WO2015125640A1 - カンプトテシン誘導体とhsp90阻害剤の結合した高分子化合物及びその用途 - Google Patents

カンプトテシン誘導体とhsp90阻害剤の結合した高分子化合物及びその用途 Download PDF

Info

Publication number
WO2015125640A1
WO2015125640A1 PCT/JP2015/053479 JP2015053479W WO2015125640A1 WO 2015125640 A1 WO2015125640 A1 WO 2015125640A1 JP 2015053479 W JP2015053479 W JP 2015053479W WO 2015125640 A1 WO2015125640 A1 WO 2015125640A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
hsp90 inhibitor
polymer compound
general formula
compound
Prior art date
Application number
PCT/JP2015/053479
Other languages
English (en)
French (fr)
Inventor
麻奈美 岡▲崎▼
丸山 佐起子
亮 増田
啓一朗 山本
Original Assignee
日本化薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本化薬株式会社 filed Critical 日本化薬株式会社
Priority to JP2016504038A priority Critical patent/JP6580030B2/ja
Publication of WO2015125640A1 publication Critical patent/WO2015125640A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/40Polyamides containing oxygen in the form of ether groups
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/59Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes
    • A61K47/60Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes the organic macromolecular compound being a polyoxyalkylene oligomer, polymer or dendrimer, e.g. PEG, PPG, PEO or polyglycerol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • A61K47/64Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent
    • A61K47/645Polycationic or polyanionic oligopeptides, polypeptides or polyamino acids, e.g. polylysine, polyarginine, polyglutamic acid or peptide TAT
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/08Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from amino-carboxylic acids
    • C08G69/10Alpha-amino-carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/48Polymers modified by chemical after-treatment

Definitions

  • the present invention relates to a polymer compound in which a camptothecin derivative and an HSP90 inhibitor are bound to the same molecule.
  • the polymer compound of the present invention relates to a drug delivery system for simultaneously delivering a camptothecin derivative and an HSP90 inhibitor to an affected area, and also relates to a pharmaceutical compound exhibiting excellent antitumor activity.
  • Camptothecin is a plant alkaloid extracted from the Chinese plant "Yuki” and is a type I topoisomerase inhibitor. This selectively binds to type I topoisomerase complexed with DNA and stabilizes its structure. As a result, the cleaved DNA cannot be recombined, and is a drug that induces cell death by stopping DNA synthesis. Camptothecin showed a high antitumor effect and was developed as an anticancer drug in the 1960s. However, clinical trials were canceled due to myelosuppression and hemorrhagic cystitis as strong toxicity.
  • topotecan and irinotecan were developed as derivatives that are more soluble in water than camptothecin and have stronger antitumor activity but lower toxicity.
  • Topotecan exerts an antitumor effect without undergoing metabolism, and side effects of diarrhea are mild because 20-40% of the dose is renal excretion.
  • irinotecan itself has an antitumor effect, it is metabolized in vivo by carboxylesterase to the active metabolite 7-ethyl-10-hydroxycamptothecin (hereinafter sometimes referred to as EHC) and is stronger. Demonstrate antitumor effect.
  • irinotecan and EHC are characterized by being present in plasma as a lactone type that is more biologically active than topotecan and having a longer half-life.
  • camptothecin derivatives are used in many cancer types.
  • Topotecan has been approved for use in small cell lung cancer and ovarian cancer that has been pre-treated with cancer chemotherapeutic agents.
  • irinotecan is small cell lung cancer, non-small cell lung cancer, cervical cancer, ovarian cancer, gastric cancer (inoperable or recurrent), colorectal cancer (inoperable or recurrent), breast cancer (inoperable or recurrent), spiny cells. Approved with broad indications for cancer and malignant lymphoma (non-Hodgkin lymphoma).
  • Patent Document 1 describes a polymerized camptothecin derivative prepared by esterifying a camptothecin derivative having a phenolic hydroxyl group with a copolymer in which polyethylene glycols and a polymer having a carboxy group in the side chain are linked. .
  • a camptothecin derivative is bound by a phenyl ester bond that is easily chemically cleaved, and a camptothecin derivative having pharmacological activity is slowly released after administration in vivo.
  • the polymerized camptothecin derivative has a self-association property and forms a micelle-like aggregate to exhibit a high distribution in the tumor tissue, thereby selectively exerting a medicinal effect on the tumor tissue and causing side effects. It is described that there are few antitumor agents.
  • This high molecular weight camptothecin derivative is considered to have an advantage that the release of EHC, which is a medicinal component, does not depend on the enzyme, and thus is hardly affected by individual differences in the therapeutic effect.
  • Heat shock protein is a molecular chaperone present in cells, and is a functional molecule classified into several families such as HSP90, HSP70, HSP60, HSP40, and small HSPs depending on the molecular weight.
  • Molecular chaperone is a general term for proteins that temporarily form a complex with a target protein in order to promote the formation of a functional higher-order structure of the protein. That is, molecular chaperones have the activity of helping protein folding and association and inhibiting aggregation.
  • HSP is known to interact with various proteins involved in intracellular signal transduction systems. Molecules to which HSP binds are called client proteins, and about 200 molecules of HSP90 client proteins have been reported.
  • HSP90 is often necessary for the functional expression of various proteins, and the mechanism of action is that HSP90 specifically recognizes a client protein in an unstable folded state and binds to it to form a complex. Based on biochemical properties that form.
  • Various proteins steroid receptors, Raf serine kinases, tyrosine kinases) involved in cancer-related signal transduction depend on the structure of HSP90, and HSP90 regulates the cell cycle, canceration / proliferation / survival of cells It is clear that it is deeply involved in the signal. Human tumors are abnormal in the regulation of many signal molecules, and HSP90 is required to maintain the function of these signal molecules.
  • the HSP90 inhibitor has an action of changing the configuration of a chaperone complex containing a client protein and HSP90. Thereafter, the client protein released from the complex is decomposed mainly in the ubiquitin / proteasome system. As a result, the amount of HSP90 client protein decreases, and accordingly, downstream signal transduction is blocked and cancer cell growth is suppressed, thereby providing an antitumor effect. Cancer cells are expected to be more sensitive to HSP90 inhibitors than normal cells. Therefore, exploratory studies of HSP90 inhibitors targeting HSP90 as well as verification of their antitumor effects have been made.
  • HSP90 inhibitors have been performed previously with geldanamycin derivatives.
  • the geldanamycin derivative 17-AAG has been clinically tested for hematopoietic tumors, breast cancer, melanoma, and gastrointestinal stromal tumor (GIST).
  • GIST gastrointestinal stromal tumor
  • Patent Documents 2 to 4 report 1,2,4-triazol-3-one substituted resorcin derivatives useful as HSP90 inhibitors.
  • Patent Document 5 discloses a polymerized 1,2,4-triazol-3-one substituted resorcin derivative and a polymerized 1,2 which is a polymerized HSP90 inhibitor aimed at the sustained release of the drug. 1,4-triazol-3-one substituted resorcin derivatives have been described. In the polymerized HSP90 inhibitor, a 1,2,4-triazol-3-one substituted resorcin derivative, which is an HSP90 inhibitor, was bound to a block copolymer having a polyethylene glycol segment and a polymer segment having a carboxy group. It is a polymerized drug-binding compound.
  • Patent Document 6 describes the combined use of a 1,2,4-triazol-3-one substituted resorcin derivative that is an HSP90 inhibitor and camptothecin that is a type I topoisomerase inhibitor.
  • Non-Patent Document 1 reports a phase I clinical trial using a combination of 17-AAG, which is an HSP90 inhibitor, and irinotecan.
  • Patent Document 7 and Non-Patent Document 2 report a polymer compound retaining doxorubicin and another anticancer agent. However, there are no reports on drug delivery compounds that take into account optimal drug delivery of two drugs in combination therapy of camptothecin derivatives and HSP90 inhibitors.
  • a drug delivery system DDS
  • the present inventors have created a polymer compound in which a camptothecin derivative and an HSP90 inhibitor, particularly a 1,2,4-triazol-3-one substituted resorcin derivative having HSP90 inhibitory activity, are bound to the same molecule,
  • the present inventors have found that a compound can provide a satisfactory therapeutic effect as a chemotherapeutic agent, and have reached the present invention. That is, the gist of the present invention is the following configurations 1) to 8).
  • D + e + f + g + h represents an integer of 6 to 60
  • the ratio of d to d + e + f + g + h is 5 to 50%
  • the ratio of e is 5 to 90%
  • the ratio of f is 0 to 90%
  • the ratio of g is 0 to 90%
  • h the ratio is 0 ⁇ 90%
  • R 2 represents a hydrogen atom or a (C1 ⁇ C4) acyl group
  • R 3 represents aspartic acid residue bound binding residue or HSP90 inhibitors of HSP90 inhibitors
  • R 4 represents an aspartic acid residue or an aspartic imide residue
  • R 5 represents —N (R 6 ) CONH (R 7 )
  • R 6 and R 7 may be the same or different and may be branched or Annular (C3-C6) Al A branched or straight-chain (C1-C5) alkyl group optionally substituted with a thio group or a tertiary amino group, wherein the poly
  • R 3 is a binding residue of an HSP90 inhibitor, and the HSP90 inhibitor is represented by the general formula (2) [Wherein, X 1 represents a linear or branched (C1 to C6) alkyl group or —CONR 11 R 12 , wherein R 11 and R 12 may be the same or different (C1 to C6) It is a chain, branched or cyclic alkyl group, and X 2 represents an aryl group which may have a substituent.
  • the polymer compound according to 1) above which is a 1,2,4-triazol-3-one-substituted resorcin derivative represented by formula (I), wherein the hydroxyl group of the resorcin moiety is a binding residue of an HSP90 inhibitor having an ester bond.
  • R 3 is an aspartic acid residue to which an HSP90 inhibitor is bound, and the aspartic acid residue is represented by the general formula (3) or (4) [Wherein R 8 and R 9 each independently represent a hydrogen atom or a (C1-C6) alkyl group, R 10 represents a hydrogen atom, a (C1-C40) alkyl group, a (C1-C40) aralkyl group, an aromatic group, One or more substituents selected from the group consisting of amino acid residues in which a group group and a carboxy group are protected, CX-CY represents CH—CH or C ⁇ C (double bond), and D represents HSP90. The binding residues of the inhibitor are indicated. ] The polymer compound according to 1) above.
  • the HSP90 inhibitor of the binding residue of the HSP90 inhibitor of D is represented by the general formula (2) [Wherein, X 1 represents a linear or branched (C1 to C6) alkyl group or —CONR 11 R 12 , and R 11 and R 12 may be the same or different, and may be linear, branched or A cyclic (C1 to C6) alkyl group, and X 2 represents an aryl group which may have a substituent.
  • the polymer compound according to 3) above which is a 1,2,4-triazol-3-one-substituted resorcin derivative represented by formula (II), wherein the hydroxyl group of the resorcin moiety is a binding residue of an HSP90 inhibitor having an ester bond.
  • An antitumor agent comprising the polymer compound according to any one of 1) to 6) as an active ingredient. 8) The antitumor agent according to 7) above, which is prescribed for a malignant tumor treated with an anticancer treatment with a camptothecin derivative in the previous treatment.
  • a camptothecin derivative which is a key drug in cancer chemotherapy
  • an HSP90 inhibitor particularly a 1,2,4-triazol-3-one substituted resorcin derivative having HSP90 inhibitory activity.
  • the drug delivery system of the present invention can deliver two drugs to the affected area at the same time, and can act on the drug at an ideal drug concentration and drug sensitization time, thus producing a synergistic effect of the two drugs. Enables theoretical combination therapy and can achieve enhanced antitumor effects and reduced side effects. Thus, efficient and safe cancer chemotherapy can be achieved.
  • the ratio of the released amount of EHC and compound 5 to the total amount of bound drug at 37 ° C. in PBS solution of compound 1 (phosphate buffered saline; pH 7.1) is shown.
  • the ratio of the released amount of EHC and Compound 5 to the total amount of bound drug at 37 ° C. in PBS solution of Compound 2 (phosphate buffered saline; pH 7.1) is shown.
  • the ratio of the released amounts of EHC and compound 5 to the total amount of bound drug at 37 ° C. in PBS solution of compound 3 (phosphate buffered saline; pH 7.1) is shown.
  • mouth is shown.
  • the present invention is a block copolymer in which a polyethylene glycol segment and a polyglutamic acid segment in which a camptothecin derivative and an HSP90 inhibitor are bonded to the same molecule are linked, and the general formula (1) [Wherein R 1 represents a hydrogen atom or an optionally substituted (C1 to C4) alkyl group, t represents an integer of 45 to 450, and A represents a (C1 to C6) alkylene group.
  • D + e + f + g + h represents an integer of 6 to 60
  • the ratio of d to d + e + f + g + h is 5 to 50%
  • the ratio of e is 5 to 90%
  • the ratio of f is 0 to 90%
  • the ratio of g is 0 to 90%
  • h the ratio is 0 ⁇ 90%
  • R 2 represents a hydrogen atom or a (C1 ⁇ C4) acyl group
  • R 3 represents aspartic acid residue bound binding residue or HSP90 inhibitors of HSP90 inhibitors
  • R 4 represents an aspartic acid residue or an aspartic imide residue
  • R 5 represents —N (R 6 ) CONH (R 7 )
  • R 6 and R 7 may be the same or different, (C3 To C6) branched or cyclic alkyl Or a (C1-C5) branched or straight chain alkyl group optionally substituted with a tertiary amino group, wherein the polyglutamic acid segment
  • R 1 is a terminal modification group of the polyethylene glycol segment, and is a hydrogen atom or an optionally substituted (C1-C4) alkyl group.
  • the (C1-C4) alkyl group which may have a substituent for R 1 is a linear or branched (C1-C4) alkyl group. Specific examples are methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, sec-butyl or tert-butyl.
  • substituent of the (C1-C4) alkyl group which may have a substituent include an amino group, a dialkylamino group, an alkyloxy group, and a carboxyl group.
  • R 1 is preferably a methyl group or an ethyl group, and particularly preferably a methyl group.
  • t in the general formula (1) indicating the number of unit repeating structures of an ethyleneoxy group; (OCH 2 CH 2 ) group is 45 to 450, preferably 90 to 340. is there. That is, the molecular weight of the polyethylene glycol moiety is preferably 2,000 to 20,000, and more preferably 4,000 to 15,000.
  • a in the general formula (1) is a linking group that connects a polyethylene glycol segment and a polyglutamic acid segment.
  • a in the general formula (1) is an alkylene group of (C1 to C6), and examples thereof include a methylene group, an ethylene group, a trimethylene group, a tetramethylene group, and a hexamethylene group. Among them, an ethylene group or a trimethylene group is preferable, and a trimethylene group is particularly preferable.
  • the polyglutamic acid segment of the polymer compound of the present invention represented by the general formula (1) is a structure in which glutamic acid units are amide-bonded.
  • the amide bond is mainly a structure bonded with an ⁇ -amide bond type, but may include a structure bonded with a ⁇ -amide bond type.
  • the glutamic acid of each glutamic acid unit may be L-type or D-type.
  • the total number of glutamic acid units (number of polyglutamic acid polymerizations) in the general formula (1) is represented by d + e + f + g + h and is 6 to 60.
  • d + e + f + g + h is 8 to 40. Therefore, the average molecular weight of the polyglutamic acid segment is about 600 to 15,000, preferably about 800 to 10,000.
  • R 2 in the general formula (1) includes a hydrogen atom or a (C1 to C4) acyl group.
  • R 2 is preferably a (C1 to C4) acyl group, for example, a formyl group, an acetyl group, a propionyl group, etc. Among them, an acetyl group or a propionyl group is preferable, and an acetyl group is particularly preferable.
  • R 5 in the general formula (1) is a urea structure substituent represented by —N (R 6 ) CONH (R 7 ), and R 6 and R 7 may be the same or different, and may be branched or cyclic (C3 To C6) a branched or straight chain (C1 to C5) alkyl group optionally substituted with an alkyl group or a tertiary amino group.
  • Examples of the branched or cyclic (C3 to C6) alkyl group include isopropyl group, isobutyl group, sec-butyl group, tert-butyl group, 1-methylbutyl group, 2-methylbutyl group, neopentyl group, cyclohexyl group and the like.
  • isopropyl group and cyclohexyl group More preferred are isopropyl group and cyclohexyl group.
  • examples of the branched or straight chain (C1 to C5) alkyl group optionally substituted with the tertiary amino group include an ethyl group and a dimethylaminopropyl group.
  • R 6 and R 7 it is preferable that R 6 and R 7 are both an isopropyl group or a cyclohexyl group, or R 6 and R 7 are a combination of an ethyl group and a dimethylaminopropyl group.
  • a substituent in which R 6 and R 7 are both an isopropyl group or a cyclohexyl group is particularly preferable.
  • EHC 7-ethyl-10-hydroxycamptothecin
  • R 3 in the general formula (1) is a binding residue of the HSP90 inhibitor or an aspartic acid residue to which the HSP90 inhibitor is bound.
  • the HSP90 inhibitor is a drug that inhibits the binding of HSP90 to the client protein by binding to the ATP binding site of HSP90, and finally suppresses cell proliferation, such as a geldanamycin derivative.
  • substituted resorcin derivatives Particularly preferred is a substituted resorcin derivative having a hydroxyl group that can be bonded to the polyglutamic acid segment by an ester bond.
  • Examples of the substituted resorcin derivative include those represented by the general formula (2) [Wherein, X 1 represents a linear or branched (C1 to C6) alkyl group or —CONR 11 R 12 , and R 11 and R 12 may be the same or different and may be linear, branched or A cyclic (C1 to C6) alkyl group, and X 2 represents an aryl group which may have a substituent. And 1,2,4-triazol-3-one substituted resorcin derivatives.
  • X 1 in the general formula (2) represents a linear or branched (C1 to C6) alkyl group or —CONR 11 R 12 , and the R 11 and R 12 may be the same or different linear, A branched or cyclic (C1-C6) alkyl group.
  • Examples of the linear or branched (C1-C6) alkyl group in X 1 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, an isobutyl group, and a tert-butyl group.
  • Examples of the linear, branched or cyclic (C1-C6) alkyl group which may be the same or different in R 11 and R 12 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, and n-butyl.
  • X 1 is an isopropyl group, sec-butyl group, isobutyl group, tert-butyl group or —CONR 11 R 12 , preferably R 11 is a methyl group and R 12 is an n-butyl group.
  • the X 2 group in the general formula (2) is an aryl group which may have a substituent.
  • the aryl group which may have a substituent include a carbocyclic aryl group which may have a substituent and a heterocyclic aryl group which may have a substituent.
  • examples of the carbocyclic aryl group include a phenyl group and a naphthyl group.
  • the carbocyclic aryl group which may have a substituent includes a carbocyclic aryl group having an alkyl group as a substituent, a carbocyclic aryl group having a halogen atom as a substituent, and a carbocyclic aryl having an alkoxy group as a substituent.
  • the carbocyclic aryl group having an alkyl group as the substituent is a carbocyclic aryl group in which at least one linear, branched, or cyclic (C1 to C30) alkyl group is substituted.
  • Preferred is a phenyl group substituted by a linear or branched (C1-C8) alkyl group.
  • the carbocyclic aryl group having a halogen atom as the substituent is a carbocyclic aryl group in which at least one halogen atom is substituted.
  • a monohalogen-substituted phenyl group or a dihalogen-substituted phenyl group is preferable. Examples include 2-chlorophenyl group, 4-chlorophenyl group, 2,4-dichlorophenyl group, 2-bromophenyl group, 4-bromophenyl group, 2,4-dibromophenyl group and the like.
  • the carbocyclic aryl group having an alkoxy group as the substituent is a carbocyclic aryl group having at least one primary, secondary, or tertiary (C1-C10) alkoxy group.
  • Examples thereof include a 4-methoxyphenyl group, a 3-methoxyphenyl group, a 3,4-dimethoxyphenyl group, and a 3,4-methylenedioxyphenyl group. Of these, a 4-methoxyphenyl group is preferable.
  • the carbocyclic aryl group having an amino group as a substituent in X 2 includes, as the amino group, an unsubstituted amino group, an acyclic primary or secondary amino group, or a cyclic secondary amino group as a substituent. And a carbocyclic aryl group provided.
  • examples of the non-cyclic primary amino group include a linear, branched or cyclic (C1-C10) alkyl group, or an amino group substituted with an aryl group.
  • acyclic secondary amino group which may be the same or different, is a linear, branched or cyclic (C1-C10) alkyl group, or an amino group in which an aryl group is N, N-disubstituted. It is a group.
  • Examples thereof include a dimethylamino group, a diisopropylamino group, an N-methyl-N-cyclohexylamino group, an N-methyl-N-phenylamino group, an N-methyl-N-pyridylamino group, and a diphenylamino group.
  • Examples of the cyclic secondary amino group include a morpholino group, a piperazin-1-yl group, a 4-methylpiperazin-1-yl group, a piperidin-1-yl group, and a pyrrolidin-1-yl group.
  • the amino group of the substituent is preferably an acyclic aliphatic primary or acyclic secondary amino group or a cyclic aliphatic secondary amino group. That is, preferred examples of the acyclic aliphatic primary amino group include a methylamino group, an isopropylamino group, a neopentylamino group, an n-hexylamino group, a cyclohexylamino group, and an n-octylamino group. .
  • Preferred examples of the acyclic aliphatic secondary amino group include a dimethylamino group, a diisopropylamino group, and an N-methyl-N-cyclohexylamino group.
  • Preferred examples of the cyclic aliphatic secondary amino group include a morpholino group, a piperazin-1-yl group, a 4-methylpiperazin-1-yl group, a piperidin-1-yl group, and a pyrrolidin-1-yl group.
  • Examples of the carbocyclic aryl group in the carbocyclic aryl group having an amino group as a substituent include a phenyl group and a naphthyl group.
  • the carbocyclic aryl group is preferably a phenyl group.
  • the substitution position of the amino group on the phenyl group is not particularly limited, and any substitution product at the 2-6 position may be used. A substituted amino group at the 3-position or 4-position is preferred.
  • a preferred embodiment is a phenyl group in which an acyclic aliphatic secondary amino group is substituted at the 4-position, or a cyclic aliphatic secondary amino group at the 4-position.
  • Examples include substituted phenyl groups.
  • 4-dimethylaminophenyl group, 4- (morpholino) phenyl group, or 4- (4-methylpiperazin-1-yl) phenyl group is preferable.
  • the carbocyclic aryl group having an aminoalkyl group as a substituent for X 2 includes, as the amino group, an unsubstituted amino group, an acyclic primary or acyclic secondary amino group, or a cyclic secondary amino group And a carbocyclic aryl group substituted with a (C1 to C8) alkyl group having as a substituent.
  • Examples of the non-cyclic primary amino group include a linear, branched or cyclic (C1-C10) alkyl group, or an amino group substituted with an aryl group.
  • acyclic secondary amino group which may be the same or different, is a linear, branched or cyclic (C1-C10) alkyl group, or an amino group in which an aryl group is N, N-disubstituted. It is a group.
  • Examples include dimethylamino group, diisopropylamino group, N-methyl-N-cyclohexylamino group, N-methyl-N-phenylamino group, N-methyl-N-pyridylamino group, diphenylamino group and the like.
  • Examples of the cyclic secondary amino group include a morpholino group, a piperazin-1-yl group, a 4-methylpiperazin-1-yl group, a piperidin-1-yl group, and a pyrrolidin-1-yl group.
  • the amino group of the substituent is preferably an acyclic aliphatic primary or acyclic secondary amino group or a cyclic aliphatic secondary amino group. That is, preferred examples of the acyclic aliphatic primary amino group include a methylamino group, an isopropylamino group, a neopentylamino group, an n-hexylamino group, a cyclohexylamino group, and an n-octylamino group. .
  • Preferred examples of the acyclic aliphatic secondary amino group include a dimethylamino group, a diisopropylamino group, and an N-methyl-N-cyclohexylamino group.
  • Preferred examples of the cyclic aliphatic secondary amino group include a morpholino group, a piperazin-1-yl group, a 4-methylpiperazin-1-yl group, a piperidin-1-yl group, and a pyrrolidin-1-yl group.
  • Examples of the (C1 to C8) alkyl group having an amino group as a substituent include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, and an octyl group.
  • Examples of the carbocyclic aryl group having an aminoalkyl group as a substituent include a phenyl group and a naphthyl group.
  • the carbocyclic aryl group is preferably a phenyl group.
  • the substitution position of the aminoalkyl group on the phenyl group is not particularly limited, and any substitution product at the 2-6 position may be used.
  • a substituted amino group at the 3-position or 4-position is preferred.
  • a preferred embodiment is that a cyclic aliphatic secondary amino group is substituted at the terminal position of the (C1 to C5) alkyl group, and the other terminal group is a phenyl group. In which the 4-position is substituted.
  • 4- (morpholinomethyl) phenyl group 4- (4-methylpiperazin-1-ylmethyl) phenyl group, 4- (2-morpholinoethyl) phenyl group, 4- [2- (4-methylpiperazine- A 1-yl) ethyl] phenyl group, a 4- (4-morpholinobutyl) phenyl group, and a 4- [5- (4-methylpiperazin-1-yl) pentyl] phenyl group are preferred.
  • a more preferred embodiment is 4- (morpholinomethyl) phenyl group or 4- (4-methylpiperazin-1-ylmethyl) phenyl group.
  • the heterocyclic aryl group which may have a substituent for X 2 includes a pyridyl group which may have a substituent, a pyrimidinyl group which may have a substituent, and a substituent. May have a quinolyl group, a quinazolinyl group which may have a substituent, a naphthyridinyl group which may have a substituent, a furyl group which may have a substituent, or a substituent A pyrrolyl group, an indolyl group which may have a substituent, an imidazolyl group which may have a substituent, a pyrazolyl group which may have a substituent, an oxazolyl group which may have a substituent , An isoxazolyl group which may have a substituent, a triazolyl group which may have a substituent, and the like.
  • a pyridyl group which may have a substituent a pyrimidinyl group which may have a substituent, an indolyl group which may have a substituent, an imidazolyl group which may have a substituent
  • a pyridyl group which may have a substituent a pyrimidinyl group which may have a substituent
  • an indolyl group which may have a substituent an indolyl group which may have a substituent.
  • a pyridyl group a pyridyl group having an alkyl group as a substituent, and a pyridyl group having an amino group as a substituent
  • Examples of the pyridyl group having an alkyl group as a substituent include a 6-methylpyridin-3-yl group and a 5-methylpyridin-2-yl group.
  • Examples of the pyridyl group having an amino group as a substituent include a 5-dimethylaminopyridin-2-yl group.
  • Examples of the pyrimidinyl group having an alkyl group as a substituent include a 2-methylpyrimidin-4-yl group and a 2-methylpyrimidin-3-yl group.
  • Examples of the pyrimidinyl group having an amino group as a substituent include 2-dimethylaminopyrimidin-5-yl group, 2-morpholinopyrimidin-5-yl group, 2- (4-methylpiperazin-1-yl) pyrimidine-5- Yl group and the like.
  • Examples of the indolyl group having an alkyl group as a substituent include a 1-methylindol-5-yl group and a 1-ethylindol-5-yl group.
  • X 1 is an isopropyl group or —CONR 11 R 12 , R 11 is a methyl group, and R 12 is n-butyl. It is a group.
  • X 2 is selected from the group consisting of 2-methylphenyl group, 4- (morpholinomethyl) phenyl group, 4- (4-methylpiperazin-1-ylmethyl) phenyl group and 1-methylindol-5-yl group The substituent compounds are preferred.
  • HSP inhibitor that binds to the block copolymer, preferably 5- (2,4-dihydroxy-5-isopropyl, wherein X 1 is an isopropyl group and X 2 is a 1-methylindol-5-yl group Phenyl) -4- (1-methyl-1H-indol-5-yl) -2,4-dihydro- [1,2,4] triazol-3-one (the following general formula (5); compound 5); X 5- (2,4-dihydroxy-5- (N-methyl), wherein 1 is —CONR 11 R 12 , R 11 is a methyl group, R 12 is an n-butyl group, and X 2 is a 2-methylphenyl group -N-butylamido))-4- (2-methylphenyl) -2,4-dihydro- [1,2,4] triazol-3-one (general formula (6) below; compound 6); or X 1 There is an isopropyl group, X 2 is 4-
  • each compound of the combination of the X 1 group and the X 2 group is synthesized based on known literature. be able to.
  • the following documents can be cited as known documents for the synthesis of the 1,2,4-triazol-3-one substituted resorcin derivatives.
  • the compound 5 represented by the general formula (5) is a known compound, and can be produced, for example, according to the description in International Publication No. 2007/139552.
  • the compound 6 represented by the general formula (6) is a known compound, and can be produced, for example, according to the description in International Publication No. 2008/086857.
  • Compound 7 represented by the general formula (7) is a known compound, and can be produced, for example, according to the description in International Publication No. 2006/095783.
  • the polymer compound in the present invention has a structure in which an HSP90 inhibitor is bound to a polyglutamic acid segment. That is, the HSP90 inhibitor is bound using the carboxylic acid side chain of the polyglutamic acid segment.
  • the binding mode is not particularly limited, and the carboxylic acid side chain of the polyglutamic acid segment and the substituent of the HSP90 inhibitor may be chemically bonded in an appropriate binding mode.
  • the polyglutamic acid segment and the HSP90 inhibitor are preferably bonded via an ester bond.
  • the HSP90 inhibitor has a phenolic hydroxyl group in the molecule
  • the phenolic hydroxyl group and the side chain carboxy group of the polyglutamic acid segment may be bound by an ester bond.
  • the ester bond is gradually cleaved non-enzymatically. That is, the release of the HSP90 inhibitor from the polymer compound of the present invention can be controlled to cause sustained release. Since the 1,2,4-triazol-3-one-substituted resorcin derivative preferable as the HSP90 inhibitor has a phenolic hydroxyl group in the resorcin moiety, the resorcin hydroxyl group and the side chain carboxy group of the polyglutamic acid segment are ester-bonded. A mode of bonding by the above can be used.
  • the polyglutamic acid segment is bound to the HSP90 inhibitor according to another embodiment.
  • an aspartic acid derivative is used as a linker between the HSP90 inhibitor and the side chain carboxy group of the polyglutamic acid segment.
  • a method of bonding can be mentioned. That is, the aspartic acid derivative serving as a linker is a derivative in which one carboxy group is amidated, and the amino group of the aspartic acid derivative and the side chain carboxy group of the polyglutamic acid segment of the block copolymer are bonded by an amide bond. A bonded group.
  • the HSP90 inhibitor can be bound to the polyglutamic acid segment by ester-linking the remaining carboxy group of this aspartic acid derivative and the alcoholic hydroxyl group of the HSP90 inhibitor.
  • the HSP90 inhibitor conjugate using the aspartic acid derivative as a linker is administered in vivo, the HSP90 inhibitor dissociates non-enzymatically, and the drug can be released slowly.
  • examples of the aspartic acid residue include the following general formula (3) or general formula (4).
  • R 8 and R 9 each independently represent a hydrogen atom or a (C1 to C6) alkyl group
  • R 10 represents a hydrogen atom, a (C1 to C40) alkyl group, a (C1 to C40) aralkyl group, an aromatic group
  • One or more substituents selected from the group consisting of amino acid residues in which a group group and a carboxy group are protected CX-CY represents CH—CH or C ⁇ C (double bond)
  • D represents HSP90.
  • the binding residues of the inhibitor are indicated.
  • the aspartic acid derivative used as a linker in the present invention is preferably a group represented by the general formula (3) or the general formula (4).
  • CX-CY is C ⁇ C (double bond)
  • the E configuration is preferable.
  • D is a binding residue of the HSP90 inhibitor, and the terminal carboxyl group of the aspartic acid derivative and the HSP90 inhibitor are bonded by an ester bond.
  • Examples of the (C1 to C6) alkyl group in R 8 and R 9 include, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, s-butyl group, isobutyl group, n-pentyl group, n -Hexyl group and the like.
  • R 8 and R 9 are preferably hydrogen atoms.
  • the (C1 to C40) alkyl group in R 10 is a (C1 to C40) alkyl group which may have a substituent, and examples thereof include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, and an n-butyl group.
  • the substituent include a phenyl group, a naphthyl group, a methoxy group, an ethoxy group, and a dimethylamino group.
  • the (C1-C40) aralkyl group is an optionally substituted (C1-C40) aralkyl group, and examples thereof include a benzyl group, a naphthylmethyl group, a phenethyl group, and a 4-phenylbutyl group.
  • substituent include a methyl group, an ethyl group, a nitro group, a chlorine atom, a bromine atom, and a dimethylamino group.
  • the aromatic group is an aromatic group which may have a substituent, and examples thereof include a phenyl group, a 4-nitrophenyl group, a 4-chlorophenyl group, a naphthyl group, and a fluorenyl group.
  • the substitution position of the substituent in each group of R 8 , R 9 , and R 10 is not particularly limited as long as substitution is possible, and the number of substituents is not particularly limited.
  • amino acid of the amino acid residue in which the carboxy group in R 10 is protected includes an amino acid in which the carboxy group used in normal peptide synthesis is protected, and the carboxy group of the amino acid is protected by an ester or an amide. Are preferred.
  • the amino acid protected with an ester is, for example, a (C1-C12) alkyl ester optionally having an amino acid substituent, such as a (C1-C12) alkyl ester of alanine, an ⁇ of aspartic acid or ⁇ - (C1-C12) alkyl ester, ⁇ - or ⁇ - (C1-C12) alkyl ester of glutamic acid, (C1-C12) alkyl ester of phenylalanine, (C1-C12) alkyl ester of cysteine, (C1-C12 of glycine) ) Alkyl esters, (C1-C12) alkyl esters of leucine, (C1-C12) alkyl esters of isoleucine, (C1-C12) alkyl esters of histidine, (C1-C12) alkyl esters of proline, (C1-C12) of serine ) Alkyl esters, (C
  • phenylalanine methyl ester Particularly preferred are phenylalanine methyl ester, glycine methyl ester, glycine (4-phenyl-1-butanol) ester, leucine methyl ester, phenylalanine benzyl ester, phenylalanine (4-phenyl-1-butanol) ester and the like.
  • the amino acid may be D-form, L-form or a mixture thereof.
  • R 10 is particularly preferably an n-butyl group, a 4-phenylbutyl group, etc. Among them, a phenylbutyl group is particularly preferable. Further, CX-CY is preferably CH—CH.
  • D is a binding residue of the HSP90 inhibitor.
  • the embodiment in which the HSP90 inhibitor is bonded to the terminal carboxyl group of the aspartic acid derivative by an ester bond is preferable.
  • the HSP90 inhibitor include several developed compounds such as geldanamycin derivatives and substituted resorcin derivatives.
  • a substituted resorcin derivative having a hydroxyl group that can be bonded to the polyglutamic acid segment by an ester bond is particularly preferable.
  • Examples of the substituted resorcin derivative include those represented by the general formula (2) [Wherein, X 1 represents a linear or branched (C1 to C6) alkyl group or —CONR 11 R 12 , and R 11 and R 12 may be the same or different and may be linear, branched or A cyclic (C1 to C6) alkyl group, and X 2 represents an aryl group which may have a substituent]], 1,2,4-triazol-3-one substituted resorcin derivatives it can.
  • the definition of the substituent in X ⁇ 1 >, X ⁇ 2 >, R ⁇ 11> , R ⁇ 12 > in General formula (2) is synonymous with the above-mentioned.
  • R 4 in the general formula (1) is an aspartic acid residue represented by the following general formula (8) or general formula (9) and / or an aspartic imide residue represented by the following general formula (10).
  • R 8 , R 9 , R 10 and CX-CY are the same as the substituent groups defined in the general formulas (3) and (4).
  • a substituent selected from the group of groups is preferred. When these substituents are present in the polymer compound, these groups may be mixed.
  • R 8, R 9, R 10 , CX-CY is the same as R 8, R 9, R 10 , CX-CY in the R 3, it is the same preferable groups.
  • a glutamic acid moiety to which any of EHC, R 3 , R 4 and R 5 is not bonded may be present.
  • a glutamic acid residue having a free acid type carboxy group is shown, but the carboxy group may be an alkali metal salt or an alkaline earth metal salt, and a glutamic acid moiety containing such a carboxyl group is included.
  • the polymer compound of the general formula (1) having the formula is also included in the present invention.
  • the alkali metal salt or alkaline earth metal salt include lithium salt, sodium salt, potassium salt, magnesium salt, calcium salt and the like.
  • it when it is provided parenterally as an anticancer agent, it is prepared as a solution in a solution, but it may be a glutamate based on a salt of the pH buffer of the solution with a cation.
  • a glutamic acid unit (containing d is the number of glutamic acid units) in which EHC is bonded to the side chain carboxy group, and a glutamic acid unit (including the number of units containing the R 3 is bonded to the side chain carboxy group).
  • the side chain carboxy group has a glutamic acid unit (containing unit is h) which is a free carboxy group or a salt thereof.
  • the glutamic acid unit to which EHC is bound and the glutamic acid unit to which R 3 which is a binding residue of the HSP90 inhibitor is bound are essential constituent units.
  • the glutamic acid unit to which R 4 is bonded, the glutamic acid unit to which R 5 is bonded, and the glutamic acid unit which is a free carboxy group or a salt thereof are arbitrary constituent units. Each of these glutamic acid units is independently and randomly arranged.
  • the total number of glutamic acid units in the polyglutamic acid segment of the general formula (1) is represented by d + e + f + g + h.
  • the ratio of d is 5 to 50%, preferably 5 to 40%
  • the ratio of e is 5 to 90%, preferably 5 to 80%
  • the ratio of f is 0 to 90%, preferably 0 to 60%.
  • the proportion is 0 to 90%, preferably 5 to 40%
  • the proportion of h is 0 to 90%, preferably 0 to 30%.
  • the ratio of the drug content of EHC, which is a camptothecin derivative, and an HSP90 inhibitor is not particularly limited, and can be arbitrarily set at a mixture ratio that provides a synergistic effect enhancing action by the combined use of EHC and HSP90 inhibitor. can do.
  • the mixing ratio of EHC and HSP90 inhibitor is indicated by the amount of each drug bound in the polyglutamic acid segment, and is set by the d value and e value representing the ratio of each unit of the polyglutamic acid segment.
  • EHC and HSP90 inhibitor are released from the block copolymer and have a medicinal effect.
  • the binding amount of each drug should be set to a combined concentration ratio that exhibits a synergistic effect enhancing action in consideration of the dissociation rate of the drug from the block copolymer.
  • a 1,2,4-triazol-3-one substituted resorcin derivative represented by the general formula (2) is used as an HSP90 inhibitor, a mixture of EHC and 1,2,4-triazol-3-one substituted resorcin derivative
  • the polymer compound represented by the general formula (1) of the present invention may form a micelle having a polyethylene glycol segment as an outer shell and a polyglutamic acid segment to which a drug or the like is bound as an inner shell in water. That is, the polymer compound of the present invention is an antitumor agent using a block copolymer in which polyethylene glycol and polyglutamic acid are linked as a carrier, but becomes a polymer having a higher molecular weight due to the formation of a self-aggregate.
  • the self-aggregate is preferably a high molecular weight body having a molecular weight of about 10 6, and has a pharmacokinetics depending on the molecular weight. That is, the drug is expected to have desirable pharmacokinetic properties for improving the efficacy of antitumor agents such as an increase in half-life, improved permeability to tumor tissues, and accumulation in tumor tissues.
  • the manufacturing method of the high molecular compound of this invention is not limited to the manufacturing method described here, and the method as described in the Example and reference example of a postscript.
  • the method for constructing the main chain of the block copolymer having a polyethylene glycol segment and a polyglutamic acid segment which is a polymer compound of the present invention represented by the general formula (1), is a method of binding a polyethylene glycol segment and a polyglutamic acid segment, Any method of sequentially polymerizing glutamic acid structural units to polyethylene glycol segments may be used.
  • N -A method of constructing a polyglutamic acid segment by sequentially reacting carbonyl glutamic anhydride in accordance with the method described in International Publication No. 2006/120914 pamphlet or the like, for example, polyethylene glycol modified with a modifying group such as a methyl group at one end and an aminopropyl group at the other end, N -A method of constructing a polyglutamic acid segment by sequentially reacting carbonyl glutamic anhydride.
  • the N-carbonylglutamic acid anhydride may be a derivative of EHC, in which the carboxy group of the glutamic acid side chain may be modified with an appropriate carboxylic acid protecting group, and is a derivative having a predetermined carboxy group substituent in advance.
  • Conjugates conjugates of HSP90 inhibitors according to R 3 of general formula (1), conjugates of R 4 of general formula (1), conjugates of R 5 of general formula (1), free carboxylic acids, etc. There may be.
  • N-carbonylglutamic acid anhydride it is preferable to use an N-carbonylglutamic acid anhydride in which the side chain carboxy group is modified with an appropriate carboxylic acid protecting group.
  • the carboxylic acid protecting group is not particularly limited, but an ester protecting group is preferable.
  • the N-carbonylglutamic acid anhydride modified with an appropriate carboxylic acid protecting group is used for the side chain carboxy group, and the N-carbonylglutamic acid anhydride is reacted with a polyethylene glycol compound modified with an amino group at one end.
  • a block copolymer in which polyethylene glycol and a polyglutamic acid derivative are linked to which EHC, an HSP90 inhibitor corresponding to R 3 according to the general formula (1), and a general formula (1
  • the terminal amino group of the polyglutamic acid segment of the block copolymer may be acylated.
  • a polyethylene glycol compound modified with a methoxy group at one end and an amino group at the other end and a ⁇ -benzyl-N-carbonylglutamic anhydride are reacted sequentially, and then by subsequent polymerization, polyethylene glycol and poly (ethylene glycol) are reacted.
  • a block copolymer linked with glutamic acid benzyl ester is prepared. Thereafter, by deprotecting the benzyl group of polyglutamic acid by a suitable method, a block copolymer in which the polyethylene glycol and polyglutamic acid are linked can be prepared. Examples of the deprotection reaction of the benzyl group include a hydrolysis reaction and a hydrogenation reduction reaction under alkaline conditions.
  • a reaction in which EHC, an HSP90 inhibitor, an aspartic acid derivative to which an HSP90 inhibitor is bound, or the like is bound to the block copolymer in which the polyethylene glycol segment and the polyglutamic acid segment are linked is performed.
  • the binding method is not particularly limited, and the ESP is bound first, and then the HSP90 inhibitor or the aspartic acid derivative to which the HSP90 inhibitor is bound may be bound simultaneously or in the reverse order. Also good.
  • a block copolymer in which a polyethylene glycol segment and a polyglutamic acid segment are linked to an aspartic acid derivative to which an EHC and HSP90 inhibitor or an HSP90 inhibitor is bonded is subjected to a dehydration condensation reaction in the presence of a carbodiimide dehydration condensation agent.
  • a —N (R 6 ) CONH (R 7 ) group corresponding to R 4 can be introduced into the block copolymer simultaneously with EHC and HSP90 inhibitors and the like.
  • the carbodiimide dehydrating condensing agent dicyclohexylcarbodiimide (DCC), diisopropylcarbodiimide (DIPCI), 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride (WSC) and the like can be used.
  • a reaction aid such as N, N-dimethylaminopyridine (DMAP) may be used.
  • DMAP N, N-dimethylaminopyridine
  • the binding amount of EHC and HSP90 inhibitor can be adjusted by appropriately increasing or decreasing the amount of each drug charged in the dehydration condensation reaction.
  • R 6 and R 7 of —N (R 6 ) CONH (R 7 ) are cyclohexyl groups.
  • DIPCI diisopropylcarbodiimide
  • R 6 and R 7 are isopropyl groups.
  • R 6 and R 7 of —N (R 6 ) CONH (R 7 ) are an ethyl group and 3-dimethylaminopropyl It becomes a mixed substitution product.
  • the polymer compound of the present invention can be produced via an optional purification step.
  • the polymer compound of the present invention gradually dissociates and releases EHC and HSP90 inhibitors, which are antitumor active ingredients, in a phosphate buffered saline (PBS) solution. This indicates that even when administered in vivo, it has physical properties to release the EHC and HSP90 inhibitors gradually.
  • PBS phosphate buffered saline
  • high molecular weight compounds and low molecular weight compounds have greatly different pharmacokinetic behaviors in the body and their distribution in the body. From this, the high molecular compound of the present invention is different in drug expression characteristics and side effect expression characteristics from low molecular weight drugs, and can provide a new therapeutic method using a camptothecin derivative and an HSP90 inhibitor.
  • the polymer compound of the present invention can be used as an anticancer agent, and the use of the anticancer agent is also included in the present invention.
  • the anticancer agent can be used in commonly used preparations such as injections, drops, tablets, capsules, powders and the like.
  • commonly used pharmaceutically acceptable carriers and additives such as binders, lubricants, disintegrants, solvents, excipients, solubilizers, dispersants, stabilizers, suspensions Agents, preservatives, soothing agents, pigments, fragrances and the like can be used. Among them, it is preferably used as an injection or a drip infusion.
  • Water physiological saline, 5% glucose or mannitol solution, water-soluble organic solvent (for example, glycerol, ethanol, dimethyl sulfoxide, N-methylpyrrolidone, polyethylene glycol, cremophor, etc. And a mixture thereof, and a mixture of water and the water-soluble organic solvent are preferred.
  • water-soluble organic solvent for example, glycerol, ethanol, dimethyl sulfoxide, N-methylpyrrolidone, polyethylene glycol, cremophor, etc. And a mixture thereof, and a mixture of water and the water-soluble organic solvent are preferred.
  • the dose of the polymer compound represented by the general formula (1) is appropriately set in consideration of the patient's sex, age, physique, physiological condition, disease state, therapeutic effect and the like.
  • the dose per body surface area of a patient is 0.01 to 500 mg / m 2 , preferably 1 to 200 mg / m 2 parenterally, in terms of EHC, which is an active ingredient, per day for an adult.
  • the dose per body surface area of the patient is 0.01 to 500 mg / m 2 , preferably 1 to 200 mg / m 2 .
  • the polymer compound of the present invention can be used in combination with other antitumor agents.
  • Other antitumor agents are not particularly limited, and pharmaceuticals approved as antitumor agents and malignant tumor therapeutic agents can be used. That is, alkylating agents such as cyclophosphamide, ifosfamide and mitomycin C, platinum complexes such as cisplatin, carboplatin and oxaliplatin, anthracycline antitumor agents such as doxorubicin, epirubicin, pirarubicin and amrubicin, etoposide, etoposide phosphate, teniposide Etoposides, paclitaxel, docetaxel and other taxanes, vincristine, vinblastine, vindesine, vinca albinoids such as vinorelbine, 5-fluorouracil, tegafur, tegafur / uracil combination (UFT), tegafur / gimeracil /
  • the polymer compound of the present invention is used for the treatment of malignant tumor diseases.
  • the malignant tumor applied to the treatment with the polymer compound of the present invention is not particularly limited, and breast cancer, non-small cell lung cancer, small cell lung cancer, colorectal cancer, non-Hodgkin lymphoma (NHL), renal cell carcinoma, Prostate cancer, hepatocellular carcinoma, gastric cancer, pancreatic cancer, soft tissue sarcoma, Kaposi sarcoma, carcinoid carcinoma, head and neck cancer, melanoma, ovarian cancer, bile duct cancer, mesothelioma, and multiple myeloma, etc. widely It can be applied to general cancer treatment.
  • breast cancer non-small cell lung cancer, small cell lung cancer, colorectal cancer, non-Hodgkin lymphoma (NHL), renal cell carcinoma, Prostate cancer, hepatocellular carcinoma, gastric cancer, pancreatic cancer, soft tissue sarcoma, Kaposi sarcoma,
  • non-small cell lung cancer, cervical cancer, ovarian cancer, gastric cancer (inoperable or recurrent), colorectal cancer (inoperable or recurrent), breast cancer (inoperable or recurrent) for which camptothecin derivatives are being treated Suitable for the treatment of squamous cell carcinoma, malignant lymphoma (non-Hodgkin lymphoma).
  • high therapeutic effects can be expected in chemotherapy for various cancers that have undergone pretreatment with a camptothecin derivative and have decreased sensitivity to the camptothecin derivative in the pretreatment.
  • the present invention will be further described below with reference to examples. However, the present invention is not limited to these examples.
  • the present invention products Gaussian distribution analysis showing the size of the particles constituting in aqueous solution (particle size) were performed at Zeta Potential / Particlesizer NICOMP TM 380ZLS ( Particle Sizing Systems , Inc.).
  • the methoxypolyethylene glycol-polyglutamic acid block copolymer (with a molecular weight of 12,000 at one end is a methyl group and the other end is at aminopropyl) by a method according to the method described in the pamphlet of International Publication No.
  • EHC 7-ethyl-10-hydroxycamptothecin
  • DIPCI diisopropylcarbodiimide
  • DMAP N, N-dimethylaminopyridine
  • the contents of EHC and compound 5 bound to compound 1 were analyzed by HPLC (high performance liquid chromatography) after adding 1N sodium hydroxide aqueous solution to compound 1 and stirring at 37 ° C. for 1 hour. And calculated from the amount obtained from the calibration curve obtained with EHC and Compound 5. As a result, the contents of bound EHC and compound 5 were 3.4% (w / w) and 15.4% (w / w), respectively. Further, according to 1 H-NMR method, the bond content of —N (R 6 ) CONH (R 7 ) (R 6 and R 7 are isopropyl groups) corresponding to R 5 according to the general formula (1) is 3.0 % (W / w).
  • 2006/120914 pamphlet It consists of a polyethylene glycol segment and a polyglutamic acid segment (terminal N acetyl group) having a polymerization number of 23, and the binding group is A block copolymer which is a rimethylene group) was prepared.
  • the methoxypolyethylene glycol-polyglutamic acid block copolymer (389 mg), EHC (70 mg) and Compound 5 (70 mg) obtained in Synthesis Example 1 were dissolved in DMF (7.0 mL), stirred at 35 ° C. for 30 minutes, and then stirred at 20 ° C. for 2 hours. did. To this was added 167 ⁇ L of DIPCI and 6.9 mg of DMAP, and the mixture was stirred at 20 ° C. for 21 hours.
  • the content of EHC and compound 5 bound to compound 2 was determined by adding 1N sodium hydroxide aqueous solution to compound 1 and stirring at 37 ° C. for 1 hour, and then measuring the content of free EHC and compound 5 by HPLC (high performance liquid chromatography). And calculated from the amount obtained from the calibration curve obtained with EHC and Compound 5. As a result, the contents of bound EHC and compound 5 were 10.9% (w / w) and 9.0% (w / w), respectively.
  • the bond content of —N (R 6 ) CONH (R 7 ) (R 6 and R 7 are isopropyl groups) corresponding to R 5 according to the general formula (1) was 2.9% by 1 H-NMR method. (W / w).
  • a block copolymer comprising a glycol segment and a polyglutamic acid segment (terminal acetyl group) having a polymerization number of 10 .
  • the methoxypolyethylene glycol-polyglutamic acid block copolymer 473 mg, EHC 32 mg, and Compound 5 150 mg obtained in Synthesis Example 1 were dissolved in DMF 10 mL, stirred at 35 ° C. for 25 minutes, and then stirred at 25 ° C. for 2 hours. Then, 235 ⁇ L of DIPCI and 9 mg of DMAP were added and stirred at 25 ° C. for 20 hours. Thereafter, 118 ⁇ L of DIPCI was added, and the mixture was further stirred for 5 hours.
  • the reaction solution was slowly added dropwise to a mixed solution of 30 mL of ethyl acetate and 120 mL of diisopropyl ether, and stirred at room temperature for 2 hours.
  • the precipitate was collected by filtration and washed with ethyl acetate.
  • the obtained precipitate was dissolved in 11.0 mL of acetonitrile and 2.0 mL of water, an ion exchange resin (Dow Chemical Dowex 50 (H + ), 5.0 mL) was added, and the mixture was stirred and filtered.
  • the obtained filtrate was transferred to a dialysis membrane and dialyzed overnight at 5 ° C., and then the solution in the dialysis membrane was recovered.
  • Acetonitrile in the obtained solution was distilled off under reduced pressure, and then freeze-dried to obtain Compound 3 (500 mg).
  • the content of EHC and compound 5 bound to compound 3 was determined by adding 1N sodium hydroxide aqueous solution to compound 1 and stirring at 37 ° C. for 1 hour, and then determining the content of free EHC and compound 5 by HPLC (high performance liquid chromatography). And calculated from the amount obtained from the calibration curve obtained with EHC and Compound 5. As a result, the contents of bound EHC and compound 5 were 3.6% (w / w) and 16.6% (w / w), respectively.
  • the bond content of —N (R 6 ) CONH (R 7 ) (where R 6 and R 7 are isopropyl groups) corresponding to R 5 according to the general formula (1) is 3.4% by 1 H-NMR method. (W / w).
  • control drug 1 was hydrolyzed at room temperature for 10 minutes with a 1N-sodium hydroxide aqueous solution, and then the liberated EHC was quantitatively analyzed by the HPLC method to obtain an EHC content of 21% (w / w )Met.
  • the bond content of —N (R 6 ) CONH (R 7 ) (where R 6 and R 7 are isopropyl groups) corresponding to R 5 according to the general formula (1) was 5.6% by 1 H-NMR method. (W / w).
  • DIPCI diisopropylcarbodiimide
  • DMAP N, N-dimethylaminopyridine
  • the bond content of the group —N (R 6 ) CONH (R 7 ) (where R 6 and R 7 are isopropyl groups) corresponding to R 5 according to the general formula (1) by 1 H-NMR method is 3 0.0% (w / w).
  • the high molecular compounds of the present invention release and release both EHC and compound 5 slowly in a PBS solution without hydrolase. I was able to.
  • the drug release rates of EHC and Compound 5 varied depending on the composition of the block copolymer in which polyethylene glycol and polyglutamic acid were linked and the amount of each drug bound. It has been shown that the release rate of EHC and compound 5 can be controlled.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Epidemiology (AREA)
  • Molecular Biology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)
  • Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)

Abstract

患部に効率的に2つの薬剤を送達して、副作用が低減され、薬効の増強がもたらされる高分子化合物、及びそれを有効成分とする抗腫瘍剤を提供する。該高分子化合物は、ポリエチレングリコールセグメントとポリグルタミン酸セグメントが連結したブロック共重合体の側鎖におけるカルボキシル基にカンプトテシン誘導体とHSP90阻害剤とがエステル結合したものである。

Description

カンプトテシン誘導体とHSP90阻害剤の結合した高分子化合物及びその用途
 本発明はカンプトテシン誘導体とHSP90阻害剤が同一分子に結合された高分子化合物に関する。本発明の高分子化合物は、カンプトテシン誘導体とHSP90阻害剤を患部へ同時に送達するための薬物送達システムに関し、また、優れた抗腫瘍活性を示す医薬品化合物に関する。
 カンプトテシンは、中国産の植物「喜樹」より抽出された植物アルカロイドでI型トポイソメラーゼ阻害剤である。これはDNAと複合体を形成したI型トポイソメラーゼに選択的に結合し、その構造を安定化させる。その結果、切断されたDNAの再結合が不可能となり、DNAの合成を止めて細胞死を誘導する薬剤である。
 カンプトテシンは高い抗腫瘍効果を示し1960年代に抗癌剤として開発が進められたが、強い毒性として骨髄抑制と***が見られたために臨床試験が中止となった。
 その後、カンプトテシンよりも水に溶けやすく、抗腫瘍活性はより強いが毒性はより低い誘導体としてトポテカンとイリノテカンが開発された。トポテカンは、代謝を経ずに抗腫瘍効果を発揮し、投与量の20~40%が腎***であるため副作用の下痢が軽度である。イリノテカンはそれ自体でも抗腫瘍効果を有しているが、生体内でカルボキシルエステラーゼにより活性代謝物の7-エチル-10-ヒドロキシカンプトテシン(以下、EHCと記載することもある)に代謝され、より強い抗腫瘍効果を発揮する。またイリノテカンとEHCは、トポテカンよりも生物学的に活性であるラクトン型として血漿中に存在する割合が多く、半減期が長いという特徴を有する。
 臨床においてカンプトテシン誘導体は多くの癌種に使用されている。トポテカンは小細胞肺癌や癌化学療法剤による前治療を実施した卵巣癌に対する適応が承認された。一方、イリノテカンは小細胞肺癌、非小細胞肺癌、子宮頸癌、卵巣癌、胃癌(手術不能または再発)、結腸・直腸癌(手術不能または再発)、乳癌(手術不能または再発)、有棘細胞癌、悪性リンパ腫(非ホジキンリンパ腫)に対する広い適応で承認された。
 抗腫瘍剤の薬理活性を効率的に引き出すために、高分子担体を利用する手法が知られており、カンプトテシン誘導体を用いた高分子-カンプトテシン誘導体結合体の報告がされている。特許文献1には、フェノール性水酸基を有するカンプトテシン誘導体を、ポリエチレングリコール類と側鎖にカルボキシ基を有するポリマーが連結した共重合体にエステル結合させて調製した高分子化カンプトテシン誘導体が記載されている。該高分子化誘導体では、化学的に開裂しやすいフェニルエステル結合でカンプトテシン誘導体が結合されており、生体内に投与した後、薬理活性を有するカンプトテシン誘導体が緩徐に放出されることが記載されている。更に、該高分子化カンプトテシン誘導体は、自己会合性を有しており、ミセル様会合体を形成して高い腫瘍組織内分布を示すことにより、腫瘍組織に選択的に薬効を示して、副作用が少ない抗腫瘍剤であることが記載されている。この高分子化カンプトテシン誘導体は、薬効成分であるEHCの放出が酵素に依存しないため、治療効果発現において患者の個体差に影響されにくい利点を有すると考えられる。
 熱ショックタンパク(Heat Shock Protein;HSP)は細胞内に存在する分子シャペロンであり、その分子量によってHSP90、HSP70、HSP60、HSP40、small HSPsなど、幾つかのファミリーに分類される機能性分子である。分子シャペロンとは、タンパク質の機能的高次構造の形成を促進するため、標的タンパク質と一時的に複合体を形成するタンパク質の総称である。すなわち、分子シャペロンは、タンパク質の折り畳みや会合を助け、凝集を抑止する活性を持つ。
 HSPは、細胞内のシグナル伝達系に関わる多様なタンパク質と相互作用することが知られている。HSPが結合する分子はクライアントタンパク質と呼ばれ、HSP90のクライアントタンパク質はおよそ200分子が報告されている。すなわちHSP90は、多様なタンパク質の機能発現に必要な場合が多く、その作用機作は、HSP90が不安定な折り畳み状態にあるクライアントタンパク質を特異的に認識して、これと結合して複合体を形成する生化学的特性に基づいている。癌関連のシグナル伝達に関わる多様なタンパク質(ステロイドレセプター、Raf セリンキナーゼ、チロシンキナーゼ類)は、HSP90にその構造構築を依存しており、HSP90が細胞周期の制御、細胞の癌化・増殖・生存シグナルに深く関与していることが明らかになっている。
 ヒト腫瘍では多くのシグナル分子の調節に異常を来しており、これらのシグナル分子の機能を維持するためにHSP90を必要としている。近年、HSP90に作用してその機能を阻害する化合物は、癌関連のシグナル伝達に関わる多様なクライアントタンパク質の分解を引き起こし、癌細胞の増殖を抑制できることが報告された。すなわちHSP90阻害剤は、クライアントタンパク質とHSP90を含むシャペロン複合体の構成を変化させる作用を有する。その後、該複合体から離脱したクライアントタンパク質は、主にユビキチン・プロテアソ-ム系で分解される。これにより、HSP90のクライアントタンパク質量が減少し、それに伴い下流へのシグナル伝達を遮断し、癌細胞の増殖を抑制する事により抗腫瘍効果をもたらす。癌細胞は、HSP90阻害剤に対する感受性が、正常細胞と比較して高いことが期待される。そこでHSP90を標的分子とするHSP90阻害剤の探索的研究、並びにその抗腫瘍効果の検証がなされている。
 HSP90阻害剤の臨床応用は、ゲルダナマイシン誘導体で先行して実施されてきた。ゲルダナマイシン誘導体である17-AAGについては、造血器腫瘍、乳癌、メラノーマおよび消化管間質腫瘍(GIST)を対象に臨床試験が行われてきたが、難溶解性である問題と共に、肝毒性が発現する問題があった。そこで、ゲルダナマイシン誘導体の問題点を克服し得る、新規低分子HSP90阻害剤の探索及び構造最適化研究が進められ、その結果、幾つかの複素環型HSP90阻害剤が見出された。
 例えば特許文献2~4には、HSP90阻害剤として有用な1,2,4-トリアゾール-3-オン置換レゾルシン誘導体が報告されている。また特許文献5には、1,2,4-トリアゾール-3-オン置換レゾルシン誘導体の薬物動態の改善と、薬剤の徐放化を指向した高分子化HSP90阻害剤である高分子化1,2,4-トリアゾール-3-オン置換レゾルシン誘導体が記載されている。該高分子化HSP90阻害剤は、ポリエチレングリコールセグメントとカルボキシ基を有するポリマーセグメントを有するブロック共重合体に、HSP90阻害剤である1,2,4-トリアゾール-3-オン置換レゾルシン誘導体を結合させた高分子化薬剤結合化合物である。これは自己会合性を有しており、ミセル様会合体を形成して高い腫瘍組織内分布を示すことにより、腫瘍組織に選択的に薬剤を作用させて薬効を示し、副作用が少ない抗腫瘍剤であることが記載されている。つまり、該高分子化HSP90阻害剤を生体に投与すると、腫瘍組織に高濃度で分布すると共に、HSP90阻害活性を有する1,2,4-トリアゾール-3-オン置換レゾルシン誘導体を徐放して抗腫瘍効果を発揮する抗腫瘍剤であると記載されている。
 HSP90阻害剤は、殺細胞性の抗腫瘍剤と組み合わせることで、抗腫瘍効果が増強されることが期待され、HSP90阻害剤と他の抗腫瘍剤との併用による癌治療の開発が進められている。
 特許文献6には、HSP90阻害剤である1,2,4-トリアゾール-3-オン置換レゾルシン誘導体とI型トポイソメラーゼ阻害剤であるカンプトテシンとの併用が記載されている。また、非特許文献1には、HSP90阻害剤である17-AAGとイリノテカンの併用による第I相臨床試験が報告されている。
 薬理活性機構の異なる複数の薬剤の併用投与は、相乗的な薬理活性増強効果を奏することがあり、高い治療効果を得るために種々の組合せが検討されている。しかしながら、細胞レベルでの相乗的な薬理活性増強効果を実際の疾病に対して効果奏功させるためには、疾病患部に複数の薬剤を所望の濃度及び感作時間で作用させる必要があり、複数の薬剤を送達するための薬物送達システムを開発する必要がある。特許文献7及び非特許文献2には、ドキソルビシンと他の抗癌剤を保持させた高分子化合物が報告されている。しかしながら、カンプトテシン誘導体とHSP90阻害剤との併用療法において、2つの薬剤の至適な薬物送達を考慮した薬剤送達性化合物に関する報告は知られていない。
国際公開WO2004/039869号パンフレット 国際公開WO2006/055760号パンフレット 国際公開WO2006/087077号パンフレット 国際公開WO2006/095783号パンフレット 交際公開WO2008/041610号パンフレット 国際公開WO2013/067162号パンフレット 特表2010-519305号公報
Tse A.N. et al.,Clin.Cancer Res.,14:20,6704‐6711(2008) Younsoo Bae & Kazunori Kataoka,Adv.Drug Deliv.Rev.,61,768‐784(2009)
 本発明の目的は、カンプトテシン誘導体とHSP90阻害剤、特に1,2,4-トリアゾール-3-オン置換レゾルシン誘導体を疾病患部に効率的に同時に送達して薬物を放出し、所望の濃度及び感作時間で作用させる薬物送達システム(DDS)を提供することにより、正常細胞に対する細胞障害が抑制されて副作用が低減され、優れた抗腫瘍効果が得られる医薬品化合物を提供することにある。
 本発明者らは、カンプトテシン誘導体とHSP90阻害剤、特にHSP90阻害活性を有する1,2,4-トリアゾール-3-オン置換レゾルシン誘導体が、同一分子に結合している高分子化合物を創出し、該化合物により化学療法剤として満足できる治療効果が得られることを見出して本発明に至った。
 すなわち本発明は、以下の構成1)~8)を要旨とする。
1) ポリエチレングリコールセグメントとポリグルタミン酸セグメントが連結したブロック共重合体にカンプトテシン誘導体及びHSP90阻害剤が結合した高分子化合物であって、該高分子化合物は一般式(1)
Figure JPOXMLDOC01-appb-C000005
[式中、Rは水素原子又は置換基を有していてもよい(C1~C4)アルキル基を示し、tは45~450の整数を示し、Aは(C1~C6)アルキレン基であり、d+e+f+g+hは6~60の整数を示し、d+e+f+g+hに対するdの割合が5~50%、eの割合が5~90%、fの割合が0~90%、gの割合が0~90%、hの割合が0~90%であり、Rは水素原子または(C1~C4)アシル基を示し、RはHSP90阻害剤の結合残基またはHSP90阻害剤が結合したアスパラギン酸残基を示し、Rはアスパラギン酸残基またはアスパラギン酸イミド残基を示し、Rは-N(R)CONH(R)を示し、R及びRは同一でも異なってもいてもよく、分岐若しくは環状の(C3~C6)アルキル基または三級アミノ基で置換されていてもよい分岐若しくは直鎖の(C1~C5)アルキル基を示し、前記ポリグルタミン酸セグメントは、側鎖カルボキシ基に7-エチル-10-ヒドロキシカンプトテシンが結合したグルタミン酸単位、側鎖カルボキシ基にR基が結合したグルタミン酸単位、側鎖カルボキシ基にR基が結合したグルタミン酸単位、側鎖カルボキシ基にR基が結合したグルタミン酸単位及び側鎖カルボキシ基が遊離カルボキシ基であるグルタミン酸単位が、それぞれ独立して、ランダムに配列したポリグルタミン酸構造である。]で表される高分子化合物。
2) RがHSP90阻害剤の結合残基であり、該HSP90阻害剤が一般式(2)
Figure JPOXMLDOC01-appb-C000006
[式中、Xは直鎖若しくは分岐の(C1~C6)のアルキル基または-CONR1112を示し、前記R11及びR12は同一でも異なっていてもよい(C1~C6)の直鎖状、分岐状または環状アルキル基であり、Xは置換基を有していてもよいアリール基を示す。]で示される1,2,4-トリアゾール-3-オン置換レゾルシン誘導体であり、レゾルシン部分の水酸基がエステル結合したHSP90阻害剤の結合残基である、前記1)に記載の高分子化合物。
3) Rが、HSP90阻害剤が結合したアスパラギン酸残基であり、該アスパラギン酸残基が一般式(3)または一般式(4)
Figure JPOXMLDOC01-appb-C000007
[式中、R及びRはそれぞれ独立して水素原子または(C1~C6)アルキル基を示し、R10は水素原子、(C1~C40)アルキル基、(C1~C40)アラルキル基、芳香族基及びカルボキシ基が保護されたアミノ酸残基からなる群から選択される1種以上の置換基を示し、CX-CYはCH-CH若しくはC=C(二重結合)を示し、DはHSP90阻害剤の結合残基を示す。]である、前記1)に記載の高分子化合物。
4) 前記DのHSP90阻害剤の結合残基の該HSP90阻害剤が、一般式(2)
Figure JPOXMLDOC01-appb-C000008
[式中、Xは直鎖若しくは分岐の(C1~C6)のアルキル基または-CONR1112を示し、前記R11及びR12は同一でも異なっていてもよい直鎖状、分岐状または環状の(C1~C6)アルキル基であり、Xは置換基を有していてもよいアリール基を示す。]で示される1,2,4-トリアゾール-3-オン置換レゾルシン誘導体であり、レゾルシン部分の水酸基がエステル結合したHSP90阻害剤の結合残基である、前記3)に記載の高分子化合物。
5) 一般式(1)のdとeの比率がd:e=1:0.5~15である前記1)~4)のいずれか一項に記載の高分子化合物。
6) Rがメチル基またはエチル基、Aがエチレン基またはプロピレン基、Rがアセチル基またはプロピオニル基、R、Rが共にシクロヘキシル基または共にイソプロピル基であり、d+e+f+g+hに対するdの割合が5~40%、eの割合が5~80%、fの割合が0~60%、gの割合が5~40%、hの割合が0~30%である、前記1)~5)のいずれか一項に記載の高分子化合物。
7) 前記1)~6)のいずれか一項に記載の高分子化合物を有効成分とする抗腫瘍剤。
8) 前治療においてカンプトテシン誘導体による抗癌治療を処置された悪性腫瘍に処方される前記7)に記載の抗腫瘍剤。
 本発明の高分子化合物は、癌化学療法においてキードラッグとなるカンプトテシン誘導体と、HSP90阻害剤、特にHSP90阻害活性を有する1,2,4-トリアゾール-3-オン置換レゾルシン誘導体が結合していることを特徴とし、カンプトテシン誘導体とHSP90阻害剤の2つの薬剤を、同一部位に至適用量で、至適時間で薬物送達することができる薬物送達システムを提供することができる。本発明の薬物送達システムは、2つの薬剤を患部に同時に送達させることができ、且つ理想的な薬物濃度及び薬物感作時間にて薬剤を作用させることができ、2つの薬剤による相乗効果を奏する理論的な併用療法を可能とし、抗腫瘍効果の増強と副作用の低減を達成できる。したがって、効率的かつ安全な癌の化学療法を達成することができる。
化合物1のPBS溶液(リン酸緩衝生理食塩水;pH7.1)中、37℃での全結合薬剤量に対するEHC及び化合物5の放出量の割合を示す。 化合物2のPBS溶液(リン酸緩衝生理食塩水;pH7.1)中、37℃での全結合薬剤量に対するEHC及び化合物5の放出量の割合を示す。 化合物3のPBS溶液(リン酸緩衝生理食塩水;pH7.1)中、37℃での全結合薬剤量に対するEHC及び化合物5の放出量の割合を示す。 マウス大腸癌Colon38移植マウスに、本発明の高分子化合物(化合物1)、対照薬1及び2を投与した時の、投与開始日からの相対腫瘍体積の変化を示す。
 本発明は、カンプトテシン誘導体とHSP90阻害剤が同一分子に結合しているポリエチレングリコールセグメントとポリグルタミン酸セグメントが連結したブロック共重合体であり、一般式(1)
Figure JPOXMLDOC01-appb-C000009
[式中、Rは水素原子又は置換基を有していてもよい(C1~C4)アルキル基を示し、tは45~450の整数を示し、Aは(C1~C6)アルキレン基であり、d+e+f+g+hは6~60の整数を示し、d+e+f+g+hに対するdの割合が5~50%、eの割合が5~90%、fの割合が0~90%、gの割合が0~90%、hの割合が0~90%であり、Rは水素原子または(C1~C4)アシル基を示し、RはHSP90阻害剤の結合残基またはHSP90阻害剤が結合したアスパラギン酸残基を示し、Rはアスパラギン酸残基またはアスパラギン酸イミド残基を示し、Rは-N(R)CONH(R)を示し、R、Rは同一でも異なってもいてもよく、(C3~C6)分岐若しくは環状アルキル基または三級アミノ基で置換されていてもよい(C1~C5)分岐若しくは直鎖アルキル基を示し、前記ポリグルタミン酸セグメントは、側鎖カルボキシ基に7-エチル-10-ヒドロキシカンプトテシンが結合したグルタミン酸単位、側鎖カルボキシ基にR基が結合したグルタミン酸単位、側鎖カルボキシ基にR基が結合したグルタミン酸単位、側鎖カルボキシ基にR基が結合したグルタミン酸単位及び側鎖カルボキシ基が遊離カルボキシル基であるグルタミン酸単位がそれぞれ独立して、ランダムに配列したポリグルタミン酸構造である。]で表される。
 一般式(1)において、Rはポリエチレングリコールセグメントの末端修飾基であり、水素原子又は置換基を有していてもよい(C1~C4)アルキル基である。
 Rにおける置換基を有していてもよい(C1~C4)アルキル基は、直鎖状又は分岐状の(C1~C4)アルキル基である。具体例を挙げるとメチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基またはtert-ブチル基である。置換基を有していてもよい(C1~C4)アルキル基の置換基としては、例えば、アミノ基、ジアルキルアミノ基、アルキルオキシ基、カルボキシル基などが挙げられる。Rとしてはメチル基またはエチル基が好ましく、メチル基が特に好ましい。
 一般式(1)におけるポリエチレングリコールセグメントにおいて、エチレンオキシ基;(OCHCH)基の単位繰り返し構造数を示す一般式(1)のtは、45~450であり、好ましくは90~340である。すなわち、ポリエチレングリコール部分の分子量は、2,000~20,000のものを用いることが好ましく、4,000~15,000がより好ましい。
 一般式(1)におけるAは、ポリエチレングリコールセグメントとポリグルタミン酸セグメントをつなぐ結合基である。一般式(1)におけるAは(C1~C6)のアルキレン基であり、例えば、メチレン基、エチレン基、トリメチレン基、テトラメチレン基、ヘキサメチレン基等が挙げられる。中でも好ましくはエチレン基またはトリメチレン基であり、特に好ましくはトリメチレン基である。
 一般式(1)で表される本発明の高分子化合物のポリグルタミン酸セグメントは、グルタミン酸ユニットがアミド結合した構造体である。アミド結合は、主としてα‐アミド結合型で結合した構造であるが、γ-アミド結合型で結合した構造を含んでいても良い。各グルタミン酸ユニットのグルタミン酸は、L型でもD型でもよい。一般式(1)におけるグルタミン酸ユニット総数(ポリグルタミン酸重合数)は、d+e+f+g+hで表され、6~60である。好ましくはd+e+f+g+hが8~40である。したがって、ポリグルタミン酸セグメントの平均分子量は600~15,000程度、好ましくは800~10,000程度である。
 一般式(1)におけるRとしては、水素原子または(C1~C4)アシル基が挙げられる。Rとしては(C1~C4)アシル基が好ましく、例えば、ホルミル基、アセチル基、プロピオニル基等が挙げられ、中でもアセチル基またはプロピオニル基が好ましく、アセチル基が特に好ましい。
 一般式(1)におけるRは、-N(R)CONH(R)で示されるウレア構造置換基あり、R及びRは同一でも異なっていてもよく、分岐若しくは環状の(C3~C6)アルキル基または三級アミノ基で置換されていてもよい分岐若しくは直鎖の(C1~C5)アルキル基である。該分岐若しくは環状(C3~C6)アルキル基としては、例えば、イソプロピル基、イソブチル基、sec-ブチル基、tert-ブチル基、1-メチルブチル基、2-メチルブチル基、ネオペンチル基、シクロヘキシル基等が挙げられ、より好ましくはイソプロピル基、シクロへキシル基が挙げられる。該三級アミノ基で置換されていてもよい分岐若しくは直鎖(C1~C5)アルキル基としては、例えば、エチル基、ジメチルアミノプロピル基等が挙げられる。R及びRとしては、RとRが共にイソプロピル基またはシクロへキシル基、若しくはRとRがエチル基とジメチルアミノプロピル基の組み合せであることが好ましい。RとRが共にイソプロピル基またはシクロへキシル基である置換基が特に好ましい。
 一般式(1)に示すように、本発明の高分子化合物のポリグルタミン酸セグメントには、カンプトテシン誘導体である7-エチル-10-ヒドロキシカンプトテシン(EHC)が、その10位の水酸基とポリグルタミン酸の側鎖カルボキシ基がエステル結合している。
 一般式(1)におけるRはHSP90阻害剤の結合残基またはHSP90阻害剤が結合したアスパラギン酸残基である。本発明において、HSP90阻害剤とは、HSP90のATP結合部位に結合することでHSP90のクライアントタンパク質との結合を阻害し、最終的に細胞増殖を抑制する薬物であり、例えば、ゲルダナマイシン誘導体や置換レゾルシン誘導体等のいくつかの開発化合物が挙げられる。
 特に好ましくは、エステル結合によりポリグルタミン酸セグメントに結合することができる水酸基を有する置換レゾルシン誘導体である。該置換レゾルシン誘導体としては、一般式(2)
Figure JPOXMLDOC01-appb-C000010
[式中、Xは直鎖若しくは分岐の(C1~C6)アルキル基または-CONR1112を示し、前記R11及びR12は同一でも異なってもいてもよい直鎖状、分岐状または環状の(C1~C6)アルキル基であり、Xは置換基を有していてもよいアリール基を示す。]で示される1,2,4-トリアゾール-3-オン置換レゾルシン誘導体を挙げることができる。
 一般式(2)におけるXは、直鎖若しくは分岐の(C1~C6)アルキル基または-CONR1112を示し、前記R11及びR12は同一でも異なってもいてもよい直鎖状、分岐状または環状の(C1~C6)アルキル基である。Xにおける該直鎖または分岐の(C1~C6)アルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、イソブチル基、tert-ブチル基、1-ペンチル基、1-エチル-プロピル基、1-へキシル基等が挙げられる。R11及びR12における同一でも異なってもいてもよい直鎖状、分岐状または環状の(C1~C6)アルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、イソブチル基、tert-ブチル基、1-ペンチル基、1-エチル-プロピル基、1-へキシル基、シクロへキシル基等を挙げることができる。Xとしては、イソプロピル基、sec-ブチル基、イソブチル基、tert-ブチル基または-CONR1112であり、R11がメチル基でR12がn-ブチル基が好ましい。
 一般式(2)におけるX基は、置換基を有していてもよいアリール基である。該置換基を有していてもよいアリール基としては、置換基を有していてもよい炭素環アリール基、置換基を有していてもよい複素環アリール基が挙げられる。
 Xにおける置換基を有していてもよい炭素環アリール基において、炭素環アリール基としては、フェニル基、ナフチル基が挙げられる。置換基を有していてもよい炭素環アリール基としては、置換基としてアルキル基を有する炭素環アリール基、置換基としてハロゲン原子を有する炭素環アリール基、置換基としてアルコキシ基を有する炭素環アリール基、置換基としてアミノ基を有する炭素環アリール基、または置換基としてアミノアルキル基を有する炭素環アリール基が挙げられる。
 前記置換基としてアルキル基を有する炭素環アリール基としては、直鎖状、分岐状、又は環状の(C1~C30)アルキル基が少なくとも1つ以上を置換する炭素環アリール基である。好ましくは直鎖状、又は分岐状の(C1~C8)アルキル基が置換するフェニル基である。例えば、2-メチルフェニル基、4-メチルフェニル基、3-イソプロピルフェニル基、4-イソプロピルフェニル基、n-ヘキシルフェニル基、n-オクチルフェニル基、1-エチルプロピルフェニル基、2-メチルプロピルフェニル基等が挙げられる。
 前記置換基としてハロゲン原子を有する炭素環アリール基としては、少なくとも1つ以上のハロゲン原子が置換された炭素環アリール基である。好ましくはモノハロゲン置換フェニル基、またはジハロゲン置換フェニル基である。例えば2-クロロフェニル基、4-クロロフェニル基、2,4-ジクロロフェニル基、2-ブロモフェニル基、4-ブロモフェニル基、2,4-ジブロモフェニル基等が挙げられる。
 前記置換基としてアルコキシ基を有する炭素環アリール基としては、少なくとも1つ以上の1級、2級、または3級の(C1~C10)アルコキシ基を有する炭素環アリール基である。例えば、4-メトキシフェニル基、3-メトキシフェニル基、3,4-ジメトキシフェニル基、3,4-メチレンジオキシフェニル基が挙げられる。中でも4-メトキシフェニル基が好ましい。
 Xにおける置換基としてアミノ基を有する炭素環アリール基としては、前記アミノ基として、無置換のアミノ基、非環状の1級若しくは2級アミノ基、または環状の2級アミノ基を置換基として備える炭素環アリール基が挙げられる。
 置換基として備わる前記アミノ基において、非環状の1級アミノ基としては、直鎖状、分岐状若しくは環状の(C1~C10)アルキル基、またはアリール基が置換したアミノ基が挙げられる。例えば、メチルアミノ基、イソプロピルアミノ基、ネオペンチルアミノ基、n-ヘキシルアミノ基、シクロヘキシルアミノ基、n-オクチルアミノ基、フェニルアミノ基等が挙げられる。
 非環状の2級アミノ基としては、同一であっても異なっていても良く、直鎖状、分岐状若しくは環状の(C1~C10)アルキル基、またはアリール基がN,N-ジ置換したアミノ基である。例えば、ジメチルアミノ基、ジイソプロピルアミノ基、N-メチル-N-シクロヘキシルアミノ基、N-メチル-N-フェニルアミノ基、N-メチル-N-ピリジルアミノ基、ジフェニルアミノ基等が挙げられる。
 環状の2級アミノ基としては、モルフォリノ基、ピペラジン-1-イル基、4-メチルピペラジン-1-イル基、ピペリジン-1-イル基、ピロリジン-1-イル基等が挙げられる。
 前記置換基のアミノ基は、非環状の脂肪族1級若しくは非環状の2級アミノ基、または環状の脂肪族2級アミノ基が好ましい。すなわち、非環状の脂肪族1級アミノ基としては、メチルアミノ基、イソプロピルアミノ基、ネオペンチルアミノ基、n-ヘキシルアミノ基、シクロヘキシルアミノ基、n-オクチルアミノ基を好ましい例として挙げることができる。
 非環状の脂肪族2級アミノ基としては、ジメチルアミノ基、ジイソプロピルアミノ基、N-メチル-N-シクロヘキシルアミノ基を好ましい例として挙げる事ができる。
 環状の脂肪族2級アミノ基としては、モルフォリノ基、ピペラジン-1-イル基、4-メチルピペラジン-1-イル基、ピペリジン-1-イル基、ピロリジン-1-イル基を好ましい例として挙げることができる。
 置換基としてアミノ基を有する炭素環アリール基における、炭素環アリール基としてはフェニル基またはナフチル基が挙げられる。炭素環アリール基としてはフェニル基が好ましい。該フェニル基上のアミノ基の置換位置は特に限定されるものではなく、2~6位の何れの置換体であって良い。3位または4位のアミノ基置換体が好ましい。
 置換基としてアミノ基を有する炭素環アリール基において、好ましい態様としては、4位に非環状の脂肪族2級アミノ基が置換されたフェニル基、または4位に環状の脂肪族2級アミノ基が置換されたフェニル基が挙げられる。特に4-ジメチルアミノフェニル基、4-(モルフォリノ)フェニル基、または4-(4-メチルピペラジン-1-イル)フェニル基が好ましい。
 Xにおける置換基としてアミノアルキル基を有する炭素環アリール基としては、前記アミノ基として、無置換のアミノ基、非環状の1級若しくは非環状の2級アミノ基、または環状の2級アミノ基を置換基として有する(C1~C8)アルキル基が置換した炭素環アリール基が挙げられる。
 非環状の1級アミノ基としては、直鎖状、分岐状若しくは環状の(C1~C10)アルキル基、またはアリール基が置換したアミノ基が挙げられる。例えばメチルアミノ基、イソプロピルアミノ基、ネオペンチルアミノ基、n-ヘキシルアミノ基、シクロヘキシルアミノ基、n-オクチルアミノ基、フェニルアミノ基等が挙げられる。
 非環状の2級アミノ基としては、同一であっても異なっていても良く、直鎖状、分岐状若しくは環状の(C1~C10)アルキル基、またはアリール基がN,N-ジ置換したアミノ基である。例えばジメチルアミノ基、ジイソプロピルアミノ基、N-メチル-N-シクロヘキシルアミノ基、N-メチル-N-フェニルアミノ基、N-メチル-N-ピリジルアミノ基、ジフェニルアミノ基等が挙げられる。
 環状の2級アミノ基としては、モルフォリノ基、ピペラジン-1-イル基、4-メチルピペラジン-1-イル基、ピペリジン-1-イル基、ピロリジン-1-イル基等が挙げられる。
 前記置換基のアミノ基は、非環状の脂肪族1級若しくは非環状の2級アミノ基、または環状の脂肪族2級アミノ基が好ましい。すなわち、非環状の脂肪族1級アミノ基としては、メチルアミノ基、イソプロピルアミノ基、ネオペンチルアミノ基、n-ヘキシルアミノ基、シクロヘキシルアミノ基、n-オクチルアミノ基を好ましい例として挙げることができる。
 非環状の脂肪族2級アミノ基としては、ジメチルアミノ基、ジイソプロピルアミノ基、N-メチル-N-シクロヘキシルアミノ基を好ましい例として挙げる事ができる。
 環状の脂肪族2級アミノ基としては、モルフォリノ基、ピペラジン-1-イル基、4-メチルピペラジン-1-イル基、ピペリジン-1-イル基、ピロリジン-1-イル基を好ましい例として挙げることができる。
 前記アミノ基を置換基として有する(C1~C8)アルキル基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、オクチル基、等を挙げることができる。
 置換基としてアミノアルキル基を有する炭素環アリール基としては、フェニル基またはナフチル基が挙げられる。炭素環アリール基としてはフェニル基が好ましい。該フェニル基上の、アミノアルキル基の置換位置は特に限定されるものではなく、2~6位の何れの置換体であって良い。3位または4位のアミノ基置換体が好ましい。
 置換基としてアミノアルキル基を有する炭素環アリール基において、好ましい態様としては、(C1~C5)アルキル基の末端位に環状の脂肪族2級アミノ基が置換され、もう一方の末端基がフェニル基の4位に置換された態様が挙げられる。特に、4-(モルフォリノメチル)フェニル基、4-(4-メチルピペラジン-1-イルメチル)フェニル基、4-(2-モルフォリノエチル)フェニル基、4-[2-(4-メチルピペラジン-1-イル)エチル]フェニル基、4-(4-モルフォリノブチル)フェニル基、4-[5-(4-メチルピペラジン-1-イル)ペンチル]フェニル基が好ましい。更に好ましい態様としては、4-(モルフォリノメチル)フェニル基、または4-(4-メチルピペラジン-1-イルメチル)フェニル基である。
 Xにおける置換基を有していてもよい複素環アリール基としては、置換基を有していても良いピリジル基、置換基を有していても良いピリミジニル基、置換基を有していても良いキノリル基、置換基を有していても良いキナゾリニル基、置換基を有していても良いナフチリジニル基、置換基を有していても良いフリル基、置換基を有していても良いピロリル基、置換基を有していても良いインドリル基、置換基を有していても良いイミダゾリル基、置換基を有していても良いピラゾリル基、置換基を有していても良いオキサゾリル基、置換基を有していても良いイソキサゾリル基、置換基を有していても良いトリアゾリル基、等が挙げられる。好ましくは、置換基を有していても良いピリジル基、置換基を有していても良いピリミジニル基、置換基を有していても良いインドリル基、置換基を有していても良いイミダゾリル基を挙げることができる。特に好ましくは置換基を有していても良いピリジル基、置換基を有していても良いピリミジニル基、置換基を有していても良いインドリル基である。
 すなわち、本発明における、Xにおける置換基を有していてもよい複素環アリール基の好ましい態様としては、ピリジル基、置換基としてアルキル基を有するピリジル基、置換基としてアミノ基を有するピリジル基、置換基としてアルキル基を有するピリミジニル基、置換基としてアミノ基を有するピリミジニル基、置換基としてアルキル基を有するインドリル基、置換基としてアミノ基を有するインドリル基である。
 置換基としてアルキル基を有するピリジル基としては、6-メチルピリジン-3-イル基、5-メチルピリジン-2-イル基等が挙げられる。置換基としてアミノ基を有するピリジル基としては、5-ジメチルアミノピリジン-2-イル基等が挙げられる。置換基としてアルキル基を有するピリミジニル基としては、2-メチルピリミジン-4-イル基、2-メチルピリミジン-3-イル基等が挙げられる。置換基としてアミノ基を有するピリミジニル基としては、2-ジメチルアミノピリミジン-5-イル基、2-モルフォリノピリミジン-5-イル基、2-(4-メチルピペラジン-1-イル)ピリミジン-5-イル基等が挙げられる。置換基としてアルキル基を有するインドリル基としては、1-メチルインドール-5-イル基、1-エチルインドール-5-イル基等が挙げられる。
 本発明におけるHSP90阻害剤として好ましい1,2,4-トリアゾール-3-オン置換レゾルシン誘導体において、Xはイソプロピル基または-CONR1112であり、R11はメチル基でR12がn-ブチル基である。また、Xが2-メチルフェニル基、4-(モルフォリノメチル)フェニル基、4-(4-メチルピペラジン-1-イルメチル)フェニル基及び1-メチルインドール-5-イル基からなる群から選択される置換基の化合物が好ましい。
 ブロック共重合体に結合するHSP阻害剤として、好ましくは、Xがイソプロピル基であり、Xが1-メチルインドール-5-イル基である、5-(2,4-ジヒドロキシ-5-イソプロピルフェニル)-4-(1-メチル-1H-インドール-5-イル)-2,4-ジヒドロ-[1,2,4]トリアゾール-3-オン(下記一般式(5);化合物5);Xが-CONR1112でR11がメチル基でR12がn-ブチル基であり、Xが2-メチルフェニル基である、5-(2,4-ジヒドロキシ-5-(N-メチル-N-ブチルアミド))-4-(2-メチルフェニル)-2,4-ジヒドロ-[1,2,4]トリアゾール-3-オン(下記一般式(6);化合物6);または、Xがイソプロピル基であり、Xが4-(4-メチルピペラジン-1-イルメチル)フェニル基である、5-(2,4-ジヒドロキシ-5-イソプロピルフェニル)-4-[4-(4-メチルピペラジン-1-イルメチル)フェニル]-2,4-ジヒドロ-[1,2,4]トリアゾール-3-オン・2塩酸塩(下記一般式(7);化合物7)などを挙げることができる。
 Rの置換基となる化合物は、式(1)で表される化合物の同一高分子内あるいは分子間において単一種類であっても複数種類であってもよいが、単一種類であることが好ましい。
Figure JPOXMLDOC01-appb-C000011
 一般式(2)で示される1,2,4-トリアゾール-3-オン置換レゾルシン誘導体において、前記X基及び前記X基のそれぞれの組み合せの化合物は、何れも公知の文献に基づき合成することができる。該1,2,4-トリアゾール-3-オン置換レゾルシン誘導体の合成のための公知文献としては、以下の文献を挙げることができる。
 一般式(5)で表される化合物5は公知の化合物であり、例えば、国際公開第2007/139952号パンフレットの記載に従い製造することができる。
 一般式(6)で表される化合物6は公知の化合物であり、例えば、国際公開第2008/086857号パンフレットの記載に従い製造することができる。
 一般式(7)で表される化合物7は公知の化合物であり、例えば、国際公開第2006/095783号パンフレットの記載に従い製造することができる。
 本発明における高分子化合物は、ポリグルタミン酸セグメントにHSP90阻害剤を結合させた構造を有する。すなわち、ポリグルタミン酸セグメントのカルボン酸側鎖を用いて、HSP90阻害剤を結合させる。その結合様式は特に限定されるものではなく、ポリグルタミン酸セグメントのカルボン酸側鎖と、HSP90阻害剤の置換基を、適当な結合様式にて化学結合させれば良い。好ましくは、ポリグルタミン酸セグメントとHSP90阻害剤を、エステル結合を介して結合させることが好ましい。例えば、HSP90阻害剤が分子内にフェノール性水酸基を有する場合には、該フェノール性水酸基と、ポリグルタミン酸セグメントの側鎖カルボキシ基を、エステル結合により結合させればよい。フェノール性水酸基を用いたエステル結合を有する本発明における高分子化合物を生体内に投与すると、そのエステル結合が非酵素的に徐々に開裂する。すなわち、本発明の高分子化合物からのHSP90阻害剤の放出を制御して、徐放的な解離をさせることができる。前記のHSP90阻害剤として好ましい1,2,4-トリアゾール-3-オン置換レゾルシン誘導体は、レゾルシン部分にフェノール性水酸基を有することから、このレゾルシン水酸基とポリグルタミン酸セグメントの側鎖カルボキシ基とをエステル結合により結合させる態様を用いることができる。
 他の態様として、HSP90阻害剤が分子内にフェノール性水酸基を持たない場合には、他の態様によりポリグルタミン酸セグメントと、HSP90阻害剤を結合させる。HSP90阻害剤の分子内に一級または二級のアルコール性水酸基を有する場合には、該HSP90阻害剤とポリグルタミン酸セグメントの側鎖カルボキシ基の間に、アスパラギン酸誘導体をリンカーに用い、これを介して結合させる方法を挙げることができる。すなわち、リンカーとなるアスパラギン酸誘導体は、1つのカルボキシ基がアミド化された誘導体であり、該アスパラギン酸誘導体のアミノ基と、ブロック共重合体のポリグルタミン酸セグメントの側鎖カルボキシ基が、アミド結合により結合した結合基である。このアスパラギン酸誘導体の残余のカルボキシ基と、HSP90阻害剤のアルコール性水酸基をエステル結合させることで、HSP90阻害剤をポリグルタミン酸セグメントに結合させることができる。該アスパラギン酸誘導体をリンカーとして用いたHSP90阻害剤結合体は、生体内に投与すると非酵素的にHSP90阻害剤が解離して、徐放的に薬剤を放出させることができる。
 RがHSP90阻害剤が結合したアスパラギン酸残基である場合、そのアスパラギン酸残基としては、例えば、下記一般式(3)または一般式(4)
Figure JPOXMLDOC01-appb-C000012
[式中、R、Rはそれぞれ独立して水素原子または(C1~C6)アルキル基を示し、R10は水素原子、(C1~C40)アルキル基、(C1~C40)アラルキル基、芳香族基及びカルボキシ基が保護されたアミノ酸残基からなる群から選択される1種以上の置換基を示し、CX-CYはCH-CH若しくはC=C(二重結合)を示し、DはHSP90阻害剤の結合残基を示す。]で表される基が挙げられる。すなわち、本発明においてリンカーとするアスパラギン酸誘導体としては、一般式(3)または一般式(4)で表される基であることが好ましい。ここで、CX-CYがC=C(二重結合)の場合はE配置が好ましい。また、DがHSP90阻害剤の結合残基であり、アスパラギン酸誘導体の末端カルボキシル基とHSP90阻害剤とがエステル結合により結合している態様が好ましい。
 R及びRにおける(C1~C6)アルキル基として、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、s-ブチル基、イソブチル基、n-ペンチル基、n-ヘキシル基等が挙げられる。R及びRは共に水素原子が好ましい。
 R10における(C1~C40)アルキル基は、置換基を有していても良い(C1~C40)アルキル基であり、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、s-ブチル基、イソブチル基、n-ペンチル基、n-ヘキシル基、n-ステアリル基等が挙げられる。該置換基としては、例えば、フェニル基、ナフチル基、メトキシ基、エトキシ基、ジメチルアミノ基等が挙げられる。
 該(C1~C40)アラルキル基は、置換基を有していてもよい(C1~C40)アラルキル基であり、例えば、ベンジル基、ナフチルメチル基、フェネチル基、4-フェニルブチル基等が挙げられる。該置換基としては、例えば、メチル基、エチル基、ニトロ基、塩素原子、臭素原子、ジメチルアミノ基等が挙げられる。
 該芳香族基は、置換基を有していてもよい芳香族基であり、例えば、フェニル基、4-ニトロフェニル基、4-クロロフェニル基、ナフチル基、フルオレニル基等が挙げられる。
 なお、R、R、R10の各基における置換基の置換位置は、置換可能であれば特に限定されず、置換基数も特に限定されない。
 また、R10におけるカルボキシ基が保護されたアミノ酸残基のアミノ酸としては、通常のペプチド合成で用いられるカルボキシ基が保護されたアミノ酸が挙げられ、該アミノ酸のカルボキシ基がエステルあるいはアミドにより保護されている化合物が好ましい。
 エステルで保護されているアミノ酸としては、例えば、アミノ酸の置換基を有していてもよい(C1~C12)アルキルエステルであり、例えば、アラニンの(C1~C12)アルキルエステル、アスパラギン酸のα若しくはβ-(C1~C12)アルキルエステル、グルタミン酸のα若しくはγ-(C1~C12)アルキルエステル、フェニルアラニンの(C1~C12)アルキルエステル、システインの(C1~C12)アルキルエステル、グリシンの(C1~C12)アルキルエステル、ロイシンの(C1~C12)アルキルエステル、イソロイシンの(C1~C12)アルキルエステル、ヒスチジンの(C1~C12)アルキルエステル、プロリンの(C1~C12)アルキルエステル、セリンの(C1~C12)アルキルエステル、スレオニンの(C1~C12)アルキルエステル、バリンの(C1~C12)アルキルエステル、トリプトファンの(C1~C12)アルキルエステル、チロシンの(C1~C12)アルキルエステル等が挙げられる。
 特に好ましくはフェニルアラニンメチルエステル、グリシンメチルエステル、グリシン(4-フェニル-1-ブタノール)エステル、ロイシンメチルエステル、フェニルアラニンベンジルエステル、フェニルアラニン(4-フェニル-1-ブタノール)エステル等が挙げられる。該アミノ酸についてはD体でもL体でもそれらの混合物であってもよい。
 R10として特に好ましくはn-ブチル基、4-フェニルブチル基等が挙げられ、中でもフェニルブチル基が殊更好ましい。また、CX-CYがCH-CHであるのが好ましい。
 一般式(3)または一般式(4)において、DはHSP90阻害剤の結合残基である。該HSP90阻害剤は、アスパラギン酸誘導体の末端カルボキシル基とエステル結合により結合している態様が好ましい。該HSP90阻害剤としては、ゲルダナマイシン誘導体や置換レゾルシン誘導体等のいくつかの開発化合物を挙げることができる。
 前記Dに用いるHSP90阻害剤として、エステル結合によりポリグルタミン酸セグメントに結合することができる水酸基を有する置換レゾルシン誘導体が特に好ましい。該置換レゾルシン誘導体としては、一般式(2)
Figure JPOXMLDOC01-appb-C000013
[式中、Xは直鎖若しくは分岐の(C1~C6)アルキル基または-CONR1112を示し、前記R11及びR12は同一でも異なってもいてもよい直鎖状、分岐状または環状の(C1~C6)アルキル基であり、Xは置換基を有していてもよいアリール基を示す]で示される1,2,4-トリアゾール-3-オン置換レゾルシン誘導体を挙げることができる。なお、一般式(2)におけるX、X、R11、R12における置換基の定義は、前述と同義である。
 一般式(1)におけるRは、下記一般式(8)、一般式(9)で示されるアスパラギン酸残基及び/または下記一般式(10)で示されるアスパラギン酸イミド残基である。
Figure JPOXMLDOC01-appb-C000014
 一般式(8)、(9)及び(10)において、R、R、R10、CX-CYは上記一般式(3)及び(4)において定義された置換基群と同義である置換基群から選ばれる置換基が好ましい。これらの置換基が、高分子化合物中に存在する場合にはこれらの基が混在していてもよい。
 ここでR、R、R10、CX-CYは前記RにおけるR、R、R10、CX-CYと同様であり、好ましい基も同様である。
 一般式(1)におけるポリグルタミン酸セグメントには、EHC、R、R及びRの何れもが結合していないグルタミン酸部分が存在してもよい。一般式(1)では遊離酸型カルボキシ基を有するグルタミン酸残基で示しているが、カルボキシ基がアルカリ金属塩またはアルカリ土類金属塩になっていてもよく、そのようなカルボキシル基を含むグルタミン酸部分を有する一般式(1)の高分子化合物も本発明に含まれる。該アルカリ金属塩またはアルカリ土類金属塩としては、例えば、リチウム塩、ナトリウム塩、カリウム塩、マグネシウム塩、カルシウム塩等が挙げられる。更に、抗癌剤として非経口投与にて供せられる場合、溶解液にて溶液調製されるが、該溶液のpH緩衝剤の陽イオンとの塩に基づくグルタミン酸塩であってもよい。
 本発明におけるポリグルタミン酸セグメントには、側鎖カルボキシ基にEHCが結合しているグルタミン酸単位(含ユニット数はd)、側鎖カルボキシ基に前記Rが結合しているグルタミン酸単位(含ユニット数はe)があり、更に側鎖カルボキシ基に前記Rが結合しているグルタミン酸単位(含ユニット数はf)、側鎖カルボキシ基に前記Rが結合しているグルタミン酸単位(含ユニット数はg)、側鎖カルボキシ基が遊離カルボキシ基またはその塩であるグルタミン酸単位(含ユニット数はh)を有している。これらのうち、EHCが結合しているグルタミン酸単位及びHSP90阻害剤の結合残基であるRが結合しているグルタミン酸単位は、必須の構成単位である。一方、前記Rが結合しているグルタミン酸単位、Rが結合しているグルタミン酸単位及び遊離カルボキシ基またはその塩であるグルタミン酸単位は任意の構成単位である。これらの各グルタミン酸単位は、それぞれが独立してランダムに配列している。
 一般式(1)の、ポリグルタミン酸セグメントにおけるグルタミン酸ユニット総数は、d+e+f+g+hで表される。dの割合は5~50%、好ましくは5~40%、eの割合は5~90%、好ましくは5~80%、fの割合は0~90%、好ましくは0~60%、gの割合は0~90%、好ましくは5~40%、hの割合は0~90%、好ましくは0~30%である。
 本発明において、カンプトテシン誘導体であるEHCと、HSP90阻害剤の薬剤含量の比率は特に限定されるものではなく、EHCとHSP90阻害剤の併用により相乗的効果増強作用が得られる混合比率において任意に設定することができる。本発明において、EHCとHSP90阻害剤との混合比率は、ポリグルタミン酸セグメントにおけるそれぞれの薬剤の結合量で示され、ポリグルタミン酸セグメントの各ユニットの比率を表すd値とe値により設定される。なお、本発明の高分子化合物は、EHCとHSP90阻害剤はブロック共重合体から遊離して薬効を示すと考えられる。このため、各薬剤の結合量は、薬剤のブロック共重合体からの解離速度を考慮して、相乗的効果増強作用を示す併用濃度比率となるよう設定すべきである。好ましくは、EHCとHSP90阻害剤の混合比率であるd:eとしては、d:e=1:0.5~15の範囲である。より好ましくは1:1~10である。
 HSP90阻害剤として、一般式(2)で表される1,2,4-トリアゾール-3-オン置換レゾルシン誘導体を用いる場合、EHCと1,2,4-トリアゾール-3-オン置換レゾルシン誘導体の混合比率であるd:eとしては、d:e=1:0.5~15の範囲であり、d:e=1:1~10であることがより好ましい。HSP90阻害剤として、一般式(5);化合物5、一般式(6);化合物6及び一般式(7);化合物7からなる群から選択される化合物を用いる場合も、同様に、d:eとしては、d:e=1:0.5~15の範囲であり、d:e=1:1~10であることがより好ましい。
 本発明の一般式(1)で示される高分子化合物は、水中でポリエチレングリコールセグメントを外殻とし薬剤等が結合しているポリグルタミン酸セグメントを内殻とするミセルを形成してもよい。すなわち、本発明の高分子化合物は、ポリエチレングリコールとポリグルタミン酸が連結したブロック共重合体を担体とした抗腫瘍剤であるが、自己会合体形成によりさらに分子量の高い高分子体となる。該自己会合体は、好ましくは分子量が10程度の高分子量体となり、分子量に依存した体内動態をとる。すなわち半減期の増大や、腫瘍組織への浸透性向上及び腫瘍組織での蓄積といった抗腫瘍剤の薬効発現の効率化に望ましい薬物動態特性が期待される薬剤である。
 次に、本発明の高分子化合物の製造方法を説明する。なお、本発明の高分子化合物の製造方法はここに記載の製造方法や後記の実施例及び参考例に記載の方法に限定されない。
 一般式(1)で表される本発明の高分子化合物であるポリエチレングリコールセグメントとポリグルタミン酸セグメントを有するブロック共重合体の主鎖の構築方法は、ポリエチレングリコールセグメントとポリグルタミン酸セグメントを結合させる方法、ポリエチレングリコールセグメントにグルタミン酸構造単位を順次に遂次重合させる方法のいずれの方法であってもよい。
 後者の方法としては、国際公開2006/120914号パンフレット等に記載の方法に準じて、例えば、片末端にメチル基等の修飾基、他方片末端にアミノプロピル基で修飾されたポリエチレングリコールに、N-カルボニルグルタミン酸無水物を順次反応させ、ポリグルタミン酸セグメントを構築する方法が挙げられる。この場合、N-カルボニルグルタミン酸無水物は、グルタミン酸側鎖のカルボキシ基が適当なカルボン酸保護基で修飾されていてもよく、また、あらかじめ所定のカルボキシ基置換体を備えた誘導体である、EHCの結合体、一般式(1)のRに係るHSP90阻害剤の結合体、一般式(1)のRの結合体、一般式(1)のRの結合体、遊離カルボン酸体等であってもよい。N-カルボニルグルタミン酸無水物としては、側鎖カルボキシ基は適当なカルボン酸保護基で修飾したN-カルボニルグルタミン酸無水物を用いることが好ましい。
 当該カルボン酸保護基としては、特に限定されるものではないが、エステル保護基が好ましい。すなわち、側鎖カルボキシ基は、適当なカルボン酸保護基で修飾したN-カルボニルグルタミン酸無水物を用い、片末端にアミノ基を修飾したポリエチレングリコール化合物と反応させることにより、該N-カルボニルグルタミン酸無水物を逐次重合して、ポリエチレングリコールとポリグルタミン酸誘導体を連結したブロック共重合体を構築し、これに、EHC、一般式(1)に係るRに相当するHSP90阻害剤、並びに、一般式(1)に係るR、Rに相当する置換基を導入する方法を用いることが好ましい。脱保護前に該ブロック共重合体のポリグルタミン酸セグメントの末端アミノ基をアシル化しておいてもよい。
 より具体的には、片末端にメトキシ基、他方片末端にアミノ基を修飾したポリエチレングリコール化合物と、γ-ベンジル-N-カルボニルグルタミン酸無水物を順次反応させ、遂次重合により、ポリエチレングリコールとポリグルタミン酸ベンジルエステルが連結したブロック共重合体を調製する。その後、適当な方法により、ポリグルタミン酸のベンジル基を脱保護することにより、該ポリエチレングリコールとポリグルタミン酸が連結したブロック共重合体を調製できる。ベンジル基の脱保護反応としては、アルカリ条件による加水分解反応や水素添加還元反応が挙げられる。
 次に、一般式(1)で表される高分子化合物の調製において、ポリグルタミン酸セグメントの側鎖カルボキシ基に、EHC、HSP90阻害剤等を結合させる方法について説明する。
 前記ポリエチレングリコールセグメントとポリグルタミン酸セグメントが連結したブロック共重合体に、EHC、HSP90阻害剤又はHSP90阻害剤が結合したアスパラギン酸誘導体等を結合させる反応を行う。該結合方法は特に限定されるものではなく、先にEHCを結合させ、その後、該HSP90阻害剤またはHSP90阻害剤が結合したアスパラギン酸誘導体等を結合させても、その逆順でも、同時に結合させてもよい。
 好ましくは、ポリエチレングリコールセグメントとポリグルタミン酸セグメントが連結したブロック共重合体と、EHC及びHSP90阻害剤またはHSP90阻害剤が結合したアスパラギン酸誘導体を、カルボジイミド脱水縮合剤の存在下で脱水縮合反応させればよい。この製造方法によれば、該ブロック共重合体に、Rに相当する-N(R)CONH(R)基を、EHC及びHSP90阻害剤等と同時に導入させることができる。
 該カルボジイミド脱水縮合剤としては、ジシクロヘキシルカルボジイミド(DCC)、ジイソプロピルカルボジイミド(DIPCI)、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩(WSC)等を用いることができる。該脱水縮合反応の際に、N,N-ジメチルアミノピリジン(DMAP)等の反応補助剤を用いてもよい。
 本発明において、EHCとHSP90阻害剤の結合量は、脱水縮合反応において、各薬剤の仕込み量を適宜増減させることで調整することができる。なお、カルボジイミド縮合剤としてジシクロヘキシルカルボジイミド(DCC)を用いた場合、-N(R)CONH(R)のR及びRはシクロへキシル基となる。ジイソプロピルカルボジイミド(DIPCI)を用いて縮合反応を行った場合、R及びRはイソプロピル基となる。1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩(WSC)を用いた場合、-N(R)CONH(R)のR及びRはエチル基と3-ジメチルアミノプロピルの混合置換体となる。
 前記反応終了後に任意の精製工程を経由して本発明の高分子化合物を製造することができる。
 本発明の高分子化合物は、リン酸緩衝生理食塩水(PBS)溶液中で徐々に抗腫瘍活性成分であるEHC及びHSP90阻害剤を解離し放出する。このことは生体投与においてもEHC及びHSP90阻害剤を徐放的に遊離する物性を備えることを示す。
 高分子化合物と低分子化合物とは体内薬物動態挙動が大きく異なり、体内分布も大きく異なることが知られている。このことから本発明の高分子化合物は、低分子化合物の薬剤とは薬効発現特性及び副作用発現特性が異なることとなり、カンプトテシン誘導体とHSP90阻害剤を用いた新しい治療方法を提供することができる。
 本発明の高分子化合物は、抗癌剤として使用することができ、該抗癌剤用途も本発明に含まれるものである。当該抗癌剤は注射剤、点滴剤、錠剤、カプセル剤、散剤等の通常使用されている製剤で使用することができる。製剤化に当たり、通常使用される薬学的に許容される担体や添加剤、例えば、結合剤、滑沢剤、崩壊剤、溶剤、賦形剤、可溶化剤、分散剤、安定化剤、懸濁化剤、保存剤、無痛化剤、色素、香料等を使用することができる。中でも、注射剤、点滴剤としての使用が好ましく、水、生理食塩水、5%ブドウ糖またはマンニトール液、水溶性有機溶媒(例えば、グリセロール、エタノール、ジメチルスルホキシド、N-メチルピロリドン、ポリエチレングリコール、クレモフォア等及びそれらの混合液等)並びに水と該水溶性有機溶媒の混合液等の使用が好ましい。
 一般式(1)に示す高分子化合物の投与量は、患者の性別、年齢、体格、生理的条件、病態、治療効果等を勘案し適宜設定される。例えば、成人1日当たり、非経口的に、有効成分であるEHC換算で、患者の体表面積当たりの投与量としては0.01~500mg/m、好ましくは1~200mg/mである。また、HSP90阻害剤換算で、患者の体表面積当たりの投与量としては0.01~500mg/m、好ましくは1~200mg/mである。
 本発明の高分子化合物は、他の抗腫瘍剤を組み合せて用いる事もできる。他の抗腫瘍剤は特に限定されるものではなく、抗腫瘍剤や悪性腫瘍治療剤として認可されている医薬品を用いる事ができる。すなわち、シクロホスファミド、イホスファミド、マイトマイシンC等のアルキル化剤、シスプラチン、カルボプラチン、オキサリプラチン等の白金錯体、ドキソルビシン、エピルビシン、ピラルビシン、アムルビシン等のアントラサイクリン系抗腫瘍剤、エトポシド、エトポシドホスフェート、テニポシド等のエトポシド類、パクリタキセル、ドセタキセル等のタキサン類、ビンクリスチン、ビンブラスチン、ビンデシン、ビノレルビン等のビンカアルカロイド類、5―フルオロウラシル、テガフール、テガフール・ウラシル合剤(UFT)、テガフール・ギメラシル・オテラシルカルシウム配合剤(TS-1)、フルツロン、カペシタビン、ゲムシタビン、シトシンアラビノシド等の核酸代謝拮抗剤、メトトレキサート、ペメトレキセド等の葉酸代謝拮抗剤、プレドニゾロン、デキサメタゾン等のステロイド類、トラスツズマブ、セツキシマブ等の抗EGFR抗体、エルロチニブ、ゲフィチニブ、ラパチニブ等のEGFRチロシンキナーゼ阻害剤、ソラフェニブ、スニチニブ等のVEGFRチロシンキナーゼ、エベロリムス、テムシロリムス等のmTOR阻害剤、ベバシツズマブ等の抗VEGF抗体を用いることができる。
 本発明の高分子化合物は、悪性腫瘍疾患の治療に用いられる。本発明の高分子化合物による治療に適用される悪性腫瘍は、特に限定されるものではなく、乳癌、非小細胞肺癌、小細胞肺癌、直腸結腸癌、非ホジキンリンパ腫(NHL)、腎細胞癌、前立腺癌、肝細胞癌、胃癌、膵臓癌、軟部組織肉腫、カポジ肉腫、カルチノイド癌腫、頭部及び頸部の癌、メラノーマ、卵巣癌、胆管癌、中皮腫、及び多発性骨髄腫、等広く一般の癌治療に適用することができる。特に、カンプトテシン誘導体が治療に供せられている非小細胞肺癌、子宮頸癌、卵巣癌、胃癌(手術不能または再発)、結腸・直腸癌(手術不能または再発)、乳癌(手術不能または再発)、有棘細胞癌、悪性リンパ腫(非ホジキンリンパ腫)の治療に適する。特に、カンプトテシン誘導体による前治療を受けており、前治療のカンプトテシン誘導体に対する感受性が低下した各種癌の化学療法において高い治療効果が期待できるものである。
 以下、本発明を実施例により更に説明する。ただし、本発明がこれらの実施例に限定されるものではない。なお、本発明品が水溶液中で構成する粒子の大きさ(粒径)を示すガウス分布分析はZeta Potential/Particlesizer NICOMPTM 380ZLS(Particle Sizing Systems社製)にて行った。
[合成例1]
 5-(2,4-ジヒドロキシ-5-イソプロピルフェニル)-4-(1-メチル-1H-インドール-5-イル)-2,4-ジヒドロ-[1,2,4]トリアゾール-3-オン(化合物5(一般式(5)で表される化合物))の合成
 国際公開WO2007/139952号パンフレットの記載に基づき、化合物5を合成した。得られた化合物5のH-NMRを以下に示す。
H-NMR(400MHz,DMSO-d,ppm):11.841(s,1H)、9.507(s,1H)、9.407(s,1H)、7.417-7.366(m,3H)、6.921(dd,1H)、6.761(s,1H)、6.406(dd,1H)、6.205(s,1H)、3.777(s,3H)、2.911(hept,1H)、0.866(d,6H)
[実施例1]
 EHCとRとして化合物5が結合した高分子化合物(化合物1:一般式(1)においてR=メチル基、R=アセチル基、A=トリメチレン基、Rに相当する置換基がなく(f=0)、R=R=イソプロピル基、d+e+g+h=23、t=273,d+e+g+hに対するdの割合が10%、eの割合が35%、gの割合が20%、hの割合が35%)の合成
 国際公開2006/120914号パンフレットに記載された方法に準じた方法により、メトキシポリエチレングリコール-ポリグルタミン酸ブロック共重合体(分子量12,000の片末端がメチル基、他片末端がアミノプロピル基であるメトキシポリエチレングリコールセグメントと重合数が23のポリグルタミン酸セグメント(末端Nアセチル基)からなり、結合基がトリメチレン基であるブロック共重合体)を調製した。
 該メトキシポリエチレングリコール-ポリグルタミン酸ブロック共重合体621mg、7-エチル-10-ヒドロキシカンプトテシン(EHC)38mg及び合成例1で得た化合物5 180mgを、DMF11.2mLに溶解し、35℃にて15分攪拌した後、20℃にて1時間攪拌した。その後、ジイソプロピルカルボジイミド(DIPCI)267μL、N,N-ジメチルアミノピリジン(DMAP)10.9mgを加えて、20℃にて21時間撹拌した。これに、DIPCIを134μL追加し、更に2時間攪拌した。反応液を、酢酸エチル11.2mL、エタノール11.2mL及びジイソプロピルエーテル90mLの混合溶液にゆっくり滴下し、室温にて1時間攪拌し、沈析物を濾取し、酢酸エチルで洗浄した。得られた沈析物を、アセトニトリル46mL及び水4.6mLに溶解後、イオン交換樹脂(ダウケミカル製ダウエックス50(H)、9.2mL)を加え攪拌し濾過した。得られた濾液中のアセトニトリルを減圧下留去し、次いで凍結乾燥することにより化合物1(681mg)を得た。
 化合物1に結合したEHC及び化合物5の含量は、化合物1に1N-水酸化ナトリウム水溶液を加えて37℃で1時間攪拌後、遊離したEHC及び化合物5を、HPLC(高速液体クロマトグラフィー)で分析し、EHC及び化合物5にて得られた検量線から求めた量から算出した。その結果、結合したEHC及び化合物5の含量はそれぞれ3.4%(w/w)、15.4%(w/w)であった。また、H-NMR法により、一般式(1)に係るRに相当する-N(R)CONH(R)(R及びRがイソプロピル基)の結合含量は、3.0%(w/w)であった。
 化合物1の水溶液(1mg/mL)を用いてガウス分布分析を行ったところ、得られた数値は22nm(volume weighting)だった。よって、化合物1は水中で自己会合しミセル様会合体を形成しているものと考えられた。
[実施例2]
 EHCと化合物5の結合した高分子化合物(化合物2:一般式(1)においてR=メチル基、R=アセチル基、A=トリメチレン基、Rに相当する置換基がなく(f=0)、R=R=イソプロピル基、d+e+g+h=23、t=273,d+e+g+hに対するdの割合が30%、eの割合が20%、gの割合が20%、hの割合が30%)の合成
 国際公開2006/120914号パンフレットに記載された方法に準じた方法によりメトキシポリエチレングリコール-ポリグルタミン酸ブロック共重合体(分子量12,000の片末端がメチル基、他片末端がアミノプロピル基であるメトキシポリエチレングリコールセグメントと重合数が23のポリグルタミン酸セグメント(末端Nアセチル基)からなり、結合基がトリメチレン基であるブロック共重合体)を調製した。
 該メトキシポリエチレングリコール-ポリグルタミン酸ブロック共重合体389mg、EHC70mg及び合成例1で得た化合物5 70mgを、DMF7.0mLに溶解し、35℃にて30分攪拌した後、20℃にて2時間攪拌した。これにDIPCIを167μL、DMAPを6.9mgを加えて、20℃にて21時間撹拌した。その後、DIPCIを84μL追加し、更に2時間攪拌した。反応液を、酢酸エチル7mL、エタノール7mL及びジイソプロピルエーテル56mLの混合溶液にゆっくり滴下し、室温にて1時間攪拌した。沈析物を濾取し、酢酸エチルで洗浄した。得られた沈析物をアセトニトリル29mL及び水2.9mLに溶解後、イオン交換樹脂(ダウケミカル製ダウエックス50(H)、7.6mL)を加え攪拌し濾過した。得られた濾液中のアセトニトリルを減圧下留去し、次いで凍結乾燥することにより化合物2(450mg)を得た。
 化合物2に結合したEHC及び化合物5の含量は、化合物1に1N-水酸化ナトリウム水溶液を加えて37℃で1時間攪拌後、遊離したEHC及び化合物5の含量を、HPLC(高速液体クロマトグラフィー)で分析し、EHC及び化合物5にて得られた検量線から求めた量から計算した。その結果、結合したEHC及び化合物5の含量はそれぞれ10.9%(w/w)、9.0%(w/w)であった。また、H-NMR法により一般式(1)に係るRに相当する-N(R)CONH(R)(R及びRがイソプロピル基)の結合含量は、2.9%(w/w)であった。
 化合物2の水溶液(1mg/mL)を用いてガウス分布分析を行ったところ、得られた数値は29nm(volume weighting)だった。よって、化合物2は水中で自己会合しミセル様会合体を形成しているものと考えられた。
[実施例3]
 EHCと化合物5の結合した高分子化合物(化合物3:一般式(1)においてR=メチル基、Rはアセチル基、A=プロピレン基、Rに相当する置換基がなく(f=0)、R=R=イソプロピル基、d+e+g+h=10、t=114,d+e+g+hに対するdの割合が10%、eの割合が40%、gの割合が20%、hの割合が30%)の合成
 国際公開2006/120914号パンフレットに記載された方法に準じた方法によりメトキシポリエチレングリコール-ポリグルタミン酸ブロック共重合体(分子量5,000の片末端がメチル基、他片末端がアミノプロピル基であるポリエチレングリコールセグメントと重合数が10のポリグルタミン酸セグメント(末端アセチル基)からなるブロック共重合体)を調製した。
 該メトキシポリエチレングリコール-ポリグルタミン酸ブロック共重合体473mg、EHC32mg及び合成例1で得た化合物5 150mgを、DMF10mLに溶解し、35℃にて25分攪拌した後、25℃にて2時間攪拌した。その後、DIPCIを235μL、DMAPを9mgを加えて、25℃にて20時間撹拌した。その後、DIPCIを118μLを追加し、更に5時間攪拌した。反応液を、酢酸エチル30mL、ジイソプロピルエーテル120mLの混合溶液にゆっくり滴下し、室温にて2時間攪拌した。沈析物を濾取し、酢酸エチルで洗浄した。得られた沈析物を、アセトニトリル11.0mL及び水2.0mLに溶解後、イオン交換樹脂(ダウケミカル製ダウエックス50(H)、5.0mL)を加え攪拌し、濾過した。得られた濾液を透析膜に移し、5℃にて一晩透析した後、透析膜中の溶液を回収した。得られた溶液中のアセトニトリルを減圧下留去し、次いで、凍結乾燥することにより化合物3(500mg)を得た。
 化合物3に結合したEHC及び化合物5の含量は、化合物1に1N-水酸化ナトリウム水溶液を加えて37℃で1時間攪拌後、遊離したEHC及び化合物5の含量を、HPLC(高速液体クロマトグラフィー)で分析し、EHC及び化合物5にて得られた検量線から求めた量から計算した。その結果、結合したEHC及び化合物5の含量はそれぞれ3.6%(w/w)、16.6%(w/w)であった。また、H-NMR法により一般式(1)に係るRに相当する-N(R)CONH(R)(R及びRがイソプロピル基)の結合含量は、3.4%(w/w)であった。
 化合物3の水溶液(1mg/mL)を用いてガウス分布分析を行ったところ、得られた値は21nm(volume weighting)だった。よって、化合物3は水中で自己会合しミセル様会合体を形成しているものと考えられた。
[合成例2]
 EHC結合ポリエチレングリコール-ポリグルタミン酸ブロック共重合体(対照薬1;一般式(1)においてR=メチル基、R=アセチル基、A=トリメチレン基、Rに相当する置換基がなく(e=0)、Rに相当する置換基がなく(f=0)、R=R=イソプロピル基、d+g+h=23、t=273,d+g+hに対するdの割合が50%、gの割合が40%、hの割合が10%)の合成
 国際公開WO2004/39869号の記載に基づき、メトキシポリエチレングリコール-ポリグルタミン酸ブロック共重合体(分子量12,000の片末端がメチル基、他片末端がアミノプロピル基であるメトキシポリエチレングリコール構造部分とN末端がアセチル基で修飾された重合数が23のポリグルタミン酸構造部分であり、結合基がトリメチレン基であるブロック共重合体)と7-エチル-10-ヒドロキシカンプトテシン(EHC)をジイソプロピルカルボジイミド(DIPCI)及びN,N-ジメチルアミノピリジン(DMAP)の存在下で反応させ、次いでイオン交換樹脂(ダウケミカル製ダウエックス50(H)にて処理することにより、対照薬1を得た。
 得られた対照薬1を、1N-水酸化ナトリウム水溶液、室温、10分で加水分解した後、遊離するEHCをHPLC法により定量分析して、EHC含量を求めたところ、21%(w/w)であった。また、H-NMR法により一般式(1)に係るRに相当する-N(R)CONH(R)(R及びRがイソプロピル基)の結合含量は、5.6%(w/w)であった。
[合成例3]
 HSP90阻害剤結合ポリエチレングリコール-ポリグルタミン酸ブロック共重合体(対照薬2;一般式(1)においてR=メチル基、R=アセチル基、A=トリメチレン基、EHC結合グルタミン酸単位がなく(d=0)、Rが一般式(5)で示される化合物5の結合残基であり、Rに相当する置換基がなく(f=0)、R=R=イソプロピル基、d+g+h=23、t=273,e+g+hに対するeの割合が40%、gの割合が20%、hの割合が40%)の合成
 国際公開WO2006/120914号パンフレットに記載された方法に準じ、調製したメトキシポリエチレングリコール-ポリグルタミン酸ブロック共重合体(分子量12,000の片末端がメチル基、他片末端がアミノプロピル基であるメトキシポリエチレングリコールセグメントと重合数が23のポリグルタミン酸セグメント(末端Nアセチル基)からなり、結合基がトリメチレン基であるブロック共重合体)519mg、合成例1により得られた化合物5(式(5))で表される化合物)150mgをDMF10mLに溶解し、35℃にて15分攪拌した後、25℃にて1時間攪拌した。その後、ジイソプロピルカルボジイミド(DIPCI)234μL、N,N-ジメチルアミノピリジン(DMAP)13.7mgを加えて、25℃にて16時間撹拌した。これに、DIPCIを117μL追加し、更に4時間攪拌した。反応液を、エタノール20mL及びジイソプロピルエーテル80mLの混合溶液にゆっくり滴下し、室温にて1時間攪拌し、沈析物を濾取して、ジイソプロピルエーテルで洗浄した。得られた沈析物を、アセトニトリル5.0mL及び水5.0mLに溶解後、イオン交換樹脂(ダウケミカル製ダウエックス50(H)、2.0mL)を加え攪拌し濾過した。得られた濾液中のアセトニトリルを減圧下留去し、次いで凍結乾燥することにより対照薬2(525mg)を得た。
 対照薬2に結合した化合物5の含量は、対照薬2に1N-水酸化ナトリウム水溶液を加えて37℃で1時間攪拌後、遊離した化合物5の含量を、HPLC(高速液体クロマトグラフィー)で分析し、化合物5にて得られた検量線から求めた量から計算した。その結果、結合した化合物5の含量は17.2%(w/w)であった。また、H-NMR法による一般式(1)に係るRに相当する-N(R)CONH(R)(R及びRがイソプロピル基)である基の結合含量は、3.0%(w/w)であった。
[試験例1] 酵素非存在下における化合物1~3からのEHC及び化合物5の放出
 化合物1、化合物2及び化合物3を、それぞれPBS(リン酸緩衝生理食塩水;pH7.1)に1mg/mLの濃度で溶解し、37℃にてインキュベートした。各化合物からPBS溶液中に放出されたEHC及び化合物5の量を経時的にHPLCにて分析し、標準曲線を用いて定量した。溶液中に検出されたEHC及び化合物5の量を、化合物1~3の薬剤含有量から求めた全薬剤量に対する割合として、図1~3に示した。
 図1~3から明らかなように、本発明の高分子化合物(化合物1~3)は、加水分解酵素が存在しないPBS溶液で、EHC及び化合物5をともに徐放的に解離して放出することができた。EHC及び化合物5の薬剤放出速度は、ポリエチレングリコールとポリグルタミン酸を連結したブロック共重合体の組成や、各薬剤結合量によって変化した。EHC及び化合物5の放出速度は制御し得ることが示された。
[試験例2] 抗腫瘍効果試験
 マウス皮下で継代しているマウス大腸癌Colon38を約2mm角のブロックにし、套管針を用いて有毛マウスの背側部皮下に移植した。腫瘍移植後16日目に、本発明の高分子化合物(化合物1)及び対照薬1、対照薬2を、表1に示す投与量で静脈内に単回投与した。なお、化合物1、対照薬1及び2は5%ブドウ糖溶液若しくは生理食塩水で溶解して使用した。
Figure JPOXMLDOC01-appb-T000015
 投与開始日及び投与開始後の腫瘍体積を、腫瘍の長径(L(mm))及び短径(W(mm))をノギスで経時的に計測し、(L×W)/2の式により腫瘍体積を計算して、それぞれの投与群における投与開始日の腫瘍体積に対する相対腫瘍体積の変化を図4に示した。
 図4に示すように、HSP90阻害活性を有する1,2,4-トリアゾール-3-オン置換レゾルシン誘導体が結合した対照薬2には、抗腫瘍活性が全く認められなかった。一方、カンプトテシン誘導体であるEHCが結合した対照薬1では投与5日目まで腫瘍縮小効果が認められたが、その後、腫瘍の再増殖が観察された。これに対し、本発明の高分子化合物である化合物1を投与した場合には、高い腫瘍縮小効果が、単回投与にも拘わらず長期間にわたって認められた。以上の結果から、本発明の高分子化合物は、強い腫瘍縮小活性と、長期間にわたって発揮される腫瘍増殖抑制活性の2つの特徴を示す抗腫瘍剤となり得ることが示された。

Claims (8)

  1.  ポリエチレングリコールセグメントとポリグルタミン酸セグメントが連結したブロック共重合体にカンプトテシン誘導体及びHSP90阻害剤が結合した高分子化合物であって、該高分子化合物は一般式(1)
    Figure JPOXMLDOC01-appb-C000001
    [式中、Rは水素原子又は置換基を有していてもよい(C1~C4)アルキル基を示し、tは45~450の整数を示し、Aは(C1~C6)アルキレン基であり、d+e+f+g+hは6~60の整数を示し、d+e+f+g+hに対するdの割合が5~50%、eの割合が5~90%、fの割合が0~90%、gの割合が0~90%、hの割合が0~90%であり、Rは水素原子または(C1~C4)アシル基を示し、RはHSP90阻害剤の結合残基またはHSP90阻害剤が結合したアスパラギン酸残基を示し、Rはアスパラギン酸残基またはアスパラギン酸イミド残基を示し、Rは-N(R)CONH(R)を示し、R及びRは同一でも異なってもいてもよく、分岐若しくは環状の(C3~C6)アルキル基または三級アミノ基で置換されていてもよい分岐若しくは直鎖の(C1~C5)アルキル基を示し、前記ポリグルタミン酸セグメントは、側鎖カルボキシ基に7-エチル-10-ヒドロキシカンプトテシンが結合したグルタミン酸単位、側鎖カルボキシ基にR基が結合したグルタミン酸単位、側鎖カルボキシ基にR基が結合したグルタミン酸単位、側鎖カルボキシ基にR基が結合したグルタミン酸単位及び側鎖カルボキシ基が遊離カルボキシ基であるグルタミン酸単位が、それぞれ独立して、ランダムに配列したポリグルタミン酸構造である。]で表される高分子化合物。
  2.  RがHSP90阻害剤の結合残基であり、該HSP90阻害剤が一般式(2)
    Figure JPOXMLDOC01-appb-C000002
    [式中、Xは直鎖若しくは分岐の(C1~C6)のアルキル基または-CONR1112を示し、前記R11及びR12は同一でも異なってもいてもよい(C1~C6)の直鎖状、分岐状または環状アルキル基であり、Xは置換基を有していてもよいアリール基を示す。]で示される1,2,4-トリアゾール-3-オン置換レゾルシン誘導体であり、レゾルシン部分の水酸基がエステル結合したHSP90阻害剤の結合残基である、請求項1に記載の高分子化合物。
  3.  Rが、HSP90阻害剤が結合したアスパラギン酸残基であり、該アスパラギン酸残基が一般式(3)または一般式(4)
    Figure JPOXMLDOC01-appb-C000003
    [式中、R及びRはそれぞれ独立して水素原子または(C1~C6)アルキル基を示し、R10は水素原子、(C1~C40)アルキル基、(C1~C40)アラルキル基、芳香族基及びカルボキシ基が保護されたアミノ酸残基からなる群から選択される1種以上の置換基を示し、CX-CYはCH-CH若しくはC=C(二重結合)を示し、DはHSP90阻害剤の結合残基を示す。]である、請求項1に記載の高分子化合物。
  4.  前記DのHSP90阻害剤の結合残基の該HSP90阻害剤が、一般式(2)
    Figure JPOXMLDOC01-appb-C000004
    [式中、Xは直鎖若しくは分岐の(C1~C6)のアルキル基または-CONR1112を示し、前記R11及びR12は同一でも異なってもいてもよい直鎖状、分岐状または環状の(C1~C6)アルキル基であり、Xは置換基を有していてもよいアリール基を示す。]で示される1,2,4-トリアゾール-3-オン置換レゾルシン誘導体であり、レゾルシン部分の水酸基がエステル結合したHSP90阻害剤の結合残基である、請求項3に記載の高分子化合物。
  5.  一般式(1)のdとeの比率がd:e=1:0.5~15である請求項1~4のいずれか一項に記載の高分子化合物。
  6.  Rがメチル基またはエチル基、Aがエチレン基またはプロピレン基、Rがアセチル基またはプロピオニル基、R、Rが共にシクロヘキシル基または共にイソプロピル基であり、d+e+f+g+hに対するdの割合が5~40%、eの割合が5~80%、fの割合が0~60%、gの割合が5~40%、hの割合が0~30%である、請求項1~5のいずれか一項に記載の高分子化合物。
  7.  請求項1~6のいずれか一項に記載の高分子化合物を有効成分とする抗腫瘍剤。
  8.  前治療においてカンプトテシン誘導体による抗癌治療を処置された悪性腫瘍に処方される請求項7に記載の抗腫瘍剤。
PCT/JP2015/053479 2014-02-19 2015-02-09 カンプトテシン誘導体とhsp90阻害剤の結合した高分子化合物及びその用途 WO2015125640A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016504038A JP6580030B2 (ja) 2014-02-19 2015-02-09 カンプトテシン誘導体とhsp90阻害剤の結合した高分子化合物及びその用途

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014029048 2014-02-19
JP2014-029048 2014-02-19

Publications (1)

Publication Number Publication Date
WO2015125640A1 true WO2015125640A1 (ja) 2015-08-27

Family

ID=53878146

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/053479 WO2015125640A1 (ja) 2014-02-19 2015-02-09 カンプトテシン誘導体とhsp90阻害剤の結合した高分子化合物及びその用途

Country Status (3)

Country Link
JP (1) JP6580030B2 (ja)
TW (1) TW201613652A (ja)
WO (1) WO2015125640A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018025657A1 (ja) * 2016-07-30 2018-02-08 日本化薬株式会社 新規な高分子誘導体、及びそれらを用いた新規な高分子誘導体イメージングプローブ
CN108697806A (zh) * 2016-03-01 2018-10-23 日本化药株式会社 含有喜树碱类高分子衍生物的药物制剂

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004039869A1 (ja) * 2002-10-31 2004-05-13 Nippon Kayaku Kabushiki Kaisha カンプトテシン類の高分子誘導体
WO2008041610A1 (fr) * 2006-10-03 2008-04-10 Nippon Kayaku Kabushiki Kaisha Mélange d'un dérivé de résorcinol avec un polymère
JP2010519305A (ja) * 2007-02-26 2010-06-03 ウィスコンシン・アルムニ・リサーチ・ファウンデーション 併用薬物送達のためのポリマー性ミセル
WO2013067162A1 (en) * 2011-11-02 2013-05-10 Synta Pharmaceuticals Corp. Cancer therapy using a combination of hsp90 inhibitors with topoisomerase i inhibitors
US20130272993A1 (en) * 2012-04-12 2013-10-17 Nitto Denko Corporation Co-polymer conjugates
WO2014073447A1 (ja) * 2012-11-08 2014-05-15 日本化薬株式会社 カンプトテシン類と抗癌効果増強剤の結合した高分子化合物及びその用途

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004039869A1 (ja) * 2002-10-31 2004-05-13 Nippon Kayaku Kabushiki Kaisha カンプトテシン類の高分子誘導体
WO2008041610A1 (fr) * 2006-10-03 2008-04-10 Nippon Kayaku Kabushiki Kaisha Mélange d'un dérivé de résorcinol avec un polymère
JP2010519305A (ja) * 2007-02-26 2010-06-03 ウィスコンシン・アルムニ・リサーチ・ファウンデーション 併用薬物送達のためのポリマー性ミセル
WO2013067162A1 (en) * 2011-11-02 2013-05-10 Synta Pharmaceuticals Corp. Cancer therapy using a combination of hsp90 inhibitors with topoisomerase i inhibitors
US20130272993A1 (en) * 2012-04-12 2013-10-17 Nitto Denko Corporation Co-polymer conjugates
WO2014073447A1 (ja) * 2012-11-08 2014-05-15 日本化薬株式会社 カンプトテシン類と抗癌効果増強剤の結合した高分子化合物及びその用途

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
K FLATTEN ET AL.: "The Role of Checkpoint Kinase 1 in Sensitivity to Topoisomerase I Poisons", THE JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 280, no. 14, pages 14349 - 14355, XP055221524 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108697806A (zh) * 2016-03-01 2018-10-23 日本化药株式会社 含有喜树碱类高分子衍生物的药物制剂
EP3424513A4 (en) * 2016-03-01 2019-10-23 Nippon Kayaku Kabushiki Kaisha PHARMACEUTICAL PREPARATION WITH CAMPTOTHECINOUS POLYMER DERIVATIVE
WO2018025657A1 (ja) * 2016-07-30 2018-02-08 日本化薬株式会社 新規な高分子誘導体、及びそれらを用いた新規な高分子誘導体イメージングプローブ
JPWO2018025657A1 (ja) * 2016-07-30 2019-06-27 日本化薬株式会社 新規な高分子誘導体、及びそれらを用いた新規な高分子誘導体イメージングプローブ
US10869937B2 (en) 2016-07-30 2020-12-22 Nippon Kayaku Kabushiki Kaisha Polymer derivatives, and novel polymer derivative imaging probe using same

Also Published As

Publication number Publication date
JPWO2015125640A1 (ja) 2017-03-30
TW201613652A (en) 2016-04-16
JP6580030B2 (ja) 2019-09-25

Similar Documents

Publication Publication Date Title
US11975002B2 (en) Preparation and composition for treatment of malignant tumors
JP2022166327A (ja) 癌の治療法
US7893252B2 (en) Selectively depolymerized galactomannan polysaccharide
CN117567535A (zh) 生物正交组合物
US11883404B2 (en) Preparation and composition for treatment of malignant tumors
TWI598108B (zh) Polymer compounds with camptothecins and anticancer effect enhancers and their uses
JP6461088B2 (ja) 高分子化カンプトテシン誘導体及び高分子化hsp90阻害剤誘導体を含む医薬組成物
KR20170120568A (ko) 생리활성물질결합 블록 공중합체
JP6580030B2 (ja) カンプトテシン誘導体とhsp90阻害剤の結合した高分子化合物及びその用途
WO2014084378A1 (ja) 環状rgd配列含有ペプチドを含む抗癌剤
WO2016024595A1 (ja) エピルビシン複合化ブロック共重合体と、抗癌剤とを含むミセル、及び当該ミセルを含む癌又は耐性癌、転移癌の治療に適用可能な医薬組成物
JP2017193591A (ja) 腫瘍細胞選択的抗がん剤
JP5843086B2 (ja) 治療活性物質の作用を増強するための高分子化環状ニトロキシドラジカル化合物の使用
JP7267609B2 (ja) 抗がん剤
US20130259944A1 (en) Methods and compositions for treating cancer with platinum particles
JP2022546415A (ja) 治療薬の核酸媒介性送達
KR20070018117A (ko) 17-aag를 함유하는 약제학적 용제

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15751701

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016504038

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15751701

Country of ref document: EP

Kind code of ref document: A1