WO2015122420A1 - Electrochemical device, and production method - Google Patents

Electrochemical device, and production method Download PDF

Info

Publication number
WO2015122420A1
WO2015122420A1 PCT/JP2015/053730 JP2015053730W WO2015122420A1 WO 2015122420 A1 WO2015122420 A1 WO 2015122420A1 JP 2015053730 W JP2015053730 W JP 2015053730W WO 2015122420 A1 WO2015122420 A1 WO 2015122420A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrochemical device
adhesive layer
electrode
positive electrode
conductive
Prior art date
Application number
PCT/JP2015/053730
Other languages
French (fr)
Japanese (ja)
Inventor
直人 萩原
ゆり子 伊藤
海樹 高橋
克英 石田
Original Assignee
太陽誘電株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2014025253A external-priority patent/JP2015153848A/en
Priority claimed from JP2014025251A external-priority patent/JP2015153846A/en
Priority claimed from JP2014036303A external-priority patent/JP2015162539A/en
Application filed by 太陽誘電株式会社 filed Critical 太陽誘電株式会社
Publication of WO2015122420A1 publication Critical patent/WO2015122420A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • H01G11/28Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features arranged or disposed on a current collector; Layers or phases between electrodes and current collectors, e.g. adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/74Terminals, e.g. extensions of current collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • H01G11/82Fixing or assembling a capacitive element in a housing, e.g. mounting electrodes, current collectors or terminals in containers or encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0436Small-sized flat cells or batteries for portable equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/172Arrangements of electric connectors penetrating the casing
    • H01M50/174Arrangements of electric connectors penetrating the casing adapted for the shape of the cells
    • H01M50/176Arrangements of electric connectors penetrating the casing adapted for the shape of the cells for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/183Sealing members
    • H01M50/186Sealing members characterised by the disposition of the sealing members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/183Sealing members
    • H01M50/19Sealing members characterised by the material
    • H01M50/191Inorganic material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an electrochemical device having a chargeable / dischargeable storage element and a manufacturing method.
  • Electrochemical devices equipped with chargeable / dischargeable storage elements are widely used for backup power supplies and the like.
  • an electrochemical device having a structure in which a power storage element and an electrolytic solution are enclosed in an insulating case.
  • the insulating case is provided with wiring and is configured to be electrically connected to the enclosed power storage element.
  • the electrochemical device described in Patent Document 1 has a configuration in which a power storage element is bonded to a case and a wiring is covered with an adhesive layer made of a cured conductive adhesive.
  • an object of the present invention is to provide an electrochemical device and a manufacturing method capable of ensuring long-term reliability.
  • an electrochemical device includes a case, a power storage element, and an adhesive layer.
  • the case includes a terminal portion, a case main body having a first inner surface provided with the terminal portion, and a conductive lid having a second inner surface joined to the case main body and facing the first inner surface.
  • the power storage element includes a first electrode fixed to the first inner surface and a second electrode fixed to the second inner surface and opposed to the first electrode with an electrolyte interposed therebetween.
  • the adhesive layer is formed of a cured product of a conductive adhesive material having at least one gap portion, electrically connects the first electrode and the terminal portion, and connects the first electrode and the first electrode. It is arranged between the inner surface.
  • the method for manufacturing an electrochemical device includes preparing a case body having a first inner surface provided with a terminal portion. A protective layer that covers the terminal portion is formed on the first inner surface by applying a first conductive adhesive. On the protective layer, the first electrode of the electricity storage element is placed via the second conductive adhesive. By curing the second conductive adhesive, an adhesive layer having at least a gap is formed between the first electrode and the first inner surface. By joining a lid to be joined to the second electrode of the electricity storage element to the case body, the inside of the case body containing the electricity storage element and the electrolytic solution is sealed.
  • An electrochemical device includes a case, a power storage element, and an adhesive layer.
  • the case includes a terminal portion, a case body, and a lid.
  • the case main body is an insulating case main body and has a first inner surface provided with the terminal portion.
  • the lid is a conductive lid and has a second inner surface that is joined to the case body and faces the first inner surface.
  • the power storage element includes a first electrode and a second electrode.
  • the first electrode is fixed to the first inner surface.
  • the second electrode is fixed to the second inner surface and faces the first electrode with an electrolyte interposed therebetween.
  • the adhesive layer is disposed between the first electrode and the first inner surface.
  • the said adhesive layer is comprised with the hardened
  • the method for manufacturing an electrochemical device includes preparing a case body having a first inner surface provided with a terminal portion. On the first inner surface, a protective layer made of a cured product of the first conductive adhesive containing a scale-like conductive filler covering the terminal portion in plan view is formed. A first electrode of the energy storage device is fixed on the protective layer via a second conductive adhesive. By joining a lid that is electrically connected to the second electrode of the electricity storage element to the case body, the inside of the case body containing the electricity storage element and the electrolytic solution is sealed.
  • the case includes a terminal portion, a case main body, a lid, and a liquid chamber.
  • the case main body has a first inner surface provided with the terminal portion.
  • the lid is a conductive lid and has a second inner surface that is joined to the case body and faces the first inner surface.
  • the liquid chamber is partitioned between the case body and the lid.
  • the power storage element includes a first electrode, a second electrode, and an electrolytic solution.
  • the first electrode is fixed to the first inner surface and has a first bonding surface facing the first inner surface.
  • the second electrode is fixed to the second inner surface and faces the first electrode.
  • the electrolytic solution is sealed in the liquid chamber.
  • the first adhesive layer is disposed between the first electrode and the first inner surface, electrically connects the first electrode and the terminal portion, and is a cured product of a conductive adhesive. Consists of.
  • the first adhesive layer has a first space that communicates with the liquid chamber and the first joint surface.
  • the method for manufacturing an electrochemical device includes preparing a case body having a liquid chamber having a first inner surface provided with a terminal portion. By applying the first conductive adhesive to the first inner surface so as to be partially thickened, a protective layer that has a protruding part in part and covers the terminal part is formed. After applying the second conductive adhesive on the protective layer, the first electrode of the energy storage device is placed on the second conductive adhesive. By curing the second conductive adhesive, a first adhesive layer having a first space communicating with the liquid chamber is formed between the first electrode and the protective layer. An electrolytic solution is injected into the liquid chamber. A lid in which a second electrode facing the first electrode is bonded to the case body is bonded.
  • FIG. 1 is a perspective view of an electrochemical device according to an embodiment of the present invention. It is sectional drawing of the said electrochemical device. It is a top view of the case main body of the said electrochemical device. It is an expanded sectional view of the important section of the above-mentioned electrochemical device. It is a figure explaining the manufacturing method of the said electrochemical device, Comprising: It is sectional drawing which shows the formation process of a positive electrode adhesive layer. It is a figure explaining the manufacturing method of the said electrochemical device, Comprising: It is sectional drawing which shows the formation process of a positive electrode adhesive layer. It is a figure explaining the manufacturing method of the said electrochemical device, Comprising: It is an expanded sectional view which shows the formation process of a positive electrode contact bonding layer.
  • An electrochemical device includes a case, a power storage element, and an adhesive layer.
  • the case includes a terminal portion, a case main body having a first inner surface provided with the terminal portion, and a conductive lid having a second inner surface joined to the case main body and facing the first inner surface.
  • the power storage element includes a first electrode fixed to the first inner surface and a second electrode fixed to the second inner surface and opposed to the first electrode with an electrolyte interposed therebetween.
  • the adhesive layer is formed of a cured product of a conductive adhesive material having at least one gap portion, electrically connects the first electrode and the terminal portion, and connects the first electrode and the first electrode. It is arranged between the inner surface.
  • the adhesive layer has at least one gap, it is possible to relieve the stress caused by the difference in thermal expansion between the adhesive layer and the case body when the temperature changes. As a result, peeling of the adhesive layer can be suppressed and electrolytic corrosion of the wiring due to contact with the electrolytic solution can be prevented, so that long-term reliability of the electrochemical device is ensured.
  • At least one gap may be formed inside the adhesive layer. Thereby, it becomes possible to relieve the stress inside the adhesive layer when the temperature changes.
  • the gap portion may be formed between the terminal portion and the first electrode.
  • the adhesive layer may include first and second adhesive layers, and the gap may be formed at least at the interface between the first and second adhesive layers. Thereby, it becomes possible to form a space
  • the case main body is made of an insulating material
  • the case further includes an external terminal disposed on the outer surface of the case main body and electrically connected to the terminal portion, and the terminal portion is formed on the first inner surface.
  • the case body may include a recess provided on the first inner surface and covered with the first adhesive layer, and the terminal portion may be provided on a bottom surface of the recess. According to this configuration, it is possible to form a gap between the terminal portion and the first electrode. Further, according to this configuration, it is possible to increase the thickness of the adhesive layer immediately above the terminal portion, delay the penetration of the electrolyte solution penetrating into the adhesive layer into the terminal portion, and prevent the terminal portion from being corroded. .
  • the manufacturing method of the electrochemical device which concerns on one Embodiment of this invention includes preparing the case main body which has the 1st inner surface provided with the terminal part. A protective layer that covers the terminal portion is formed on the first inner surface by covering the terminal portion. On the protective layer, the first electrode of the electricity storage element is placed via the second conductive adhesive, By curing the second conductive adhesive, an adhesive layer having at least a gap is formed between the first electrode and the first inner surface, By bonding a lid to be bonded to the second electrode of the electricity storage element to the case body, the inside of the case body containing the electricity storage element and the electrolytic solution is sealed.
  • this manufacturing method it is possible to manufacture an electrochemical device that has a void in the adhesive layer and can relieve stress caused by a difference in thermal expansion between the adhesive layer and the case body when the temperature changes. It becomes possible.
  • the step of placing the first electrode on the protective layer includes applying the second conductive adhesive on the protective layer and then applying the first electrode on the second conductive adhesive. May be placed.
  • the case body has a recess provided in the first inner surface
  • the step of forming the protective layer includes forming the protective layer on the first inner surface so as to cover the concave portion
  • the step of applying the second conductive adhesive on the protective layer includes applying the second conductive adhesive on the protective layer formed on at least the first inner surface of the protective layer. Also good. Thereby, it becomes possible to form a space
  • the first electrode is placed on the protective layer. May be.
  • the first electrode may be made of a porous material. As a result, the first electrode absorbs the second conductive adhesive, and the air bubbles are supplied to the second conductive adhesive, so that it is easy to form a void in the adhesive layer.
  • An electrochemical device includes a case, a power storage element, and an adhesive layer.
  • the case includes a terminal portion, a case body, and a lid.
  • the case main body is an insulating case main body and has a first inner surface provided with the terminal portion.
  • the lid is a conductive lid and has a second inner surface that is joined to the case body and faces the first inner surface.
  • the power storage element includes a first electrode and a second electrode.
  • the first electrode is fixed to the first inner surface.
  • the second electrode is fixed to the second inner surface and faces the first electrode with an electrolyte interposed therebetween.
  • the adhesive layer is disposed between the first electrode and the first inner surface.
  • the said adhesive layer is comprised with the hardened
  • the adhesive layer contains a piece of conductive filler that shields the terminal portion from the first electrode.
  • the scale-like conductive filler inhibits or extends the permeation path of the electrolytic solution penetrating the adhesive layer to the terminal portion, and the terminal portion can be protected from the electrolytic solution for a long period of time.
  • electric field corrosion of the terminal portion hardly occurs, and long-term reliability of the electrochemical device can be ensured.
  • the flaky conductive filler for example, flaky graphite is used.
  • the adhesive layer may further contain a conductive additive that electrically connects the scaly conductive fillers in the thickness direction of the adhesive layer.
  • the scale-like conductive filler is oriented in parallel in the plane of the adhesive layer.
  • the shielding efficiency of the terminal portion from the first electrode can be increased.
  • the expansion direction of the flaky graphite by the intercalation of electrolyte ion can be made into the thickness direction of an contact bonding layer.
  • production of the crack along the thickness direction of the contact bonding layer can be suppressed, and it can prevent that the said crack becomes the penetration
  • the manufacturing method of the electrochemical device which concerns on other embodiment of this invention includes preparing the case main body which has the 1st inner surface provided with the terminal part. On the first inner surface, a protective layer made of a cured product of the first conductive adhesive containing a scale-like conductive filler covering the terminal portion in plan view is formed. A first electrode of the energy storage device is fixed on the protective layer via a second conductive adhesive. By joining a lid that is electrically connected to the second electrode of the electricity storage element to the case body, the inside of the case body containing the electricity storage element and the electrolytic solution is sealed.
  • an electrochemical device capable of protecting the terminal portion from the electrolyte for a long period can be produced.
  • An electrochemical device includes a case, a power storage element, and a first adhesive layer.
  • the case includes a terminal portion, a case main body, a lid, and a liquid chamber.
  • the case main body has a first inner surface provided with the terminal portion.
  • the lid is a conductive lid and has a second inner surface that is joined to the case body and faces the first inner surface.
  • the liquid chamber is partitioned between the case body and the lid.
  • the power storage element includes a first electrode, a second electrode, and an electrolytic solution.
  • the first electrode is fixed to the first inner surface and has a first bonding surface facing the first inner surface.
  • the second electrode is fixed to the second inner surface and faces the first electrode.
  • the electrolytic solution is sealed in the liquid chamber.
  • the first adhesive layer is disposed between the first electrode and the first inner surface, electrically connects the first electrode and the terminal portion, and is a cured product of a conductive adhesive. Consists of.
  • the first adhesive layer has a first space that communicates with the liquid chamber and the first joint surface.
  • the first space portion since the first space portion communicates with the liquid chamber, the first space portion can hold the electrolytic solution and supply it to the first electrode. As a result, it is possible to prevent liquid drainage caused by decomposition and decrease of the electrolytic solution for a long period of time, and to obtain long-term reliability. Furthermore, the distance between the electrodes can be shortened compared to the case where the space for holding the electrolytic solution is provided only between the electrodes, so that the internal resistance can be reduced.
  • the first adhesive layer may include a first base layer and at least one first protrusion.
  • the first base layer is provided on the first inner surface and has a first thickness.
  • the first protrusion is provided on the first base layer, has a second thickness, and is bonded to the first bonding surface.
  • the first space may be formed at least between the first joint surface and the first base layer.
  • the first protrusion may include a plurality of protrusions provided on the first base layer.
  • the case body may be made of an insulating material.
  • the case may further include an external terminal disposed on the outer surface of the case body and electrically connected to the terminal portion.
  • the terminal portion has a first end portion exposed on the first inner surface and covered with the first adhesive layer, and a second end portion electrically connected to the external terminal. May be. According to this configuration, since the terminal portion is covered with the first adhesive layer, the terminal portion can be protected from the electrolytic solution.
  • the case body may have a recess on the first inner surface that faces a part of the first bonding surface and is covered with the first adhesive layer.
  • the second electrode may have a second bonding surface facing the second inner surface.
  • the electrochemical device may further include a second adhesive layer.
  • the second adhesive layer is disposed between the second electrode and the second inner surface, electrically connects the second electrode and the second inner surface, and is made of a conductive adhesive. Consists of cured products.
  • the second adhesive layer has a second space that communicates with the liquid chamber and the second bonding surface.
  • the second space can hold the electrolytic solution and supply the electrolytic solution to the second electrode, it is possible to obtain longer-term reliability against the liquid drainage.
  • a method for manufacturing an electrochemical device includes preparing a case body having a liquid chamber having a first inner surface provided with a terminal portion.
  • a protective layer that has a protruding part in part and covers the terminal part is formed.
  • the first electrode of the power storage element is placed on the second conductive adhesive.
  • a first adhesive layer having a first space communicating with the liquid chamber is formed between the first electrode and the protective layer.
  • An electrolytic solution is injected into the liquid chamber.
  • a lid in which a second electrode facing the first electrode is bonded to the case body is bonded.
  • an electrochemical device having a first space capable of holding an electrolytic solution can be manufactured, and thus long-term reliability can be obtained against liquid drainage.
  • FIG. 1 is a perspective view of an electrochemical device 100 according to this embodiment
  • FIG. 2 is a cross-sectional view of the electrochemical device 100
  • FIG. 3 is a plan view of the case body 11 of the electrochemical device 100.
  • the electrochemical device 100 includes a case 10, a power storage element 13, a positive electrode adhesive layer 19 (adhesive layer), and a negative electrode adhesive layer 20.
  • the case 10 includes a case main body 11, a lid 12, a positive electrode wiring 14 (terminal portion), an external positive electrode terminal 15 (first external terminal), a negative electrode wiring 16, an external negative electrode terminal 17 (second external terminal), and a coupling ring 18.
  • the case main body 11 and the lid 12 are joined via a coupling ring 18 to constitute the case 10.
  • a storage element 13 and an electrolytic solution are sealed in the case 10 (liquid chamber A) sealed by the case main body 11 and the lid 12.
  • the case body 11 is made of an insulating material such as ceramics, and forms a liquid chamber A together with the lid 12.
  • the case body 11 is composed of a laminate of a plurality of ceramic sheets each processed into a predetermined shape.
  • the case body 11 is formed in a concave shape so as to constitute the liquid chamber A, and is formed in, for example, a rectangular parallelepiped shape as shown in FIG.
  • the case body 11 is not limited to this, and may be formed in other shapes such as a columnar shape.
  • the case body 11 has a first inner surface 11 a that forms the bottom surface of the liquid chamber A.
  • the lid 12 has a second inner surface 12a facing the first inner surface 11a and is joined to the opening end (upper surface) of the case body 11 via the coupling ring 18, thereby sealing the liquid chamber A.
  • a direct bonding method such as seam welding or laser welding can be used, and an indirect bonding method with a conductive bonding material can be used.
  • the lid 12 can be made of a conductive material such as various metals, for example, can be made of Kovar (iron-nickel-cobalt alloy). Further, the lid 12 may be a clad material in which a base material such as Kovar is coated with a coating made of a metal having high corrosion resistance such as nickel, platinum, silver, gold or palladium in order to prevent electrolytic corrosion. It is.
  • the electricity storage element 13 is accommodated in the liquid chamber A and accumulates (accumulates) electric charges or discharges (discharges) electric charges.
  • the storage element 13 includes a positive electrode sheet 13a (first electrode), a negative electrode sheet 13b (second electrode), and a separate sheet 13c (separator).
  • the positive electrode sheet 13a and the negative electrode A separate sheet 13c is sandwiched between the sheets 13b.
  • the storage element 13 is joined to the first inner surface 11a so that the positive electrode sheet 13a is on the case body 11 side, and on the second inner surface 12a so that the negative electrode sheet 13b is on the lid 12 side. Be joined.
  • the positive electrode sheet 13a is a sheet containing an active material.
  • the active material is a material that adsorbs electrolyte ions (for example, BF 4 ⁇ ) on its surface to form an electric double layer, and can be, for example, activated carbon or PAS (Polyacenic Semiconductor: polyacenic organic semiconductor).
  • PAS Polyacenic Semiconductor: polyacenic organic semiconductor.
  • the positive electrode sheet 13a is formed by rolling a mixture of the above active material, conductive additive (for example, ketjen black) and binder (for example, PTFE (polytetrafluoroethylene)), and cutting it. it can.
  • the negative electrode sheet 13b is a sheet containing an active material like the positive electrode sheet 13a.
  • the negative electrode sheet 13b is formed by rolling a mixture of an active material, a conductive additive and a binder into a sheet shape, and cutting it. it can.
  • the negative electrode sheet 13b can be made of the same material as the positive electrode sheet 13a, or can be made of a different material.
  • the separate sheet 13c is a sheet that electrically insulates the electrodes.
  • the separate sheet 13c can be a porous sheet made of glass fiber, cellulose fiber, plastic fiber or the like. Depending on the type of device, the separate sheet 13c can be omitted.
  • the electrolytic solution accommodated in the liquid chamber A together with the electricity storage element 13 can be arbitrarily selected.
  • BF 4 ⁇ tetrafluoroborate ion
  • PF 6 ⁇ hexafluorophosphate ion
  • CF 3 SO 2 ) 2 N ⁇ TFSA ion
  • a solution of 5-azoniaspiro [4.4] nonane-BF 4 or ethylmethylimidazolium-BF 4 can be used.
  • the case 10 includes the positive electrode wiring 14 and the negative electrode wiring 16.
  • An external positive terminal 15 that is electrically connected to the positive wiring 14 and an external negative terminal that is electrically connected to the negative wiring 16 are provided on the end (lower surface) opposite to the opening end of the case body 11. 17 are provided.
  • the positive wiring 14 has a via 14a, an internal positive terminal 14b (first end), and a second end 14c, and electrically connects the positive electrode sheet 13a and the external positive terminal 15.
  • the via 14a is formed through the case main body 11 from the external positive electrode terminal 15 to directly below the first inner surface 11a, and contacts the positive electrode adhesive layer 19 via the internal positive electrode terminal 14b. And is electrically connected to the positive electrode sheet 13a.
  • the positive electrode wiring 14 may have a wiring pattern other than the via 14 a formed inside the case main body 11.
  • the positive electrode wiring 14 can be made of any conductive material.
  • the internal positive terminal 14b is provided on the first inner surface 11a, and electrically connects the positive electrode sheet 13a and the via 14a.
  • the internal positive terminal 14b is typically formed in a circular shape when viewed from above (FIG. 3).
  • the internal positive terminal 14b is not limited to this, and may be formed in other shapes such as a rectangular shape when viewed from above.
  • the material of the internal positive electrode terminal 14b can be selected from a wide range of materials regardless of the corrosion resistance.
  • the via 14a can be made of tungsten, and the internal positive electrode terminal 14b can be made by forming a nickel film and a gold film on tungsten.
  • the internal positive terminal 14b can be omitted, and in this case, the via 14a is exposed to the first inner surface 11a.
  • the second end portion 14c is the end of the via 14a, is provided on the lower surface of the case body 11, and electrically connects the via 14a and the external positive electrode terminal 15.
  • the external positive electrode terminal 15 is electrically connected to the storage element (positive electrode sheet 13a) by the positive electrode wiring 14, and is used for connection to an external circuit, for example, a mounting substrate.
  • the external positive terminal 15 can be made of any conductive material, and is provided at any position on the case body 11. In the present embodiment, the external positive terminal 15 is formed on the outer surface of the case body 11, specifically, the lower surface, as shown in FIG.
  • the negative electrode wiring 16 electrically connects the negative electrode sheet 13 b and the external negative electrode terminal 17.
  • the negative electrode wiring 16 is a via formed through the side wall portion of the case body 11 from the external negative electrode terminal 17 to directly below the coupling ring 18, and includes the coupling ring 18, the lid 12, and the negative electrode adhesive layer 20. It conducts to the negative electrode sheet 13b via.
  • the negative electrode wiring 16 may have a wiring pattern other than the via formed in the case body 11.
  • the negative electrode wiring 16 can be made of any conductive material.
  • the external negative electrode terminal 17 is electrically connected to the storage element (negative electrode sheet 13b) by the negative electrode wiring 16, and is used for connection to the outside, for example, a mounting substrate.
  • the external negative electrode terminal 17 can be made of any conductive material, and in this embodiment, as shown in FIG. 2, the external negative electrode terminal 17 is formed on the outer surface, specifically, the lower surface of the case body 11. Can do.
  • the coupling ring 18 connects the case main body 11 and the lid 12 to seal the liquid chamber A, and electrically connects the lid 12 and the negative electrode wiring 16.
  • the coupling ring 18 may be made of a conductive material such as Kovar (iron-nickel-cobalt alloy). Further, a corrosion-resistant film (for example, a nickel film and a gold film) can be formed on the surface of the coupling ring 18.
  • the coupling ring 18 can be joined to the case body 11 and the lid 12 via a brazing material (gold-copper alloy or the like).
  • the positive electrode adhesive layer 19 joins the positive electrode sheet 13 a to the case body 11 and electrically connects the positive electrode sheet 13 a and the positive electrode wiring 14.
  • the positive electrode adhesive layer 19 is disposed between the positive electrode sheet 13a and the first inner surface 11a, and covers the internal positive terminal 14b exposed to the first inner surface 11a. As a result, the internal positive electrode terminal 14b is protected from electrolytic corrosion due to contact with the electrolytic solution contained in the liquid chamber A.
  • a plurality of voids 19 c are formed inside the positive electrode adhesive layer 19. Details of the gap 19c will be described later.
  • the positive electrode adhesive layer 19 is a cured product of a conductive adhesive, and the conductive adhesive can be a synthetic resin containing conductive particles.
  • the conductive particles are, for example, carbon particles (carbon black), graphite particles (graphite particles), and the like, and the synthetic resin can be a thermosetting resin such as a phenol resin or an epoxy resin.
  • a phenol resin is preferable from the viewpoints of low swelling with respect to an electrolytic solution, high heat resistance, high chemical stability, and the like.
  • the said electrically conductive adhesive should just have electroconductivity and can be hardened.
  • the negative electrode sheet 13b is bonded to the inner surface (second inner surface 12a) of the lid 12 facing the first inner surface 11a with the negative electrode adhesive layer 20 interposed therebetween.
  • the negative electrode adhesive layer 20 joins the negative electrode sheet 13 b to the lid 12 and electrically connects the negative electrode sheet 13 b and the lid 12.
  • the negative electrode adhesive layer 20 is obtained by curing a conductive adhesive, and the conductive adhesive can be a synthetic resin containing conductive particles, similar to the positive electrode adhesive layer 19.
  • the negative electrode adhesive layer 20 and the positive electrode adhesive layer 19 can be made of the same kind of conductive adhesive, or can be made of another kind of conductive adhesive.
  • FIG. 4 is an enlarged cross-sectional view around the positive electrode adhesive layer 19 of the electrochemical device 100. As shown in FIG. 4, a plurality of voids 19 c are formed in the longitudinal cross section inside the positive electrode adhesive layer 19.
  • the gap portion 19 c is formed in the positive electrode adhesive layer 19 and has a function of relieving stress caused by a difference in thermal expansion between the positive electrode adhesive layer 19 and the case body 11 when the temperature changes. Thereby, peeling of the positive electrode adhesive layer 19 from the first inner surface 11a can be suppressed.
  • the shape of the gap portion 19c has an elliptical shape, a circular shape, an oval shape, or the like, but may be a composite shape in which a plurality of shapes are combined.
  • a plurality of the gap portions 19c are formed inside the positive electrode adhesive layer 19, but may be a single number. Further, the plurality of gap portions 19c may be connected to each other.
  • the size of each of the plurality of gaps 19c is not particularly limited, and can be, for example, about 20 ⁇ m to 200 ⁇ m.
  • the gap portion 19 c is typically formed so as to be distributed inside the positive electrode adhesive layer 19. Thereby, the stress inside the positive electrode adhesive layer 19 at the time of temperature change can be relaxed over the entire area of the positive electrode adhesive layer 19.
  • the gap 19 c is not limited to the inside of the positive electrode adhesive layer 19, and may be formed at the interface between the positive electrode adhesive layer 19 and another member in contact with the positive electrode adhesive layer 19. That is, the gap 19c may be formed at the interface between the positive electrode adhesive layer 19 and the positive electrode sheet 13a, or at the interface between the positive electrode adhesive layer 19 and the case body 11 (first inner surface 11a). In addition, the gap 19c may be formed at the interface between the positive electrode adhesive layer 19 and the internal positive terminal 14b so as to cover a part of the internal positive terminal 14b.
  • a space 19c having a diameter larger than that of the internal positive terminal 14b in the cross section may be formed immediately above the internal positive terminal 14b.
  • the manufacturing method of the electrochemical device 100 includes a case body preparation step, a positive electrode adhesive layer formation step, and a sealing step.
  • the same type of phenolic conductive adhesive is used as the conductive adhesive for forming the positive electrode adhesive layer 19 and the negative electrode adhesive layer 20.
  • LTCC Low Temperature Co-fired Ceramics
  • HTCC High Temperature Co-fired Ceramics
  • the step of forming the positive electrode adhesive layer includes a step of forming a protective layer, a step of applying a conductive adhesive on the protective layer, and a step of placing the positive electrode and curing the conductive adhesive.
  • the first conductive adhesive 191 is applied on the first inner surface 11a to a thickness of about 50 ⁇ m. At this time, the first conductive adhesive 191 is applied so as to cover at least the entire internal positive electrode terminal 14b, and in the present embodiment, the entire region on the first inner surface 11a facing the positive electrode sheet 13a is covered. Applied.
  • the first conductive adhesive 191 is cured by heat treatment at a predetermined temperature, and the first adhesive layer 19a (protective layer) bonded to the first inner surface 11a while covering the internal positive electrode terminal 14b. Form.
  • a second conductive adhesive 192 is applied on the first adhesive layer 19a to a thickness of about 50 ⁇ m.
  • the positive electrode sheet 13 a is placed on the second conductive adhesive 192, and the second conductive adhesive 192 is cured by heat treatment at a predetermined temperature.
  • a positive electrode adhesive layer 19 having a gap 19c at the interface 19d is formed.
  • the positive electrode sheet 13a Since the positive electrode sheet 13a has a porous structure, air (bubbles) is easily supplied from the positive electrode sheet 13a that has absorbed the second conductive adhesive 192 to the second conductive adhesive 192. The bubbles move to the interface between the first adhesive layer 19a and the second conductive adhesive 192, and remain in the adhesive layer 19 as the void portion 19c by the heat treatment.
  • a plurality of gaps 19c are typically formed at the adhesion interface 19d, which is the interface between the first adhesion layer 19a and the second adhesion layer 19b.
  • the formation position of the gap 19c can be adjusted to a desired height from the first inner surface 11a.
  • the second conductive adhesive 192 can be easily absorbed by the positive electrode sheet 13a.
  • the method for adjusting the fluidity of the second conductive adhesive 192 is not particularly limited.
  • the second conductive adhesive 192 may be diluted with an appropriate solvent. The amount of filler contained in 192 may be adjusted.
  • the second conductive adhesive 192 can be easily absorbed by the positive electrode sheet 13a.
  • a highly hydrophilic adhesive as the second conductive adhesive 192, it can be easily absorbed by the positive electrode sheet 13a.
  • first conductive adhesive 191 and the second conductive adhesive 192 may be the same type of conductive adhesive or other types of conductive adhesives.
  • the liquid chamber A is sealed by bonding the case main body 11 and the lid 12.
  • a conductive adhesive is applied to the second inner surface 12a, the negative electrode sheet 13b is placed, and the conductive adhesive is thermally cured, whereby the negative electrode electrode sheet 13b is attached to the lid 12 via the negative electrode adhesive layer 20. Join.
  • the electrolytic solution is injected into the liquid chamber A.
  • the electrolytic solution is also injected into the negative electrode sheet 13b, and the liquid chamber A is sealed by bonding the edge of the second inner surface 12a and the coupling ring 18 by the above-described bonding methods.
  • the electrochemical device 100 is manufactured as described above.
  • the second conductive adhesive 192 is applied on the first adhesive layer 19a in the step of forming the positive electrode adhesive layer, but the lower surface of the positive electrode sheet 13a as shown in FIG. You may apply to. Also by this method, the positive electrode adhesive layer 19 similar to that by the above-described method can be formed.
  • FIG. 9 is a cross-sectional view of the electrochemical device 110 according to the second embodiment of the present invention
  • FIG. 10 is an enlarged cross-sectional view around the positive electrode adhesive layer 19 of the electrochemical device 110.
  • the electrochemical device 110 mainly has a case body shape different from that of the first embodiment. Specifically, as shown in FIG. 9, the case body 111 of the present embodiment has a recess 11b on the first inner surface 11a, and the internal positive terminal 14b is a third inner surface 11c that is the bottom surface of the recess 11b. Is provided.
  • a plurality of recesses 11b may be formed on the first inner surface 11a.
  • the shape of the recessed part 11b is typically formed in a cylindrical shape, it can also be formed in other shapes, such as a rectangular parallelepiped shape.
  • the diameter of the recess 11b is set to a value smaller than the lateral width of the bottom surface of the storage element 13 (positive electrode sheet 13a), and the depth of the recess 11b can be set in the range of 50 ⁇ m to 500 ⁇ m.
  • a space is provided between the electricity storage element 13 and the internal positive electrode terminal 14b, and the penetration of the electrolyte penetrating the positive electrode adhesive layer 19 into the internal positive electrode terminal 14b is delayed.
  • corrosion of the internal positive terminal 14b can be made difficult to occur.
  • a gap 191c having a diameter larger than that of the internal positive terminal 14b in the cross section is formed immediately above the internal positive terminal 14b.
  • the case main body 111 can be manufactured by a process similar to that of the first embodiment.
  • the first inner surface 11a has a recess 11b
  • the third inner surface 11c has an internal positive terminal 14b. Manufactured to structure.
  • the 1st adhesive layer 19a is formed by apply
  • the first adhesive layer 19a is formed such that a recess 191e is provided in the first adhesive layer 19a immediately above the internal positive electrode terminal 14b.
  • the second conductive adhesive 192 is applied to the bottom surface of the positive electrode sheet 13a.
  • the recess 191e is sealed with the second conductive adhesive 192 by placing the positive electrode sheet 13a on the first adhesive layer 19a. Thereafter, the second conductive adhesive 192 is thermally cured to form the second adhesive layer 19b, whereby the positive electrode having a gap portion 191c at the adhesive interface 19d immediately above the internal positive electrode terminal 14b as shown in FIG. An adhesive layer 19 is formed.
  • the electrochemical device 110 in which the gap portion 191c is reliably formed immediately above the internal positive electrode terminal 14b.
  • the electrochemical device 120 according to the third embodiment of the present invention is different from the second embodiment in the application method of the second conductive adhesive 192 and the shape of the gap in the positive electrode adhesive layer forming step. .
  • FIG. 14 and FIG. 15 are diagrams for explaining a positive electrode adhesive layer forming step.
  • the configuration different from the second embodiment will be mainly described, and the same configuration as the second embodiment will be denoted by the same reference numeral, and the description thereof will be omitted or simplified.
  • a second conductive adhesive 192 is applied thereon.
  • a recess 192e is formed immediately above the internal positive terminal 14b.
  • the recess 192e is sealed with the positive electrode sheet 13a.
  • the second conductive adhesive 192 is thermally cured to form the second adhesive layer 19b, whereby the positive electrode having a gap 192c at the adhesive interface 19d immediately above the internal positive electrode terminal 14b as shown in FIG. An adhesive layer 19 is formed.
  • the gap portion 192c in contact with the positive electrode sheet 13a. Even in the form of such a gap, it is possible to obtain the same operational effects as those of the first and second embodiments described above.
  • FIG. 16 is a perspective view of an electrochemical device 200 according to the fourth embodiment of the present invention
  • FIG. 17 is a schematic cross-sectional view of the electrochemical device 200
  • FIG. 18 is a plan view of the case main body 211 of the electrochemical device 200.
  • the X, Y, and Z axes indicate three axial directions orthogonal to each other, and the Z-axis direction corresponds to the thickness direction of the electrochemical device 100.
  • the electrochemical device 200 includes a case 210, a power storage element 213, a positive electrode adhesive layer 219 (adhesive layer), and a negative electrode adhesive layer 220.
  • the case 210 includes a case body 211, a lid 212, a positive electrode wiring 214 (terminal portion), an external positive electrode terminal 215 (first external terminal), a negative electrode wiring 216, an external negative electrode terminal 217 (second external terminal), and a coupling ring. 218.
  • the case main body 211 and the lid 212 are joined via a coupling ring 218 to constitute a case 210.
  • a power storage element 213 and an electrolytic solution are sealed in the case 210 (liquid chamber A) sealed by the case main body 211 and the lid 212.
  • the case body 211 is made of an insulating material such as ceramics, and forms a liquid chamber A together with the lid 212.
  • the case main body 211 is configured by a laminated body of a plurality of ceramic sheets each processed into a predetermined shape.
  • the case main body 211 is formed in a concave shape so as to constitute the liquid chamber A, and is formed in, for example, a rectangular parallelepiped shape as shown in FIG.
  • the case body 211 may be formed in other shapes such as a columnar shape.
  • the case main body 211 has a first inner surface 211 a that forms the bottom surface of the liquid chamber A.
  • the lid 212 has a second inner surface 212a that faces the first inner surface 211a, and is joined to the opening end (upper surface) of the case body 211 via the coupling ring 218, thereby sealing the liquid chamber A.
  • a direct bonding method such as seam welding or laser welding can be used, or an indirect bonding method with a conductive bonding material can be used.
  • the lid 212 can be made of a conductive material such as various metals, and is made of, for example, Kovar (iron-nickel-cobalt alloy).
  • the lid 212 may be a clad material in which a base material such as Kovar is coated with a coating made of a highly corrosion-resistant metal such as nickel, platinum, silver, gold, or palladium in order to prevent electrolytic corrosion. It is.
  • the electricity storage element 213 is accommodated in the liquid chamber A and accumulates (accumulates) electric charge or discharges (discharges) the electric charge.
  • the power storage element 213 includes a positive electrode sheet 213a (first electrode), a negative electrode sheet 213b (second electrode), and a separate sheet 213c (separator), and the positive electrode sheet 213a and the negative electrode A separate sheet 213c is sandwiched between the sheets 213b.
  • the power storage element 213 is joined to the first inner surface 211a so that the positive electrode sheet 213a is on the case body 211 side, and is attached to the second inner surface 212a so that the negative electrode sheet 213b is on the lid 212 side. Be joined.
  • the positive electrode sheet 213a is a sheet containing an active material.
  • the active material is a material that adsorbs electrolyte ions (for example, BF 4 ⁇ ) on its surface to form an electric double layer, and can be, for example, activated carbon or PAS (Polyacenic Semiconductor: polyacenic organic semiconductor).
  • PAS Polyacenic Semiconductor: polyacenic organic semiconductor.
  • the positive electrode sheet 213a is formed by rolling a mixture of the above active material, a conductive additive (for example, ketjen black) and a binder (for example, PTFE (polytetrafluoroethylene)) and cutting it. it can.
  • the negative electrode sheet 213b is a sheet containing an active material like the positive electrode sheet 213a.
  • the negative electrode sheet 213b is formed by rolling a mixture of an active material, a conductive additive and a binder into a sheet shape, and cutting it. it can.
  • the negative electrode sheet 213b can be made of the same material as the positive electrode sheet 213a, or can be made of a different material.
  • the separate sheet 213c is a sheet that electrically insulates the electrodes.
  • the separate sheet 213c can be a porous sheet made of glass fiber, cellulose fiber, plastic fiber, or the like that can hold an electrolytic solution. Depending on the type of device, the separate sheet 213c can be omitted.
  • the electrolytic solution accommodated in the liquid chamber A together with the power storage element 213 can be arbitrarily selected.
  • BF 4 ⁇ tetrafluoroborate ion
  • PF 6 ⁇ hexafluorophosphate ion
  • CF 3 SO 2 ) 2 N ⁇ TFSA ion
  • a solution of 5-azoniaspiro [4.4] nonane-BF 4 or ethylmethylimidazolium-BF 4 can be used.
  • the solvent for example, a mixed solution of sulfolane and dimethyl sulfone can be used.
  • the concentration is not particularly limited and is, for example, 2 mol / L.
  • the case 210 includes the positive electrode wiring 214 and the negative electrode wiring 216.
  • An external positive terminal 215 that is electrically connected to the positive wiring 214 and an external negative terminal that is electrically connected to the negative wiring 216 are provided at the end (lower surface) opposite to the opening end of the case body 211. 217 are provided.
  • the positive electrode wiring 214 has a via 214a, an internal positive electrode terminal 214b (first end portion), and a second end portion 214c, and electrically connects the positive electrode sheet 213a and the external positive electrode terminal 215.
  • the via 214a is formed through the bottom of the case body 211 from the external positive electrode terminal 215 to a position directly below the first inner surface 211a, and contacts the positive electrode adhesive layer 219 via the internal positive electrode terminal 214b. It is electrically connected to the positive electrode sheet 213a via 219.
  • the positive electrode wiring 214 may have a wiring pattern other than the via 214 a formed inside the case main body 211.
  • the positive electrode wiring 214 can be made of any conductive material.
  • the internal positive terminal 214b is provided on the first inner surface 211a and electrically connects the positive electrode sheet 213a and the via 214a.
  • the internal positive terminal 214b is typically formed in a circular shape when viewed from above (FIG. 18).
  • the internal positive terminal 214b is not limited to this, and may be formed in other shapes such as a rectangular shape when viewed from above.
  • the internal positive electrode terminal 214b is protected from corrosion due to contact with the electrolytic solution by being covered with the positive electrode adhesive layer 219.
  • the internal positive terminal 214b is formed integrally with the via 214a, and constitutes a protruding end that protrudes from the first inner surface 211a toward the positive adhesive layer 219.
  • the shape of the internal positive electrode terminal 214b is not particularly limited, and is formed in an appropriate shape such as a columnar shape, a conical shape (a shade shape), or a dome shape.
  • the material of the internal positive terminal 214b is not particularly limited, and can be selected from a wide range of materials regardless of the corrosion resistance.
  • the via 214a can be made of tungsten
  • the internal positive electrode terminal 214b can be made by forming a nickel film and a gold film on tungsten.
  • the internal positive terminal 214b may be formed so as not to protrude from the first inner surface 211a. In this case, the internal positive terminal 214b is formed in the same plane as the first inner surface 211a.
  • the second end 214c is the end of the via 214a, is provided on the lower surface of the case body 211, and electrically connects the via 214a and the external positive terminal 215.
  • the external positive electrode terminal 215 is electrically connected to the storage element (positive electrode sheet 213a) by the positive electrode wiring 214, and is used for connection to an external circuit, for example, a mounting substrate.
  • the external positive terminal 215 can be made of any conductive material, and is provided at any position of the case body 211. In the present embodiment, the external positive terminal 215 is formed on the outer surface, specifically, the lower surface of the case body 211 as shown in FIG.
  • the negative electrode wiring 216 electrically connects the negative electrode sheet 213b and the external negative electrode terminal 217.
  • the negative electrode wiring 216 is a via formed through the side wall portion of the case body 211 from the external negative electrode terminal 217 to a position directly below the coupling ring 218, and includes the coupling ring 218, the lid 212, and the negative electrode adhesive layer 220. It conducts to the negative electrode sheet 213b via
  • the negative electrode wiring 216 may have a wiring pattern other than the via formed in the case main body 211.
  • the negative electrode wiring 216 can be made of any conductive material.
  • the external negative electrode terminal 217 is electrically connected to the storage element (negative electrode sheet 213b) by the negative electrode wiring 216, and is used for connection to the outside, for example, a mounting substrate.
  • the external negative electrode terminal 217 can be made of any conductive material. In this embodiment, as shown in FIG. 17, the external negative electrode terminal 217 is formed on the outer surface of the case body 211, specifically on the lower surface. Can do.
  • the coupling ring 218 connects the case main body 211 and the lid 212 to seal the liquid chamber A, and electrically connects the lid 212 and the negative electrode wiring 216.
  • the coupling ring 218 can be made of a conductive material such as Kovar (iron-nickel-cobalt alloy). Further, a corrosion-resistant film (for example, a nickel film or a gold film) can be formed on the surface of the coupling ring 218.
  • the coupling ring 218 may be joined to the case body 211 and the lid 212 via a brazing material (gold-copper alloy or the like).
  • the positive electrode adhesive layer 219 joins the positive electrode sheet 213a to the case main body 211 and electrically connects the positive electrode sheet 213a and the positive electrode wiring 214.
  • the positive electrode adhesive layer 219 is disposed between the positive electrode sheet 213a and the first inner surface 211a, and covers the internal positive electrode terminal 214b exposed on the first inner surface 211a. Thereby, the internal positive electrode terminal 214b is protected from electrolytic corrosion due to contact with the electrolytic solution contained in the liquid chamber A.
  • the positive electrode adhesive layer 219 is composed of a cured product of a conductive adhesive.
  • the conductive adhesive is composed of a synthetic resin material containing a conductive filler. Typically, graphite, carbon particles, metal particles, or the like is used as the conductive filler.
  • scaly conductive filler is used as the conductive filler, and specifically, scaly graphite is used.
  • the conductive adhesive contains particles of a carbon-based material such as carbon black as a conductive assistant.
  • the synthetic resin that is the base material of the conductive adhesive can be a thermosetting resin such as a phenol resin or an epoxy resin.
  • a phenol resin is preferable from the viewpoints of low swelling with respect to an electrolytic solution, high heat resistance, high chemical stability, and the like.
  • the said electrically conductive adhesive should just have electroconductivity and can be hardened.
  • the positive electrode adhesive layer 219 is composed of a flat layer parallel to the first inner surface 211a.
  • the positive electrode adhesive layer 219 is formed on the first inner surface 211a with an area equal to or larger than that of the positive electrode sheet 213a.
  • the thickness of the positive electrode adhesive layer 219 is not particularly limited, and is, for example, 10 ⁇ m or more and 200 ⁇ m or less.
  • FIG. 19 is a schematic cross-sectional view of the positive electrode adhesive layer 219.
  • the positive electrode adhesive layer 219 contains scaly graphite C1 and carbon particles C2.
  • the shape and size of each particle are shown in a slightly exaggerated manner.
  • the scale-like graphite C1 is typically dispersed randomly in the positive electrode adhesive layer 219.
  • the scaly graphite C1 is oriented in parallel in the plane of the positive electrode adhesive layer 219. That is, the scaly graphite C1 is arranged so that the major axis direction thereof is parallel to the in-plane direction of the positive electrode adhesive layer 219.
  • the scale-like graphite C1 is not limited to the case where all the scale-like graphite C1 is arranged in parallel to the in-plane direction of the positive electrode adhesive layer 219, and at least the scale-like graphite C1 located immediately above and around the internal positive electrode terminal 214b is as described above. As long as they are arranged in such a form.
  • the scaly graphite C1 shields the internal positive electrode terminal 214b (terminal portion) from the positive electrode sheet 213a (first electrode). That is, the scale-like graphite C1 is dispersed so as to cover the internal positive electrode terminal 214b in a plan view in the Z-axis direction as viewed from the positive electrode sheet 213a side (hereinafter simply referred to as a plan view).
  • the size of the scaly graphite C1 is not particularly limited, and for example, those having an average particle size (average length in the major axis direction) of 5 ⁇ m or more and 100 ⁇ m or less are used. Shaped graphite is used.
  • the content of the scaly graphite C1 is not particularly limited as long as it is an amount that can cover the internal positive electrode terminal 214b in a plan view. Moreover, the scaly graphite C1 may be in contact with each other in the thickness direction of the positive electrode adhesive layer 219, or may not be in contact.
  • the carbon particles C2 mainly have a function of electrically connecting the flaky graphite C1 in the thickness direction of the positive electrode adhesive layer 219.
  • the carbon particles C2 may be omitted.
  • the adhesive strength of the positive electrode adhesive layer 219 is increased by increasing the content of the scaly graphite C1. May decrease. Therefore, the addition of the carbon particles C2 as the conductive auxiliary agent ensures electrical continuity between the positive electrode sheet 213a and the internal positive electrode terminal 214b while suppressing a decrease in the adhesive strength of the positive electrode adhesive layer 219. This is advantageous in that
  • a negative electrode sheet 213b is bonded to the inner surface (second inner surface 212a) of the lid 212 facing the first inner surface 211a with a negative electrode adhesive layer 220 interposed therebetween.
  • the negative electrode adhesive layer 220 joins the negative electrode sheet 213b to the lid 212 and electrically connects the negative electrode sheet 213b and the lid 212.
  • the negative electrode adhesive layer 220 is obtained by curing a conductive adhesive, and the conductive adhesive is a synthetic resin containing conductive particles (flaky graphite C1 and carbon particles C2) similar to that of the positive electrode adhesive layer 219. It can be assumed that The negative electrode adhesive layer 220 and the positive electrode adhesive layer 219 can be made of the same type of conductive adhesive, or can be made of other types of conductive adhesive.
  • the positive electrode adhesive layer 219 that covers the internal positive electrode terminal 214b functions as a protective layer that protects the internal positive electrode terminal 214b from contact with the electrolytic solution.
  • the diffusion of the solvent molecules of the electrolytic solution into the resin constituting the conductive adhesive layer is relatively easy, and the diffusion is accelerated particularly under heating conditions.
  • carbon-based particles expand by intercalation of electrolyte ions at a specific potential.
  • the carbon-based particles expand, a crack is generated in the conductive adhesive layer, and the electrolyte may reach the positive electrode wiring through the crack.
  • the function of the conductive adhesive layer as a protective layer may be reduced or eliminated, and the electrical resistance may increase due to the corrosion of the positive electrode wiring or the conduction failure may occur.
  • the positive electrode adhesive layer 219 contains scaly graphite C1 that shields the internal positive electrode terminal 214b from the positive electrode sheet 213a.
  • the scaly graphite C1 inhibits or extends the permeation path of the electrolytic solution penetrating the positive electrode adhesive layer 219 to the internal positive electrode terminal 214b, and the internal positive electrode terminal 214b can be protected from the electrolytic solution for a long period of time. Thereby, the electric field corrosion of the internal positive electrode terminal 214b becomes difficult to occur, and the lifetime of the electrochemical device 200 can be improved.
  • the manufacturing method of the electrochemical device 200 according to the present embodiment includes a case body preparation step, a positive electrode adhesive layer formation step, and a sealing step.
  • the same type of phenolic conductive adhesive is used as the conductive adhesive for forming the positive electrode adhesive layer 219 and the negative electrode adhesive layer 220.
  • the case body 211 having a concave shape is manufactured with various wiring patterns (positive wiring 214, external positive terminal 215, negative wiring 216, and external negative terminal 217).
  • (Formation process of positive electrode adhesive layer) 20 and 21 are diagrams for explaining the formation process of the positive electrode adhesive layer.
  • a first conductive adhesive 2191 is applied on the first inner surface 211a to a thickness of about 50 ⁇ m.
  • the first conductive adhesive 2191 is composed of a thermosetting resin (phenol resin in this example) containing a predetermined amount of flaky conductive filler (flaky graphite C1) and a conductive additive (carbon particles).
  • the first conductive adhesive 2191 is applied so as to cover at least the entire internal positive electrode terminal 214b, and in this embodiment, is applied over the entire region on the first inner surface 211a facing the positive electrode sheet 213a. .
  • the first conductive adhesive 2191 is formed with a relatively low viscosity.
  • the viscosity of the first conductive adhesive 2191 can be adjusted by the amount of the solvent, for example. In the present embodiment, the viscosity of the first conductive adhesive 2191 is adjusted to, for example, 1 mPa ⁇ s to 5000 mPa ⁇ s. Thereby, a flat layer made of the first conductive adhesive 2191 can be formed relatively easily on the first inner surface 211a.
  • the scaly graphite C1 contained in the first conductive adhesive 2191 is oriented parallel to the first inner surface 211a, and in plan view
  • the internal positive terminal 214b is covered with scaly graphite C1.
  • the first conductive adhesive 2191 is heated and cured at a predetermined temperature to form a protective layer 219a covering the internal positive terminal 214b (FIG. 21).
  • a second conductive adhesive 2192 is applied to the positive electrode sheet 213a, and the positive electrode sheet 213a is attached to the protective layer 219a via the second conductive adhesive 2192. Thereafter, the second conductive adhesive 2192 is cured by heating at a predetermined temperature, whereby a positive electrode adhesive layer 219 is formed between the positive electrode sheet 213a and the first inner surface 211a.
  • the second conductive adhesive 2192 may be applied on the protective layer 219a instead of being applied to the positive electrode sheet 213a. Also by this method, the same positive electrode adhesive layer 219 as that by the above-described method can be formed.
  • the liquid chamber A is sealed by bonding the case main body 211 and the lid 212.
  • a conductive adhesive is applied to the second inner surface 212a, the negative electrode sheet 213b is placed, and the conductive adhesive is thermally cured, whereby the negative electrode electrode sheet 213b is attached to the lid 212 via the negative electrode adhesive layer 220. Join.
  • the electrolytic solution is injected into the liquid chamber A.
  • the electrolytic solution is also injected into the negative electrode sheet 213b, and the liquid chamber A is sealed by bonding the edge of the second inner surface 212a and the coupling ring 218 by the above-described bonding methods.
  • the electrochemical device 200 is manufactured. According to this embodiment, the electrochemical device 200 that can protect the internal positive electrode terminal 214b from the electrolytic solution for a long time can be manufactured. Thereby, the electrochemical device 200 excellent in long-term reliability can be obtained.
  • FIG. 22 is a schematic cross-sectional view of an electrochemical device 300 according to the fifth embodiment of the present invention.
  • the configuration different from the fourth embodiment will be mainly described, and the same configuration as the above-described embodiment will be denoted by the same reference numeral, and the description thereof will be omitted or simplified.
  • the form of the positive electrode adhesive layer 229 that joins between the first inner surface 211a of the case body 211 and the positive electrode sheet 213a of the power storage element 213 is the positive electrode adhesive in the first embodiment. Different from that of layer 219.
  • the positive electrode adhesive layer 229 covers the internal positive electrode terminal 214b and is formed in a convex shape or a dome shape on the first inner surface 211a.
  • the positive electrode adhesive layer 229 is a cured product of a conductive adhesive that joins between the first inner surface 211a and the positive electrode sheet 213a and electrically connects the internal positive electrode terminal 214b and the positive electrode sheet 213a. Consists of.
  • FIG. 23 is a schematic cross-sectional view of the positive electrode adhesive layer 229.
  • the positive electrode adhesive layer 229 contains scaly graphite C1 as a scaly conductive filler and carbon particles C2 as a conductive aid.
  • the scaly graphite C1 is dispersed so as to shield the internal positive electrode terminal 214b from the positive electrode sheet 213a.
  • the scale-like graphite C1 is typically oriented parallel to the first inner surface on the first inner surface 211a side, and follows the surface of the positive electrode adhesive layer 229 on the surface side of the positive electrode adhesive layer 229. Oriented.
  • the scale-like graphite C1 is distributed not only directly above the internal positive electrode terminal 214b protruding from the first inner surface 211a but also around the electric field, and the carbon particles C2 are electrically connected between the internal positive electrode terminal 214b and the positive electrode sheet 213a. Make it conductive.
  • the positive electrode adhesive layer 229 is formed in the same manner as in the fourth embodiment. That is, after forming the protective layer with the first conductive adhesive, the positive electrode sheet 213a is attached on the protective layer via the second conductive adhesive.
  • the protective layer is formed by adjusting the first conductive adhesive to a relatively high viscosity and applying the first conductive adhesive onto the internal positive electrode terminal 214b using a dispenser or the like.
  • the same effects as those of the fourth embodiment described above can be obtained.
  • the positive electrode adhesive layer 229 is provided in a partial region between the first inner surface 211a of the case body 211 and the positive electrode sheet 213a, the remaining region communicates with the liquid chamber A. It can be used as a storage chamber for the electrolyte solution.
  • FIG. 24 is a schematic cross-sectional view of an electrochemical device 400 according to the sixth embodiment of the present invention.
  • the configuration different from the fourth embodiment will be mainly described, and the same configuration as the above-described embodiment will be denoted by the same reference numeral, and the description thereof will be omitted or simplified.
  • the electrochemical device 400 of the present embodiment has a recess 211b provided on the first inner surface of the case body 211, and is formed so that the internal positive electrode terminal 214b is exposed on the bottom surface of the recess 211b. This is different from the fourth embodiment.
  • the recess 211b is typically formed in a cylindrical shape, but may be formed in other shapes such as a rectangular parallelepiped shape.
  • the diameter of the recess 211b is smaller than the lateral width of the bottom surface of the power storage element 213 (positive electrode sheet 213a), and the depth of the recess 211b is arbitrarily set in the range of 50 ⁇ m to 500 ⁇ m, for example.
  • the positive electrode adhesive layer 239 is formed on the first inner surface 211a so as to cover the recess 211b.
  • the positive electrode adhesive layer 239 contains flaky graphite C1 as a flaky conductive filler and carbon particles C2 as a conductive additive.
  • the scaly graphite C1 is dispersed so as to shield the internal positive electrode terminal 214b from the positive electrode sheet 213a.
  • the scale-like graphite C1 is typically oriented parallel to the surface of the positive electrode adhesive layer 239 along the wall surfaces of the first inner surface 211a and the recess 211b, and the internal positive electrode terminal 214b is interposed via the carbon particles C2.
  • the positive electrode sheet 213a are electrically connected.
  • the positive electrode adhesive layer 239 is formed following the recess 211b, thereby forming a space 239c in the recess 211b. Without being limited thereto, the positive electrode adhesive layer 239 may be filled in the recess 211b.
  • the same effects as those of the fourth embodiment described above can be obtained.
  • the conductive adhesive is used even when the conductive adhesive constituting the positive electrode adhesive layer 239 has a relatively low viscosity. It can apply
  • the adhesive layer immediately above the internal positive terminal 214b can be thickened.
  • FIG. 25 is a perspective view of an electrochemical device 500 according to the seventh embodiment of the present invention
  • FIG. 26 is a longitudinal sectional view of the electrochemical device 500
  • FIG. 27 is a plan view of the case main body 511 of the electrochemical device 500.
  • the electrochemical device 500 includes a case 510, a power storage element 513, a positive electrode adhesive layer 519 (first adhesive layer), and a negative electrode adhesive layer 520 (second adhesive layer).
  • the case 510 has a case body 511, a lid 512, a liquid chamber A, a positive electrode wiring 514 (terminal portion), an external positive electrode terminal 515 (first external terminal), a negative electrode wiring 516, and an external negative electrode terminal 517 (second external terminal). And a coupling ring 518.
  • the case main body 511 and the lid 512 are joined via a coupling ring 518 to form a case 510.
  • a storage element 513 containing an electrolytic solution is enclosed in the case 510 (liquid chamber A) partitioned between the case body 511 and the lid 512.
  • the case body 511 is made of an insulating material such as ceramics, and forms a liquid chamber A together with the lid 512.
  • the case main body 511 is composed of a laminated body of a plurality of ceramic sheets each processed into a predetermined shape.
  • the case main body 511 is formed in a concave shape so as to constitute the liquid chamber A, and is formed in, for example, a rectangular parallelepiped shape as shown in FIG.
  • the case main body 511 may be formed in another shape such as a columnar shape.
  • the case main body 511 has a first inner surface 511 a that forms the bottom surface of the liquid chamber A.
  • the lid 512 has a second inner surface 512a facing the first inner surface 511a, and is joined to the opening end (upper surface) of the case body 511 via the coupling ring 518, thereby sealing the liquid chamber A.
  • a direct joining method such as seam welding or laser welding can be used, or an indirect joining method with a conductive joining material can be used.
  • the lid 512 can be made of a conductive material such as various metals, for example, can be made of Kovar (iron-nickel-cobalt alloy). Further, the lid 512 may be a clad material in which a base material such as Kovar is coated with a coating made of a highly corrosion-resistant metal such as nickel, platinum, silver, gold, or palladium in order to prevent electrolytic corrosion. It is.
  • the electricity storage element 513 is accommodated in the liquid chamber A and accumulates (accumulates) electric charges or discharges (discharges) electric charges.
  • the storage element 513 includes a positive electrode sheet 513a (first electrode), a negative electrode sheet 513b (second electrode), and a separate sheet 513c (separator), and the positive electrode sheet 513a and the negative electrode A separate sheet 513c is sandwiched between sheets 513b.
  • the storage element 513 is bonded to the first inner surface 511a so that the positive electrode sheet 513a having the first bonding surface 5131a facing the first inner surface 511a is on the case body 511 side, and the negative electrode The sheet 513b is joined to the second inner surface 512a so as to be on the lid 512 side.
  • the positive electrode sheet 513a is a sheet containing an active material.
  • the active material is a material that adsorbs electrolyte ions (for example, BF 4 ⁇ ) on its surface to form an electric double layer, and can be, for example, activated carbon or PAS (Polyacenic Semiconductor: polyacenic organic semiconductor).
  • PAS Polyacenic Semiconductor: polyacenic organic semiconductor.
  • the positive electrode sheet 513a is formed by rolling a mixture of the above active material, a conductive additive (for example, ketjen black) and a binder (for example, PTFE (polytetrafluoroethylene)) and cutting it. it can.
  • the negative electrode sheet 513b is a sheet containing an active material like the positive electrode sheet 513a, and is formed by rolling a mixture of an active material, a conductive additive and a binder into a sheet shape, and cutting it. it can.
  • the negative electrode sheet 513b can be made of the same material as the positive electrode sheet 513a, or can be made of a different material.
  • the separate sheet 513c is a sheet that electrically insulates the electrodes.
  • the separate sheet 513c can be a porous sheet made of glass fiber, cellulose fiber, plastic fiber, or the like. Note that the separate sheet 513c may be omitted depending on the type of device.
  • the electrolytic solution sealed in the liquid chamber A together with the power storage element 513 can be arbitrarily selected.
  • BF 4 ⁇ tetrafluoroborate ion
  • PF 6 ⁇ hexafluorophosphate ion
  • CF 3 SO 2 ) 2 N ⁇ TFSA ion
  • a solution of 5-azoniaspiro [4.4] nonane-BF 4 or ethylmethylimidazolium-BF 4 can be used.
  • the case 510 includes the positive electrode wiring 514 and the negative electrode wiring 516.
  • An external positive electrode terminal 515 that is electrically connected to the positive electrode wiring 514 and an external negative electrode terminal that is electrically connected to the negative electrode wiring 516 are provided at the end (lower surface) opposite to the opening end of the case body 511. 517 are provided.
  • the positive electrode wiring 514 includes a via 514a, an internal positive terminal 514b (first end), and a second end 514c, and electrically connects the positive electrode sheet 513a and the external positive terminal 515.
  • the via 514a is formed through the bottom of the case body 511 from the external positive electrode terminal 515 to directly below the first inner surface 511a, and contacts the positive electrode adhesive layer 519 via the internal positive electrode terminal 514b. It is electrically connected to the positive electrode sheet 513a through 519.
  • the positive electrode wiring 514 may have a wiring pattern other than the via 514 a formed inside the case main body 511.
  • the positive electrode wiring 514 can be made of any conductive material.
  • the internal positive terminal 514b is provided on the first inner surface 511a, and electrically connects the positive electrode sheet 513a and the via 514a.
  • the internal positive terminal 514b is typically formed in a circular shape when viewed from above (FIG. 27).
  • the internal positive terminal 514b is not limited to this, and may be formed in other shapes such as a rectangular shape when viewed from above.
  • the internal positive electrode terminal 514b is protected from corrosion by the electrolytic solution by being covered with the positive electrode adhesive layer 519.
  • the material of the internal positive electrode terminal 514b can be selected from a wide range of materials regardless of the corrosion resistance.
  • the via 514a can be made of tungsten, and the internal positive electrode terminal 514b can be made by forming a nickel film and a gold film on tungsten.
  • the internal positive terminal 514b can be omitted. In this case, the via 514a is exposed to the first inner surface 511a.
  • the second end portion 514c is the end of the via 514a and is provided on the lower surface of the case body 511, and electrically connects the via 514a and the external positive terminal 515.
  • the external positive electrode terminal 515 is electrically connected to the storage element (positive electrode sheet 513a) by the positive electrode wiring 514, and is used for connection to an external circuit, for example, a mounting substrate.
  • the external positive terminal 515 can be made of any conductive material, and is provided at any position of the case body 511. In the present embodiment, the external positive electrode terminal 515 is formed on the outer surface, specifically, the lower surface of the case body 511 as shown in FIG.
  • the negative electrode wiring 516 electrically connects the negative electrode sheet 513b and the external negative electrode terminal 517.
  • the negative electrode wiring 516 is a via formed through the side wall portion of the case main body 511 from the external negative electrode terminal 517 to just below the coupling ring 518, and includes the coupling ring 518, the lid 512, and the negative electrode adhesive layer 520. Conduction to the negative electrode sheet 513b.
  • the negative electrode wiring 516 may have a wiring pattern other than the via formed in the case main body 511.
  • the negative electrode wiring 516 can be made of any conductive material.
  • the external negative electrode terminal 517 is electrically connected to the storage element (negative electrode sheet 513b) by the negative electrode wiring 516, and is used for connection to the outside, for example, a mounting substrate.
  • the external negative electrode terminal 517 can be made of any conductive material, and is provided at any position of the case body 511. In the present embodiment, the external negative electrode terminal 517 is formed on the outer surface, specifically, the lower surface of the case body 511 as shown in FIG.
  • the coupling ring 518 connects the case body 511 and the lid 512 to seal the liquid chamber A, and electrically connects the lid 512 and the negative electrode wiring 516.
  • the coupling ring 518 can be made of a conductive material such as Kovar (iron-nickel-cobalt alloy).
  • a corrosion-resistant film for example, a nickel film or a gold film
  • the coupling ring 518 can be joined to the case body 511 and the lid 512 via a brazing material (gold-copper alloy or the like).
  • the positive electrode adhesive layer 519 joins the positive electrode sheet 513a to the case main body 511 and electrically connects the positive electrode sheet 513a and the positive electrode wiring 514.
  • the positive electrode adhesive layer 519 is disposed between the positive electrode sheet 513a and the first inner surface 511a, and covers the internal positive electrode terminal 514b exposed on the first inner surface 511a. Thereby, the internal positive electrode terminal 514b is protected from electrolytic corrosion due to contact with the electrolytic solution sealed in the liquid chamber A.
  • the positive electrode adhesive layer 519 has a first space 519c. Details of the first space portion 519c will be described later.
  • the positive electrode adhesive layer 519 is a cured product of a conductive adhesive, and the conductive adhesive can be a synthetic resin containing conductive particles.
  • the conductive particles are, for example, carbon particles (carbon black), graphite particles (graphite particles), and the like, and the synthetic resin can be a thermosetting resin such as a phenol resin or an epoxy resin.
  • a phenol resin is preferable from the viewpoints of low swelling with respect to an electrolytic solution, high heat resistance, high chemical stability, and the like.
  • the said electrically conductive adhesive should just have electroconductivity and can be hardened.
  • the negative electrode sheet 513b is bonded to the inner surface (second inner surface 512a) of the lid 512 facing the first inner surface 511a via the negative electrode adhesive layer 520.
  • the negative electrode adhesive layer 520 joins the negative electrode sheet 513b to the lid 512 and electrically connects the negative electrode sheet 513b and the lid 512.
  • the negative electrode adhesive layer 520 is obtained by curing a conductive adhesive, and the conductive adhesive can be a synthetic resin containing conductive particles, similar to the positive electrode adhesive layer 519. Note that the negative electrode adhesive layer 520 and the positive electrode adhesive layer 519 can be made of the same type of conductive adhesive, or can be made of other types of conductive adhesive.
  • the first space portion is provided in the adhesive layer in order to have excellent long-term reliability and suppress an increase in internal resistance.
  • the first space portion will be described.
  • FIG. 28 is an enlarged vertical sectional view around the positive electrode adhesive layer 519 of the electrochemical device 500
  • FIG. 29 is a plan view of the case body 511 provided with the positive electrode adhesive layer 519. As shown in FIG. 28 and FIG. 29, a first space 519 c is formed in the positive electrode adhesive layer 519.
  • the positive electrode adhesive layer 519 includes a first base layer 519a and a first protrusion 519b.
  • the first base layer 519a is provided on the first inner surface 511a, has a first thickness T1, and protects the internal positive electrode terminal 514b from electrolytic corrosion due to contact with the electrolytic solution.
  • the first thickness T1 is not particularly limited, and can be, for example, 10 to 100 ⁇ m, preferably about 40 ⁇ m.
  • the first protrusion 519b is provided in a part of the first base layer 519a, has a second thickness T2, and electrically connects the first bonding surface 5131a and the first base layer 519a. At the same time, the positive electrode sheet 513a is supported.
  • the second thickness T2 is not particularly limited, and can be, for example, about 10 to 100 ⁇ m, preferably about 40 ⁇ m.
  • the first protrusion 519b is provided so as to cover a part of the first base layer 519a, as shown in FIGS.
  • the cross-sectional shape of the first projecting portion 519b has a circular shape in the present embodiment, but is not limited thereto, and may be formed in other shapes such as an oval shape and a rectangular shape.
  • the four first protrusions 519b are provided on the first base layer 519a with a space therebetween.
  • the number of the first protrusions 519b is not particularly limited, and may be a plurality or a single number.
  • the first space 519c is formed between the positive electrode sheet 513, the first base layer 519a, and the first protrusion 519b.
  • the first space portion 519c communicates with the first joint surface 513a of the positive electrode sheet 513a and the liquid chamber A, respectively. Therefore, the first space portion 519c has a function of holding the electrolytic solution and supplying it to the positive electrode sheet 513a. Accordingly, it is possible to prevent the liquid withering caused by the decomposition and reduction of the electrolytic solution due to the use of the electrochemical device 500 for a long period of time.
  • the first space portion 519c is typically formed between the first bonding surface 5131a and the first base layer 519a, but is not limited to this, and the first bonding surface 5131a and the case body 511 are not limited thereto. It may be formed between the first inner surface 511a and the first inner surface 511a.
  • the thickness of the first space 519c can be formed to a desired thickness by changing the first thickness T1 and / or the second thickness T2.
  • the area of the first space 519c in the cross section can be set to a desired area by changing the size or number of the first protrusions 519b. Accordingly, the first space 519c can be easily set to a desired volume.
  • the space between the electrodes is larger than the case where a space portion for holding the electrolytic solution is provided between the electrodes.
  • the distance can be shortened. Thereby, an increase in internal resistance of the electrochemical device 500 can be suppressed.
  • the first space 519c has a function of holding the electrolytic solution and supplying the electrolytic solution to the positive electrode sheet 513a. Liquid withering caused by decomposition and reduction can be prevented for a long time, and high reliability can be obtained. Furthermore, since the distance between the electrodes can be shortened compared to the case where the space for holding the electrolytic solution is provided between the electrodes, the internal resistance of the electrochemical device 500 can be reduced.
  • the manufacturing method of the electrochemical device 500 according to the present embodiment includes a case body preparation step, a positive electrode adhesive layer formation step, and a sealing step.
  • the same type of phenolic conductive adhesive is used as the conductive adhesive for forming the positive electrode adhesive layer 19 and the negative electrode adhesive layer 520.
  • the case main body 511 having a concave shape is manufactured with various wiring patterns (positive wiring 514, external positive terminal 515, negative wiring 516 and external negative terminal 517).
  • the step of forming the positive electrode adhesive layer includes a step of forming a protective layer, a step of applying a conductive adhesive on the protective layer, and a step of placing the positive electrode and curing the conductive adhesive.
  • the first conductive adhesive 5191 is applied on the first inner surface 511a to a thickness of about 10 to 100 ⁇ m, preferably about 40 ⁇ m. At this time, the first conductive adhesive 5191 is applied so as to cover at least the entire internal positive electrode terminal 514b, and in this embodiment, the entire region on the first inner surface 511a facing the positive electrode sheet 513a is covered. Applied.
  • the first base layer bonded to the first inner surface 511a while curing the first conductive adhesive 5191 by heat treatment at a predetermined temperature and covering the internal positive terminal 514b as shown in FIG. 519a (protective layer) is formed.
  • a second conductive adhesive 5192 is applied on a part of the protective layer to a thickness of 10 to 100 ⁇ m, preferably about 40 ⁇ m.
  • the size of the first protruding portion 519b after thermosetting can be adjusted by the application amount of the second conductive adhesive 5192, thereby adjusting the size of the first space portion 519c. It becomes possible.
  • the second conductive adhesive 5192 is applied to four places on the protective layer.
  • the positive electrode sheet 513a is placed on the second conductive adhesive 5192 from the first bonding surface 5131a side, and heat treatment is performed at a predetermined temperature, thereby providing the second conductive material.
  • a positive electrode adhesive layer having a first protrusion 519b and a first space 519c communicating with the liquid chamber A between the first bonding surface 5131a and the first base layer 519a by curing the adhesive 5192. 519 is formed.
  • the formation position of the first space 519c is changed from the first inner surface 511a to a desired height. It is possible to adjust to this.
  • first conductive adhesive 5191 and the second conductive adhesive 5192 may be the same type of conductive adhesive, or other types of conductive adhesives.
  • the liquid chamber A is sealed by bonding the case main body 511 and the lid 512.
  • a conductive adhesive is applied to the second inner surface 512a, the negative electrode sheet 513b is placed, and the conductive adhesive is thermally cured, whereby the negative electrode sheet 513b is attached to the lid 512 via the negative electrode adhesive layer 520. Join.
  • the electrolytic solution is injected into the liquid chamber A.
  • the electrolyte is also injected into the negative electrode sheet 513b, and the liquid chamber A is sealed by bonding the edge of the second inner surface 512a and the coupling ring 518 by the above-described bonding methods.
  • the electrochemical device 500 in which the first space portion 519c communicating with the liquid chamber A is formed between at least the first bonding surface 5131a of the positive electrode adhesive layer 519 and the first base layer 519a. can be manufactured.
  • the first space 519c has a function of holding the electrolytic solution and supplying the electrolytic solution to the positive electrode sheet 513a. Therefore, it is possible to prevent liquid drainage caused by decomposition and reduction of the electrolytic solution for a long time. High reliability can be obtained. Furthermore, since the distance between the electrodes can be shortened as compared with the case where the space for holding the electrolytic solution is provided between the electrodes, the internal resistance can be reduced.
  • the second conductive adhesive 5192 is applied on the protective layer in the step of forming the positive electrode adhesive layer, but may be applied to the first bonding surface 5131a. Even in this case, the positive electrode adhesive layer 519 similar to that obtained by the above-described method can be formed.
  • the second conductive adhesive 5192 is formed on a part of the protective layer formed by applying the first conductive adhesive 5191 flatly on the first inner surface 511a. Also by application, the same positive electrode adhesive layer 519 as that obtained by the above-described method can be formed.
  • FIG. 32 is a longitudinal sectional view of an electrochemical device 600 according to the eighth embodiment of the present invention.
  • FIG. 33 is a plan view of the case body 511 provided with the positive electrode adhesive layer 519 in the electrochemical device 600 according to this embodiment.
  • configurations different from those of the seventh embodiment will be mainly described, and configurations similar to those of the above-described embodiment will be denoted by the same reference numerals, and description thereof will be omitted or simplified.
  • the electrochemical device 600 according to the present embodiment mainly has a case body shape different from that of the seventh embodiment. Specifically, as shown in FIGS. 32 and 33, the case main body 511 of the present embodiment has a recess 511b on the first inner surface 511a. In the present embodiment, the internal positive terminal 514b is provided on the first inner surface 511a, but may be provided on the inner surface of the recess 511b.
  • a plurality of recesses 511b may be formed on the first inner surface 511a.
  • the shape of the recessed part 511b is typically formed in a cylindrical shape, it can also be formed in other shapes, such as a rectangular parallelepiped shape.
  • the diameter of the recess 511b is set to a value smaller than the lateral width of the first bonding surface 5131a, and the depth of the recess 511b is not particularly limited, and is set in the range of, for example, 20 to 200 ⁇ m, preferably 50 to 100 ⁇ m. Can do. This can prevent the power storage element 513 from entering the recess 511b.
  • the recess 511b is covered with the first base layer 519a together with the first inner surface 511a, and the first protrusion 519b is provided on a part of the first base layer 519a on the first inner surface 511a. .
  • a larger space portion 5190c than the first embodiment communicating with the liquid chamber A is formed between the first bonding surface 5131a and the first base layer 519a.
  • the concave portion 511b is provided on the first inner surface 511a of the case body 511, so that the space portion 5190c having a large volume can be obtained without increasing the distance between the electrodes. Is formed.
  • the effect similar to the above-mentioned 7th Embodiment can be acquired also by the form of this space part.
  • more electrolytic solution can be held in the space portion 5190c, so that it is possible to prevent liquid draining for a longer time.
  • the case body 511 can be manufactured by a process similar to that of the seventh embodiment.
  • the case main body 511 is manufactured to have a structure having a recess 511b on the first inner surface 511a.
  • the first conductive adhesive 5191 is first coated on the first inner surface 511a so as to cover the recess 511b and the internal positive electrode terminal 514b. Is applied and thermally cured to form a first base layer 519a (protective layer) covering the inner surfaces of the first inner surface 511a and the recess 511b.
  • the second conductive adhesive 5192 is applied to a part of the protective layer on the first inner surface 511a to a thickness of 10 to 100 ⁇ m, preferably about 40 ⁇ m, and the positive electrode sheet 513a is placed. Thereafter, the electrochemical device 600 is manufactured by the same process as in the seventh embodiment.
  • the first inner surface 511a has the recess 511b
  • a space portion having a larger volume than the seventh embodiment is provided between the first bonding surface 5131a and the first base layer 519a.
  • An electrochemical device 600 in which 5190c is formed can be manufactured.
  • FIG. 35 is a longitudinal sectional view of an electrochemical device 700 according to the ninth embodiment of the present invention.
  • configurations different from those of the seventh embodiment will be mainly described, and configurations similar to those of the seventh embodiment are denoted by the same reference numerals, and description thereof will be omitted or simplified.
  • the electrochemical device 700 according to the present embodiment is mainly different from the first embodiment in the negative electrode adhesive layer 720.
  • the negative electrode adhesive layer 720 has a space (second space 720c) that communicates with the liquid chamber A and the negative electrode sheet 513b.
  • the negative electrode adhesive layer 720 is made of the same material as the negative electrode adhesive layer 520 in the seventh embodiment.
  • the negative electrode adhesive layer 720 includes a second base layer 720a and a second protrusion 720b. Further, the negative electrode sheet 513b has a second bonding surface 5131b facing the second inner surface 512a.
  • the second base layer 720a and the second protrusion 720b have substantially the same structure and function as the first base layer 519a and the first protrusion 519b.
  • the second base layer 720a is provided on the second inner surface 512a and protects the lid 512 from electrolytic corrosion due to contact with the electrolytic solution.
  • the second protrusion 720b is provided in a part of the second base layer 720a, and electrically connects the second bonding surface 5131b and the second base layer 720a and supports the negative electrode sheet 513b.
  • the thicknesses of the second base layer 720a and the second protrusion 720b are typically set to the same thicknesses as the first thickness T1 and the second thickness T2, but are not limited thereto, and are desired. The thickness can be appropriately set.
  • the second space portion 720c has the same structure and function as the first space portion 519c. Thereby, since the 2nd space part 720c can hold
  • the positive electrode adhesive layer 519 and the negative electrode adhesive layer 720 have the first and second spaces, respectively, and the first and second spaces are also included in the form of the spaces.
  • the same effects as those of the seventh embodiment can be obtained.
  • the negative electrode adhesive layer 720 since the negative electrode adhesive layer 720 includes the second space portion 720 c communicating with the liquid chamber A, more electrolytic solution than that in the seventh embodiment can be held and supplied to the electrode. . As a result, it is possible to prevent the liquid from draining for a longer time, and it is possible to obtain higher reliability.
  • the method further includes a step of forming a negative electrode adhesive layer for forming the second space portion 720 c in the negative electrode adhesive layer 720.
  • the case body preparation step and the positive electrode adhesive layer formation step are the same as those in the seventh embodiment, and a description thereof will be omitted here.
  • the negative electrode adhesive layer having the second base layer 720a and the second projecting portion 720b and having the second space 720c is provided by the same process as the positive electrode adhesive layer forming step.
  • 720 is formed.
  • the process for forming the negative electrode adhesive layer is typically performed simultaneously with the process for forming the positive electrode adhesive layer, but the order of the processes is not limited.
  • the separator sheet 513c is placed on the positive electrode sheet 513a, and then the electrolytic solution is injected into the liquid chamber A.
  • the electrolyte is also injected into the negative electrode sheet 513b, and the liquid chamber A is sealed by bonding the edge of the second inner surface 512a and the coupling ring 518 by the above-described bonding methods.
  • the electrochemical device 700 in which the first space portion 519c is provided in the positive electrode adhesive layer 519 and the second space portion 720c is provided in the negative electrode adhesive layer 720 can be manufactured.
  • the positive electrode adhesive layer 19 may be formed of a single conductive adhesive layer.
  • the conductive adhesive for forming the positive electrode adhesive layer 19 may have air bubbles, whereby a void portion can be formed inside the positive electrode adhesive layer 19.
  • the size of the bubbles is not particularly limited, and can be, for example, about 1 ⁇ m to 10 ⁇ m.
  • the type of gas contained in the bubbles is not particularly limited, and for example, carbon dioxide can be used.
  • the first conductive adhesive 191 and the second conductive adhesive 192 have low fluidity so as not to flow into the recess 11b or the recess 19e.
  • an adhesive material By using an adhesive material, it is possible to easily form a gap directly above the internal positive terminal 14b.
  • the positive electrode adhesive layer 19 is configured by two layers of the first adhesive layer 19a and the second adhesive layer 19b, but may be configured by three layers.
  • the conductive sheet is arranged as the center layer as the third layer, a void portion can be easily formed inside the positive electrode adhesive layer 19 by using a conductive sheet having pores in advance.
  • the second conductive adhesive 192 can be made easier to form voids by using a conductive adhesive having low fluidity so as not to flow into the pores of the conductive sheet.
  • the insulating case main body is used.
  • a configuration using a conductive case main body is also possible.
  • the wiring pattern in each of the above embodiments can be omitted, and an electrochemical device using the lid and the case body as external electrode terminals can be obtained.
  • scaly graphite is used as the scaly conductive filler contained in the positive electrode adhesive layers 219 and 229.
  • the present invention is not limited to this, and a scaly metal filler may be used. Good. Even in such a configuration, the same effects as described above can be obtained.
  • the material for example, aluminum etc. which has corrosion resistance with respect to electrolyte solution is preferable.
  • the vias constituting the positive electrode wiring are configured to penetrate the bottom of the case body, but the present invention is not limited to this.
  • a via may be formed so as not to penetrate the bottom of the case body, and an inner layer wiring portion that electrically connects the via to the external positive terminal may be provided at the bottom of the case body.
  • the electrochemical device according to each of the above embodiments can be applied to a lithium ion capacitor, a charge double layer capacitor, and other electrochemical capacitors depending on the type of electrode material and the like.
  • the space portion is provided in both the positive electrode adhesive layer 519 and the negative electrode adhesive layer 720, but the space portion may be provided only in the negative electrode adhesive layer 720. Also by this, the same effect as the seventh embodiment can be obtained.
  • the first protrusion 519b supports the positive electrode sheet 513a, and communicates with the liquid chamber A between the first bonding surface 5131a and the first base layer 519a. As long as it has the 1st space part 519c to do, it is good also as what kind of cross-sectional shape.
  • the first protrusion 519b can have a cross-sectional shape as shown in FIGS. 36A to 36C, for example.
  • the second protrusion 720b in the ninth embodiment can also have the same shape.
  • the cross-sectional shape of the first protrusion 519b can be appropriately set according to the number, size, and position of the recesses 511b.
  • the positive electrode adhesive layer 519 and the negative electrode adhesive layers 20 and 720 each having a space may be formed of a single conductive adhesive layer.
  • a conductive adhesive having low fluidity it is possible to prevent the conductive adhesive from flowing and to easily form the protruding portion and the space portion.
  • Electrochemical device 10 210, 510 ... Case 11, 111, 211, 511 ... Case body 11a, 211a, 511a ... First inner surface 11b, 211b, 511b ... concave portion 11c ... third inner surface 12, 212, 512 ... lid 12a, 212a, 512a ... second inner surface 13, 213, 513 ... power storage element 13a, 213a, 513a ... positive electrode sheet 13b, 213b, 513b ... Negative electrode sheet 13c, 213c, 513c ... Separate sheet 14, 214, 514 ... Positive electrode wiring 14a, 214a, 514a ...

Abstract

[Problem] To provide an electrochemical device and a production method, with which peeling between an electrode adhesive layer and a case can be suppressed. [Solution] This electrochemical device (100) is provided with: a case (10); an electrical storage element (13); and an adhesive layer (19). The case (10) is provided with: terminal parts (14); a case main body (11) provided with a first inner surface (11a) having the terminal parts (14) provided thereto; and a conductive lid (12) which is bonded to the case main body (11), and which is provided with a second inner surface (12a) that faces the first inner surface (11a). The electrical storage element (13) is provided with: a first electrode (13a) which is fixed to the first inner surface (11a); and a second electrode (13b) which is fixed to the second inner surface (12a), and which faces the first electrode (13a) with an electrolyte solution provided therebetween. The adhesive layer (19) is configured from a cured product of a conductive adhesive material, said cured product being provided with at least one cavity portion (19c). Furthermore, the adhesive layer (19) electrically connects the first electrode (13a) and the terminal parts (14), and is disposed between the first electrode (13a) and the first inner surface (11a).

Description

電気化学デバイス及び製造方法Electrochemical device and manufacturing method
 本発明は、充放電可能な蓄電素子を有する電気化学デバイス及び製造方法に関する。 The present invention relates to an electrochemical device having a chargeable / dischargeable storage element and a manufacturing method.
 充放電が可能な蓄電素子を備える電気化学デバイスは、バックアップ電源等に広く利用されている。このような電気化学デバイスの一つとして、蓄電素子と電解液が絶縁性のケースに封入された構造を有する電気化学デバイスがある。絶縁性のケースには配線が施され、封入された蓄電素子と導通するように構成されている。 Electrochemical devices equipped with chargeable / dischargeable storage elements are widely used for backup power supplies and the like. As one of such electrochemical devices, there is an electrochemical device having a structure in which a power storage element and an electrolytic solution are enclosed in an insulating case. The insulating case is provided with wiring and is configured to be electrically connected to the enclosed power storage element.
 ここで、このような電気化学デバイスにおいては、蓄電素子の充放電に伴う電解腐食から配線を保護する必要がある。例えば特許文献1に記載の電気化学デバイスは、導電性接着材の硬化物からなる接着層によって、蓄電素子をケースに接着すると共に配線が被覆される構成となっている。 Here, in such an electrochemical device, it is necessary to protect the wiring from electrolytic corrosion accompanying charging / discharging of the storage element. For example, the electrochemical device described in Patent Document 1 has a configuration in which a power storage element is bonded to a case and a wiring is covered with an adhesive layer made of a cured conductive adhesive.
特開2013-232569号公報JP 2013-232669 A
 しかしながら、特許文献1に記載の電気化学デバイスのように接着層によって配線を被覆する場合には、接触層の剥離や接着層への電解液の浸透などにより、配線の電解腐食が発生するおそれがある。また、電解液の分解による減少によって容量が低下したりする場合がある。 However, when the wiring is covered with an adhesive layer as in the electrochemical device described in Patent Document 1, there is a possibility that electrolytic corrosion of the wiring may occur due to peeling of the contact layer or penetration of the electrolytic solution into the adhesive layer. is there. Further, the capacity may decrease due to a decrease due to the decomposition of the electrolytic solution.
 以上のような事情に鑑み、本発明の目的は、長期信頼性を確保することができる電気化学デバイス及び製造方法を提供することにある。 In view of the circumstances as described above, an object of the present invention is to provide an electrochemical device and a manufacturing method capable of ensuring long-term reliability.
 上記目的を達成するため、本発明の一形態に係る電気化学デバイスは、ケースと、蓄電素子と、接着層とを具備する。
 上記ケースは、端子部と、上記端子部が設けられた第1の内面を有するケース本体と、上記ケース本体に接合され上記第1の内面と対向する第2の内面を有する導電性のリッドと、を有する。
 上記蓄電素子は、上記第1の内面に固定された第1の電極と、上記第2の内面に固定され電解液を挟んで上記第1の電極と対向する第2の電極と、を有する。
 上記接着層は、少なくとも1つの空隙部を有する導電性接着材の硬化物で構成され、上記第1の電極と上記端子部とを電気的に接続し、上記第1の電極と上記第1の内面との間に配置されている。
In order to achieve the above object, an electrochemical device according to one embodiment of the present invention includes a case, a power storage element, and an adhesive layer.
The case includes a terminal portion, a case main body having a first inner surface provided with the terminal portion, and a conductive lid having a second inner surface joined to the case main body and facing the first inner surface. Have.
The power storage element includes a first electrode fixed to the first inner surface and a second electrode fixed to the second inner surface and opposed to the first electrode with an electrolyte interposed therebetween.
The adhesive layer is formed of a cured product of a conductive adhesive material having at least one gap portion, electrically connects the first electrode and the terminal portion, and connects the first electrode and the first electrode. It is arranged between the inner surface.
 上記電気化学デバイスの製造方法は、端子部が設けられた第1の内面を有するケース本体を準備することを含む。
 上記第1の内面に、第1の導電性接着材を塗布することで上記端子部を被覆する保護層が形成される。
 上記保護層上に、第2の導電性接着材を介して蓄電素子の第1の電極が載置される。
 上記第2の導電性接着材を硬化させることで、上記第1の電極と上記第1の内面との間に少なくとも空隙部を有する接着層が形成される。
 上記ケース本体に上記蓄電素子の第2の電極と接合されるリッドを接合することで、上記蓄電素子及び電解液を収容した上記ケース本体の内部が封止される。
The method for manufacturing an electrochemical device includes preparing a case body having a first inner surface provided with a terminal portion.
A protective layer that covers the terminal portion is formed on the first inner surface by applying a first conductive adhesive.
On the protective layer, the first electrode of the electricity storage element is placed via the second conductive adhesive.
By curing the second conductive adhesive, an adhesive layer having at least a gap is formed between the first electrode and the first inner surface.
By joining a lid to be joined to the second electrode of the electricity storage element to the case body, the inside of the case body containing the electricity storage element and the electrolytic solution is sealed.
 また、本発明の他の形態に係る電気化学デバイスは、ケースと、蓄電素子と、接着層とを具備する。
 上記ケースは、端子部と、ケース本体と、リッドとを有する。上記ケース本体は、絶縁性のケース本体であって、上記端子部が設けられた第1の内面を有する。上記リッドは、導電性のリッドであって、上記ケース本体に接合され、上記第1の内面と対向する第2の内面を有する。
 上記蓄電素子は、第1の電極と、第2の電極とを有する。上記第1の電極は、上記第1の内面に固定される。上記第2の電極は、上記第2の内面に固定され、電解液を挟んで上記第1の電極と対向する。
 上記接着層は、上記第1の電極と上記第1の内面との間に配置される。上記接着層は、上記端子部を上記第1の電極から遮蔽する鱗片状導電フィラーを含有する導電性接着剤の硬化物で構成される。
An electrochemical device according to another embodiment of the present invention includes a case, a power storage element, and an adhesive layer.
The case includes a terminal portion, a case body, and a lid. The case main body is an insulating case main body and has a first inner surface provided with the terminal portion. The lid is a conductive lid and has a second inner surface that is joined to the case body and faces the first inner surface.
The power storage element includes a first electrode and a second electrode. The first electrode is fixed to the first inner surface. The second electrode is fixed to the second inner surface and faces the first electrode with an electrolyte interposed therebetween.
The adhesive layer is disposed between the first electrode and the first inner surface. The said adhesive layer is comprised with the hardened | cured material of the conductive adhesive containing the scaly conductive filler which shields the said terminal part from the said 1st electrode.
 上記電気化学デバイスの製造方法は、端子部が設けられた第1の内面を有するケース本体を準備することを含む。
 上記第1の内面に、平面視において上記端子部を被覆する鱗片状導電フィラーを含有する第1の導電性接着剤の硬化物で構成された保護層が形成される。
 上記保護層上に、第2の導電性接着剤を介して蓄電素子の第1の電極が固定される。
 上記ケース本体に上記蓄電素子の第2の電極と電気的に接続されるリッドを接合することで、上記蓄電素子および電解液を収容した上記ケース本体の内部が封止される。
The method for manufacturing an electrochemical device includes preparing a case body having a first inner surface provided with a terminal portion.
On the first inner surface, a protective layer made of a cured product of the first conductive adhesive containing a scale-like conductive filler covering the terminal portion in plan view is formed.
A first electrode of the energy storage device is fixed on the protective layer via a second conductive adhesive.
By joining a lid that is electrically connected to the second electrode of the electricity storage element to the case body, the inside of the case body containing the electricity storage element and the electrolytic solution is sealed.
 そして、本発明のさらに他の形態に係る電気化学デバイスは、ケースと、蓄電素子と、第1の接着層とを具備する。
 上記ケースは、端子部と、ケース本体と、リッドと、液室とを有する。上記ケース本体は、上記端子部が設けられた第1の内面を有する。上記リッドは、導電性のリッドであって、上記ケース本体に接合され、上記第1の内面と対向する第2の内面を有する。上記液室は、上記ケース本体と上記リッドとの間に区画される。
 上記蓄電素子は、第1の電極と、第2の電極と、電解液とを有する。上記第1の電極は、上記第1の内面に固定され、上記第1の内面と対向する第1の接合面を有する。上記第2の電極は、上記第2の内面に固定され、上記第1の電極と対向する。上記電解液は、上記液室に封入される。
 上記第1の接着層は、上記第1の電極と上記第1の内面との間に配置され、上記第1の電極と上記端子部とを電気的に接続し、導電性接着材の硬化物で構成される。上記第1の接着層は、上記液室と上記第1の接合面とに各々連通する第1の空間部を有する。
And the electrochemical device which concerns on the further another form of this invention comprises a case, an electrical storage element, and a 1st contact bonding layer.
The case includes a terminal portion, a case main body, a lid, and a liquid chamber. The case main body has a first inner surface provided with the terminal portion. The lid is a conductive lid and has a second inner surface that is joined to the case body and faces the first inner surface. The liquid chamber is partitioned between the case body and the lid.
The power storage element includes a first electrode, a second electrode, and an electrolytic solution. The first electrode is fixed to the first inner surface and has a first bonding surface facing the first inner surface. The second electrode is fixed to the second inner surface and faces the first electrode. The electrolytic solution is sealed in the liquid chamber.
The first adhesive layer is disposed between the first electrode and the first inner surface, electrically connects the first electrode and the terminal portion, and is a cured product of a conductive adhesive. Consists of. The first adhesive layer has a first space that communicates with the liquid chamber and the first joint surface.
 上記電気化学デバイスの製造方法は、端子部が設けられた第1の内面を有する液室を有するケース本体を準備することを含む。
 上記第1の内面に第1の導電性接着材を一部が厚くなるように塗布することで、一部に突出部を有し上記端子部を被覆する保護層が形成される。
 上記保護層上に第2の導電性接着材を塗布した後、上記第2の導電性接着材上に蓄電素子の第1の電極が載置される。
 上記第2の導電性接着材を硬化させることで、上記第1の電極と上記保護層との間に上記液室と連通する第1の空間部を有する第1の接着層が形成される。
 上記液室に電解液が注入される。
 上記ケース本体に上記第1の電極と対向する第2の電極が接合されたリッドが接合される。
The method for manufacturing an electrochemical device includes preparing a case body having a liquid chamber having a first inner surface provided with a terminal portion.
By applying the first conductive adhesive to the first inner surface so as to be partially thickened, a protective layer that has a protruding part in part and covers the terminal part is formed.
After applying the second conductive adhesive on the protective layer, the first electrode of the energy storage device is placed on the second conductive adhesive.
By curing the second conductive adhesive, a first adhesive layer having a first space communicating with the liquid chamber is formed between the first electrode and the protective layer.
An electrolytic solution is injected into the liquid chamber.
A lid in which a second electrode facing the first electrode is bonded to the case body is bonded.
 以上のように、本発明によれば、長期信頼性を確保することができる。 As described above, according to the present invention, long-term reliability can be ensured.
本発明の一実施形態に係る電気化学デバイスの斜視図である。1 is a perspective view of an electrochemical device according to an embodiment of the present invention. 上記電気化学デバイスの断面図である。It is sectional drawing of the said electrochemical device. 上記電気化学デバイスのケース本体の平面図である。It is a top view of the case main body of the said electrochemical device. 上記電気化学デバイスの要部の拡大断面図である。It is an expanded sectional view of the important section of the above-mentioned electrochemical device. 上記電気化学デバイスの製造方法を説明する図であって、正極接着層の形成工程を示す断面図である。It is a figure explaining the manufacturing method of the said electrochemical device, Comprising: It is sectional drawing which shows the formation process of a positive electrode adhesive layer. 上記電気化学デバイスの製造方法を説明する図であって、正極接着層の形成工程を示す断面図である。It is a figure explaining the manufacturing method of the said electrochemical device, Comprising: It is sectional drawing which shows the formation process of a positive electrode adhesive layer. 上記電気化学デバイスの製造方法を説明する図であって、正極接着層の形成工程を示す拡大断面図である。It is a figure explaining the manufacturing method of the said electrochemical device, Comprising: It is an expanded sectional view which shows the formation process of a positive electrode contact bonding layer. 上記電気化学デバイスの製造方法を説明する図であって、正極接着層の形成工程を示す断面図である。It is a figure explaining the manufacturing method of the said electrochemical device, Comprising: It is sectional drawing which shows the formation process of a positive electrode adhesive layer. 本発明の第2の実施形態に係る電気化学デバイスの断面図である。It is sectional drawing of the electrochemical device which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態に係る電気化学デバイスの要部の断面図である。It is sectional drawing of the principal part of the electrochemical device which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態に係る電気化学デバイスの製造方法を説明する図であって、正極接着層の形成工程を示す断面図である。It is a figure explaining the manufacturing method of the electrochemical device which concerns on the 2nd Embodiment of this invention, Comprising: It is sectional drawing which shows the formation process of a positive electrode contact bonding layer. 本発明の第2の実施形態に係る電気化学デバイスの製造方法を説明する図であって、正極接着層の形成工程を示す断面図である。It is a figure explaining the manufacturing method of the electrochemical device which concerns on the 2nd Embodiment of this invention, Comprising: It is sectional drawing which shows the formation process of a positive electrode contact bonding layer. 本発明の第2の実施形態に係る電気化学デバイスの製造方法を説明する図であって、正極接着層の形成工程を示す拡大断面図である。It is a figure explaining the manufacturing method of the electrochemical device which concerns on the 2nd Embodiment of this invention, Comprising: It is an expanded sectional view which shows the formation process of a positive electrode contact bonding layer. 本発明の第3の実施形態に係る電気化学デバイスの製造方法を説明する図であって、正極接着層の形成工程を示す断面図である。It is a figure explaining the manufacturing method of the electrochemical device which concerns on the 3rd Embodiment of this invention, Comprising: It is sectional drawing which shows the formation process of a positive electrode contact bonding layer. 本発明の第3の実施形態に係る電気化学デバイスの製造方法を説明する図であって、正極接着層の形成工程を示す拡大断面図である。It is a figure explaining the manufacturing method of the electrochemical device which concerns on the 3rd Embodiment of this invention, Comprising: It is an expanded sectional view which shows the formation process of a positive electrode contact bonding layer. 本発明の第4の実施形態に係る電気化学デバイスの斜視図である。It is a perspective view of the electrochemical device which concerns on the 4th Embodiment of this invention. 上記電気化学デバイスの概略側断面図である。It is a schematic sectional side view of the said electrochemical device. 上記電気化学デバイスのケース本体の平面図である。It is a top view of the case main body of the said electrochemical device. 上記電気化学デバイスにおける接着層の模式断面図である。It is a schematic cross section of the contact bonding layer in the said electrochemical device. 上記接着層の形成工程を説明する概略側断面図である。It is a schematic sectional side view explaining the formation process of the said contact bonding layer. 上記接着層の形成工程を説明する概略側断面図である。It is a schematic sectional side view explaining the formation process of the said contact bonding layer. 本発明の第5の実施形態に係る電気化学デバイスの概略側断面図である。It is a schematic sectional side view of the electrochemical device which concerns on the 5th Embodiment of this invention. 上記電気化学デバイスにおける接着層の模式断面図である。It is a schematic cross section of the contact bonding layer in the said electrochemical device. 本発明の第6の実施形態に係る電気化学デバイスの概略側断面図である。It is a schematic sectional side view of the electrochemical device which concerns on the 6th Embodiment of this invention. 本発明の第7の実施形態に係る電気化学デバイスの斜視図である。It is a perspective view of the electrochemical device which concerns on the 7th Embodiment of this invention. 上記電気化学デバイスの縦断面図である。It is a longitudinal cross-sectional view of the said electrochemical device. 上記電気化学デバイスのケース本体の平面図である。It is a top view of the case main body of the said electrochemical device. 上記電気化学デバイスの正極接着層周辺の拡大縦断面図である。It is an enlarged vertical sectional view around the positive electrode adhesive layer of the electrochemical device. 上記正極接着層が設けられたケース本体の平面図である。It is a top view of the case main body provided with the said positive electrode contact bonding layer. 上記電気化学デバイスの製造方法を説明する図であって、正極接着層の形成工程を示す平面図である。It is a figure explaining the manufacturing method of the said electrochemical device, Comprising: It is a top view which shows the formation process of a positive electrode contact bonding layer. 上記電気化学デバイスの製造方法を説明する図であって、正極接着層の形成工程を示す平面図である。It is a figure explaining the manufacturing method of the said electrochemical device, Comprising: It is a top view which shows the formation process of a positive electrode contact bonding layer. 本発明の第8の実施形態に係る電気化学デバイスの縦断面図である。It is a longitudinal cross-sectional view of the electrochemical device which concerns on the 8th Embodiment of this invention. 上記電気化学デバイスにおける正極接着層が設けられたケース本体の平面図である。It is a top view of the case main body provided with the positive electrode adhesive layer in the said electrochemical device. 上記電気化学デバイスの製造方法を説明する図であって、正極接着層の形成工程を示す平面図である。It is a figure explaining the manufacturing method of the said electrochemical device, Comprising: It is a top view which shows the formation process of a positive electrode contact bonding layer. 本発明の第9の実施形態に係る電気化学デバイスの縦断面図である。It is a longitudinal cross-sectional view of the electrochemical device which concerns on the 9th Embodiment of this invention. 本発明の変形例に係る電気化学デバイスの正極接着層の平面図である。It is a top view of the positive electrode adhesion layer of the electrochemical device which concerns on the modification of this invention.
 本発明の一実施形態に係る電気化学デバイスは、ケースと、蓄電素子と、接着層とを具備する。
 上記ケースは、端子部と、上記端子部が設けられた第1の内面を有するケース本体と、上記ケース本体に接合され上記第1の内面と対向する第2の内面を有する導電性のリッドと、を有する。
 上記蓄電素子は、上記第1の内面に固定された第1の電極と、上記第2の内面に固定され電解液を挟んで上記第1の電極と対向する第2の電極と、を有する。
 上記接着層は、少なくとも1つの空隙部を有する導電性接着材の硬化物で構成され、上記第1の電極と上記端子部とを電気的に接続し、上記第1の電極と上記第1の内面との間に配置されている。
An electrochemical device according to an embodiment of the present invention includes a case, a power storage element, and an adhesive layer.
The case includes a terminal portion, a case main body having a first inner surface provided with the terminal portion, and a conductive lid having a second inner surface joined to the case main body and facing the first inner surface. Have.
The power storage element includes a first electrode fixed to the first inner surface and a second electrode fixed to the second inner surface and opposed to the first electrode with an electrolyte interposed therebetween.
The adhesive layer is formed of a cured product of a conductive adhesive material having at least one gap portion, electrically connects the first electrode and the terminal portion, and connects the first electrode and the first electrode. It is arranged between the inner surface.
 この構成によれば、接着層に少なくとも1つの空隙部を有するため、温度変化時の接着層とケース本体との間の熱膨張差に起因する応力を緩和することができる。これにより、接着層の剥離を抑制し、電解液との接触による配線の電解腐食を阻止することが可能となるため、電気化学デバイスの長期信頼性が確保される。 According to this configuration, since the adhesive layer has at least one gap, it is possible to relieve the stress caused by the difference in thermal expansion between the adhesive layer and the case body when the temperature changes. As a result, peeling of the adhesive layer can be suppressed and electrolytic corrosion of the wiring due to contact with the electrolytic solution can be prevented, so that long-term reliability of the electrochemical device is ensured.
 上記空隙部は、上記接着層の内部に少なくとも1つ形成されていてもよい。
 これにより、温度変化時の接着層内部の応力を緩和することが可能となる。
At least one gap may be formed inside the adhesive layer.
Thereby, it becomes possible to relieve the stress inside the adhesive layer when the temperature changes.
 上記空隙部は、上記端子部と上記第1の電極との間に形成されていてもよい。
 これにより、温度変化時の接着層内部の応力を緩和すると共に、接着層に浸透する電解液の端子部への到達を空隙部が阻害し、端子部の腐食を起こりにくくすることが可能となる。
The gap portion may be formed between the terminal portion and the first electrode.
As a result, it is possible to relieve stress inside the adhesive layer at the time of temperature change, and to prevent the electrolyte from penetrating the adhesive layer from reaching the terminal part, and to prevent corrosion of the terminal part. .
 上記接着層は第1及び第2の接着層からなり、上記空隙部は少なくとも上記第1及び第2の接着層の界面に形成されていてもよい。
 これにより、第1及び第2の接着層の厚みを変えることで、空隙部を所望の高さに形成することが可能となる。
The adhesive layer may include first and second adhesive layers, and the gap may be formed at least at the interface between the first and second adhesive layers.
Thereby, it becomes possible to form a space | gap part in desired height by changing the thickness of a 1st and 2nd contact bonding layer.
 上記ケース本体は絶縁性材料で構成され、上記ケースは上記ケース本体の外面に配置され上記端子部と電気的に接続された外部端子をさらに有し、上記端子部は、上記第1の内面に露出し上記第1の接着層で被覆される第1の端部と、上記外部端子と電気的に接続される第2の端部を有していてもよい。
 この構成によれば、端子部が接着層に被覆されるため、電解液から端子部を保護することが可能となる。
The case main body is made of an insulating material, the case further includes an external terminal disposed on the outer surface of the case main body and electrically connected to the terminal portion, and the terminal portion is formed on the first inner surface. You may have the 1st edge part exposed and coat | covered with the said 1st contact bonding layer, and the 2nd edge part electrically connected with the said external terminal.
According to this configuration, since the terminal portion is covered with the adhesive layer, the terminal portion can be protected from the electrolytic solution.
 上記ケース本体は、上記第1の内面に設けられ上記第1の接着層で被覆される凹部を有し、上記端子部は上記凹部の底面に設けられていてもよい。
 この構成によれば、端子部と第1の電極との間に空隙部を形成することが可能となる。また、この構成によれば、端子部直上の接着層を厚くすることができ、接着層に浸透する電解液の端子部への浸透を遅らせ、端子部の腐食を起こりにくくすることが可能となる。
The case body may include a recess provided on the first inner surface and covered with the first adhesive layer, and the terminal portion may be provided on a bottom surface of the recess.
According to this configuration, it is possible to form a gap between the terminal portion and the first electrode. Further, according to this configuration, it is possible to increase the thickness of the adhesive layer immediately above the terminal portion, delay the penetration of the electrolyte solution penetrating into the adhesive layer into the terminal portion, and prevent the terminal portion from being corroded. .
 本発明の一実施形態に係る電気化学デバイスの製造方法は、端子部が設けられた第1の内面を有するケース本体を準備することを含む。
 上記第1の内面に、上記端子部を被覆することで上記端子部を被覆する保護層を形成する。
 上記保護層上に、第2の導電性接着材を介して蓄電素子の第1の電極を載置し、
 上記第2の導電性接着材を硬化させることで、上記第1の電極と上記第1の内面との間に少なくとも空隙部を有する接着層を形成し、
 上記ケース本体に上記蓄電素子の第2の電極と接合されるリッドを接合することで、上記蓄電素子及び電解液を収容した上記ケース本体の内部を封止する。
The manufacturing method of the electrochemical device which concerns on one Embodiment of this invention includes preparing the case main body which has the 1st inner surface provided with the terminal part.
A protective layer that covers the terminal portion is formed on the first inner surface by covering the terminal portion.
On the protective layer, the first electrode of the electricity storage element is placed via the second conductive adhesive,
By curing the second conductive adhesive, an adhesive layer having at least a gap is formed between the first electrode and the first inner surface,
By bonding a lid to be bonded to the second electrode of the electricity storage element to the case body, the inside of the case body containing the electricity storage element and the electrolytic solution is sealed.
 この製造方法によれば、接着層に空隙部を有し、温度変化時の接着層とケース本体との間の熱膨張差に起因する応力を緩和することができる電気化学デバイスを製造することが可能となる。 According to this manufacturing method, it is possible to manufacture an electrochemical device that has a void in the adhesive layer and can relieve stress caused by a difference in thermal expansion between the adhesive layer and the case body when the temperature changes. It becomes possible.
 上記保護層上に上記第1の電極を載置する工程は、上記保護層上に上記第2の導電性接着材を塗布した後、上記第2の導電性接着材上に上記第1の電極を載置してもよい。 The step of placing the first electrode on the protective layer includes applying the second conductive adhesive on the protective layer and then applying the first electrode on the second conductive adhesive. May be placed.
 上記ケース本体は、上記第1の内面に設けられた凹部を有し、
 上記保護層を形成する工程は、上記凹部を被覆するように上記保護層を上記第1の内面に形成し、
 上記保護層上に上記第2の導電性接着材を塗布する工程は、上記保護層のうち少なくとも上記第1の内面に形成された保護層上に上記第2の導電性接着材を塗布してもよい。
 これにより、凹部の直上に確実に空隙部を形成することが可能となる。
The case body has a recess provided in the first inner surface,
The step of forming the protective layer includes forming the protective layer on the first inner surface so as to cover the concave portion,
The step of applying the second conductive adhesive on the protective layer includes applying the second conductive adhesive on the protective layer formed on at least the first inner surface of the protective layer. Also good.
Thereby, it becomes possible to form a space | gap part reliably right above a recessed part.
 上記保護層上に上記第1の電極を載置する工程は、上記第1の電極に上記第2の導電性接着材を塗布した後、上記保護層上に上記第1の電極を載置してもよい。 In the step of placing the first electrode on the protective layer, after applying the second conductive adhesive to the first electrode, the first electrode is placed on the protective layer. May be.
 上記第1の電極は、多孔質材料で構成されていてもよい。
 これにより、第1の電極が第2の導電性接着材を吸収し、気泡を第2の導電性接着材に供給することで、接着層に空隙部を形成することが容易となる。
The first electrode may be made of a porous material.
As a result, the first electrode absorbs the second conductive adhesive, and the air bubbles are supplied to the second conductive adhesive, so that it is easy to form a void in the adhesive layer.
 本発明の他の実施形態に係る電気化学デバイスは、ケースと、蓄電素子と、接着層とを具備する。
 上記ケースは、端子部と、ケース本体と、リッドとを有する。上記ケース本体は、絶縁性のケース本体であって、上記端子部が設けられた第1の内面を有する。上記リッドは、導電性のリッドであって、上記ケース本体に接合され、上記第1の内面と対向する第2の内面を有する。
 上記蓄電素子は、第1の電極と、第2の電極とを有する。上記第1の電極は、上記第1の内面に固定される。上記第2の電極は、上記第2の内面に固定され、電解液を挟んで上記第1の電極と対向する。
 上記接着層は、上記第1の電極と上記第1の内面との間に配置される。上記接着層は、上記端子部を上記第1の電極から遮蔽する鱗片状導電フィラーを含有する導電性接着剤の硬化物で構成される。
An electrochemical device according to another embodiment of the present invention includes a case, a power storage element, and an adhesive layer.
The case includes a terminal portion, a case body, and a lid. The case main body is an insulating case main body and has a first inner surface provided with the terminal portion. The lid is a conductive lid and has a second inner surface that is joined to the case body and faces the first inner surface.
The power storage element includes a first electrode and a second electrode. The first electrode is fixed to the first inner surface. The second electrode is fixed to the second inner surface and faces the first electrode with an electrolyte interposed therebetween.
The adhesive layer is disposed between the first electrode and the first inner surface. The said adhesive layer is comprised with the hardened | cured material of the conductive adhesive containing the scaly conductive filler which shields the said terminal part from the said 1st electrode.
 上記電気化学デバイスにおいて、接着層は、端子部を第1の電極から遮蔽する片状の導電フィラーを含有している。このため、接着層に浸透する電解液の端子部への浸透経路を、鱗片状導電フィラーが阻害あるいは延長し、端子部を電解液から長期間保護することができる。これにより、端子部の電界腐蝕を起こりにくくし、電気化学デバイスの長期信頼性を確保することが可能となる。鱗片状導電フィラーとしては、例えば、鱗片状黒鉛が用いられる。 In the electrochemical device, the adhesive layer contains a piece of conductive filler that shields the terminal portion from the first electrode. For this reason, the scale-like conductive filler inhibits or extends the permeation path of the electrolytic solution penetrating the adhesive layer to the terminal portion, and the terminal portion can be protected from the electrolytic solution for a long period of time. As a result, electric field corrosion of the terminal portion hardly occurs, and long-term reliability of the electrochemical device can be ensured. As the flaky conductive filler, for example, flaky graphite is used.
 上記接着層は、上記接着層の厚み方向に上記鱗片状導電フィラー間を電気的に接続する導電助剤をさらに含有してもよい。
 これにより、鱗片状導電フィラーが接着層の厚み方向に相互に接触していない場合においても、接着層の所定の導電特性を確保することができる。
The adhesive layer may further contain a conductive additive that electrically connects the scaly conductive fillers in the thickness direction of the adhesive layer.
Thereby, even when the scale-like conductive fillers are not in contact with each other in the thickness direction of the adhesive layer, the predetermined conductive characteristics of the adhesive layer can be ensured.
 典型的には、上記鱗片状導電フィラーは、上記接着層の面内に平行に配向されている。
 これにより、第1の電極からの端子部の遮蔽効率を高めることができる。また、上記鱗片状導電フィラーが鱗片状黒鉛の場合、電解液イオンのインターカレーションによる鱗片状黒鉛の膨張方向を接着層の厚み方向とすることができる。これにより接着層のその厚み方向に沿ったクラックの発生を抑制し、当該クラックが電解液の端子部に向かう侵入経路となることを阻止することができる。
Typically, the scale-like conductive filler is oriented in parallel in the plane of the adhesive layer.
Thereby, the shielding efficiency of the terminal portion from the first electrode can be increased. Moreover, when the said flaky conductive filler is a flaky graphite, the expansion direction of the flaky graphite by the intercalation of electrolyte ion can be made into the thickness direction of an contact bonding layer. Thereby, generation | occurrence | production of the crack along the thickness direction of the contact bonding layer can be suppressed, and it can prevent that the said crack becomes the penetration | invasion path | route which goes to the terminal part of electrolyte solution.
 本発明の他の実施形態に係る電気化学デバイスの製造方法は、端子部が設けられた第1の内面を有するケース本体を準備することを含む。
 上記第1の内面に、平面視において上記端子部を被覆する鱗片状導電フィラーを含有する第1の導電性接着剤の硬化物で構成された保護層が形成される。
 上記保護層上に、第2の導電性接着剤を介して蓄電素子の第1の電極が固定される。
 上記ケース本体に上記蓄電素子の第2の電極と電気的に接続されるリッドを接合することで、上記蓄電素子および電解液を収容した上記ケース本体の内部が封止される。
The manufacturing method of the electrochemical device which concerns on other embodiment of this invention includes preparing the case main body which has the 1st inner surface provided with the terminal part.
On the first inner surface, a protective layer made of a cured product of the first conductive adhesive containing a scale-like conductive filler covering the terminal portion in plan view is formed.
A first electrode of the energy storage device is fixed on the protective layer via a second conductive adhesive.
By joining a lid that is electrically connected to the second electrode of the electricity storage element to the case body, the inside of the case body containing the electricity storage element and the electrolytic solution is sealed.
 上記製造方法によれば、端子部を電解液から長期間保護することができる電気化学デバイスを製造することができる。 According to the above production method, an electrochemical device capable of protecting the terminal portion from the electrolyte for a long period can be produced.
 本発明のさらに他の実施形態に係る電気化学デバイスは、ケースと、蓄電素子と、第1の接着層とを具備する。
 上記ケースは、端子部と、ケース本体と、リッドと、液室とを有する。上記ケース本体は、上記端子部が設けられた第1の内面を有する。上記リッドは、導電性のリッドであって、上記ケース本体に接合され、上記第1の内面と対向する第2の内面を有する。上記液室は、上記ケース本体と上記リッドとの間に区画される。
 上記蓄電素子は、第1の電極と、第2の電極と、電解液とを有する。上記第1の電極は、上記第1の内面に固定され、上記第1の内面と対向する第1の接合面を有する。上記第2の電極は、上記第2の内面に固定され、上記第1の電極と対向する。上記電解液は、上記液室に封入される。
 上記第1の接着層は、上記第1の電極と上記第1の内面との間に配置され、上記第1の電極と上記端子部とを電気的に接続し、導電性接着材の硬化物で構成される。上記第1の接着層は、上記液室と上記第1の接合面とに各々連通する第1の空間部を有する。
An electrochemical device according to still another embodiment of the present invention includes a case, a power storage element, and a first adhesive layer.
The case includes a terminal portion, a case main body, a lid, and a liquid chamber. The case main body has a first inner surface provided with the terminal portion. The lid is a conductive lid and has a second inner surface that is joined to the case body and faces the first inner surface. The liquid chamber is partitioned between the case body and the lid.
The power storage element includes a first electrode, a second electrode, and an electrolytic solution. The first electrode is fixed to the first inner surface and has a first bonding surface facing the first inner surface. The second electrode is fixed to the second inner surface and faces the first electrode. The electrolytic solution is sealed in the liquid chamber.
The first adhesive layer is disposed between the first electrode and the first inner surface, electrically connects the first electrode and the terminal portion, and is a cured product of a conductive adhesive. Consists of. The first adhesive layer has a first space that communicates with the liquid chamber and the first joint surface.
 この構成によれば、液室と連通する第1の空間部を有するため、当該第1の空間部が電解液を保持し第1の電極に供給することができる。これにより、電解液が分解し減少することにより生じる液枯れを長期間防ぐことができ、長期信頼性を得ることが可能となる。さらに、電解液を保持する空間部を電極間にのみ設けた場合と比べて、電極間距離を短縮することができるため、内部抵抗を低下させることが可能となる。 According to this configuration, since the first space portion communicates with the liquid chamber, the first space portion can hold the electrolytic solution and supply it to the first electrode. As a result, it is possible to prevent liquid drainage caused by decomposition and decrease of the electrolytic solution for a long period of time, and to obtain long-term reliability. Furthermore, the distance between the electrodes can be shortened compared to the case where the space for holding the electrolytic solution is provided only between the electrodes, so that the internal resistance can be reduced.
 上記第1の接着層は、第1のベース層と、少なくとも1つの第1の突出部とを含んでもよい。上記第1のベース層は、上記第1の内面に設けられ、第1の厚みを有する。上記第1の突出部は、上記第1のベース層に設けられ、第2の厚みを有し、上記第1の接合面と接合する。上記第1の空間部は、少なくとも上記第1の接合面と上記第1のベース層との間に形成されてもよい。 The first adhesive layer may include a first base layer and at least one first protrusion. The first base layer is provided on the first inner surface and has a first thickness. The first protrusion is provided on the first base layer, has a second thickness, and is bonded to the first bonding surface. The first space may be formed at least between the first joint surface and the first base layer.
 上記第1の突出部は、上記第1のベース層に設けられた複数の突出部を含んでいてもよい。 The first protrusion may include a plurality of protrusions provided on the first base layer.
 上記ケース本体は、絶縁性材料で構成されてもよい。上記ケースは、上記ケース本体の外面に配置され上記端子部と電気的に接続された外部端子をさらに有してもよい。上記端子部は、上記第1の内面に露出し上記第1の接着層で被覆される第1の端部と、上記外部端子と電気的に接続される第2の端部とを有していてもよい。
 この構成によれば、端子部が第1の接着層に被覆されるため、電解液から端子部を保護することが可能となる。
The case body may be made of an insulating material. The case may further include an external terminal disposed on the outer surface of the case body and electrically connected to the terminal portion. The terminal portion has a first end portion exposed on the first inner surface and covered with the first adhesive layer, and a second end portion electrically connected to the external terminal. May be.
According to this configuration, since the terminal portion is covered with the first adhesive layer, the terminal portion can be protected from the electrolytic solution.
 上記ケース本体は、上記第1の接合面の一部と対向し上記第1の接着層で被覆される凹部を上記第1の内面に有しもよい。
 この構成によれば、電極間距離を広げることなくより多くの電解液を保持し第1の電極に供給することができるため、内部抵抗の上昇を抑制しつつ液枯れに対して長期の信頼性を得ることが可能となる。
The case body may have a recess on the first inner surface that faces a part of the first bonding surface and is covered with the first adhesive layer.
According to this configuration, since a larger amount of electrolyte can be held and supplied to the first electrode without increasing the distance between the electrodes, long-term reliability against liquid withering is suppressed while suppressing an increase in internal resistance. Can be obtained.
 上記第2の電極は、上記第2の内面と対向する第2の接合面を有してもよい。この場合、上記電気化学デバイスは、第2の接着層をさらに具備してもよい。上記第2の接着層は、上記第2の電極と上記第2の内面との間に配置され、上記第2の電極と上記第2の内面とを電気的に接続し、導電性接着材の硬化物で構成される。上記第2の接着層は、上記液室と上記第2の接合面とに各々連通する第2の空間部を有する。 The second electrode may have a second bonding surface facing the second inner surface. In this case, the electrochemical device may further include a second adhesive layer. The second adhesive layer is disposed between the second electrode and the second inner surface, electrically connects the second electrode and the second inner surface, and is made of a conductive adhesive. Consists of cured products. The second adhesive layer has a second space that communicates with the liquid chamber and the second bonding surface.
 この構成によれば、第2の空間部が電解液を保持し第2の電極に電解液を供給することができるため、液枯れに対してより長期の信頼性を得ることが可能となる。 According to this configuration, since the second space can hold the electrolytic solution and supply the electrolytic solution to the second electrode, it is possible to obtain longer-term reliability against the liquid drainage.
 本発明のさらに他の実施形態に係る電気化学デバイスの製造方法は、端子部が設けられた第1の内面を有する液室を有するケース本体を準備することを含む。
 上記第1の内面に第1の導電性接着材を一部が厚くなるように塗布することで、一部に突出部を有し上記端子部を被覆する保護層が形成される。
 上記保護層上に第2の導電性接着材が塗布された後、上記第2の導電性接着材上に蓄電素子の第1の電極が載置される。
 上記第2の導電性接着材を硬化させることで、上記第1の電極と上記保護層との間に上記液室と連通する第1の空間部を有する第1の接着層が形成される。
 上記液室に電解液が注入される。
 上記ケース本体に上記第1の電極と対向する第2の電極が接合されたリッドが接合される。
A method for manufacturing an electrochemical device according to still another embodiment of the present invention includes preparing a case body having a liquid chamber having a first inner surface provided with a terminal portion.
By applying the first conductive adhesive to the first inner surface so as to be partially thickened, a protective layer that has a protruding part in part and covers the terminal part is formed.
After the second conductive adhesive is applied on the protective layer, the first electrode of the power storage element is placed on the second conductive adhesive.
By curing the second conductive adhesive, a first adhesive layer having a first space communicating with the liquid chamber is formed between the first electrode and the protective layer.
An electrolytic solution is injected into the liquid chamber.
A lid in which a second electrode facing the first electrode is bonded to the case body is bonded.
 この製造方法によれば、電解液を保持可能な第1の空間部を有する電気化学デバイスを製造することができ、これにより液枯れに対して長期の信頼性を得ることが可能となる。 According to this manufacturing method, an electrochemical device having a first space capable of holding an electrolytic solution can be manufactured, and thus long-term reliability can be obtained against liquid drainage.
 以下、図面を参照しながら、本発明の実施形態を説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
<第1の実施形態>
[電気化学デバイスの構成]
<First Embodiment>
[Configuration of electrochemical device]
 図1は、本実施形態に係る電気化学デバイス100の斜視図であり、図2は電気化学デバイス100の断面図である。図3は電気化学デバイス100のケース本体11の平面図である。 FIG. 1 is a perspective view of an electrochemical device 100 according to this embodiment, and FIG. 2 is a cross-sectional view of the electrochemical device 100. FIG. 3 is a plan view of the case body 11 of the electrochemical device 100.
 これらの図に示すように、電気化学デバイス100は、ケース10、蓄電素子13、正極接着層19(接着層)及び負極接着層20を有する。ケース10は、ケース本体11、リッド12、正極配線14(端子部)、外部正極端子15(第1の外部端子)、負極配線16、外部負極端子17(第2の外部端子)及び結合リング18を有する。 As shown in these drawings, the electrochemical device 100 includes a case 10, a power storage element 13, a positive electrode adhesive layer 19 (adhesive layer), and a negative electrode adhesive layer 20. The case 10 includes a case main body 11, a lid 12, a positive electrode wiring 14 (terminal portion), an external positive electrode terminal 15 (first external terminal), a negative electrode wiring 16, an external negative electrode terminal 17 (second external terminal), and a coupling ring 18. Have
 図2に示すように、電気化学デバイス100においては、ケース本体11とリッド12が結合リング18を介して接合され、ケース10を構成している。ケース本体11及びリッド12によって封止されたケース10の内部(液室A)には、蓄電素子13及び電解液が封入されている。 As shown in FIG. 2, in the electrochemical device 100, the case main body 11 and the lid 12 are joined via a coupling ring 18 to constitute the case 10. In the case 10 (liquid chamber A) sealed by the case main body 11 and the lid 12, a storage element 13 and an electrolytic solution are sealed.
 ケース本体11は、セラミックス等の絶縁性材料からなり、リッド12と共に液室Aを形成する。本実施形態においてケース本体11は、各々所定形状に加工された複数のセラミックスシートの積層体で構成される。ケース本体11は、液室Aを構成するように凹状に形成され、例えば図1に示すような直方体形状に形成される。これに限られず、ケース本体11は円柱状等の他の形状に形成されてもよい。ケース本体11は、液室Aの底面を形成する第1の内面11aを有する。 The case body 11 is made of an insulating material such as ceramics, and forms a liquid chamber A together with the lid 12. In the present embodiment, the case body 11 is composed of a laminate of a plurality of ceramic sheets each processed into a predetermined shape. The case body 11 is formed in a concave shape so as to constitute the liquid chamber A, and is formed in, for example, a rectangular parallelepiped shape as shown in FIG. The case body 11 is not limited to this, and may be formed in other shapes such as a columnar shape. The case body 11 has a first inner surface 11 a that forms the bottom surface of the liquid chamber A.
 リッド12は、第1の内面11aと対向する第2の内面12aを有し、結合リング18を介してケース本体11の開口端部(上面)と接合されることで、液室Aを封止する。結合リング18に対するリッド12の結合には、シーム溶接やレーザ溶接等の直接接合法を利用できる他、導電性接合材を介在した間接接合法を利用することができる。 The lid 12 has a second inner surface 12a facing the first inner surface 11a and is joined to the opening end (upper surface) of the case body 11 via the coupling ring 18, thereby sealing the liquid chamber A. To do. For bonding the lid 12 to the coupling ring 18, a direct bonding method such as seam welding or laser welding can be used, and an indirect bonding method with a conductive bonding material can be used.
 リッド12は、各種金属等の導電性材料からなるものとすることができ、例えばコバール(鉄-ニッケル-コバルト合金)からなるものとすることができる。また、リッド12は、電解腐食を防止するため、コバール等の母材がニッケル、白金、銀、金あるいはパラジウム等の耐腐食性の高い金属からなる被膜によって被覆されたクラッド材とすることも可能である。 The lid 12 can be made of a conductive material such as various metals, for example, can be made of Kovar (iron-nickel-cobalt alloy). Further, the lid 12 may be a clad material in which a base material such as Kovar is coated with a coating made of a metal having high corrosion resistance such as nickel, platinum, silver, gold or palladium in order to prevent electrolytic corrosion. It is.
 蓄電素子13は、液室Aに収容され、電荷を蓄積(蓄電)し、あるいは放出(放電)する。図2に示すように蓄電素子13は、正極電極シート13a(第1の電極)、負極電極シート13b(第2の電極)及びセパレートシート13c(セパレータ)を有し、正極電極シート13a及び負極電極シート13bによってセパレートシート13cが挟まれた構成を有する。 The electricity storage element 13 is accommodated in the liquid chamber A and accumulates (accumulates) electric charges or discharges (discharges) electric charges. As shown in FIG. 2, the storage element 13 includes a positive electrode sheet 13a (first electrode), a negative electrode sheet 13b (second electrode), and a separate sheet 13c (separator). The positive electrode sheet 13a and the negative electrode A separate sheet 13c is sandwiched between the sheets 13b.
 本実施形態において、蓄電素子13は、正極電極シート13aがケース本体11側となるように第1の内面11aに接合され、負極電極シート13bがリッド12側となるように第2の内面12aに接合される。 In the present embodiment, the storage element 13 is joined to the first inner surface 11a so that the positive electrode sheet 13a is on the case body 11 side, and on the second inner surface 12a so that the negative electrode sheet 13b is on the lid 12 side. Be joined.
 正極電極シート13aは、活物質を含むシートである。活物質は電解質イオン(例えばBF )をその表面に吸着させ、電気二重層を形成させる物質であり、例えば活性炭やPAS(Polyacenic Semiconductor:ポリアセン系有機半導体)であるものとすることができる。正極電極シート13aは、上記活物質、導電助剤(例えばケッチェンブラック)及びバインダ(例えば、PTFE(polytetrafluoroethylene))の混合物を圧延してシート状に形成し、それを裁断したものとすることができる。 The positive electrode sheet 13a is a sheet containing an active material. The active material is a material that adsorbs electrolyte ions (for example, BF 4 ) on its surface to form an electric double layer, and can be, for example, activated carbon or PAS (Polyacenic Semiconductor: polyacenic organic semiconductor). The positive electrode sheet 13a is formed by rolling a mixture of the above active material, conductive additive (for example, ketjen black) and binder (for example, PTFE (polytetrafluoroethylene)), and cutting it. it can.
 負極電極シート13bは、正極電極シート13aと同様に活物質を含むシートであり、活物質、導電助剤及びバインダの混合物を圧延してシート状に形成し、それを裁断したものとすることができる。負極電極シート13bは正極電極シート13aと同一の材料からなるものとすることもでき、異なる材料からなるものとすることもできる。 The negative electrode sheet 13b is a sheet containing an active material like the positive electrode sheet 13a. The negative electrode sheet 13b is formed by rolling a mixture of an active material, a conductive additive and a binder into a sheet shape, and cutting it. it can. The negative electrode sheet 13b can be made of the same material as the positive electrode sheet 13a, or can be made of a different material.
 セパレートシート13cは、電極同士を電気的に絶縁するシートである。セパレートシート13cは、ガラス繊維、セルロース繊維、プラスチック繊維等からなる多孔質シートであるものとすることができる。なおデバイスの種類によっては、セパレートシート13cは、省略することもできる。 The separate sheet 13c is a sheet that electrically insulates the electrodes. The separate sheet 13c can be a porous sheet made of glass fiber, cellulose fiber, plastic fiber or the like. Depending on the type of device, the separate sheet 13c can be omitted.
 蓄電素子13と共に液室Aに収容される電解液は、任意に選択することが可能であり、例えば、BF (四フッ化ホウ酸イオン)、PF (六フッ化リン酸イオン)、(CFSO(TFSAイオン)等のアニオンを含むものとすることができる。具体的には、5-アゾニアスピロ[4.4]ノナン-BFやエチルメチルイミダゾリウム-BFの溶液等を用いることができる。 The electrolytic solution accommodated in the liquid chamber A together with the electricity storage element 13 can be arbitrarily selected. For example, BF 4 (tetrafluoroborate ion), PF 6 (hexafluorophosphate ion) , (CF 3 SO 2 ) 2 N (TFSA ion) and the like. Specifically, a solution of 5-azoniaspiro [4.4] nonane-BF 4 or ethylmethylimidazolium-BF 4 can be used.
 上述のように、ケース10は、正極配線14及び負極配線16を有する。ケース本体11の上記開口端部とは反対側の端部(下面)には、正極配線14と電気的に接続される外部正極端子15と、負極配線16と電気的に接続される外部負極端子17とがそれぞれ設けられている。 As described above, the case 10 includes the positive electrode wiring 14 and the negative electrode wiring 16. An external positive terminal 15 that is electrically connected to the positive wiring 14 and an external negative terminal that is electrically connected to the negative wiring 16 are provided on the end (lower surface) opposite to the opening end of the case body 11. 17 are provided.
 正極配線14は、ビア14a、内部正極端子14b(第1の端部)、及び第2の端部14cを有し、正極電極シート13aと外部正極端子15とを電気的に接続する。ビア14aは、外部正極端子15から第1の内面11aの直下までケース本体11を貫通して形成されており、内部正極端子14bを経由して正極接着層19に接触し、正極接着層19を介して正極電極シート13aに電気的に接続される。正極配線14は、ケース本体11内部に形成された、ビア14a以外の配線パターンを有していてもよい。正極配線14は、任意の導電性材料からなるものとすることができる。 The positive wiring 14 has a via 14a, an internal positive terminal 14b (first end), and a second end 14c, and electrically connects the positive electrode sheet 13a and the external positive terminal 15. The via 14a is formed through the case main body 11 from the external positive electrode terminal 15 to directly below the first inner surface 11a, and contacts the positive electrode adhesive layer 19 via the internal positive electrode terminal 14b. And is electrically connected to the positive electrode sheet 13a. The positive electrode wiring 14 may have a wiring pattern other than the via 14 a formed inside the case main body 11. The positive electrode wiring 14 can be made of any conductive material.
 内部正極端子14bは、第1の内面11aに設けられ、正極電極シート13aとビア14aとを電気的に接続する。内部正極端子14bは、典型的には、上面から見て円形状に形成される(図3)。これに限られず、内部正極端子14bは、上面から見て矩形形状等の他の形状に形成されてもよい。 The internal positive terminal 14b is provided on the first inner surface 11a, and electrically connects the positive electrode sheet 13a and the via 14a. The internal positive terminal 14b is typically formed in a circular shape when viewed from above (FIG. 3). The internal positive terminal 14b is not limited to this, and may be formed in other shapes such as a rectangular shape when viewed from above.
 内部正極端子14bは、正極接着層19に被覆され、電解液による腐食から保護されるため、内部正極端子14bの材料は耐食性に関わらず幅広い材料から選択することが可能である。例えば、ビア14aはタングステンからなるものとすることができ、内部正極端子14bはタングステン上にニッケル膜及び金膜が成膜されたものとすることができる。内部正極端子14bは省略することもでき、この場合にはビア14aが第1の内面11aに露出する。 Since the internal positive electrode terminal 14b is covered with the positive electrode adhesive layer 19 and is protected from corrosion by the electrolytic solution, the material of the internal positive electrode terminal 14b can be selected from a wide range of materials regardless of the corrosion resistance. For example, the via 14a can be made of tungsten, and the internal positive electrode terminal 14b can be made by forming a nickel film and a gold film on tungsten. The internal positive terminal 14b can be omitted, and in this case, the via 14a is exposed to the first inner surface 11a.
 第2の端部14cは、ビア14aの末端であり、ケース本体11の下面に設けられ、ビア14aと外部正極端子15とを電気的に接続する。 The second end portion 14c is the end of the via 14a, is provided on the lower surface of the case body 11, and electrically connects the via 14a and the external positive electrode terminal 15.
 外部正極端子15は、正極配線14によって蓄電素子(正極電極シート13a)に電気的に接続され、外部回路、例えば実装基板との接続に用いられる。外部正極端子15は、任意の導電性材料からなるものとすることができ、ケース本体11の任意の位置に設けられる。本実施形態では外部正極端子15は、図2に示すように、ケース本体11の外面、具体的には下面に形成される。 The external positive electrode terminal 15 is electrically connected to the storage element (positive electrode sheet 13a) by the positive electrode wiring 14, and is used for connection to an external circuit, for example, a mounting substrate. The external positive terminal 15 can be made of any conductive material, and is provided at any position on the case body 11. In the present embodiment, the external positive terminal 15 is formed on the outer surface of the case body 11, specifically, the lower surface, as shown in FIG.
 負極配線16は、負極電極シート13bと外部負極端子17とを電気的に接続する。具体的には、負極配線16は、外部負極端子17から結合リング18の直下までケース本体11の側壁部を貫通して形成されているビアであり、結合リング18、リッド12及び負極接着層20を介して負極電極シート13bに導通する。負極配線16は、ケース本体11に形成された、ビア以外の配線パターンを有していてもよい。負極配線16は任意の導電性材料からなるものとすることができる。 The negative electrode wiring 16 electrically connects the negative electrode sheet 13 b and the external negative electrode terminal 17. Specifically, the negative electrode wiring 16 is a via formed through the side wall portion of the case body 11 from the external negative electrode terminal 17 to directly below the coupling ring 18, and includes the coupling ring 18, the lid 12, and the negative electrode adhesive layer 20. It conducts to the negative electrode sheet 13b via. The negative electrode wiring 16 may have a wiring pattern other than the via formed in the case body 11. The negative electrode wiring 16 can be made of any conductive material.
 外部負極端子17は、負極配線16によって蓄電素子(負極電極シート13b)に電気的に接続され、外部、例えば実装基板との接続に用いられる。外部負極端子17は、任意の導電性材料からなるものとすることができ、本実施形態では図2に示すように、ケース本体11の外面、具体的には下面に形成されるものとすることができる。 The external negative electrode terminal 17 is electrically connected to the storage element (negative electrode sheet 13b) by the negative electrode wiring 16, and is used for connection to the outside, for example, a mounting substrate. The external negative electrode terminal 17 can be made of any conductive material, and in this embodiment, as shown in FIG. 2, the external negative electrode terminal 17 is formed on the outer surface, specifically, the lower surface of the case body 11. Can do.
 結合リング18は、ケース本体11とリッド12を接続して液室Aを封止すると共に、リッド12と負極配線16とを電気的に接続する。結合リング18は、コバール(鉄-ニッケル-コバルト合金)等の導電性材料からなるものとすることができる。また、結合リング18の表面には、耐食性膜(例えば、ニッケル膜及び金膜等)が形成されるものとすることができる。結合リング18は、ロウ材(金-銅合金等)を介してケース本体11及びリッド12に接合されるものとすることができる。 The coupling ring 18 connects the case main body 11 and the lid 12 to seal the liquid chamber A, and electrically connects the lid 12 and the negative electrode wiring 16. The coupling ring 18 may be made of a conductive material such as Kovar (iron-nickel-cobalt alloy). Further, a corrosion-resistant film (for example, a nickel film and a gold film) can be formed on the surface of the coupling ring 18. The coupling ring 18 can be joined to the case body 11 and the lid 12 via a brazing material (gold-copper alloy or the like).
 正極接着層19(接着層)は、正極電極シート13aをケース本体11に接合すると共に、正極電極シート13aと正極配線14を電気的に接続する。正極接着層19は、正極電極シート13aと第1の内面11aとの間に配置され、第1の内面11aに露出する内部正極端子14bを被覆する。これにより、液室Aに収容された電解液との接触による電解腐食から内部正極端子14bが保護される。 The positive electrode adhesive layer 19 (adhesive layer) joins the positive electrode sheet 13 a to the case body 11 and electrically connects the positive electrode sheet 13 a and the positive electrode wiring 14. The positive electrode adhesive layer 19 is disposed between the positive electrode sheet 13a and the first inner surface 11a, and covers the internal positive terminal 14b exposed to the first inner surface 11a. As a result, the internal positive electrode terminal 14b is protected from electrolytic corrosion due to contact with the electrolytic solution contained in the liquid chamber A.
 また、正極接着層19の内部には複数の空隙部19cが形成されている。空隙部19cの詳細については後述する。 In addition, a plurality of voids 19 c are formed inside the positive electrode adhesive layer 19. Details of the gap 19c will be described later.
 正極接着層19は、導電性接着材の硬化物であり、当該導電性接着材は、導電性粒子を含有する合成樹脂であるものとすることができる。 The positive electrode adhesive layer 19 is a cured product of a conductive adhesive, and the conductive adhesive can be a synthetic resin containing conductive particles.
 上記導電性粒子は例えば、炭素粒子(カーボンブラック)や黒鉛粒子(グラファイト粒子)等であり、合成樹脂はフェノール樹脂あるいはエポキシ系樹脂等の熱硬化性樹脂であるものとすることができる。特にフェノール樹脂は、電解液に対する膨潤性が小さい、耐熱性が高い、化学的安定性が高い等の点から好適である。上記導電性接着材はこの他にも、導電性を有し、硬化させることができるものであればよい。 The conductive particles are, for example, carbon particles (carbon black), graphite particles (graphite particles), and the like, and the synthetic resin can be a thermosetting resin such as a phenol resin or an epoxy resin. In particular, a phenol resin is preferable from the viewpoints of low swelling with respect to an electrolytic solution, high heat resistance, high chemical stability, and the like. In addition to this, the said electrically conductive adhesive should just have electroconductivity and can be hardened.
 第1の内面11aと対向するリッド12の内面(第2の内面12a)には、負極接着層20を介して負極電極シート13bが接合されている。 The negative electrode sheet 13b is bonded to the inner surface (second inner surface 12a) of the lid 12 facing the first inner surface 11a with the negative electrode adhesive layer 20 interposed therebetween.
 負極接着層20は、負極電極シート13bをリッド12に接合すると共に、負極電極シート13bとリッド12を電気的に接続する。負極接着層20は、導電性接着材が硬化したものであり、導電性接着材は正極接着層19のものと同様に、導電性粒子を含有する合成樹脂であるものとすることができる。なお、負極接着層20と正極接着層19は、同種の導電性接着材からなるものとすることもでき、他種の導電性接着材からなるものとすることもできる。 The negative electrode adhesive layer 20 joins the negative electrode sheet 13 b to the lid 12 and electrically connects the negative electrode sheet 13 b and the lid 12. The negative electrode adhesive layer 20 is obtained by curing a conductive adhesive, and the conductive adhesive can be a synthetic resin containing conductive particles, similar to the positive electrode adhesive layer 19. The negative electrode adhesive layer 20 and the positive electrode adhesive layer 19 can be made of the same kind of conductive adhesive, or can be made of another kind of conductive adhesive.
 ここで、一般に、接着層によって配線を被覆する場合には、導電性接着材はセラミックスに比べ熱収縮率が大きいため、温度変化時の応力によって接着層がセラミックス製ケースから剥離する問題がある。接着層が剥離を起こすと、配線と電解液とが接触し、配線の腐食による電気抵抗の増加及び導通不良に至るおそれがある。
 そこで本実施形態では、接着層とケースとの剥離を抑制するために、接着層に空隙部が設けられている。以下、空隙部について説明する。
Here, in general, when a wiring is covered with an adhesive layer, since the conductive adhesive has a larger thermal shrinkage rate than ceramics, there is a problem that the adhesive layer is peeled off from the ceramic case due to stress during temperature change. When the adhesive layer is peeled off, the wiring and the electrolytic solution come into contact with each other, which may increase the electrical resistance and cause poor conduction due to the corrosion of the wiring.
Therefore, in the present embodiment, a gap is provided in the adhesive layer in order to suppress peeling between the adhesive layer and the case. Hereinafter, the gap will be described.
 [空隙部について]
 図4は、電気化学デバイス100の正極接着層19周辺の拡大断面図である。図4に示すように、正極接着層19の内部には縦断面において複数の空隙部19cが形成されている。
[About voids]
FIG. 4 is an enlarged cross-sectional view around the positive electrode adhesive layer 19 of the electrochemical device 100. As shown in FIG. 4, a plurality of voids 19 c are formed in the longitudinal cross section inside the positive electrode adhesive layer 19.
 空隙部19cは、正極接着層19に形成され、温度変化時の正極接着層19とケース本体11との間の熱膨張差に起因する応力を緩和する機能を有する。これにより、第1の内面11aからの正極接着層19の剥離を抑制することが可能となる。 The gap portion 19 c is formed in the positive electrode adhesive layer 19 and has a function of relieving stress caused by a difference in thermal expansion between the positive electrode adhesive layer 19 and the case body 11 when the temperature changes. Thereby, peeling of the positive electrode adhesive layer 19 from the first inner surface 11a can be suppressed.
 空隙部19cの形状は、楕円形、円形、長円形等の形状を有するが、複数の形状が組み合わされた複合的な形状であってもよい。空隙部19cは、正極接着層19の内部に複数形成されるが、単数であってもよい。また、複数の空隙部19cは互いに繋がっていてもよい。縦断面において、複数の空隙部19cの各々の大きさは特に限定されず、例えば、20μm~200μm程度とすることができる。空隙部19cを20μmより大きくすることで、応力緩和能が向上し、また、200μmより小さくすることで、空隙部19cが内部正極端子14bを覆うことを防ぎ、良好な導通を得ることができる。 The shape of the gap portion 19c has an elliptical shape, a circular shape, an oval shape, or the like, but may be a composite shape in which a plurality of shapes are combined. A plurality of the gap portions 19c are formed inside the positive electrode adhesive layer 19, but may be a single number. Further, the plurality of gap portions 19c may be connected to each other. In the longitudinal section, the size of each of the plurality of gaps 19c is not particularly limited, and can be, for example, about 20 μm to 200 μm. By making the gap portion 19c larger than 20 μm, the stress relaxation ability is improved, and by making it smaller than 200 μm, the gap portion 19c can be prevented from covering the internal positive electrode terminal 14b, and good conduction can be obtained.
 空隙部19cは、典型的には正極接着層19の内部に分布するように形成される。これにより、温度変化時の正極接着層19の内部の応力を、正極接着層19の全域にわたって緩和することが可能となる。 The gap portion 19 c is typically formed so as to be distributed inside the positive electrode adhesive layer 19. Thereby, the stress inside the positive electrode adhesive layer 19 at the time of temperature change can be relaxed over the entire area of the positive electrode adhesive layer 19.
 空隙部19cは、正極接着層19の内部に限らず、正極接着層19と当該正極接着層19と接する他の部材との界面に形成されてもよい。即ち、空隙部19cは、正極接着層19と正極電極シート13aとの界面、あるいは正極接着層19とケース本体11(第1の内面11a)との界面に形成されてもよい。また、空隙部19cは、内部正極端子14bの一部を覆うように、正極接着層19と内部正極端子14bとの界面に形成されてもよい。 The gap 19 c is not limited to the inside of the positive electrode adhesive layer 19, and may be formed at the interface between the positive electrode adhesive layer 19 and another member in contact with the positive electrode adhesive layer 19. That is, the gap 19c may be formed at the interface between the positive electrode adhesive layer 19 and the positive electrode sheet 13a, or at the interface between the positive electrode adhesive layer 19 and the case body 11 (first inner surface 11a). In addition, the gap 19c may be formed at the interface between the positive electrode adhesive layer 19 and the internal positive terminal 14b so as to cover a part of the internal positive terminal 14b.
 内部正極端子14bの直上には、横断面において内部正極端子14bよりも大きい直径を有する空隙部19cが形成されてもよい。これにより、温度変化時の正極接着層19内部の応力を緩和すると共に、正極接着層19に浸透する電解液の内部正極端子14bへの浸透経路を空隙部19cが阻害することで、内部正極端子14bの腐食を起こりにくくすることが可能となる。これにより、電気化学デバイスの長期信頼性が確保される。 A space 19c having a diameter larger than that of the internal positive terminal 14b in the cross section may be formed immediately above the internal positive terminal 14b. As a result, the stress inside the positive electrode adhesive layer 19 at the time of temperature change is relieved, and the gap portion 19c inhibits the permeation path of the electrolyte that permeates the positive electrode adhesive layer 19 to the internal positive electrode terminal 14b, whereby the internal positive electrode terminal It becomes possible to make it difficult for the corrosion of 14b to occur. This ensures long-term reliability of the electrochemical device.
[電気化学デバイスの製造方法]
 次に、本実施形態の電気化学デバイス100の製造方法について説明する。
[Method of manufacturing electrochemical device]
Next, the manufacturing method of the electrochemical device 100 of this embodiment is demonstrated.
 本実施形態に係る電気化学デバイス100の製造方法は、ケース本体の準備工程と、正極接着層の形成工程と、封止工程とを有する。なお、以下の製造方法において、正極接着層19及び負極接着層20を形成するための導電性接着材は、全て同種のフェノール系導電性接着材を用いることとする。 The manufacturing method of the electrochemical device 100 according to the present embodiment includes a case body preparation step, a positive electrode adhesive layer formation step, and a sealing step. In the following manufacturing method, the same type of phenolic conductive adhesive is used as the conductive adhesive for forming the positive electrode adhesive layer 19 and the negative electrode adhesive layer 20.
 (ケース本体の準備工程)
 LTCC(Low Temperature Co-fired Ceramics:低温焼結セラミックス)基板やHTCC(High Temperature Co-fired Ceramics:高温焼結セラミックス)基板の製造プロセスによって、積層されたセラミックスの内部及び外面に図2に示すような配線パターン(正極配線14、外部正極端子15、負極配線16及び外部負極端子17)を有し、凹形状を有するケース本体11を製造する。
(Case body preparation process)
As shown in Fig. 2 on the inner and outer surfaces of the laminated ceramics by the manufacturing process of LTCC (Low Temperature Co-fired Ceramics) substrate and HTCC (High Temperature Co-fired Ceramics) substrate. The case main body 11 having a concave shape is manufactured with various wiring patterns (positive wiring 14, external positive terminal 15, negative wiring 16, and external negative terminal 17).
 (正極接着層の形成工程)
 図5~8は、正極接着層の形成工程を説明する図である。正極接着層の形成工程は、保護層を形成する工程と、導電性接着材を保護層上に塗布する工程と、正極を載置し導電性接着材を硬化させる工程とを有する。
(Formation process of positive electrode adhesive layer)
5 to 8 are diagrams for explaining the formation process of the positive electrode adhesive layer. The step of forming the positive electrode adhesive layer includes a step of forming a protective layer, a step of applying a conductive adhesive on the protective layer, and a step of placing the positive electrode and curing the conductive adhesive.
 まず、第1の導電性接着材191を第1の内面11a上に50μm厚程度塗布する。このとき、第1の導電性接着材191は、少なくとも内部正極端子14bの全体を被覆するように塗布され、本実施形態では、正極電極シート13aと対向する第1の内面11a上の領域全域にわたって塗布される。 First, the first conductive adhesive 191 is applied on the first inner surface 11a to a thickness of about 50 μm. At this time, the first conductive adhesive 191 is applied so as to cover at least the entire internal positive electrode terminal 14b, and in the present embodiment, the entire region on the first inner surface 11a facing the positive electrode sheet 13a is covered. Applied.
 次に、所定の温度で加熱処理することで第1の導電性接着材191を硬化させ、内部正極端子14bを被覆しつつ第1の内面11aに接合した第1の接着層19a(保護層)を形成する。 Next, the first conductive adhesive 191 is cured by heat treatment at a predetermined temperature, and the first adhesive layer 19a (protective layer) bonded to the first inner surface 11a while covering the internal positive electrode terminal 14b. Form.
 次に、図5に示すように第1の接着層19a上に第2の導電性接着材192を50μm厚程度塗布する。 Next, as shown in FIG. 5, a second conductive adhesive 192 is applied on the first adhesive layer 19a to a thickness of about 50 μm.
 次に、図6に示すように第2の導電性接着材192上に正極電極シート13aを載置し、所定の温度で加熱処理することで第2の導電性接着材192を硬化させ、接着界面19dに空隙部19cを有する正極接着層19を形成する。 Next, as shown in FIG. 6, the positive electrode sheet 13 a is placed on the second conductive adhesive 192, and the second conductive adhesive 192 is cured by heat treatment at a predetermined temperature. A positive electrode adhesive layer 19 having a gap 19c at the interface 19d is formed.
 正極電極シート13aは多孔質な構造を有するため、第2の導電性接着材192を吸収した正極電極シート13aから、第2の導電性接着材192に空気(気泡)が供給され易い。当該気泡は、第1の接着層19aと第2の導電性接着剤192との界面に移動し、上記加熱処理によって空隙部19cとして接着層19中に残留する。 Since the positive electrode sheet 13a has a porous structure, air (bubbles) is easily supplied from the positive electrode sheet 13a that has absorbed the second conductive adhesive 192 to the second conductive adhesive 192. The bubbles move to the interface between the first adhesive layer 19a and the second conductive adhesive 192, and remain in the adhesive layer 19 as the void portion 19c by the heat treatment.
 したがって図7に示すように、空隙部19cは、典型的には、第1の接着層19aと第2の接着層19bとの界面である接着界面19dに複数形成される。第1の接着層19aの厚みを変えることで、空隙部19cの形成位置を第1の内面11aから所望の高さに調整することが可能となる。このように空隙部19cが正極接着層19の内部に少なくとも1つ形成されることで、温度変化時の正極接着層19の内部の応力を緩和することが可能となる。 Therefore, as shown in FIG. 7, a plurality of gaps 19c are typically formed at the adhesion interface 19d, which is the interface between the first adhesion layer 19a and the second adhesion layer 19b. By changing the thickness of the first adhesive layer 19a, the formation position of the gap 19c can be adjusted to a desired height from the first inner surface 11a. Thus, by forming at least one gap portion 19c inside the positive electrode adhesive layer 19, it becomes possible to relieve stress inside the positive electrode adhesive layer 19 when the temperature changes.
 さらに、第2の導電性接着材192の流動性を高くすることで、第2の導電性接着材192を正極電極シート13aに吸収させ易くすることができる。第2の導電性接着材192の流動性の調整方法は特に限られないが、例えば適当な溶媒を用いて第2の導電性接着材192を希釈してもよく、第2の導電性接着材192に含まれるフィラーの量により調整してもよい。 Furthermore, by increasing the fluidity of the second conductive adhesive 192, the second conductive adhesive 192 can be easily absorbed by the positive electrode sheet 13a. The method for adjusting the fluidity of the second conductive adhesive 192 is not particularly limited. For example, the second conductive adhesive 192 may be diluted with an appropriate solvent. The amount of filler contained in 192 may be adjusted.
 また、正極電極シート13aを、親水性を有する材料により構成することで、第2の導電性接着材192を正極電極シート13aに吸収させ易くすることができる。この場合、第2の導電性接着材192として親水性が高い接着材を用いることで、正極電極シート13aにより吸収させ易くすることができる。 Further, by configuring the positive electrode sheet 13a with a hydrophilic material, the second conductive adhesive 192 can be easily absorbed by the positive electrode sheet 13a. In this case, by using a highly hydrophilic adhesive as the second conductive adhesive 192, it can be easily absorbed by the positive electrode sheet 13a.
 なお、第1の導電性接着材191及び第2の導電性接着材192は、同種の導電性接着材を用いてもよく、他種の導電性接着材を用いてもよい。 It should be noted that the first conductive adhesive 191 and the second conductive adhesive 192 may be the same type of conductive adhesive or other types of conductive adhesives.
 (封止工程)
 封止工程では、ケース本体11とリッド12とを接合することにより、液室Aを封止する。まず、第2の内面12aに導電性接着材を塗布し、負極電極シート13bを載置して導電性接着材を熱硬化させることで、負極接着層20を介してリッド12に負極電極シート13bを接合する。
(Sealing process)
In the sealing step, the liquid chamber A is sealed by bonding the case main body 11 and the lid 12. First, a conductive adhesive is applied to the second inner surface 12a, the negative electrode sheet 13b is placed, and the conductive adhesive is thermally cured, whereby the negative electrode electrode sheet 13b is attached to the lid 12 via the negative electrode adhesive layer 20. Join.
 次に、正極電極シート13a上にセパレートシート13cを載置した後、液室Aに電解液を注入する。負極電極シート13bにも電解液を注入し、上述の各接合法により第2の内面12aの縁部と結合リング18とを接合することで、液室Aを封止する。以上のようにして、電気化学デバイス100が製造される。 Next, after the separate sheet 13c is placed on the positive electrode sheet 13a, the electrolytic solution is injected into the liquid chamber A. The electrolytic solution is also injected into the negative electrode sheet 13b, and the liquid chamber A is sealed by bonding the edge of the second inner surface 12a and the coupling ring 18 by the above-described bonding methods. The electrochemical device 100 is manufactured as described above.
 なお、以上説明した実施形態では、正極接着層の形成工程において、第2の導電性接着材192を第1の接着層19a上に塗布したが、図8に示すように正極電極シート13aの下面に塗布してもよい。この方法によっても、上述の方法によるものと同様の正極接着層19を形成することができる。 In the embodiment described above, the second conductive adhesive 192 is applied on the first adhesive layer 19a in the step of forming the positive electrode adhesive layer, but the lower surface of the positive electrode sheet 13a as shown in FIG. You may apply to. Also by this method, the positive electrode adhesive layer 19 similar to that by the above-described method can be formed.
<第2の実施形態>
 図9は、本発明の第2の実施形態に係る電気化学デバイス110の断面図であり、図10は、電気化学デバイス110の正極接着層19周辺の拡大断面図である。以下、第1の実施形態と異なる構成について主に説明し、上述の実施形態と同様の構成については同様の符号を付しその説明を省略又は簡略化する。
<Second Embodiment>
FIG. 9 is a cross-sectional view of the electrochemical device 110 according to the second embodiment of the present invention, and FIG. 10 is an enlarged cross-sectional view around the positive electrode adhesive layer 19 of the electrochemical device 110. Hereinafter, configurations different from those of the first embodiment will be mainly described, and configurations similar to those of the above-described embodiment will be denoted by the same reference numerals, and description thereof will be omitted or simplified.
 本実施形態に係る電気化学デバイス110は、主にケース本体の形状が第1の実施形態と異なる構造となっている。具体的には、図9に示すように、本実施形態のケース本体111は、第1の内面11aに凹部11bを有し、内部正極端子14bは、凹部11bの底面である第3の内面11cに設けられている。 The electrochemical device 110 according to the present embodiment mainly has a case body shape different from that of the first embodiment. Specifically, as shown in FIG. 9, the case body 111 of the present embodiment has a recess 11b on the first inner surface 11a, and the internal positive terminal 14b is a third inner surface 11c that is the bottom surface of the recess 11b. Is provided.
 凹部11bは、第1の内面11aに複数形成されていてもよい。また、凹部11bの形状は、典型的には円柱形状に形成されるが、直方体形状等の他の形状に形成されることも可能である。 A plurality of recesses 11b may be formed on the first inner surface 11a. Moreover, although the shape of the recessed part 11b is typically formed in a cylindrical shape, it can also be formed in other shapes, such as a rectangular parallelepiped shape.
 凹部11bの直径は、蓄電素子13(正極電極シート13a)の底面の横幅よりも小さい値に設定され、凹部11bの深さは、50μm~500μmの範囲で設定することができる。これにより、蓄電素子13の凹部11bへの入り込みを防ぎつつ、蓄電素子13と内部正極端子14bとに間隔を設け、正極接着層19に浸透する電解液の内部正極端子14bへの浸透を遅らせることで、内部正極端子14bの腐食を起こりにくくすることが可能となる。 The diameter of the recess 11b is set to a value smaller than the lateral width of the bottom surface of the storage element 13 (positive electrode sheet 13a), and the depth of the recess 11b can be set in the range of 50 μm to 500 μm. Thus, while preventing the electricity storage element 13 from entering the recess 11b, a space is provided between the electricity storage element 13 and the internal positive electrode terminal 14b, and the penetration of the electrolyte penetrating the positive electrode adhesive layer 19 into the internal positive electrode terminal 14b is delayed. Thus, corrosion of the internal positive terminal 14b can be made difficult to occur.
 図10に示すように、内部正極端子14bの直上には、横断面において内部正極端子14bよりも大きい直径を有する空隙部191cが形成されている。これにより、温度変化時の正極接着層19の内部応力を緩和すると共に、正極接着層19に浸透する電解液の内部正極端子14bへの浸透経路を空隙部191cが阻害することで、内部正極端子14bの腐食を起こりにくくすることが可能となる。 As shown in FIG. 10, a gap 191c having a diameter larger than that of the internal positive terminal 14b in the cross section is formed immediately above the internal positive terminal 14b. Thereby, the internal stress of the positive electrode adhesive layer 19 at the time of temperature change is relieved, and the gap portion 191c inhibits the permeation path to the internal positive electrode terminal 14b of the electrolyte that permeates the positive electrode adhesive layer 19, whereby the internal positive electrode terminal It becomes possible to make it difficult for the corrosion of 14b to occur.
 次に、電気化学デバイス110の製造方法について説明する。なお、封止工程については第1の実施形態と同様であるため、ここでは説明を省略する。 Next, a method for manufacturing the electrochemical device 110 will be described. In addition, since it is the same as that of 1st Embodiment about the sealing process, description is abbreviate | omitted here.
 (ケース本体の準備工程)
 ケース本体111は、第1の実施形態と同様のプロセスによって製造することができ、本実施形態では、第1の内面11aに凹部11bを有し、第3の内面11cに内部正極端子14bを有する構造に製造される。
(Case body preparation process)
The case main body 111 can be manufactured by a process similar to that of the first embodiment. In this embodiment, the first inner surface 11a has a recess 11b, and the third inner surface 11c has an internal positive terminal 14b. Manufactured to structure.
 (正極接着層の形成工程)
 まず、第1の導電性接着材191を、凹部11bを被覆するように第1の内面11a上に塗布し熱硬化させることで、第1の接着層19aが形成される。このとき、図11に示すように、内部正極端子14bの直上の第1の接着層19aに窪み191eが設けられるように、第1の接着層19aが形成される。この後、正極電極シート13aの底面に第2の導電性接着材192を塗布する。
(Formation process of positive electrode adhesive layer)
First, the 1st adhesive layer 19a is formed by apply | coating the 1st electroconductive adhesive material 191 on the 1st inner surface 11a so that the recessed part 11b may be coat | covered, and thermosetting. At this time, as shown in FIG. 11, the first adhesive layer 19a is formed such that a recess 191e is provided in the first adhesive layer 19a immediately above the internal positive electrode terminal 14b. Thereafter, the second conductive adhesive 192 is applied to the bottom surface of the positive electrode sheet 13a.
 次に、図12に示すように、正極電極シート13aを第1の接着層19a上に載置することで、窪み191eは第2の導電性接着材192により封止される。この後、第2の導電性接着材192を熱硬化させ第2の接着層19bとすることで、図13に示すように、内部正極端子14bの直上の接着界面19dに空隙部191cを有する正極接着層19が形成される。 Next, as shown in FIG. 12, the recess 191e is sealed with the second conductive adhesive 192 by placing the positive electrode sheet 13a on the first adhesive layer 19a. Thereafter, the second conductive adhesive 192 is thermally cured to form the second adhesive layer 19b, whereby the positive electrode having a gap portion 191c at the adhesive interface 19d immediately above the internal positive electrode terminal 14b as shown in FIG. An adhesive layer 19 is formed.
 本実施形態によれば、内部正極端子14bの直上に確実に空隙部191cが形成された電気化学デバイス110を製造することができる。 According to this embodiment, it is possible to manufacture the electrochemical device 110 in which the gap portion 191c is reliably formed immediately above the internal positive electrode terminal 14b.
<第3の実施形態>
 本発明の第3の実施形態に係る電気化学デバイス120は、正極接着層の形成工程における第2の導電性接着材192の塗布方法と、空隙部の形状が第2の実施形態と異なっている。
<Third Embodiment>
The electrochemical device 120 according to the third embodiment of the present invention is different from the second embodiment in the application method of the second conductive adhesive 192 and the shape of the gap in the positive electrode adhesive layer forming step. .
 図14及び図15は、正極接着層の形成工程を説明する図である。以下、第2の実施形態と異なる構成について主に説明し、第2の実施形態と同様の構成については同様の符号を付しその説明を省略又は簡略化する。 FIG. 14 and FIG. 15 are diagrams for explaining a positive electrode adhesive layer forming step. Hereinafter, the configuration different from the second embodiment will be mainly described, and the same configuration as the second embodiment will be denoted by the same reference numeral, and the description thereof will be omitted or simplified.
 図14に示したように、本実施形態では正極接着層の形成工程において、第1の接着層19aの形成後、第1の接着層19aのうち少なくとも第1の内面11aに形成された接着層上に第2の導電性接着材192を塗布する。これにより、内部正極端子14bの直上に窪み192eが形成される。 As shown in FIG. 14, in the present embodiment, in the positive electrode adhesive layer forming step, the adhesive layer formed on at least the first inner surface 11a of the first adhesive layer 19a after the formation of the first adhesive layer 19a. A second conductive adhesive 192 is applied thereon. As a result, a recess 192e is formed immediately above the internal positive terminal 14b.
 次に、正極電極シート13aを第2の導電性接着材192上に載置することで、窪み192eは正極電極シート13aにより封止される。この後、第2の導電性接着材192を熱硬化させ第2の接着層19bとすることで、図15に示すように、内部正極端子14bの直上の接着界面19dに空隙部192cを有する正極接着層19が形成される。 Next, by placing the positive electrode sheet 13a on the second conductive adhesive 192, the recess 192e is sealed with the positive electrode sheet 13a. Thereafter, the second conductive adhesive 192 is thermally cured to form the second adhesive layer 19b, whereby the positive electrode having a gap 192c at the adhesive interface 19d immediately above the internal positive electrode terminal 14b as shown in FIG. An adhesive layer 19 is formed.
 本実施形態によれば、正極電極シート13aに接する空隙部192cを形成することができる。このような空隙部の形態においても、上述の第1、第2の実施形態と同様の作用効果を得ることができる。 According to the present embodiment, it is possible to form the gap portion 192c in contact with the positive electrode sheet 13a. Even in the form of such a gap, it is possible to obtain the same operational effects as those of the first and second embodiments described above.
<第4の実施形態>
[電気化学デバイス]
 図16は、本発明の第4の実施形態に係る電気化学デバイス200の斜視図であり、図17は電気化学デバイス200の概略断面図である。図18は電気化学デバイス200のケース本体211の平面図である。
<Fourth Embodiment>
[Electrochemical devices]
FIG. 16 is a perspective view of an electrochemical device 200 according to the fourth embodiment of the present invention, and FIG. 17 is a schematic cross-sectional view of the electrochemical device 200. FIG. 18 is a plan view of the case main body 211 of the electrochemical device 200.
 なお各図において、X,Y及びZの各軸は相互に直交する3軸方向を示しており、このうちZ軸方向は電気化学デバイス100の厚み方向に対応する。 In each figure, the X, Y, and Z axes indicate three axial directions orthogonal to each other, and the Z-axis direction corresponds to the thickness direction of the electrochemical device 100.
 これらの図に示すように、電気化学デバイス200は、ケース210、蓄電素子213、正極接着層219(接着層)及び負極接着層220を有する。ケース210は、ケース本体211、リッド212、正極配線214(端子部)、外部正極端子215(第1の外部端子)、負極配線216、外部負極端子217(第2の外部端子)、及び結合リング218を有する。 As shown in these drawings, the electrochemical device 200 includes a case 210, a power storage element 213, a positive electrode adhesive layer 219 (adhesive layer), and a negative electrode adhesive layer 220. The case 210 includes a case body 211, a lid 212, a positive electrode wiring 214 (terminal portion), an external positive electrode terminal 215 (first external terminal), a negative electrode wiring 216, an external negative electrode terminal 217 (second external terminal), and a coupling ring. 218.
 図17に示すように、電気化学デバイス200においては、ケース本体211とリッド212が結合リング218を介して接合され、ケース210を構成している。ケース本体211及びリッド212によって封止されたケース210の内部(液室A)には、蓄電素子213及び電解液が封入されている。 As shown in FIG. 17, in the electrochemical device 200, the case main body 211 and the lid 212 are joined via a coupling ring 218 to constitute a case 210. A power storage element 213 and an electrolytic solution are sealed in the case 210 (liquid chamber A) sealed by the case main body 211 and the lid 212.
 ケース本体211は、セラミックス等の絶縁性材料からなり、リッド212と共に液室Aを形成する。本実施形態においてケース本体211は、各々所定形状に加工された複数のセラミックスシートの積層体で構成される。ケース本体211は、液室Aを構成するように凹状に形成され、例えば図16に示すような直方体形状に形成される。これに限られず、ケース本体211は円柱状等の他の形状に形成されてもよい。ケース本体211は、液室Aの底面を形成する第1の内面211aを有する。 The case body 211 is made of an insulating material such as ceramics, and forms a liquid chamber A together with the lid 212. In the present embodiment, the case main body 211 is configured by a laminated body of a plurality of ceramic sheets each processed into a predetermined shape. The case main body 211 is formed in a concave shape so as to constitute the liquid chamber A, and is formed in, for example, a rectangular parallelepiped shape as shown in FIG. However, the case body 211 may be formed in other shapes such as a columnar shape. The case main body 211 has a first inner surface 211 a that forms the bottom surface of the liquid chamber A.
 リッド212は、第1の内面211aと対向する第2の内面212aを有し、結合リング218を介してケース本体211の開口端部(上面)と接合されることで、液室Aを封止する。結合リング218に対するリッド212の結合には、シーム溶接やレーザ溶接等の直接接合法を利用できる他、導電性接合材を介在した間接接合法を利用することができる。 The lid 212 has a second inner surface 212a that faces the first inner surface 211a, and is joined to the opening end (upper surface) of the case body 211 via the coupling ring 218, thereby sealing the liquid chamber A. To do. For bonding the lid 212 to the coupling ring 218, a direct bonding method such as seam welding or laser welding can be used, or an indirect bonding method with a conductive bonding material can be used.
 リッド212は、各種金属等の導電性材料からなるものとすることができ、例えばコバール(鉄-ニッケル-コバルト合金)で構成される。また、リッド212は、電解腐食を防止するため、コバール等の母材がニッケル、白金、銀、金あるいはパラジウム等の耐腐食性の高い金属からなる被膜によって被覆されたクラッド材とすることも可能である。 The lid 212 can be made of a conductive material such as various metals, and is made of, for example, Kovar (iron-nickel-cobalt alloy). The lid 212 may be a clad material in which a base material such as Kovar is coated with a coating made of a highly corrosion-resistant metal such as nickel, platinum, silver, gold, or palladium in order to prevent electrolytic corrosion. It is.
 蓄電素子213は、液室Aに収容され、電荷を蓄積(蓄電)し、あるいは放出(放電)する。図17に示すように蓄電素子213は、正極電極シート213a(第1の電極)、負極電極シート213b(第2の電極)及びセパレートシート213c(セパレータ)を有し、正極電極シート213a及び負極電極シート213bによってセパレートシート213cが挟まれた構成を有する。 The electricity storage element 213 is accommodated in the liquid chamber A and accumulates (accumulates) electric charge or discharges (discharges) the electric charge. As shown in FIG. 17, the power storage element 213 includes a positive electrode sheet 213a (first electrode), a negative electrode sheet 213b (second electrode), and a separate sheet 213c (separator), and the positive electrode sheet 213a and the negative electrode A separate sheet 213c is sandwiched between the sheets 213b.
 本実施形態において、蓄電素子213は、正極電極シート213aがケース本体211側となるように第1の内面211aに接合され、負極電極シート213bがリッド212側となるように第2の内面212aに接合される。 In the present embodiment, the power storage element 213 is joined to the first inner surface 211a so that the positive electrode sheet 213a is on the case body 211 side, and is attached to the second inner surface 212a so that the negative electrode sheet 213b is on the lid 212 side. Be joined.
 正極電極シート213aは、活物質を含むシートである。活物質は電解質イオン(例えばBF )をその表面に吸着させ、電気二重層を形成させる物質であり、例えば活性炭やPAS(Polyacenic Semiconductor:ポリアセン系有機半導体)であるものとすることができる。正極電極シート213aは、上記活物質、導電助剤(例えばケッチェンブラック)及びバインダ(例えば、PTFE(polytetrafluoroethylene))の混合物を圧延してシート状に形成し、それを裁断したものとすることができる。 The positive electrode sheet 213a is a sheet containing an active material. The active material is a material that adsorbs electrolyte ions (for example, BF 4 ) on its surface to form an electric double layer, and can be, for example, activated carbon or PAS (Polyacenic Semiconductor: polyacenic organic semiconductor). The positive electrode sheet 213a is formed by rolling a mixture of the above active material, a conductive additive (for example, ketjen black) and a binder (for example, PTFE (polytetrafluoroethylene)) and cutting it. it can.
 負極電極シート213bは、正極電極シート213aと同様に活物質を含むシートであり、活物質、導電助剤及びバインダの混合物を圧延してシート状に形成し、それを裁断したものとすることができる。負極電極シート213bは正極電極シート213aと同一の材料からなるものとすることもでき、異なる材料からなるものとすることもできる。 The negative electrode sheet 213b is a sheet containing an active material like the positive electrode sheet 213a. The negative electrode sheet 213b is formed by rolling a mixture of an active material, a conductive additive and a binder into a sheet shape, and cutting it. it can. The negative electrode sheet 213b can be made of the same material as the positive electrode sheet 213a, or can be made of a different material.
 セパレートシート213cは、電極同士を電気的に絶縁するシートである。セパレートシート213cは、電解液を保持可能な、ガラス繊維、セルロース繊維、プラスチック繊維等からなる多孔質シートであるものとすることができる。なおデバイスの種類によっては、セパレートシート213cは、省略することもできる。 The separate sheet 213c is a sheet that electrically insulates the electrodes. The separate sheet 213c can be a porous sheet made of glass fiber, cellulose fiber, plastic fiber, or the like that can hold an electrolytic solution. Depending on the type of device, the separate sheet 213c can be omitted.
 蓄電素子213と共に液室Aに収容される電解液は、任意に選択することが可能であり、例えば、BF (四フッ化ホウ酸イオン)、PF (六フッ化リン酸イオン)、(CFSO(TFSAイオン)等のアニオンを含むものとすることができる。具体的には、5-アゾニアスピロ[4.4]ノナン-BFやエチルメチルイミダゾリウム-BFの溶液等を用いることができる。溶媒には、例えば、スルホランとジメチルスルホンとの混合液を用いることができる。濃度は特に限定されず、例えば2mol/Lである。 The electrolytic solution accommodated in the liquid chamber A together with the power storage element 213 can be arbitrarily selected. For example, BF 4 (tetrafluoroborate ion), PF 6 (hexafluorophosphate ion) , (CF 3 SO 2 ) 2 N (TFSA ion) and the like. Specifically, a solution of 5-azoniaspiro [4.4] nonane-BF 4 or ethylmethylimidazolium-BF 4 can be used. As the solvent, for example, a mixed solution of sulfolane and dimethyl sulfone can be used. The concentration is not particularly limited and is, for example, 2 mol / L.
 上述のように、ケース210は、正極配線214及び負極配線216を有する。ケース本体211の上記開口端部とは反対側の端部(下面)には、正極配線214と電気的に接続される外部正極端子215と、負極配線216と電気的に接続される外部負極端子217とがそれぞれ設けられている。 As described above, the case 210 includes the positive electrode wiring 214 and the negative electrode wiring 216. An external positive terminal 215 that is electrically connected to the positive wiring 214 and an external negative terminal that is electrically connected to the negative wiring 216 are provided at the end (lower surface) opposite to the opening end of the case body 211. 217 are provided.
 正極配線214は、ビア214a、内部正極端子214b(第1の端部)、及び第2の端部214cを有し、正極電極シート213aと外部正極端子215とを電気的に接続する。ビア214aは、外部正極端子215から第1の内面211aの直下までケース本体211の底部を貫通して形成されており、内部正極端子214bを経由して正極接着層219に接触し、正極接着層219を介して正極電極シート213aに電気的に接続される。正極配線214は、ケース本体211内部に形成された、ビア214a以外の配線パターンを有していてもよい。正極配線214は、任意の導電性材料からなるものとすることができる。 The positive electrode wiring 214 has a via 214a, an internal positive electrode terminal 214b (first end portion), and a second end portion 214c, and electrically connects the positive electrode sheet 213a and the external positive electrode terminal 215. The via 214a is formed through the bottom of the case body 211 from the external positive electrode terminal 215 to a position directly below the first inner surface 211a, and contacts the positive electrode adhesive layer 219 via the internal positive electrode terminal 214b. It is electrically connected to the positive electrode sheet 213a via 219. The positive electrode wiring 214 may have a wiring pattern other than the via 214 a formed inside the case main body 211. The positive electrode wiring 214 can be made of any conductive material.
 内部正極端子214bは、第1の内面211aに設けられ、正極電極シート213aとビア214aとを電気的に接続する。内部正極端子214bは、典型的には、上面から見て円形状に形成される(図18)。これに限られず、内部正極端子214bは、上面から見て矩形形状等の他の形状に形成されてもよい。 The internal positive terminal 214b is provided on the first inner surface 211a and electrically connects the positive electrode sheet 213a and the via 214a. The internal positive terminal 214b is typically formed in a circular shape when viewed from above (FIG. 18). The internal positive terminal 214b is not limited to this, and may be formed in other shapes such as a rectangular shape when viewed from above.
 内部正極端子214bは、正極接着層219に被覆されることで、電解液との接触による腐食から保護される。内部正極端子214bは、ビア214aと一体的に形成されており、第1の内面211aから正極接着層219に向かって突出する突出端部を構成する。内部正極端子214bの形状は特に限定されず、円柱状、円錐状(笠状)、ドーム状等の適宜の形状に形成される。 The internal positive electrode terminal 214b is protected from corrosion due to contact with the electrolytic solution by being covered with the positive electrode adhesive layer 219. The internal positive terminal 214b is formed integrally with the via 214a, and constitutes a protruding end that protrudes from the first inner surface 211a toward the positive adhesive layer 219. The shape of the internal positive electrode terminal 214b is not particularly limited, and is formed in an appropriate shape such as a columnar shape, a conical shape (a shade shape), or a dome shape.
 内部正極端子214bの材料は特に限定されず、耐食性に関わらず幅広い材料から選択することが可能である。例えば、ビア214aはタングステンからなるものとすることができ、内部正極端子214bはタングステン上にニッケル膜及び金膜が成膜されたものとすることができる。内部正極端子214bは第1の内面211aから突出しないように形成されてもよく、この場合、内部正極端子214bは第1の内面211aと同一の平面内に形成される。 The material of the internal positive terminal 214b is not particularly limited, and can be selected from a wide range of materials regardless of the corrosion resistance. For example, the via 214a can be made of tungsten, and the internal positive electrode terminal 214b can be made by forming a nickel film and a gold film on tungsten. The internal positive terminal 214b may be formed so as not to protrude from the first inner surface 211a. In this case, the internal positive terminal 214b is formed in the same plane as the first inner surface 211a.
 第2の端部214cは、ビア214aの末端であり、ケース本体211の下面に設けられ、ビア214aと外部正極端子215とを電気的に接続する。 The second end 214c is the end of the via 214a, is provided on the lower surface of the case body 211, and electrically connects the via 214a and the external positive terminal 215.
 外部正極端子215は、正極配線214によって蓄電素子(正極電極シート213a)に電気的に接続され、外部回路、例えば実装基板との接続に用いられる。外部正極端子215は、任意の導電性材料からなるものとすることができ、ケース本体211の任意の位置に設けられる。本実施形態では外部正極端子215は、図17に示すように、ケース本体211の外面、具体的には下面に形成される。 The external positive electrode terminal 215 is electrically connected to the storage element (positive electrode sheet 213a) by the positive electrode wiring 214, and is used for connection to an external circuit, for example, a mounting substrate. The external positive terminal 215 can be made of any conductive material, and is provided at any position of the case body 211. In the present embodiment, the external positive terminal 215 is formed on the outer surface, specifically, the lower surface of the case body 211 as shown in FIG.
 負極配線216は、負極電極シート213bと外部負極端子217とを電気的に接続する。具体的には、負極配線216は、外部負極端子217から結合リング218の直下までケース本体211の側壁部を貫通して形成されているビアであり、結合リング218、リッド212及び負極接着層220を介して負極電極シート213bに導通する。負極配線216は、ケース本体211に形成された、ビア以外の配線パターンを有していてもよい。負極配線216は任意の導電性材料からなるものとすることができる。 The negative electrode wiring 216 electrically connects the negative electrode sheet 213b and the external negative electrode terminal 217. Specifically, the negative electrode wiring 216 is a via formed through the side wall portion of the case body 211 from the external negative electrode terminal 217 to a position directly below the coupling ring 218, and includes the coupling ring 218, the lid 212, and the negative electrode adhesive layer 220. It conducts to the negative electrode sheet 213b via The negative electrode wiring 216 may have a wiring pattern other than the via formed in the case main body 211. The negative electrode wiring 216 can be made of any conductive material.
 外部負極端子217は、負極配線216によって蓄電素子(負極電極シート213b)に電気的に接続され、外部、例えば実装基板との接続に用いられる。外部負極端子217は、任意の導電性材料からなるものとすることができ、本実施形態では図17に示すように、ケース本体211の外面、具体的には下面に形成されるものとすることができる。 The external negative electrode terminal 217 is electrically connected to the storage element (negative electrode sheet 213b) by the negative electrode wiring 216, and is used for connection to the outside, for example, a mounting substrate. The external negative electrode terminal 217 can be made of any conductive material. In this embodiment, as shown in FIG. 17, the external negative electrode terminal 217 is formed on the outer surface of the case body 211, specifically on the lower surface. Can do.
 結合リング218は、ケース本体211とリッド212を接続して液室Aを封止すると共に、リッド212と負極配線216とを電気的に接続する。結合リング218は、コバール(鉄-ニッケル-コバルト合金)等の導電性材料からなるものとすることができる。また、結合リング218の表面には、耐食性膜(例えば、ニッケル膜及び金膜等)が形成されるものとすることができる。結合リング218は、ロウ材(金-銅合金等)を介してケース本体211及びリッド212に接合されるものとすることができる。 The coupling ring 218 connects the case main body 211 and the lid 212 to seal the liquid chamber A, and electrically connects the lid 212 and the negative electrode wiring 216. The coupling ring 218 can be made of a conductive material such as Kovar (iron-nickel-cobalt alloy). Further, a corrosion-resistant film (for example, a nickel film or a gold film) can be formed on the surface of the coupling ring 218. The coupling ring 218 may be joined to the case body 211 and the lid 212 via a brazing material (gold-copper alloy or the like).
 正極接着層219(接着層)は、正極電極シート213aをケース本体211に接合すると共に、正極電極シート213aと正極配線214とを電気的に接続する。正極接着層219は、正極電極シート213aと第1の内面211aとの間に配置され、第1の内面211aに露出する内部正極端子214bを被覆する。これにより、液室Aに収容された電解液との接触による電解腐食から内部正極端子214bが保護される。 The positive electrode adhesive layer 219 (adhesive layer) joins the positive electrode sheet 213a to the case main body 211 and electrically connects the positive electrode sheet 213a and the positive electrode wiring 214. The positive electrode adhesive layer 219 is disposed between the positive electrode sheet 213a and the first inner surface 211a, and covers the internal positive electrode terminal 214b exposed on the first inner surface 211a. Thereby, the internal positive electrode terminal 214b is protected from electrolytic corrosion due to contact with the electrolytic solution contained in the liquid chamber A.
 正極接着層219は、導電性接着材の硬化物で構成される。導電性接着材は、導電性フィラーを含有する合成樹脂材料で構成され、導電性フィラーには、典型的には、黒鉛あるいはカーボン粒子、金属粒子等が用いられる。 The positive electrode adhesive layer 219 is composed of a cured product of a conductive adhesive. The conductive adhesive is composed of a synthetic resin material containing a conductive filler. Typically, graphite, carbon particles, metal particles, or the like is used as the conductive filler.
 本実施形態では、導電性フィラーとして、鱗片状の導電フィラーが用いられ、具体的には、鱗片状黒鉛が用いられる。また導電性接着剤は、鱗片状導電フィラーに加えて、カーボンブラック等の炭素系材料の粒子を導電助剤として含有する。 In the present embodiment, scaly conductive filler is used as the conductive filler, and specifically, scaly graphite is used. In addition to the scale-like conductive filler, the conductive adhesive contains particles of a carbon-based material such as carbon black as a conductive assistant.
 導電性接着剤の母材である合成樹脂はフェノール樹脂あるいはエポキシ系樹脂等の熱硬化性樹脂であるものとすることができる。特にフェノール樹脂は、電解液に対する膨潤性が小さい、耐熱性が高い、化学的安定性が高い等の点から好適である。上記導電性接着材はこの他にも、導電性を有し、硬化させることができるものであればよい。 The synthetic resin that is the base material of the conductive adhesive can be a thermosetting resin such as a phenol resin or an epoxy resin. In particular, a phenol resin is preferable from the viewpoints of low swelling with respect to an electrolytic solution, high heat resistance, high chemical stability, and the like. In addition to this, the said electrically conductive adhesive should just have electroconductivity and can be hardened.
 本実施形態において正極接着層219は、第1の内面211aと平行な平坦な層で構成されている。正極接着層219は、第1の内面211a上に正極電極シート213aと同等以上の面積で形成されている。正極接着層219の厚みは特に限定されず、例えば10μm以上200μm以下とされる。 In the present embodiment, the positive electrode adhesive layer 219 is composed of a flat layer parallel to the first inner surface 211a. The positive electrode adhesive layer 219 is formed on the first inner surface 211a with an area equal to or larger than that of the positive electrode sheet 213a. The thickness of the positive electrode adhesive layer 219 is not particularly limited, and is, for example, 10 μm or more and 200 μm or less.
 図19は、正極接着層219の模式断面図である。図19に示すように、正極接着層219は、鱗片状黒鉛C1と、カーボン粒子C2とを含有する。なお理解を容易にするため、個々の粒子の形状、大きさはやや誇張して示されている。 FIG. 19 is a schematic cross-sectional view of the positive electrode adhesive layer 219. As shown in FIG. 19, the positive electrode adhesive layer 219 contains scaly graphite C1 and carbon particles C2. For ease of understanding, the shape and size of each particle are shown in a slightly exaggerated manner.
 鱗片状黒鉛C1は、典型的には、正極接着層219内においてランダムに分散されている。本実施形態において鱗片状黒鉛C1は、正極接着層219の面内に平行に配向されている。すなわち鱗片状黒鉛C1は、その長軸方向が正極接着層219の面内方向と平行になるように配列されている。 The scale-like graphite C1 is typically dispersed randomly in the positive electrode adhesive layer 219. In the present embodiment, the scaly graphite C1 is oriented in parallel in the plane of the positive electrode adhesive layer 219. That is, the scaly graphite C1 is arranged so that the major axis direction thereof is parallel to the in-plane direction of the positive electrode adhesive layer 219.
 なお、すべての鱗片状黒鉛C1が正極接着層219の面内方向に平行に配列される場合に限られず、少なくとも、内部正極端子214bの直上およびその周囲に位置する鱗片状黒鉛C1が上述のような形態で配列されていればよい。 The scale-like graphite C1 is not limited to the case where all the scale-like graphite C1 is arranged in parallel to the in-plane direction of the positive electrode adhesive layer 219, and at least the scale-like graphite C1 located immediately above and around the internal positive electrode terminal 214b is as described above. As long as they are arranged in such a form.
 また、鱗片状黒鉛C1は、内部正極端子214b(端子部)を正極電極シート213a(第1の電極)から遮蔽する。すなわち鱗片状黒鉛C1は、正極電極シート213a側から見たZ軸方向の平面視(以下、単に平面視という。)において内部正極端子214bを覆うように分散している。 Further, the scaly graphite C1 shields the internal positive electrode terminal 214b (terminal portion) from the positive electrode sheet 213a (first electrode). That is, the scale-like graphite C1 is dispersed so as to cover the internal positive electrode terminal 214b in a plan view in the Z-axis direction as viewed from the positive electrode sheet 213a side (hereinafter simply referred to as a plan view).
 鱗片状黒鉛C1の大きさは特に限定されず、例えば、平均粒径(長軸方向の平均長さ)が5μm以上100μm以下のものが用いられ、本実施形態では、平均粒径が10μmの鱗片状黒鉛が用いられる。鱗片状黒鉛C1の含有量は、平面視において内部正極端子214bを覆うことができる量であれば特に限定されない。また、鱗片状黒鉛C1は、正極接着層219の厚み方向において相互に接触していてもよいし、接触していなくてもよい。 The size of the scaly graphite C1 is not particularly limited, and for example, those having an average particle size (average length in the major axis direction) of 5 μm or more and 100 μm or less are used. Shaped graphite is used. The content of the scaly graphite C1 is not particularly limited as long as it is an amount that can cover the internal positive electrode terminal 214b in a plan view. Moreover, the scaly graphite C1 may be in contact with each other in the thickness direction of the positive electrode adhesive layer 219, or may not be in contact.
 カーボン粒子C2は、主として、正極接着層219の厚み方向に鱗片状黒鉛C1間を電気的に接続する機能を有する。一方、正極電極シート213aと内部正極端子214bとの間が鱗片状黒鉛C1のみによって電気的に接続可能である場合は、カーボン粒子C2は省略されてもよい。 The carbon particles C2 mainly have a function of electrically connecting the flaky graphite C1 in the thickness direction of the positive electrode adhesive layer 219. On the other hand, when the positive electrode sheet 213a and the internal positive electrode terminal 214b can be electrically connected only by the scaly graphite C1, the carbon particles C2 may be omitted.
 なお、鱗片状黒鉛C1のみで正極電極シート213aと内部正極端子214bとの間の電気的導通を確保しようとすると、鱗片状黒鉛C1の含有量が増加することで、正極接着層219の接着力が低下するおそれがある。したがって、導電助剤としてのカーボン粒子C2を添加することは、正極接着層219の接着力の低下を抑制しつつ、正極電極シート213aと内部正極端子214bとの間の電気的導通を確保することができる点で有利である。 In addition, when it is going to ensure the electrical continuity between the positive electrode sheet 213a and the internal positive electrode terminal 214b only with the scaly graphite C1, the adhesive strength of the positive electrode adhesive layer 219 is increased by increasing the content of the scaly graphite C1. May decrease. Therefore, the addition of the carbon particles C2 as the conductive auxiliary agent ensures electrical continuity between the positive electrode sheet 213a and the internal positive electrode terminal 214b while suppressing a decrease in the adhesive strength of the positive electrode adhesive layer 219. This is advantageous in that
 図17に示すように、第1の内面211aと対向するリッド212の内面(第2の内面212a)には、負極接着層220を介して負極電極シート213bが接合されている。 17, a negative electrode sheet 213b is bonded to the inner surface (second inner surface 212a) of the lid 212 facing the first inner surface 211a with a negative electrode adhesive layer 220 interposed therebetween.
 負極接着層220は、負極電極シート213bをリッド212に接合すると共に、負極電極シート213bとリッド212を電気的に接続する。負極接着層220は、導電性接着材が硬化したものであり、導電性接着材は正極接着層219のものと同様に、導電性粒子(鱗片状黒鉛C1およびカーボン粒子C2)を含有する合成樹脂であるものとすることができる。なお、負極接着層220と正極接着層219は、同種の導電性接着材からなるものとすることもでき、他種の導電性接着材からなるものとすることもできる。 The negative electrode adhesive layer 220 joins the negative electrode sheet 213b to the lid 212 and electrically connects the negative electrode sheet 213b and the lid 212. The negative electrode adhesive layer 220 is obtained by curing a conductive adhesive, and the conductive adhesive is a synthetic resin containing conductive particles (flaky graphite C1 and carbon particles C2) similar to that of the positive electrode adhesive layer 219. It can be assumed that The negative electrode adhesive layer 220 and the positive electrode adhesive layer 219 can be made of the same type of conductive adhesive, or can be made of other types of conductive adhesive.
 以上のように構成される本実施形態の電気化学デバイス200において、内部正極端子214bを被覆する正極接着層219は、内部正極端子214bを電解液との接触から保護する保護層として機能する。 In the electrochemical device 200 of the present embodiment configured as described above, the positive electrode adhesive layer 219 that covers the internal positive electrode terminal 214b functions as a protective layer that protects the internal positive electrode terminal 214b from contact with the electrolytic solution.
 ここで、導電性接着層を構成する樹脂内部への電解液の溶媒分子の拡散は比較的容易であり、特に加熱条件下ではその拡散が加速される。一方、カーボン系の粒子は、特定の電位において電解液のイオンのインターカレーションにより膨張することが知られている。カーボン系粒子が膨張すると、導電性接着層にクラックを生じさせ、当該クラックを伝って電解液が正極配線へ到達するおそれがある。このように加熱条件や電圧条件によっては、導電性接着層の保護層としての機能が低下もしくは消失し、正極配線の腐蝕による電気抵抗の増加あるいは導通不良が生じるおそれがある。 Here, the diffusion of the solvent molecules of the electrolytic solution into the resin constituting the conductive adhesive layer is relatively easy, and the diffusion is accelerated particularly under heating conditions. On the other hand, it is known that carbon-based particles expand by intercalation of electrolyte ions at a specific potential. When the carbon-based particles expand, a crack is generated in the conductive adhesive layer, and the electrolyte may reach the positive electrode wiring through the crack. As described above, depending on the heating conditions and voltage conditions, the function of the conductive adhesive layer as a protective layer may be reduced or eliminated, and the electrical resistance may increase due to the corrosion of the positive electrode wiring or the conduction failure may occur.
 そこで本実施形態の電気化学デバイス200において、正極接着層219は、内部正極端子214bを正極電極シート213aから遮蔽する鱗片状黒鉛C1を含有している。このため、正極接着層219に浸透する電解液の内部正極端子214bへの浸透経路を、鱗片状黒鉛C1が阻害あるいは延長し、内部正極端子214bを電解液から長期間保護することができる。これにより、内部正極端子214bの電界腐蝕が起こりにくくなり、電気化学デバイス200の寿命を向上させることができる。 Therefore, in the electrochemical device 200 of the present embodiment, the positive electrode adhesive layer 219 contains scaly graphite C1 that shields the internal positive electrode terminal 214b from the positive electrode sheet 213a. For this reason, the scaly graphite C1 inhibits or extends the permeation path of the electrolytic solution penetrating the positive electrode adhesive layer 219 to the internal positive electrode terminal 214b, and the internal positive electrode terminal 214b can be protected from the electrolytic solution for a long period of time. Thereby, the electric field corrosion of the internal positive electrode terminal 214b becomes difficult to occur, and the lifetime of the electrochemical device 200 can be improved.
 また鱗片状黒鉛C1への電解液のイオンのインターカレーションが生じた場合、鱗片状黒鉛C1の長軸に対して垂直方向に膨張する。鱗片状黒鉛C1は、正極接着層219の面内に平行に配向されているため、上記インターカレーションが生じたとしても、正極接着層219に作用する鱗片状黒鉛C1の膨張応力は、正極接着層219の厚み方向に作用することになる。これにより正極接着層219のその厚み方向に沿ったクラックの発生を抑制することができ、当該クラックが内部正極端子214bに向かう電解液の侵入経路となることを阻止することができる。 Further, when intercalation of ions of the electrolyte into the flaky graphite C1 occurs, it expands in a direction perpendicular to the long axis of the flaky graphite C1. Since the scaly graphite C1 is oriented in parallel in the plane of the positive electrode adhesive layer 219, even if the above-mentioned intercalation occurs, the expansion stress of the scaly graphite C1 acting on the positive electrode adhesive layer 219 is This acts in the thickness direction of the layer 219. Thereby, generation | occurrence | production of the crack along the thickness direction of the positive electrode contact bonding layer 219 can be suppressed, and it can prevent that the said crack becomes the penetration | invasion path | route of the electrolyte solution which goes to the internal positive electrode terminal 214b.
[電気化学デバイスの製造方法]
 次に、本実施形態の電気化学デバイス200の製造方法について説明する。
[Method of manufacturing electrochemical device]
Next, the manufacturing method of the electrochemical device 200 of this embodiment is demonstrated.
 本実施形態に係る電気化学デバイス200の製造方法は、ケース本体の準備工程と、正極接着層の形成工程と、封止工程とを有する。なお、以下の製造方法において、正極接着層219及び負極接着層220を形成するための導電性接着材は、全て同種のフェノール系導電性接着材を用いることとする。 The manufacturing method of the electrochemical device 200 according to the present embodiment includes a case body preparation step, a positive electrode adhesive layer formation step, and a sealing step. In the following manufacturing method, the same type of phenolic conductive adhesive is used as the conductive adhesive for forming the positive electrode adhesive layer 219 and the negative electrode adhesive layer 220.
 (ケース本体の準備工程)
 LTCC(Low Temperature Co-fired Ceramics:低温焼結セラミックス)基板やHTCC(High Temperature Co-fired Ceramics:高温焼結セラミックス)基板の製造プロセスによって、積層されたセラミックスの内部及び外面に図17に示すような配線パターン(正極配線214、外部正極端子215、負極配線216及び外部負極端子217)を有し、凹形状を有するケース本体211を製造する。
(Case body preparation process)
As shown in FIG. 17 on the inner and outer surfaces of the laminated ceramics by the manufacturing process of LTCC (Low Temperature Co-fired Ceramics) substrate and HTCC (High Temperature Co-fired Ceramics) substrate. The case body 211 having a concave shape is manufactured with various wiring patterns (positive wiring 214, external positive terminal 215, negative wiring 216, and external negative terminal 217).
 (正極接着層の形成工程)
 図20および図21は、正極接着層の形成工程を説明する図である。
(Formation process of positive electrode adhesive layer)
20 and 21 are diagrams for explaining the formation process of the positive electrode adhesive layer.
 まず図20に示すように、第1の導電性接着剤2191を第1の内面211a上に50μm厚程度塗布する。第1の導電性接着剤2191は、所定量の鱗片状導電フィラー(鱗片状黒鉛C1)および導電助剤(カーボン粒子)を含有する熱硬化性樹脂(本例ではフェノール樹脂)で構成される。 First, as shown in FIG. 20, a first conductive adhesive 2191 is applied on the first inner surface 211a to a thickness of about 50 μm. The first conductive adhesive 2191 is composed of a thermosetting resin (phenol resin in this example) containing a predetermined amount of flaky conductive filler (flaky graphite C1) and a conductive additive (carbon particles).
 第1の導電性接着剤2191は、少なくとも内部正極端子214bの全体を被覆するように塗布され、本実施形態では、正極電極シート213aと対向する第1の内面211a上の領域全域にわたって塗布される。 The first conductive adhesive 2191 is applied so as to cover at least the entire internal positive electrode terminal 214b, and in this embodiment, is applied over the entire region on the first inner surface 211a facing the positive electrode sheet 213a. .
 この場合、第1の導電性接着剤2191は、比較的低粘度に形成される。第1の導電性接着剤2191の粘度は、例えば、溶媒の量で調整することが可能である。本実施形態では、第1の導電性接着剤2191の粘度は、例えば、1mPa・s~5000mPa・sに調整される。これにより、第1の内面211a上に第1の導電性接着剤2191からなる平坦な層を比較的容易に形成することができる。 In this case, the first conductive adhesive 2191 is formed with a relatively low viscosity. The viscosity of the first conductive adhesive 2191 can be adjusted by the amount of the solvent, for example. In the present embodiment, the viscosity of the first conductive adhesive 2191 is adjusted to, for example, 1 mPa · s to 5000 mPa · s. Thereby, a flat layer made of the first conductive adhesive 2191 can be formed relatively easily on the first inner surface 211a.
 次に、第1の導電性接着剤2191を所定温度で乾燥させることで、第1の導電性接着剤2191に含まれる鱗片状黒鉛C1を第1の内面211aに平行に配向させ、平面視において内部正極端子214bを鱗片状黒鉛C1で被覆する。その後、第1の導電性接着剤2191を所定温度で加熱硬化させることで、内部正極端子214bを被覆する保護層219aを形成する(図21)。 Next, by drying the first conductive adhesive 2191 at a predetermined temperature, the scaly graphite C1 contained in the first conductive adhesive 2191 is oriented parallel to the first inner surface 211a, and in plan view The internal positive terminal 214b is covered with scaly graphite C1. Thereafter, the first conductive adhesive 2191 is heated and cured at a predetermined temperature to form a protective layer 219a covering the internal positive terminal 214b (FIG. 21).
 続いて図21に示すように正極電極シート213aに第2の導電性接着剤2192を塗布し、第2の導電性接着剤2192を介して正極電極シート213aを保護層219aに貼り付ける。その後、第2の導電性接着剤2192を所定温度で加熱硬化させることで、正極電極シート213aと第1の内面211aとの間に正極接着層219が形成される。 Subsequently, as shown in FIG. 21, a second conductive adhesive 2192 is applied to the positive electrode sheet 213a, and the positive electrode sheet 213a is attached to the protective layer 219a via the second conductive adhesive 2192. Thereafter, the second conductive adhesive 2192 is cured by heating at a predetermined temperature, whereby a positive electrode adhesive layer 219 is formed between the positive electrode sheet 213a and the first inner surface 211a.
 なお第2の導電性接着剤2192は、正極電極シート213aに塗布される代わりに、保護層219a上に塗布されてもよい。この方法によっても、上述の方法によるものと同様の正極接着層219を形成することができる。 Note that the second conductive adhesive 2192 may be applied on the protective layer 219a instead of being applied to the positive electrode sheet 213a. Also by this method, the same positive electrode adhesive layer 219 as that by the above-described method can be formed.
 (封止工程)
 封止工程では、ケース本体211とリッド212とを接合することにより、液室Aを封止する。まず、第2の内面212aに導電性接着材を塗布し、負極電極シート213bを載置して導電性接着材を熱硬化させることで、負極接着層220を介してリッド212に負極電極シート213bを接合する。
(Sealing process)
In the sealing step, the liquid chamber A is sealed by bonding the case main body 211 and the lid 212. First, a conductive adhesive is applied to the second inner surface 212a, the negative electrode sheet 213b is placed, and the conductive adhesive is thermally cured, whereby the negative electrode electrode sheet 213b is attached to the lid 212 via the negative electrode adhesive layer 220. Join.
 次に、正極電極シート213a上にセパレートシート213cを載置した後、液室Aに電解液を注入する。負極電極シート213bにも電解液を注入し、上述の各接合法により第2の内面212aの縁部と結合リング218とを接合することで、液室Aを封止する。 Next, after the separate sheet 213c is placed on the positive electrode sheet 213a, the electrolytic solution is injected into the liquid chamber A. The electrolytic solution is also injected into the negative electrode sheet 213b, and the liquid chamber A is sealed by bonding the edge of the second inner surface 212a and the coupling ring 218 by the above-described bonding methods.
 以上のようにして、電気化学デバイス200が製造される。本実施形態によれば、内部正極端子214bを電解液から長期間保護することができる電気化学デバイス200を製造することができる。これにより、長期信頼性に優れた電気化学デバイス200を得ることができる。 As described above, the electrochemical device 200 is manufactured. According to this embodiment, the electrochemical device 200 that can protect the internal positive electrode terminal 214b from the electrolytic solution for a long time can be manufactured. Thereby, the electrochemical device 200 excellent in long-term reliability can be obtained.
<第5の実施形態>
 図22は、本発明の第5の実施形態に係る電気化学デバイス300の概略断面図である。以下、第4の実施形態と異なる構成について主に説明し、上述の実施形態と同様の構成については同様の符号を付しその説明を省略または簡略化する。
<Fifth Embodiment>
FIG. 22 is a schematic cross-sectional view of an electrochemical device 300 according to the fifth embodiment of the present invention. Hereinafter, the configuration different from the fourth embodiment will be mainly described, and the same configuration as the above-described embodiment will be denoted by the same reference numeral, and the description thereof will be omitted or simplified.
 本実施形態の電気化学デバイス300は、ケース本体211の第1の内面211aと蓄電素子213の正極電極シート213aとの間を接合する正極接着層229の形態が、第1の実施形態における正極接着層219のそれと異なる。 In the electrochemical device 300 of the present embodiment, the form of the positive electrode adhesive layer 229 that joins between the first inner surface 211a of the case body 211 and the positive electrode sheet 213a of the power storage element 213 is the positive electrode adhesive in the first embodiment. Different from that of layer 219.
 本実施形態において正極接着層229は、内部正極端子214bを被覆し、第1の内面211aに凸状あるいはドーム状に形成される。正極接着層229は、第1の内面211aと正極電極シート213aとの間を接合し、かつ、内部正極端子214bと正極電極シート213aとの間を電気的に接続する導電性接着剤の硬化物で構成される。 In the present embodiment, the positive electrode adhesive layer 229 covers the internal positive electrode terminal 214b and is formed in a convex shape or a dome shape on the first inner surface 211a. The positive electrode adhesive layer 229 is a cured product of a conductive adhesive that joins between the first inner surface 211a and the positive electrode sheet 213a and electrically connects the internal positive electrode terminal 214b and the positive electrode sheet 213a. Consists of.
 図23は、正極接着層229の概略断面図である。 FIG. 23 is a schematic cross-sectional view of the positive electrode adhesive layer 229.
 正極接着層229は、第4の実施形態と同様に、鱗片状導電フィラーとしての鱗片状黒鉛C1と、導電助剤としてのカーボン粒子C2とを含有する。鱗片状黒鉛C1は、内部正極端子214bを正極電極シート213aから遮蔽するように分散している。鱗片状黒鉛C1は、典型的には、第1の内面211a側において当該第1の内面と平行に配向しており、正極接着層229の表面側において当該正極接着層229の表面にならうように配向している。鱗片状黒鉛C1は、第1の内面211aから突出する内部正極端子214bの直上だけでなく周囲にも分布し、カーボン粒子C2を介して、内部正極端子214bと正極電極シート213aとの間を電気的に導通させる。 As in the fourth embodiment, the positive electrode adhesive layer 229 contains scaly graphite C1 as a scaly conductive filler and carbon particles C2 as a conductive aid. The scaly graphite C1 is dispersed so as to shield the internal positive electrode terminal 214b from the positive electrode sheet 213a. The scale-like graphite C1 is typically oriented parallel to the first inner surface on the first inner surface 211a side, and follows the surface of the positive electrode adhesive layer 229 on the surface side of the positive electrode adhesive layer 229. Oriented. The scale-like graphite C1 is distributed not only directly above the internal positive electrode terminal 214b protruding from the first inner surface 211a but also around the electric field, and the carbon particles C2 are electrically connected between the internal positive electrode terminal 214b and the positive electrode sheet 213a. Make it conductive.
 正極接着層229は、第4の実施形態と同様に形成さる。すなわち第1の導電性接着剤で保護層を形成した後、第2の導電性接着剤を介して当該保護層上に正極電極シート213aが貼り付けられる。この場合、上記保護層は、第1の導電性接着剤を比較的高い粘度に調製し、ディスペンサ等を用いて内部正極端子214b上に塗布することで形成される。 The positive electrode adhesive layer 229 is formed in the same manner as in the fourth embodiment. That is, after forming the protective layer with the first conductive adhesive, the positive electrode sheet 213a is attached on the protective layer via the second conductive adhesive. In this case, the protective layer is formed by adjusting the first conductive adhesive to a relatively high viscosity and applying the first conductive adhesive onto the internal positive electrode terminal 214b using a dispenser or the like.
 以上のように構成される本実施形態の電気化学デバイス300においても、上述の第4の実施形態と同様の作用効果を得ることができる。本実施形態によれば、ケース本体211の第1の内面211aと正極電極シート213aとの間の一部の領域に正極接着層229が設けられているため、残余の領域を液室Aと連通する電解液の貯留室として用いることができる。 Also in the electrochemical device 300 of the present embodiment configured as described above, the same effects as those of the fourth embodiment described above can be obtained. According to this embodiment, since the positive electrode adhesive layer 229 is provided in a partial region between the first inner surface 211a of the case body 211 and the positive electrode sheet 213a, the remaining region communicates with the liquid chamber A. It can be used as a storage chamber for the electrolyte solution.
<第6の実施形態>
 図24は、本発明の第6の実施形態に係る電気化学デバイス400の概略断面図である。以下、第4の実施形態と異なる構成について主に説明し、上述の実施形態と同様の構成については同様の符号を付しその説明を省略または簡略化する。
<Sixth Embodiment>
FIG. 24 is a schematic cross-sectional view of an electrochemical device 400 according to the sixth embodiment of the present invention. Hereinafter, the configuration different from the fourth embodiment will be mainly described, and the same configuration as the above-described embodiment will be denoted by the same reference numeral, and the description thereof will be omitted or simplified.
 本実施形態の電気化学デバイス400は、ケース本体211の第1の内面に凹部211bが設けられ、この凹部211bの底面に内部正極端子214bが露出するように形成されている点で、上述の第4の実施形態と異なる。 The electrochemical device 400 of the present embodiment has a recess 211b provided on the first inner surface of the case body 211, and is formed so that the internal positive electrode terminal 214b is exposed on the bottom surface of the recess 211b. This is different from the fourth embodiment.
 凹部211bは、典型的には円柱形状に形成されるが、直方体形状等の他の形状に形成されてもよい。凹部211bの直径は、蓄電素子213(正極電極シート213a)の底面の横幅よりも小さく、凹部211bの深さは、例えば50μm~500μmの範囲で任意に設置される。 The recess 211b is typically formed in a cylindrical shape, but may be formed in other shapes such as a rectangular parallelepiped shape. The diameter of the recess 211b is smaller than the lateral width of the bottom surface of the power storage element 213 (positive electrode sheet 213a), and the depth of the recess 211b is arbitrarily set in the range of 50 μm to 500 μm, for example.
 正極接着層239は、凹部211bを被覆するように第1の内面211a上に形成される。正極接着層239は、第4の実施形態と同様に、鱗片状導電フィラーとしての鱗片状黒鉛C1と、導電助剤としてのカーボン粒子C2とを含有する。鱗片状黒鉛C1は、内部正極端子214bを正極電極シート213aから遮蔽するように分散している。鱗片状黒鉛C1は、典型的には、第1の内面211aおよび凹部211bの壁面に沿って、正極接着層239の表面に平行に配向しており、カーボン粒子C2を介して、内部正極端子214bと正極電極シート213aとの間を電気的に導通させる。 The positive electrode adhesive layer 239 is formed on the first inner surface 211a so as to cover the recess 211b. Similarly to the fourth embodiment, the positive electrode adhesive layer 239 contains flaky graphite C1 as a flaky conductive filler and carbon particles C2 as a conductive additive. The scaly graphite C1 is dispersed so as to shield the internal positive electrode terminal 214b from the positive electrode sheet 213a. The scale-like graphite C1 is typically oriented parallel to the surface of the positive electrode adhesive layer 239 along the wall surfaces of the first inner surface 211a and the recess 211b, and the internal positive electrode terminal 214b is interposed via the carbon particles C2. And the positive electrode sheet 213a are electrically connected.
 本実施形態において正極接着層239は、凹部211bにならって形成されることで、凹部211b内に空間部239cを形成する。これに限られず、正極接着層239は、凹部211b内に充填されてもよい。 In this embodiment, the positive electrode adhesive layer 239 is formed following the recess 211b, thereby forming a space 239c in the recess 211b. Without being limited thereto, the positive electrode adhesive layer 239 may be filled in the recess 211b.
 以上のように構成される本実施形態の電気化学デバイス400においても、上述の第4の実施形態と同様の作用効果を得ることができる。本実施形態によれば、内部正極端子214bが凹部211bの底面に設けられているため、正極接着層239を構成する導電性接着剤が比較的低粘度の場合にも、当該導電性接着剤を流出させることなく凹部211b内に塗布することができる。これにより、内部正極端子214bと正極電極シート213aとの間の電気的導通を確保できる。 Also in the electrochemical device 400 of the present embodiment configured as described above, the same effects as those of the fourth embodiment described above can be obtained. According to the present embodiment, since the internal positive electrode terminal 214b is provided on the bottom surface of the recess 211b, the conductive adhesive is used even when the conductive adhesive constituting the positive electrode adhesive layer 239 has a relatively low viscosity. It can apply | coat in the recessed part 211b, without making it flow out. Thereby, electrical conduction between the internal positive electrode terminal 214b and the positive electrode sheet 213a can be ensured.
 また本実施形態によれば、内部正極端子214b直上の接着層を厚くすることができる。内部正極端子214b直上の接着層が厚いほど、正極接着層239内における電解液の浸透経路が長くなるため、内部正極端子214bを電解液から長期間保護することができ、内部正極端子214bの腐食が起こりにくくなる。 Further, according to the present embodiment, the adhesive layer immediately above the internal positive terminal 214b can be thickened. The thicker the adhesive layer immediately above the internal positive electrode terminal 214b is, the longer the permeation path of the electrolytic solution in the positive electrode adhesive layer 239 is. Therefore, the internal positive electrode terminal 214b can be protected from the electrolytic solution for a long time, and Is less likely to occur.
<第7の実施形態>
[電気化学デバイスの構成]
<Seventh Embodiment>
[Configuration of electrochemical device]
 図25は、本発明の第7の実施形態に係る電気化学デバイス500の斜視図であり、図26は電気化学デバイス500の縦断面図である。図27は電気化学デバイス500のケース本体511の平面図である。 FIG. 25 is a perspective view of an electrochemical device 500 according to the seventh embodiment of the present invention, and FIG. 26 is a longitudinal sectional view of the electrochemical device 500. FIG. 27 is a plan view of the case main body 511 of the electrochemical device 500.
 これらの図に示すように、電気化学デバイス500は、ケース510、蓄電素子513、正極接着層519(第1の接着層)及び負極接着層520(第2の接着層)を有する。 As shown in these drawings, the electrochemical device 500 includes a case 510, a power storage element 513, a positive electrode adhesive layer 519 (first adhesive layer), and a negative electrode adhesive layer 520 (second adhesive layer).
 ケース510は、ケース本体511、リッド512、液室A、正極配線514(端子部)、外部正極端子515(第1の外部端子)、負極配線516、外部負極端子517(第2の外部端子)及び結合リング518を有する。 The case 510 has a case body 511, a lid 512, a liquid chamber A, a positive electrode wiring 514 (terminal portion), an external positive electrode terminal 515 (first external terminal), a negative electrode wiring 516, and an external negative electrode terminal 517 (second external terminal). And a coupling ring 518.
 図26に示すように、電気化学デバイス500においては、ケース本体511とリッド512が結合リング518を介して接合され、ケース510を構成している。ケース本体511とリッド512との間に区画されたケース510の内部(液室A)には、電解液を含む蓄電素子513が封入されている。 As shown in FIG. 26, in the electrochemical device 500, the case main body 511 and the lid 512 are joined via a coupling ring 518 to form a case 510. In the case 510 (liquid chamber A) partitioned between the case body 511 and the lid 512, a storage element 513 containing an electrolytic solution is enclosed.
 ケース本体511は、セラミックス等の絶縁性材料からなり、リッド512と共に液室Aを形成する。本実施形態においてケース本体511は、各々所定形状に加工された複数のセラミックスシートの積層体で構成される。ケース本体511は、液室Aを構成するように凹状に形成され、例えば図25に示すような直方体形状に形成される。これに限られず、ケース本体511は円柱状等の他の形状に形成されてもよい。ケース本体511は、液室Aの底面を形成する第1の内面511aを有する。 The case body 511 is made of an insulating material such as ceramics, and forms a liquid chamber A together with the lid 512. In the present embodiment, the case main body 511 is composed of a laminated body of a plurality of ceramic sheets each processed into a predetermined shape. The case main body 511 is formed in a concave shape so as to constitute the liquid chamber A, and is formed in, for example, a rectangular parallelepiped shape as shown in FIG. However, the case main body 511 may be formed in another shape such as a columnar shape. The case main body 511 has a first inner surface 511 a that forms the bottom surface of the liquid chamber A.
 リッド512は、第1の内面511aと対向する第2の内面512aを有し、結合リング518を介してケース本体511の開口端部(上面)と接合されることで、液室Aを封止する。結合リング518に対するリッド512の結合には、シーム溶接やレーザ溶接等の直接接合法を利用できる他、導電性接合材を介在した間接接合法を利用することができる。 The lid 512 has a second inner surface 512a facing the first inner surface 511a, and is joined to the opening end (upper surface) of the case body 511 via the coupling ring 518, thereby sealing the liquid chamber A. To do. For joining the lid 512 to the coupling ring 518, a direct joining method such as seam welding or laser welding can be used, or an indirect joining method with a conductive joining material can be used.
 リッド512は、各種金属等の導電性材料からなるものとすることができ、例えばコバール(鉄-ニッケル-コバルト合金)からなるものとすることができる。また、リッド512は、電解腐食を防止するため、コバール等の母材がニッケル、白金、銀、金あるいはパラジウム等の耐腐食性の高い金属からなる被膜によって被覆されたクラッド材とすることも可能である。 The lid 512 can be made of a conductive material such as various metals, for example, can be made of Kovar (iron-nickel-cobalt alloy). Further, the lid 512 may be a clad material in which a base material such as Kovar is coated with a coating made of a highly corrosion-resistant metal such as nickel, platinum, silver, gold, or palladium in order to prevent electrolytic corrosion. It is.
 蓄電素子513は、液室Aに収容され、電荷を蓄積(蓄電)し、あるいは放出(放電)する。図26に示すように蓄電素子513は、正極電極シート513a(第1の電極)、負極電極シート513b(第2の電極)及びセパレートシート513c(セパレータ)を有し、正極電極シート513a及び負極電極シート513bによってセパレートシート513cが挟まれた構成を有する。 The electricity storage element 513 is accommodated in the liquid chamber A and accumulates (accumulates) electric charges or discharges (discharges) electric charges. As shown in FIG. 26, the storage element 513 includes a positive electrode sheet 513a (first electrode), a negative electrode sheet 513b (second electrode), and a separate sheet 513c (separator), and the positive electrode sheet 513a and the negative electrode A separate sheet 513c is sandwiched between sheets 513b.
 本実施形態において、蓄電素子513は、第1の内面511aと対向する第1の接合面5131aを有する正極電極シート513aがケース本体511側となるように第1の内面511aに接合され、負極電極シート513bがリッド512側となるように第2の内面512aに接合される。 In the present embodiment, the storage element 513 is bonded to the first inner surface 511a so that the positive electrode sheet 513a having the first bonding surface 5131a facing the first inner surface 511a is on the case body 511 side, and the negative electrode The sheet 513b is joined to the second inner surface 512a so as to be on the lid 512 side.
 正極電極シート513aは、活物質を含むシートである。活物質は電解質イオン(例えばBF )をその表面に吸着させ、電気二重層を形成させる物質であり、例えば活性炭やPAS(Polyacenic Semiconductor:ポリアセン系有機半導体)であるものとすることができる。正極電極シート513aは、上記活物質、導電助剤(例えばケッチェンブラック)及びバインダ(例えば、PTFE(polytetrafluoroethylene))の混合物を圧延してシート状に形成し、それを裁断したものとすることができる。 The positive electrode sheet 513a is a sheet containing an active material. The active material is a material that adsorbs electrolyte ions (for example, BF 4 ) on its surface to form an electric double layer, and can be, for example, activated carbon or PAS (Polyacenic Semiconductor: polyacenic organic semiconductor). The positive electrode sheet 513a is formed by rolling a mixture of the above active material, a conductive additive (for example, ketjen black) and a binder (for example, PTFE (polytetrafluoroethylene)) and cutting it. it can.
 負極電極シート513bは、正極電極シート513aと同様に活物質を含むシートであり、活物質、導電助剤及びバインダの混合物を圧延してシート状に形成し、それを裁断したものとすることができる。負極電極シート513bは正極電極シート513aと同一の材料からなるものとすることもでき、異なる材料からなるものとすることもできる。 The negative electrode sheet 513b is a sheet containing an active material like the positive electrode sheet 513a, and is formed by rolling a mixture of an active material, a conductive additive and a binder into a sheet shape, and cutting it. it can. The negative electrode sheet 513b can be made of the same material as the positive electrode sheet 513a, or can be made of a different material.
 セパレートシート513cは、電極同士を電気的に絶縁するシートである。セパレートシート513cは、ガラス繊維、セルロース繊維、プラスチック繊維等からなる多孔質シートであるものとすることができる。なおデバイスの種類によっては、セパレートシート513cは、省略することもできる。 The separate sheet 513c is a sheet that electrically insulates the electrodes. The separate sheet 513c can be a porous sheet made of glass fiber, cellulose fiber, plastic fiber, or the like. Note that the separate sheet 513c may be omitted depending on the type of device.
 蓄電素子513と共に液室Aに封入される電解液は、任意に選択することが可能であり、例えば、BF (四フッ化ホウ酸イオン)、PF (六フッ化リン酸イオン)、(CFSO(TFSAイオン)等のアニオンを含むものとすることができる。具体的には、5-アゾニアスピロ[4.4]ノナン-BFやエチルメチルイミダゾリウム-BFの溶液等を用いることができる。 The electrolytic solution sealed in the liquid chamber A together with the power storage element 513 can be arbitrarily selected. For example, BF 4 (tetrafluoroborate ion), PF 6 (hexafluorophosphate ion) , (CF 3 SO 2 ) 2 N (TFSA ion) and the like. Specifically, a solution of 5-azoniaspiro [4.4] nonane-BF 4 or ethylmethylimidazolium-BF 4 can be used.
 上述のように、ケース510は、正極配線514及び負極配線516を有する。ケース本体511の上記開口端部とは反対側の端部(下面)には、正極配線514と電気的に接続される外部正極端子515と、負極配線516と電気的に接続される外部負極端子517とがそれぞれ設けられている。 As described above, the case 510 includes the positive electrode wiring 514 and the negative electrode wiring 516. An external positive electrode terminal 515 that is electrically connected to the positive electrode wiring 514 and an external negative electrode terminal that is electrically connected to the negative electrode wiring 516 are provided at the end (lower surface) opposite to the opening end of the case body 511. 517 are provided.
 正極配線514は、ビア514a、内部正極端子514b(第1の端部)、及び第2の端部514cを有し、正極電極シート513aと外部正極端子515とを電気的に接続する。ビア514aは、外部正極端子515から第1の内面511aの直下までケース本体511の底部を貫通して形成されており、内部正極端子514bを経由して正極接着層519に接触し、正極接着層519を介して正極電極シート513aに電気的に接続される。正極配線514は、ケース本体511内部に形成された、ビア514a以外の配線パターンを有していてもよい。正極配線514は、任意の導電性材料からなるものとすることができる。 The positive electrode wiring 514 includes a via 514a, an internal positive terminal 514b (first end), and a second end 514c, and electrically connects the positive electrode sheet 513a and the external positive terminal 515. The via 514a is formed through the bottom of the case body 511 from the external positive electrode terminal 515 to directly below the first inner surface 511a, and contacts the positive electrode adhesive layer 519 via the internal positive electrode terminal 514b. It is electrically connected to the positive electrode sheet 513a through 519. The positive electrode wiring 514 may have a wiring pattern other than the via 514 a formed inside the case main body 511. The positive electrode wiring 514 can be made of any conductive material.
 内部正極端子514bは、第1の内面511aに設けられ、正極電極シート513aとビア514aとを電気的に接続する。内部正極端子514bは、典型的には、上面から見て円形状に形成される(図27)。これに限られず、内部正極端子514bは、上面から見て矩形形状等の他の形状に形成されてもよい。 The internal positive terminal 514b is provided on the first inner surface 511a, and electrically connects the positive electrode sheet 513a and the via 514a. The internal positive terminal 514b is typically formed in a circular shape when viewed from above (FIG. 27). The internal positive terminal 514b is not limited to this, and may be formed in other shapes such as a rectangular shape when viewed from above.
 内部正極端子514bは、正極接着層519に被覆されることで、電解液による腐食から保護される。このため、内部正極端子514bの材料は耐食性に関わらず幅広い材料から選択することが可能である。例えば、ビア514aはタングステンからなるものとすることができ、内部正極端子514bはタングステン上にニッケル膜及び金膜が成膜されたものとすることができる。内部正極端子514bは省略することもでき、この場合にはビア514aが第1の内面511aに露出する。 The internal positive electrode terminal 514b is protected from corrosion by the electrolytic solution by being covered with the positive electrode adhesive layer 519. For this reason, the material of the internal positive electrode terminal 514b can be selected from a wide range of materials regardless of the corrosion resistance. For example, the via 514a can be made of tungsten, and the internal positive electrode terminal 514b can be made by forming a nickel film and a gold film on tungsten. The internal positive terminal 514b can be omitted. In this case, the via 514a is exposed to the first inner surface 511a.
 第2の端部514cは、ビア514aの末端であり、ケース本体511の下面に設けられ、ビア514aと外部正極端子515とを電気的に接続する。 The second end portion 514c is the end of the via 514a and is provided on the lower surface of the case body 511, and electrically connects the via 514a and the external positive terminal 515.
 外部正極端子515は、正極配線514によって蓄電素子(正極電極シート513a)に電気的に接続され、外部回路、例えば実装基板との接続に用いられる。外部正極端子515は、任意の導電性材料からなるものとすることができ、ケース本体511の任意の位置に設けられる。本実施形態では外部正極端子515は、図26に示すように、ケース本体511の外面、具体的には下面に形成される。 The external positive electrode terminal 515 is electrically connected to the storage element (positive electrode sheet 513a) by the positive electrode wiring 514, and is used for connection to an external circuit, for example, a mounting substrate. The external positive terminal 515 can be made of any conductive material, and is provided at any position of the case body 511. In the present embodiment, the external positive electrode terminal 515 is formed on the outer surface, specifically, the lower surface of the case body 511 as shown in FIG.
 負極配線516は、負極電極シート513bと外部負極端子517とを電気的に接続する。具体的には、負極配線516は、外部負極端子517から結合リング518の直下までケース本体511の側壁部を貫通して形成されているビアであり、結合リング518、リッド512及び負極接着層520を介して負極電極シート513bに導通する。負極配線516は、ケース本体511に形成された、ビア以外の配線パターンを有していてもよい。負極配線516は任意の導電性材料からなるものとすることができる。 The negative electrode wiring 516 electrically connects the negative electrode sheet 513b and the external negative electrode terminal 517. Specifically, the negative electrode wiring 516 is a via formed through the side wall portion of the case main body 511 from the external negative electrode terminal 517 to just below the coupling ring 518, and includes the coupling ring 518, the lid 512, and the negative electrode adhesive layer 520. Conduction to the negative electrode sheet 513b. The negative electrode wiring 516 may have a wiring pattern other than the via formed in the case main body 511. The negative electrode wiring 516 can be made of any conductive material.
 外部負極端子517は、負極配線516によって蓄電素子(負極電極シート513b)に電気的に接続され、外部、例えば実装基板との接続に用いられる。外部負極端子517は、任意の導電性材料からなるものとすることができ、ケース本体511の任意の位置に設けられる。本実施形態では外部負極端子517は、図26に示すように、ケース本体511の外面、具体的には下面に形成される。 The external negative electrode terminal 517 is electrically connected to the storage element (negative electrode sheet 513b) by the negative electrode wiring 516, and is used for connection to the outside, for example, a mounting substrate. The external negative electrode terminal 517 can be made of any conductive material, and is provided at any position of the case body 511. In the present embodiment, the external negative electrode terminal 517 is formed on the outer surface, specifically, the lower surface of the case body 511 as shown in FIG.
 結合リング518は、ケース本体511とリッド512を接続して液室Aを封止すると共に、リッド512と負極配線516とを電気的に接続する。結合リング518は、コバール(鉄-ニッケル-コバルト合金)等の導電性材料からなるものとすることができる。また、結合リング518の表面には、耐食性膜(例えば、ニッケル膜及び金膜等)が形成されるものとすることができる。結合リング518は、ロウ材(金-銅合金等)を介してケース本体511及びリッド512に接合されるものとすることができる。 The coupling ring 518 connects the case body 511 and the lid 512 to seal the liquid chamber A, and electrically connects the lid 512 and the negative electrode wiring 516. The coupling ring 518 can be made of a conductive material such as Kovar (iron-nickel-cobalt alloy). In addition, a corrosion-resistant film (for example, a nickel film or a gold film) can be formed on the surface of the coupling ring 518. The coupling ring 518 can be joined to the case body 511 and the lid 512 via a brazing material (gold-copper alloy or the like).
 正極接着層519(第1の接着層)は、正極電極シート513aをケース本体511に接合すると共に、正極電極シート513aと正極配線514とを電気的に接続する。正極接着層519は、正極電極シート513aと第1の内面511aとの間に配置され、第1の内面511aに露出する内部正極端子514bを被覆する。これにより、液室Aに封入された電解液との接触による電解腐食から内部正極端子514bが保護される。 The positive electrode adhesive layer 519 (first adhesive layer) joins the positive electrode sheet 513a to the case main body 511 and electrically connects the positive electrode sheet 513a and the positive electrode wiring 514. The positive electrode adhesive layer 519 is disposed between the positive electrode sheet 513a and the first inner surface 511a, and covers the internal positive electrode terminal 514b exposed on the first inner surface 511a. Thereby, the internal positive electrode terminal 514b is protected from electrolytic corrosion due to contact with the electrolytic solution sealed in the liquid chamber A.
 また、正極接着層519は、第1の空間部519cを有する。第1の空間部519cの詳細については後述する。 The positive electrode adhesive layer 519 has a first space 519c. Details of the first space portion 519c will be described later.
 正極接着層519は、導電性接着材の硬化物であり、当該導電性接着材は、導電性粒子を含有する合成樹脂であるものとすることができる。 The positive electrode adhesive layer 519 is a cured product of a conductive adhesive, and the conductive adhesive can be a synthetic resin containing conductive particles.
 上記導電性粒子は例えば、炭素粒子(カーボンブラック)や黒鉛粒子(グラファイト粒子)等であり、合成樹脂はフェノール樹脂あるいはエポキシ系樹脂等の熱硬化性樹脂であるものとすることができる。特にフェノール樹脂は、電解液に対する膨潤性が小さい、耐熱性が高い、化学的安定性が高い等の点から好適である。上記導電性接着材はこの他にも、導電性を有し、硬化させることができるものであればよい。 The conductive particles are, for example, carbon particles (carbon black), graphite particles (graphite particles), and the like, and the synthetic resin can be a thermosetting resin such as a phenol resin or an epoxy resin. In particular, a phenol resin is preferable from the viewpoints of low swelling with respect to an electrolytic solution, high heat resistance, high chemical stability, and the like. In addition to this, the said electrically conductive adhesive should just have electroconductivity and can be hardened.
 第1の内面511aと対向するリッド512の内面(第2の内面512a)には、負極接着層520を介して負極電極シート513bが接合されている。 The negative electrode sheet 513b is bonded to the inner surface (second inner surface 512a) of the lid 512 facing the first inner surface 511a via the negative electrode adhesive layer 520.
 負極接着層520は、負極電極シート513bをリッド512に接合すると共に、負極電極シート513bとリッド512を電気的に接続する。負極接着層520は、導電性接着材が硬化したものであり、導電性接着材は正極接着層519のものと同様に、導電性粒子を含有する合成樹脂であるものとすることができる。なお、負極接着層520と正極接着層519は、同種の導電性接着材からなるものとすることもでき、他種の導電性接着材からなるものとすることもできる。 The negative electrode adhesive layer 520 joins the negative electrode sheet 513b to the lid 512 and electrically connects the negative electrode sheet 513b and the lid 512. The negative electrode adhesive layer 520 is obtained by curing a conductive adhesive, and the conductive adhesive can be a synthetic resin containing conductive particles, similar to the positive electrode adhesive layer 519. Note that the negative electrode adhesive layer 520 and the positive electrode adhesive layer 519 can be made of the same type of conductive adhesive, or can be made of other types of conductive adhesive.
 ここで、電気化学デバイスにおいては、継続的な使用及び長期信頼性試験を行うと、電解液が分解され減少することで容量の低下が起こる。そのため、長期信頼性を得るためには、電解液が分解により減少(液枯れ)した際にも電極に電解液を供給可能な、電解液の保持スペースを設けることが必要となる。一方、電極間にスペースを設けた構造では、電極間距離が広がってしまうために内部抵抗が上昇するという問題がある。
 そこで本実施形態では、長期信頼性に優れ、かつ内部抵抗の上昇を抑制するために、接着層に第1の空間部が設けられている。以下、第1の空間部について説明する。
Here, in an electrochemical device, when continuous use and a long-term reliability test are performed, a decrease in capacity occurs due to decomposition and reduction of the electrolytic solution. Therefore, in order to obtain long-term reliability, it is necessary to provide an electrolytic solution holding space that can supply the electrolytic solution to the electrode even when the electrolytic solution is reduced (withered) due to decomposition. On the other hand, in the structure in which a space is provided between the electrodes, there is a problem that the internal resistance increases because the distance between the electrodes increases.
Therefore, in the present embodiment, the first space portion is provided in the adhesive layer in order to have excellent long-term reliability and suppress an increase in internal resistance. Hereinafter, the first space portion will be described.
 [第1の空間部について]
 図28は電気化学デバイス500の正極接着層519周辺の拡大縦断面図であり、図29は、正極接着層519が設けられたケース本体511の平面図である。図28及び図29に示すように、正極接着層519には第1の空間部519cが形成されている。
[About the first space]
FIG. 28 is an enlarged vertical sectional view around the positive electrode adhesive layer 519 of the electrochemical device 500, and FIG. 29 is a plan view of the case body 511 provided with the positive electrode adhesive layer 519. As shown in FIG. 28 and FIG. 29, a first space 519 c is formed in the positive electrode adhesive layer 519.
 正極接着層519は、具体的には、第1のベース層519aと第1の突出部519bとを有する。 Specifically, the positive electrode adhesive layer 519 includes a first base layer 519a and a first protrusion 519b.
 第1のベース層519aは、第1の内面511aに設けられ、第1の厚みT1を有し、電解液との接触による電解腐食から内部正極端子514bを保護する。第1の厚みT1は特に限定されず、例えば、10~100μm、好ましくは40μm程度とすることができる。 The first base layer 519a is provided on the first inner surface 511a, has a first thickness T1, and protects the internal positive electrode terminal 514b from electrolytic corrosion due to contact with the electrolytic solution. The first thickness T1 is not particularly limited, and can be, for example, 10 to 100 μm, preferably about 40 μm.
 第1の突出部519bは、第1のベース層519aの一部に設けられ、第2の厚みT2を有し、第1の接合面5131aと第1のベース層519aとを電気的に接続すると共に正極電極シート513aを支持する。第2の厚みT2は特に限定されず、例えば、10~100μm、好ましくは40μm程度とすることができる。 The first protrusion 519b is provided in a part of the first base layer 519a, has a second thickness T2, and electrically connects the first bonding surface 5131a and the first base layer 519a. At the same time, the positive electrode sheet 513a is supported. The second thickness T2 is not particularly limited, and can be, for example, about 10 to 100 μm, preferably about 40 μm.
 第1の突出部519bは、図28及び図29に示すように、第1のベース層519aの一部を覆うように設けられる。第1の突出部519bの横断面形状は、本実施形態では円形状を有するが、これに限られず、楕円形、矩形等、他の形状に形成されてもよい。また、本実施形態では、4つの第1の突出部519bが相互に間隔をあけて第1のベース層519a上に設けられている。第1の突出部519bの数は特に限定されず、複数、単数のいずれであってもよい。 The first protrusion 519b is provided so as to cover a part of the first base layer 519a, as shown in FIGS. The cross-sectional shape of the first projecting portion 519b has a circular shape in the present embodiment, but is not limited thereto, and may be formed in other shapes such as an oval shape and a rectangular shape. In the present embodiment, the four first protrusions 519b are provided on the first base layer 519a with a space therebetween. The number of the first protrusions 519b is not particularly limited, and may be a plurality or a single number.
 第1の空間部519cは、正極電極シート513と、第1のベース層519aと、第1の突出部519bとの間に形成される。第1の空間部519cは、正極電極シート513aの第1の接合面513aと液室Aとに各々連通している。このため第1の空間部519cは、電解液を保持し正極電極シート513aに供給する機能を有する。これにより、電気化学デバイス500の使用により電解液が分解し減少することにより生じる液枯れを長期にわたり防ぐことが可能となる。 The first space 519c is formed between the positive electrode sheet 513, the first base layer 519a, and the first protrusion 519b. The first space portion 519c communicates with the first joint surface 513a of the positive electrode sheet 513a and the liquid chamber A, respectively. Therefore, the first space portion 519c has a function of holding the electrolytic solution and supplying it to the positive electrode sheet 513a. Accordingly, it is possible to prevent the liquid withering caused by the decomposition and reduction of the electrolytic solution due to the use of the electrochemical device 500 for a long period of time.
 第1の空間部519cは、典型的には、第1の接合面5131aと第1のベース層519aとの間に形成されるが、これに限られず、第1の接合面5131aとケース本体511(第1の内面511a)との間に形成されてもよい。 The first space portion 519c is typically formed between the first bonding surface 5131a and the first base layer 519a, but is not limited to this, and the first bonding surface 5131a and the case body 511 are not limited thereto. It may be formed between the first inner surface 511a and the first inner surface 511a.
 第1の空間部519cの厚みは、第1の厚みT1及び/又は第2の厚みT2を変えることで所望の厚みに形成することが可能である。また、横断面における第1の空間部519cの面積は、第1の突出部519bの大きさあるいは数を変えることで所望の面積にすることが可能である。これらにより、第1の空間部519cは、容易に所望の容積にすることが可能である。 The thickness of the first space 519c can be formed to a desired thickness by changing the first thickness T1 and / or the second thickness T2. In addition, the area of the first space 519c in the cross section can be set to a desired area by changing the size or number of the first protrusions 519b. Accordingly, the first space 519c can be easily set to a desired volume.
 第1の空間部519cは、正極電極シート513aと第1の内面511aとの間に形成されているため、電解液を保持するための空間部を電極間に設けた場合と比べて、電極間距離を短縮することができる。これにより、電気化学デバイス500の内部抵抗の上昇を抑制することが可能となる。 Since the first space portion 519c is formed between the positive electrode sheet 513a and the first inner surface 511a, the space between the electrodes is larger than the case where a space portion for holding the electrolytic solution is provided between the electrodes. The distance can be shortened. Thereby, an increase in internal resistance of the electrochemical device 500 can be suppressed.
 以上のように、本実施形態に係る電気化学デバイス500によれば、第1の空間部519cが電解液を保持し、当該電解液を正極電極シート513aに供給する機能を有するため、電解液が分解し減少することにより生じる液枯れを長時間防ぐことができ、高い信頼性を得ることが可能となる。さらに、電解液を保持する空間部を電極間に設けた場合と比べて、電極間距離を短縮することができるため、電気化学デバイス500の内部抵抗を低下させることが可能となる。 As described above, according to the electrochemical device 500 according to the present embodiment, the first space 519c has a function of holding the electrolytic solution and supplying the electrolytic solution to the positive electrode sheet 513a. Liquid withering caused by decomposition and reduction can be prevented for a long time, and high reliability can be obtained. Furthermore, since the distance between the electrodes can be shortened compared to the case where the space for holding the electrolytic solution is provided between the electrodes, the internal resistance of the electrochemical device 500 can be reduced.
[電気化学デバイスの製造方法]
 次に、本実施形態の電気化学デバイス500の製造方法について説明する。
[Method of manufacturing electrochemical device]
Next, the manufacturing method of the electrochemical device 500 of this embodiment is demonstrated.
 本実施形態に係る電気化学デバイス500の製造方法は、ケース本体の準備工程と、正極接着層の形成工程と、封止工程とを有する。なお、以下の製造方法において、正極接着層19及び負極接着層520を形成するための導電性接着材は、全て同種のフェノール系導電性接着材を用いることとする。 The manufacturing method of the electrochemical device 500 according to the present embodiment includes a case body preparation step, a positive electrode adhesive layer formation step, and a sealing step. In the following manufacturing method, the same type of phenolic conductive adhesive is used as the conductive adhesive for forming the positive electrode adhesive layer 19 and the negative electrode adhesive layer 520.
 (ケース本体の準備工程)
 LTCC(Low Temperature Co-fired Ceramics:低温焼結セラミックス)基板やHTCC(High Temperature Co-fired Ceramics:高温焼結セラミックス)基板の製造プロセスによって、積層されたセラミックスの内部及び外面に図26に示すような配線パターン(正極配線514、外部正極端子515、負極配線516及び外部負極端子517)を有し、凹形状を有するケース本体511を製造する。
(Case body preparation process)
As shown in FIG. 26 on the inner and outer surfaces of the laminated ceramics by the manufacturing process of LTCC (Low Temperature Co-fired Ceramics) substrate and HTCC (High Temperature Co-fired Ceramics) substrate. The case main body 511 having a concave shape is manufactured with various wiring patterns (positive wiring 514, external positive terminal 515, negative wiring 516 and external negative terminal 517).
 (正極接着層の形成工程)
 図30及び図31は、正極接着層の形成工程を説明する図である。正極接着層の形成工程は、保護層を形成する工程と、導電性接着材を保護層上に塗布する工程と、正極を載置し導電性接着材を硬化させる工程とを有する。
(Formation process of positive electrode adhesive layer)
30 and 31 are diagrams for explaining the step of forming the positive electrode adhesive layer. The step of forming the positive electrode adhesive layer includes a step of forming a protective layer, a step of applying a conductive adhesive on the protective layer, and a step of placing the positive electrode and curing the conductive adhesive.
 まず、第1の導電性接着材5191を第1の内面511a上に10~100μm、好ましくは40μm厚程度塗布する。このとき、第1の導電性接着材5191は、少なくとも内部正極端子514bの全体を被覆するように塗布され、本実施形態では、正極電極シート513aと対向する第1の内面511a上の領域全域にわたって塗布される。 First, the first conductive adhesive 5191 is applied on the first inner surface 511a to a thickness of about 10 to 100 μm, preferably about 40 μm. At this time, the first conductive adhesive 5191 is applied so as to cover at least the entire internal positive electrode terminal 514b, and in this embodiment, the entire region on the first inner surface 511a facing the positive electrode sheet 513a is covered. Applied.
 次に、所定の温度で加熱処理することで第1の導電性接着材5191を硬化させ、図30のように内部正極端子514bを被覆しつつ第1の内面511aに接合する第1のベース層519a(保護層)を形成する。 Next, the first base layer bonded to the first inner surface 511a while curing the first conductive adhesive 5191 by heat treatment at a predetermined temperature and covering the internal positive terminal 514b as shown in FIG. 519a (protective layer) is formed.
 次に、保護層上の一部に第2の導電性接着材5192を10~100μm、好ましくは40μm厚程度塗布する。ここで、第2の導電性接着材5192の塗布量によって、熱硬化後の第1の突出部519bの大きさを調整することができ、これにより第1の空間部519cの大きさを調整することが可能となる。本実施形態では、第2の導電性接着材5192は保護層上の4箇所に塗布される。 Next, a second conductive adhesive 5192 is applied on a part of the protective layer to a thickness of 10 to 100 μm, preferably about 40 μm. Here, the size of the first protruding portion 519b after thermosetting can be adjusted by the application amount of the second conductive adhesive 5192, thereby adjusting the size of the first space portion 519c. It becomes possible. In the present embodiment, the second conductive adhesive 5192 is applied to four places on the protective layer.
 次に、図31に示すように第2の導電性接着材5192上に正極電極シート513aを第1の接合面5131a側から載置し、所定の温度で加熱処理することで第2の導電性接着材5192を硬化させ、第1の接合面5131aと第1のベース層519aとの間に第1の突出部519bと、液室Aと連通する第1の空間部519cとを有する正極接着層519を形成する。 Next, as shown in FIG. 31, the positive electrode sheet 513a is placed on the second conductive adhesive 5192 from the first bonding surface 5131a side, and heat treatment is performed at a predetermined temperature, thereby providing the second conductive material. A positive electrode adhesive layer having a first protrusion 519b and a first space 519c communicating with the liquid chamber A between the first bonding surface 5131a and the first base layer 519a by curing the adhesive 5192. 519 is formed.
 本工程において、第1の導電性接着材5191及び/又は第2の導電性接着材5192の塗布厚を変えることで、第1の空間部519cの形成位置を第1の内面511aから所望の高さに調整することが可能となる。 In this step, by changing the coating thickness of the first conductive adhesive 5191 and / or the second conductive adhesive 5192, the formation position of the first space 519c is changed from the first inner surface 511a to a desired height. It is possible to adjust to this.
 なお、第1の導電性接着材5191及び第2の導電性接着材5192は、同種の導電性接着材を用いてもよく、他種の導電性接着材を用いてもよい。 Note that the first conductive adhesive 5191 and the second conductive adhesive 5192 may be the same type of conductive adhesive, or other types of conductive adhesives.
 (封止工程)
 封止工程では、ケース本体511とリッド512とを接合することにより、液室Aを封止する。まず、第2の内面512aに導電性接着材を塗布し、負極電極シート513bを載置して導電性接着材を熱硬化させることで、負極接着層520を介してリッド512に負極電極シート513bを接合する。
(Sealing process)
In the sealing step, the liquid chamber A is sealed by bonding the case main body 511 and the lid 512. First, a conductive adhesive is applied to the second inner surface 512a, the negative electrode sheet 513b is placed, and the conductive adhesive is thermally cured, whereby the negative electrode sheet 513b is attached to the lid 512 via the negative electrode adhesive layer 520. Join.
 次に、正極電極シート513a上にセパレートシート513cを載置した後、液室Aに電解液を注入する。負極電極シート513bにも電解液を注入し、上述の各接合法により第2の内面512aの縁部と結合リング518とを接合することで、液室Aを封止する。 Next, after the separate sheet 513c is placed on the positive electrode sheet 513a, the electrolytic solution is injected into the liquid chamber A. The electrolyte is also injected into the negative electrode sheet 513b, and the liquid chamber A is sealed by bonding the edge of the second inner surface 512a and the coupling ring 518 by the above-described bonding methods.
 以上のようにして、正極接着層519の少なくとも第1の接合面5131aと第1のベース層519aとの間に、液室Aと連通する第1の空間部519cが形成された電気化学デバイス500を製造することができる。本実施形態によれば、第1の空間部519cが電解液を保持し正極電極シート513aに供給する機能を有するため、電解液が分解し減少することにより生じる液枯れを長時間防ぐことができ、高い信頼性を得ることが可能となる。さらに、電解液を保持する空間部を電極間に設けた場合と比べて、電極間距離を短縮することができるため、内部抵抗の低減を図ることが可能となる。 As described above, the electrochemical device 500 in which the first space portion 519c communicating with the liquid chamber A is formed between at least the first bonding surface 5131a of the positive electrode adhesive layer 519 and the first base layer 519a. Can be manufactured. According to the present embodiment, the first space 519c has a function of holding the electrolytic solution and supplying the electrolytic solution to the positive electrode sheet 513a. Therefore, it is possible to prevent liquid drainage caused by decomposition and reduction of the electrolytic solution for a long time. High reliability can be obtained. Furthermore, since the distance between the electrodes can be shortened as compared with the case where the space for holding the electrolytic solution is provided between the electrodes, the internal resistance can be reduced.
 なお、以上説明した実施形態では、正極接着層の形成工程において、第2の導電性接着材5192を保護層上に塗布したが、第1の接合面5131aに塗布してもよい。この場合でも、上述の方法によるものと同様の正極接着層519を形成することができる。 In the embodiment described above, the second conductive adhesive 5192 is applied on the protective layer in the step of forming the positive electrode adhesive layer, but may be applied to the first bonding surface 5131a. Even in this case, the positive electrode adhesive layer 519 similar to that obtained by the above-described method can be formed.
 また、正極接着層の形成工程において、第1の導電性接着材5191を第1の内面511a上に平坦に塗布して形成した保護層上の一部に、第2の導電性接着材5192を塗布することでも、上述の方法によるものと同様の正極接着層519を形成することができる。 Further, in the step of forming the positive electrode adhesive layer, the second conductive adhesive 5192 is formed on a part of the protective layer formed by applying the first conductive adhesive 5191 flatly on the first inner surface 511a. Also by application, the same positive electrode adhesive layer 519 as that obtained by the above-described method can be formed.
<第8の実施形態>
 図32は、本発明の第8の実施形態に係る電気化学デバイス600の縦断面図である。また、図33は本実施形態に係る電気化学デバイス600における正極接着層519が設けられたケース本体511の平面図である。以下、第7の実施形態と異なる構成について主に説明し、上述の実施形態と同様の構成については同様の符号を付しその説明を省略又は簡略化する。
<Eighth Embodiment>
FIG. 32 is a longitudinal sectional view of an electrochemical device 600 according to the eighth embodiment of the present invention. FIG. 33 is a plan view of the case body 511 provided with the positive electrode adhesive layer 519 in the electrochemical device 600 according to this embodiment. Hereinafter, configurations different from those of the seventh embodiment will be mainly described, and configurations similar to those of the above-described embodiment will be denoted by the same reference numerals, and description thereof will be omitted or simplified.
 本実施形態に係る電気化学デバイス600は、主にケース本体の形状が第7の実施形態と異なる構造となっている。具体的には、図32及び図33に示すように、本実施形態のケース本体511は、第1の内面511aに凹部511bを有する。なお、本実施形態では内部正極端子514bは、第1の内面511aに設けられているが、凹部511bの内面に設けられてもよい。 The electrochemical device 600 according to the present embodiment mainly has a case body shape different from that of the seventh embodiment. Specifically, as shown in FIGS. 32 and 33, the case main body 511 of the present embodiment has a recess 511b on the first inner surface 511a. In the present embodiment, the internal positive terminal 514b is provided on the first inner surface 511a, but may be provided on the inner surface of the recess 511b.
 凹部511bは、第1の内面511aに複数形成されていてもよい。また、凹部511bの形状は、典型的には円柱形状に形成されるが、直方体形状等の他の形状に形成されることも可能である。 A plurality of recesses 511b may be formed on the first inner surface 511a. Moreover, although the shape of the recessed part 511b is typically formed in a cylindrical shape, it can also be formed in other shapes, such as a rectangular parallelepiped shape.
 凹部511bの直径は、第1の接合面5131aの横幅よりも小さい値に設定され、凹部511bの深さは特に限定されず、例えば、20~200μm、好ましくは50~100μmの範囲で設定することができる。これにより、蓄電素子513の凹部511bへの入り込みを防ぐことができる。 The diameter of the recess 511b is set to a value smaller than the lateral width of the first bonding surface 5131a, and the depth of the recess 511b is not particularly limited, and is set in the range of, for example, 20 to 200 μm, preferably 50 to 100 μm. Can do. This can prevent the power storage element 513 from entering the recess 511b.
 凹部511bは、第1の内面511aと共に第1のベース層519aにより被覆されており、第1の突出部519bは第1の内面511a上の第1のベース層519aの一部に設けられている。これにより、第1の接合面5131aと第1のベース層519aとの間に、液室Aと連通する第1の実施形態よりも大きな空間部5190cが形成される。 The recess 511b is covered with the first base layer 519a together with the first inner surface 511a, and the first protrusion 519b is provided on a part of the first base layer 519a on the first inner surface 511a. . As a result, a larger space portion 5190c than the first embodiment communicating with the liquid chamber A is formed between the first bonding surface 5131a and the first base layer 519a.
 以上のように、本実施形態に係る電気化学デバイス600によれば、ケース本体511の第1の内面511aに凹部511bが設けられることにより、電極間距離を広げることなく、容積の大きい空間部5190cが形成される。この空間部の形態によっても、上述の第7の実施形態と同様の作用効果を得ることができる。本実施形態ではさらに、空間部5190cにより多くの電解液を保持することができるため、液枯れをより長時間防ぐことが可能となる。 As described above, according to the electrochemical device 600 according to this embodiment, the concave portion 511b is provided on the first inner surface 511a of the case body 511, so that the space portion 5190c having a large volume can be obtained without increasing the distance between the electrodes. Is formed. The effect similar to the above-mentioned 7th Embodiment can be acquired also by the form of this space part. In the present embodiment, more electrolytic solution can be held in the space portion 5190c, so that it is possible to prevent liquid draining for a longer time.
 次に、電気化学デバイス600の製造方法について説明する。なお、封止工程については第7の実施形態と同様であるため、ここでは説明を省略する。 Next, a method for manufacturing the electrochemical device 600 will be described. Since the sealing process is the same as that of the seventh embodiment, the description is omitted here.
 ケース本体511は、第7の実施形態と同様のプロセスによって製造することができ、本実施形態では、第1の内面511aに凹部511bを有する構造に製造される。 The case body 511 can be manufactured by a process similar to that of the seventh embodiment. In this embodiment, the case main body 511 is manufactured to have a structure having a recess 511b on the first inner surface 511a.
 図34に示すように、正極接着層の形成工程において、まず第1の導電性接着材5191を、凹部511b及び内部正極端子514bを被覆するように第1の内面511a上に10~100μm、好ましくは40μm厚程度塗布し熱硬化させることで、第1の内面511a及び凹部511bの内面を覆う第1のベース層519a(保護層)を形成する。 As shown in FIG. 34, in the step of forming the positive electrode adhesive layer, first, the first conductive adhesive 5191 is first coated on the first inner surface 511a so as to cover the recess 511b and the internal positive electrode terminal 514b. Is applied and thermally cured to form a first base layer 519a (protective layer) covering the inner surfaces of the first inner surface 511a and the recess 511b.
 次に、第1の内面511a上の保護層の一部に第2の導電性接着材5192を10~100μm、好ましくは40μm厚程度塗布し、正極電極シート513aを載置する。以降、第7の実施形態と同様の工程により、電気化学デバイス600が製造される。 Next, the second conductive adhesive 5192 is applied to a part of the protective layer on the first inner surface 511a to a thickness of 10 to 100 μm, preferably about 40 μm, and the positive electrode sheet 513a is placed. Thereafter, the electrochemical device 600 is manufactured by the same process as in the seventh embodiment.
 本実施形態によれば、第1の内面511aに凹部511bを有することで、第1の接合面5131aと第1のベース層519aとの間に、第7の実施形態よりも容積の大きな空間部5190cが形成された電気化学デバイス600を製造することができる。 According to the present embodiment, since the first inner surface 511a has the recess 511b, a space portion having a larger volume than the seventh embodiment is provided between the first bonding surface 5131a and the first base layer 519a. An electrochemical device 600 in which 5190c is formed can be manufactured.
<第9の実施形態>
 図35は本発明の第9の実施形態に係る電気化学デバイス700の縦断面図である。以下、第7の実施形態と異なる構成について主に説明し、第7の実施形態と同様の構成については同様の符号を付しその説明を省略又は簡略化する。
<Ninth Embodiment>
FIG. 35 is a longitudinal sectional view of an electrochemical device 700 according to the ninth embodiment of the present invention. Hereinafter, configurations different from those of the seventh embodiment will be mainly described, and configurations similar to those of the seventh embodiment are denoted by the same reference numerals, and description thereof will be omitted or simplified.
 本実施形態に係る電気化学デバイス700は、主に負極接着層720が第1の実施形態と異なる。図35に示したように、本実施形態では、負極接着層720が液室Aと負極電極シート513bとに各々連通する空間部(第2の空間部720c)を有する。なお、負極接着層720は、第7の実施形態における負極接着層520と同種の材料で構成されている。 The electrochemical device 700 according to the present embodiment is mainly different from the first embodiment in the negative electrode adhesive layer 720. As shown in FIG. 35, in this embodiment, the negative electrode adhesive layer 720 has a space (second space 720c) that communicates with the liquid chamber A and the negative electrode sheet 513b. The negative electrode adhesive layer 720 is made of the same material as the negative electrode adhesive layer 520 in the seventh embodiment.
 負極接着層720は、具体的には、第2のベース層720aと第2の突出部720bを有する。また、負極電極シート513bは、第2の内面512aと対向する第2の接合面5131bを有する。 Specifically, the negative electrode adhesive layer 720 includes a second base layer 720a and a second protrusion 720b. Further, the negative electrode sheet 513b has a second bonding surface 5131b facing the second inner surface 512a.
 第2のベース層720a及び第2の突出部720bは、第1のベース層519a及び第1の突出部519bと略同様の構造及び機能を有する。 The second base layer 720a and the second protrusion 720b have substantially the same structure and function as the first base layer 519a and the first protrusion 519b.
 第2のベース層720aは、第2の内面512aに設けられ、電解液との接触による電解腐食からリッド512を保護する。 The second base layer 720a is provided on the second inner surface 512a and protects the lid 512 from electrolytic corrosion due to contact with the electrolytic solution.
 第2の突出部720bは、第2のベース層720aの一部に設けられ、第2の接合面5131bと第2のベース層720aとを電気的に接続すると共に負極電極シート513bを支持する。なお、第2のベース層720a及び第2の突出部720bの厚みは、典型的には第1の厚みT1及び第2の厚みT2と同様の厚みに設定されるが、これに限られず、所望の厚みに適宜設定することができる。 The second protrusion 720b is provided in a part of the second base layer 720a, and electrically connects the second bonding surface 5131b and the second base layer 720a and supports the negative electrode sheet 513b. Note that the thicknesses of the second base layer 720a and the second protrusion 720b are typically set to the same thicknesses as the first thickness T1 and the second thickness T2, but are not limited thereto, and are desired. The thickness can be appropriately set.
 第2の空間部720cは、第1の空間部519cと同様の構造及び機能を有する。これにより、第2の空間部720cが電解液を保持し負極電極シート513bに供給することができるため、液枯れに対して高い信頼性を得ることが可能となる。 The second space portion 720c has the same structure and function as the first space portion 519c. Thereby, since the 2nd space part 720c can hold | maintain electrolyte solution and can supply to the negative electrode sheet | seat 513b, it becomes possible to acquire high reliability with respect to liquid withering.
 以上のように本実施形態に係る電気化学デバイス700によれば、正極接着層519及び負極接着層720にそれぞれ第1及び第2の空間部を有しており、この空間部の形態によっても第7の実施形態と同様の作用効果を得ることができる。さらに本実施形態によれば、負極接着層720に液室Aと連通する第2の空間部720cを有するため、第7の実施形態より多くの電解液を保持し、電極へ供給することができる。これにより、液枯れをより長時間防ぐことができ、さらに高い信頼性を得ることが可能となる。 As described above, according to the electrochemical device 700 according to the present embodiment, the positive electrode adhesive layer 519 and the negative electrode adhesive layer 720 have the first and second spaces, respectively, and the first and second spaces are also included in the form of the spaces. The same effects as those of the seventh embodiment can be obtained. Furthermore, according to the present embodiment, since the negative electrode adhesive layer 720 includes the second space portion 720 c communicating with the liquid chamber A, more electrolytic solution than that in the seventh embodiment can be held and supplied to the electrode. . As a result, it is possible to prevent the liquid from draining for a longer time, and it is possible to obtain higher reliability.
 次に、電気化学デバイス700の製造方法について説明する。本実施形態では、負極接着層720に第2の空間部720cを形成するための、負極接着層の形成工程をさらに有する。なお、ケース本体の準備工程及び正極接着層の形成工程については第7の実施形態と同様であるため、ここでは説明を省略する。 Next, a method for manufacturing the electrochemical device 700 will be described. In the present embodiment, the method further includes a step of forming a negative electrode adhesive layer for forming the second space portion 720 c in the negative electrode adhesive layer 720. Note that the case body preparation step and the positive electrode adhesive layer formation step are the same as those in the seventh embodiment, and a description thereof will be omitted here.
 負極接着層の形成工程では、正極接着層の形成工程と同様の工程により、第2のベース層720a及び第2の突出部720bを有し、第2の空間部720cが設けられた負極接着層720が形成される。負極接着層の形成工程は、典型的には正極接着層の形成工程と同時に行われるが、工程の順序は問わない。 In the negative electrode adhesive layer forming step, the negative electrode adhesive layer having the second base layer 720a and the second projecting portion 720b and having the second space 720c is provided by the same process as the positive electrode adhesive layer forming step. 720 is formed. The process for forming the negative electrode adhesive layer is typically performed simultaneously with the process for forming the positive electrode adhesive layer, but the order of the processes is not limited.
 封止工程では、正極電極シート513a上にセパレートシート513cを載置した後、液室Aに電解液を注入する。負極電極シート513bにも電解液を注入し、上述の各接合法により第2の内面512aの縁部と結合リング518とを接合することで、液室Aを封止する。 In the sealing step, the separator sheet 513c is placed on the positive electrode sheet 513a, and then the electrolytic solution is injected into the liquid chamber A. The electrolyte is also injected into the negative electrode sheet 513b, and the liquid chamber A is sealed by bonding the edge of the second inner surface 512a and the coupling ring 518 by the above-described bonding methods.
 本実施形態によれば、正極接着層519に第1の空間部519cが設けられ、負極接着層720に第2の空間部720cが設けられた電気化学デバイス700を製造することができる。 According to the present embodiment, the electrochemical device 700 in which the first space portion 519c is provided in the positive electrode adhesive layer 519 and the second space portion 720c is provided in the negative electrode adhesive layer 720 can be manufactured.
 以上、本発明の実施形態について説明したが、本発明は上述の各実施形態にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。 As mentioned above, although embodiment of this invention was described, this invention is not limited only to each above-mentioned embodiment, Of course, in the range which does not deviate from the summary of this invention, a various change can be added.
 例えば、第1の実施形態では、正極接着層19は単層の導電性接着層で形成されてもよい。この場合、正極接着層19を形成するための導電性接着材は、気泡を有していてもよく、これにより、正極接着層19内部に空隙部を形成することが可能となる。気泡の大きさは特に限られず、例えば1μm~10μm程度とすることができる。また、気泡に含まれるガスの種類は特に限られず、例えば二酸化炭素等を用いることができる。 For example, in the first embodiment, the positive electrode adhesive layer 19 may be formed of a single conductive adhesive layer. In this case, the conductive adhesive for forming the positive electrode adhesive layer 19 may have air bubbles, whereby a void portion can be formed inside the positive electrode adhesive layer 19. The size of the bubbles is not particularly limited, and can be, for example, about 1 μm to 10 μm. The type of gas contained in the bubbles is not particularly limited, and for example, carbon dioxide can be used.
 また、上述の第2及び第3の実施形態では、第1の導電性接着材191及び第2の導電性接着材192は、凹部11bあるいは窪み19eに流れ込まないように、流動性の低い導電性接着材を用いることで、内部正極端子14bの直上に空隙部を形成し易くすることができる。 In the second and third embodiments described above, the first conductive adhesive 191 and the second conductive adhesive 192 have low fluidity so as not to flow into the recess 11b or the recess 19e. By using an adhesive material, it is possible to easily form a gap directly above the internal positive terminal 14b.
 以上の第1~第3の実施形態では、正極接着層19が第1の接着層19a及び第2の接着層19bの二層からなる構成となっているが、三層からなる構成としてもよい。例えば、第3の層として導電性シートを中央の層として配する場合、予め空孔を有する導電性シートを用いることで、正極接着層19内部に容易に空隙部を形成することが可能となる。この際、第2の導電性接着材192は、上記導電性シートの空孔に流れ込まないように流動性の低い導電性接着材を用いることで、空隙部をより形成し易くすることができる。 In the first to third embodiments described above, the positive electrode adhesive layer 19 is configured by two layers of the first adhesive layer 19a and the second adhesive layer 19b, but may be configured by three layers. . For example, when the conductive sheet is arranged as the center layer as the third layer, a void portion can be easily formed inside the positive electrode adhesive layer 19 by using a conductive sheet having pores in advance. . At this time, the second conductive adhesive 192 can be made easier to form voids by using a conductive adhesive having low fluidity so as not to flow into the pores of the conductive sheet.
 また、以上の各実施形態では、絶縁性のケース本体を用いたが、導電性のケース本体を用いた構成とすることも可能である。この場合、上記各実施形態における配線パターンを省略することができ、リッド及びケース本体を外部電極端子とした電気化学デバイスとすることができる。 In each of the above embodiments, the insulating case main body is used. However, a configuration using a conductive case main body is also possible. In this case, the wiring pattern in each of the above embodiments can be omitted, and an electrochemical device using the lid and the case body as external electrode terminals can be obtained.
 以上の第4~第6の実施形態では、正極接着層219,229に含有される鱗片状導電フィラーとして鱗片状黒鉛を用いたが、これに限られず、鱗片状の金属フィラーが用いられてもよい。このような構成においても上述と同様の作用効果を得ることができる。金属フィラーとしては、電解液に対して耐食性を有する材料(例えばアルミニウム等)が好ましい。 In the above fourth to sixth embodiments, scaly graphite is used as the scaly conductive filler contained in the positive electrode adhesive layers 219 and 229. However, the present invention is not limited to this, and a scaly metal filler may be used. Good. Even in such a configuration, the same effects as described above can be obtained. As a metal filler, the material (for example, aluminum etc.) which has corrosion resistance with respect to electrolyte solution is preferable.
 また以上の各実施形態では、正極配線を構成するビアがケース本体の底部を貫通するように構成されたが、これに限られない。例えば、ケース本体の底部を貫通しないようにビアを形成するとともに、当該ビアを外部正極端子へ電気的に接続する内層配線部をケース本体の底部に設けてもよい。 In each of the above embodiments, the vias constituting the positive electrode wiring are configured to penetrate the bottom of the case body, but the present invention is not limited to this. For example, a via may be formed so as not to penetrate the bottom of the case body, and an inner layer wiring portion that electrically connects the via to the external positive terminal may be provided at the bottom of the case body.
 以上の各実施形態に係る電気化学デバイスは、電極材料等の種類に応じて、リチウムイオンキャパシタ、電荷二重層キャパシタ、その他の電気化学キャパシタに適用可能である。 The electrochemical device according to each of the above embodiments can be applied to a lithium ion capacitor, a charge double layer capacitor, and other electrochemical capacitors depending on the type of electrode material and the like.
 第9の実施形態では、正極接着層519及び負極接着層720の両方に空間部を設けたが、負極接着層720にのみ空間部を設けてもよい。これによっても、第7の実施形態と同様の作用効果を得ることができる。 In the ninth embodiment, the space portion is provided in both the positive electrode adhesive layer 519 and the negative electrode adhesive layer 720, but the space portion may be provided only in the negative electrode adhesive layer 720. Also by this, the same effect as the seventh embodiment can be obtained.
 上記の第7~第9の実施形態において、第1の突出部519bは、正極電極シート513aを支持し、第1の接合面5131aと第1のベース層519aとの間に液室Aと連通する第1の空間部519cを有していれば、どのような横断面形状としてもよい。第1の突出部519bは、例えば、図36A~Cに示したような横断面形状とすることができる。第9の実施形態における第2の突出部720bについても同様の形状とすることができる。第8の実施形態においても、凹部511bの数、大きさや位置に応じて、第1の突出部519bの横断面形状を適宜設定することができる。 In the seventh to ninth embodiments, the first protrusion 519b supports the positive electrode sheet 513a, and communicates with the liquid chamber A between the first bonding surface 5131a and the first base layer 519a. As long as it has the 1st space part 519c to do, it is good also as what kind of cross-sectional shape. The first protrusion 519b can have a cross-sectional shape as shown in FIGS. 36A to 36C, for example. The second protrusion 720b in the ninth embodiment can also have the same shape. Also in the eighth embodiment, the cross-sectional shape of the first protrusion 519b can be appropriately set according to the number, size, and position of the recesses 511b.
 以上の第7~第9の実施形態では、空間部を有する正極接着層519及び負極接着層20,720は単層の導電性接着層で形成されてもよい。この場合には、流動性の低い導電性接着材を用いることで、導電性接着材の流動を防ぎ、突出部及び空間部を形成し易くすることが可能となる。 In the above seventh to ninth embodiments, the positive electrode adhesive layer 519 and the negative electrode adhesive layers 20 and 720 each having a space may be formed of a single conductive adhesive layer. In this case, by using a conductive adhesive having low fluidity, it is possible to prevent the conductive adhesive from flowing and to easily form the protruding portion and the space portion.
 100、110、120、200、300、400、500、600、700…電気化学デバイス
 10、210、510…ケース
 11、111、211、511…ケース本体
 11a、211a、511a…第1の内面
 11b、211b、511b…凹部
 11c…第3の内面
 12、212、512…リッド
 12a、212a、512a…第2の内面
 13、213、513…蓄電素子
 13a、213a、513a…正極電極シート
 13b、213b、513b…負極電極シート
 13c、213c、513c…セパレートシート
 14、214、514…正極配線
 14a、214a、514a…ビア
 14b、214b、514b…内部正極端子(第1の端部)
 14c、214c、514c…第2の端部
 15、215、515…外部正極端子
 16、216、516…負極配線
 17、217、517…外部負極端子
 18、218、518…結合リング
 19、219、229、239,519…正極接着層
 191、2191、5191…第1の導電性接着材
 192、2192、5192…第2の導電性接着材
 19a…第1の接着層
 19b…第2の接着層
 19c、191c、192c…空隙部
 19d…接着界面
 191e,192e…窪み
 20、220、520…負極接着層
 219a…保護層
 519a…第1のベース層(保護層)
 519b…第1の突出部
 519c…第1の空間部
 720a…第2のベース層
 720b…第2の突出部
 720c…第2の空間部
 5131a…第1の接合面
 5131b…第2の接合面
 A…液室
 C1…鱗片状黒鉛
 C2…カーボン粒子
 T1…第1の厚み
 T2…第2の厚み
100, 110, 120, 200, 300, 400, 500, 600, 700 ... Electrochemical device 10, 210, 510 ... Case 11, 111, 211, 511 ... Case body 11a, 211a, 511a ... First inner surface 11b, 211b, 511b ... concave portion 11c ... third inner surface 12, 212, 512 ... lid 12a, 212a, 512a ... second inner surface 13, 213, 513 ... power storage element 13a, 213a, 513a ... positive electrode sheet 13b, 213b, 513b ... Negative electrode sheet 13c, 213c, 513c ... Separate sheet 14, 214, 514 ... Positive electrode wiring 14a, 214a, 514a ... Via 14b, 214b, 514b ... Internal positive terminal (first end)
14c, 214c, 514c ... second end 15, 215, 515 ... external positive terminal 16, 216, 516 ... negative wiring 17, 217, 517 ... external negative terminal 18, 218, 518 ... coupling ring 19, 219, 229 239, 519 ... positive electrode adhesive layer 191, 2191, 5191 ... first conductive adhesive 192, 2192, 5192 ... second conductive adhesive 19a ... first adhesive layer 19b ... second adhesive layer 19c, 191c, 192c ... gap 19d ... adhesive interface 191e, 192e ... depression 20, 220, 520 ... negative electrode adhesive layer 219a ... protective layer 519a ... first base layer (protective layer)
519b ... first protrusion 519c ... first space 720a ... second base layer 720b ... second protrusion 720c ... second space 5131a ... first bonding surface 5131b ... second bonding surface A ... Liquid chamber C1 ... Scaly graphite C2 ... Carbon particles T1 ... First thickness T2 ... Second thickness

Claims (23)

  1.  端子部と、前記端子部が設けられた第1の内面を有するケース本体と、前記ケース本体に接合され前記第1の内面と対向する第2の内面を有する導電性のリッドと、を有するケースと、
     前記第1の内面に固定された第1の電極と、前記第2の内面に固定され電解液を挟んで前記第1の電極と対向する第2の電極と、を有する蓄電素子と、
     前記第1の電極と前記第1の内面との間に配置され、前記第1の電極と前記端子部とを電気的に接続し、少なくとも1つの空隙部を有する導電性接着材の硬化物で構成された接着層と
     を具備する電気化学デバイス。
    A case having a terminal portion, a case main body having a first inner surface provided with the terminal portion, and a conductive lid having a second inner surface joined to the case main body and facing the first inner surface. When,
    A power storage element comprising: a first electrode fixed to the first inner surface; and a second electrode fixed to the second inner surface and facing the first electrode with an electrolyte interposed therebetween;
    A cured product of a conductive adhesive disposed between the first electrode and the first inner surface, electrically connecting the first electrode and the terminal portion, and having at least one gap portion. An electrochemical device comprising: a configured adhesive layer.
  2.  請求項1に記載の電気化学デバイスであって、
     前記空隙部は、前記接着層の内部に少なくとも1つ形成されている
     電気化学デバイス。
    The electrochemical device according to claim 1,
    At least one void is formed in the adhesive layer.
  3.  請求項2に記載の電気化学デバイスであって、
     前記空隙部は、前記端子部と前記第1の電極との間に形成されている
    The electrochemical device according to claim 2,
    The gap is formed between the terminal portion and the first electrode.
  4.  請求項1~3のいずれか1項に記載の電気化学デバイスであって、
     前記接着層は、第1及び第2の接着層からなり、
     前記空隙部は、少なくとも前記第1及び第2の接着層の界面に形成されている
     電気化学デバイス。
    The electrochemical device according to any one of claims 1 to 3,
    The adhesive layer comprises first and second adhesive layers,
    The gap is an electrochemical device formed at least at an interface between the first and second adhesive layers.
  5.  請求項1~4のいずれか1項に記載の電気化学デバイスであって、
     前記ケース本体は、絶縁性材料で構成され、
     前記ケースは、前記ケース本体の外面に配置され前記端子部と電気的に接続された外部端子をさらに有し、
     前記端子部は、前記第1の内面に露出し前記接着層で被覆される第1の端部と、前記外部端子と電気的に接続される第2の端部とを有する
     電気化学デバイス。
    The electrochemical device according to any one of claims 1 to 4,
    The case body is made of an insulating material,
    The case further includes an external terminal disposed on the outer surface of the case body and electrically connected to the terminal portion,
    The terminal part is an electrochemical device having a first end part exposed on the first inner surface and covered with the adhesive layer, and a second end part electrically connected to the external terminal.
  6.  請求項1~5のいずれか1項に記載の電気化学デバイスであって、
     前記ケース本体は、前記第1の内面に設けられ前記接着層で被覆される凹部を有し、
     前記端子部は、前記凹部の底面に設けられる
     電気化学デバイス。
    The electrochemical device according to any one of claims 1 to 5,
    The case body has a recess provided on the first inner surface and covered with the adhesive layer,
    The terminal portion is an electrochemical device provided on a bottom surface of the recess.
  7.  端子部が設けられた第1の内面を有するケース本体を準備し、
     前記第1の内面に、第1の導電性接着材を塗布することで前記端子部を被覆する保護層を形成し、
     前記保護層上に、第2の導電性接着材を介して蓄電素子の第1の電極を載置し、
     前記第2の導電性接着材を硬化させることで、前記第1の電極と前記第1の内面との間に少なくとも空隙部を有する接着層を形成し、
     前記ケース本体に前記蓄電素子の第2の電極と接合されるリッドを接合することで、前記蓄電素子及び電解液を収容した前記ケース本体の内部を封止する
     電気化学デバイスの製造方法。
    Preparing a case body having a first inner surface provided with a terminal portion;
    Forming a protective layer covering the terminal portion by applying a first conductive adhesive on the first inner surface;
    On the protective layer, the first electrode of the electricity storage element is placed via a second conductive adhesive,
    By curing the second conductive adhesive, to form an adhesive layer having at least a gap between the first electrode and the first inner surface,
    A method for manufacturing an electrochemical device, wherein a lid that is bonded to the second electrode of the electricity storage element is joined to the case body, thereby sealing the inside of the case body containing the electricity storage element and the electrolytic solution.
  8.  請求項7に記載の電気化学デバイスの製造方法であって、
     前記保護層上に前記第1の電極を載置する工程は、
     前記保護層上に前記第2の導電性接着材を塗布した後、前記第2の導電性接着材上に前記第1の電極を載置する
     電気化学デバイスの製造方法。
    A method for producing an electrochemical device according to claim 7,
    The step of placing the first electrode on the protective layer includes:
    A method for manufacturing an electrochemical device, comprising: applying the second conductive adhesive on the protective layer; and placing the first electrode on the second conductive adhesive.
  9.  請求項8に記載の電気化学デバイスの製造方法であって、
     前記ケース本体は、前記第1の内面に設けられた凹部を有し、
     前記保護層を形成する工程は、前記凹部を被覆するように前記保護層を前記第1の内面に形成し、
     前記保護層上に前記第2の導電性接着材を塗布する工程は、前記保護層のうち少なくとも前記第1の内面に形成された保護層上に前記第2の導電性接着材を塗布する
     電気化学デバイスの製造方法。
    A method for producing an electrochemical device according to claim 8,
    The case body has a recess provided on the first inner surface,
    The step of forming the protective layer includes forming the protective layer on the first inner surface so as to cover the concave portion,
    The step of applying the second conductive adhesive on the protective layer applies the second conductive adhesive on at least the protective layer formed on the first inner surface of the protective layer. Chemical device manufacturing method.
  10.  請求項7に記載の電気化学デバイスの製造方法であって、
     前記保護層上に前記第1の電極を載置する工程は、
     前記第1の電極に前記第2の導電性接着材を塗布した後、前記保護層上に前記第1の電極を載置する
     電気化学デバイスの製造方法。
    A method for producing an electrochemical device according to claim 7,
    The step of placing the first electrode on the protective layer includes:
    A method for manufacturing an electrochemical device, comprising: applying the second conductive adhesive to the first electrode; and placing the first electrode on the protective layer.
  11.  請求項7~10のいずれか1項に記載の電気化学デバイスの製造方法であって、
     前記第1の電極は、多孔質構造を有する
     電気化学デバイスの製造方法。
    A method for producing an electrochemical device according to any one of claims 7 to 10,
    The first electrode is a method for manufacturing an electrochemical device having a porous structure.
  12.  端子部と、前記端子部が設けられた第1の内面を有する絶縁性のケース本体と、前記ケース本体に接合され前記第1の内面と対向する第2の内面を有する導電性のリッドと、を有するケースと、
     前記第1の内面に固定された第1の電極と、前記第2の内面に固定され電解液を挟んで前記第1の電極と対向する第2の電極と、を有する蓄電素子と、
     前記第1の電極と前記第1の内面との間に配置され、前記端子部を前記第1の電極から遮蔽する鱗片状導電フィラーを含有する導電性接着剤の硬化物で構成された接着層と
     を具備する電気化学デバイス。
    An insulating case body having a terminal portion, a first inner surface provided with the terminal portion, and a conductive lid having a second inner surface joined to the case body and facing the first inner surface; A case having
    A power storage element comprising: a first electrode fixed to the first inner surface; and a second electrode fixed to the second inner surface and facing the first electrode with an electrolyte interposed therebetween;
    An adhesive layer that is disposed between the first electrode and the first inner surface and is made of a cured product of a conductive adhesive containing a scale-like conductive filler that shields the terminal portion from the first electrode. An electrochemical device comprising:
  13.  請求項12に記載の電気化学デバイスであって、
     前記接着層は、前記接着層の厚み方向に前記鱗片状導電フィラー間を電気的に接続する導電助剤をさらに含有する
     電気化学デバイス。
    The electrochemical device according to claim 12, comprising:
    The said adhesive layer is an electrochemical device which further contains the conductive support agent which electrically connects between the said scaly conductive fillers in the thickness direction of the said adhesive layer.
  14.  請求項12または13に記載の電気化学デバイスであって、
     前記鱗片状導電フィラーは、前記接着層の面内に平行に配向されている
     電気化学デバイス。
    The electrochemical device according to claim 12 or 13,
    The scale-like conductive filler is an electrochemical device oriented in parallel in the plane of the adhesive layer.
  15.  請求項12~14のいずれか1つに記載の電気化学デバイスであって、
     前記鱗片状導電フィラーは、鱗片状黒鉛である
     電気化学デバイス。
    The electrochemical device according to any one of claims 12 to 14, comprising:
    The scaly conductive filler is a scaly graphite.
  16.  端子部が設けられた第1の内面を有するケース本体を準備し、
     前記第1の内面に、平面視において前記端子部を被覆する鱗片状導電フィラーを含有する第1の導電性接着剤の硬化物で構成された保護層を形成し、
     前記保護層上に、第2の導電性接着剤を介して蓄電素子の第1の電極を固定し、
     前記ケース本体に前記蓄電素子の第2の電極と電気的に接続されるリッドを接合することで、前記蓄電素子および電解液を収容した前記ケース本体の内部を封止する
     電気化学デバイスの製造方法。
    Preparing a case body having a first inner surface provided with a terminal portion;
    On the first inner surface, a protective layer composed of a cured product of the first conductive adhesive containing a scale-like conductive filler covering the terminal portion in plan view is formed,
    Fixing the first electrode of the electricity storage element on the protective layer via a second conductive adhesive;
    A method for producing an electrochemical device that seals the inside of the case body containing the electricity storage element and the electrolyte solution by joining a lid electrically connected to the second electrode of the electricity storage element to the case body .
  17.  端子部と、前記端子部が設けられた第1の内面を有するケース本体と、前記ケース本体に接合され前記第1の内面と対向する第2の内面を有する導電性のリッドと、前記ケース本体と前記リッドとの間に区画された液室と、を有するケースと、
     前記第1の内面に固定され前記第1の内面と対向する第1の接合面を有する第1の電極と、前記第2の内面に固定され前記第1の電極と対向する第2の電極と、前記液室に封入された電解液と、を有する蓄電素子と、
     前記第1の電極と前記第1の内面との間に配置され、前記第1の電極と前記端子部とを電気的に接続し、導電性接着材の硬化物で構成された、前記液室と前記第1の接合面とに各々連通する第1の空間部を有する第1の接着層と
     を具備する電気化学デバイス。
    A terminal body, a case body having a first inner surface provided with the terminal section, a conductive lid having a second inner surface joined to the case body and facing the first inner surface, and the case body A liquid chamber partitioned between the lid and the lid, and
    A first electrode having a first bonding surface fixed to the first inner surface and facing the first inner surface; a second electrode fixed to the second inner surface and facing the first electrode; And an electrolytic solution sealed in the liquid chamber,
    The liquid chamber, which is disposed between the first electrode and the first inner surface, electrically connects the first electrode and the terminal portion, and is made of a cured product of a conductive adhesive. And a first adhesive layer having a first space portion that communicates with each of the first joint surfaces.
  18.  請求項17に記載の電気化学デバイスであって、
     前記第1の接着層は、前記第1の内面に設けられ第1の厚みを有する第1のベース層と、前記第1のベース層に設けられ第2の厚みを有し前記第1の接合面と接合する少なくとも1つの第1の突出部とを含み、
     前記第1の空間部は、少なくとも前記第1の接合面と前記第1のベース層との間に形成されている
     電気化学デバイス。
    An electrochemical device according to claim 17,
    The first adhesive layer is provided on the first inner surface and has a first base layer having a first thickness, and the first adhesive layer is provided on the first base layer and has a second thickness and the first bonding layer. At least one first protrusion joined to the surface;
    The first space portion is an electrochemical device formed at least between the first bonding surface and the first base layer.
  19.  請求項18に記載の電気化学デバイスであって、
     前記第1の突出部は、前記第1のベース層に設けられた複数の突出部を含む
     電気化学デバイス。
    The electrochemical device according to claim 18, comprising:
    The first projecting portion includes a plurality of projecting portions provided on the first base layer.
  20.  請求項17~19のいずれか1項に記載の電気化学デバイスであって、
     前記ケース本体は、絶縁性材料で構成され、
     前記ケースは、前記ケース本体の外面に配置され前記端子部と電気的に接続された外部端子をさらに有し、
     前記端子部は、前記第1の内面に露出し前記第1の接着層で被覆される第1の端部と、前記外部端子と電気的に接続される第2の端部とを有する
     電気化学デバイス。
    The electrochemical device according to any one of claims 17 to 19, comprising:
    The case body is made of an insulating material,
    The case further includes an external terminal disposed on the outer surface of the case body and electrically connected to the terminal portion,
    The terminal portion has a first end portion exposed on the first inner surface and covered with the first adhesive layer, and a second end portion electrically connected to the external terminal. device.
  21.  請求項17~20のいずれか1項に記載の電気化学デバイスであって、
     前記ケース本体は、前記第1の接合面の一部と対向し前記第1の接着層で被覆される凹部を前記第1の内面に有する
     電気化学デバイス。
    The electrochemical device according to any one of claims 17 to 20, comprising:
    The case main body has an indentation on the first inner surface facing a part of the first bonding surface and covered with the first adhesive layer.
  22.  請求項17~21のいずれか1項に記載の電気化学デバイスであって、
     前記第2の電極は、前記第2の内面と対向する第2の接合面を有し、
     前記電気化学デバイスは、
     前記第2の電極と前記第2の内面との間に配置され、前記第2の電極と前記第2の内面とを電気的に接続し、導電性接着材の硬化物で構成された、前記液室と前記第2の接合面とに各々連通する第2の空間部を有する前記第2の接着層をさらに具備する
     電気化学デバイス。
    The electrochemical device according to any one of claims 17 to 21,
    The second electrode has a second bonding surface facing the second inner surface,
    The electrochemical device is:
    Arranged between the second electrode and the second inner surface, electrically connecting the second electrode and the second inner surface, and made of a cured product of a conductive adhesive, The electrochemical device further comprising the second adhesive layer having a second space portion communicating with the liquid chamber and the second joint surface.
  23.  端子部が設けられた第1の内面を有する液室を有するケース本体を準備し、
     前記第1の内面に第1の導電性接着材を一部が厚くなるように塗布することで、一部に突出部を有し前記端子部を被覆する保護層を形成し、
     前記保護層上に第2の導電性接着材を塗布した後、前記第2の導電性接着材上に蓄電素子の第1の電極を載置し、
     前記第2の導電性接着材を硬化させることで、前記第1の電極と前記保護層との間に前記液室と連通する第1の空間部を有する第1の接着層を形成し、
     前記液室に電解液を注入し、
     前記ケース本体に前記第1の電極と対向する第2の電極が接合されたリッドを接合する
     電気化学デバイスの製造方法。
    Preparing a case body having a liquid chamber having a first inner surface provided with a terminal portion;
    By applying the first conductive adhesive to the first inner surface so that a part thereof is thick, a protective layer covering the terminal part and having a protruding part in part is formed,
    After applying the second conductive adhesive on the protective layer, placing the first electrode of the electricity storage element on the second conductive adhesive,
    By curing the second conductive adhesive, forming a first adhesive layer having a first space portion communicating with the liquid chamber between the first electrode and the protective layer,
    Injecting electrolyte into the liquid chamber,
    A method for manufacturing an electrochemical device, comprising: bonding a lid in which a second electrode facing the first electrode is bonded to the case body.
PCT/JP2015/053730 2014-02-13 2015-02-12 Electrochemical device, and production method WO2015122420A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2014-025251 2014-02-13
JP2014025253A JP2015153848A (en) 2014-02-13 2014-02-13 Electrochemical device and manufacturing method therefor
JP2014025251A JP2015153846A (en) 2014-02-13 2014-02-13 Electrochemical device and manufacturing method thereof
JP2014036303A JP2015162539A (en) 2014-02-27 2014-02-27 Electrochemical device and manufacturing method of the same
JP2014-036303 2014-02-27
JP2014-025253 2014-11-12

Publications (1)

Publication Number Publication Date
WO2015122420A1 true WO2015122420A1 (en) 2015-08-20

Family

ID=53800163

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/053730 WO2015122420A1 (en) 2014-02-13 2015-02-12 Electrochemical device, and production method

Country Status (1)

Country Link
WO (1) WO2015122420A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11830672B2 (en) 2016-11-23 2023-11-28 KYOCERA AVX Components Corporation Ultracapacitor for use in a solder reflow process

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004080019A (en) * 2002-07-29 2004-03-11 Matsushita Electric Ind Co Ltd Energy storage device and its manufacturing method
JP2006108140A (en) * 2004-09-30 2006-04-20 Sanyo Electric Co Ltd Electrochemical element
JP2006303381A (en) * 2005-04-25 2006-11-02 Sii Micro Parts Ltd Electric double layer capacitor and battery and method for manufacturing the same
JP2010278459A (en) * 2005-07-29 2010-12-09 Seiko Instruments Inc Electrochemical cell
JP2012227333A (en) * 2011-04-19 2012-11-15 Taiyo Yuden Co Ltd Electrochemical device
JP2013021347A (en) * 2012-09-06 2013-01-31 Taiyo Yuden Co Ltd Electrochemical device
JP2014013870A (en) * 2012-06-08 2014-01-23 Taiyo Yuden Co Ltd Electrochemical device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004080019A (en) * 2002-07-29 2004-03-11 Matsushita Electric Ind Co Ltd Energy storage device and its manufacturing method
JP2006108140A (en) * 2004-09-30 2006-04-20 Sanyo Electric Co Ltd Electrochemical element
JP2006303381A (en) * 2005-04-25 2006-11-02 Sii Micro Parts Ltd Electric double layer capacitor and battery and method for manufacturing the same
JP2010278459A (en) * 2005-07-29 2010-12-09 Seiko Instruments Inc Electrochemical cell
JP2012227333A (en) * 2011-04-19 2012-11-15 Taiyo Yuden Co Ltd Electrochemical device
JP2014013870A (en) * 2012-06-08 2014-01-23 Taiyo Yuden Co Ltd Electrochemical device
JP2013021347A (en) * 2012-09-06 2013-01-31 Taiyo Yuden Co Ltd Electrochemical device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11830672B2 (en) 2016-11-23 2023-11-28 KYOCERA AVX Components Corporation Ultracapacitor for use in a solder reflow process

Similar Documents

Publication Publication Date Title
JP5202753B1 (en) Electrochemical capacitor
KR101291952B1 (en) Electrochemical device
JP5828503B2 (en) Electronic component and electronic device
US20130294012A1 (en) Electrochemical device
WO2016031270A1 (en) Electricity storage device
US20140036413A1 (en) Electrochemical capacitor
WO2015122420A1 (en) Electrochemical device, and production method
JP7065040B2 (en) Carbon / carbon integrated high power density ultracapacitor and battery consisting of the capacitor
WO2015133340A1 (en) Electrochemical device
US8553392B2 (en) Electronic component, electronic device, and manufacturing method for the electronic component
JP2015106517A (en) Electrochemical device
JP2015170762A (en) electrochemical device
JP2015153846A (en) Electrochemical device and manufacturing method thereof
JP6489544B2 (en) Electrochemical cell
JP2015153847A (en) Electrochemical device and manufacturing method thereof
JP5826794B2 (en) Electrochemical devices
JP2015153848A (en) Electrochemical device and manufacturing method therefor
JP2013021162A (en) Electrochemical device
JP2015198109A (en) electrochemical device
JP2015162539A (en) Electrochemical device and manufacturing method of the same
JP6032684B2 (en) Electronic component and electronic device
KR20130140956A (en) Ceramic-flat type of edlc
KR101244280B1 (en) Super capacitor having case terminal
JP2015192005A (en) Power source supply unit for module, case, and module
JP2015211181A (en) Electrochemical device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15749114

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15749114

Country of ref document: EP

Kind code of ref document: A1