WO2015131546A1 - 电机编码器定位方法及*** - Google Patents

电机编码器定位方法及*** Download PDF

Info

Publication number
WO2015131546A1
WO2015131546A1 PCT/CN2014/091074 CN2014091074W WO2015131546A1 WO 2015131546 A1 WO2015131546 A1 WO 2015131546A1 CN 2014091074 W CN2014091074 W CN 2014091074W WO 2015131546 A1 WO2015131546 A1 WO 2015131546A1
Authority
WO
WIPO (PCT)
Prior art keywords
encoder
value
motor
rotor
absolute
Prior art date
Application number
PCT/CN2014/091074
Other languages
English (en)
French (fr)
Inventor
向远
李玉成
吴细龙
Original Assignee
东莞易步机器人有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东莞易步机器人有限公司 filed Critical 东莞易步机器人有限公司
Publication of WO2015131546A1 publication Critical patent/WO2015131546A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/19Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/14Estimation or adaptation of motor parameters, e.g. rotor time constant, flux, speed, current or voltage

Definitions

  • the invention relates to the technical field of motor rotor zero point calibration, in particular to a motor encoder positioning method and system.
  • the motor needs to use an encoder to detect the angle of rotation of the rotor during use.
  • the rotor angle is a special value (usually zero position)
  • the component connected to the rotating shaft moves to a special position, that is, when the rotating shaft is rotated to the position, the encoder matched with the motor just outputs the zero signal.
  • the motor with the shaft In order to make the output signal of the encoder cooperate with the motor shaft, the motor with the shaft generally needs to return the encoder to the zero point before the work as the starting point of the work.
  • the zero point of the motor rotor needs to be first The position is aligned with the zero position of the encoder.
  • the signal from the encoder can be used to know the running position of the current motor rotor.
  • the technical solution adopted by the present invention is: a motor encoder positioning method, which comprises the following steps:
  • the real-time operating position of the motor rotor is obtained according to the fourth encoder value and the first encoder value.
  • a motor encoder positioning system includes:
  • a storage unit for obtaining an initial encoder value of the absolute encoder
  • a detecting unit configured to start a motor in a normal operating state, and obtain a fourth encoder value of an absolute encoder corresponding to a running position of the motor rotor after rotating;
  • an output unit configured to obtain a real-time running position of the motor rotor according to the fourth encoder value and the first encoder value.
  • the motor encoder positioning method and system of the present invention firstly installs an absolute encoder on the rotor of the motor, firstly, by repeatedly setting the electrical angle value to use the magnetic field to rotate the rotor of the motor to determine that the motor is in a normal operating state, In the process of rotating the rotor of the motor, the magnetic field is too weak to drive the rotor of the motor to rotate as required, so as to avoid the problem that the positioning angle is not accurate or the deviation of the positioning angle is too large without pulling the motor rotor to the predetermined position; Position, and then obtain the first encoder value of the initial absolute encoder, and then confirm the motor rotor by obtaining the deviation value of the fourth encoder value of the absolute encoder corresponding to the running position of the motor rotor after rotating and the first encoder value The position value is operated to achieve the positioning function of the rotor running position of the motor, simplifying the system assembly, and eliminating the need to manually adjust the absolute encoder zero position to match the motor rotor zero position, thereby improving the system
  • FIG. 1 is a schematic flow chart of a method for positioning a motor encoder according to the present invention
  • FIG. 2 is a schematic structural view of a motor encoder positioning system according to the present invention.
  • FIG. 3 is another schematic structural view of a motor encoder positioning system of the present invention.
  • Fig. 4 is a structural schematic view showing the rotating state of the rotor of the motor of the present invention.
  • the motor encoder positioning method of the present invention specifically includes the following steps:
  • the real-time operating position of the motor rotor is obtained according to the fourth encoder value and the first encoder value.
  • the step of confirming that the motor is in a normal operating state includes:
  • Obtaining a first expected deviation comparing the first expected deviation with a difference between the first encoder value and the second encoder value, if the first expected deviation is different from the first encoder value and the second encoder value The value is within a set error range, and the motor is determined to be in a normal operating state; wherein the first expected deviation is a difference between the first electrical angle value and the second electrical angle value multiplied by an absolute code corresponding to each electrical angle value The position value of the device.
  • the motor encoder position is locked according to a preset third electrical angle value, and the third encoder value of the absolute encoder is obtained, and the third encoder value is set to the third electrical angle value.
  • Obtaining a second expected deviation comparing the second expected deviation with a difference between the second encoder value and the third encoder value, if the second expected deviation is different from the second encoder value and the third encoder value
  • the value is within a set error range, and the motor is determined to be in a normal operating state; wherein the second expected deviation is a difference between the second electrical angle value and the third electrical angle value multiplied by an absolute code corresponding to each electrical angle value
  • the position value of the device Obtaining a second expected deviation, comparing the second expected deviation with a difference between the second encoder value and the third encoder value, if the second expected deviation is different from the second encoder value and the third encoder value The value is within a set error range, and the motor is determined to be in a normal operating state; wherein the second expected deviation is a difference between the second electrical angle value and the third electrical angle value multiplied by an absolute code corresponding to each electrical angle value The position value of the device.
  • the electrical angle value locks the rotor position of the motor, and the rotor of the motor is locked in the first position under the magnetic force of the magnetic field generated by the winding coil, and reads the first encoder value of the absolute encoder, wherein the first encoder value is set a first deviation value between the first position value of the motor rotor and the absolute encoder zero position value;
  • the electrical angle value locks the rotor position of the motor, and the rotor of the motor locks in the second position under the magnetic force of the magnetic field generated by the winding coil, and reads the second encoder value of the absolute encoder;
  • the electrical angle value is multiplied by the position value of the absolute encoder corresponding to each electrical angle value to obtain a first expected deviation, and the difference between the first expected deviation and the first encoder value and the second encoder value is determined to be within a set error range. Inside, if it is, the motor is in normal operation.
  • the electrical angle value locks the rotor position of the motor, and the rotor of the motor is locked in the third position under the magnetic force of the magnetic field generated by the winding coil, and the third encoder value of the absolute encoder is read;
  • the first encoder value of the absolute encoder is obtained when the motor is first operated after determining that the motor is in a normal operating state, and the steps include:
  • the first encoder value is input to the RAM module, RAM
  • the module stores the first encoder value and sets the first encoder value to a first deviation value of the first position value of the motor rotor and the absolute encoder zero position value.
  • the step of obtaining the first encoder value further comprises:
  • Flash The first encoder value stored in the module is set to the deviation of the first position value of the locked motor rotor from the zero position value of the absolute encoder.
  • the invention installs an absolute encoder on the rotor of the motor, firstly sets the electrical angle value to use a magnetic field to rotate the rotor of the motor to determine that the motor is in a normal working state, and prevents the rotor of the motor from being unable to drive due to the weak magnetic field during the rotating process.
  • the rotor of the motor rotates as required to avoid the problem that the positioning angle is not accurate or the positioning angle deviation is too large without pulling the motor rotor to the predetermined position; and then the first position of the rotor of the motor is locked, and then the first encoder of the absolute encoder is obtained.
  • the value is obtained by obtaining the deviation value of the fourth encoder value of the absolute encoder from the first encoder value to confirm the real-time running position of the motor rotor, thereby achieving the positioning effect on the rotor rotor running position, simplifying the system assembly, and eliminating the need to manually adjust the absolute type.
  • the encoder zero position is matched to the motor rotor zero position, which improves the system's adaptive ability.
  • the step of locking the first position of the rotor of the motor and obtaining the first encoder value of the absolute encoder comprises:
  • a direct current is input to the winding coils of the two phases of the three-phase motor to lock the first position of the rotor of the motor.
  • the direct current is a constant current, and a fixed current is generated after the winding coil of the motor is input to the direct current.
  • the magnetic field under the action of magnetic attraction, can pull the permanent magnet motor rotor to match the winding coil.
  • the step of inputting direct current to the winding coils of the two phases of the three-phase motor to lock the first position of the motor rotor includes:
  • the winding coils of two phases of the three-phase motor are input to a DC power supply value, and a magnetic field is generated by the winding coil of the motor to pull the rotor of the motor to rotate, and the rotor of the motor rotates to a position where the winding coil matches the phase I;
  • the first encoder value being set to a first deviation value of the first position value of the motor rotor and the absolute encoder zero position value.
  • the electrical angle value of the DC power set value can be set to 0°. And then obtaining the current coded value of the absolute encoder, ie the first encoder value, and setting the first encoder value as the first deviation value of the first position value of the motor rotor and the absolute position value of the absolute encoder .
  • the step of obtaining the real-time operating position of the motor rotor based on the fourth encoder value and the first encoder value comprises:
  • the real-time operating position of the motor rotor is obtained by multiplying the difference between the fourth encoder value and the first encoder value by the number of copies of the electrical angle value.
  • the number of magnetic poles of the motor is N
  • the number of binary coded bits of the absolute encoder is n
  • the number of parts corresponding to the electrical angle value of each position of the absolute encoder is N*360° /2 n .
  • the selected motor is provided with 4 pairs of magnetic poles, and the mechanical cycle of the motor rotor is divided into 4 alternating current periods, and each alternating current period is 360 degrees electrical angle.
  • the selected absolute encoder is selected.
  • the electrical angle value of each alternating current cycle is divided into 1024 copies, and the number of parts corresponding to the electrical angle value of each position of the absolute encoder is (360/1024) °, and the motor is determined to be normal.
  • the fourth encoder value of the absolute encoder is obtained, that is, the reading value of the current absolute encoder; wherein the first encoder value is set as the first position value of the motor rotor and the absolute encoder
  • the first deviation value of the zero position value is obtained by the difference between the fourth encoder value and the first deviation value, and the absolute encoder corresponding to the real-time operating position of the motor rotor is obtained, and the read value is multiplied by the absolute value.
  • the number of parts of the electrical angle value corresponding to each position of the encoder can accurately determine the real-time operating position of the motor rotor.
  • the present invention provides a motor encoder positioning system.
  • the motor encoder positioning system of the present invention by installing an absolute encoder on the rotor of the motor, the first storage unit stores the absolute code.
  • the first encoder value of the device is determined by the confirmation unit to determine that the motor is in a normal operating state, and the fourth encoder value and the first deviation value of the absolute encoder corresponding to the running position of the motor rotor after the rotation of the motor are confirmed to confirm the real-time operation of the motor rotor.
  • Position so as to achieve the positioning of the motor rotor operating position, simplify the system assembly, without manual adjustment of the absolute encoder zero position and motor rotor zero position matching, improve the system adaptive ability.
  • the motor encoder positioning system of the present invention comprises:
  • a storage unit configured to lock a motor encoder position according to a preset first electrical angle value, and obtain a first encoder value of the absolute encoder, where the first encoder value is set to a first electrical angle value a first position, wherein the first encoder value is set to a first deviation value of the first position value of the motor rotor and the absolute encoder zero position value;
  • a detecting unit configured to start a motor in a normal operating state, and obtain a fourth encoder value of an absolute encoder corresponding to a running position of the motor rotor after rotating;
  • an output unit configured to obtain a real-time running position of the motor rotor according to the fourth encoder value and the first encoder value.
  • the motor encoder positioning system of the present invention further includes an input unit for inputting direct current to the winding coils of the two phases of the three-phase motor to lock the first position of the motor rotor.
  • the direct current is a constant current. Since the winding coil of the motor is input with direct current, a fixed magnetic field is generated. Under the action of magnetic attraction, the permanent magnet motor rotor can be pulled to the position where the winding coil is matched, thereby completing the positioning. The unit locks the rotor of the motor, and the first encoder value corresponding to the locked position of the motor rotor is obtained by the storage unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

一种电机编码器定位方法及***,该定位方法包括:根据预先设定的第一电角度值锁定电机转子位置,获取绝对式编码器的第一编码器数值,第一编码器数值设定为第一电角度值时电机转子的第一位置;确认电机处于正常运作状态;启动正常运作状态的电机,获取电机转子转动后运行位置对应的绝对式编码器的第四编码器数值;根据第四编码器数值与第一编码器数值获得电机转子实时运行位置。该定位方法及***通过获取绝对式编码器的第一编码器数值,再通过获取的第四编码器数值与第一编码器数值的偏差值确认电机转子运行位置值,从而达到对电机转子运行位置的定位作用,简化***装配,无需手工对电机转子零点位置调节匹配。

Description

电机编码器定位方法及*** 技术领域
本发明涉及电机转子零点校对技术领域,尤其是涉及一种电机编码器定位方法及***。
背景技术
一般电机在使用过程中需要利用编码器检测转子转动的角度,当转子角度为特殊值时 ( 通常为零位置 ) ,与转轴连接的部件运动到某一特殊位置,即转轴转动到该位置时,与电机匹配设置的编码器正好输出零位信号。
为了使编码器的输出信号与电机转轴协同,带转轴的电机在工作前一般需要把编码器先回到零点,作为工作起点;在将编码器装配到电机上时,需要先将电机转子的零点位置与编码器的零点位置对准,控制器在对电机进行控制时,能通过编码器发出的信号知道当前电机转子的运行位置。
但是,将电机转子的零点位置与编码器的零点位置对准这种操作方式在装配时很难做到精准对位,且装配实现过程复杂;而且,在电机转子的零点位置与编码器的零点位置调试好后,如果编码器损坏,客户很难自己重新进行安装并对零点位置进行校对,容易因编码器的零点位置与电机转子的零点位置的装配偏差,使产品不能达到使用的效果。
技术问题
基于此,有必要针对现有技术的不足,提供一种电机编码器定位方法及***,简化***装配,无需手工调节编码器零点位置到电机转子零点位置,提高了***自适应能力。
技术解决方案
本发明所采用的技术方案是:一种电机编码器定位方法,其包括如下步骤:
根据预先设定的第一电角度值锁定电机转子位置,获取绝对式编码器的第一编码器数值,所述第一编码器数值设定为第一电角度值时电机转子的第一位置,其中,第一编码器数值设为电机转子的第一位置值与绝对式编码器零点位置值的第一偏差值;
确认电机处于正常运作状态;
启动正常运作状态的电机,获取电机转子转动后运行位置对应的绝对式编码器的第四编码器数值;
根据第四编码器数值与第一编码器数值获得电机转子实时运行位置。
一种电机编码器定位***,其包括:
存储单元,用于获取绝对式编码器的初始编码器数值;
确认单元,用于确定电机处于正常运作状态;
检测单元,用于启动正常运作状态的电机,获取电机转子转动后运行位置对应的绝对式编码器的第四编码器数值;
输出单元,用于根据第四编码器数值与第一编码器数值获得电机转子实时运行位置。
有益效果
综上所述,本发明电机编码器定位方法及***通过在电机转子上安装绝对式编码器,首先通过多次设定电角度值来利用磁场作用转动电机转子,确定电机处于正常运作状态,阳止电机转子在转动过程中由于磁场太弱无法带动电机转子按要求进行转动,避免没有将电机转子拉到预定位置而造成定位角度不准或定位角偏差过大的问题;进而锁定电机转子第一位置,再获取初始绝对式编码器的第一编码器数值,再通过获取的电机转子转动后运行位置对应的绝对式编码器的第四编码器数值与第一编码器数值的偏差值确认电机转子运行位置值,从而达到对电机转子运行位置的定位作用,简化***装配,无需手工调节绝对式编码器零点位置与电机转子零点位置匹配,提高了***自适应能力。
附图说明
图 1 为本发明电机编码器定位方法的流程示意图;
图 2 为本发明电机编码器定位***的结构示意图;
图 3 为本发明电机编码器定位***的另一结构示意图;
图 4 为本发明电机转子转动状态的结构示意图。
本发明的最佳实施方式
为能进一步了解本发明的特征、技术手段以及所达到的具体目的、功能,下面结合附图与具体实施方式对本发明作进一步详细描述。
如图 1 所示,本发明电机编码器定位方法,具体包括如下步骤:
根据预先设定的第一电角度值锁定电机转子位置,获取绝对式编码器的第一编码器数值,所述第一编码器数值设定为第一电角度值时电机转子的第一位置,其中,第一编码器数值设为电机转子的第一位置值与绝对式编码器零点位置值的第一偏差值;
确认电机处于正常运作状态;
启动正常运作状态的电机,获取电机转子转动后运行位置对应的绝对式编码器的第四编码器数值;
根据第四编码器数值与第一编码器数值获得电机转子实时运行位置。
在其中一个实施例中,确认电机处于正常运作状态的步骤包括:
根据预先设定的第二电角度值锁定电机转子位置,获取绝对式编码器的第二编码器数值,其中,所述第二编码器数值设定为第二电角度值时电机转子的第二位置;
获取第一预期偏差,将第一预期偏差与第一编码器数值和第二编码器数值的差值进行比较,若所述第一预期偏差与第一编码器数值和第二编码器数值的差值在设定误差范围内,确定电机处于正常运作状态;其中,所述第一预期偏差为第一电角度值和第二电角度值的差值乘以每份电角度值对应的绝对式编码器的位置值。
在其他实施例中,根据预先设定的第三电角度值锁定电机转子位置,获取绝对式编码器的第三编码器数值,所述第三编码器数值设定为第三电角度值时电机转子的第三位置;
获取第二预期偏差,将第二预期偏差与第二编码器数值和第三编码器数值的差值进行比较,若所述第二预期偏差与第二编码器数值和第三编码器数值的差值在设定误差范围内,确定电机处于正常运作状态;其中,所述第二预期偏差为第二电角度值和第三电角度值的差值乘以每份电角度值对应的绝对式编码器的位置值。
具体地,在本实施例中,首先根据预先设定 0 °电角度值锁定电机转子位置,所述电机转子在绕组线圈产生的磁场的磁力作用下锁定在第一位置,读取绝对式编码器的第一编码器数值,其中,第一编码器数值设为电机转子的第一位置值与绝对式编码器零点位置值的第一偏差值;
然后,根据预先设定的 90° 电角度值锁定电机转子位置,所述电机转子在绕组线圈产生的磁场的磁力作用下锁定在第二位置,读取绝对式编码器的第二编码器数值;
获取第一编码器数值和第二编码器数值的差值,通过计算 90° 电角度值乘以每份电角度值对应的绝对式编码器的位置值获得第一预期偏差,判断第一预期偏差与第一编码器数值和第二编码器数值的差值在设定误差范围内,若是,则电机处于正常运作状态。
在其他实施例中,根据预先设定的 -90° 电角度值锁定电机转子位置,所述电机转子在绕组线圈产生的磁场的磁力作用下锁定在第三位置,读取绝对式编码器的第三编码器数值;
获取第三编码器数值和第二编码器数值的差值,通过计算 90° 电角度值乘以每份电角度值对应的绝对式编码器的位置值获得第二预期偏差,判断第二预期偏差与第三编码器数值和第二编码器数值的差值在设定误差范围内,若是,则电机处于正常运作状态。
在其中一个实施例中,在确定电机处于正常运作状态后电机第一次运行时,获取绝对式编码器的第一编码器数值,其步骤包括:
锁定电机转子第一位置;
获得绝对式编码器对应锁定电机转子第一位置时的第一编码器数值;
所述第一编码器数值输入至 RAM 模块, RAM 模块对第一编码器数值进行存储,并将所述第一编码器数值设定为电机转子的第一位置值与绝对式编码器零点位置值的第一偏差值。
在其中一个实施例中,在确定电机处于正常运作状态运行第一次以后,获取第一编码器数值的步骤还包括:
将 Flash 模块内存储的第一编码器数值设定为锁定电机转子第一位置值与绝对式编码器的零点位置值的偏差值。
本发明通过在电机转子上安装绝对式编码器,首先通过多次设定电角度值来利用磁场作用转动电机转子,确定电机处于正常运作状态,防止电机转子在转动过程中由于磁场太弱无法带动电机转子按要求进行转动,避免没有将电机转子拉到预定位置而造成定位角度不准或定位角偏差过大的问题;进而锁定电机转子第一位置,再获取绝对式编码器的第一编码器数值,通过获取绝对式编码器的第四编码器数值与第一编码器数值的偏差值确认电机转子实时运行位置,从而达到对电机转子运行位置的定位作用,简化***装配,无需手工调节绝对式编码器零点位置与电机转子零点位置匹配,提高了***自适应能力。
在其中一个实施例中,锁定电机转子第一位置,获取绝对式编码器的第一编码器数值的步骤包括:
对三相电机的其中两相的绕组线圈输入直流电来锁定电机转子第一位置。
具体地,所述直流电为恒定电流,由于电机的绕组线圈输入直流电后,会产生固定
磁场,在磁吸力作用下,能将永磁电机转子拉到与绕组线圈匹配相 I 吸的位置,进而完成对电机转子的锁定,获得电机转子的第一位置。
在其中一个实施例中,对三相电机的其中两相的绕组线圈输入直流电来锁定电机转子第一位置的步骤包括:
将三相电机中的其中两相的绕组线圈输入直流电给定值,通过电机的绕组线圈产生磁场拉动电机转子转动,电机转子转动到所述绕组线圈匹配相 I 吸的位置;
获取绝对式编码器的第一编码器数值,所述第一编码器数值设为电机转子的第一位置值与绝对式编码器零点位置值的第一偏差值。
具体地,可将直流电给定值的电角度值设定为 0° ;然后获得绝对式编码器的当前编码数值,即第一编码器数值,并将所述第一编码器数值设为电机转子的第一位置值与绝对式编码器零点位置值的第一偏差值。
在其中一个实施例中,根据第四编码器数值与第一编码器数值获得电机转子实时运行位置的步骤包括:
获取电机的磁极数和绝对式编码器的二进制编码位数;
获得绝对式编码器每一位置对应电角度值的份数;
获取电机转子转动后运行位置对应的绝对式编码器的第二编码器数值;
根据第四编码器数值与第一编码器数值的差值乘以所述电角度值的份数获得电机转子实时运行位置。
具体地,所述电机的磁极数为 N ,所述绝对式编码器的二进制编码位数为 n ,所述绝对式编码器每一位置对应电角度值的份数为 N*360° /2n
此实施例中,选取的电机设置有 4 对磁极,则电机转子转一围的机械周期对应有 4 个交流电周期,每个交流电周期为 360 度电角度,此时,在选取的绝对式编码器的二进制编码位数为 12 位时,绝对式编码器一圈对应有 212=4096 个值,其中, 0 ~ 1024 、 1024 ~2048 、 2048 ~ 3072 、 3072 ~ 4096 分别对应一个电周期内的 0 ° ~ 360° ;此实施例中,每个交流电周期的电角度值被分为 1024 份,绝对式编码器每一位置对应电角度值的份数为 (360/1024)° ,确定电机处于正常运作状态运行第一次以后获取绝对式编码器的第四编码器数值,即当前绝对式编码器的读数值;其中,第一编码器数值设为电机转子的第一位置值与绝对式编码器零点位置值的第一偏差值,根据第四编码器数值与所述第一偏差值之差得到电机转子实时运行位置对应的绝对式编码器的读取值,用读取值乘以绝对式编码器每一位置对应电角度值的份数可以确切得到电机转子实时运行位置。
根据上述本发明电机编码器定位方法,本发明提供了一种电机编码器定位***,通过应用本发明电机编码器定位***,通过在电机转子上安装绝对式编码器,首先存储单元存储绝对式编码器的第一编码器数值,再由确认单元确定电机处于正常运作状态,通过获取的电机转子转动后运行位置对应的绝对式编码器的第四编码器数值与第一偏差值确认电机转子实时运行位置,从而达到对电机转子运行位置的定位作用,简化***装配,无需手工调节绝对式编码器零点位置与电机转子零点位置匹配,提高了***自适应能力。
如图 2 所示,本发明电机编码器定位***,包括:
存储单元,用于根据预先设定的第一电角度值锁定电机转子位置,获取绝对式编码器的第一编码器数值,所述第一编码器数值设定为第一电角度值时电机转子的第一位置,其中,第一编码器数值设为电机转子的第一位置值与绝对式编码器零点位置值的第一偏差值;
确认单元,用于确定电机处于正常运作状态;
检测单元,用于启动正常运作状态的电机,获取电机转子转动后运行位置对应的绝对式编码器的第四编码器数值;
输出单元,用于根据第四编码器数值与第一编码器数值获得电机转子实时运行位置。
在其中一个实施例中,如图 3 所示,本发明电机编码器定位***还包括输入单元,用于对三相电机的其中两相的绕组线圈输入直流电来锁定电机转子第一位置。
具体地,如图 4 所示,所述直流电为恒定电流,由于电机的绕组线圈输入直流电后,会产生固定磁场,在磁吸力作用下,能将永磁电机转子拉到与绕组线圈匹配相吸的位置,进而完成定位单元对电机转子的锁定,由存储单元获得电机转子锁定位置对应的第一编码器数值。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明的保护范围应以所附权利要求为准。

Claims (8)

  1. 一种电机编码器定位方法,其特征在于,包括如下步骤:
    根据预先设定的第一电角度值锁定电机转子位置,获取绝对式编码器的第一编码器数值,所述第一编码器数值设定为第一电角度值时电机转子的第一位置,其中,第一编码器数值设为电机转子的第一位置值与绝对式编码器零点位置值的第一偏差值;
    确认电机处于正常运作状态;
    启动正常运作状态的电机,获取电机转子转动后运行位置对应的绝对式编码器的第四编码器数值;
    根据第四编码器数值与第一编码器数值获得电机转子实时运行位置。
  2. 根据权利要求 1 所述的电机编码器定位方法,其特征在于,确定电机处于正常运作状态的步骤包括:
    根据预先设定的第二电角度值锁定电机转子位置,获取绝对式编码器的第二编码器数值,其中,所述第二编码器数值设定为第二电角度值时电机转子的第二位置;
    获取第一预期偏差,将第一预期偏差与第一编码器数值和第二编码器数值的差值进行比较,若所述第一预期偏差与第一编码器数值和第二编码器数值的差值在设定误差范围内,确定电机处于正常运作状态;其中,所述第一预期偏差为第一电角度值和第二电角度值的差值乘以每份电角度值对应的绝对式编码器的位置值。
  3. 根据权利要求 2 所述的电机编码器定位方法,其特征在于,确定电机处于正常运作状态的步骤还包括:
    根据预先设定的第三电角度值锁定电机转子位置,获取绝对式编码器的第三编码器数值,所述第三编码器数值设定为第三电角度值时电机转子的第三位置;
    获取第二预期偏差,将第二预期偏差与第二编码器数值和第三编码器数值的差值进行比较,若所述第二预期偏差与第二编码器数值和第三编码器数值的差值在设定误差范围内,确定电机处于正常运作状态;其中,所述第二预期偏差为第二电角度值和第三电角度值的差值乘以每份电角度值对应的绝对式编码器的位置值。
  4. 根据权利要求 2 所述的电机编码器定位方法,其特征在于,根据预先设定的第一电角度值锁定电机转子位置,获取绝对式编码器的第一编码器数值的步骤包括:
    对三相电机的其中两相的绕组线圈输入直流电来锁定电机转子位置。
  5. 根据权利要求 4 所述的电机编码器定位方法,其特征在于,对三相电机的其中两相的绕组线圈输入直流电来锁定电机转子初始位置的步骤包括:
    将三相电机中的其中两相的绕组线圈输入直流电给定值,通过电机的绕组线圈产生磁场拉动电机转子转动,电机转子转动到所述绕组线圈匹配相吸的位置;
    获取绝对式编码器的第一编码器数值,并将所述第一编码器数值设为电机转子的第一位置值与绝对式编码器零点位置值的第一偏差值。
  6. 根据权利要求 1 或 5 所述的电机编码器定位方法,其特征在于,根据第四编码器数值获得电机转子实时运行位置的步骤包括:
    获取电机的磁极数和绝对式编码器的二进制编码位数:
    获得绝对式编码器每一位置对应电角度值的份数;
    获取电机转子转动后运行位置对应的绝对式编码器的第四编码器数值;
    根据第四编码器数值与第一编码器数值的差值乘以绝对式编码器每一位置对应电角度值的份数获得电机转子实时运行位置。
  7. 一种电机编码器定位***,其特征在于,包括:
    存储单元,用于获取绝对式编码器的初始编码器数值;
    确认单元,用于确定电机处于正常运作状态;
    检测单元,用于启动正常运作状态的电机,获取电机转子转动后运行位置对应的绝对式编码器的第四编码器数值;
    输出单元,用于根据第四编码器数值与初始编码器数值获得电机转子实时运行位置。
  8. 根据权利要求 7 所述的电机编码器定位***,其特征在于,还包括输入单元,用于对三相电机的其中两相的绕组线圈输入直流电来锁定电机转子位置。
PCT/CN2014/091074 2014-03-07 2014-11-14 电机编码器定位方法及*** WO2015131546A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410084228.3A CN103825527A (zh) 2014-03-07 2014-03-07 电机编码器定位方法及***
CN201410084228.3 2014-03-07

Publications (1)

Publication Number Publication Date
WO2015131546A1 true WO2015131546A1 (zh) 2015-09-11

Family

ID=50760415

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/091074 WO2015131546A1 (zh) 2014-03-07 2014-11-14 电机编码器定位方法及***

Country Status (2)

Country Link
CN (1) CN103825527A (zh)
WO (1) WO2015131546A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112799343A (zh) * 2020-12-31 2021-05-14 楚天科技股份有限公司 一种转盘切点取盖控制方法及控制***

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103825527A (zh) * 2014-03-07 2014-05-28 东莞易步机器人有限公司 电机编码器定位方法及***
CN105024594B (zh) * 2015-07-10 2018-02-09 重庆华数机器人有限公司 一种电机电场相位零点校正***及校正方法
CN105490609B (zh) * 2015-12-21 2019-01-22 上海新时达电气股份有限公司 伺服自整定电机编码器零点的方法及其***
CN106100465B (zh) * 2016-07-29 2020-01-17 福建睿能科技股份有限公司 一种驱动***及驱动器
CN106773651B (zh) * 2016-12-31 2020-01-17 深圳市优必选科技有限公司 舵机临界点锁位方法和装置
CN108900121B (zh) * 2018-07-10 2021-02-19 东莞市李群自动化技术有限公司 电机初始相位和相序检测方法及永磁同步电机控制***
CN109108969A (zh) * 2018-08-21 2019-01-01 珠海格力智能装备有限公司 机器人零点的处理方法及装置
CN109605380B (zh) * 2019-01-25 2021-09-17 甄圣超 一种Scara机器人交流伺服电机的驱动方法
CN110793553B (zh) * 2019-11-07 2021-07-23 歌尔股份有限公司 零点定位方法、***、伺服电机及存储介质
CN111999052A (zh) * 2020-08-14 2020-11-27 北京首钢自动化信息技术有限公司 拉矫破鳞机啮合量的标定方法、标定装置与电子设备
CN113406979B (zh) * 2021-06-21 2022-11-18 珠海格力电器股份有限公司 编码器异常检测方法、装置、存储介质、控制器及设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1571266A (zh) * 2003-11-24 2005-01-26 杭州英迈克电子有限公司 采用增量式编码器的永磁交流伺服电机和无刷直流电机的起动方法
CN201087825Y (zh) * 2007-05-30 2008-07-16 北京中纺锐力机电有限公司 开关磁阻电机转子角位置的零点校对装置
CN102097988A (zh) * 2010-12-17 2011-06-15 北京和利时电机技术有限公司 一种永磁同步电机转子位置补偿角的测量方法及***
US8217601B2 (en) * 2009-07-29 2012-07-10 Parker-Hannifin Corporation Robust rotational position alignment using a relative position encoder
CN103560724A (zh) * 2013-09-27 2014-02-05 南车株洲电力机车研究所有限公司 一种同步电机初始位置确定方法
CN103825527A (zh) * 2014-03-07 2014-05-28 东莞易步机器人有限公司 电机编码器定位方法及***

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7116077B2 (en) * 2002-04-12 2006-10-03 Ford Global Technologies, Llc Diagnostic system and method for an electric motor using torque estimates
CN100575876C (zh) * 2007-11-12 2009-12-30 中国科学院长春光学精密机械与物理研究所 陀螺罗盘多位置自主定向寻北装置
CN101651442B (zh) * 2008-08-15 2011-09-28 深圳市汇川技术股份有限公司 电机转子电角度修正方法及***
CN103308854A (zh) * 2012-03-08 2013-09-18 深圳市蓝韵实业有限公司 电机运动故障监控方法及***

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1571266A (zh) * 2003-11-24 2005-01-26 杭州英迈克电子有限公司 采用增量式编码器的永磁交流伺服电机和无刷直流电机的起动方法
CN201087825Y (zh) * 2007-05-30 2008-07-16 北京中纺锐力机电有限公司 开关磁阻电机转子角位置的零点校对装置
US8217601B2 (en) * 2009-07-29 2012-07-10 Parker-Hannifin Corporation Robust rotational position alignment using a relative position encoder
CN102097988A (zh) * 2010-12-17 2011-06-15 北京和利时电机技术有限公司 一种永磁同步电机转子位置补偿角的测量方法及***
CN103560724A (zh) * 2013-09-27 2014-02-05 南车株洲电力机车研究所有限公司 一种同步电机初始位置确定方法
CN103825527A (zh) * 2014-03-07 2014-05-28 东莞易步机器人有限公司 电机编码器定位方法及***

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112799343A (zh) * 2020-12-31 2021-05-14 楚天科技股份有限公司 一种转盘切点取盖控制方法及控制***

Also Published As

Publication number Publication date
CN103825527A (zh) 2014-05-28

Similar Documents

Publication Publication Date Title
WO2015131546A1 (zh) 电机编码器定位方法及***
JP6124112B2 (ja) 交流電動機の制御装置及び制御方法
WO2010072154A1 (zh) 一种双馈电机转子初始位置角的自动检测方法及装置
WO2015062119A1 (zh) 一种ecm电机的恒力矩控制方法
WO2014032446A1 (zh) 一种有感无刷直流电机驱动方法
WO2011109984A1 (zh) 两台永磁同步电机的同轴驱动***
CN202231660U (zh) 一种自驱式闭环步进电机
JP2007085337A (ja) 真空ポンプ装置
WO2016127650A1 (zh) 一种电子换相电机的恒力矩控制方法
CN105811828A (zh) 一种基于线性霍尔传感器的飞轮转速控制装置及方法
WO2016017880A1 (ko) 위치센서 없는 브러시리스 직류모터의 모델링 전류를 이용한 회전자 위치 오차 보상 방법
TW201325067A (zh) 編碼器的自動對位方法及其裝置
CN107968531B (zh) 三相无刷直流电机中霍尔传感器的自动定位装置及方法
TWI481184B (zh) 絕對型編碼器伺服馬達之校準裝置及其校準方法
BRPI0519347B1 (pt) "processo e esquema de ligações para determinação da posição do rotor sem sensor de um motor de corrente contínua sem escovas e dispositivo"
CN104638992A (zh) 一种双轴对转永磁无刷直流电机的初始启动方法
CN111817618B (zh) 无刷电机无位置传感器换相误差补偿***及方法
CN203011420U (zh) 无刷直流马达霍尔传感器装设位置校正机构
Nerat et al. A novel fast-filtering method for rotational speed of the BLDC motor drive applied to valve actuator
CN116317783A (zh) 一种永磁同步电机的无位置传感器控制方法及***
JP2001078486A (ja) 永久磁石式同期電動機のベクトル制御装置
Čambál et al. Study of synchronous motor rotor position measuring methods
CN102621405B (zh) 定子绕组相序及编码器输出电平检测装置
CN113432634A (zh) 编码器与电机的匹配测试设备及其方法
O’Sullivan et al. Model-based design streamlines embedded motor control system development

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14884974

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 23/02/2017)

122 Ep: pct application non-entry in european phase

Ref document number: 14884974

Country of ref document: EP

Kind code of ref document: A1