WO2015129936A1 - 반응기 및 열교환기용 체널형 스텍 및 그 제조 방법 - Google Patents

반응기 및 열교환기용 체널형 스텍 및 그 제조 방법 Download PDF

Info

Publication number
WO2015129936A1
WO2015129936A1 PCT/KR2014/001564 KR2014001564W WO2015129936A1 WO 2015129936 A1 WO2015129936 A1 WO 2015129936A1 KR 2014001564 W KR2014001564 W KR 2014001564W WO 2015129936 A1 WO2015129936 A1 WO 2015129936A1
Authority
WO
WIPO (PCT)
Prior art keywords
corrugated
stack
bar
heat exchanger
heat
Prior art date
Application number
PCT/KR2014/001564
Other languages
English (en)
French (fr)
Inventor
정종식
박성태
Original Assignee
주식회사 포스비
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스비 filed Critical 주식회사 포스비
Priority to PCT/KR2014/001564 priority Critical patent/WO2015129936A1/ko
Priority to KR1020167014212A priority patent/KR101849540B1/ko
Publication of WO2015129936A1 publication Critical patent/WO2015129936A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0062Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by spaced plates with inserted elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/248Reactors comprising multiple separated flow channels
    • B01J19/249Plate-type reactors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0025Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being formed by zig-zag bend plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/025Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being corrugated, plate-like elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/245Plate-type reactors
    • B01J2219/2451Geometry of the reactor
    • B01J2219/2456Geometry of the plates
    • B01J2219/2459Corrugated plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/245Plate-type reactors
    • B01J2219/2461Heat exchange aspects
    • B01J2219/2462Heat exchange aspects the reactants being in indirect heat exchange with a non reacting heat exchange medium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/245Plate-type reactors
    • B01J2219/2476Construction materials
    • B01J2219/2477Construction materials of the catalysts
    • B01J2219/2479Catalysts coated on the surface of plates or inserts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0022Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for chemical reactors

Definitions

  • the present invention relates to a channel type stack for a reactor and a heat exchanger and a manufacturing method, and more particularly, from a small high efficiency micro-channel type heat exchanger to a large high efficiency gas-gas heat exchanger and a catalyst filling reactor.
  • a channel stack for a new reactor and a heat exchanger which is possible and easy to manufacture, and a manufacturing method thereof.
  • Catalytic reactors used for carrying out chemical reactions or heat exchangers for cooling / heating between fluids are generally used in shell-and-tube type.
  • reactions involving extreme heat generation or endotherm have a large amount of heat generated or absorbed per reactor volume. Therefore, if the reactor volume is large, heat exchange proportional to the area may not be able to follow. It is necessary to reduce the thickness of the packed bed of the catalyst by using several hundreds and thousands.
  • the heat exchange coefficient of the gas is usually low, so that a larger heat exchange area is required, and thus, the volume of the heat exchanger needs to be increased, resulting in a large volume and an increase in manufacturing cost.
  • channel stacks are lower than that of shell-tubes in which gas flows into laminar flow between plates in a large industrial field, and heat transfer coefficients are in turbulent flow. There is a problem that there is no difference, mainly commercialized only in small micro-channel heat exchanger.
  • the small microchannel type heat exchanger is used to increase the heat exchange area by engraving or embossing the plate, but it is not suitable for use as a catalytic reactor because it is difficult to fill and discharge the catalyst.
  • the problem to be solved in the present invention is a wide heat exchange area, easy to manufacture, can be used from small reactors to large industries, and provides a new channel type stack that can be used as a catalytic reactor by the filling and discharge of the catalyst will be.
  • Another problem to be solved in the present invention is a new channel type that can control the cooling amount according to the length by arbitrarily adjusting the width and length of the flow of the cooling fluid flows to the turbulent flow so that it can be used even in extreme exothermic reaction To provide a stack.
  • Another problem to be solved by the present invention is a microchannel type heat exchanger marketed as a conventional high efficiency heat exchanger has a large pressure drop due to the difficulty in parallel flow (parrell flow) in which the flow rate is distributed in each stacking direction due to the complicated flow path, In addition, it is difficult to increase the size of the area to solve the problem that it is impossible to manufacture a large industrial.
  • Another problem to be solved by the present invention is that the heat exchange area of the conventional flat plate heat exchanger is narrowed slightly compared to the general shell-and-tube type when the spacing between the plates is narrowed, but in this case the catalyst can be filled and removed after use It is to solve the problem that can not be used with the type of catalytic reactor.
  • the present invention is a heat exchange device that can be used for heat exchange between the reaction and / or fluid with heat generation or endotherm, the heat conductive metal plate is constantly wrinkles up and down, and in the wrinkle direction
  • a plurality of corrugated plates having flat vertical ends hereinafter, referred to as 'left and right edges') are stacked at predetermined intervals, and channels through which fluid flows are formed between the stacked corrugated plates.
  • the corrugated plates in the heat exchanger are provided with a flat spacer (flat bar) inserted into the left and right edges and a corrugated spacer (pleated bar) inserted into both end portions of the corrugation direction (hereinafter referred to as 'upper and lower edges'). Spaced apart by
  • wrinkle bars are inserted into the upper and lower edges of odd-numbered channels, and flat bars are inserted into left and right edges of even-numbered channels.
  • the even-numbered channels are filled with a catalyst with endothermic or exothermic heat, and the odd-numbered channels have fluid flowing perpendicular to the corrugation direction to supply heat for endothermic or to remove the exothermic heat.
  • a corrugated bar is inserted into the upper and lower edges, and the heat exchanger is heat-exchanged with each other while the fluid flows perpendicularly to the corrugation direction in odd-numbered channels and even-numbered channels.
  • pleat plate is understood to mean a plate corrugated side by side in a wave shape.
  • the corrugated plate is preferably formed so that the valley of the upper corrugated plate is lower than the floor of the lower corrugated plate, preferably the valley of the upper corrugated plate overlaps with the valley of the lower corrugated plate 50% or more. It is preferable to use the corrugated plate in which the V-shaped corrugations are regularly held up and down so that the upper corrugated board and the lower corrugated board overlap a lot.
  • the thermally conductive corrugated plate may typically have a thickness of 0.1-3 mm, and a corrugated plate may be manufactured in which V-shaped straight corrugations are formed up and down using grooved rollers.
  • the width of the corrugation in the corrugated board (the gap between the floor and the floor) can be from several mm to several tens of mm, and the length between the vertices of the corrugation is larger than the width of the corrugation. This is possible.
  • the corrugation is formed at right angles in the longitudinal direction of the metal plate, it is advantageous to manufacture a long heat exchanger, and when formed in parallel to the longitudinal direction, it is advantageous to manufacture a long reactor in which a catalyst is filled.
  • the left and right edges of the corrugated plate are made to be horizontally stretched after being wrinkled for later sealing, or not to form wrinkles during fabrication.
  • the corrugated plates thus manufactured are stacked in the vertical direction at regular intervals, wherein the intervals are maintained by inserting flat flat bars of thickness corresponding to the distance between the vertices of the two corrugated plates at the left and right edges, and the width of the flat bars is later. It should be thick enough for welding, usually about 3-10 mm.
  • the corrugated bar (pleated bar) of about 3-10mm in width is made in the cross-section between the two corrugated boards.
  • the corrugated bar is impossible to produce a corrugated plate by using a roller using a flat bar, it is important to make a gap between the corrugated plate by making a pattern shape given between the corrugated plate by a wire cutting method.
  • the corrugated bar and the flat bar are placed on the upper, lower, left and right edges of the corrugated board except for the fluid entrance, and the stack is repeated to form a stack having a predetermined height, the four sides of the stack stacked up, down, left, and right Filled with plates and bars, the outside of the corrugated plate and the bar can be easily welded and sealed from the outside.
  • Two methods are provided to further provide inlets and outlets for cooling and heating fluids (or reactants) in the stack.
  • the reactants should flow up and down the corrugated plate, and the cooling or heating fluid for controlling the reaction temperature should flow left and right in the direction perpendicular to the corrugated plate. Accordingly, it is preferable to insert the corrugated bar only at odd times of the upper and lower edges for the inflow and discharge of the reactants, and to insert the flat bar only at the even times of the left and right edges for the inlet and discharge of the cooling or heating fluid.
  • the reactor can be filled with catalyst in the up-and-down corrugation direction and discarded after use.
  • the top and bottom edges seal the laminated surfaces by sandwiching the corrugated bars with layers, and the left and right edges are further divided into left and right sides for odd numbers in the left half and even numbers in the right half.
  • the bars are inserted and stacked to form four inlets and outlets for cooling and heating fluids.
  • the heat exchanger manufactured in this way increases the heat transfer efficiency due to the turbulent effect as the fluid flows into the zig zag.
  • the inserted cut bar can be arranged on the same side of the inlet and the outlet of the odd open side, even if the even number can be arranged in the opposite direction of the diagonal to facilitate the piping design of the final heat exchanger.
  • the stack formed with the inlet and the outlet is welded between the bars closely adhered to the end of the corrugated plate of the four sides of the stack to complete the final stack, and the manifold is attached to the stack including the same inlet or outlet array. Welding to complete the inlet and outlet of the fluid (or reactant) completes the final reactor or heat exchanger.
  • the design principle of the heat exchange stack produced by the principle of close-insertion of the corrugated plate proposed by the present invention is easy and easy to manufacture It is easy to seal and can adjust the contact gap between the corrugated sheets regardless of the size of the corrugation. It has the advantage that it can be applied to various ranges from the small microchannel type heat exchanger to the large industrial catalytic reactor.
  • the heat transfer efficiency is increased by flowing to the zig zag up and down of the plate and back to the zig zag to the left and right of the stack.
  • High efficiency heat exchanger for gas-gas heat exchange with low heat transfer efficiency There is an advantage that can be effectively used in the manufacture of the machine.
  • thermoly conductive corrugated plate in which the V-shaped folds are held up and down constantly according to the proposal of the present invention.
  • FIG. 2 is a view showing a plane and a cross section of a corrugated bar inserted into and sealed at both ends of a longitudinal direction of a channel formed between laminated corrugated plates according to the proposal of the present invention.
  • FIG. 3 is a view showing a plane and a cross section of a corrugated bar inserted into a channel formed between a top and bottom plate and a corrugated plate according to the proposal of the present invention and used as a support.
  • Figure 4 is a cutting wrinkle bar for inserting inside the channel to change the channel in the channel in accordance with the proposal of the present invention.
  • 5 is a bottom and top cover plate of the stack produced in accordance with the proposal of the present invention.
  • FIG. 6 is a plan view of the half pleated bar and the heat insulating material placed on the bottom plate.
  • FIG. 7 is a cross-sectional view of line segments F1-F1 'and F2-F2' in FIG.
  • FIG. 8 is a plan view of an odd number of corrugated plates, corrugated bars, cut corrugated bars, and flat bars stacked on the plane shown in FIG.
  • FIG. 9 is a cross-sectional view taken along line G1-G1 ', G2-G2', and G3-G3 'in FIG.
  • FIG. 10 is a plan view of a state in which a flat bar is placed on an even number of corrugated plates and left and right edges on the plane illustrated in FIG. 8.
  • FIG. 11 is a cross-sectional view taken along line H1-H1 ', H2-H2', and H3-H3 'in FIG.
  • FIG. 12 is a plan view of a state in which an odd number of corrugated plates and an even number of corrugated plates are alternately stacked to a predetermined thickness, and then a cover plate is covered on the top.
  • 13 to 17 are cross-sectional views taken along the lines J1-J1 ', J2-J2', J3-J3 ', L1-L1', and L2-L2 'of FIG.
  • 18 is a plan view of the stacking of the stack for the non-isothermal reactor and the manifold is attached to the outlet and the inlet.
  • 19 is a plan view of a high-efficiency heat exchanger in which odd-numbered corrugated plates and even-numbered corrugated plates are alternately stacked to a predetermined thickness, and then a cover plate is covered on the top.
  • 20 to 24 are cross-sectional views taken along the line K1-K1 ', K2-K2', K3-K3 ', M1-M1', and M2-M2 'of FIG.
  • 25 is a plan view of the state in which the lamination of the high efficiency heat exchanger is completed and the manifold is attached to the outlet and the inlet.
  • 26 and 27 are cross-sectional views taken along line N1-N1 'and N2-N2' of FIG. 25, respectively.
  • Corrugation bar for sealing the upper and lower edges of the channel between laminated corrugated boards.
  • Manifold including inlets of fluid to be attached to the stack and cooled (or heated)
  • Manifold including outlets of fluid attached to the stack and cooled (or heated)
  • An integrated manifold comprising an outlet of fluid to be cooled (or heated) in the first stack and an inlet of fluid to be cooled (or heated) in the second stack.
  • Manifold including inlets of fluid attached to the stack and heated (or cooled)
  • Manifold including outlets of fluid attached to the stack and heated (or cooled)
  • Figure 1 shows a corrugated plate (1) that is pleated up and down and the left and right edges are flat.
  • the corrugations should be formed in a straight line in a V shape except for the curved portion of the corrugated vertex 41.
  • Figure 2 is a picture of the corrugated plate sealing corrugated bar (2) is inserted into the upper and lower edges (51, 52) between the two plates when the corrugated plate (1) laminated, the width of the bar shown in the overview is later welded It is enough to protect the end of the corrugated plate sandwiched between the hour bars, and usually about 3-10mm is appropriate.
  • the shape of the cross-sectional area of the corrugated bar (2) is manufactured so that it can be perfectly inserted when inserted between the gap of the laminated corrugated plate (1), as shown in the following figure, can be produced by the wire cutting method have.
  • FIG. 3 is a view of a half corrugated bar 3 inserted to fit tightly in the upper and lower edges between the flat plate 5 and the corrugated plate 1, which are finally placed on top and top for lamination.
  • FIG. 4 is a design drawing of a cutting corrugation bar 4 for an inner channel which is inserted into a zig zag for improving mechanical stability between corrugated plates inside the channel and changing the flow path of the fluid flowing therein. It can be easily made by cutting off a bit.
  • FIG 5 shows a flat plate placed on the bottom and top of the stacked stack.
  • the bottom plate (5) is placed, on top of which two half corrugated bars (3) are placed, and three half corrugations in the middle. After the bar 3 is placed, the insulation 8 is filled in between. Next, the flat bar 7 of the corresponding length is sandwiched between the half corrugated bars of the left and right edges 53 and 54, and the corrugated plate 1 can be stacked.
  • FIGS. 8 and 9 show a case in which the first odd number of corrugated plates 1 are stacked, two corrugated bars 2 on the upper and lower edges and three corrugated cutting lines 4 for changing the inside of the channel after the lamination are zig.
  • the flat bar (9) is placed in the empty place of the left and right edges by zag. At this time, the cooling fluid (or heating) fluid is introduced into and discharged from the right edge so as not to install the flat bar 4 to secure the inlet 11 and the outlet 12 of the fluid.
  • 12 to 17 show a plan view and cross-sectional views of the final stacked stack, wherein the stack repeats the process of laminating odd-numbered corrugated plates and even-numbered corrugated plates as desired (repeated five times here).
  • the flat plate 5 and the attached bar are symmetrically completed on the top of the mold as in the case of the bottom flat plate.
  • the completed stack is opened with even-numbered channels 17 through which reactants are introduced or discharged in the longitudinal direction of the corrugated plate, as shown in cross-sectional views J1-J1 'of the upper and lower edge portions. 13) is blocked by the corrugated bar (2) and the sealing between the corrugated plate (1) and the corrugated bar (2) and the half corrugated bar (3) and flat bar (9) can be sealed by welding.
  • the inflow or outflow of the cooling (or heating) fluid is introduced into the odd-numbered channel 13 through the inlet 11 of the lower right side as shown in the cross-sectional view J2-J2 '.
  • the inside of the channel flows into the zig zag and exits the outlet 12 on the upper right.
  • cross-sectional view J3-J3 ' is a view of three pay alternating cutting pleated bar positions where the reactant flows in the even direction of the even channel 17 and the cooling (or heating) fluid is odd.
  • the flow path direction is changed to the left or right at the end of the pay change cutting wrinkle bar (4) to flow to the zig zag in the direction perpendicular to the wrinkle.
  • the cooling fluid or the heating fluid flows into the left inlet 11 of the odd stage and is discharged into the right outlet 12 of the same stage at the right side of the stack.
  • the left side part of the stack is completely blocked by the stacking flat bar 9 and the channel change cutting wrinkle bar 4.
  • the four side surfaces of the stack are stacked without gaps except for inlets and outlets of reactants and fluids, so that the end of the corrugated plate and the stacking bars can be easily sealed by welding.
  • the stack thus manufactured is finally attached to each inlet and outlet, and the manifold is finally attached and connected to the pipe to complete the final reactor.
  • the plurality of stacks are connected in series and externally. It can also be used as a reactor by welding, and the cooling (or heating) fluid on the right side is also provided with a plurality of inlets and outlets by installing a plurality of different ways to adjust the degree of cooling in the longitudinal direction of the reactor.
  • FIG. 19 a fabrication of a high efficiency channel type heat exchanger stack using the above components is shown in FIG. 19.
  • the cooling (or heating) fluid flows in the right direction of the corrugated channel to increase the heat transfer efficiency, thereby increasing the heat transfer efficiency. It is characterized by maximizing.
  • the upper and lower edge portions of the longitudinal end of the stacked stack corrugated plate 1 are sealed by welding by blocking all the channels between the channels using the corrugated bar 2. Instead, the inlet and outlet of the cooling and heating fluid are formed together at the left and right sides of the stack.
  • FIG. 25 shows a final heat exchanger manufactured by attaching a manifold to an inlet and an outlet of a fluid in the heat exchanger stack thus manufactured, and for example, a cooling fluid is introduced into a manifold 21 through an inlet pipe 31 and is excited Flows into the zig zag up and down in the perpendicular direction of the pleats, and flows in the zig zag back to the left and right sides of the stack by the cutting pleat bar 4 for changing the flow path.
  • the fluid flows into the discharge manifold 22 in the diagonally opposite direction and is finally heated up and discharged through the discharge pipe 32, and the heating fluid is also attached to the left side right side of the stack.
  • the temperature sensing provides the method of manufacturing the principle being discharged.
  • the upper and lower edge sealing corrugated bars left and right
  • the design principle of the heat exchanger which is manufactured by inserting the edge sealing flat bar and the cutting pleated bar for changing the inner channel flow path, and tightly stacking them without any gaps between them, is easy to manufacture and the welding for sealing between channels is performed on the outside of the stack side. It is easy to make and can be applied to various ranges from small micro-channel type heat exchanger to large industrial catalytic reactor, regardless of the size of wrinkles.
  • the flow path into the zig zag up and down of the corrugated plate and back zig zag from side to side of the stack The heat transfer efficiency is increased, so it can be designed to easily meet the requirement of thin catalyst layer thickness and high efficiency heat exchange load for effective temperature control of reactor with extreme exothermic or endothermic reaction. There is an advantage that can be effectively used in the production of high efficiency heat exchanger for.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

본 발명은 반응 중 극심한 발열 및 흡열을 유발하는 반응기 및 낮은 열전달계수를 가지나 유체 간 열교환 부하가 높아야 하는 고부하용 열교환기 등에 사용될 수 있는 주름판 적층형의 스텍을 제작하기 위한 구성품들의 설계 원리 및 제작 방법에 관한 것으로, 열전도성의 얇은 평판에 V자형 주름을 상하로 형성시켜 제작되는 corrugated plate를 간격을 두고 적층한 것이다.

Description

반응기 및 열교환기용 체널형 스텍 및 그 제조 방법
본 발명은 반응기 및 열교환기용 체널형 스텍 및 제조 방법에 관한 것으로서, 보다 상세하게는 소형의 고효율 micro-channel형 열교환기부터 대형의 고효율 가스-가스용 열교환기 및 촉매 충진용 반응기에 이르기까지 두루 사용이 가능하고, 또 제작이 쉬운 새로운 반응기 및 열교환기용 채널형 스텍 및 그 제조 방법에 관한 것이다.
화학반응을 수행하기 위해 사용되는 촉매반응기나 유체와 유체 사이 냉각/가열을 위한 열교환기들은 일반적으로 Shell-and-tube형이 많이 사용된다. 그러나 극심한 발열이나 흡열을 수반하는 반응들은 반응기 부피 당 발생되거나 흡수되는 열량이 크기 때문에, 반응기 부피가 커지면 면적에 비례하는 열교환량이 미쳐 따라가기 못하는 현상이 발생하게 되며, 보다 작은 직경의 튜브를 적게는 수백 개 많게는 수 천 개씩 사용하여 촉매의 충진층의 두께를 줄이는 것이 필요하다. 또한 가스-가스 간 열교환의 경우에도 통상 가스의 열교환 계수가 낮아 보다 많은 열교환 면적이 필요하여, 열교환기의 부피가 커지는 것이 필요하여 최종적으로 부피가 커지고 제조 비용이 증가하는 단점이 존재한다. 
근래에 이러한 단점을 해결하기 위해 평판을 간격을 두고 쌓아 홀수 번 체널과 짝수 번 체널에 냉각용 및 가열용 유체를 번갈아 흘려서 평판을 통해 상호 열교환시키는 체널형 스텍을 사용하는 방식이 개발되고 있다.
채널형 스텍을 사용하는 방식은 대형 산업용의 경우 평판 사이에서 가스가 층류(laminar flow)로 흘러서 열전달 계수가 난류로 흐르는 쉘-튜브형에 비해 낮으며, 부피 당 열교환 면적이 shell-and-tube형과 별 차이가 없다는 문제가 있어, 주로 소형 마이크로 채널형 열교환기로만 상용화되고 있다.
소형 마이크로 채널형 열교환기는 평판에 음각 또는 양각으로 식각하여 열교환 면적을 늘려준 것인데, 촉매의 충진 및 배출이 어려워 촉매반응기로써의 사용은 부적합하다.  
이에 따라, 열 교환 면적이 넓고, 제작이 쉬우며, 소형 반응기부터 대형 산업용으로까지 사용할 수 있으며, 촉매의 충진 및 배출이 용하여 촉매 반응기로 사용할 수 있도록 한 새로운 채널형 스텍 새로운 까지 사용이 가능한 새로운 형태의 체널형 스텍에 대한 요구가 계속되고 있다.
본 발명에서 해결하고자 하는 과제는 열 교환 면적이 넓고, 제작이 쉬우며, 소형 반응기부터 대형 산업용으로까지 사용할 수 있으며, 촉매의 충진 및 배출이 용하여 촉매 반응기로 사용할 수 있는 새로운 채널형 스텍을 제공하는 것이다.
본 발명에서 해결하고자 하는 다른 과제는 극심한 발열 반응에서도 사용이 가능하도록 냉각용 유체가 난류로 흘러 열전달 계수가 높으며, 또한 반응기 폭과 길이를 임의로 조절하여 길이에 따른 냉각량을 조절할 수 있는 새로운 채널형 스텍을 제공하는 것이다.
본 발명에서 해결하고자 하는 또 다른 과제는 기존의 고효율 열교환기로 시판되는 마이크로 채널형 열교환기들이 유로가 복잡하여 적층 방향으로 각 체널 당 유량이 분산되는 평행 흐름 (parrell flow)이 어려워 압력 강하가 크고, 또한 면적의 대형화가 힘들어 대형화된 산업용은 제작이 불가능한 문제를 해결하는 것이다.
본 발명에서 해결하고자 하는 또 다른 과제는 기존의 평판형 열교환기들은 판 사이 간격을 좁게 하면 열교환 면적은 일반 shell-and-tube형에 비해 다소 증대되나 이 경우 촉매를 충진하고 사용 후 제거할 수 있는 형태의 촉매반응기로는 사용이 불가능한 문제를 해결하는 것이다.
상기와 같은 과제를 해결하기 위해서, 본 발명은 발열 또는 흡열을 동반하는 반응 및/또는 유체 간 열교환에 사용될 수 있는 열교환 장치에 있어서, 열전도성 금속 평판에 상하로 일정하게 주름이 있으며, 주름 방향에 수직한 양끝 부분(이하,‘좌우 에지’라 함)가 평평한 다수의 주름판이 소정 간격으로 적층되고, 적층된 주름판들 사이로 유체가 흐르는 체널들이 형성되는 것을 특징으로 한다.
본 발명에 있어서, 상기 열교환 장치에서 상기 주름판들은 좌우 에지에 삽입되는 평평한 스페이서(플렛바)와 주름 방향의 양끝 부분(이하,‘상하 에지’라 함)에 삽입되는 주름진 스페이서(주름바)에 의해서 이격된다.
본 발명의 실시에 있어서, 상기 열교환 장치는 발열 또는 흡열을 동반하는 반응형 열교환 장치로 사용하기 위해서, 홀수번 체널의 상하 에지에는 주름바가 삽입되고,짝수번 체널의 좌우 에지에는 플렛바가 삽입되어, 짝수번 체널에는 흡열 또는 발열을 동반하는 촉매가 충진되고, 홀수번 체널에는 주름 방향에 수직하게 유체가 흐르면서 흡열에 필요한 열을 공급하거나 발열된 열을 제거하기 위해서 유체가 흐른다.
본 발명의 다른 실시에 있어서, 상기 열교환 장치는 고효율의 열교환 장치로 사용하기 위해서, 상하에지에는 주름바가 삽입되고, 홀수번 체널과 짝수번 채널에 주름 방향에 수직하게 각각 유체가 흐르면서 상호 열교환된다.
본 발명에서 ‘주름판’이라 함은 물결 모양으로 나란히 골이 진 판재를 의미하는 것으로 이해된다.
본 발명에 있어서, 상기 주름판은 상부 주름판의 골이 하부 주름판의 마루보다 낮게 위치하여, 바람직하게는 상부 주름판의 골이 하부 주름판의 골과 50% 이상 겹치도록 구성되는 것이 바람직하다. 상기 주름판은 상부 주름판과 하부 주름판이 많이 겹쳐지도록 V자형 주름이 상하로 일정하게 잡혀진 주름판을 사용하는 것이 바람직하다.
본 발명의 실시에 있어서, 상기 열전도성 주름판은 통상적으로 0.1-3mm 두께를 가질 수 있으며, 홈이 파진 Roller들을 사용하여 V자 형태의 직선형 주름을 상하에 형성시킨 주름판을 제작할 수 있다.
주름판 내 주름의 폭(마루와 마루 사이의 간격)은 적게는 수 mm 에서 크게는 수십 mm까지 가능하며, 주름의 꼭지점 사이 길이는 주름의 폭보다 길수록 면적이 많아지며 통상 1.5-2배 정도로 제작이 가능하다. 주름을 금속판의 길이 방향의 직각으로 형성하게 되면 길이가 긴 열교환기 제작에 유리하고, 길이 방향으로 평행되게 형성시키면 촉매가 충진되는 길이가 긴 반응기의 제작에 유리하다. 주름판의 좌우에지는 나중 밀봉을 위해 주름 후 수평으로 펴거나, 제작 시 주름을 형성하지 않도록 제작한다. 이렇게 제작되어진 주름판을 일정한 간격을 두고 상하 방향으로 적층하게 되는데, 이때 간격은 두 주름판의 꼭지점 사이 거리에 해당되는 두께의 평평한 플랫 바를 좌우 에지에 끼워서 유지시키게 되며, 상기 플랫 바의 폭은 나중 용접을 위해서 충분히 두꺼워야 하며 통상 3-10 mm 정도가 적당하다. 주름판의 길이 방향 양끝의 밀봉이 이루어지는 부위 (상하 edge)에는 두 주름판 사이의 단면적 모양과 동일한 단면 형상으로 제작된 폭 3-10mm 정도의 주름진 bar (주름바)를 끼우게 된다.  상기 주름바는 플랫바를 이용해서 롤러를 사용하여 주름판으로 제작하는 것은 불가능하며, 와이어 커팅 공법에 의해서 주름판 사이 주어진 패턴 모양으로 제작하여 주름판 사이에 끼웠을 때 빈틈이 없게 하는 것이 중요하다.
이렇게 주름판의 상하 에지 및 좌우 에지 4 곳에 유체의 출입구를 제외하고 주름바와 플랫바를 적치하고, 적층을 반복하여 일정 높이의 스텍을 만들게 되면, 상기 스텍의 상하좌우 적층된 옆 4면이 빈틈없이 주름판과 bar들로 채워지게 되어 주름판의 끝과 bar 사이를 외부에서 쉽게 용접하여 밀봉할 수가 있다. 
상기 스텍에 냉각 및 가열용 유체 (또는 반응물)들의 유입 및 배출구들을 추가로 마련하기 위해서는 두 가지 방법이 제공된다.
촉매 충진 반응기로 사용하려면 반응물은 주름판의 상하로 흘리고 반응온도 조절을 위한 냉각 또는 가열용 유체는 주름판의 직각 방향인 좌우로 흘려야 한다. 이에 따라서 반응물의 유입 및 배출을 위해서 상하 에지의 홀수 번에만 주름바를 삽입하고 냉각 또는 가열용 유체의 유입 및 배출을 위해서는 좌우 에지의 짝수 번에만 플랫바를 삽입하여 완성하는 것이 바람직하고, 이런 원리로 제작된 반응기는 상하 주름 방향으로 촉매의 충진 및 사용 후 촉매의 폐기가 가능하다. 
열교환기 전용으로 사용을 하는 경우에는, 상하 에지는 주름바를 층층이 끼워 넣어 적층 면을 모두 밀봉하고, 좌우 에지의 적층 면들을 다시 좌우로 양분하여 왼쪽 반에는 홀수 번, 오른 쪽 반에는 짝수 번에만 플렛바를 삽입하고 적층하여, 냉각 및 가열용 유체의 유입구 및 배출구 4개를 형성하게 된다. 이렇게 제작된 열교환기는 유체가 주름을 타고 zig zag로 흘러서 난류 효과에 의한 열전달 효율을 높여주게 된다. 이때 바람직하게는 내부 공간의 주름판 사이에는 주름바의 한 쪽 끝이 잘려 나간 절단된 주름바를 일정한 간격으로 zig zag로 삽입하는 것이 바람직한데, 이렇게 함으로써 주름판 사이를 기계적으로 받쳐주어 박판의 주름판이 찌그러지는 것을 막아주고, 유체의 분배를 좋게하며, 또한 유속을 조절하는 역할도 할 수가 있다.  또한 삽입한 절단된 주름바가 홀수 개면 유입구 및 배출구를 같은 면으로 배치할 수 있고, 짝수 개이면 대각선의 반대 방향으로 배치할 수가 있어서 최종 열교환기의 배관 설계가 용이하다. 이렇게 유입구 및 배출구가 형성된 스텍은 4면 옆면의 적층부의 주름판 끝에 밀착된 bar 사이를 용접하여 최종 스텍을 완성하게 되며, 상기 스텍에 같은 유입구 또는 배출구들의 array를 포함하는 부위에 manifold를 부착하고 다시 용접하여 유체 (또는 반응물)의 유입구 및 배출구를 완성하게 되면 최종적인 반응기 또는 열교환기가 완성된다.
본 발명에서 제안된 주름진 평판, 특히 V자형 주름을 상하로 형성시켜 제작되는 주름판을 주름바 및 플랫바를 삽입하여 밀착 적층하는 원리에 의해 제작되는 열교환용 스텍의 설계 원리는, 제작이 쉽고 체널 간 밀봉이 쉬우며 주름의 크기 유무에 상관없이 주름판 간 밀착 간격의 조절이 가능하여 소형의 마이크로 채널형 열교환기에서부터 대형의 산업용 촉매 반응기 까지 다양한 범위에 적용이 가능하다는 장점이 있으며, 특히 유로가 주름판의 상하로 zig zag로 흐르고 다시 스텍의 좌우로 zig zag로 흘러서 열전달 효율이 증대되어 극심한 발열 또는 흡열반응을 동반하는 반응기의 효과적인 온도 제어를 위한 얇은 촉매층 두께와 고효율의 열교환 요구에 쉽게 부응하여 설계될 수가 있고, 또 열전달 효율이 낮은 가스-가스 간 열교환을 위한 고효율 열교환기의 제작에 효과적으로 이용될 수가 있는 장점이 있다.
도 1은 본 발명의 제안에 따라, V자형 주름이 상하로 일정하게 잡혀진 열전도성 주름판 (corrugated plate).
도 2는 본 발명의 제안에 따라, 적층된 주름판 사이 형성된 체널의 길이 방향 양끝 edge에 삽입되어 밀봉되는 주름바(corrugated bar)의 평면과 단면을 도시한 도면이다.
도 3은 본 발명의 제안에 따라, 상단과 하단 평판과 주름판을 사이 형성된 체널에 삽입되어 지지체로 사용되는 반쪽 주름바(corrugated bar)의 평면과 단면을 도시한 도면이다.
도 4는 본 발명의 제안에 따라, 체널 내부에 삽입되어 체널 내 유로를 변경하기 위한 절단 주름 바.
도 5는 본 발명의 제안에 따라 제작되는 스텍의 아랫면 및 윗면 커버판이다.
도 6은 하단 플레이트에 반쪽 주름바와 단열재들이 놓여진 상태의 평면도이다.
도 7은 도 6에서 선분 F1-F1’와 F2-F2’의 단면도이다.
도 8은 도 6에서 도시된 평면 위에 홀수번의 주름판과 주름바와 절단 주름바와 플렛바를 적치한 상태의 평면도이다.
도 9은 도 8에서 선분 G1-G1’, G2-G2’, G3-G3’에 따른 단면도이다.
도 10은 도 8에서 도시된 평면 위에 짝수번의 주름판과 좌우 에지에 플렛바를 적치한 상태의 평면도이다.
도 11은 도 10에서 선분 H1-H1’, H2-H2’, H3-H3’에 따른 단면도이다.
도 12는 홀수번 주름판과 짝수번 주름판을 번갈아서 소정의 두께로 적층한 후, 상단에 커버 플레이트를 덮은 상태의 평면도이다.
도 13 내지 도 17은 도 12의 선분 J1-J1’, J2-J2’, J3-J3’, L1-L1’, L2-L2’에 따른 각각의 단면도이다.
도 18은 비등온 반응기용 스텍의 적층이 완료되고 유출구 및 유입구에 매니폴드가 부착된 상태의 평면도이다.
도 19는 홀수번 주름판과 짝수번 주름판을 번갈아서 소정의 두께로 적층한 후, 상단에 커버 플레이트를 덮은 고효율 열교환기의 평면도이다.
도 20 내지 도 24는 도 19의 선분 K1-K1’, K2-K2’, K3-K3’, M1-M1’, M2-M2’에 따른 각각의 단면도이다.
도 25는 고효율 열교환기의 적층이 완료되고 유출구 및 유입구에 매니폴드가 부착된 상태의 평면도이다.
도 26과 도 27은 도 25의 선분 N1-N1’, N2-N2’에 따른 각각의 단면도이다.
도면 부호의 설명
1.  열전도성 주름판
2.  적층된 주름판 사이 체널의 주름방향 상하 에지 밀봉용 주름바.
3.  스텍 내 밑판 또는 윗판과 주름판 사이 지지용 주름바
4.  체널 내부 유로 변경용 주름바
5.  스텍의 밑판 또는 윗판으로 사용되는 평판
7.  스텍 밑판 또는 윗판 과 주름판 사이 체널 양끝 에지 밀봉용 플랫바
8.  스텍 밑판 또는 윗판 과 주름판 사이 체널 내부 공간에 채워지는 단열재
9.  스텍 내 적층된 체널 사이 좌우 에지 밀봉용 플랫바
11. 냉각 (또는가열)되는 유체 (또는 반응물)의 스텍 내 체널로의 유입구
12. 냉각 (또는 가열)된 유체 (또는 반응물)의 스텍 체널로부터 배출구
13. 냉각 (또는 가열)되는 유체 (또는 반응물)이 흐르는 체널 공간
15. 가열 (또는 냉각)되는 유체 (또는 반응물)의 스텍 내 체널로의 유입구
16. 가열 (또는 냉각)된 유체 (또는 반응물)의 스텍 체널로부터 배출구
17. 가열 (또는 냉각)되는 유체 (또는 반응물)이 흐르는 체널 공간
21. 스텍에 부착되고 냉각 (또는 가열)되는 유체의 유입구들을 포함하는 매니폴드
22. 스텍에 부착되고 냉각 (또는 가열)된 유체의 배출구들을 포함하는 매니폴드
23. 제1스텍의 냉각 (또는 가열)되는 유체의 배출구와 제2스텍의 냉각 (또는 가열) 되는 유체의 유입구들을 포함하는 통합 매니폴드
25. 스텍에 부착되고 가열 (또는 냉각)되는 유체의 유입구들을 포함하는 매니폴드
26. 스텍에 부착되고 가열 (또는 냉각)된 유체의 배출구들을 포함하는 매니폴드
31. 21번 매니폴드용 배관
32. 22번 매니폴드용 배관
35. 25번 매니폴드용 배관
36. 26번 매니폴드용 배관
41. 주름판 내 주름의 제일 꼭지점(pitch)-마루
51. 주름판 내 주름 방향 하부 끝의 에지 부위
52. 주름판 내 주름 방향 상부 끝의 에지 부위
이하, 실시예를 통해서 본 발명을 상세하게 설명한다. 하기 실시예는 본 발명을 예시하는 것이며, 발명의 내용을 한정하기 위한 것이 아님을 유의하여야 한다. 또한, 본 발명의 부가적인 양태, 특징 및 이점은 대표적인 실시예의 하기 설명을 포함하고, 그 설명은 수반하는 도면들과 함께 이해되어야 한다. 본 발명의 명확한 이해를 돕기 위해, 각 도면에서 일부 구성요소는 과장되거나 생략되거나 개략적으로 도시될 수 있다. 또한, 각 구성요소의 크기는 실제 크기를 전적으로 반영하는 것은 아니다.
도면에서는 열 교환용 반응기의 제작을 위한 구성품들과 구성품들을 이용하여 반응기를 제작하는 과정을 나타내었다. 
도 1에는 상하로 주름이 지고 좌우 양끝 에지는 평평한 부위를 가지는 주름판 (corrugated plate) (1)이 나타나 있다.  여기에서 보듯이 주름판을 적층 시 두 판사이의 중첩 비율을 높이기 위해서는 (주름판 사이 간격을 줄이기 위해서는), 주름 꼭지점 (41)의 곡선 부분을 제외하고는 V자형으로 직선형으로 주름이 형성되어야 한다. 
도 2는 상기 주름판 (1)을 적층했을 때 두 판사이의 상하 edge (51, 52) 부위에 삽입하게 되는 주름판 밀봉용 주름바(2)의 그림으로, overview에서 보이는 bar의 폭은 나중 용접 시 bar 사이에 끼워져 있는 주름판 끝을 보호할 수 있는 정도의 넒이면 되며 통상 3-10mm 정도가 적당하다. 상기 주름바(2)의 단면적의 형상은 그 다음 그림에서 나와 있듯이 적층된 corrugated plate (1) 들의 간격 사이에 삽입했을 때 빈틈없이 완벽하게 끼워질 수 있도록 제작되며, wire cutting 공법에 의해서 제작될 수 있다.
도 3은 적층을 위해 가장 밑바닥과 맨 위에 마지막으로 놓게 되는 평판 (5)과 주름판 (1) 사이의 상하 edge에 꽉 끼도록 삽입하게 되는 반쪽 주름바 (3)의 도면이다.
도 4는 체널 내부의 주름판 사이의 기계적 안정성을 높이고 내부로 흐르는 유체의 유로 변경을 위해 zig zag로 삽입하게 되는 내부 체널용 절단 주름바(4)의 설계 도면으로 도2의 주름바의 한 쪽 끝을 조금 잘라서 쉽게 제작할 수 있다. 
도 5는 적층된 스텍의 맨 아래 및 맨 위에 놓이게 되는 평판을 나타낸다. 
상기 구성품들을 사용하여 적층된 스텍을 제작하기 위해서, 도 6 및 도 7에서는 맨 밑바닥용 평판 (5)을 놓고 그 위에 상하 edge에 2개의 반쪽 주름바 (3)을 놓고, 중간에 3개의 반쪽 주름바 (3)를 놓은 후 그 사이에는 단열재 (8)를 채우게 된다. 그 다음 좌우 edge (53, 54)의 반쪽 주름바 사이에 해당 길이의 플렛바 (7)을 끼워서 적치하여 그 다음 주름판 (1)이 적층될 수 있는 상태를 나타낸다.
도 8과 도 9는 첫 번 째 홀수 번의 주름판 (1)을 적층한 경우로, 적층 후 상하 edge에 2개의 주름바 (2)와 내부에 3개의 유로 변경용 절단 주름바 (4)가 zig zag로 적치되고 좌우 edge의 비어있는 곳에 플렛바 (9)를 적치하게 된다. 이때 우측 edge에는 냉각용 (또는 가열용) 유체가 유입되고 배출되는 부분은 플렛바 (4)를 설치하지 않게 하여 해당 유체의 유입구 (11)와 배출구 (12)를 확보하게 된다.
도 10과 도 11은 여기에 짝수 번의 주름판 (1)을 적층한 경우로 여기서는 좌우 edge에만 플렛바 (9)를 적치하여, 상하 방향으로 반응물의 유입 및 배출을 위한 유입구 및 배출구 (16)을 확보하게 되고 반응물이 하부의 유입구 (15)로 들어와 주름방향과 평행하게 흐르게 되며 최종적으로 상부 배출구 (16)으로 배출되게 된다. 따라서 이 부분의 짝수 전 체널 공간에 촉매를 충전할 수가 있고 또한 필요 시 체널 간격을 좁게 유지하여 일반 tube-and-shell 구조로 되는 튜브형 반응기에서 보다 촉매 충진층의 두께를 얇게 유지할 수도 있어서, 심한 발열 및 흡열을 동반하여 온도 제어가 어려운 반응의 경우에도 촉매 충진층의 내부 온도를 보다 균일하게 유지할 수 있는 장점을 제공한다. 
도 12 내지 도 17은 적층이 끝난 최종 스텍의 평면도와 단면도들을 나타내며, 상기 스텍은 홀수번 주름판과 짝수번 주름판을 적층하는 과정을 원하는 만큼 반복한 후 (여기서는 5번 반복 함) 최종적으로 6c형의 적층을 한번 더 한 후, 다시 맨 위에 평판 (5)과 부속 바 등을 밑 평판 적층 때와 같이 대칭되게 하여 완성하게 된다. 
이렇게 완성된 스텍은 도 13에서 도시된 바와 같이, 상하 edge 부위의 단면도 J1-J1’에서 보듯이 주름판의 길이 방향으로 반응물이 유입되거나 배출되는 짝수 번 체널 (17) 만 열리게 되고 홀수 번 체널 (13)은 주름바 (2)에 의해 막히게 되며 주름판 (1)과 주름바 (2) 및 반쪽 주름바 (3) 및 flat bar (9)사이는 용접에 의해 밀봉이 가능하게 된다.  한편 도 14에서 도시된 바와 같이 냉각용 (또는 가열용) 유체가 유입되거나 배출되는 부분은 단면도 J2-J2’에서 보듯이 홀수 번 체널 (13)로는 하부 우측의 유입구 (11)로 유체가 유입되어 체널 내부를 zig zag로 흘러서 상부 우측의 배출구 (12)로 나가게 된다. 도 15에서 도시된 바와 같이 단면도 J3-J3’는 3개의 유료 변경용 절단 주름바 위치에서의 도면으로 반응물은 짝수 번 체널 (17)의 길이 방향으로 유체가 흐르고 냉각 (또는 가열용) 유체는 홀수 번 체널 (13)에서 유료 변경용 절단 주름바 (4)의 끝에서 유로 방향이 좌 또는 우로 변경되어 주름 직각 방향으로 zig zag로 흘러가게 된다.  또한 도 16의 단면도 L1-L1’에서 보면 스텍의 우측 측면부에서 냉각용 (또는 가열용) 유체는 홀수 단의 좌측 유입구 (11)로 유입되어 같은 단의 우측 배출구 (12)로 배출되는 것을 알 수가 있고, 도 17의 단면도 L2-L2’에서 보듯이 스텍 좌측 측면부는 적층용 플렛바 (9)와 유로변경용 절단 주름바 (4)에 의해 완전히 막히게 되어 있다.
이상에서 보듯이 스텍의 4면 측면부는 반응물 및 유체의 유입구 및 배출구를 제외하고는 빈틈 없이 적층되어 있어서 주름판 끝과 적층용 bar들 사이를 용접에 의해 쉽게 밀봉할 수가 있다.  이렇게 제작된 스텍은 각각의 유입구 및 유출구에 최종적으로 Manifold를 부착 연결하고 배관을 연결하여 최종 반응기를 완성하게 되며, 도 18에서 보듯이 스텍의 길이 방향이 짧을 경우 복수개의 스텍을 직렬로 연결하고 외부에서 용접하여 하나의 반응기로 사용할 수도 있으며, 우측의 냉각용 (또는 가열용) 유체도 복수 개의 유입구 및 유츨구를 설치하여 반응기 길이 방향의 냉각 정도를 각각 다르게 조절할 수 있는 방법도 함께 제공된다.  
본 발명의 원리를 설명하기 위한 다른 하나의 예로서, 상기 구성품들을 이용하여 고효율의 체널형 열교환기용 스텍을 제작한 것이 도 19에 나타나 있다. 여기서는 반응기용 스텍 제작 경우에서와 달리 냉각용 (또는 가열용) 유체뿐 만 아니고 반응물이 아닌 가열용 (또는 냉각용) 유체도 주름 체널의 직각 방향으로 흐르도록 하여 열전달 효율을 높여 열교환기 본래의 목적을 극대화 시킨 것이 특징이다. 이를 위해서 단면도 K1-K1’에서 보듯이 적층된 스텍 내 주름판 (1)의 길이 방향 끝의 상하 edge 부분은 주름바 (2)를 사용하여 체널 사이를 모두 막고 용접을 하여 밀봉을 하게 된다.  대신 스텍의 좌우 측면 부에 냉각 및 가열용 유체의 유입구 및 배출구를 함께 형성시키게 되며, 이를 위해 홀수 번의 주름판 (1)을 적층 시에는 상하 edge에는 주름바 (2)를 삽입 적치하나 좌우 edge의 좌측 반 쪽은 플렛바 (9)를 비우고 적치하게 되며, 마찬가지로 짝수 번의  주름판 (1)을 적층 시에는 상하 edge에는 주름바 (2)를 삽입 적치하나 좌우 edge의 우측 반 쪽은 플렛바 (9)를 비우고 적치하는 방법으로 스텍을 완성한다.  이 경우 체널 내부에 적치되는 유로 변경용 절단 주름바 (4)는 짝수 개를 zig zag로 적치하면 유체의 유입구와 배출구가 대각선으로 반대쪽에 위치하게 된다. 도 25에서 이렇게 제작된 열교환기용 스텍에 유체의 유입구 및 배출구에 해당 Manifold를 부착하여 제작된 최종 열교환기가 나타나 있으며,  일예로 냉각용 유체는 유입 배관 (31)을 통해 manifold (21)로 유입되고 여기에서 주름판 (1) 사이 홀수 번 체널로 분산되어 유입된 후 주름의 직각 방향으로 아래 위로 zig zag로 흐르면서 유로 변경용 절단 주름바(4)에 의해 유로가 스텍의 좌우측으로 다시 zig zag로 방향을 틀면서 흘러 최종적으로 대각선 반대 방향의 배출용 manifold (22)로 유체가 모아져서 최종적으로 배출용 배관 (32)을 통해 승온되어 배출되고, 가열용 유체도 스텍의 좌측면 우측에 부착된 유입 manifold (25)를 통해 주름판 (1) 사이 짝수 번  체널로 분산 유입되고 마찬가지로 상하 및 좌우 흐름 변경을 거쳐 최종적으로 스텍 우측 옆면의 우측 manifold (26)을 통해 감온되어 배출되어지는 원리로 제작되는 방법을 제공한다.
이상에서 보는 것처럼 본 발명에서 제안된 평판에 V자형 주름을 상하로 형성시켜 제작되는 주름 판을 이용하여 간격을 두고 적층을 하여 반응기 및 열교환용기 스텍을 제작하는데 있어서, 상하 edge 밀봉용 주름바, 좌우 edge 밀봉용 플렛바와 내부 체널 유로 변경용 절단 주름바를 삽입하여 사이에 빈틈이 없이 밀착 적층하는 원리에 의해 제작되는 열교환기의 설계 원리는, 제작이 쉽고 체널 간 밀봉을 위한 용접이 스텍 측면의 바깥쪽에서 이루어져 쉬우며 주름의 크기 유무에 상관없이 주름 간 밀착이 작게는 mm 이하 단위 까지 크게는 수십 mm 까지도 가능하여 소형의 micro-channel 형 열교환기에서부터 대형의 산업용 촉매반응기 까지 다양한 범위에 적용이 가능하다는 장점이 있으며, 특히 유로가 주름판의 상하로 zig zag로 흐르고 다시 스텍의 좌우로 zig zag로 흘러서 열전달 효율이 증대되어 극심한 발열 또는 흡열반응을 동반하는 반응기의 효과적인 온도 제어를 위한 얇은 촉매층 두께와 고효율의 열교환 부하 요구에 쉽게 부응하여 설계될 수가 있고,  또 열전달 효율이 낮은 가스-가스 간 열교환을 위한 고효율 열교환기의 제작에 효과적으로 이용될 수가 있는 장점이 있다.

Claims (10)

  1. 발열 또는 흡열을 동반하는 반응 및/또는 유체 간 열교환에 사용될 수 있는 열교환 장치에 있어서, 열전도성 금속 평판에 상하로 일정하게 주름이 있으며, 좌우 에지가 평평한 다수의 주름판이 소정 간격으로 적층되고, 적층된 주름판들 사이로 유체가 흐르는 체널들이 형성된 스텍을 포함하는 열교환 장치.
  2. 제1항에 있어서, 상기 스텍에서 주름판들은 상부 주름판의 골이 하부 주름판의 마루보다 낮게 위치하도록 적층되는 것을 특징으로 하는 열교환 장치.
  3. 제1항에 있어서, 상기 주름판은 V자를 상하로 전치시켜 옆으로 이어간 직선 주름인것을 특징으로 하는 열교환 장치.
  4. 제3항에 있어서, 상기 주름의 크기는 꼭지점 사이의 폭은 4-100mm 범위이고 꼭지점 사이 길이는 꼭지점 사이 폭의 1.5-2.0 배가 되는 범위이며, 적층된 스텍 내 주름판 사이 간격은 꼭지점 사이 간격 기준으로 1-40mm 범위 내에서 적층되는 것을 특징으로 하는 열교환 장치.
  5. 제1항 내지 제4항 중 어느 한 항에 있어서, 상기 스텍은 주름판은 좌우 에지에 삽입되는 플렛바와 상하 에지에 삽입되는 주름바에 의해서 이격되는 것을 특징으로 하는 열교환 장치.
  6. 제5항에 있어서, 상하 에지 사이에 주름바가 설치된 채널에서 상기 주름바 사이에절단 주름바가 삽입되어 유로가 지그 재그로 형성되는 것을 특징으로 하는 열교환 장치.
  7. 제1항 내지 제5항 중 어느 한 항에 있어서, 발열 또는 흡열을 동반하는 반응형 열교환 장치로 사용하기 위해서, 홀수번 체널의 상하 에지 사이에는 주름바가 삽입되고, 짝수번 체널의 좌우 에지에는 플렛바가 삽입되고, 짝수번 체널에는 흡열 또는 발열을 동반하는 촉매가 충진된 것을 특징으로 하는 열교환 장치.
  8. 제1항 내지 제5항 중 어느 한 항에 있어서, 고효율의 열교환 장치로 사용하기 위해서, 상하 에지 사이에는 홀수번 체널과 짝수번 체널에 주름바가 삽입되고, 홀수번 체널과 짝수번 채널에 서로 다른 열을 가지는 유체가 흐르면서 주름판을 통해 열교환되는 것을 특징으로 하는 열교환 장치.
  9. 제7항에 있어서, 짝수번 채널에 촉매의 충진 및 사용 후 폐기가 가능하도록 탈부착식 매니폴드가 부착되는 되는 것을 특징으로 하는 열교환 장치.
  10. 제8항에 있어서, 스텍에 각각의 유체의 유입구 및 배출구에 유출용 및 배출용 매니폴드가 용접에 의해서 부착된 것을 특징으로 하는 열교환 장치.
PCT/KR2014/001564 2014-02-26 2014-02-26 반응기 및 열교환기용 체널형 스텍 및 그 제조 방법 WO2015129936A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/KR2014/001564 WO2015129936A1 (ko) 2014-02-26 2014-02-26 반응기 및 열교환기용 체널형 스텍 및 그 제조 방법
KR1020167014212A KR101849540B1 (ko) 2014-02-26 2014-02-26 반응기 및 열교환기용 체널형 스텍 및 그 제조 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2014/001564 WO2015129936A1 (ko) 2014-02-26 2014-02-26 반응기 및 열교환기용 체널형 스텍 및 그 제조 방법

Publications (1)

Publication Number Publication Date
WO2015129936A1 true WO2015129936A1 (ko) 2015-09-03

Family

ID=54009242

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/001564 WO2015129936A1 (ko) 2014-02-26 2014-02-26 반응기 및 열교환기용 체널형 스텍 및 그 제조 방법

Country Status (2)

Country Link
KR (1) KR101849540B1 (ko)
WO (1) WO2015129936A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190047326A (ko) * 2017-10-27 2019-05-08 한국화학연구원 발열 반응용 방사층 유체흐름의 촉매 반응기
US20210270545A1 (en) * 2018-06-27 2021-09-02 Welcon Inc. Heat transport device and method for manufacturing same
US20210341186A1 (en) * 2018-11-16 2021-11-04 Mitsubishi Electric Corporation Plate-type heat exchanger, heat pump device, and heat-pump-type cooling and heating hot-water supply system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010015237A (ko) * 1999-07-09 2001-02-26 티. 제이. 드쥐르 열 교환기용 비드형성 판 및 이의 제조 방법
KR20050087798A (ko) * 2005-05-18 2005-08-31 엘지전자 주식회사 환기 장치용 열교환기
JP2006509668A (ja) * 2002-12-13 2006-03-23 ラスムッセン・オーレ−ベント 全ての方向での曲げに対して改善された耐久性を有するフィルム積層体およびそれの製造方法および製造装置
JP2011126756A (ja) * 2009-12-21 2011-06-30 National Institute Of Advanced Industrial Science & Technology 積層内部熱交換型反応器及びその製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2945612B1 (fr) * 2009-05-18 2011-07-22 Alfa Laval Vicarb Procede de fabrication d'un faisceau de plaques pour un echangeur thermique
JP5506428B2 (ja) * 2010-01-27 2014-05-28 住友精密工業株式会社 積層型熱交換器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010015237A (ko) * 1999-07-09 2001-02-26 티. 제이. 드쥐르 열 교환기용 비드형성 판 및 이의 제조 방법
JP2006509668A (ja) * 2002-12-13 2006-03-23 ラスムッセン・オーレ−ベント 全ての方向での曲げに対して改善された耐久性を有するフィルム積層体およびそれの製造方法および製造装置
KR20050087798A (ko) * 2005-05-18 2005-08-31 엘지전자 주식회사 환기 장치용 열교환기
JP2011126756A (ja) * 2009-12-21 2011-06-30 National Institute Of Advanced Industrial Science & Technology 積層内部熱交換型反応器及びその製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190047326A (ko) * 2017-10-27 2019-05-08 한국화학연구원 발열 반응용 방사층 유체흐름의 촉매 반응기
KR102054837B1 (ko) 2017-10-27 2019-12-11 한국화학연구원 발열 반응용 방사층 유체흐름의 촉매 반응기
US20210270545A1 (en) * 2018-06-27 2021-09-02 Welcon Inc. Heat transport device and method for manufacturing same
US11959709B2 (en) * 2018-06-27 2024-04-16 Welcon Inc. Heat transport device and method for manufacturing same
US20210341186A1 (en) * 2018-11-16 2021-11-04 Mitsubishi Electric Corporation Plate-type heat exchanger, heat pump device, and heat-pump-type cooling and heating hot-water supply system

Also Published As

Publication number Publication date
KR101849540B1 (ko) 2018-04-18
KR20160084841A (ko) 2016-07-14

Similar Documents

Publication Publication Date Title
JP5495843B2 (ja) 多目的マイクロチャネルマイクロコンポーネント
US6695044B1 (en) Heat exchanger
EP3428564B1 (en) Countercurrent heat exchanger/reactor
US6968892B1 (en) Heat exchanger
CN109496261B (zh) 3d螺旋热交换器
EP2594884B1 (en) Plate heat exchanger and method for manufacturing of a plate heat exchanger
WO2011033737A1 (ja) 触媒反応器
JP2007518053A (ja) 熱交換器およびその熱交換モジュール
KR101655889B1 (ko) 열교환 반응기 및 이의 제조방법
US20090095456A1 (en) Plate heat exchanger
WO2015129936A1 (ko) 반응기 및 열교환기용 체널형 스텍 및 그 제조 방법
JP2013508150A (ja) チャネル付き反応器
JP4403943B2 (ja) 流体混合器及びマイクロリアクタシステム
US8980186B2 (en) Mini-reactor optimized channel sizing
KR102416327B1 (ko) 연료 전지 유닛과 구성 요소를 포함하는 장치 및 그러한 장치에서 사용하기 위한 구성 요소 유닛과 스택 구성 요소
JP4504817B2 (ja) 反応器チャンバ用の流れ方向付けインサートおよび反応器
WO2013108011A1 (en) A compact catalytic reactor
JP5881483B2 (ja) 多流路機器
JP6249611B2 (ja) 積層構造体
WO2019104246A1 (en) Compact heat exchanger with alternating fluid channels
CN109737779A (zh) 基于圆形微通道波浪面换热板的板壳式换热器
DE10001065C2 (de) Plattenstapel-Wärmeübertrager, insbesondere zur Verwendung als Reformierungsreaktor
CN115654972A (zh) 一种逆流板式气体换热器及其制造方法
EP1321184A1 (en) Steam reforming reactor
RU2559412C1 (ru) Кожухопластинчатый теплообменник

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14883602

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167014212

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14883602

Country of ref document: EP

Kind code of ref document: A1