja) * 2003-11-07 2005-06-02 Nippon Soken Inc 非接触式車両用接近体検出装置
WO2012132818A1 (ja) * 2011-03-31 2012-10-04 ソニー株式会社 検知装置、送電装置、受電装置、給電システムおよび検知方法

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4678992A (en) * 1983-07-12 1987-07-07 Hi-Tech Systems, Corp. Electronic metal detector
US4839602A (en) * 1986-11-04 1989-06-13 Philip Morris Incorporated Means for detecting metal in a stream of particulate matter
US5180978A (en) * 1991-12-02 1993-01-19 Honeywell Inc. Proximity sensor with reduced temperature sensitivity using A.C. and D.C. energy
JPH05327349A (ja) 1992-05-20 1993-12-10 Sony Corp 発振回路
US5691639A (en) 1996-08-28 1997-11-25 Honeywell Inc. Proximity sensor circuit with frequency changing capability
US7164349B2 (en) 2003-11-07 2007-01-16 Nippon Soken, Inc. Approaching object detection apparatus
JP4706036B2 (ja) * 2005-02-03 2011-06-22 学校法人東京理科大学 非接触電力供給システム及びそれを用いた医療システム
CN101809687A (zh) * 2007-09-28 2010-08-18 捷通国际有限公司 多相感应供电***
US7884927B2 (en) 2008-01-07 2011-02-08 Seiko Epson Corporation Power transmission control device, non-contact power transmission system, power transmitting device, electronic instrument, and waveform monitor circuit
JP2009189229A (ja) 2008-01-07 2009-08-20 Seiko Epson Corp 送電制御装置、無接点電力伝送システム、送電装置、電子機器および波形モニタ回路
JP2011211760A (ja) * 2010-03-26 2011-10-20 Panasonic Electric Works Co Ltd 非接触給電装置及び非接触充電システム
JP2011229265A (ja) * 2010-04-19 2011-11-10 Panasonic Electric Works Co Ltd 非接触電力伝送装置
WO2011138860A1 (ja) * 2010-05-03 2011-11-10 パナソニック株式会社 発電装置、発電システム、および無線電力伝送装置
WO2012046452A1 (ja) * 2010-10-08 2012-04-12 パナソニック株式会社 発電システムおよび発電ユニット
JP5605153B2 (ja) * 2010-10-15 2014-10-15 ソニー株式会社 給電装置、給電方法および給電システム
JP2012213270A (ja) * 2011-03-31 2012-11-01 Panasonic Corp 非接触給電システム
JP2012244732A (ja) 2011-05-18 2012-12-10 Sony Corp 電磁結合状態検知回路、送電装置、非接触電力伝送システム及び電磁結合状態検知方法
CN202444300U (zh) * 2012-02-21 2012-09-19 惠州硕贝德无线科技股份有限公司 一种无线充电装置
JP5909700B2 (ja) 2012-03-09 2016-04-27 パナソニックIpマネジメント株式会社 金属検知方法及び金属検知装置、並びに、非接触給電装置の金属検知方法及び非接触給電装置
US9768643B2 (en) * 2012-11-02 2017-09-19 Panasonic Intellectual Property Management Co., Ltd. Wireless power transmission system capable of continuing power transmission while suppressing heatup of foreign objects
CN105027387B (zh) * 2013-07-31 2018-03-13 松下电器产业株式会社 无线送电装置以及无线电力传输***
JP6387222B2 (ja) * 2013-08-28 2018-09-05 ソニー株式会社 給電装置、受電装置、給電システム、および、給電装置の制御方法
JP6471965B2 (ja) * 2014-05-27 2019-02-20 パナソニックIpマネジメント株式会社 送電装置および無線電力伝送システム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005140701A (ja) * 2003-11-07 2005-06-02 Nippon Soken Inc 非接触式車両用接近体検出装置
WO2012132818A1 (ja) * 2011-03-31 2012-10-04 ソニー株式会社 検知装置、送電装置、受電装置、給電システムおよび検知方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018123769A1 (ja) * 2016-12-27 2018-07-05 Tdk株式会社 金属異物検出装置、ワイヤレス給電装置、ワイヤレス受電装置、及びワイヤレス電力伝送システム
JP2018110465A (ja) * 2016-12-28 2018-07-12 株式会社Lixil 設備装置
JP2021502047A (ja) * 2017-11-02 2021-01-21 エルジー イノテック カンパニー リミテッド 無線充電方法およびそのための装置
JP7233424B2 (ja) 2017-11-02 2023-03-06 エルジー イノテック カンパニー リミテッド 無線充電方法およびそのための装置
US11817716B2 (en) 2017-11-02 2023-11-14 Lg Innotek Co., Ltd. Wireless charging method and apparatus therefor
JP7469534B2 (ja) 2017-11-02 2024-04-16 エルジー イノテック カンパニー リミテッド 無線充電方法およびそのための装置
JP7414501B2 (ja) 2019-12-10 2024-01-16 キヤノン株式会社 受電装置、送電装置、およびそれらの制御方法、プログラム

Also Published As

Publication number Publication date
JP5915953B2 (ja) 2016-05-11
US20160149442A1 (en) 2016-05-26
US10020692B2 (en) 2018-07-10
JP6307756B2 (ja) 2018-04-11
JPWO2015132818A1 (ja) 2017-03-30
CN105452904B (zh) 2018-07-06
JP2016136834A (ja) 2016-07-28
CN105452904A (zh) 2016-03-30

Similar Documents

Publication Publication Date Title
JP6307756B2 (ja) 異物検出装置、送電装置、受電装置、および無線電力伝送システム
JP6264623B2 (ja) 異物検出装置、無線電力伝送のための送電装置および受電装置ならびに無線電力伝送システム
JP6920646B2 (ja) 異物検出装置、無線送電装置、および無線電力伝送システム
JP6593661B2 (ja) 無線電力伝送のための送電装置および受電装置ならびに無線電力伝送システム
JP6471970B2 (ja) 無線電力伝送システム及び無線電力伝送システムの送電装置
TWI459676B (zh) 非接觸供電系統及非接觸供電系統的金屬異物檢測裝置
TW201944698A (zh) 執行異物檢測的方法和裝置
JP2018512036A (ja) 誘導送電器
JP2012039800A (ja) 電力伝送システム
US20220393519A1 (en) Wireless charging device, a receiver device, and an associated method thereof
JP6037022B2 (ja) 送電装置、ワイヤレス電力伝送システム及び電力伝送判別方法
EP3009866B1 (en) Foreign object detector, power transmitter, power receiver, and wireless power transmission system
JP2015095905A (ja) 無接点電力搬送方法
KR20190020167A (ko) 송전 장치 및 시스템

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480039975.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14884962

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015562966

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2014884962

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14904581

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE