WO2015122343A1 - コイルユニット及びそれを有する給電システム - Google Patents

コイルユニット及びそれを有する給電システム Download PDF

Info

Publication number
WO2015122343A1
WO2015122343A1 PCT/JP2015/053223 JP2015053223W WO2015122343A1 WO 2015122343 A1 WO2015122343 A1 WO 2015122343A1 JP 2015053223 W JP2015053223 W JP 2015053223W WO 2015122343 A1 WO2015122343 A1 WO 2015122343A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
power
unit
power supply
central axis
Prior art date
Application number
PCT/JP2015/053223
Other languages
English (en)
French (fr)
Inventor
貴弘 中原
良平 西崎
曜 ▲柳▼田
Original Assignee
矢崎総業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 矢崎総業株式会社 filed Critical 矢崎総業株式会社
Priority to DE112015000815.2T priority Critical patent/DE112015000815T5/de
Publication of WO2015122343A1 publication Critical patent/WO2015122343A1/ja
Priority to US15/232,146 priority patent/US10177603B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/302Cooling of charging equipment
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/005Mechanical details of housing or structure aiming to accommodate the power transfer means, e.g. mechanical integration of coils, antennas or transducers into emitting or receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/70Circuit arrangements or systems for wireless supply or distribution of electric power involving the reduction of electric, magnetic or electromagnetic leakage fields
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0042Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/14Emission reduction of noise
    • B60L2270/147Emission reduction of noise electro magnetic [EMI]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • H01F2027/348Preventing eddy currents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present invention relates to a coil unit that receives or supplies power in a non-contact manner and a power supply system having the coil unit.
  • a secondary battery included in a plug-in hybrid vehicle (PHEV), an electric vehicle (EV), or the like
  • PHEV plug-in hybrid vehicle
  • EV electric vehicle
  • Wireless (non-contact) power transmission technology that does not require physical connection such as the above is used.
  • one of a pair of coils that electromagnetically resonate with each other is installed on the ground of the power feeding equipment, and the other is mounted on the vehicle, and the coil installed on the ground of the power feeding equipment Electric power is supplied in a non-contact manner to the coil mounted on the vehicle.
  • the coil is housed in a case together with various components such as a capacitor for adjusting the resonance frequency.
  • the conventional power supply system has a problem that the temperature in the case rises, the power transmission efficiency decreases due to an increase in the resistance value of the coil, and the upper limit value of the operating temperature of the capacitor is exceeded.
  • an object of the present invention is to provide a coil unit that can suppress a temperature rise in the case and a power supply system including the coil unit.
  • the present inventors have generated an eddy current on a metal surface such as an electrode of a capacitor housed in the case due to the magnetic field generated from the coil, thereby increasing the temperature. As a result, the present invention was reached.
  • the invention according to claim 1 is a coil unit comprising a coil for supplying or receiving power in a non-contact manner, a component provided with a metal surface, and a case for housing the coil and the component.
  • the component resides in a coil unit in which the metal surface is disposed so as to be non-perpendicular to the central axis direction of the coil.
  • the invention according to claim 2 resides in the coil unit according to claim 1, wherein the component is a capacitor, and the metal surface is an electrode of the capacitor.
  • a plurality of the capacitors are arranged side by side along the central axis direction of the coil, and the electrodes are inclined so as to move away from the coil as they approach the center in the central axis direction of the coil. 3.
  • the invention according to claim 4 is a power feeding system having a power feeding unit provided on the ground and a power receiving unit provided on the vehicle, wherein the power receiving unit receives the power transmitted from the power feeding unit in a contactless manner.
  • the power feeding unit and the power receiving unit includes the coil unit according to any one of claims 1 to 3.
  • the metal surface of the member is arranged to be non-perpendicular to the central axis of the coil, the magnetic flux is perpendicular to the metal surface.
  • the occurrence of eddy current on the metal surface is suppressed, and the temperature rise can be suppressed.
  • the generation of eddy current at the capacitor electrode is suppressed, and the temperature rise of the capacitor can be suppressed.
  • the third aspect of the invention it is possible to more reliably suppress the generation of eddy currents at the capacitor electrodes and suppress the temperature rise of the capacitor.
  • FIG. 3 is a schematic exploded perspective view of a power feeding unit and a power receiving unit in FIG. 2.
  • FIG. 3 is a top view of the capacitor body and the coil shown in FIG. 2.
  • FIG. 3 is a perspective view of the capacitor shown in FIG. 2. It is a top view of the capacitor body and coil in a comparative example. It is a figure for demonstrating the eddy current which arises in the electrode of a capacitor
  • FIG. 1 is a diagram showing a schematic configuration of a power feeding system according to an embodiment of the present invention.
  • FIG. 2 is a diagram illustrating the arrangement of the power supply unit and the power reception unit included in the power supply system of FIG.
  • FIG. 3 is an exploded perspective view of the power supply unit and the power reception unit of FIG. In FIG. 3, the reference numerals of the parts constituting the power receiving unit are shown in parentheses.
  • FIG. 4 is a top view of the capacitor body and the coil shown in FIG.
  • FIG. 5 is a perspective view of the capacitor shown in FIG.
  • the power supply system of this embodiment supplies electric power to the vehicle from the ground side in a non-contact manner using a magnetic field resonance method.
  • a method other than the magnetic field resonance method may be used as long as power is transmitted by electromagnetically coupling the power feeding side and the power receiving side.
  • the power feeding system 1 includes a power feeding device 20 as a power feeding unit arranged on the ground G (shown in FIG. 2) and a power receiving unit as a power receiving unit arranged in a vehicle V (shown in FIG. 2).
  • Device 30 As shown in FIG. 2, the vehicle V includes a drive unit DRV having an engine and a motor, and a power battery BATT that supplies electric power to the motor.
  • the power feeding device 20 includes a high-frequency power source 21, a power feeding unit 22 as a coil unit, a matching unit 27, and a control unit 28.
  • the high-frequency power source 21 generates, for example, high-frequency power from a commercial power source and supplies it to a power supply unit 22 described later.
  • the high frequency power generated by the high frequency power source 21 is set to a frequency equal to the resonance frequency of the power supply unit 22 and the resonance frequency of the power receiving unit 32 described later.
  • the power supply unit 22 includes a power supply side coil 23 as a coil, a power supply side capacitor body 24, and a power supply side case 25 as a box-shaped case that accommodates these. ing.
  • the power supply unit 22 is installed on the ground G as shown in FIG.
  • the power supply unit 22 may be embedded in the ground G.
  • the power supply side coil 23 and the power supply side capacitor body 24 are connected in series with each other to form a resonance circuit that resonates at a predetermined resonance frequency.
  • the power supply side coil 23 and the power supply side capacitor body 24 are connected in series, but may be connected in parallel.
  • the matching unit 27 is a circuit for matching the impedance between the high-frequency power source 21 and the resonance circuit composed of the power supply side coil 23 and the power supply side capacitor body 24.
  • the control unit 28 includes a well-known microcomputer having a ROM, a RAM, and a CPU, and controls the entire power supply apparatus 20. For example, the control unit 28 performs on / off control of the high-frequency power source 21 in response to a request for power transmission.
  • the power receiving device 30 includes a power receiving unit 32 as a coil unit and a rectifier 38.
  • the power receiving unit 32 includes a power receiving side coil 33 as a coil, a power receiving side capacitor body 34, and a power receiving side case 35 as a box-shaped case for housing them. ing.
  • the power receiving unit 32 is attached to the lower surface of the vehicle V as shown in FIG.
  • the power receiving side coil 33 and the power receiving side capacitor body 34 are connected to each other in series to form a resonance circuit that resonates at the same resonance frequency as the power supply unit 22.
  • the power receiving side coil 33 and the power receiving side capacitor body 34 are connected in series, but may be connected in parallel.
  • the rectifier 38 converts the high frequency power received by the power receiving unit 32 into DC power.
  • a load L such as a charging unit used for charging a power battery BATT mounted on the vehicle V is connected to the rectifier 38.
  • the control unit 28 turns on the high-frequency power source 21. To generate high-frequency power.
  • the power supply unit 22 and the power receiving unit 32 magnetically resonate, and the high frequency power is transmitted from the power supply unit 22, and the high frequency power is received by the power receiving unit 32.
  • the high frequency power received by the power receiving unit 32 is converted into DC power by the rectifier 38 and supplied to the charging unit of the vehicle V, and the power battery BATT is charged by the charging unit.
  • each of the power feeding and power receiving units 22 and 32 includes the power feeding side, the power receiving side coils 23 and 33, the power feeding side and the power receiving side capacitor bodies 24 and 34, and the power feeding side and the power receiving side cases 25 and 35. ing.
  • each of the power supply side and power reception side coils 23 and 33 is a rectangular flat plate core 3A made of ferrite, for example, and a coil wire 3B braided with a litz wire wound around the core 3A in a coil shape, have.
  • the cores 3A of the power supply side and power reception side coils 23 and 33 are horizontally disposed in a power supply side and power reception side cases 25 and 35 described later.
  • the coil wire 3 ⁇ / b> B is wound around the core 3 ⁇ / b> A with a direction perpendicular to the separation direction (the vertical direction Y ⁇ b> 1 in the present embodiment) between the power supply unit 22 and the power reception unit 32 as a central axis.
  • the power supply side and power reception side coils 23 and 33 are configured such that when the vehicle V is parked at a predetermined power supply position, the cores 3 ⁇ / b> A face each other in the vertical direction Y ⁇ b> 1 and the center of the coil wire 3. It arrange
  • each of the power feeding side and power receiving side capacitor bodies 24 and 34 is a rectangular flat circuit board 4A having a wiring pattern formed on the surface of a glass epoxy board, and components and capacitors mounted on the circuit board 4A. And a plurality of ceramic capacitors 4B.
  • terminal fittings attached to one end of the coil wire 3 ⁇ / b> B are fastened to the circuit board 4 ⁇ / b> A by bolts B. Thereby, the coil wire 3B and the ceramic capacitor 4B are electrically connected.
  • a terminal fitting attached to one end of a lead wire 7 made of a litz wire is fastened to the circuit board 4A by a bolt B.
  • the circuit board 4A and the core 3A are arranged horizontally along the width direction Y3 of the core 3A (that is, the direction orthogonal to both the vertical direction Y1 and the central axis direction Y2).
  • the circuit board 4A is disposed at the center in the central axis direction Y2 of the coil wire 3B.
  • the power feeding side and power receiving side cases 25 and 35 are configured to be divided into a main body portion 5A provided with an opening and a lid portion 5B covering the opening of the main body portion 5A.
  • the main body 5A is made of a material that can pass magnetism from the power supply device 20, such as fiber reinforced plastic (FRP).
  • the lid 5B is made of, for example, a material that does not transmit magnetism (becomes a magnetic shield) such as aluminum or an alloy.
  • the power feeding side and power receiving side cases 25 and 35 are combined with the main body portion 5A and the lid portion 5B and fixed by fixing means such as a screw (not shown), so that the power feeding side, the power receiving side coils 23 and 33 and the power feeding side, A space for accommodating the power receiving side capacitor bodies 24 and 34 is formed.
  • the power supply side case 25 is disposed on the ground G so that the lid 5B is on the ground G side and the main body 5A is on the vehicle V side.
  • the power receiving side case 35 is attached to the lower surface of the vehicle V so that the lid portion 5B is on the lower surface side of the vehicle V and the main body portion 5A is on the ground G side.
  • the ceramic capacitor 4B includes a cubic capacitor body 4B-1 and electrodes 4B-2 as metal surfaces provided on a pair of side surfaces facing each other of the capacitor body 4B-1. , Is composed of.
  • the electrode 4B-2 is provided on the entire side surface of the capacitor body 4B-1, and has a certain area.
  • These ceramic capacitors 4B are arranged side by side on the circuit board 4A as shown in FIG.
  • a plurality of ceramic capacitors 4B are arranged on the circuit board 4A in this way, generally, as shown in FIG. 6, in order to reduce the area of the circuit board 4A by arranging the ceramic capacitors 4B without gaps.
  • the electrodes 4B-2 are arranged in a straight line so as to be orthogonal to the central axis direction Y2.
  • the temperature of the ceramic capacitor 4 ⁇ / b> B rises and may exceed the upper limit of the use temperature.
  • the present inventors diligently investigated the cause of this temperature rise, and as shown by the dotted lines in FIG. 6, a magnetic flux ⁇ from one end to the other end in the central axis direction Y1 is generated in the coils 23 and 33. . Therefore, as shown in FIG. 6, when the ceramic capacitor 4B is arranged so that the electrode 4B-2 is orthogonal to the central axis direction Y2, as shown in FIG. 7, it is perpendicular to the electrode 4B-2 of the ceramic capacitor 4B. It is found that the magnetic flux ⁇ to be increased and the eddy current I generated in the electrode 4B-2 is increased, thereby increasing the temperature.
  • the ceramic capacitor 4B is arranged so that the electrode 4B-2 is not perpendicular to the central axis direction Y2, that is, the electrode 4B-2 is in the central axis direction Y2. It was arranged so as to be oblique to or parallel to. More specifically, a plurality of ceramic capacitors 4B are arranged side by side along the central axis direction Y2 of the coils 23 and 33. In the present embodiment, the ceramic capacitors 4B are arranged in three rows along the central axis direction Y2. Six ceramic capacitors 4B are arranged in each row.
  • the ceramic capacitor 4B disposed in the vicinity of the center in the central axis direction Y2 of the coils 23 and 33 has its electrode 4B-2 disposed in parallel to the central axis direction Y2.
  • the other ceramic capacitors 4B are disposed so as to be inclined so that the electrodes 4B-2 move away from the coils 23 and 33 as they approach the center in the central axis direction Y2 of the coils 23 and 33.
  • the other ceramic capacitors 4B are arranged such that the closer to the center in the central axis direction Y2 of the coils 23 and 33, the smaller the inclination with respect to the central axis direction Y2. Further, the other ceramic capacitors 4B are arranged such that the inclination with respect to the central axis direction Y2 decreases as the distance from the coils 23 and 33 increases.
  • the magnetic flux ⁇ is oblique or parallel to the electrode 4B-2 of each ceramic capacitor 4B. For this reason, the magnetic flux ⁇ is less likely to be perpendicular to the electrode 4B-2, and generation of the eddy current I at the electrode 4B-2 can be suppressed.
  • the ceramic capacitors 4B are arranged side by side on the upper surface and the lower surface of the circuit board 4A, and the ceramic capacitors are respectively disposed on the upper surface and the lower surface by through holes. 4B is electrically connected. For this reason, an eddy current due to the magnetic flux ⁇ from the coils 23 and 33 may be generated in the metal material filled in the through hole. Therefore, in the present embodiment, the number of through holes is reduced as much as possible to form a shape with high heat dissipation.
  • the ceramic capacitor 4B was used as components, it is not restricted to this.
  • a circuit board on which a conductive pattern (metal surface) is formed can be considered, and it is possible to arrange the circuit board so that the conductive pattern is not perpendicular to the central axis direction Y2.
  • the arrangement of the plurality of ceramic capacitors 4B arranged on the circuit board 4A is not limited to that shown in FIG. It is desirable to predict the direction of the magnetic flux ⁇ from the position of the capacitor bodies 24 and 34 with respect to the coils 23 and 33 and to incline the electrode 4B-2 so as to be as parallel as possible to the magnetic flux ⁇ .
  • the electrode 4B-2 of the ceramic capacitor 4B is arranged non-perpendicular to the central axis direction Y2 in the power receiving and power feeding units 22 and 32.
  • the present invention is not limited to this. Absent. Only one of the power receiving and power feeding units 22 and 32 may be used.
  • Power supply system 4B Ceramic capacitors (components, capacitors) 4B-2 Electrode (metal surface) 20 Power supply device (power supply unit) 22 Power supply unit (coil unit) 23 Power supply coil (coil) 25 Power supply side case 30 Power receiving device (power receiving unit) 32 Power receiving unit (coil unit) 33 Power receiving coil (coil) 35 Power receiving case (case) G Ground V Vehicle Y2 Center axis direction

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)

Abstract

 給電側、受電側ユニット(22)、(32)は、非接触で電力を給電又は受電する給電側、受電側コイル(23)、(33)と、電極(4B-2)が設けられたセラミックコンデンサ(4B)と、が給電側、受電側ケース(25)、(35)内に収容されている。セラミックコンデンサ(4B)は、当該電極(4B-2)が給電側、受電側コイル(23)、(33)の中心軸方向(Y2)に対して非垂直になるように配置されている。

Description

コイルユニット及びそれを有する給電システム
 本発明は、非接触で電力を受電又は給電するコイルユニット及びこのコイルユニットを有する給電システムに関する。
 近年、例えば、プラグインハイブリッド自動車(PHEV)や電気自動車(EV)等が備える二次電池(以下、単に「動力用バッテリ」という)の充電などにおいて、充電作業を容易にするために、プラグ接続等の物理的接続を必要としないワイヤレス(非接触)での電力伝送技術が用いられている。
 例えば、特許文献1に開示されている給電システムでは、互いに電磁共鳴する一対のコイルの一方を給電設備の地面に設置し、他方を車両に搭載して、給電設備の地面に設置されたコイルから車両に搭載されたコイルに非接触で電力を供給している。
 一般的に、上記コイルは、小型化を図るため、共振周波数を調整するためのコンデンサなどの各種部品と共にケース内に収容されている。しかしながら、従来の給電システムにおいては、ケース内の温度が上昇し、コイルの抵抗値増加による電力の伝送効率の低下や、コンデンサの使用温度の上限値を越える、という問題があった。
 そこで、この問題を解決するために、コイルからコンデンサを離したり、放熱部材を追加したり、電力出力を下げるといった対策が考えられるが、大型化、重量増加、送電電力低下による充電時間の延長といった課題が新たに生じてしまう。
特開2012-186909号公報
 そこで、本発明は、ケース内での温度上昇を抑制することができるコイルユニット及びそれを備える給電システムを提供することを課題とする。
 本発明者らは、温度上昇の原因について鋭意探究した結果、コイルから発生する磁界により、ケース内に収容された、例えばコンデンサの電極などの金属面に渦電流が発生し、これによって温度が上昇していることを見出し、本発明に至った。
 即ち、請求項1記載の発明は、非接触で電力を給電又は受電するコイルと、金属面が設けられた部品と、前記コイル及び前記部品を収容するケースと、を備えたコイルユニットであって、前記部品は、当該金属面が前記コイルの中心軸方向に対して非垂直になるように配置されたことを特徴とするコイルユニットに存する。
 請求項2記載の発明は、前記部品が、コンデンサであり、前記金属面が、前記コンデンサの電極であることを特徴とする請求項1に記載のコイルユニットに存する。
 請求項3記載の発明は、前記コンデンサが、前記コイルの中心軸方向に沿って複数並べて配置されると共に、その電極が前記コイルの中心軸方向の中央に近づくに従って前記コイルから離れるように傾けて配置され、前記複数のコンデンサは、前記コイルの中心軸方向の中央に近いものほど、前記中心軸方向に対する傾きが小さくなるように配置されていることを特徴とする請求項2に記載のコイルユニットに存する。
 請求項4記載の発明は、地面に設けられた給電部と車両に設けられた受電部とを有し、前記受電部が前記給電部から伝送された電力を非接触で受電する給電システムであって、前記給電部又は前記受電部の少なくとも一方が、請求項1~3何れか1項に記載のコイルユニットを有していることを特徴とする給電システムに存する。
 以上説明したように請求項1、4記載の発明によれば、コイルの中心軸に対して部材の金属面が非垂直になるように配置されているので、金属面に対して磁束が垂直になることが少なくなり、金属面での渦電流の発生が抑制され、温度上昇を抑えることができる。
 請求項2記載の発明によれば、コンデンサの電極での渦電流の発生が抑制され、コンデンサの温度上昇を抑えることができる。
 請求項3記載の発明によれば、より確実にコンデンサの電極での渦電流の発生を抑制し、コンデンサの温度上昇を抑えることができる。
本発明の一実施形態の給電システムの概略構成を示す図である。 図1の給電システムが備える給電ユニット及び受電ユニットの配置を説明する図である。 図2の給電ユニット及び受電ユニットの概略分解斜視図である。 図2に示すコンデンサ体及びコイルの上面図である。 図2に示すコンデンサの斜視図である。 比較例におけるコンデンサ体及びコイルの上面図である。 コンデンサの電極に生じる渦電流を説明するための図である。 コンデンサの電極と磁束との関係を説明するための図である。
 以下、本発明の一実施形態の給電システムについて、図1~図5を参照して説明する。
 図1は、本発明の一実施形態の給電システムの概略構成を示す図である。図2は、図1の給電システムが備える給電ユニット及び受電ユニットの配置を説明する図である。図3は、図2の給電ユニット及び受電ユニットの分解斜視図である。なお、図3において、受電ユニットを構成する部分の引用符号は括弧内に記載している。図4は、図2に示すコンデンサ体及びコイルの上面図である。図5は、図2に示すコンデンサの斜視図である。
 本実施形態の給電システムは、磁界共鳴方式を用いて非接触で地面側から車両に電力を供給する。なお、給電側と受電側とを電磁的に結合させることにより電力を伝送するものであれば、磁界共鳴方式以外の方式を用いてもよい。
 まず、給電システム1の一般的な構成について説明する。図1に示すように、給電システム1は、地面G(図2に示す)に配置される給電部としての給電装置20と、車両V(図2に示す)に配置される受電部としての受電装置30と、を備えている。この車両Vは、図2に示すように、エンジン及びモータを有するドライブユニットDRVと、モータに電力を供給する動力用バッテリBATTと、を備えている。
 給電装置20は、図1に示すように、高周波電源21と、コイルユニットとしての給電ユニット22と、整合器27と、制御部28と、を備えている。
 高周波電源21は、例えば、商用電源から高周波電力を生成して、後述する給電ユニット22に供給している。この高周波電源21により生成される高周波電力は、給電ユニット22の共振周波数及び後述する受電ユニット32の共振周波数と等しい周波数に設定されている。
 給電ユニット22は、図2、図3に示すように、コイルとしての給電側コイル23と、給電側コンデンサ体24と、これらを収容する箱型のケースとしての給電側ケース25と、を有している。給電ユニット22は、図2に示すように、地面G上に設置されている。給電ユニット22は、地面Gに埋設されていてもよい。
 給電側コイル23と給電側コンデンサ体24とは、互いに直列接続されて所定の共振周波数で共振する共振回路を形成している。本実施形態では、給電側コイル23と給電側コンデンサ体24とは、直列接続されているが、並列接続されていてもよい。
 整合器27は、高周波電源21と給電側コイル23及び給電側コンデンサ体24からなる共振回路との間のインピーダンスを整合させるための回路である。
 制御部28は、ROM、RAM、CPUを有する周知のマイクロコンピュータなどで構成され、給電装置20全体の制御を司る。制御部28は、例えば、電力伝送の要求に応じて、高周波電源21のオンオフ制御を行う。
 受電装置30は、コイルユニットとしての受電ユニット32と、整流器38と、を備えている。
 受電ユニット32は、図2、図3に示すように、コイルとしての受電側コイル33と、受電側コンデンサ体34と、これらを収容する箱型のケースとしての受電側ケース35と、を有している。受電ユニット32は、図2に示すように、車両Vの下面に取り付けられている。
 受電側コイル33と、受電側コンデンサ体34とは、互いに直列接続されて給電ユニット22と同一の共振周波数で共振する共振回路を形成している。本実施形態では、受電側コイル33と受電側コンデンサ体34とは、直列接続されているが、並列接続されていてもよい。
 整流器38は、受電ユニット32が受電した高周波電力を直流電力に変換する。この整流器38には、例えば、車両Vに搭載された動力用バッテリBATTの充電に用いられる充電ユニットなどの負荷Lが接続される。
 上述した給電システム1は、給電施設において、駐車した車両Vの動力用バッテリBATTの充電操作が入力されて車両Vへの電力伝送の要求が発生すると、制御部28が、高周波電源21をオンして高周波電力を生成する。そして、この高周波電力が給電ユニット22に供給されると、給電ユニット22と受電ユニット32とが磁界共鳴して、給電ユニット22から高周波電力が伝送されて、当該高周波電力が受電ユニット32で受電される。受電ユニット32で受電された高周波電力は、整流器38で直流電力に変換されて、車両Vの充電ユニットに供給され、この充電ユニットにより動力用バッテリBATTが充電される。
 次に、上記概略で説明した給電ユニット22及び受電ユニット32の詳細な構成について、図3などを参照して説明する。給電、受電ユニット22、32は、上述したようにそれぞれ給電側、受電側コイル23、33と、給電側、受電側コンデンサ体24、34と、給電側、受電側ケース25、35と、を備えている。
 給電側、受電側コイル23、33はそれぞれ、図3に示すように、矩形平板状の例えばフェライト製のコア3Aと、コア3Aにコイル状に巻き付けられたリッツ線を編み込んだコイル線3Bと、を有している。
 給電側、受電側コイル23、33のコア3Aは、後述する給電側、受電側ケース25、35内に水平に配置されている。コイル線3Bは、給電ユニット22と受電ユニット32との離隔方向(本実施形態では上下方向Y1)に対して直交する方向を中心軸としてコア3Aに巻き付けられている。これら給電側、受電側コイル23、33は、図2に示すように、車両Vが所定の給電位置に駐車したときに、コア3A同士が上下方向Y1に対向し、かつ、コイル線3の中心軸方向Y2が互いに平行になるように配置される。
 給電側、受電側コンデンサ体24、34はそれぞれ、図4に示すように、ガラスエポキシ基板の表面に配線パターンを形成した矩形平板状の回路基板4Aと、回路基板4Aに実装された部品、コンデンサとしての複数のセラミックコンデンサ4Bと、を有している。上記回路基板4Aには、図3に示すように、上記コイル線3Bの一端に取り付けた端子金具がボルトBにより締結されている。これにより、コイル線3Bとセラミックコンデンサ4Bとが電気的に接続される。また、回路基板4Aには、リッツ線からなる引き出し線7の一端に取り付けた端子金具がボルトBにより締結されている。上述したコイル線3Bの他端及び引き出し線7の他端は、後述する給電側、受電側ケース25、35の内側から外側に引き出されて配索された一対のリード線8の端末とボルトBにより締結されている。
 また、上記回路基板4A及びコア3Aは、コア3Aの幅方向Y3(即ち、上下方向Y1及び中心軸方向Y2の双方に直交する方向)に沿って並べて、水平に配置されている。また、回路基板4Aは、コイル線3Bの中心軸方向Y2の中央に配置されている。
 給電側、受電側ケース25、35は、開口が設けられた本体部5Aと、該本体部5Aの開口を覆う蓋部5Bと、に分割可能に構成されている。本体部5Aは、例えば、繊維強化プラスチック(FRP)などの給電装置20からの磁気を通すことが可能な材料で構成されている。蓋部5Bは、例えば、アルミニウム又は合金などの磁気を通さない(磁気シールドとなる)材料で構成されている。給電側、受電側ケース25、35は、本体部5Aと蓋部5Bとを組み合わせて図示しないねじ等の固定手段により固定することで、内側に給電側、受電側コイル23、33及び給電側、受電側コンデンサ体24、34を収容する空間を形成する。また、給電側ケース25は、蓋部5Bが地面G側、本体部5Aが車両V側となるように地面Gに配置される。受電側ケース35は、蓋部5Bが車両Vの下面側、本体部5Aが地面G側となるように車両Vの下面に取付けられる。
 次に、回路基板4A上でのセラミックコンデンサ4Bの配列について説明する。セラミックコンデンサ4Bは、図5に示すように、立方体状のコンデンサ本体部4B-1と、コンデンサ本体部4B-1の互いに対向する一対の側面にそれぞれ設けられた金属面としての電極4B-2と、から構成されている。上記電極4B-2は、コンデンサ本体部4B-1の側面全体に設けられ、ある程度の面積をもっている。
 これらセラミックコンデンサ4Bは、図4に示すように、回路基板4A上に複数並べて配置されている。このように回路基板4Aに複数のセラミックコンデンサ4Bを配置する場合、一般的には、セラミックコンデンサ4B間を隙間なく配置して、回路基板4Aの面積を小さくするために、図6に示すように、電極4B-2が中心軸方向Y2に直交するようにまっすぐに並べるのが普通である。
 しかしながら、図6に示すような配置では、セラミックコンデンサ4Bの温度が上昇し、使用温度の上限値を越えてしまう恐れがあった。本発明者らは、この温度が上昇する原因について鋭意探究したところ、コイル23、33には、図6の点線で示すように、中心軸方向Y1の一端から他端に向かう磁束φが発生する。このため、図6に示すように、電極4B-2が中心軸方向Y2に直交するようにセラミックコンデンサ4Bを配置すると、図7に示すように、セラミックコンデンサ4Bの電極4B-2に対して垂直になる磁束φが多くなり、電極4B-2に発生する渦電流Iが大きくなり、これにより温度が上昇していることが分かった。
 そこで、本実施形態では、図4に示すように、セラミックコンデンサ4Bを、その電極4B-2が中心軸方向Y2に対して非垂直になるように、即ち、電極4B-2が中心軸方向Y2に対して斜めになるか、平行になるように配置した。詳しく説明すると、セラミックコンデンサ4Bは、コイル23、33の中心軸方向Y2に沿って複数並んで配置されている。本実施形態では、セラミックコンデンサ4Bが、中心軸方向Y2に沿って3列並べて配置されている。各列には、6個のセラミックコンデンサ4Bが並べられている。
 コイル23、33の中心軸方向Y2の中央付近に配置されているセラミックコンデンサ4Bは、その電極4B-2が中心軸方向Y2と平行に配置されている。その他のセラミックコンデンサ4Bはそれぞれ、電極4B-2がコイル23、33の中心軸方向Y2の中央に近づくに従ってコイル23、33から離れるように傾けて配置されている。
 また、その他の複数のセラミックコンデンサ4Bは、コイル23、33の中心軸方向Y2の中央に近いものほど、中心軸方向Y2に対する傾きが小さくなるように配置されている。また、その他の複数のセラミックコンデンサ4Bは、コイル23、33から離れているものほど、中心軸方向Y2に対する傾きが小さくなるように配置されている。
 このように配置することにより、各セラミックコンデンサ4Bの電極4B-2に対して磁束φが斜め又は平行になる。このため、電極4B-2に対して磁束φが垂直になることが少なくなり、電極4B-2での渦電流Iの発生を抑制することができる。渦電流Iの発生を抑制するには、図8に示すように、電極4B-2と直交する軸Zに対して、磁束φが±20°以内にならないようにすることが望ましい。
 上述した実施形態によれば、セラミックコンデンサ4Bやコイル23、33の温度特性の変化が少なくなり、温度特性を補正するための回路などが不要になり、小型化が可能となる。また、熱により壊れにくい給電、受電ユニット22、32が提供でき、設置後のメンテナンス頻度を減らせるため、ユーザの負担を軽くできる。また、コンデンサ体24、34とコイル23、33を離したり、放熱材料を追加しなくても、温度上昇を低減することができ、小型薄型化できるため、車両に搭載する場合、重量の軽量化が図れる。
 また、本実施形態においては、回路基板4Aの小型化を図るために、回路基板4A上面にも下面にもセラミックコンデンサ4Bを並べて配置し、スルーホールにより上面と下面とにそれぞれ配置されたセラミックコンデンサ4Bを電気的に接続している。このため、このスルーホール内に充填される金属材にコイル23、33からの磁束φによる渦電流が生じる恐れがある。そこで、本実施形態では、このスルーホール数もなるべく少なくし、放熱性の高い形状に形成している。
 なお、上述した実施形態によれば、セラミックコンデンサ4Bを部品としていたが、これに限ったものではない。そのほか、例えば導電パターン(金属面)が形成された回路基板などが考えられ、この導電パターンが中心軸方向Y2に対して非垂直になるように回路基板を配置することが考えられる。
 また、上述した実施形態によれば、回路基板4A上に配置された複数のセラミックコンデンサ4Bの配置は図4に示すものに限ったものではない。コイル23、33に対するコンデンサ体24、34の位置から磁束φの方向を予測し、電極4B-2が磁束φに対してなるべく平行になるように傾けるのが望ましい。
 また、上述した実施形態によれば、受電、給電ユニット22、32において、セラミックコンデンサ4Bの電極4B-2を中心軸方向Y2に対して非垂直に配置していたが、これに限ったものではない。受電、給電ユニット22、32の何れか一方だけでもよい。
 また、前述した実施形態は本発明の代表的な形態を示したに過ぎず、本発明は、実施形態に限定されるものではない。即ち、本発明の骨子を逸脱しない範囲で種々変形して実施することができる。
 1 給電システム
 4B セラミックコンデンサ(部品、コンデンサ)
 4B-2 電極(金属面)
 20 給電装置(給電部)
 22 給電ユニット(コイルユニット)
 23 給電側コイル(コイル)
 25 給電側ケース(ケース)
 30 受電装置(受電部)
 32 受電ユニット(コイルユニット)
 33 受電側コイル(コイル)
 35 受電側ケース(ケース)
 G 地面
 V 車両
 Y2 中心軸方向

Claims (4)

  1.  非接触で電力を給電又は受電するコイルと、金属面が設けられた部品と、前記コイル及び前記部品を収容するケースと、を備えたコイルユニットであって、
     前記部品は、当該金属面が前記コイルの中心軸方向に対して非垂直になるように配置されたことを特徴とするコイルユニット。
  2.  前記部品が、コンデンサであり、
     前記金属面が、前記コンデンサの電極であることを特徴とする請求項1に記載のコイルユニット。
  3.  前記コンデンサが、前記コイルの中心軸方向に沿って複数並べて配置されると共に、その電極が前記コイルの中心軸方向の中央に近づくに従って前記コイルから離れるように傾けて配置され、
     前記複数のコンデンサは、前記コイルの中心軸方向の中央に近いものほど、前記中心軸方向に対する傾きが小さくなるように配置されていることを特徴とする請求項2に記載のコイルユニット。
  4.  地面に設けられた給電部と車両に設けられた受電部とを有し、前記受電部が前記給電部から伝送された電力を非接触で受電する給電システムであって、
     前記給電部又は前記受電部の少なくとも一方が、請求項1~3何れか1項に記載のコイルユニットを有していることを特徴とする給電システム。
PCT/JP2015/053223 2014-02-14 2015-02-05 コイルユニット及びそれを有する給電システム WO2015122343A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112015000815.2T DE112015000815T5 (de) 2014-02-14 2015-02-05 Spuleneinheit und diese enthaltendes Energiezuführsystem
US15/232,146 US10177603B2 (en) 2014-02-14 2016-08-09 Coil unit and power supply system including the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014026290A JP6370558B2 (ja) 2014-02-14 2014-02-14 コイルユニット及びそれを有する給電システム
JP2014-026290 2014-02-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/232,146 Continuation US10177603B2 (en) 2014-02-14 2016-08-09 Coil unit and power supply system including the same

Publications (1)

Publication Number Publication Date
WO2015122343A1 true WO2015122343A1 (ja) 2015-08-20

Family

ID=53800090

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/053223 WO2015122343A1 (ja) 2014-02-14 2015-02-05 コイルユニット及びそれを有する給電システム

Country Status (4)

Country Link
US (1) US10177603B2 (ja)
JP (1) JP6370558B2 (ja)
DE (1) DE112015000815T5 (ja)
WO (1) WO2015122343A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017099089A (ja) * 2015-11-20 2017-06-01 矢崎総業株式会社 ワイヤレス伝送装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6070650B2 (ja) * 2014-07-22 2017-02-01 トヨタ自動車株式会社 送電装置並びに受電装置及びそれを搭載した車両
JP6387945B2 (ja) * 2015-11-25 2018-09-12 トヨタ自動車株式会社 非接触送電装置及び非接触受電装置
JP6477671B2 (ja) * 2016-11-17 2019-03-06 トヨタ自動車株式会社 コイルユニット
DE102017008343B4 (de) * 2017-09-05 2022-07-14 Patrick Kempka System zum induktiven Laden eines elektrischen Fahrzeugs
JP6806013B2 (ja) * 2017-09-15 2020-12-23 トヨタ自動車株式会社 コイルユニット
JP2019087592A (ja) * 2017-11-06 2019-06-06 Tdk株式会社 コンデンサモジュール、共振器、ワイヤレス送電装置、ワイヤレス受電装置、ワイヤレス電力伝送システム

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013165576A (ja) * 2012-02-10 2013-08-22 Panasonic Corp 電力伝送コイル
JP2013172503A (ja) * 2012-02-20 2013-09-02 Sumitomo Electric Ind Ltd コイルユニット及び非接触給電システム

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004228444A (ja) * 2003-01-24 2004-08-12 Toyota Industries Corp 表面実装用電子部品の表面実装構造
JP5602065B2 (ja) 2011-03-04 2014-10-08 長野日本無線株式会社 非接触電力伝送装置
WO2013183105A1 (ja) * 2012-06-04 2013-12-12 トヨタ自動車株式会社 受電装置および送電装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013165576A (ja) * 2012-02-10 2013-08-22 Panasonic Corp 電力伝送コイル
JP2013172503A (ja) * 2012-02-20 2013-09-02 Sumitomo Electric Ind Ltd コイルユニット及び非接触給電システム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017099089A (ja) * 2015-11-20 2017-06-01 矢崎総業株式会社 ワイヤレス伝送装置

Also Published As

Publication number Publication date
US10177603B2 (en) 2019-01-08
JP6370558B2 (ja) 2018-08-08
US20160352153A1 (en) 2016-12-01
JP2015153898A (ja) 2015-08-24
DE112015000815T5 (de) 2016-11-03

Similar Documents

Publication Publication Date Title
JP6370558B2 (ja) コイルユニット及びそれを有する給電システム
US11264834B2 (en) Coil apparatus
JP6055530B2 (ja) 非接触電力供給装置
JP6453545B2 (ja) 受電ユニット及びそれを有する給電システム
CN108140478B (zh) 线圈装置
JP3226466U (ja) コイルモジュールおよびそれを用いたワイヤレス電気エネルギー送信回路
US10270290B2 (en) Power supply device
JP5717090B2 (ja) 受電ユニット、該受電ユニットを備えた充電システム及び電気機器
TWI637575B (zh) Secondary coil module
JP2015106940A (ja) コイルユニット
WO2015122249A1 (ja) コイルユニット及び給電システム
JP2015106581A (ja) 送電コイルユニット及びワイヤレス電力伝送装置
US11211189B2 (en) Coil device
JP6232191B2 (ja) 給電部、受電部及び給電システム
JP5384195B2 (ja) 非接触電力供給装置
JP6301675B2 (ja) コイルユニット及びそれを有する給電システム
JP6171726B2 (ja) 非接触給電装置の製造方法
WO2014156014A1 (ja) 非接触充電装置
WO2012102008A1 (ja) 非接触給電システムに用いられるコイルユニット
JP6284055B2 (ja) 送電装置
JP2019036626A (ja) コイルユニット
JP2017212302A (ja) コイル装置、非接触給電装置、及び非接触受電装置
JP6370564B2 (ja) 受電ユニット及びそれを有する給電システム
JP2016012614A (ja) コイルユニット及び給電システム
JP2013089872A (ja) 給電システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15749144

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112015000815

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15749144

Country of ref document: EP

Kind code of ref document: A1