WO2015125646A1 - 樹脂製衝撃吸収部材 - Google Patents

樹脂製衝撃吸収部材 Download PDF

Info

Publication number
WO2015125646A1
WO2015125646A1 PCT/JP2015/053520 JP2015053520W WO2015125646A1 WO 2015125646 A1 WO2015125646 A1 WO 2015125646A1 JP 2015053520 W JP2015053520 W JP 2015053520W WO 2015125646 A1 WO2015125646 A1 WO 2015125646A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
absorbing member
fiber
surface portion
shock absorbing
Prior art date
Application number
PCT/JP2015/053520
Other languages
English (en)
French (fr)
Inventor
雅智 手島
Original Assignee
帝人株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 帝人株式会社 filed Critical 帝人株式会社
Priority to JP2016504043A priority Critical patent/JP6277259B2/ja
Priority to EP15752003.2A priority patent/EP3112719B1/en
Priority to US15/121,091 priority patent/US11137044B2/en
Publication of WO2015125646A1 publication Critical patent/WO2015125646A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F7/00Vibration-dampers; Shock-absorbers
    • F16F7/12Vibration-dampers; Shock-absorbers using plastic deformation of members
    • F16F7/124Vibration-dampers; Shock-absorbers using plastic deformation of members characterised by their special construction from fibre-reinforced plastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R19/00Wheel guards; Radiator guards, e.g. grilles; Obstruction removers; Fittings damping bouncing force in collisions
    • B60R19/02Bumpers, i.e. impact receiving or absorbing members for protecting vehicles or fending off blows from other vehicles or objects
    • B60R19/24Arrangements for mounting bumpers on vehicles
    • B60R19/26Arrangements for mounting bumpers on vehicles comprising yieldable mounting means
    • B60R19/34Arrangements for mounting bumpers on vehicles comprising yieldable mounting means destroyed upon impact, e.g. one-shot type
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/042Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with carbon fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D21/00Understructures, i.e. chassis frame on which a vehicle body may be mounted
    • B62D21/15Understructures, i.e. chassis frame on which a vehicle body may be mounted having impact absorbing means, e.g. a frame designed to permanently or temporarily change shape or dimension upon impact with another body
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • C08J2377/06Polyamides derived from polyamines and polycarboxylic acids

Definitions

  • the present invention relates to a resin impact absorbing member made of a resin material. More specifically, the present invention relates to a resin impact absorbing member having excellent impact absorbing characteristics by having a hollow convex portion having a specific structure.
  • a crash box, a front side member, a rear side member, or the like is provided in front of or behind the vehicle in order to prevent a shock at the time of collision from being transmitted directly to personnel.
  • an impact absorbing member is generally made of a metal material.
  • a resin shock absorbing member in which the shock absorbing member is formed of a resin material has been actively conducted.
  • the shock absorbing member generally has a hollow structure from the viewpoint of weight reduction.
  • a hollow structure having a standing surface close to the shock input direction and the horizontal direction is considered desirable for obtaining excellent shock absorption characteristics.
  • press molding can produce a material having better mechanical properties than injection molding. Therefore, conventionally, in order to obtain a resin shock absorbing member having excellent shock absorbing characteristics, after forming members made of a resin material by press molding, the members are close to the shock input direction and the horizontal direction. The method of joining so that it may become a hollow structure which has a standing surface has been used.
  • Patent Document 1 After preparing a hat-shaped molded product by press-molding a fiber-reinforced thermoplastic resin material, the resin bonded so that the hat-shaped concave portions face each other to form a closed section A molded article is disclosed.
  • the resin molded product described in Patent Document 1 has a problem in that the manufacturing process is complicated and the productivity is low because a process of joining members made of a resin material is essential in the manufacturing process. There was a point.
  • Patent Document 2 discloses a resin shock absorbing member formed only by press molding, but this resin shock absorbing member is relatively large, for example, as a shock absorbing member used in a vehicle. It has been pointed out that the shock absorbing properties are insufficient for application to impacts.
  • the present invention has been made in view of such problems, and an object of the present invention is to provide a resin shock absorbing member that can be manufactured by a simple manufacturing method and has excellent shock absorbing characteristics. To do.
  • the present inventors have intensively studied, and as a result, by adopting a hollow structure having a standing surface close to the shock absorption direction and the horizontal direction, excellent shock absorption characteristics can be obtained without exception.
  • the shock absorbing characteristics of the resin shock absorbing member may be insufficient.
  • a hollow structure having a specific hollow convex shape portion it is possible to obtain a resin shock absorbing member that can achieve both excellent shock absorbing characteristics and productivity And the present invention has been completed.
  • the present invention is a resin impact comprising a hollow convex portion made of a resin material and having a bottom surface portion and a top surface portion, and a vertical surface portion connecting the bottom surface portion and the top surface portion.
  • a resin-made impact absorbing member characterized in that L defined by the following formula (1) is 0 ⁇ L ⁇ 1.1.
  • r is a radius of curvature [mm] of the boundary portion between the bottom surface portion and the elevation surface portion
  • A is a direction perpendicular to the in-plane direction of the bottom surface portion and the elevation surface portion. Is an angle [°]
  • t1 is an average thickness [mm] of the elevation portion.
  • the said hollow convex-shaped part is integrally formed as a single member.
  • the ratio t2 / t1 between the t2 and the t1 is 0 ⁇ t2 / t1 ⁇ 1.5.
  • A is preferably 0 ° ⁇ A ⁇ 25 °.
  • the resin-made impact-absorbing member of this invention is provided with two or more said hollow convex-shaped parts.
  • the resin material is a fiber reinforced resin material containing a reinforced fiber and a matrix resin.
  • the fiber-reinforced resin material has an average fiber length of the reinforcing fibers in the range of 1 mm to 100 mm, the fiber-reinforced resin material has a compressive elastic modulus of 10 GPa or more, and a compressive strength of 150 MPa or more. Preferably there is.
  • the resin impact absorbing member of the present invention can be manufactured by a simple manufacturing method, and can exhibit excellent impact absorbing characteristics.
  • the resin impact absorbing member of the present invention will be described below.
  • the resin impact absorbing member of the present invention is used for suppressing impact to the other end side by absorbing impact energy input to one end of the resin impact absorbing member.
  • the resin shock absorbing member of the present invention assumes shock absorption in the direction perpendicular to the in-plane direction of the bottom surface portion, and absorbs shock received in the direction perpendicular to the in-plane direction of the bottom surface portion. It is used to make it.
  • the “perpendicular direction and the direction perpendicular to the in-plane direction of the bottom surface portion” is referred to as “shock absorbing direction”.
  • the “shock absorption characteristic” means a value obtained by dividing the amount of shock energy absorbed by the weight. The larger this value, the better the “shock absorption characteristic”.
  • the resin impact absorbing member of the present invention is made of a resin material, and includes a hollow convex portion having a bottom surface portion and a top surface portion, and a vertical surface portion connecting the bottom surface portion and the top surface portion.
  • the shock absorbing member is characterized in that L defined by the following formula (1) is 0 ⁇ L ⁇ 1.1.
  • L ⁇ r ⁇ tan (45 ° ⁇ A / 2) ⁇ / t1 (1)
  • r is a radius of curvature [mm] of a boundary portion between the bottom surface portion and the elevation surface portion
  • A is a direction perpendicular to the in-plane direction of the bottom surface portion and the elevation surface portion. Is an angle [°]
  • t1 is an average thickness [mm] of the elevation portion.
  • FIG. 1 is a schematic view showing a typical example of the resin impact absorbing member of the present invention
  • FIG. 2 is an enlarged view of a main part of the resin impact absorbing member of FIG.
  • FIG.1 (b) is sectional drawing of the shock absorption direction X of Fig.1 (a).
  • the resin impact absorbing member 1 of the present invention is made of a resin material, and a bottom surface portion 2, a top surface portion 3, and a bottom surface portion that connects the bottom surface portion 2 and the top surface portion 3. 4 is provided with a hollow convex shape portion.
  • the resin impact absorbing member 1 of the present invention is characterized in that L defined by the above formula (1) is within the range of 0 ⁇ L ⁇ 1.1.
  • L defined by the above formula (1) r, A, and t1 that define L are as shown in FIGS. 1B and 2 respectively. That is, r is a radius of curvature [mm] of the boundary portion between the bottom surface portion 2 and the elevation surface portion 4, and A is a direction perpendicular to the in-plane direction of the bottom surface portion 2 and the elevation surface portion 4.
  • An angle formed, and t ⁇ b> 1 is an average thickness [mm] of the raised surface portion 4.
  • t2 in FIG. 1 is the average thickness of the top surface portion 3, and the dotted arrow X indicates the shock absorption direction of the resin shock absorbing member 1.
  • the resin shock absorbing member of the present invention can provide a resin shock absorbing member having excellent shock absorbing characteristics when L defined by the above formula (1) is within the above range.
  • the resin impact absorbing member of the present invention includes a hollow convex portion having a bottom surface portion and a top surface portion, and a vertical surface portion connecting the bottom surface portion and the top surface portion, thereby using a welding process or the like. It can be manufactured only by press molding. For this reason, the resin shock absorbing member of the present invention can be manufactured by a simple manufacturing method and can exhibit excellent shock absorbing characteristics.
  • L is the “length of the tangent line of r”, that is, the tangent point at the end of the boundary portion on the bottom surface 2 side of the boundary portion of the radius of curvature r, This is a value obtained by dividing the length up to the intersection by the “elevation portion thickness t1”.
  • the denominator and the numerator are the same unit system.
  • This L is a value that affects the difference in deformation state when the impact absorbing member receives impact energy. That is, the smaller the value of L, the smaller the space generated by taking r between the bottom surface portion and the elevation surface portion, so that the space can be prevented from becoming a starting point of destruction. And by preventing the space from becoming the starting point of destruction, when an impact is applied to the resin shock absorbing member, it can be destroyed sequentially from the top surface part to the bottom surface part. It can be demonstrated.
  • the resin impact absorbing member of the present invention is characterized in that the value of L is 0 ⁇ L ⁇ 1.1.
  • L is set within such a range because the space becomes large when the value of L is 1.1 or more, and therefore, the periphery of the space becomes a fracture starting point at the time of shock absorption. This is because the characteristics are rapidly deteriorated.
  • L in the resin impact absorbing member of the present invention is not particularly limited as long as it is within the range of 0 ⁇ L ⁇ 1.1, and is appropriately adjusted according to the use of the resin impact absorbing member of the present invention.
  • it is preferably within the range of 0 ⁇ L ⁇ 1.0, more preferably within the range of 0 ⁇ L ⁇ 0.85, and within the range of 0 ⁇ L ⁇ 0.6. More preferably. This is because when L is within such a range, it is possible to more effectively suppress the periphery of the space from becoming a starting point of breakage during shock absorption, so that shock absorption characteristics can be further improved.
  • the hollow convex shape part in this invention has a bottom face part and a top
  • the hollow convex portion in the present invention has an internal space formed by the bottom surface portion, the top surface portion, and the elevation surface portion, but the internal space may be in the form of a gap or Other materials may be filled as long as they do not impair the impact absorbing characteristics of the resin impact absorbing member of the invention.
  • the hollow convex portion in the present invention is preferably such that the bottom surface portion, the top surface portion, and the elevation surface portion are integrally formed as a single member.
  • the resin-made impact-absorbing member of this invention is more productive. This is because it can be made excellent.
  • the above-mentioned “molded integrally as a single member” means that the hollow convex shape portion is integrated with the bottom surface portion, the top surface portion, and the elevation surface portion joined afterwards. It means that these are integrally formed at the time of molding.
  • the specific shape of the hollow convex shape portion in the present invention has the bottom surface portion, the top surface portion, and the elevation surface portion, and L defined by the above formula (1) falls within the range defined by the present invention. If it is a shape, it will not specifically limit. That is, as is apparent from the above formula (1), L is determined by A, r, and t1, all of which are elements resulting from the hollow convex portion. Therefore, the hollow convex portion in the present invention only needs to be formed so that at least each value of A, r, and t1 can be within the range defined by the present invention.
  • the elements for example, the height H, the length D of the opening, the thickness t2 of the top surface, the thickness t3 of the bottom surface, etc., refer to FIG. 6 for the description of each part) What is necessary is just to determine suitably according to a manufacturing method etc.
  • A, r, and t1 of the hollow convex portion in the present invention are not particularly limited as long as L is within the range specified in the present invention, and in particular, t1 in the present invention is the top surface portion.
  • the ratio t2 / t1 is preferably in the range of 0 ⁇ t2 / t1 ⁇ 1.5, and is in the range of 0 ⁇ t2 / t1 ⁇ 1.1. More preferably within the range. This is because it is possible to prevent a reduction in impact absorption characteristics due to a reduction in the ratio of the vertical surface portion in the hollow convex shape portion.
  • t1 in the present invention is not particularly limited as long as L is within the range defined by the present invention due to the relationship between A and r, but is usually within the range of 1 mm to 15 mm. However, it is not limited to this.
  • the above-mentioned t2 is not related to the above-mentioned L, it can be appropriately determined according to the application and manufacturing method of the resin impact absorbing member of the present invention.
  • the ratio t2 / t1 is within the above range. Therefore, the specific value of t2 is determined so that the specific value of t1 is considered and the ratio t2 / t1 is It is desirable to be within the range. For this reason, t2 in the present invention is usually in the range of 1 mm to 22.5 mm, but is not limited thereto.
  • the hollow convex shape portion in the present invention has a bottom surface portion in addition to the top surface portion and the elevation surface portion, but the average thickness t3 of the bottom surface portion is not related to the L, and therefore is made of the resin of the present invention. It can be determined as appropriate according to the application and manufacturing method of the impact absorbing member. However, since t1 and t2 are usually in the range as described above, t3 is usually in the range of 1 mm to 22.5 mm according to them, but is not limited thereto.
  • t1, t2, and t3 may all be the same, or at least one may be different from the other two, or all may be different.
  • t1 is larger than t2 and t3
  • the ratio of the vertical surface portion in the hollow convex shape in the present invention can be increased, so that the shock absorbing characteristics can be further improved.
  • a in the present invention refers to an angle formed by a vertical direction and the vertical surface portion with respect to the in-plane direction of the bottom surface portion. Further, as shown in the above formula (1), A in the present invention is related to the above L. Therefore, the range of A in the present invention is not particularly limited as long as L can be within the range specified by the present invention in relation to the above t1 and r, but in particular, 0 ° ⁇ A ⁇ 25 °. It is preferably within the range, and more preferably within the range of 0 ° ⁇ A ⁇ 20 °.
  • A may be the same in the entire boundary portion between the bottom surface portion and the elevation surface portion, or may be different depending on the location.
  • the aspect in which A varies depending on the location of the boundary portion may be determined as appropriate according to the application of the resin impact absorbing member of the present invention, and is not particularly limited.
  • r indicates the radius of curvature [mm] of the boundary portion between the bottom surface portion and the elevation surface portion.
  • the boundary portion between the bottom surface portion and the elevation surface portion includes a boundary portion on the upper surface of the bottom surface portion and a boundary portion on the lower surface of the bottom surface portion. It shall mean the radius of curvature at the lower boundary.
  • r in this invention shall mean an average curvature radius. The r can be measured with an R gauge or the like.
  • the resin shock absorbing member of the present invention has a plurality of hollow convex portions as shown in FIG. When provided, the case where r value differs between different hollow convex-shaped parts is included.
  • r in the present invention is not particularly limited as long as L is within the range defined by the present invention in the relationship between A and t1, and the application of the resin impact absorbing member of the present invention It can be appropriately adjusted according to the manufacturing method and the like.
  • a boundary portion between the elevation surface portion and the top surface portion may be a curved surface.
  • the range of the radius of curvature R of the boundary portion is not particularly limited, and may be appropriately determined according to the use of the resin impact absorbing member of the present invention.
  • the resin impact absorbing member of the present invention absorbs the impact by sequentially breaking the hollow convex portion from the top surface portion toward the bottom surface portion.
  • the height H of the hollow convex portion is one of the factors that affect the amount of energy absorbed by the resin impact absorbing member of the present invention. Since the impact absorption characteristics of the resin impact absorbing member of the present invention can be improved in proportion to the height H, the height H has an energy absorption amount suitable for the use of the resin impact absorbing member of the present invention. In order to achieve this, it is appropriately determined according to the type of resin material, the specific shape of the hollow convex portion, and the like.
  • the height H of the said hollow convex-shaped part shall point out the perpendicular
  • the height H may have a plurality of values. In this case, the highest H value is set as the vertical distance.
  • the cross-sectional shape in the direction perpendicular to the shock absorption direction is not particularly limited, and is used for the application of the resin shock absorption member of the present invention. It can be determined accordingly.
  • the cross-sectional shape include, but are not limited to, a perfect circle, an ellipse, a polygon, and a combination thereof.
  • the upright surface portion 4 is formed in a cylindrical shape and has a closed shape in a cross section perpendicular to the shock absorption direction. Thereby, shock absorption characteristics can be enhanced.
  • FIG. 3 is a schematic view showing various examples of the resin impact absorbing member of the present invention.
  • the cross-sectional shape in the direction perpendicular to the shock absorbing direction X may be a perfect circle (FIG. 3A), or an elliptical shape. (FIG. 3B), a polygon (FIG. 3C), or a combination thereof (FIG. 3D).
  • FIG. 3A the reference numerals in FIG. 3 are the same as those in FIG.
  • the cross-sectional shapes of the hollow convex portions may be all the same or different. Good.
  • the resin material used in the present invention is not particularly limited as long as a desired impact absorbing characteristic can be exhibited when L is a hollow convex portion within the range defined by the present invention. Therefore, a thermoplastic resin or a thermosetting resin may be used depending on the application of the resin impact absorbing member of the present invention.
  • thermoplastic resin examples include polyolefin resin, polystyrene resin, thermoplastic polyamide resin, polyester resin, polyacetal resin (polyoxymethylene resin), polycarbonate resin, (meth) acrylic resin, polyarylate resin, polyphenylene.
  • examples include ether resins, polyimide resins, polyether nitrile resins, phenoxy resins, polyphenylene sulfide resins, polysulfone resins, polyketone resins, polyether ketone resins, thermoplastic urethane resins, fluorine resins, and thermoplastic polybenzimidazole resins. .
  • polystyrene resin examples include polyethylene resin, polypropylene resin, polybutadiene resin, polymethylpentene resin, vinyl chloride resin, vinylidene chloride resin, vinyl acetate resin, and polyvinyl alcohol resin.
  • polystyrene resin examples include polystyrene resin, acrylonitrile-styrene resin (AS resin), acrylonitrile-butadiene-styrene resin (ABS resin), and the like.
  • polyamide resin examples include polyamide 6 resin (nylon 6), polyamide 11 resin (nylon 11), polyamide 12 resin (nylon 12), polyamide 46 resin (nylon 46), polyamide 66 resin (nylon 66), and polyamide 610. Resin (nylon 610) etc. can be mentioned.
  • polyester resin examples include polyethylene terephthalate resin, polyethylene naphthalate resin, polybutylene terephthalate resin, polytrimethylene terephthalate resin, and liquid crystal polyester.
  • Examples of the (meth) acrylic resin include polymethyl methacrylate.
  • Examples of the modified polyphenylene ether resin include modified polyphenylene ether.
  • Examples of the thermoplastic polyimide resin include thermoplastic polyimide, polyamideimide resin, polyetherimide resin, and the like.
  • Examples of the polysulfone resin include a modified polysulfone resin and a polyethersulfone resin.
  • Examples of the polyetherketone resin include polyetherketone resin, polyetheretherketone resin, and polyetherketoneketone resin.
  • fluororesin, polytetrafluoroethylene etc. can be mentioned, for example.
  • thermoplastic resin used in the present invention may be only one type or two or more types.
  • modes in which two or more types of thermoplastic resins are used in combination include modes in which thermoplastic resins having different softening points or melting points are used in combination, modes in which thermoplastic resins having different average molecular weights are used in combination, and the like. However, this is not the case.
  • thermosetting resins used in the present invention include, for example, epoxy resins, vinyl ester resins, unsaturated polyester resins, diallyl phthalate resins, phenol resins, maleimide resins, cyanate resins, benzoxazines in the case of thermosetting resins.
  • examples thereof include cured products such as resins and dicyclopentadiene resins, and modified products thereof.
  • the epoxy resin is not particularly limited as long as it has an epoxy group in the molecule.
  • thermosetting resin used for this invention may be only one type, and may be two or more types.
  • the resin material used in the present invention may be composed only of the above-described thermoplastic resin or thermosetting resin.
  • the thermoplastic resin or thermosetting resin is used as a matrix resin, and the matrix resin is used.
  • a fiber reinforced resin material in which reinforcing fibers are contained.
  • the shock absorbing member is generally made of a metal material.
  • such a fiber reinforced resin material is superior in strength per weight than the metal material, it is an alternative to the conventional metal material. This is because it is suitable for use as a material.
  • the type of the reinforcing fiber can be appropriately selected according to the type of the matrix resin and the like, and is not particularly limited. For this reason, as the reinforcing fiber used in the present invention, any of inorganic fibers and organic fibers can be preferably used.
  • the inorganic fibers include carbon fibers, activated carbon fibers, graphite fibers, glass fibers, tungsten carbide fibers, silicon carbide fibers (silicon carbide fibers), ceramic fibers, alumina fibers, natural fibers, mineral fibers such as basalt, and boron fibers. , Boron nitride fiber, boron carbide fiber, and metal fiber.
  • the metal fiber include aluminum fiber, copper fiber, brass fiber, stainless steel fiber, and steel fiber.
  • As said glass fiber what consists of E glass, C glass, S glass, D glass, T glass, quartz glass fiber, borosilicate glass fiber, etc. can be mentioned.
  • organic fiber examples include fibers made of a resin material such as polybenzazole such as PBO (polyparaphenylene benzoxazole), aramid, polyphenylene sulfide, polyester, acrylic, polyamide, polyolefin, polyvinyl alcohol, and polyarylate. be able to.
  • polybenzazole such as PBO (polyparaphenylene benzoxazole)
  • aramid polyphenylene sulfide
  • polyester acrylic, polyamide, polyolefin, polyvinyl alcohol, and polyarylate.
  • the reinforcing fiber used in the present invention may be one type or two or more types.
  • a plurality of types of inorganic fibers may be used in combination
  • a plurality of types of organic fibers may be used in combination
  • inorganic fibers and organic fibers may be used in combination.
  • the aspect which uses multiple types of inorganic fiber together the aspect which uses together a carbon fiber and a metal fiber, the aspect which uses a carbon fiber and glass fiber together, etc. can be mentioned, for example.
  • examples of the mode in which a plurality of types of organic fibers are used in combination include a mode in which aramid fibers and fibers made of other organic materials are used in combination. Furthermore, as an aspect using together an inorganic fiber and an organic fiber, the aspect which uses together a carbon fiber and an aramid fiber can be mentioned, for example.
  • carbon fibers are used as the reinforcing fibers.
  • carbon fibers can provide a fiber-reinforced resin material that is lightweight but excellent in strength.
  • the carbon fibers are generally polyacrylonitrile (PAN) based carbon fibers, petroleum / coal pitch based carbon fibers, rayon based carbon fibers, cellulosic carbon fibers, lignin based carbon fibers, phenol based carbon fibers, and vapor growth systems.
  • PAN polyacrylonitrile
  • PAN polyacrylonitrile
  • rayon based carbon fibers rayon based carbon fibers
  • cellulosic carbon fibers cellulosic carbon fibers
  • lignin based carbon fibers lignin based carbon fibers
  • phenol based carbon fibers phenol based carbon fibers
  • vapor growth systems Although carbon fiber etc. are known, in the present invention, any of these carbon fibers can be suitably used.
  • the reinforcing fiber used in the present invention may have a sizing agent attached to the surface.
  • the type of the sizing agent can be appropriately selected according to the types of the reinforcing fiber and the matrix resin, and is not particularly limited.
  • the average fiber length of the reinforcing fibers used in the present invention is not particularly limited, but is preferably in the range of 1 to 100 mm, more preferably in the range of 5 to 75 mm, and 10 to 50 mm. More preferably, it is within the range. If the average fiber length is shorter than the above range, depending on the application of the resin impact absorbing member of the present invention, the compressive strength of the fiber reinforced resin material may be insufficient than the desired range, and the impact absorbing characteristics may be deteriorated. Because there is. Further, when the average fiber length exceeds 100 mm, the fiber length is too long, so that the pitch for buckling deformation at the time of impact absorption becomes large, and the impact absorption characteristics may be insufficient.
  • the average fiber length in the present invention may be a number average fiber length or a weight average fiber length, but is preferably measured by a weight average fiber length calculated so as to place importance on a long fiber length.
  • the number average fiber length (Ln) and the weight average fiber length (Lw) are obtained by the following equations (a) and (b). It is done.
  • Ln ⁇ Li / j (a)
  • Lw ( ⁇ Li 2 ) / ( ⁇ Li) (b)
  • the fiber length is constant, such as when the reinforcing fiber is cut with a rotary cutter, the number average fiber length and the weight average fiber length are the same value.
  • the average fiber length of the reinforcing fiber used in the present invention has a plurality of peak values, it is preferable that at least one of the peak values is within the above-described range.
  • the average fiber diameter of the reinforcing fibers used in the present invention may be appropriately determined according to the type of the reinforcing fibers, and is not particularly limited.
  • the average fiber diameter is usually preferably in the range of 3 ⁇ m to 50 ⁇ m, more preferably in the range of 4 ⁇ m to 12 ⁇ m, and in the range of 5 ⁇ m to 8 ⁇ m. More preferably.
  • the average fiber diameter is usually preferably in the range of 3 to 30 ⁇ m.
  • the said average fiber diameter shall point out the diameter of the single yarn of a reinforced fiber.
  • the reinforcing fiber when the reinforcing fiber is in the form of a fiber bundle, it refers to the diameter of the reinforcing fiber (single yarn) constituting the fiber bundle, not the diameter of the fiber bundle.
  • the average fiber diameter of the reinforcing fibers can be measured by, for example, a method described in JIS R7607: 2000. Note that the contents of JIS R7607: 2000 are incorporated herein by reference.
  • the reinforcing fiber used in the present invention may be in the form of a single yarn composed of a single yarn or a bundle of fibers composed of a plurality of single yarns regardless of the type.
  • the reinforcing fiber used in the present invention may be only a single yarn, may be a fiber bundle, or a mixture of both.
  • the number of single yarns constituting each fiber bundle may be substantially uniform or different in each fiber bundle.
  • the reinforcing fibers used in the present invention are in the form of fiber bundles, the number of single yarns constituting each fiber bundle is not particularly limited, but is usually in the range of 1,000 to 100,000.
  • carbon fibers are in the form of fiber bundles in which thousands to tens of thousands of filaments (single yarns) are gathered.
  • the reinforcing fibers if the carbon fibers are used as they are, the entangled portions of the fiber bundles are locally thick and it may be difficult to obtain a thin fiber reinforced material. For this reason, when carbon fiber is used as the reinforcing fiber, the fiber bundle is usually used after being widened or opened.
  • the opening degree of the carbon fiber bundle after opening is not particularly limited, but the opening degree of the fiber bundle is controlled, and the carbon fiber bundle consists of a specific number or more of carbon fibers. It is preferable to include a carbon fiber bundle and a carbon fiber (single yarn) or a carbon fiber bundle less than that.
  • the carbon fiber bundle (A) composed of the number of critical single yarns defined by the following formula (2) and the other opened carbon fibers, that is, the state of the single yarn or the criticality It is preferably composed of a fiber bundle composed of less than the number of single yarns.
  • Critical number of single yarns 600 / D (2) (Where D is the average fiber diameter ( ⁇ m) of the carbon fiber)
  • the ratio of the carbon fiber bundle (A) to the total amount of carbon fibers in the fiber reinforced resin material is preferably more than 0 Vol% and less than 99 Vol%, more preferably 20 Vol% or more and less than 99 Vol, More preferably, it is 30 Vol% or more and less than 95 Vol%, Most preferably, it is 50 Vol% or more and less than 90 Vol%.
  • the degree of carbon fiber opening can be set within the target range by adjusting the fiber bundle opening conditions. For example, when the fiber bundle is opened by blowing air onto the fiber bundle, the degree of opening can be adjusted by controlling the pressure of the air blown onto the fiber bundle. In this case, by increasing the air pressure, the degree of opening is increased (the number of single yarns constituting each fiber bundle is small), and by reducing the air pressure, the degree of opening is reduced (constituting each fiber bundle). The number of single yarns to be increased).
  • the average number of fibers (N) in the carbon fiber bundle (A) can be appropriately determined within a range not impairing the object of the present invention, and is particularly limited. It is not a thing.
  • the N is usually within the range of 1 ⁇ N ⁇ 12000, but more preferably satisfies the following formula (3). 0.6 ⁇ 10 4 / D 2 ⁇ N ⁇ 1 ⁇ 10 5 / D 2 (3) (Where D is the average fiber diameter ( ⁇ m) of the carbon fiber)
  • the fiber reinforced resin material used in the present invention contains reinforced fibers and a matrix resin.
  • a thermoplastic resin is preferably used as the matrix resin. This is because, when the thermoplastic resin is used as the matrix resin, for example, when the resin shock absorbing member of the present invention is manufactured by press molding, there is an advantage that the molding time can be shortened. Moreover, it is because the fiber reinforced resin material used for this invention can be recycled or reused by using a thermoplastic resin as a matrix resin.
  • the compression elastic modulus of the fiber reinforced resin material used in the present invention is not particularly limited as long as it is within a range in which a desired shock absorbing property can be imparted to the resin shock absorbing member of the present invention. Preferably, it is 15 GPa or more, more preferably 20 GPa or more. This is because if the compression elastic modulus is smaller than the above range, the rigidity of the hollow convex portion is insufficient, and the impact absorption characteristics of the resin impact absorbing member of the present invention may be deteriorated.
  • the compression elastic modulus of the fiber reinforced resin material used in the present invention within the above range, for example, the content of the reinforced fiber in the fiber reinforced resin material is adjusted, the fiber length is adjusted, or the reinforcement is This is achieved by a method such as changing the type of fiber or / and matrix resin. More specifically, the compression elastic modulus can be increased by increasing the content of reinforcing fibers, increasing the fiber length, and using reinforcing fibers or / and matrix resins having a higher compression elastic modulus. Further, if the adjustment is reversed, the compression elastic modulus can be reduced.
  • the compressive strength of the fiber reinforced resin material used in the present invention is not particularly limited, but is preferably 150 MPa or more, more preferably 200 MPa or more, and further preferably 250 MPa or more. This is because if the compressive strength of the fiber reinforced resin material is smaller than the above range, the strength of the hollow convex portion is insufficient, and the impact absorbing characteristics of the resin impact absorbing member of the present invention may be deteriorated.
  • the compressive strength of the fiber reinforced resin material used in the present invention within the above range, for example, the content of the reinforced fiber in the fiber reinforced resin material is adjusted, the fiber length is adjusted, or the reinforced fiber Alternatively, and / or by changing the type of matrix resin.
  • the compressive strength can be increased by increasing the content of reinforcing fibers, increasing the fiber length, and using reinforcing fibers or / and matrix resins having a higher compressive strength.
  • the compression elastic modulus and compressive strength of a fiber reinforced resin material can be measured by the method described in JIS K7076: 1991, for example. The contents of JIS K7076: 1991 are incorporated herein by reference.
  • the fiber-reinforced resin material used in the present invention includes at least reinforcing fibers and a matrix resin.
  • the fiber-reinforced resin material may include various additives as necessary as long as the object of the present invention is not impaired. Good.
  • the various additives are not particularly limited as long as they can impart a desired function or property to the fiber reinforced resin material according to the use of the resin impact absorbing member of the present invention.
  • additives used in the present invention include, for example, melt viscosity reducing agents, antistatic agents, pigments, softeners, plasticizers, surfactants, conductive particles, fillers, carbon black, coupling agents, foaming agents, Lubricants, corrosion inhibitors, crystal nucleating agents, crystallization accelerators, mold release agents, stabilizers, UV absorbers, colorants, colorants, antioxidants, flame retardants, flame retardants, anti-dripping agents, lubricants , Fluorescent whitening agents, phosphorescent pigments, fluorescent dyes, flow modifiers, inorganic and organic antibacterial agents, insecticides, photocatalytic antifouling agents, infrared absorbers, photochromic agents and the like.
  • the fiber reinforced resin material used in the present invention may contain short fibers having a short fiber length as the various additives.
  • the short fibers used here can be the same as the above-described reinforcing fibers except that the average fiber length (weight average fiber length, number average fiber length) is shorter than the above-described reinforcing fibers.
  • the short fiber has a fiber length shorter than that of the above-described reinforcing fiber, and examples include those having an average fiber length (weight average fiber length, number average fiber length) of 1 mm or less.
  • thermoplastic resin or a thermosetting resin that does not include the above-described reinforcing fiber is used as the resin material instead of the fiber reinforced resin material.
  • the abundance of the matrix resin in the fiber reinforced resin material used in the present invention can be appropriately determined according to the type of the matrix resin and the type of the reinforcing fiber, and is not particularly limited. Usually, it is in the range of 3 to 1000 parts by mass with respect to 100 parts by mass of the reinforcing fibers.
  • the volume content of reinforcing fibers in the fiber reinforced resin material used in the present invention is preferably 10 to 70% by volume. This is because if the volume content of the reinforcing fiber in the fiber reinforced resin material is less than 10 Vol%, the desired compressive elastic modulus or compressive strength cannot be obtained, and the impact absorption characteristics may be insufficient. On the other hand, when it exceeds 70 Vol%, the fluidity
  • a more preferable range of the volume content of the reinforcing fiber in the fiber reinforced resin material is 20 to 60 Vol%, and a further preferable range is 30 to 50 Vol%.
  • the presence state of the reinforcing fiber in the fiber reinforced resin material is not particularly limited, and may be, for example, a state of being arranged in one direction or a state of being randomly arranged.
  • a two-dimensional random array in which the long axis direction of the reinforcing fiber is randomly arranged in the in-plane direction of the fiber reinforced resin material is preferable.
  • the two-dimensional random arrangement of the carbon fibers in the fiber reinforced resin material is measured, for example, by performing a tensile test based on an arbitrary direction of the fiber reinforced resin material and a direction perpendicular thereto.
  • the fiber reinforced resin material used in the present invention can be generally produced using a known method. For example: 1. a step of cutting the reinforcing fiber; 2. opening the cut reinforcing fiber; Although it can manufacture by the process which heat-compresses after mixing the reinforced fiber and fiber-form or particle-form matrix resin which were opened, it is not this limitation.
  • the prepreg is a fiber reinforced resin material.
  • the resin impact absorbing member of the present invention has the hollow convex portion described above, but the resin shock absorbing member of the present invention may have one hollow convex portion. It may have one or more hollow convex portions.
  • FIG. 4 is a schematic view showing an example in which the resin shock absorbing member of the present invention has a plurality of hollow convex portions. As illustrated in FIG. 4, the resin impact absorbing member 1 of the present invention may have a plurality of hollow convex portions.
  • the reference numerals in FIG. 4 are the same as those in FIG.
  • the aspect in which the resin impact absorbing member of the present invention has a plurality of hollow convex portions is not particularly limited, and an aspect suitable for the application of the resin impact absorbing member of the present invention can be appropriately selected. Therefore, for example, a mode in which a plurality of hollow convex portions having the same shape are used may be used, or a mode in which hollow convex portions having different shapes are combined may be used. In addition, as an aspect in which hollow convex portions having different shapes are used in combination, an aspect in which L of all the hollow convex portions is within the range defined by the present invention may be used.
  • regulates by this invention may be used in combination. Furthermore, the aspect used in combination of the hollow convex-shaped part which consists of a different resin material may be sufficient.
  • the resin impact absorbing member of the present invention may be used alone or in combination with other members depending on the application.
  • Examples of the mode of using the resin impact absorbing member of the present invention in combination with other members include, for example, a mode in which other members are in contact with the top surface portion of the hollow convex portion or the bottom portion of the hollow convex portion.
  • a mode of combining so that other members are in contact with each other can be mentioned.
  • FIG. 5 is a schematic view showing an example when the resin impact absorbing member of the present invention is used with other members.
  • the resin impact absorbing member 1 of the present invention may be used in combination with the other member 5 so as to be in contact with the top surface portion 3, as illustrated in FIG. 5B.
  • the other members 5 may be used in combination so as to contact the bottom surface portion 2.
  • the other members used in the present invention may be made of a resin material, or may be made of a metal material such as iron or aluminum.
  • the other configuration may be press-molded as an integral part of the hollow convex portion, or welded to the hollow convex portion as a separate part from the hollow convex portion. Alternatively, bonding may be performed by bonding, riveting, or the like.
  • the other member is made of a metal material, it is usually joined to the resin impact absorbing member of the present invention by a method such as insert molding, adhesion, or screwing.
  • the resin-made impact absorbing member of the present invention has a hollow convex portion including a bottom surface portion and a top surface portion, and an elevation surface portion connecting the bottom surface portion and the top surface portion.
  • a configuration other than the hollow convex portion may be used in the present invention.
  • Other configurations used in the present invention can be appropriately selected within a range that does not impair the purpose of the present invention, depending on the use of the resin impact absorbing member of the present invention, and are not particularly limited.
  • a flange part for connecting with peripheral parts a part for reinforcing a resin shock absorbing member, and the like.
  • the impact absorbing member in the present invention can be generally produced using a known method.
  • a fiber reinforced resin material in which a thermoplastic resin is used as a matrix resin is used as a resin material for forming the resin impact absorbing member of the present invention
  • the fiber reinforced resin material is heated to a temperature above the softening point in advance.
  • a method of cold pressing with a mold having a temperature lower than the softening point of the thermoplastic resin constituting the fiber reinforced resin material can be applied.
  • a hot press method in which the reinforced fiber resin material is cooled by cooling to a temperature lower than the softening point of the thermoplastic resin after being put into a mold having a temperature equal to or higher than the softening point of the thermoplastic resin can be applied. This is not the case.
  • what is necessary is just to determine the shape of the said metal mold
  • the resin shock absorbing member of the present invention is a resin shock absorbing member having a hollow convex portion composed of a bottom surface portion and a top surface portion, and a vertical surface portion connecting the bottom surface portion and the top surface portion. It is used to suppress impact to the other end side by absorbing impact energy input to one end of the absorbing member.
  • the resin shock absorbing member of the present invention assumes so-called shock absorption in the direction perpendicular to the bottom surface, and is used to absorb the shock received in the direction perpendicular to the bottom surface and in the same direction.
  • the resin impact absorbing member of the present invention can be applied to various vehicle parts.
  • Examples of vehicle parts provided with the resin shock absorbing member of the present invention include a crash box, a front side member, a rear side member, a front wheel house upper member, a lower member, and the like, but are not limited thereto.
  • the present invention is not limited to the above embodiment.
  • the above-described embodiment is an exemplification, and the technical idea described in the claims of the present invention has substantially the same configuration and exhibits the same function and effect regardless of the mode. It is included in the technical scope of the invention.
  • each value in this example was determined according to the following method.
  • (1) Average fiber length of reinforcing fibers The average fiber length of reinforcing fibers in the fiber-reinforced resin material is determined after heating the fiber-reinforced resin material in a furnace at 500 ° C. for 1 hour to remove the thermoplastic resin. The length of 100 reinforcing fibers extracted for purpose was measured to the 1 mm unit with calipers, and the average value was obtained. When the average fiber length was less than 1 mm, it was measured up to 0.1 mm under an optical microscope. When measuring the average fiber length of the reinforcing fibers in the thermosetting fiber reinforced resin material, the fiber reinforced resin material is heated in a furnace at 500 ° C. for 3 hours to remove the thermosetting resin.
  • volume content of reinforcing fiber in fiber reinforced resin material The volume content of reinforcing fiber in fiber reinforced resin material is obtained by obtaining the density of fiber reinforced resin material by an underwater substitution method, and the density of reinforcing fiber alone measured in advance. The volume content of the reinforcing fiber was calculated from the relationship between the density of the resin and the resin alone.
  • Compressive elastic modulus and compressive strength of fiber reinforced resin material The compressive elastic modulus and compressive strength of the fiber reinforced resin material were measured in accordance with JIS K7076 after a test piece was dried in advance at 80 ° C. under vacuum for 24 hours. .
  • the impact absorbing characteristics of the resin impact absorbing member are evaluated by using the IMATEK falling cone impact tester IM10, and the impact absorbing characteristics of the resin impact absorbing member are increased in the direction of impact absorption.
  • the energy absorbed when compressed to 85% was divided by the weight of the resin impact absorbing member. It can be said that the one with a large impact absorption characteristic is an excellent impact absorbing member.
  • the obtained prepreg B1 was set in a mold and cured for 4 hours under the conditions of a heating temperature of 180 ° C. and a pressure of 1.0 MPa to prepare a fiber reinforced resin material B2.
  • the fiber reinforced resin material B2 had an average fiber length of about 20 mm, a compression elastic modulus of 10 GPa, a compressive strength of 150 MPa, and a density of 1300 kg / m 3 .
  • a fiber reinforced resin material C was produced in the same manner as in Reference Example 1 except that the reinforcing fibers were pulverized so that the average fiber length was about 0.5 mm and the fiber volume content was changed.
  • the average fiber length of the obtained fiber reinforced resin material C was about 0.5 mm, the compression modulus was 5 GPa, the compression strength was 75 MPa, and the density was 1200 kg / m 3 .
  • FIG. 6B shows a cross-sectional shape of the resin shock absorbing member shown in FIG.
  • Example 1 The fiber reinforced resin material A of Reference Example 1 was set to 280 ° C. to obtain a resin impact absorbing member by cold press molding at a pressure of 10 MPa for 60 seconds.
  • the shock absorbing member of Example 1 was compressed to 85% of the height of the resin shock absorbing member in the shock absorbing direction so that the shock absorbing direction was vertical, the shock absorbing characteristic was 28.0 J / g.
  • Example 2 The fiber reinforced resin material A of Reference Example 1 was set to 280 ° C., and a cold shock molding under the same conditions as Example 1 was used as a resin impact absorbing member.
  • the shock absorbing member of Example 2 was compressed to 85% of the height of the resin shock absorbing member in the shock absorbing direction so that the shock absorbing direction was vertical, the shock absorbing property was 27.6 J /. g.
  • Example 3 The fiber reinforced resin material A of Reference Example 1 was set to 280 ° C., and a cold shock molding under the same conditions as Example 1 was used as a resin impact absorbing member.
  • the shock absorbing member of Example 3 was compressed to 85% of the height of the resin shock absorbing member in the shock absorbing direction so that the shock absorbing direction was vertical, the shock absorbing characteristic was 27.1 J /. g.
  • Example 4 The fiber reinforced resin material A of Reference Example 1 was set to 280 ° C., and a cold shock molding under the same conditions as Example 1 was used as a resin impact absorbing member.
  • the shock absorbing member of Example 4 was compressed to 85% of the height of the resin shock absorbing member in the shock absorbing direction so that the shock absorbing direction was vertical, the shock absorbing characteristic was 25.9 J /. g.
  • Example 5 The fiber reinforced resin material A of Reference Example 1 was set to 280 ° C., and a cold shock molding under the same conditions as Example 1 was used as a resin impact absorbing member.
  • the shock absorbing member of Example 5 was compressed to 85% of the height of the resin shock absorbing member in the shock absorbing direction so that the shock absorbing direction was vertical, the shock absorbing characteristic was 23.3 J /. g.
  • Example 6 The fiber reinforced resin material A of Reference Example 1 was set to 280 ° C., and a cold shock molding under the same conditions as Example 1 was used as a resin impact absorbing member.
  • the shock absorbing member of Example 6 was compressed to 85% of the height of the resin shock absorbing member in the shock absorbing direction so that the shock absorbing direction was vertical, the shock absorbing characteristic was 21.8 J /. g.
  • Example 7 The fiber reinforced resin material A of Reference Example 1 was set to 280 ° C., and a cold shock molding under the same conditions as Example 1 was used as a resin impact absorbing member.
  • the shock absorbing member of Example 7 was compressed to 85% of the height of the resin shock absorbing member in the shock absorbing direction so that the shock absorbing direction was vertical, the shock absorbing characteristic was 19.8 J / g.
  • Example 8 The fiber reinforced resin material A of Reference Example 1 was set to 280 ° C., and a cold shock molding under the same conditions as Example 1 was used as a resin impact absorbing member.
  • the shock absorbing member of Example 8 was compressed to 85% of the height of the resin shock absorbing member in the shock absorbing direction so that the shock absorbing direction was vertical, the shock absorbing property was 20.4 J /. g.
  • Example 9 The fiber reinforced resin material A of Reference Example 1 was set to 280 ° C., and a cold shock molding under the same conditions as Example 1 was used as a resin impact absorbing member.
  • the shock absorbing member of Example 9 was compressed to 85% of the height of the resin shock absorbing member in the shock absorbing direction so that the shock absorbing direction was vertical, the shock absorbing characteristic was 20.4 J /. g.
  • Example 10 The thermosetting fiber reinforced resin prepreg B1 of Reference Example 2 was cured for 4 hours under the conditions of a heating temperature of 180 ° C. and a pressure of 1.0 MPa to obtain a resin impact absorbing member.
  • the resin shock absorbing member of Example 10 was compressed to 85% of the height of the resin shock absorbing member in the shock absorbing direction so that the shock absorbing direction was vertical, the shock absorbing property was 28.0 J / g, indicating substantially the same shock absorption characteristics as in Example 1.
  • Example 11 The fiber reinforced resin material C of Reference Example 3 was set to 280 ° C., and a cold shock molding under the same conditions as Example 1 was used as a resin impact absorbing member.
  • the shock absorbing member of Example 11 was compressed to 85% of the height of the resin shock absorbing member in the shock absorbing direction so that the shock absorbing direction was vertical, the shock absorbing characteristic was 13.4 J /. g.
  • Example 12 The fiber reinforced resin material C of Reference Example 3 was set to 280 ° C., and a cold shock molding under the same conditions as Example 1 was used as a resin impact absorbing member.
  • the resin shock absorbing member of Example 12 was compressed to 85% of the height of the resin shock absorbing member in the shock absorbing direction so that the shock absorbing direction was vertical. g.
  • FIG. 7 shows the results of Examples 1 to 3 and Comparative Examples 1 to 4 in which the fiber reinforced resin material A is used and t2 / t1 and A are common. As shown in the figure, it is understood that the impact absorption characteristics are remarkably improved when L is less than 1.1.
  • FIG. 8 shows the relationship between t2 / t1 and shock absorption characteristics for Examples 1, 8 and 9 where L is 0.28. As shown in the figure, it can be seen that even if L is the same, if t2 / t1 is less than 1.1, the impact absorption characteristics are remarkably improved. Furthermore, it can be seen from the results of Examples 4 to 7 that the smaller A is, the better the impact absorption characteristics.
  • Example 6 From the results of Example 6, it can be seen that the impact absorption characteristics are remarkably improved when the average fiber length is 1 mm or more, the compression elastic modulus is 10 GPa or more, and the compressive strength is 150 MPa or more.
  • the resin impact absorbing member of the present invention is used to suppress impact to the other end side by absorbing impact energy input to one end.
  • a shock absorbing device such as a vehicle. Can be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Vibration Dampers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Laminated Bodies (AREA)
  • Reinforced Plastic Materials (AREA)
  • Body Structure For Vehicles (AREA)

Abstract

 簡易な構造で優れた衝撃吸収性能を有する樹脂製衝撃吸収部材を提供する。樹脂材料からなり、底面部及び天面部と、前記底面部及び前記天面部を接続する立面部とを有する中空凸形状部を備える樹脂製衝撃吸収部材であって、以下の式(1)で定義されるLが0<L<1.1であることを特徴とする樹脂製衝撃吸収部材。 L={r×tan(45°-A/2)}/t1 (1)

Description

樹脂製衝撃吸収部材
 本発明は、樹脂材料からなる樹脂製衝撃吸収部材に関するものであり、より詳しくは特定の構造を備える中空凸形状部を有することにより、衝撃吸収特性に優れる樹脂製衝撃吸収部材に関するものである。
 車両の前方や後方には、衝突時の衝撃が人員に直接的に伝わることを防止するために、例えば、クラッシュボックスやフロントサイドメンバ、リアサイドメンバ等の衝撃吸収部材が設けられることが多い。従来、このような衝撃吸収部材は金属材料で構成されることが一般的であった。しかしながら、近年では、燃費向上等を目的として車両の軽量化が望まれていることから、樹脂材料で衝撃吸収部材を構成した樹脂製衝撃吸収部材に関する研究が盛んに行われている。
 衝撃吸収部材は、軽量化の観点から中空構造を有するものが一般的である。なかでも衝撃入力方向と水平方向に近い立ち面を有する中空構造とすることが、優れた衝撃吸収特性を得るためには望ましいとされている。また、衝撃吸収部材を樹脂材料で構成する場合は、射出成形よりもプレス成形の方が機械物性に優れたものを製造できることが知られている。このようなことから、従来、優れた衝撃吸収特性を備える樹脂製衝撃吸収部材を得るには、プレス成形で樹脂材料からなる部材を成形した後、それらの部材を衝撃入力方向と水平方向に近い立ち面を有する中空構造となるように接合する方法が用いられてきた。例えば、特許文献1には、繊維強化熱可塑性樹脂材料をプレス成形することによって、ハット形状の成形品を準備した後、当該ハット形状の凹部が向き合って閉断面を形成するように接合された樹脂製成形品が開示されている。しかしながら、上記特許文献1に記載されたような樹脂製成形品は、製造工程において樹脂材料からなる部材を接合する工程が必須であることから、製造工程が煩雑になり、生産性が乏しいという問題点があった。
 このような問題点から、簡易な工程で上述したような衝撃吸収特性に優れる樹脂製衝撃吸収部材を得ることが望まれているが、そのような樹脂製衝撃吸収部材を得ることは容易ではなった。例えば、特許文献2にはプレス成形のみで形成された樹脂製衝撃吸収部材が開示されているが、この樹脂製衝撃吸収部材は、例えば、車両に用いられる衝撃吸収部材のように、比較的大きな衝撃が加わる用途に適用するには、衝撃吸収特性が不十分であることが指摘されていた。
日本国特開2012-125948号公報 日本国特開2012-233583号公報
 本発明は、このような各問題点に鑑みてなされたものであり、簡易な製造方法で製造することができ、かつ優れた衝撃吸収特性を有する樹脂製衝撃吸収部材を提供することを目的とするものである。
 上記課題を解決するために、本発明者が鋭意検討した結果、従来は衝撃吸収方向と水平方向に近い立ち面を有する中空構造とすることによって、例外なく、優れた衝撃吸収特性が得られると考えられてきたが、樹脂製衝撃吸収部材においてはそれだけでは、衝撃吸収特性が不十分となる場合があることが明らかになった。そして、その支配的な要因を検討した結果、特定の中空凸形状部を有する中空構造を採用することによって、優れた衝撃吸収特性と生産性とを両立可能な樹脂製衝撃吸収部材が得られることを見出し、本発明を完成するに至ったものである。
 すなわち、上記課題を解決するために本発明は、樹脂材料からなり、底面部及び天面部と、上記底面部及び上記天面部を接続する立面部とを有する中空凸形状部を備える樹脂製衝撃吸収部材であって、以下の式(1)で定義されるLが0<L<1.1であることを特徴とする、樹脂製衝撃吸収部材を提供する。
 L={r×tan(45°-A/2)}/t1   (1)
 上記式(1)において、rは上記底面部と上記立面部との境界部分の曲率半径[mm]であり、Aは上記底面部の面内方向に対して垂直方向と上記立面部とがなす角度[°]であり、t1は上記立面部の平均厚み[mm]である。
 本発明においては、上記中空凸形状部が、単一の部材として一体に形成されたものであることが好ましい。
 本発明の樹脂製衝撃吸収部材においては、上記天面部の平均厚みをt2[mm]とした場合に、当該t2と上記t1との比t2/t1が、0<t2/t1<1.5であることが好ましい。
 また、本発明の樹脂製衝撃吸収部材においては、上記Aが0°<A<25°であることが好ましい。
 また、本発明の樹脂製衝撃吸収部材は、上記中空凸形状部を複数備えることが好ましい。
 さらに、本発明の樹脂製衝撃吸収部材においては、上記樹脂材料が、強化繊維とマトリックス樹脂とを含有する繊維強化樹脂材料であることが好ましい。この場合において、上記繊維強化樹脂材料は、上記強化繊維の平均繊維長が1mm~100mmの範囲内であり、上記繊維強化樹脂材料の圧縮弾性率が10GPa以上であり、かつ圧縮強度が150MPa以上であることが好ましい。
 本発明の樹脂製衝撃吸収部材は、簡易な製造方法によって製造することができ、かつ優れた衝撃吸収特性を発揮することができるという効果を奏する。
本発明の樹脂製衝撃吸収部材の一例を示す概略図である。 図1の樹脂製衝撃吸収部材の要部の拡大図である。 本発明の樹脂製衝撃吸収部材の他の例を示す概略図である。 本発明の樹脂製衝撃吸収部材の他の例を示す概略図である。 本発明の樹脂製衝撃吸収部材の他の例を示す概略図である。 各実施例及び各比較例における樹脂製衝撃吸収部材の形状を説明する説明図である。 実施例及び比較例におけるLと衝撃吸収特性との関係を示すグラフである。 実施例及び比較例における比t2/t1と衝撃吸収特性との関係を示すグラフである。
 以下、本発明の樹脂製衝撃吸収部材について説明する。
 本発明の樹脂製衝撃吸収部材は、樹脂製衝撃吸収部材の一端に入力された衝撃エネルギーを吸収することにより、他端側への衝撃を抑制するために使用されるものである。また、本発明の樹脂製衝撃吸収部材は、底面部の面内方向と垂直方向に対する衝撃吸収を想定したものであり、底面部の面内方向に対して垂直方向と同軸方向に受ける衝撃を吸収させるために用いるものである。以下、この「底面部の面内方向に対して垂直方向と同軸方向」を「衝撃吸収方向」という。
 また、上記「衝撃吸収特性」とは、吸収した衝撃エネルギー量を重量で除した値を意味するものであり、この数値が大きい程「衝撃吸収特性」が優れることになる。
 上述したように、本発明の樹脂製衝撃吸収部材は、樹脂材料からなり、底面部及び天面部と、上記底面部及び上記天面部を接続する立面部とを有する中空凸形状部を備える樹脂製衝撃吸収部材であって、以下の式(1)で定義されるLが0<L<1.1であることを特徴とするものである。
 L={r×tan(45°-A/2)}/t1   (1)
 上記式(1)において、rは上記底面部と上記立面部との境界部分の曲率半径[mm]であり、Aは上記底面部の面内方向に対して垂直方向と前記立面部とがなす角度[°]であり、t1は前記立面部の平均厚み[mm]である。
 このような本発明の樹脂製衝撃吸収部材について図を参照しながら説明する。図1は、本発明の樹脂製衝撃吸収部材の代表的な例を示す概略図であり、図2は図1の樹脂製衝撃吸収部材の要部の拡大図である。ここで、図1(b)は、図1(a)の衝撃吸収方向Xの断面図である。図1(a)に例示するように本発明の樹脂製衝撃吸収部材1は、樹脂材料からなり、底面部2と天面部3と、上記底面部2及び上記天面部3を接続する立面部4とを有する中空凸形状部を備えるものである。これに加えて、本発明の樹脂製衝撃吸収部材1は、上記式(1)で定義されるLが0<L<1.1の範囲内であることを特徴とするものである。なお、上記式(1)においてLを定義するr、A、及びt1はそれぞれ図1(b)及び図2に示すとおりである。すなわち、rは上記底面部2と上記立面部4との境界部分の曲率半径[mm]であり、Aは上記底面部2の面内方向に対して垂直方向と上記立面部4とがなす角度であり、t1は上記立面部4の平均厚み[mm]である。また、図1中のt2は天面部3の平均厚みであり、点線矢印Xは樹脂製衝撃吸収部材1の衝撃吸収方向を示すものである。
 本発明の樹脂製衝撃吸収部材は、上記式(1)で定義されるLが上記範囲内であることにより、優れた衝撃吸収特性を有する樹脂製衝撃吸収部材を得ることができる。また、本発明の樹脂製衝撃吸収部材は、底面部及び天面部と、上記底面部及び上記天面部を接続する立面部とを有する中空凸形状部を備えることにより、溶接工程等を用いることなく、プレス成形のみで製造することができる。このようなことから、本発明の樹脂製衝撃吸収部材は簡易な製造方法によって製造することができ、かつ優れた衝撃吸収特性を発揮することができる。
 1 Lについて
 上記式(1)にて定義されるL(正弦パラメーター)について説明する。Lは、「上記rの接線の長さ」、すなわち曲率半径rの境界部分の底面部2側の端における接線の接点から、当該接線と境界部分の立面部4側の端における接線との交点までの長さを「立面部の厚みt1」で除した値であり、Lの定義式において、分母と分子は同一単位系である。このLは衝撃吸収部材が衝撃エネルギーを受けた際の変形状態の違いに影響する値である。すなわち、このLの値が小さい程、底面部と立面部との間にrを取ることによって生じる空間が小さくなるため、当該空間が破壊起点になることを防止できることになる。そして、当該空間が破壊起点になることを防止することによって、樹脂製衝撃吸収部材に衝撃が加わった際に、天面部から底面部に向かって順次破壊するようにでき、優れた衝撃吸収特性を発揮することができるのである。
 本発明の樹脂製衝撃吸収部材は、このLの値が0<L<1.1であることを特徴とするものである。本発明においてLをこのような範囲内とするのは、Lの値が1.1以上の場合は上記空間が大きくなるため、上記空間周辺が衝撃吸収時の破壊起点になり、これによって衝撃吸収特性が急低下してしまうからである。
 本発明の樹脂製衝撃吸収部材におけるLは、0<L<1.1の範囲内であれば特に限定されるのではなく、本発明の樹脂製衝撃吸収部材の用途等に応じて適宜調整することができるが、なかでも0<L≦1.0の範囲内であることが好ましく、0<L<0.85の範囲内であることがより好ましく、0<L<0.6の範囲内であることがさらに好ましい。Lがこのような範囲内であることにより、上記空間周辺が衝撃吸収時の破壊起点になることをより効果的に抑制できるため、衝撃吸収特性をさらに向上させることができるからである。
 2 中空凸形状部
 次に、本発明の樹脂製衝撃吸収部材における中空凸形状部について説明する。本発明における中空凸形状部は、底面部及び天面部と、前記底面部及び前記天面部を接続する立面部とを有するものである。ここで、本発明における中空凸形状部は、上記底面部、天面部、及び立面部によって内部空間が形成されたものとなるが、当該内部空間は空隙の状態であってもよく、あるいは本発明の樹脂製衝撃吸収部材の衝撃吸収特性を損なわないものであれば他の材料が充填されていてもよい。
 本発明における中空凸形状部は、上記底面部、天面部、及び立面部が単一の部材として一体に形成されたものであることが好ましい。これにより、上記中空凸形状部を形成する際に、底面部、天面部及び立面部を連結するための接合工程を省略することができるため、本発明の樹脂製衝撃吸収部材をより生産性に優れたものにできるからである。ここで、上記「単一の部材として一体に成形されたもの」とは、上記中空凸形状部が、底面部、天面部及び立面部が事後的に接合等されて一体にされたものではなく、これらが成形時に一体として形成されたものであることを意味する。
 本発明における中空凸形状部の具体的形状は、上記底面部、天面部、及び立面部を有するものであり、上記式(1)で定義されるLが本発明で規定する範囲内になる形状であれば特に限定されるものではない。すなわち、上記式(1)から明らかなように、LはA、r、及びt1によって決定されるが、これらはいずれも中空凸形状部に起因する要素である。したがって、本発明における中空凸形状部は、少なくとも、A、r、及びt1の各値が、Lを本発明で規定する範囲内にできるように形成されていればよく、中空凸形状部に関するその他要素(例えば、高さH、開口部の長さD、天面部の厚みt2、底面部の厚みt3等。各部の説明は図6参照。)は、本発明の樹脂製衝撃吸収部材の用途や製造方法等に応じて適宜決定すればよい。
 本発明における中空凸形状部のA、r、及びt1は、上記Lが本発明で規定する範囲内であれば特に限定されるものではないが、なかでも、本発明におけるt1は、天面部の平均厚み[mm]をt2とした場合に、比t2/t1が、0<t2/t1<1.5の範囲内であることが好ましく、0<t2/t1<1.1の範囲内となる範囲内であることがより好ましい。これにより、中空凸形状部における立面部の割合が小さくなることによる衝撃吸収特性の低下を防ぐことができるからである。
 本発明におけるt1の具体的な値は、上記A及びrとの関係により上記Lを本発明で規定する範囲内であれば特に限定されるものではないが、通常1mm~15mmの範囲内とされるが、これに限られるものではない。
 上記t2は、上記Lとは関係しないため、本発明の樹脂製衝撃吸収部材の用途や製造方法等に応じて適宜決定することができるものである。もっとも、上述したように本発明においては比t2/t1が上記範囲内であることが好ましいことから、t2の具体的な値はt1の具体的な値を考慮しつつ、比t2/t1が上記範囲内となるようにすることが望ましい。このようなことから、本発明におけるt2は、通常1mm~22.5mmの範囲内とされるが、これに限られるものではない。
 また、本発明における中空凸形状部は、上記天面部及び立面部の他、底面部を有するが、当該底面部の平均厚みt3についても、上記Lとは関係しないため、本発明の樹脂製衝撃吸収部材の用途や製造方法等に応じて適宜決定することができる。もっとも、t1及びt2は通常、上述したような範囲内にされることから、それらに応じてt3も、通常1mm~22.5mmの範囲内とされるが、これに限られるものではない。
 上記t1、t2、及びt3は全て同一であってもよく、又は少なくとも一つが他の2つと異なっていてもよく、或いはすべてが異なっていてもよい。例えば、t1がt2及びt3よりも大きくすると本発明における中空凸形状における立面部の割合が大きくできるため、衝撃吸収特性をさらに向上させることができる。
 次に、本発明におけるAについて説明する。本発明におけるAは、前記底面部の面内方向に対して垂直方向と前記立面部とがなす角度を指すものである。また、上記式(1)に示すように、本発明におけるAは上記Lに関連するものである。したがって、本発明におけるAの範囲は、上記t1及びrとの関係において、Lを本発明で規定する範囲内にできれば特に限定されるものではないが、なかでも、0°<A<25°の範囲内であることが好ましく、0°<A<20°の範囲内であることがより好ましい。Aが上述した範囲内であることにより、衝撃吸収時に立面部が倒れてしまうことに起因して衝撃吸収特性が低下することを防止でき、立面部が衝撃吸収方向と同軸方向である衝撃吸収部材と同等の衝撃吸収特性を発揮できるからである。
 本発明における中空凸形状部において、上記Aは上記底面部と上記立面部との境界部分全域において同一であってもよく、或いは場所によって異なっていてもよい。上記境界部分の場所によってAが異なる態様としては、本発明の樹脂製衝撃吸収部材の用途に応じて適宜決定すればよく、特に限定されるものではない。
 次に、上記rについて説明する。本発明におけるrは、底面部と立面部との境界部分の曲率半径[mm]を指すものである。ここで、底面部と立面部との境界部分は、底面部上側の境界部分と底面部下側の境界部分とがあるが、両境界部分においてrの値が異なる場合、本発明におけるrは底面部下側の境界部分における曲率半径を意味するものとする。また、境界部分の曲率半径が場所によって異なる場合、本発明におけるrは平均曲率半径を意味するものとする。なお、上記rはRゲージ等によって測定することができる。なお、上記「場所によって異なる場合」には、同一の中空凸形状部内においてr値が異なる場合の他、本発明の樹脂製衝撃吸収部材が例えば図4に示すように複数の中空凸形状部を備える場合には、異なる中空凸形状部間においてr値が異なる場合が含まれる。
 本発明におけるrの具体的な数値は、上記A及びt1の関係において、Lを本発明で規定する範囲内であれば特に限定されるものではなく、本発明の樹脂製衝撃吸収部材の用途や製造方法等に応じて適宜調整することができるものである。
 本発明における中空凸形状部は、上記立面部と上記天面部との境界部分が曲面となっていてもよい。この場合、当該境界部分の曲率半径Rの範囲は特に限定されるものではなく、本発明の樹脂製衝撃吸収部材の用途等に応じて適宜決定すればよい。
 次に、本発明の樹脂製衝撃吸収部材は、上記中空凸形状部に衝撃が入力した際に、当該中空凸形状部が天面部から底面部に向かって順次破壊されることによって、衝撃を吸収するものである。したがって、上記中空凸形状部の高さHは、本発明の樹脂製衝撃吸収部材によるエネルギー吸収量に影響する要素の一つとなる。高さHに比例して本発明の樹脂製衝撃吸収部材の衝撃吸収特性を向上させることができるため、上記高さHは、本発明の樹脂製衝撃吸収部材の用途に適したエネルギー吸収量を実現できるよう、樹脂材料の種類や中空凸形状部の具体的な形状等に応じて適宜決定されるものである。なお、上記中空凸形状部の高さHは、上記底面部の下面から上記天面部の上面までの垂直距離を指すものとする。中空凸形状部の形状によっては高さHが複数の値を有する場合もあるが、その場合は最も高いH値を上記垂直距離とする。
 本発明における中空凸形状部は中空構造を有するものであるが、衝撃吸収方向に対して垂直方向の断面形状は、特に限定されるものではなく、本発明の樹脂製衝撃吸収部材の用途等に応じて適宜決定することができる。上記断面形状としては、例えば、真円形、楕円形、多角形、及びこれらを組み合わせた形状等を挙げることができるが、これに限定されるものではない。
 好ましくは、上記立面部4は、筒状に形成され、衝撃吸収方向に対して垂直方向の断面において閉じた形状とされる。それにより、衝撃吸収特性を高めることができる。
 図3は、本発明の樹脂製衝撃吸収部材の種々の例を示す概略図である。図3に例示するように、本発明の樹脂製衝撃吸収部材1は、衝撃吸収方向Xに対して垂直方向の断面形状が、真円形であってもよく(図3(a))、楕円形であってもよく(図3(b))、多角形であってもよく(図3(c))、さらに、これらの組み合わせ(図3(d))であってもよい。なお、図3中の符号は、図1と同様である。
 また、後述するように本発明の樹脂製衝撃吸収部材が、複数の中空凸形状部を備える場合、各中空凸形状部の上記断面形状は、全て同一であってもよく、又は異なっていてもよい。
 3 樹脂材料
 次に、本発明に用いられる樹脂材料について説明する。本発明に用いられる樹脂材料としては、Lを本発明で規定する範囲内である中空凸形状部とした場合に、所望の衝撃吸収特性を発現できるものであれば特に限定されるものではない。したがって、本発明の樹脂製衝撃吸収部材の用途に応じて、熱可塑性樹脂を用いてもよく、熱硬化性樹脂を用いてもよい。
 [熱可塑性樹脂]
 本発明に用いられる熱可塑性樹脂としては、例えば、ポリオレフィン樹脂、ポリスチレン樹脂、熱可塑性ポリアミド樹脂、ポリエステル樹脂、ポリアセタール樹脂(ポリオキシメチレン樹脂)、ポリカーボネート樹脂、(メタ)アクリル樹脂、ポリアリレート樹脂、ポリフェニレンエーテル樹脂、ポリイミド樹脂、ポリエーテルニトリル樹脂、フェノキシ樹脂、ポリフェニレンスルフィド樹脂、ポリスルホン樹脂、ポリケトン樹脂、ポリエーテルケトン樹脂、熱可塑性ウレタン樹脂、フッ素系樹脂、熱可塑性ポリベンゾイミダゾール樹脂等を挙げることができる。
 上記ポリオレフィン樹脂としては、例えば、ポリエチレン樹脂、ポリプロピレン樹脂、ポリブタジエン樹脂、ポリメチルペンテン樹脂、塩化ビニル樹脂、塩化ビニリデン樹脂、酢酸ビニル樹脂、ポリビニルアルコール樹脂等を挙げることができる。
 上記ポリスチレン樹脂としては、例えば、ポリスチレン樹脂、アクリロニトリル-スチレン樹脂(AS樹脂)、アクリロニトリル-ブタジエン-スチレン樹脂(ABS樹脂)等を挙げることができる。上記ポリアミド樹脂としては、例えば、ポリアミド6樹脂(ナイロン6)、ポリアミド11樹脂(ナイロン11)、ポリアミド12樹脂(ナイロン12)、ポリアミド46樹脂(ナイロン46)、ポリアミド66樹脂(ナイロン66)、ポリアミド610樹脂(ナイロン610)等を挙げることができる。上記ポリエステル樹脂としては、例えば、ポリエチレンテレフタレート樹脂、ポリエチレンナフタレート樹脂、ポリブチレンテレフタレート樹脂、ポリトリメチレンテレフタレート樹脂、液晶ポリエステル等を挙げることができる。上記(メタ)アクリル樹脂としては、例えば、ポリメチルメタクリレートを挙げることができる。上記変性ポリフェニレンエーテル樹脂としては、例えば、変性ポリフェニレンエーテル等を挙げることができる。上記熱可塑性ポリイミド樹脂としては、例えば、熱可塑性ポリイミド、ポリアミドイミド樹脂、ポリエーテルイミド樹脂等を挙げることができる。上記ポリスルホン樹脂としては、例えば、変性ポリスルホン樹脂、ポリエーテルスルホン樹脂等を挙げることができる。上記ポリエーテルケトン樹脂としては、例えば、ポリエーテルケトン樹脂、ポリエーテルエーテルケトン樹脂、ポリエーテルケトンケトン樹脂を挙げることができる。上記フッ素系樹脂としては、例えば、ポリテトラフルオロエチレン等を挙げることができる。
 本発明に用いられる熱可塑性樹脂は1種類のみであってもよく、2種類以上であってもよい。2種類以上の熱可塑性樹脂を併用する態様としては、例えば、相互に軟化点又は融点が異なる熱可塑性樹脂を併用する態様や、相互に平均分子量が異なる熱可塑性樹脂を併用する態様等を挙げることができるが、この限りではない。
 [熱硬化性樹脂]
 本発明に用いられる熱硬化性樹脂の例としては、例えば、熱硬化性樹脂の場合、エポキシ樹脂、ビニルエステル樹脂、不飽和ポリエステル樹脂、ジアリルフタレート樹脂、フェノール樹脂、マレイミド樹脂、シアネート樹脂、ベンゾオキサジン樹脂、ジシクロペンタジエン樹脂などの硬化物及びこれらの変性体を挙げることができる。上記エポキシ樹脂としては、分子中にエポキシ基を有するものであれば特に限定されず、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、ビフェニル型エポキシ樹脂、ナフタレン型エポキシ樹脂、脂環式エポキシ樹脂、グリシジルエステル系樹脂、グリシジルアミン系エポキシ樹脂、複素環式エポキシ樹脂、ジアリールスルホン型エポキシ樹脂、ヒドロキノン型エポキシ樹脂及びそれらの変性物などが挙げることができる。なお、本発明に用いられる熱硬化性樹脂は1種類のみであってもよく、2種類以上であってもよい。
 [繊維強化樹脂材料]
 本発明に用いられる樹脂材料は、上述した熱可塑性樹脂又は熱硬化性樹脂のみからなるものであってもよいが、上記熱可塑性樹脂又は熱硬化性樹脂がマトリックス樹脂として用いられ、かつ当該マトリックス樹脂中に強化繊維が含まれる繊維強化樹脂材料が用いられることが好ましい。従来、衝撃吸収部材は金属材料から構成されることが一般的であったところ、このような繊維強化樹脂材料は、金属材料よりも重量あたりの強度が優れているため、従来の金属材料の代替材料としての使用に適しているからである。
 (強化繊維)
 上記強化繊維の種類は、マトリックス樹脂の種類等に応じて適宜選択することができるものであり、特に限定されるものではない。このため、本発明に用いられる強化繊維としては、無機繊維又は有機繊維のいずれであっても好適に用いることができる。
 上記無機繊維としては、例えば、炭素繊維、活性炭繊維、黒鉛繊維、ガラス繊維、タングステンカーバイド繊維、シリコンカーバイド繊維(炭化ケイ素繊維)、セラミックス繊維、アルミナ繊維、天然繊維、玄武岩などの鉱物繊維、ボロン繊維、窒化ホウ素繊維、炭化ホウ素繊維、及び金属繊維等を挙げることができる。上記金属繊維としては、例えば、アルミニウム繊維、銅繊維、黄銅繊維、ステンレス繊維、スチール繊維を挙げることができる。上記ガラス繊維としては、Eガラス、Cガラス、Sガラス、Dガラス、Tガラス、石英ガラス繊維、ホウケイ酸ガラス繊維等からなるものを挙げることができる。
 上記有機繊維としては、例えば、PBO(ポリパラフェニレンベンズオキサゾール)等のポリベンザゾール、アラミド、、ポリフェニレンスルフィド、ポリエステル、アクリル、ポリアミド、ポリオレフィン、ポリビニルアルコール、ポリアリレート等の樹脂材料からなる繊維を挙げることができる。
 本発明に用いられる強化繊維は1種類であってもよく、又は2種類以上であってもよい。本発明において2種類以上の強化繊維を用いる場合は、複数種の無機繊維を併用してもよく、複数種の有機繊維を併用してもよく、無機繊維と有機繊維とを併用してもよい。複数種の無機繊維を併用する態様としては、例えば、炭素繊維と金属繊維とを併用する態様、炭素繊維とガラス繊維を併用する態様等を挙げることができる。一方、複数種の有機繊維を併用する態様としては、例えば、アラミド繊維と他の有機材料からなる繊維とを併用する態様等を挙げることができる。さらに、無機繊維と有機繊維を併用する態様としては、例えば、炭素繊維とアラミド繊維とを併用する態様を挙げることができる。
 本発明においては、上記強化繊維として炭素繊維を用いることが好ましい。炭素繊維は、軽量でありながら強度に優れた繊維強化樹脂材料を得ることができるからである。上記炭素繊維としては、一般的にポリアクリロニトリル(PAN)系炭素繊維、石油・石炭ピッチ系炭素繊維、レーヨン系炭素繊維、セルロース系炭素繊維、リグニン系炭素繊維、フェノール系炭素繊維、気相成長系炭素繊維などが知られているが、本発明においてはこれらのいずれの炭素繊維であっても好適に用いることができる。
 本発明に用いられる強化繊維は、表面にサイジング剤が付着しているものであってもよい。サイジング剤が付着している強化繊維を用いる場合、当該サイジング剤の種類は、強化繊維及びマトリックス樹脂の種類に応じて適宜選択することができるものであり、特に限定されるものではない。
 本発明に用いられる強化繊維の平均繊維長は特に限定されるものではないが、1~100mmの範囲内であることが好ましく、5~75mmの範囲内であることがより好ましく、10~50mmの範囲内であることがさらに好ましい。平均繊維長が上記範囲よりも短いと、本発明の樹脂製衝撃吸収部材の用途によっては、繊維強化樹脂材料の圧縮強度が所望の範囲よりも不足し、衝撃吸収特性が低下してしまう場合があるからである。また、平均繊維長が100mmを超える場合、繊維長が長過ぎることにより、衝撃吸収時に座屈変形するピッチが大きくなり、衝撃吸収特性が不十分となってしまう場合があるからである。
 本発明における平均繊維長は、数平均繊維長であっても、重量平均繊維長であってもよいが、繊維長の長いものを重視するように計算した重量平均繊維長で測定することが好ましい。ここで、個々の炭素繊維の繊維長をLi、測定本数をjとすると、数平均繊維長(Ln)と重量平均繊維長(Lw)とは、以下の式(a),(b)により求められる。
 Ln=ΣLi/j ・・・(a)
 Lw=(ΣLi)/(ΣLi) ・・・(b)
 なお、強化繊維をロータリーカッターで切断した場合など、繊維長が一定長の場合は数平均繊維長と重量平均繊維長は同じ値になる。
 なお、本発明に用いられる強化繊維の平均繊維長が複数のピーク値を有する場合は、少なくともピーク値のいずれか1つが上述した範囲内であることが好ましい。
 本発明に用いられる強化繊維の平均繊維径は、強化繊維の種類等に応じて適宜決定すればよく、特に限定されるものではない。例えば、強化繊維として炭素繊維が用いられる場合、平均繊維径は、通常、3μm~50μmの範囲内であることが好ましく、4μm~12μmの範囲内であることがより好ましく、5μm~8μmの範囲内であることがさらに好ましい。一方、強化繊維としてガラス繊維を用いる場合、平均繊維径は、通常、3μm~30μmの範囲内であることが好ましい。ここで、上記平均繊維径は、強化繊維の単糸の直径を指すものとする。したがって、強化繊維が繊維束状である場合は、繊維束の径ではなく、繊維束を構成する強化繊維(単糸)の直径を指すことになる。強化繊維の平均繊維径は、例えば、JIS R7607:2000に記載された方法によって測定することができる。尚、JIS R7607:2000の内容はここに参照として取り込まれる。
 本発明に用いられる強化繊維は、その種類に関わらず単糸からなる単糸状であってもよく、複数の単糸からなる繊維束状であってもよい。また、本発明に用いられる強化繊維は、単糸状のもののみであってもよく、繊維束状のもののみであってもよく、両者が混在していてもよい。繊維束状のものを用いる場合、各繊維束を構成する単糸の数は、各繊維束においてほぼ均一であってもよく、あるいは異なっていてもよい。本発明に用いられる強化繊維が繊維束状である場合、各繊維束を構成する単糸の数は特に限定されるものではないが、通常、1000本~10万本の範囲内とされる。
 一般的に、炭素繊維は、数千~数万本のフィラメント(単糸)が集合した繊維束状となっている。強化繊維として炭素繊維を用いる場合に、炭素繊維をこのまま使用すると、繊維束の交絡部が局部的に厚くなり薄肉の繊維強化材料を得ることが困難になる場合がある。このため、強化繊維として炭素繊維を用いる場合は、繊維束を拡幅したり、又は開繊したりして使用するのが通常である。
 炭素繊維束を開繊して用いる場合、開繊後の炭素繊維束の開繊程度は特に限定されるものではないが、繊維束の開繊程度を制御し、特定本数以上の炭素繊維からなる炭素繊維束と、それ未満の炭素繊維(単糸)又は炭素繊維束を含むことが好ましい。この場合、具体的には、下記式(2)で定義される臨界単糸数以上で構成される炭素繊維束(A)と、それ以外の開繊された炭素繊維、すなわち単糸の状態または臨界単糸数未満で構成される繊維束とからなることが好ましい。
   臨界単糸数=600/D (2)
  (ここでDは炭素繊維の平均繊維径(μm)である)
 さらに、本発明においては、繊維強化樹脂材料中の炭素繊維全量に対する炭素繊維束(A)の割合が0Vol%超99Vol%未満であることが好ましく、20Vol%以上99Vol未満であることがより好ましく、30Vol%以上95Vol%未満であることがさらに好ましく、50Vol%以上90Vol%未満であることが最も好ましい。このように特定本数以上の炭素繊維からなる炭素繊維束と、それ以外の開繊された炭素繊維又は炭素繊維束を特定の比率で共存させることで、繊維強化樹脂材料中の炭素繊維の存在量、すなわち繊維体積含有率(Vf)を高めることが可能となるからである。
 炭素繊維の開繊程度は、繊維束の開繊条件を調整することにより目的の範囲内とすることができる。例えば、繊維束に空気を吹き付けて繊維束を開繊する場合は、繊維束に吹き付ける空気の圧力等をコントロールすることにより開繊程度を調整することができる。この場合、空気の圧力を強くすることにより、開繊程度が高く(各繊維束を構成する単糸数が少なく)なり、空気の圧力を弱くすることより開繊程度が低く(各繊維束を構成する単糸数が多く)なる傾向がある。
 本発明において強化繊維として炭素繊維を用いる場合、炭素繊維束(A)中の平均繊維数(N)は本発明の目的を損なわない範囲で適宜決定することができるものであり、特に限定されるものではない。炭素繊維の場合、上記Nは通常1<N<12000の範囲内でとされるが、下記式(3)を満たすことがより好ましい。
 0.6×10/D<N<1×10/D (3)
(ここでDは炭素繊維の平均繊維径(μm)である)
 (繊維強化樹脂材料)
 上述した通り、本発明に用いられる繊維強化樹脂材料は、強化繊維とマトリックス樹脂とを含有するものであるが、本発明においては上記マトリックス樹脂として、熱可塑性樹脂が用いられることが好ましい。上記マトリックス樹脂として熱可塑性樹脂が用いられることにより、例えば、本発明の樹脂製衝撃吸収部材をプレス成形によって製造する場合に、成形時間を短くすることができる等の利点があるからである。また、マトリックス樹脂として熱可塑性樹脂を用いることにより、本発明に用いられる繊維強化樹脂材料をリサイクル又はリユースすることができる場合があるからである。
 本発明に用いられる繊維強化樹脂材料の圧縮弾性率は、本発明の樹脂製衝撃吸収部材に所望の衝撃吸収特性を付与できる範囲内であれば特に限定されるものではないが、なかでも10GPa以上であることが好ましく、15GPa以上であることがより好ましく、20GPa以上であることがさらに好ましい。圧縮弾性率が上記範囲よりも小さいと、上記中空凸形状部の剛性が不足し、本発明の樹脂製衝撃吸収部材の衝撃吸収特性が低下する場合があるからである。本発明に用いられる繊維強化樹脂材料の圧縮弾性率を上記範囲内にするには、例えば、繊維強化樹脂材料中の強化繊維の含有率を調整したり、繊維長を調整したり、また、強化繊維または/及びマトリックス樹脂の種類を変更する等の方法により達成される。より具体的には、強化繊維の含有率を上げる、繊維長を長くする、また、より圧縮弾性率の大きい強化繊維または/及びマトリックス樹脂を用いることで、圧縮弾性率を大きくすることができる。また、これらの逆の調整をすれば圧縮弾性率を小さくすることができる。
 また、本発明に用いられる繊維強化樹脂材料の圧縮強度は特に限定されないが、150MPa以上であることが好ましく、200MPa以上であることがより好ましく、250MPa以上であることがさらに好ましい。繊維強化樹脂材料の圧縮強度が上記範囲よりも小さいと、上記中空凸形状部の強度が不足し、本発明の樹脂製衝撃吸収部材の衝撃吸収特性が低下する場合があるからである。本発明に用いられる繊維強化樹脂材料の圧縮強度を上記範囲内にするには、例えば、繊維強化樹脂材料中の強化繊維の含有率を調整したり、繊維長を調整したり、また、強化繊維または/及びマトリックス樹脂の種類を変更する等の方法により達成される。より具体的には、強化繊維の含有率を上げる、繊維長を長くする、また、より圧縮強度の大きい強化繊維または/及びマトリックス樹脂を用いることで、圧縮強度を大きくすることができる。
 なお、繊維強化樹脂材料の圧縮弾性率及び圧縮強度は、例えば、JIS K7076:1991に記載された方法によって測定することができる。尚、JIS K7076:1991の内容はここに参照として取り込まれる。
 上述したように、本発明に用いられる繊維強化樹脂材料は少なくとも強化繊維とマトリックス樹脂とを含むものであるが、本発明の目的を損なわない範囲内であれば、必要に応じて各種添加剤を含んでもよい。上記各種添加剤は、本発明の樹脂製衝撃吸収部材の用途等に応じて、繊維強化樹脂材料に所望の機能又は性質等を付与できるものであれば特に限定されるものではない。本発明に用いられる各種添加剤としては、例えば、溶融粘度低下剤、帯電防止剤、顔料、軟化剤、可塑剤、界面活性剤、導電性粒子、フィラー、カーボンブラック、カップリング剤、発泡剤、滑剤、腐食防止剤、結晶核剤、結晶化促進剤、離型剤、安定剤、紫外線吸収剤、着色剤、着色防止剤、酸化防止剤、難燃剤、難燃助剤、滴下防止剤、滑剤、蛍光増白剤、蓄光顔料、蛍光染料、流動改質剤、無機および有機の抗菌剤、防虫剤、光触媒系防汚剤、赤外線吸収剤、フォトクロミック剤等を挙げることができる。
 また、本発明に用いられる繊維強化樹脂材料には、上記各種添加剤として、繊維長が短い短繊維が含まれていてもよい。ここで用いられる短繊維とは、上述した強化繊維よりも平均繊維長(重量平均繊維長、数平均繊維長)が短いこと以外は、上述した強化繊維と同様のものを用いることができる。当該短繊維は、上述した強化繊維よりも繊維長が短いものであり、例えば、平均繊維長(重量平均繊維長、数平均繊維長)が、1mm以下のものを例示することができる。
 なお、上記各種添加剤は、樹脂材料として繊維強化樹脂材料ではなく、上述した強化繊維を含まない熱可塑性樹脂又は熱硬化性樹脂を用いる場合においても同様に採用することができる。
 本発明に用いられる繊維強化樹脂材料中におけるマトリックス樹脂の存在量は、マトリックス樹脂の種類や強化繊維の種類等に応じて適宜決定することができるものであり、特に限定されるものではないが、通常、強化繊維100質量部に対して3質量部~1000質量部の範囲内とされる。
 本発明に用いられる繊維強化樹脂材料中における強化繊維の体積含有率は、10~70Vol%であることが好ましい。繊維強化樹脂材料中における強化繊維の体積含有率が10Vol%未満の場合、所望の圧縮弾性率または圧縮強度を得られず、衝撃吸収特性が不十分になってしまう場合があるからである。一方、70Vol%を超える場合、繊維強化樹脂材料の流動性が低下してしまい、成形時に所望の形状を得ることが困難になる場合がある。繊維強化樹脂材料中における強化繊維の体積含有率のより好ましい範囲は20~60Vol%であり、さらに好ましい範囲は30~50Vol%である。
 また、繊維強化樹脂材料中の強化繊維の存在状態は特に限定されるものではなく、例えば、一方向に配列した状態であってもよく、又はランダムに配列した状態であってもよい。中でも本発明においては、樹脂製衝撃吸収部材中の形状剛性や強度の均一性の観点から、強化繊維の長軸方向が繊維強化樹脂材料の面内方向においてランダムに配列した、2次元ランダム配列の状態であることが好ましい。ここで、繊維強化樹脂材料内における炭素繊維の2次元ランダム配列は、例えば、繊維強化樹脂材料の任意の方向、及びこれと直行する方向を基準とする引張試験を行い、引張弾性率を測定した後、測定した引張弾性率の値のうち大きいものを小さいもので割った比(Eδ)を測定することで確認できる。弾性率の比が2未満である場合に、炭素繊維が2次元ランダム配列していると評価でき、弾性率の比が1.3未満の場合には、優れた2次元ランダム配列と評価される。
 (繊維強化樹脂材料の製造方法)
 次に本発明に用いられる繊維強化樹脂材料の製造方法について説明する。本発明に用いられる繊維強化樹脂材料は、一般的に公知の方法を用いて製造することができる。例えば、1.強化繊維をカットする工程、2.カットされた強化繊維を開繊させる工程、3.開繊させた強化繊維と繊維状又は粒子状のマトリックス樹脂を混合した後、加熱圧縮してプリプレグを得る工程により製造することができるが、この限りではない。なお、この方法の場合、前記プリプレグが繊維強化樹脂材料である。
 [樹脂製衝撃吸収部材]
 本発明の樹脂製衝撃吸収部材は、上述した中空凸形状部を有するものであるが、本発明の樹脂製衝撃吸収部材は、1個の中空凸形状部を有するものであってもよく、2個以上の中空凸形状部を有するものであってもよい。
 本発明の樹脂製衝撃吸収部材が、上記中空凸形状部を複数有する場合について図を参照しながら説明する。図4は、本発明の樹脂製衝撃吸収部材が複数の中空凸形状部を有する場合の一例を示す概略図である。図4に例示するように、本発明の樹脂製衝撃吸収部材1は、中空凸形状部を複数有するものであってもよい。なお、図4中の符号は図1と同様である。
 本発明の樹脂製衝撃吸収部材が複数の中空凸形状部を有する態様は特に限定されるものではなく、本発明の樹脂製衝撃吸収部材の用途に適した態様を適宜選択することができる。したがって、例えば、同一形状の中空凸形状部が複数用いられた態様であってもよく、異なる形状の中空凸形状部が組み合わされて用いられた態様であってもよい。また、異なる形状の中空凸形状部が組み合わされて用いられる態様としては、全ての中空凸形状部のLが本発明で規定する範囲内である態様であってもよく、上記Lが本発明で規定する範囲内である中空凸形状部と、上記Lが本発明で規定する範囲外の中空凸形状部とが組み合わされて用いられる態様であってもよい。さらに、異なる樹脂材料からなる中空凸形状部が組み合わされて用いられた態様であってもよい。
 本発明の樹脂製衝撃吸収部材は、用途に応じて単体で用いられてもよく、又は他の部材と組み合わせて用いてもよい。本発明の樹脂製衝撃吸収部材を他の部材と組み合わせて用いる態様としては、例えば、上記中空凸形状部の天面部に他の部材が接するように組み合わせる態様や、上記中空凸形状部の底面部に他の部材が接するように組み合わせる態様を挙げることができる。
 図5は、本発明の樹脂製衝撃吸収部材を他の部材と用いる場合の一例を示す概略図である。図5(a)に例示するように本発明の樹脂製衝撃吸収部材1は、他の部材5を、天面部3に接するように組み合わせて用いてもよく、図5(b)に例示するように他の部材5を、底面部2に接するように組み合わせて用いてもよい。
 本発明に用いられる上記他の部材は樹脂材料からなるものでもよく、又は鉄やアルミ等の金属材料からなるものでもよい。上記他の構成が樹脂材料からなる場合、当該他の構成は、例えば、中空凸形状部と一体物としてプレス成形してもよく、中空凸形状部とは別部品として、中空凸形状部に溶着や接着、リベット止め等の方法で接合してもよい。一方、上記他の部材が金属材料からなる場合は、通常、インサート成形や接着、ネジ止め等の方法で本発明の樹脂製衝撃吸収部材に接合される。
 上述したように、本発明の樹脂製衝撃吸収部材は底面部及び天面部と、前記底面部及び前記天面部を接続する立面部とからなる中空凸形状部を有するものであるが、本発明の目的を損なわない範囲で、当該中空凸形状部以外の他の構成を有していてもよい。本発明に用いられる他の構成としては、本発明の樹脂製衝撃吸収部材の用途等に応じ、本発明の目的を損なわない範囲で適宜選択することができるものであり、特に限定されるものではないが、例えば、周辺の部品と接続するためのフランジ部や、樹脂製衝撃吸収部材を補強するための部品等を挙げることができる。
 [樹脂製衝撃吸収部材の製造方法]
 次に本発明の樹脂製衝撃吸収部材の製造方法について説明する。本発明における衝撃吸収部材は、一般的に公知の方法を用いて製造することができる。例えば、マトリックス樹脂として熱可塑性樹脂が用いられた繊維強化樹脂材料を本発明の樹脂製衝撃吸収部材を形成する樹脂材料として用いる場合、繊維強化樹脂材料を、予め軟化点以上の温度に加熱し、繊維強化樹脂材料を構成する熱可塑性樹脂の軟化点未満の温度を有する金型でコールドプレスする方法が適用できる。また、強化繊維樹脂材料を、熱可塑性樹脂の軟化点以上の温度を有する金型内に投入してプレスした後に、熱可塑性樹脂の軟化点未満の温度まで冷却するホットプレス法も適用できるが、この限りではない。なお、Lを本発明で規定する範囲内するには、例えば、Lを本発明で規定する範囲となるように上記金型の形状を決定すればよい。
 [樹脂製衝撃吸収部材の用途]
 本発明の樹脂製衝撃吸収部材は、底面部及び天面部と、前記底面部及び前記天面部を接続する立面部とからなる中空凸形状部を有する樹脂製衝撃吸収部材であり、樹脂製衝撃吸収部材の一端に入力された衝撃エネルギーを吸収することにより、他端側への衝撃を抑制するために使用されるものである。本発明の樹脂製衝撃吸収部材は、所謂、底面と垂直方向に対する衝撃吸収を想定したものであり、底面の垂直方向と同軸方向に受ける衝撃を吸収させるために用いるものである。また、本発明の樹脂製衝撃吸収部材は、様々な車両用部品に適用できる。
 本発明の樹脂製衝撃吸収部材を備えた車両用部品の例としては、クラッシュボックス、フロントサイドメンバ、リアサイドメンバ、フロントホイールハウスアッパメンバ、ロアメンバ等が挙げられるが、この限りではない。
 本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と、実質的に同一の構成を有し、同様な作用効果を奏するものは、いかなる態様であっても本発明の技術的範囲に包含される。
 以下に実施例を示すことにより、本発明についてさらに具体的に説明する。もっとも、本発明は以下の実施例の態様に限定されるものではない。
 本実施例における各値は、以下の方法に従って求めた。
(1)強化繊維の平均繊維長
 繊維強化樹脂材料中の強化繊維の平均繊維長は、繊維強化樹脂材料を500℃の炉内にて1時間加熱して、熱可塑性樹脂を除去した後、無作為に抽出した強化繊維100本の長さをノギスで1mm単位まで測定し、その平均値とした。平均繊維長が1mmを下回る場合は、光学顕微鏡下で0.1mm単位まで測定した。なお、熱硬化性の繊維強化樹脂材料中の強化繊維の平均繊維長を測定する場合は、繊維強化樹脂材料を500℃の炉内にて3時間加熱して、熱硬化性樹脂を除去した後、同様の方法で測定した。
 なお、本実施例においては、一定のカット長を用いているので、数平均繊維長と重量平均繊維長は一致する。
(2)繊維強化樹脂材料中の強化繊維の体積含有率
 繊維強化樹脂材料中の強化繊維の体積含有率は、水中置換法により繊維強化樹脂材料の密度を求め、予め測定した強化繊維単独の密度と樹脂単独の密度との関係から、強化繊維の体積含有率を算出した。
(3)繊維強化樹脂材料の圧縮弾性率及び圧縮強度
 繊維強化樹脂材料の圧縮弾性率及び圧縮強度は、事前に80℃真空下で24時間乾燥させた試験片をJIS K7076に準拠して測定した。
(4)樹脂製衝撃吸収部材の衝撃吸収特性
 樹脂製衝撃吸収部材の衝撃吸収特性の評価は、IMATEK社製落錐衝撃試験機IM10を使用して、衝撃吸収方向に樹脂製衝撃吸収部材の高さの85%まで圧縮した際に吸収したエネルギーを樹脂製衝撃吸収部材の重量で除した値により算出した。衝撃吸収特性が大きい方が、優れた衝撃吸収部材といえる。
[参考例1]
 強化繊維として、平均繊維長20mmにカットした東邦テナックス社製のPAN系炭素繊維「テナックス(登録商標)」STS40-24KS(平均繊維径7μm)を使用し、熱可塑性樹脂としてユニチカ社製のナイロン6樹脂A1030を使用して、280℃に加熱したプレス装置にて、圧力2.0MPaで5分間加熱圧縮することで面内方向に炭素繊維が2次元ランダム配向した繊維強化樹脂材料Aを作製した。
 得られた繊維強化樹脂材料Aの平均繊維長は約20mm、圧縮弾性率は10GPa、圧縮強度は150MPaであり、密度は1300kg/mあった。
[参考例2]
 強化繊維として、平均繊維長20mmにカットした、東邦テナックス社製の炭素繊維「テナックス(登録商標)」STS40-24KS(平均繊維径7μm)と、熱硬化性樹脂として、三菱化学社製のビスフェノールA型エポキシ樹脂「jER(登録商標)」828とを加熱混合し、次いで、硬化剤として、三菱化学社製の変性芳香族アミン系硬化剤「jERキュア(登録商標)」Wを追加混練し、得られた組成物をコーターにて平板状に引き延ばすことで、熱硬化性繊維強化樹脂プリプレグB1を得た。
 得られたプリプレグB1を金型にセットし、加熱温度180℃、圧力1.0MPaの条件下で4時間硬化させることにより、繊維強化樹脂材料B2を作成した。前記繊維強化樹脂材料B2の平均繊維長は約20mm、圧縮弾性率は10GPa、圧縮強度は150MPaであり、密度は1300kg/mあった。
[参考例3]
 強化繊維を平均繊維長が約0.5mmとなるように粉砕し、繊維体積含有率を変更した以外は、参考例1と同様の方法で、繊維強化樹脂材料Cを作製した。
 得られた繊維強化樹脂材料Cの平均繊維長は約0.5mm、圧縮弾性率は5GPa、圧縮強度は75MPaであり、密度は1200kg/mあった。
[樹脂製衝撃吸収部材の形状]
 以下の各実施例及び各比較例の樹脂製衝撃吸収部材の寸法を示す各値(r、A,t1、t2、R、H、D)は、図6に示す通りである。なお、図6(b)は、同図(a)に示す樹脂製衝撃吸収部材の衝撃吸収方向の断面形状を示すものである。
[実施例1]
 参考例1の繊維強化樹脂材料Aを280℃にし、10MPaの圧力で60秒間のコールドプレス成形によって樹脂製衝撃吸収部材とした。各部の寸法は、r=1mm、A=10°、t1=3mm、t2=3mm、R=1mm、H=45mm、D=70mm、L=0.28であった。
 実施例1の樹脂製衝撃吸収部材を、衝撃吸収方向が鉛直となるようにして、衝撃吸収方向に樹脂製衝撃吸収部材の高さの85%まで圧縮したところ、衝撃吸収特性は28.0J/gであった。
[実施例2]
 参考例1の繊維強化樹脂材料Aを280℃にし、実施例1と同条件でのコールドプレス成形によって樹脂製衝撃吸収部材とした。各部の寸法は、r=2mm、A=10°、t1=3mm、t2=3mm、R=1mm、H=45mm、D=70mm、L=0.56であった。
 実施例2の樹脂製衝撃吸収部材を、衝撃吸収方向が鉛直となるようにして、衝撃吸収方向に樹脂製衝撃吸収部材の高さの85%まで圧縮したところ、衝撃吸収特性は27.6J/gであった。
[実施例3]
 参考例1の繊維強化樹脂材料Aを280℃にし、実施例1と同条件でのコールドプレス成形によって樹脂製衝撃吸収部材とした。各部の寸法は、r=3mm、A=10°、t1=3mm、t2=3mm、R=1mm、H=45mm、D=70mm、L=0.84であった。
 実施例3の樹脂製衝撃吸収部材を、衝撃吸収方向が鉛直となるようにして、衝撃吸収方向に樹脂製衝撃吸収部材の高さの85%まで圧縮したところ、衝撃吸収特性は27.1J/gであった。
[実施例4]
 参考例1の繊維強化樹脂材料Aを280℃にし、実施例1と同条件でのコールドプレス成形によって樹脂製衝撃吸収部材とした。各部の寸法は、r=1mm、A=15°、t1=3mm、t2=3mm、R=1mm、H=45mm、D=70mm、L=0.26であった。
 実施例4の樹脂製衝撃吸収部材を、衝撃吸収方向が鉛直となるようにして、衝撃吸収方向に樹脂製衝撃吸収部材の高さの85%まで圧縮したところ、衝撃吸収特性は25.9J/gであった。
[実施例5]
 参考例1の繊維強化樹脂材料Aを280℃にし、実施例1と同条件でのコールドプレス成形によって樹脂製衝撃吸収部材とした。各部の寸法は、r=1mm、A=25°、t1=3mm、t2=3mm、R=1mm、H=45mm、D=70mm、L=0.21であった。
 実施例5の樹脂製衝撃吸収部材を、衝撃吸収方向が鉛直となるようにして、衝撃吸収方向に樹脂製衝撃吸収部材の高さの85%まで圧縮したところ、衝撃吸収特性は23.3J/gであった。
[実施例6]
 参考例1の繊維強化樹脂材料Aを280℃にし、実施例1と同条件でのコールドプレス成形によって樹脂製衝撃吸収部材とした。各部の寸法は、r=1mm、A=30°、t1=3mm、t2=3mm、R=1mm、H=45mm、D=70mm、L=0.19であった。
 実施例6の樹脂製衝撃吸収部材を、衝撃吸収方向が鉛直となるようにして、衝撃吸収方向に樹脂製衝撃吸収部材の高さの85%まで圧縮したところ、衝撃吸収特性は21.8J/gであった。
[実施例7]
 参考例1の繊維強化樹脂材料Aを280℃にし、実施例1と同条件でのコールドプレス成形によって樹脂製衝撃吸収部材とした。各部の寸法は、r=1mm、A=35°、t1=3mm、t2=3mm、R=1mm、H=45mm、D=70mm、L=0.17であった。
 実施例7の樹脂製衝撃吸収部材を、衝撃吸収方向が鉛直となるようにして、衝撃吸収方向に樹脂製衝撃吸収部材の高さの85%まで圧縮したところ、衝撃吸収特性は19.8J/gであった。
[実施例8]
 参考例1の繊維強化樹脂材料Aを280℃にし、実施例1と同条件でのコールドプレス成形によって樹脂製衝撃吸収部材とした。各部の寸法は、r=1mm、A=10°、t1=3mm、t2=4.5mm、R=8mm、H=45mm、D=70mm、L=0.28であった。
 実施例8の樹脂製衝撃吸収部材を、衝撃吸収方向が鉛直となるようにして、衝撃吸収方向に樹脂製衝撃吸収部材の高さの85%まで圧縮したところ、衝撃吸収特性は20.4J/gであった。
[実施例9]
 参考例1の繊維強化樹脂材料Aを280℃にし、実施例1と同条件でのコールドプレス成形によって樹脂製衝撃吸収部材とした。各部の寸法は、r=1mm、A=10°、t1=3mm、t2=6mm、R=8mm、H=45mm、D=70mm、L=0.28であった。
 実施例9の樹脂製衝撃吸収部材を、衝撃吸収方向が鉛直となるようにして、衝撃吸収方向に樹脂製衝撃吸収部材の高さの85%まで圧縮したところ、衝撃吸収特性は20.4J/gであった。
[実施例10]
 参考例2の熱硬化性繊維強化樹脂プリプレグB1を、加熱温度180℃、圧力1.0MPaの条件下で4時間硬化させることにより、樹脂製衝撃吸収部材とした。各部の寸法は、r=1mm、A=10°、t1=3mm、t2=3mm、R=1mm、H=45mm、D=70mm、L=0.28であった。
 実施例10の樹脂製衝撃吸収部材を、衝撃吸収方向が鉛直となるようにして、衝撃吸収方向に樹脂製衝撃吸収部材の高さの85%まで圧縮したところ、衝撃吸収特性は28.0J/gとなり、実施例1と略同等の衝撃吸収特性を示した。
[実施例11]
 参考例3の繊維強化樹脂材料Cを280℃にし、実施例1と同条件でのコールドプレス成形によって樹脂製衝撃吸収部材とした。各部の寸法は、r=1mm、A=10°、t1=3mm、t2=3mm、R=1mm、H=45mm、D=70mm、L=0.28であった。
 実施例11の樹脂製衝撃吸収部材を、衝撃吸収方向が鉛直となるようにして、衝撃吸収方向に樹脂製衝撃吸収部材の高さの85%まで圧縮したところ、衝撃吸収特性は13.4J/gであった。
[実施例12]
 参考例3の繊維強化樹脂材料Cを280℃にし、実施例1と同条件でのコールドプレス成形によって樹脂製衝撃吸収部材とした。各部の寸法は、r=3mm、A=10°、t1=3mm、t2=3mm、R=1mm、H=45mm、D=70mm、L=0.84であった。
 実施例12の樹脂製衝撃吸収部材を、衝撃吸収方向が鉛直となるようにして、衝撃吸収方向に樹脂製衝撃吸収部材の高さの85%まで圧縮したところ、衝撃吸収特性は12.1J/gであった。
[比較例1]
 参考例1の繊維強化樹脂材料Aを280℃にし、実施例1と同条件でのコールドプレス成形によって樹脂製衝撃吸収部材とした。各部の寸法は、r=4mm、A=10°、t1=3mm、t2=3mm、R=1mm、H=45mm、D=70mm、L=1.12であった。
 比較例1の樹脂製衝撃吸収部材を、衝撃吸収方向が鉛直となるようにして、衝撃吸収方向に樹脂製衝撃吸収部材の高さの85%まで圧縮したところ、衝撃吸収特性は19.5J/gであった。
[比較例2]
 参考例1の繊維強化樹脂材料Aを280℃にし、実施例1と同条件でのコールドプレス成形によって樹脂製衝撃吸収部材とした。各部の寸法は、r=8mm、A=10°、t1=3mm、t2=3mm、R=1mm、H=45mm、D=70mm、L=2.24であった。
 比較例2の樹脂製衝撃吸収部材を、衝撃吸収方向が鉛直となるようにして、衝撃吸収方向に樹脂製衝撃吸収部材の高さの85%まで圧縮したところ、衝撃吸収特性は18.1J/gであった。
[比較例3]
 参考例1の繊維強化樹脂材料Aを280℃にし、実施例1と同条件でのコールドプレス成形によって樹脂製衝撃吸収部材とした。各部の寸法は、r=13mm、A=10°、t1=3mm、t2=3mm、R=1mm、H=45mm、D=70mm、L=3.64であった。
 比較例3の樹脂製衝撃吸収部材を、衝撃吸収方向が鉛直となるようにして、衝撃吸収方向に樹脂製衝撃吸収部材の高さの85%まで圧縮したところ、衝撃吸収特性は18.7J/gであった。
[比較例4]
 参考例1の繊維強化樹脂材料Aを280℃にし、実施例1と同条件でのコールドプレス成形によって樹脂製衝撃吸収部材とした。各部の寸法は、r=15mm、A=10°、t1=3mm、t2=3mm、R=1mm、H=45mm、D=70mm、L=4.20であった。
 比較例4の樹脂製衝撃吸収部材を、衝撃吸収方向が鉛直となるようにして、衝撃吸収方向に樹脂製衝撃吸収部材の高さの85%まで圧縮したところ、衝撃吸収特性は18.1J/gであった。
[比較例5]
 参考例3の繊維強化樹脂材料Cを280℃にし、実施例1と同条件でのコールドプレス成形によって樹脂製衝撃吸収部材とした。各部の寸法は、r=4mm、A=10°、t1=3mm、t2=3mm、R=1mm、H=45mm、D=70mm、L=1.12であった。
 比較例5の樹脂製衝撃吸収部材を、衝撃吸収方向が鉛直となるようにして、衝撃吸収方向に樹脂製衝撃吸収部材の高さの85%まで圧縮したところ、衝撃吸収特性は10.6J/gであった。
[比較例6]
 参考例3の繊維強化樹脂材料Cを280℃にし、実施例1と同条件でのコールドプレス成形によって樹脂製衝撃吸収部材とした。各部の寸法は、r=15mm、A=10°、t1=3mm、t2=3mm、R=1mm、H=45mm、D=70mm、L=4.20であった。
 比較例6の樹脂製衝撃吸収部材を、衝撃吸収方向が鉛直となるようにして、衝撃吸収方向に樹脂製衝撃吸収部材の高さの85%まで圧縮したところ、衝撃吸収特性は10.4J/gであった。
 繊維強化樹脂材料Aが用いられ、t2/t1及びAが共通する、実施例1~3、及び比較例1~4の結果を、図7に示す。同図に示す通り、Lが1.1未満になると衝撃吸収特性が顕著に向上することが分かる。
 また、Lが0.28である実施例1、8及び9についてt2/t1と衝撃吸収特性の関係を図8に示す。同図に示す通り、Lが同一であってもt2/t1が1.1未満になると衝撃吸収特性が顕著に向上することが分かる。
 さらに、実施例4~7の結果からAが小さくなる程、衝撃吸収特性が向上することが分かる。
 また、L、t2/t1及びAが共通し、繊維強化樹脂材料が異なる、実施例1と実施例11、実施例3と実施例12、比較例1と比較例5、及び比較例4と比較例6の結果から、平均繊維長が1mm以上、圧縮弾性率が10GPa以上、圧縮強度が150MPa以上であると衝撃吸収特性が顕著に向上することが分かる。
 本発明の樹脂製衝撃吸収部材は、一端に入力された衝撃エネルギーを吸収することにより、他端側への衝撃を抑制するために使用されるものであり、例えば、車両等の衝撃吸収装置に用いることができる。
 以上本発明の実施形態、実施例を詳述したがこれはあくまで一例示であり、本発明はその趣旨を逸脱しない範囲において種々変更を加えた態様で実施可能である。本出願は、2014年2月24日出願の日本特許出願(特願2014-032954)に基づくものであり、その内容はここに参照として取り込まれる。
 1 衝撃吸収部材
 2 底面部
 3 天面部
 4 立面部
 5 他の部材
 X 衝撃吸収方向

Claims (7)

  1.  樹脂材料からなり、底面部及び天面部と、前記底面部及び前記天面部を接続する立面部とを有する中空凸形状部を備える樹脂製衝撃吸収部材であって、以下の式(1)で定義されるLが0<L<1.1であることを特徴とする、樹脂製衝撃吸収部材。
     L={r×tan(45°-A/2)}/t1   (1)
     上記式(1)において、rは前記底面部と前記立面部との境界部分の曲率半径[mm]であり、Aは前記底面部の面内方向に対して垂直方向と前記立面部とがなす角度[°]であり、t1は前記立面部の平均厚み[mm]である。
  2.  前記中空凸形状部が、単一の部材として一体に形成されたものであることを特徴とする、請求項1に記載の樹脂製衝撃吸収部材。
  3.  前記天面部の平均厚みをt2とした場合に、当該t2と前記t1との比t2/t1が、0<t2/t1<1.5であることを特徴とする、請求項1または請求項2に記載の樹脂製衝撃吸収部材。
  4.  前記Aが0°<A<25°であることを特徴とする、請求項1から請求項3までのいずれかに記載の樹脂製衝撃吸収部材。
  5.  前記中空凸形状部を複数備えることを特徴とする、請求項1から請求項4までのいずれかに記載の樹脂製衝撃吸収部材。
  6.  前記樹脂材料が、強化繊維とマトリックス樹脂とを含有する繊維強化樹脂材料であることを特徴とする、請求項1から請求項5までのいずれかに記載の樹脂製衝撃吸収部材。
  7.  前記強化繊維は平均繊維長が1mm~100mmの範囲内であり、前記繊維強化樹脂材料は、圧縮弾性率が10GPa以上であり、圧縮強度が150MPa以上であることを特徴とする、請求項6に記載の樹脂製衝撃吸収部材。
PCT/JP2015/053520 2014-02-24 2015-02-09 樹脂製衝撃吸収部材 WO2015125646A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016504043A JP6277259B2 (ja) 2014-02-24 2015-02-09 樹脂製衝撃吸収部材
EP15752003.2A EP3112719B1 (en) 2014-02-24 2015-02-09 Resin impact-absorbing member
US15/121,091 US11137044B2 (en) 2014-02-24 2015-02-09 Resin-made impact absorption member

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014032954 2014-02-24
JP2014-032954 2014-02-24

Publications (1)

Publication Number Publication Date
WO2015125646A1 true WO2015125646A1 (ja) 2015-08-27

Family

ID=53878152

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/053520 WO2015125646A1 (ja) 2014-02-24 2015-02-09 樹脂製衝撃吸収部材

Country Status (4)

Country Link
US (1) US11137044B2 (ja)
EP (1) EP3112719B1 (ja)
JP (1) JP6277259B2 (ja)
WO (1) WO2015125646A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017003068A (ja) * 2015-06-15 2017-01-05 本田技研工業株式会社 エネルギー吸収部材
JPWO2018143283A1 (ja) * 2017-02-03 2019-07-11 帝人株式会社 炭素繊維と熱可塑性樹脂を含む複合材料、並びにこれを用いた成形体の製造方法及び成形体
US20200275714A1 (en) * 2016-08-16 2020-09-03 Timothy W. Markison Impact force dampening and defusing structure
JP2021501257A (ja) * 2017-10-30 2021-01-14 テイジン カーボン ユーロップ ゲー・エム・ベー・ハーTeijin Carbon Europe GmbH 衝撃力を吸収するための構成部材
EP3901486A4 (en) * 2018-12-20 2022-01-05 Teijin Limited METHOD OF MANUFACTURING AN IMPACT ABSORBENT ELEMENT
WO2022244033A1 (ja) * 2021-05-17 2022-11-24 ヤマハ発動機株式会社 部品移載装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6681761B2 (ja) * 2016-03-25 2020-04-15 アイシン精機株式会社 クラッシュボックス
JP6558316B2 (ja) * 2016-07-05 2019-08-14 株式会社豊田自動織機 荷重エネルギ吸収材
CN110341213B (zh) * 2019-08-07 2021-11-05 青岛理工大学 共固化短纤维树脂基阻尼复合材料的成型工艺及成型件

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012125948A (ja) * 2010-12-13 2012-07-05 Mitsubishi Rayon Co Ltd 繊維強化熱可塑性樹脂成形品とその製造方法
JP2012233583A (ja) * 2001-06-19 2012-11-29 Oakwood Energy Management Inc 新規なエネルギ吸収体
JP2014005901A (ja) * 2012-06-26 2014-01-16 Kyoraku Co Ltd 衝撃エネルギー吸収体

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4495790A (en) * 1981-07-20 1985-01-29 Tokico Ltd. Method for manufacturing valve guide for a hydraulic damper
US4901486A (en) * 1987-03-06 1990-02-20 Kajima Corporation Elasto-plastic damper
DE4417835A1 (de) * 1994-05-20 1995-11-23 Lignotock Gmbh Stoßabsorber zur Verbesserung der Sicherheit in Fahrgastzellen von Kraftfahrzeugen
US6679967B1 (en) 1998-02-04 2004-01-20 Oakwood Energy Management, Inc. Method for making a modular energy-absorbing assembly
US6017084A (en) 1998-02-04 2000-01-25 Oakwood Energy Management Inc. Energy absorbing assembly
US6752450B2 (en) * 1998-02-04 2004-06-22 Oakwood Energy Management, Inc. Formed energy absorber
US7360822B2 (en) 1998-02-04 2008-04-22 Oakwood Energy Management, Inc. Modular energy absorber and method for configuring same
US6199942B1 (en) 1998-02-04 2001-03-13 Oakwood Energy Management, Inc. Modular energy absorbing assembly
FR2784151B1 (fr) 1998-10-01 2002-03-22 Allibert Ind Dispositif d'absorption d'energie lors d'un choc et son procede d'obtention
US7625023B2 (en) 2000-02-07 2009-12-01 Oakwood Energy Management, Inc. Modular energy absorber with ribbed wall structure
US7404593B2 (en) 2000-02-07 2008-07-29 Oakwood Energy Management Inc. Modular energy absorber of varying topography and method for configuring same
US7384095B2 (en) 2000-02-07 2008-06-10 Oakwood Energy Management, Inc. Process for in-molding an energy-absorbing countermeasure to a headliner and resulting assembly
WO2003031703A1 (en) * 2001-10-01 2003-04-17 Toray Industries, Inc. Method of producing reinforcing fiber woven fabric and production device therefor and reinforing fiber woven fabric
JP4074618B2 (ja) * 2002-04-26 2008-04-09 株式会社プライムポリマー 吸音体、吸音構造体およびこれらの製造方法
US7842378B2 (en) * 2004-01-06 2010-11-30 Kabushiki Kaisha Toyota Jidoshokki Energy absorber and method for manufacturing the same
JP4531468B2 (ja) * 2004-07-14 2010-08-25 小島プレス工業株式会社 車両用衝撃吸収構造体及びその取付構造
AU2005278583A1 (en) * 2004-08-31 2006-03-09 Toray Industries, Inc. Bonnet for automobile
KR101837219B1 (ko) * 2010-07-13 2018-03-09 데이진 가부시키가이샤 탄소섬유다발 및 그 제조 방법, 및 그로부터의 성형품
ITBO20110137A1 (it) * 2011-03-21 2012-09-22 Pasquale Impero Assorbitore d'urto per veicoli a motore
EP2698396B1 (en) * 2011-04-14 2015-11-25 Teijin Limited Reinforcing fiber composite material
JP5802190B2 (ja) * 2012-12-20 2015-10-28 河西工業株式会社 自動車の車室側壁構造

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012233583A (ja) * 2001-06-19 2012-11-29 Oakwood Energy Management Inc 新規なエネルギ吸収体
JP2012125948A (ja) * 2010-12-13 2012-07-05 Mitsubishi Rayon Co Ltd 繊維強化熱可塑性樹脂成形品とその製造方法
JP2014005901A (ja) * 2012-06-26 2014-01-16 Kyoraku Co Ltd 衝撃エネルギー吸収体

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017003068A (ja) * 2015-06-15 2017-01-05 本田技研工業株式会社 エネルギー吸収部材
US20200275714A1 (en) * 2016-08-16 2020-09-03 Timothy W. Markison Impact force dampening and defusing structure
JPWO2018143283A1 (ja) * 2017-02-03 2019-07-11 帝人株式会社 炭素繊維と熱可塑性樹脂を含む複合材料、並びにこれを用いた成形体の製造方法及び成形体
US11384209B2 (en) 2017-02-03 2022-07-12 Teijin Limited Composite material including carbon fibers and thermoplastic resin, molded body production method using same, and molded body
JP2021501257A (ja) * 2017-10-30 2021-01-14 テイジン カーボン ユーロップ ゲー・エム・ベー・ハーTeijin Carbon Europe GmbH 衝撃力を吸収するための構成部材
JP7428651B2 (ja) 2017-10-30 2024-02-06 テイジン カーボン ユーロップ ゲー・エム・ベー・ハー 衝撃力を吸収するための構成部材
EP3901486A4 (en) * 2018-12-20 2022-01-05 Teijin Limited METHOD OF MANUFACTURING AN IMPACT ABSORBENT ELEMENT
WO2022244033A1 (ja) * 2021-05-17 2022-11-24 ヤマハ発動機株式会社 部品移載装置
JP7503712B2 (ja) 2021-05-17 2024-06-20 ヤマハ発動機株式会社 部品移載装置

Also Published As

Publication number Publication date
JP6277259B2 (ja) 2018-02-07
EP3112719B1 (en) 2018-08-15
EP3112719A4 (en) 2017-03-15
US11137044B2 (en) 2021-10-05
JPWO2015125646A1 (ja) 2017-03-30
EP3112719A1 (en) 2017-01-04
US20170016503A1 (en) 2017-01-19

Similar Documents

Publication Publication Date Title
JP6277259B2 (ja) 樹脂製衝撃吸収部材
JP5855802B1 (ja) 中空構造体及び車両用部品
JP6343094B2 (ja) 樹脂製構造体及び車両用部品
US10428894B2 (en) Resin-made impact absorption member and vehicular component
JP6290641B2 (ja) 樹脂製衝撃吸収部材
US20160061245A1 (en) Fiber Reinforced Resin Joined Body, Intermediate Body, and Fastening Rod
JP5981679B2 (ja) 繊維強化プラスチック成形体
JP2015175430A (ja) 樹脂製衝撃吸収部材
JP6321412B2 (ja) 樹脂製衝撃吸収部材及び車両用部品
EP3546786B1 (en) Energy absorption member
US20220072811A1 (en) Method for manufacturing impact-absorbing member
US9981447B2 (en) Fiber-reinforced resin joined body having caulked part and manufacturing method thereof
WO2017110596A1 (ja) 切断体の製造方法、及び複合材料の切断装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15752003

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016504043

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15121091

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015752003

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015752003

Country of ref document: EP