WO2015121919A1 - Transport apparatus and automatic analytical system provided with transport apparatus - Google Patents

Transport apparatus and automatic analytical system provided with transport apparatus Download PDF

Info

Publication number
WO2015121919A1
WO2015121919A1 PCT/JP2014/053150 JP2014053150W WO2015121919A1 WO 2015121919 A1 WO2015121919 A1 WO 2015121919A1 JP 2014053150 W JP2014053150 W JP 2014053150W WO 2015121919 A1 WO2015121919 A1 WO 2015121919A1
Authority
WO
WIPO (PCT)
Prior art keywords
transport
handler
stop position
calibration
unit
Prior art date
Application number
PCT/JP2014/053150
Other languages
French (fr)
Japanese (ja)
Inventor
清浩 杉山
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to PCT/JP2014/053150 priority Critical patent/WO2015121919A1/en
Publication of WO2015121919A1 publication Critical patent/WO2015121919A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00584Control arrangements for automatic analysers
    • G01N35/00594Quality control, including calibration or testing of components of the analyser
    • G01N35/00613Quality control
    • G01N35/00623Quality control of instruments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N2035/00178Special arrangements of analysers
    • G01N2035/00306Housings, cabinets, control panels (details)
    • G01N2035/00316Detecting door closure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N2035/00178Special arrangements of analysers
    • G01N2035/00326Analysers with modular structure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00584Control arrangements for automatic analysers
    • G01N35/00594Quality control, including calibration or testing of components of the analyser
    • G01N35/00613Quality control
    • G01N35/00623Quality control of instruments
    • G01N2035/00643Quality control of instruments detecting malfunctions in conveying systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • G01N2035/0401Sample carriers, cuvettes or reaction vessels
    • G01N2035/0412Block or rack elements with a single row of samples
    • G01N2035/0413Block or rack elements with a single row of samples moving in one dimension
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • G01N2035/0439Rotary sample carriers, i.e. carousels
    • G01N2035/0453Multiple carousels working in parallel
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • G01N2035/0474Details of actuating means for conveyors or pipettes
    • G01N2035/0491Position sensing, encoding; closed-loop control
    • G01N2035/0493Locating samples; identifying different tube sizes

Definitions

  • the present invention relates to an automatic analysis system configured by connecting a plurality of analysis devices to a transport object.
  • the automatic analyzer is configured to automatically sample and analyze the sample contained in the container.
  • a mechanism for transporting a sample as a mechanism for transporting a sample, a belt conveyor for mounting and transporting a sample rack holding a plurality of sample containers, and a sample rack transported to a predetermined position by the belt conveyor are taken out from the belt conveyor.
  • a mechanism such as an arm that transports the sample to a predetermined sampling position is provided (for example, see Patent Document 1).
  • an installation unit for an analyzer to install a sample rack is provided on the start side of the belt conveyor, and a sample rack collection unit for collecting a sample rack after sampling is provided on the end side.
  • the sample rack is transported by the belt conveyor, and is transported to another sampling position by the arm at a predetermined position, and sampling of the sample container is performed.
  • the sample rack that has been sampled is returned again onto the belt conveyor by the arm, and is transported to the sample rack recovery section on the terminal side by the belt conveyor and collected.
  • the present invention can efficiently transport a transport object such as a sample container between two distant positions, for example, between the belt conveyors of two automatic analyzers arranged apart from each other.
  • the purpose is to build a system that can.
  • the transportation apparatus has one of two positions separated from each other as a transportation start position and the other as a transportation end position, holds the transportation object at the transportation start position, and conveys it to the transportation object.
  • the transport apparatus includes a mobile handler that holds a transport object, a handler drive mechanism that drives the handler, and transport operation execution means that performs a transport operation of the transport object by the handler.
  • the handler is disposed between the transport start position and the transport end position, and includes a holding unit for holding the transport object at the transport start position and placing the transport object at the transport end position.
  • the handler drive mechanism has a motor and a power transmission mechanism that transmits the power of the motor to the handler and moves the handler between the transport start position and the transport end position.
  • the transport operation execution means moves the handler to the first stop position to hold the transport object at the transport start position, then moves the handler to the second stop position and places the transport object at the transport end position.
  • the transporting operation is performed by controlling the handler driving mechanism.
  • the handler drive motor is controlled while constantly monitoring the signal from the position sensor for detecting the handler position.
  • Position control can be performed accurately. However, if it does so, since it becomes motor control according to the signal of a position sensor, it will become difficult to move a handler at high speed, and the transportation efficiency of a transportation subject will worsen.
  • the transport mechanism of the present invention is configured to determine a handler position detecting unit that detects that the handler has reached a predetermined position, and a motor driving amount necessary to move the handler to the predetermined position.
  • Calibration means, and a calibration result storage unit for storing the calibration result, and the transportation operation executing means is based on the latest calibration result stored in the calibration result storage unit.
  • the handler driving mechanism is configured to be controlled.
  • the handler position detection means is configured such that the handler has a transportation object at a predetermined origin position set in the movement range of the handler, a first stop position that is a position for holding the transportation object at the transportation start position, and a transportation end position. It detects that it came to the 2nd stop position which is a position for arranging.
  • the calibration means moves the handler to the first stop position and the second stop position based on the detection signal from the handler position detection means, starting from the origin position, and the driving amount of the motor at that time is moved to each stop position. It is configured to execute calibration that is calculated as the required drive amount.
  • the calibration result storage unit stores the necessary drive amount calculated by the latest calibration as a calibration result.
  • the transport mechanism of the present invention calculates in advance the exact required drive amount to the first stop position and the second stop position by calibration, and controls the handler drive mechanism based on the calibration result. It is configured. This eliminates the need to control the motor while monitoring the signal from the position sensor during the transport operation, so that the handler can be moved at high speed and the transport efficiency of the transport object can be increased.
  • the calibration result stored in the calibration result storage unit is the “most recent” calibration result.
  • the motor drive amount required to move the handler by a certain distance may change due to changes in the pitch due to wear or temperature changes of the gears that make up the handler drive mechanism. If the handler driving mechanism is controlled, trouble may occur such as failure to hold the transport object because the handler cannot be moved to a predetermined position. Therefore, in the present invention, the most recent calibration result is stored in the calibration result storage unit, and the transportation operation execution means is configured to control the handler driving mechanism using this.
  • the origin position of the movement of the handler is set to one of the first stop position and the second stop position. Then, the position where the handler should be moved during calibration is reduced, and the time required for calibration is shortened.
  • a horizontal plane on which a transportation object can be placed is provided between a transportation start position and a transportation end position, and handlers are provided at two places on the transportation start position side and the transportation end position side.
  • maintaining a transport target object is mentioned.
  • the holding part on the transport start position side is provided so as to be arranged at a position where the transport object at the transport start position can be held when the handler reaches the first stop position.
  • the transport object held at the transport end position is disposed at a position where it can be disposed.
  • the transport operation execution means moves the handler to the first stop position as a transport operation, holds the transport object at the transport start position by the holding portion on the transport start position side, and places the transport object on the horizontal plane.
  • a position for moving the handler to the third stop position which is the position, placing the transportation object on the horizontal plane, and holding the transportation object placed on the horizontal plane by the holding section on the transportation end position side.
  • the handler is moved to a fourth stop position and the transport object is held by the holding section on the transport end position side, and the transport object is moved to the second stop position and the transport end position is held by the holding section on the transport end position side.
  • the operation to be arranged in (1) is executed by controlling the handler driving mechanism.
  • the calibration means in the above aspect is configured to determine the required drive amount to the third stop position and the required drive amount to the fourth stop position in the calibration. Thereby, the required drive amount of the motor to the third stop position and the fourth stop position is preliminarily determined by calibration, and the handler can be moved to the third stop position and the fourth stop position at high speed. .
  • An example of the calibration means calculates the movement amount of the handler per unit driving amount of the motor as a unit movement amount based on the necessary driving amount to the first stop position or the required driving amount to the second stop position, Using the unit movement amount, at least the necessary drive amount to the third stop position or the necessary drive amount to the fourth stop position is obtained by calculation.
  • the distance from the origin position to the first stop position or the second stop position is known at the design stage, and by storing it in the device, the movement amount of the handler per unit driving amount of the motor (unit movement amount) Can be requested.
  • the unit drive amount of the motor means one step rotation of the motor
  • the unit movement amount means the amount of movement of the handler per one step rotation of the motor.
  • the calibration means is configured to automatically execute calibration when the transport device is activated. By doing so, the calibration result is updated to the latest state every time the transport device is activated, and the control of the movement of the handler can be enhanced.
  • a rack gear arranged so as to extend along the moving direction of the handler, and a pinion gear attached to a rotating shaft of the motor, which meshes with the rack gear and rotates on the rack gear as the motor rotates.
  • a pinion gear that moves is configured to move the handler together with the motor by the rotation of the motor, and the rack gear is made of resin.
  • the length of the resin rack gear changes depending on the environment such as temperature and humidity, and the gear pitch may change over time. In that case, even if the driving amount of the motor for driving the handler is the same, the moving distance of the handler changes before and after the rack gear length changes, and the handler can be accurately moved to a predetermined position. Disappear.
  • the motor needs to be driven to each stop position after the rack gear length is changed by executing the calibration after the rack gear length is changed.
  • the amount can be determined, and the movement of the handler can be controlled in consideration of the change in the length of the rack gear. Therefore, the rack gear can be made of resin. By using the resin rack gear, the cost can be suppressed.
  • the handler position detection means is a light sensor that is integrally attached to the handler in a state where the light emitting element and the light receiving element are arranged opposite to each other, and a light emission that is provided at a position where the position of the handler should be detected and is incident on the light receiving element
  • a light-blocking part that blocks light from the element or a slit that allows light from the light-emitting element to enter the light-receiving element, and the light sensor that moves together with the handler detects the light-blocking part or the slit so that the handler It detects that it came to the position provided. Since the handler position detecting means can be realized by one optical sensor, the cost can be suppressed.
  • the automatic analysis system uses the transport device of the present invention. That is, the automatic analysis system of the present invention includes two automatic analyzers adjacent to each other and the transport apparatus of the present invention for transporting a sample rack holding a sample container between the automatic analyzers.
  • Each of the automatic analyzers has a belt conveyor that transports the sample rack, a sampling analysis unit that samples and analyzes the sample from the sample container, and a sample introduction mechanism that holds the sample rack on the belt conveyor and introduces it to the sampling analysis unit.
  • the transport device has a sample that has reached the transport start position with the end of the belt conveyor of one automatic analyzer as the transport start position and the start of the belt conveyor of the other auto analyzer as the transport end position.
  • the rack is held by the handler and is transported to the transport end position and arranged.
  • the transport device of the present invention is configured to transport a transport object by moving a mobile handler holding the transport object between a first stop position and a second stop position, and drives the handler. Since the control of the motor of the handler driving mechanism is performed based on the result of calibration executed in advance, the handler can be operated at high speed without performing motor driving control based on the signal of the position sensor. And it can be moved to a predetermined position correctly, and transportation of a transportation subject can be performed efficiently. Since the calibration means configured to execute the calibration is provided, it is possible to determine the exact required driving amount of the motor for moving the handler to the first stop position or the second stop position. The accuracy of the movement control can be maintained.
  • the automatic analyzer system of the present invention is configured to transport the sample rack from one of the two automatic analyzers to the other by the transport apparatus of the present invention, the sample rack can be moved between the automatic analyzers independent of each other. The analysis is automatically and efficiently performed, and the analysis throughput is improved.
  • the automatic analysis system 1 includes two automatic analyzers 2a and 2b and a transport device 12.
  • the automatic analyzers 2a and 2b are arranged side by side in the X direction, which is one direction in the horizontal plane, and the transport units 12 are connected between the respective transport portions 6a and 6b of the automatic analyzers 2a and 2b.
  • a sample that has been sampled in the front-stage automatic analyzer 2a is introduced into the rear-stage automatic analyzer 2b via the transport device 12, and the sample is also detected in the rear-stage automatic analyzer 2b. Sampling and analysis are done.
  • the front-stage automatic analyzer 2a includes a collection analysis unit 4a, a transport unit 6a, and a sample introduction mechanism 18a.
  • the transport unit 6a includes a belt conveyor 7a that transports the sample rack 20 holding the sample containers to one side in the X direction (left side in FIGS. 1 and 2).
  • the periphery of the belt conveyor 7a is covered with a cover.
  • a sample rack arrangement unit 8a is provided on the start end side (right side in FIGS. 1 and 2) of the transport unit 6a, and a sample rack collection unit 10a is provided on the end side (left side in FIG. 1).
  • the covers of the sample rack arranging unit 8a and the sample rack collecting unit 10a can be opened and closed, and an analyst opens the cover of the sample rack arranging unit 8a and arranges the sample rack on the belt conveyor 7a.
  • the sample rack that has been sampled can be taken out by opening the cover.
  • the sample introduction mechanism 18a moves in the Y direction perpendicular to the X direction in the horizontal plane, holds the sample rack 20 on the belt conveyor 7a and introduces it to the collection analysis unit 4a side, or the sample rack 20 that has been sampled is belted. It is arranged on the conveyor 7a.
  • a sample rack introduction section 9a is provided between the sample rack placement section 8a and the sample rack collection section 10a of the transport section 6a, and the sample introduction mechanism 18a is connected to the sample rack 20 before sampling on the belt conveyor 7a from the sample rack introduction section 9a.
  • the sample rack 20 is transferred to the collection analysis unit 4a, or the sample rack 20 after sampling is returned to the belt conveyor 7a.
  • the collection analysis unit 4a includes a sample collection unit (not shown) having an inhalation probe for collecting a sample from the sample container transferred by the sample introduction mechanism 18a, a sample rack storage unit 24a, a reagent storage unit 22a, and A measurement unit 26a is provided.
  • a plurality of sample racks 20 transferred from the belt conveyor 7a by the sample introduction mechanism 18a are accommodated in the sample rack accommodating portion 24a.
  • the sample rack accommodating portion 24a is a turntable, and the sample container on the sample rack 20 is arranged at a predetermined position when the inhalation probe collects the sample.
  • Reagent containers containing various reagents are arranged in the reagent storage unit 22a.
  • the measurement unit 26a is provided with a plurality of containers for mixing the sample collected by the inhalation probe and the reagent, and is configured to optically measure the reaction in the container.
  • the sample rack 20 is stored in the sample rack storage unit 24a by the sample introduction mechanism 18a, the sample container held in the sample rack 20 is disposed at a predetermined position, and the sample is collected by the inhalation probe. Is collected.
  • the collected specimen is injected into a container provided in the measuring unit 26a, and after a reagent corresponding to the analysis item is added, the reaction between the specimen and the reagent is optically measured such as absorbance and fluorescence intensity.
  • the latter-stage automatic analyzer 2b has the same configuration as the former-stage automatic analyzer 2a.
  • the starting end of the belt conveyor 7b provided in the transport unit 6b of the automatic analyzer 2b and the end of the preceding belt conveyor 7a are connected by the transport device 12.
  • the transport device 12 uses the end of the front belt conveyor 7a as the transport start position and the start end of the rear belt conveyor 7b as the transport end position, and holds the sample rack 20 as a transport object at the start end of the belt conveyor 7a. It is an apparatus arranged at the starting end of the belt conveyor 7b.
  • the transport device 12 includes a transport mechanism 100 (see FIGS. 4 to 7) and an openable / closable shielding cover 14 that covers the transport mechanism 100. The transport mechanism 100 will be described later.
  • a micro switch 30 is provided at the opening / closing portion of the shielding cover 14 of the casing of the transport device 12.
  • the microswitch 30 is switched on / off by contacting a pin 28 provided on the shielding cover 14 side.
  • the pin 28 turns the microswitch 30 on, and when the shielding cover 14 is opened, the microswitch 30 is turned off.
  • the transport mechanism 100 of the transport device 12 operates only when the shielding cover 14 is closed and the microswitch 30 is turned on, and operates when the shielding cover 14 is opened and the microswitch 30 is turned off. Is configured to stop.
  • the transport mechanism 100 will be described with reference to FIGS.
  • the transport mechanism 100 includes a handler including a base 118 and two arm members 104 and 106.
  • the upper surface 102 of the base 118 is a horizontal plane (hereinafter referred to as the horizontal plane 102).
  • One end side (right side in FIG. 4) of the horizontal plane 102 in the X direction is the transport start position 103a, and the other end side (left side in FIG. 4) is the transfer completion position 103b.
  • the automatic analyzer 2a is arranged so that the end of the belt conveyor 7a comes to the transport start position 103a
  • the automatic analyzer 2b is arranged so that the start of the belt conveyor 7b comes to the transport end position 103b.
  • the height of the horizontal plane 102 is substantially the same as the conveying surfaces of the belt conveyors 7a and 7b arranged at both ends.
  • the arm member 104 and the arm member 106 constituting the handler extend in the X direction, and are arranged to face each other at both side edges on the horizontal plane 102.
  • the arm member 104 and the arm member 106 are driven in the X direction and the Y direction at the side edge of the horizontal plane 102.
  • the arm member 104 and the arm member 106 move simultaneously in the same direction in the X direction and move in a symmetrical direction around the horizontal plane 102 with respect to the Y direction.
  • a mechanism (handler driving mechanism) for driving the arm member 104 and the arm member 106 is accommodated in the base 118. The handler driving mechanism will be described later.
  • the arm member 104 includes a protrusion 104a at an end portion on the transportation start position 103a side, and a protrusion 104b at an end portion on the transportation end position 103b side.
  • the protrusions 104a and 104b are fitted into recesses (not shown) provided on the side surface of the sample rack on the arm member 104 side so as to be engaged with the sample rack.
  • the movement of the arm member 104 in the Y direction is performed between a position where the protrusions 104a and 104b are fitted in the concave portion of the sample rack and a position where the arm member 104 does not contact the sample rack itself.
  • the arm member 106 includes a protrusion 106a at an end portion on the transport start position 103a side, and a protrusion 106b on the transport end position 103b side.
  • the protrusion 106a and the protrusion 106b are engaged with the rear rear surface of the sample rack.
  • the movement of the arm member 106 in the Y direction is performed between a position where the protrusions 106a and 106b engage with the back surface of the sample rack and a position where the protrusions 106a and 106b do not contact the sample rack.
  • the handler composed of the arm members 104 and 106 includes holding portions for holding the sample racks at two locations on the transport start position 103a side and the transport end position 103b side.
  • the holding portion on the transport start position 103a side is constituted by the projection 104a of the arm member 104 and the projection 106a of the arm member 106
  • the holding portion on the transport end position 103b side is constituted by the projection 104b of the arm member 104 and the projection 106b of the arm member 106. Is done.
  • the arm member 104 and the arm member 106 are collectively referred to as “handlers 104, 106”, the holding portions on the transportation start position 103a side of the handlers 104, 106 are referred to as “first holding portions 104a, 106a”, and the transportation end position 103b side.
  • the holding unit is referred to as “second holding unit 104b, 106b”.
  • the first holding portions 104a and 106a insert the protrusion 104a into the concave portion on one side surface of the sample rack by sandwiching the sample rack from both sides at the ends of the arm members 104 and 106 on the transport start position 103a side.
  • the rear rear surface on the opposite side of the rack is supported by the protrusion 106a.
  • the second holding portions 104b and 106b are configured to fit the projection 104b into the concave portion on one side of the sample rack and sandwich the sample rack at both ends of the arm members 104 and 6 on the transport start position 103b side,
  • the opposite rear rear surface is supported by the protrusion 106b.
  • the handlers 104 and 106 move in the X direction while holding the sample rack, and transport the sample rack by sliding it on the horizontal plane 102.
  • a guide rail 108 that is fitted in a groove provided on a side surface of the sample rack that slides on the horizontal surface 102 and prevents the sample rack from falling is provided on the side edge of the horizontal surface 102 on the arm member 106 side.
  • a start sensor 110 for detecting the arrival of the sample rack at the transport start position 103a is provided on the side of the transport start position 103a.
  • An end sensor 112 for detecting the arrival of the sample rack at the transport end position 103b is provided on the side of the transport end position 103b.
  • a stopper 114 is provided in the vicinity of the transport start position 103a.
  • the start sensor 110 and the end sensor 112 can be constituted by, for example, a reflective optical sensor.
  • a light emitting unit and a light receiving unit are integrally formed, and light reflected from a detection target of light from the light emitting unit is detected by the light receiving unit.
  • the start sensor 110 and the end sensor 112 may be configured by a transmissive optical sensor.
  • the transmissive optical sensor is configured such that the light receiving unit and the light emitting unit are configured as separate bodies and arranged to face each other, and detects light blocking by a detection target of light projection from the light emitting unit to the light receiving unit. .
  • a circuit board 116 is provided on the side of the base 118.
  • the circuit board 116 forms a control unit (hereinafter also referred to as the control unit 116) that controls the operation of the handlers 104 and 106.
  • the start sensor 110 and the end sensor 112 are connected to the circuit board 116 via wiring.
  • the signals of the start sensor 110 and the end sensor 112 are taken into the circuit board 116 and used for the start of the sample rack transport operation by the handlers 104 and 106 and the determination of the presence or absence of the sample rack transport error.
  • FIGS. 5 and 7 illustration of wiring and modules mounted on the circuit board 116 are omitted. In FIG. 6, some of the modules mounted on the circuit board 116 are shown, but the wiring is not shown.
  • the stopper 114 will be described with reference to FIGS. 8A and 8B.
  • the stopper 114 is a member refracted at a substantially right angle on the way.
  • the base end of the stopper 114 is held by a holding member 125 provided below the side end of the transport start position 103a of the horizontal plane 102 (the position of the sample rack 20 in FIGS. 8A and 8B is the transport start position 103a).
  • the tip portion faces the transport start position 103a.
  • the front end of the stopper 114 extends over the belt conveyor 7a beyond the end of the pulley 130 of the belt conveyor 7a, and interferes with the sample rack 20 at the transport start position 103a so that the sample rack 20 is placed on the belt conveyor 7a. Interfering part to stop at.
  • the holding member 125 holding the base end of the stopper 114 can be moved in the vertical direction, so that the stopper 114 also moves up and down, and the sample rack 20 is stopped and released depending on the height of the stopper 114.
  • the stopper 114 interferes with the sample rack 20 when the tip end is lifted above the horizontal plane 102 (the state shown in FIG. 8A), stops the sample rack 20 at the transport start position 103a, and the tip end is horizontal.
  • the stop of the sample rack 20 is released when it becomes the same height as 102 or a state where it is lowered below the horizontal plane 102 (state shown in FIG. 8B).
  • a fixed shaft 120 extending in the Y direction is attached below the horizontal plane 102 at the end of the base 118 on the transport start position 103a side, and the holding member 125 and the fixed shaft 120 are connected by a spring 128.
  • the spring 128 connects the holding member 125 and the fixed shaft 120 in a state of extending beyond the natural length so as to apply an elastic force in the direction in which the holding member 125 is raised.
  • a handler driving unit 132 described later is provided with a protrusion 126 having a circular cross section.
  • the protrusion 126 moves in the X direction together with the handlers 104 and 106.
  • One end of the interlocking member 127 is connected to the side portion of the holding member 125.
  • the interlocking member 127 is a rail-like member arranged so as to extend in the X direction inside the base 118, and its upper surface 127 a is always in contact with the protrusion 126.
  • the upper surface 127a of the interlocking member 127 has a straight portion and a smooth slope portion that rises toward the holding member 125 side, and the upper surface 127a of the interlocking member 127 follows the horizontal movement of the protrusion 126, whereby the holding member 125 is Move up and down.
  • the stopper 114 is lifted upward from the horizontal plane 102 (the state shown in FIG. 8A).
  • the shape of the upper surface 127a of the interlocking member 127 so that the stopper 114 is in the same height as the horizontal surface 102 or in a state where the stopper 114 is lowered below the horizontal surface 102 (the state in FIG. 8B) when the holding portions 104a and 106a reach the transport start position. has been adjusted.
  • a handler driving mechanism for driving the handlers 104 and 106 will be described with reference to FIG.
  • the handler driving mechanism for driving the handlers 104 and 106 in the X direction and the Y direction includes a handler driving unit 132 and a rack gear 146 made of resin (for example, MONO CAST nylon). Of the configuration of the handler driving mechanism, portions other than the handlers 104 and 106 are disposed below the upper surface 102 of the base 118.
  • the handler drive unit 132 is disposed on a rack gear 146 fixed to the base 118 side so as to extend in the X direction.
  • the handler driving unit 132 has a chassis 134.
  • Motors 136 and 138 are mounted on the chassis 134, and a handler drive plate 140 for holding the arm member 104 and a handler drive plate 142 for holding the arm member 106 are independently attached horizontally.
  • a pinion gear 136 a is attached to the drive shaft of the motor 136 mounted on the chassis 134, and the pinion gear 136 a meshes with the gear surface of the rack gear 146.
  • the motor 136 when the motor 136 is driven, the handler driving unit 132 itself moves in the X direction along the rack gear 146, and thereby the handlers 104 and 106 move in the X direction.
  • the motor 136 is referred to as an X direction drive motor.
  • the X direction drive motor 136 is a stepping motor.
  • a pinion gear 138 a is also mounted on the drive shaft of another motor 138 mounted on the chassis 134.
  • the motor 138 is arranged to rotate the pinion gear 138a in the horizontal plane direction.
  • a gear portion 140a that meshes with the pinion gear 138a is provided on a part of the side surface of the handler drive plate 140 that extends in the Y direction.
  • a gear portion 142a that meshes with the pinion gear 138a is provided on a part of the side surface of the handler drive plate 142 that extends in the Y direction.
  • the gear portion 140a of the handler drive plate 140 and the gear portion 142a of the handler drive plate 142 are arranged to face each other with the pinion gear 138a interposed therebetween.
  • the motor 138 rotates, the handler drive plates 140 and 142 are moved in directions opposite to each other in the Y direction, and the handlers 104 and 106 are driven in the Y direction.
  • the motor 138 is referred to as a Y-direction drive motor.
  • the Y direction drive motor 138 is a stepping motor.
  • a position sensor 144 is attached to the lower part of the handler drive unit 132 on the arm member 106 side of the chassis 134.
  • the position sensor 144 is composed of, for example, an optical sensor including a light emitting element and a light receiving element.
  • a light shielding plate 148 is attached to the inner side surface of the base 118 so as to be inserted between the light emitting element and the light receiving element of the position sensor 144.
  • the light shielding plate 148 extends in the X direction so as to cover the movement range of the position sensor 144, and slits 148 a that transmit light from the light emitting elements of the position sensor 144 and enter the light receiving elements at a plurality of positions of the light shielding plate 148. Is provided.
  • the position sensor 144 moves in the X direction together with the handler driving unit 132, and detects the slit 148a of the light shielding plate 148 depending on whether light from the light emitting element is detected by the light receiving element.
  • the position sensor 144 and the light shielding plate 148 constitute a handler position detecting means.
  • the handler position detecting means is configured to detect a position where the position sensor 144 switches from an off state to an on state by providing a slit 148a at a position to be detected.
  • a light-shielding part that shields light from the light-emitting element to the light-receiving element may be arranged, and the position sensor 144 may be configured to detect a position where the light-shielding part switches from the on state to the off state.
  • the slit 148a of the light-shielding plate 148 is for detecting, by the position sensor 144, the position where the handlers 104 and 106 should be stopped by the transport operation of the sample rack during the calibration described later.
  • the positions at which the handlers 104 and 106 are to be arranged in the transport operation include a position for holding the sample rack at the transport start position 103a by the first holders 104a and 106a (first stop position, see FIG. 10A), first A position for placing the sample rack held by the holding units 104a and 106a on the horizontal plane 102 (third stop position, see FIG. 10C), and the sample rack placed on the horizontal plane 102 by the second holding units 104b and 106b.
  • the slits 148a are provided at three locations so that the position sensors 144 detect the handlers 104 and 106 when they reach the first stop position, the second stop position, and the third stop position.
  • the second stop position (see FIG. 10B) is set to be the calibration origin position
  • the third stop position is also set to the standby position before the transport operation. Since the slit 148a has a certain width, in this embodiment, when the position sensor 144 (the optical axis of light from the light emitting element) is at the center position of the slit 148a in the X direction, It is set to be placed at the stop position.
  • the front-side automatic analyzer 2a is provided with a control unit 32a that controls the operation of the collection and analysis unit 4a, the transport unit 6a, and the sample introduction mechanism 18a.
  • the rear-side automatic analyzer 2b includes the collection and analysis unit 4b, the transport unit 6b, and A control unit 32b that controls the operation of the sample introduction mechanism 18b is provided.
  • the transport device 12 is provided with a control unit 116 that controls the operation of the transport mechanism 100.
  • the control units 32a, 32b, and 116 are connected to the arithmetic control device 34, respectively.
  • the measurement data obtained by the collection analysis unit 4a of the front-side automatic analyzer 2a and the measurement data obtained by the collection analysis unit 4b of the rear-side automatic analysis device 2b are taken into the arithmetic control device 34 via the control unit 32a.
  • the arithmetic and control unit 34 identifies and quantifies the components in the specimen.
  • the arithmetic and control unit 34 is realized by a personal computer (PC), for example.
  • the operation of the automatic analyzers 2a and 2b and the operation of the transport device 12 are linked. Detection signals from the micro switch 30, the start sensor 110, and the end sensor 112 are taken into the control unit 116 and used for operation control of the transport mechanism 100. The detection signal of the start sensor 110 is also taken into the control unit 32a of the upstream automatic analyzer 2a via the control unit 116 and the arithmetic control device 34, and the operation control of the transport unit 6a (belt conveyor 7a) is performed. Used for.
  • the control unit 116 of the transport apparatus 12 includes a transport operation execution unit 152, a calibration unit 154, and a calibration result storage unit 156.
  • Each means 152 and 154 is realized by a program stored in the control unit 116 and an arithmetic device such as a microcomputer that executes the program.
  • the calibration result storage unit 156 is realized by an area of a storage device provided in the control unit 116.
  • the transport operation execution means 152 is configured to execute a predetermined transport operation when the sample rack reaches the transport start position 103a (see FIG. 4) based on the detection signal from the start sensor 110. .
  • the handlers 104 and 106 are moved from the first stop position to the fourth stop position.
  • the control of the X direction drive motor 136 (see FIG. 9) at this time is not performed based on the detection signal of the position sensor 144 (see FIG. 9), but the calibration result stored in the calibration result storage unit 156. It is comprised based on. The transportation operation will be described later with reference to FIG.
  • the calibration means 154 is configured to execute calibration for correctly performing the movement control of the handlers 104 and 106.
  • Calibration refers to the X-direction drive motor 136 (see FIG. 9) when the position sensor 144 (see FIG. 9) attached to the handler drive unit 132 (see FIG. 9) detects the slit 148a (see FIG. 9).
  • the drive amount (see FIG. 9) of the X-direction drive motor 136 (see FIG. 9) necessary to accurately move the handlers 104 and 106 to the respective stop positions from the first stop position to the fourth stop position.
  • This is an operation for determining the required drive amount.
  • it is set so that calibration is automatically executed when the transport device 12 is activated. Note that calibration can also be performed when the analyst selects to perform calibration.
  • the required drive amount to each stop position obtained by calibration is stored in the calibration result storage unit 154 as a calibration result.
  • control system in the transport device 12 will be described with reference to the block diagram of FIG.
  • the control unit 116 that controls the transport mechanism 100 includes a microcomputer 116a, a motor driver 116b, and a storage device 116c.
  • the transport operation execution means 152 and the calibration means 154 are realized by a program stored in the storage device 116c and a microcomputer 116a that executes the program.
  • the calibration result storage unit 156 (see FIG. 11) is realized by one storage area provided in the storage device 116c.
  • the microcomputer 116a executes various processes using signals from the microswitch 30, the start sensor 110, the end sensor 112, and the position sensor 144 based on the information stored in the storage device 116c.
  • the microcomputer 116a transmits a control signal based on the information and signals to the motor driver 116b.
  • the motor driver 116b drives the X direction drive motor 136 and the Y direction drive motor 138 of the handler drive unit 132 with a current having the number of pulses corresponding to the control signal from the microcomputer 116a.
  • the X direction drive motor 136 and the Y direction drive motor 138 rotate by the number of steps corresponding to the number of pulses given from the motor driver 116b.
  • the motor driver 116b counts the number of pulses applied to the X-direction drive motor 136 (the number of steps of the motor 136), and the microcomputer 116a calculates the necessary drive amount to each stop position based on the count number. Determine the number of required steps.
  • the calculated necessary drive amount is stored in the storage device 116c.
  • the microcomputer 116a transmits a control signal to the motor driver 116b based on the required drive amount stored in the storage device 116c.
  • the drive amount (number of steps) of the X-direction drive motor 136 required to move the handlers 104 and 106 from the first stop position to the fourth stop position (the positions shown in FIGS. 10A to 10D, respectively) 116 is stored in a predetermined storage area 116. Due to changes in the length of the rack gear 146 due to an environment such as temperature and humidity, the handlers 104 and 106 cannot be accurately moved to each stop position even if the X-direction drive motor 136 is driven at the default value. There is. Therefore, the drive amount of the X-direction drive motor 136 for accurately moving the handlers 104 and 106 to each stop position is determined by calibration.
  • the handlers 104 and 106 are moved to the second stop position (position of FIG. 10B), which is the origin position, using the default value, and in the vicinity thereof, the handler drive unit 132 is moved in the X direction.
  • the range in which the slit 148a for the second stop position is detected is determined.
  • the center position in the X direction is detected as the origin position in the range where the second stop position slit 148a is detected.
  • a slit for the first stop position The range in which 148a is detected is determined. Then, the central position in the X direction in the range where the slit 148a for the first stop position is detected is determined as the first stop position. At this time, starting from the origin position, the number of steps of the X-direction drive motor 136 until the first stop position is determined is counted, and the number of steps is used as the required drive amount to the first stop position, and the calibration result.
  • the data is stored in the storage unit 156.
  • the distance from the origin position (second stop position) to the first stop position is determined as a design value, and the information is stored in a predetermined storage area in the control unit 116. Using the information and the necessary driving amount to the first stop position determined by the above calibration, the moving amount of the handlers 104 and 106 per step of the X direction driving motor 136 is calculated as a unit moving amount. The data is stored in the calibration result storage unit 156.
  • a slit for the third stop position By moving the handlers 104, 106 to the third stop position (position of FIG. 10C) using the default value and moving the handler drive unit 132 forward or backward in the X direction in the vicinity thereof, a slit for the third stop position The range in which 148a is detected is determined. Then, the central position in the X direction in the range where the slit 148a for the third stop position is detected is determined as the third stop position. The number of steps of the X-direction drive motor 136 until the third stop position is determined is counted, and the number of steps is stored in the calibration result storage unit 156 as a required drive amount to the third stop position.
  • the required drive amount of the handler drive unit 132 to the fourth stop position (position in FIG. 10D) is obtained.
  • the amount of driving (number of steps) of the X-direction drive motor 136 required to move the handlers 104 and 106 from the third stop position to the fourth stop position is the distance between the third stop position and the fourth stop position. It can be obtained by calculation using the unit movement amount.
  • the distance between the third stop position and the fourth stop position is the same as the distance between the first holding portions 104a and 106a and the second holding portions 104b and 106b of the handlers 104 and 106, and the first holding portion
  • the distance between 104a, 106a and the second holding unit 104b, 106b is stored in a predetermined storage area in the control unit 116 as a design value. Using these pieces of information, the necessary drive amount to the fourth stop position is obtained by calculation and stored in the calibration result storage unit 156.
  • the required drive amount to the third stop position and the fourth stop position may be obtained by calculation.
  • the example of FIG. 16 is the same process as the example of FIG. 15 until the process of calculating the unit movement amount, but the calculation of the necessary drive amount to the third stop position after that is also performed by calculation. Since the positional relationship between the first stop position and the third stop position is determined as a design value, the required drive amount to the third stop position can be obtained by calculation using the design value and the unit movement amount. . If the required drive amount of the X-direction drive motor 136 to the third stop position is obtained, the required drive amount of the X-direction drive motor 136 to the fourth stop position can also be obtained by calculation.
  • the process of actually moving the handler to the third stop position in the calibration becomes unnecessary, and the calibration Can be shortened.
  • the slit 148a for the third stop position is not necessary.
  • a slit 148a for the fourth stop position is also provided, the handlers 104 and 106 are moved to the fourth stop position in the calibration, and the number of steps of the X-direction drive motor 136 at that time is counted. You may make it calculate the required drive amount to 4 stop positions. In such calibration, since the process of moving the handlers 104 and 106 to all stop positions from the first stop position to the fourth stop position is performed, the time required for calibration becomes longer, but the need for the fourth stop position is required. Compared with the case where the drive amount is obtained by calculation, the accuracy of calibration can be increased.
  • the sample rack 20 holding the sample container 20a that has been processed by the front-side automatic analyzer 2a is transported to the end side by the belt conveyor 7a, and the belt conveyor set as the transport start position 103a by the stopper 114 of the transport device 12 7a is stopped at a position near the end portion.
  • the transport device 12 waits the handlers 104 and 106 at the standby position (third stop position) until the sample rack reaches the end (transport start position) of the belt conveyor 7a (see FIG. 13A).
  • the handlers 104 and 106 are moved to the first stop position (see FIG. 13B), and the first holding units 104a and 106a move the sample.
  • the rack 20 is held (see FIG. 13C).
  • the handlers 104 and 106 holding the sample rack 20 are moved to the third stop position (see FIG. 13D), and the sample rack 20 is temporarily placed on the horizontal plane 102 (see FIG. 13E).
  • the handlers 104 and 106 are moved to the fourth stop position (see FIG. 13F), and the sample rack 20 is held by the second holding units 104b and 106b (see FIG. 13G).
  • the handlers 104 and 106 are moved to the second stop position, and the sample rack 20 is disposed at the start end of the belt conveyor 7b, which is the transport end position (see FIG. 13H).
  • the sample rack 20 is detected by the end sensor 112, and the completion of transport of the sample rack 20 is detected.
  • the handlers 104 and 106 are moved to the third stop position, which is the standby position, and wait until the next sample rack 20 reaches the end of the belt conveyor 7.

Abstract

A transport apparatus (12) is provided with a calibration means (154), a calibration result storage section (156), and a transport operation execution means (152). The calibration means (154) is configured so as to move handlers (104, 106) to positions where the handlers (104, 106) are to be stopped at the time of performing transport operations, and to calculate a drive quantity of a handler drive motor (132) at that time as a necessary drive quantity to the stop positions. The necessary drive quantity obtained by means of latest calibration is stored as calibration results. The transport operation execution means (152) is configured so as to execute the transfer operations, while controlling the handler drive motor (132) on the basis of the calibration results stored in a calibration result storage section (156).

Description

輸送装置及びその輸送装置を備えた自動分析システムTransportation device and automatic analysis system equipped with the transportation device
 本発明は、輸送対象物を複数の分析装置を連結して構成された自動分析システムに関するものである。 The present invention relates to an automatic analysis system configured by connecting a plurality of analysis devices to a transport object.
 自動分析装置は、容器に収容された検体を自動的にサンプリングして分析を行なうように構成されている。かかる自動分析装置は、検体を搬送する機構として、複数の検体容器を保持した検体ラックを載置して搬送するベルトコンベアと、ベルトコンベアによって所定位置まで搬送された検体ラックをベルトコンベアから取り出して所定のサンプリング位置へ搬送するアームなどの機構を備えている(例えば、特許文献1参照。)。 The automatic analyzer is configured to automatically sample and analyze the sample contained in the container. In such an automatic analyzer, as a mechanism for transporting a sample, a belt conveyor for mounting and transporting a sample rack holding a plurality of sample containers, and a sample rack transported to a predetermined position by the belt conveyor are taken out from the belt conveyor. A mechanism such as an arm that transports the sample to a predetermined sampling position is provided (for example, see Patent Document 1).
 かかる自動分析装置では、ベルトコンベアの始端側に分析者が検体ラックを設置するための設置部が設けられ、終端側にサンプリングの終了した検体ラックを回収するための検体ラック回収部が設けられている。分析者が設置部に検体ラックを設置すると、その検体ラックがベルトコンベアによって搬送され、所定の位置でアームにより別のサンプリング位置に搬送されて検体容器に対するサンプリングが行なわれる。サンプリングの終了した検体ラックはアームによって再びベルトコンベア上に戻され、ベルトコンベアによって終端側の検体ラック回収部まで搬送されて回収される。 In such an automatic analyzer, an installation unit for an analyzer to install a sample rack is provided on the start side of the belt conveyor, and a sample rack collection unit for collecting a sample rack after sampling is provided on the end side. Yes. When the analyst installs the sample rack in the installation unit, the sample rack is transported by the belt conveyor, and is transported to another sampling position by the arm at a predetermined position, and sampling of the sample container is performed. The sample rack that has been sampled is returned again onto the belt conveyor by the arm, and is transported to the sample rack recovery section on the terminal side by the belt conveyor and collected.
特開2011-185893号公報JP 2011-185893 A
 1つの検体について複数の分析項目を実行したいときに、それらすべての分析項目を1つの自動分析装置では完結させることができない場合がある。そのような場合は、まず検体容器を1台目の自動分析装置に導入してその自動分析装置に検体を採取させ、検体の採取された検体容器を分析者が1台目の自動分析装置から取り出して2台目の自動分析装置に導入するという動作を行なう必要がある。しかし、分析者の手作業を介するため、すべての分析項目を完了するまでの効率が悪かった。 ∙ When you want to execute multiple analysis items for one sample, there are cases where all of these analysis items cannot be completed with one automatic analyzer. In such a case, the sample container is first introduced into the first automatic analyzer, the sample is collected by the automatic analyzer, and the analyst removes the sample container from which the sample was collected from the first automatic analyzer. It is necessary to perform an operation of taking it out and introducing it into the second automatic analyzer. However, the efficiency of completing all the analysis items was poor because of the manual work of the analyst.
 そこで、本発明は、例えば離間して配置された2台の自動分析装置の各ベルトコンベア間のような2つの離れた位置の間で、検体容器などの輸送対象物を効率よく輸送することができるシステムを構築することを目的とするものである。 Therefore, the present invention can efficiently transport a transport object such as a sample container between two distant positions, for example, between the belt conveyors of two automatic analyzers arranged apart from each other. The purpose is to build a system that can.
 本発明にかかる輸送装置は、互いに離れた2つの位置の一方を輸送開始位置、他方を輸送終了位置とし、輸送開始位置にある輸送対象物を保持して輸送対象物まで搬送するものである。この輸送装置は、輸送対象物を保持する移動式のハンドラと、ハンドラを駆動するハンドラ駆動機構と、ハンドラによる輸送対象物の輸送動作を実行する輸送動作実行手段と、を備えている。 The transportation apparatus according to the present invention has one of two positions separated from each other as a transportation start position and the other as a transportation end position, holds the transportation object at the transportation start position, and conveys it to the transportation object. The transport apparatus includes a mobile handler that holds a transport object, a handler drive mechanism that drives the handler, and transport operation execution means that performs a transport operation of the transport object by the handler.
 ハンドラは、輸送開始位置と輸送終了位置との間に配置され、輸送開始位置にある輸送対象物を保持し輸送終了位置にその輸送対象物を配置するための保持部を備えている。ハンドラ駆動機構は、モータ及び該モータの動力をハンドラに伝達してハンドラを輸送開始位置と輸送終了位置との間で移動させる動力伝達機構を有するものである。輸送動作実行手段は、ハンドラを第1停止位置に移動させて輸送開始位置にある輸送対象物を保持させた後、ハンドラを第2停止位置へ移動させて輸送終了位置にその輸送対象物を配置させる輸送動作を、ハンドラ駆動機構を制御することにより実行するように構成されている。 The handler is disposed between the transport start position and the transport end position, and includes a holding unit for holding the transport object at the transport start position and placing the transport object at the transport end position. The handler drive mechanism has a motor and a power transmission mechanism that transmits the power of the motor to the handler and moves the handler between the transport start position and the transport end position. The transport operation execution means moves the handler to the first stop position to hold the transport object at the transport start position, then moves the handler to the second stop position and places the transport object at the transport end position. The transporting operation is performed by controlling the handler driving mechanism.
 ところで、ハンドラを第1停止位置と第2停止位置の各位置へ移動させる際、ハンドラの位置を検知する位置センサからの信号を常時監視しながらハンドラ駆動用のモータを制御することで、ハンドラの位置制御を正確に行なうことができる。しかし、そうすると、位置センサの信号に応じたモータ制御となるため、ハンドラを高速で移動させることが困難になり、輸送対象物の輸送効率が悪くなる。 By the way, when the handler is moved to each of the first stop position and the second stop position, the handler drive motor is controlled while constantly monitoring the signal from the position sensor for detecting the handler position. Position control can be performed accurately. However, if it does so, since it becomes motor control according to the signal of a position sensor, it will become difficult to move a handler at high speed, and the transportation efficiency of a transportation subject will worsen.
 そこで、本発明の輸送機構は、上記構成に加えて、ハンドラが所定位置にきたことを検知するハンドラ位置検知手段と、ハンドラを所定位置に移動させるために必要なモータ駆動量を割り出すように構成されたキャリブレーション手段と、そのキャリブレーション結果を記憶するキャリブレーション結果記憶部と、を備えており、輸送動作実行手段は、キャリブレーション結果記憶部に記憶されている直近のキャリブレーション結果に基づいてハンドラ駆動機構を制御するように構成されている。 Therefore, in addition to the above-described configuration, the transport mechanism of the present invention is configured to determine a handler position detecting unit that detects that the handler has reached a predetermined position, and a motor driving amount necessary to move the handler to the predetermined position. Calibration means, and a calibration result storage unit for storing the calibration result, and the transportation operation executing means is based on the latest calibration result stored in the calibration result storage unit. The handler driving mechanism is configured to be controlled.
 ハンドラ位置検知手段は、ハンドラが、ハンドラの移動範囲に設定された所定の原点位置、輸送開始位置の輸送対象物を保持するための位置である第1停止位置、及び輸送終了位置に輸送対象物を配置するための位置である第2停止位置にきたことを検知するものである。キャリブレーション手段は、原点位置を始点として、ハンドラ位置検知手段からの検知信号に基づいてハンドラを第1停止位置及び第2停止位置へ移動させ、そのときの前記モータの駆動量を各停止位置への必要駆動量として割り出すキャリブレーションを実行するように構成されている。キャリブレーション結果記憶部は、直近のキャリブレーションにより割り出された必要駆動量をキャリブレーション結果として記憶するものである。 The handler position detection means is configured such that the handler has a transportation object at a predetermined origin position set in the movement range of the handler, a first stop position that is a position for holding the transportation object at the transportation start position, and a transportation end position. It detects that it came to the 2nd stop position which is a position for arranging. The calibration means moves the handler to the first stop position and the second stop position based on the detection signal from the handler position detection means, starting from the origin position, and the driving amount of the motor at that time is moved to each stop position. It is configured to execute calibration that is calculated as the required drive amount. The calibration result storage unit stores the necessary drive amount calculated by the latest calibration as a calibration result.
 すなわち、本発明の輸送機構は、第1停止位置及び第2停止位置への正確な必要駆動量をキャリブレーションによって予め割り出しておき、そのキャリブレーション結果に基づいてハンドラ駆動機構の制御を行なうように構成されている。これにより、輸送動作の際、位置センサからの信号を監視しながらモータの制御を行なう必要がないので、ハンドラの高速移動が可能となり、輸送対象物の輸送効率を高めることができる。 In other words, the transport mechanism of the present invention calculates in advance the exact required drive amount to the first stop position and the second stop position by calibration, and controls the handler drive mechanism based on the calibration result. It is configured. This eliminates the need to control the motor while monitoring the signal from the position sensor during the transport operation, so that the handler can be moved at high speed and the transport efficiency of the transport object can be increased.
 また、キャリブレーション結果記憶部に記憶されるキャリブレーション結果は「直近の」キャリブレーション結果である。ハンドラを一定距離だけ移動させるために必要なモータ駆動量は、ハンドラ駆動機構を構成するギアの摩耗や温度変化によるピッチの変化に起因して変化することが考えられるため、古いキャリブレーション結果を用いてハンドラ駆動機構の制御を行なうと、ハンドラを所定の位置へ移動させることができずに輸送対象物の保持に失敗するなど、トラブルが発生することが考えられる。したがって、本発明では、キャリブレーション結果記憶部に直近のキャリブレーション結果が記憶され、輸送動作実行手段はこれを用いてハンドラ駆動機構の制御を行なうように構成されている。 Also, the calibration result stored in the calibration result storage unit is the “most recent” calibration result. The motor drive amount required to move the handler by a certain distance may change due to changes in the pitch due to wear or temperature changes of the gears that make up the handler drive mechanism. If the handler driving mechanism is controlled, trouble may occur such as failure to hold the transport object because the handler cannot be moved to a predetermined position. Therefore, in the present invention, the most recent calibration result is stored in the calibration result storage unit, and the transportation operation execution means is configured to control the handler driving mechanism using this.
 ハンドラの移動の原点位置としては、第1停止位置又は第2停止位置のいずれか一方の位置に設定されていることが好ましい。そうすれば、キャリブレーションの際にハンドラを移動させるべき位置が少なくなり、キャリブレーションに要する時間が短くなる。 It is preferable that the origin position of the movement of the handler is set to one of the first stop position and the second stop position. Then, the position where the handler should be moved during calibration is reduced, and the time required for calibration is shortened.
 本発明の好ましい実施の態様として、輸送開始位置と輸送終了位置との間に輸送対象物を載置可能な水平面が設けられており、ハンドラは輸送開始位置側と輸送終了位置側の2箇所に輸送対象物を保持するための保持部を備えているものが挙げられる。この場合、輸送開始位置側の保持部は、ハンドラが第1停止位置にきたときに輸送開始位置の輸送対象物を保持できる位置に配置されるように設けられ、輸送終了位置側の保持部は、ハンドラが第2停止位置にきたときに輸送終了位置へ保持した輸送対象物を配置できる位置に配置されるように設けられている。輸送動作実行手段は、輸送動作として、ハンドラを第1停止位置に移動させて輸送開始位置の輸送対象物を輸送開始位置側の保持部で保持し、その輸送対象物を水平面に配置するための位置である第3停止位置にハンドラを移動させてその輸送対象物を水平面上に載置し、輸送終了位置側の保持部で水平面上に載置された輸送対象物を保持するための位置である第4停止位置にハンドラを移動させてその輸送対象物を輸送終了位置側の保持部で保持し、第2停止位置に移動して輸送対象物を輸送終了位置側の保持部で輸送終了位置に配置する動作を、ハンドラ駆動機構を制御することにより実行するように構成されている。かかる態様とすることで、1箇所の保持部を輸送開始位置から輸送終了位置へ移動させることによって輸送対象物を輸送する場合に比べて、ハンドラの移動範囲を小さくすることができるので、当該輸送装置の小型化を図ることができる。 As a preferred embodiment of the present invention, a horizontal plane on which a transportation object can be placed is provided between a transportation start position and a transportation end position, and handlers are provided at two places on the transportation start position side and the transportation end position side. The thing provided with the holding | maintenance part for hold | maintaining a transport target object is mentioned. In this case, the holding part on the transport start position side is provided so as to be arranged at a position where the transport object at the transport start position can be held when the handler reaches the first stop position. When the handler comes to the second stop position, the transport object held at the transport end position is disposed at a position where it can be disposed. The transport operation execution means moves the handler to the first stop position as a transport operation, holds the transport object at the transport start position by the holding portion on the transport start position side, and places the transport object on the horizontal plane. At a position for moving the handler to the third stop position, which is the position, placing the transportation object on the horizontal plane, and holding the transportation object placed on the horizontal plane by the holding section on the transportation end position side. The handler is moved to a fourth stop position and the transport object is held by the holding section on the transport end position side, and the transport object is moved to the second stop position and the transport end position is held by the holding section on the transport end position side. The operation to be arranged in (1) is executed by controlling the handler driving mechanism. By adopting such a mode, the moving range of the handler can be reduced by moving one holding portion from the transport start position to the transport end position, compared with the case where the transport object is transported. The size of the apparatus can be reduced.
 上記態様におけるキャリブレーション手段は、キャリブレーションにおいて、第3停止位置への必要駆動量及び第4停止位置への必要駆動量も割り出すように構成されている。これにより、キャリブレーションによって第3停止位置及び第4停止位置へのモータの必要駆動量が予め割り出された状態となり、ハンドラを第3停止位置及び第4停止位置へ高速で移動させることができる。 The calibration means in the above aspect is configured to determine the required drive amount to the third stop position and the required drive amount to the fourth stop position in the calibration. Thereby, the required drive amount of the motor to the third stop position and the fourth stop position is preliminarily determined by calibration, and the handler can be moved to the third stop position and the fourth stop position at high speed. .
 上記キャリブレーション手段の一例は、第1停止位置への必要駆動量又は第2停止位置への必要駆動量に基づいてモータの単位駆動量当たりのハンドラの移動量を単位移動量として算出し、その単位移動量を用いて、少なくとも第3停止位置への必要駆動量又は第4停止位置への必要駆動量を計算により求めるように構成されたものである。原点位置から第1停止位置や第2停止位置までの距離は設計段階でわかっており、それを装置に記憶させておくことで、モータの単位駆動量当たりのハンドラの移動量(単位移動量)を求めることができる。モータの単位駆動量とは、例えばモータがステッピングモータである場合は、モータの1ステップの回転を意味し、単位移動量はモータの1ステップの回転当たりのハンドラの移動量を意味する。この単位移動量を算出することにより、第3停止位置や第4停止位置への必要駆動量を計算によって求めることができる。 An example of the calibration means calculates the movement amount of the handler per unit driving amount of the motor as a unit movement amount based on the necessary driving amount to the first stop position or the required driving amount to the second stop position, Using the unit movement amount, at least the necessary drive amount to the third stop position or the necessary drive amount to the fourth stop position is obtained by calculation. The distance from the origin position to the first stop position or the second stop position is known at the design stage, and by storing it in the device, the movement amount of the handler per unit driving amount of the motor (unit movement amount) Can be requested. For example, when the motor is a stepping motor, the unit drive amount of the motor means one step rotation of the motor, and the unit movement amount means the amount of movement of the handler per one step rotation of the motor. By calculating this unit movement amount, the necessary drive amount to the third stop position or the fourth stop position can be obtained by calculation.
 キャリブレーション手段は、当該輸送装置が起動状態になったときにキャリブレーションを自動的に実行するように構成されていることが好ましい。そうすれば、輸送装置が起動されるたびにキャリブレーション結果が最新の状態に更新され、ハンドラの移動の制御を高めることができる。 It is preferable that the calibration means is configured to automatically execute calibration when the transport device is activated. By doing so, the calibration result is updated to the latest state every time the transport device is activated, and the control of the movement of the handler can be enhanced.
 動力伝達機構の一例として、ハンドラの移動方向に沿って延びるように配置されたラックギア、及びモータの回転軸に取り付けられたピニオンギアであってラックギアと噛み合いながらモータの回転に伴なってラックギア上を移動するピニオンギアを備え、モータの回転によりモータとともにハンドラを移動させるように構成されており、ラックギアは樹脂により構成されているものが挙げられる。樹脂製のラックギアは、温度や湿度などの環境によってその長さが変化し、ギアのピッチが時間の経過によって変化してしまう場合がある。その場合、ハンドラ駆動用のモータの駆動量が同一であってもラックギアの長さが変化する前と後でハンドラの移動距離が変わってしまい、ハンドラを所定の位置に正確に移動させることができなくなる。本発明の輸送装置では、キャリブレーション手段を備えているため、ラックギアの長さが変化した後でキャリブレーションを実行することによってラックギアの長さが変化した後の各停止位置へのモータの必要駆動量を割り出すことができ、ラックギアの長さの変化を加味したハンドラの移動制御が可能である。したがって、ラックギアとして樹脂製のものを使用することができる。樹脂製のラックギアを使用することで、コストを抑制することができる。 As an example of a power transmission mechanism, a rack gear arranged so as to extend along the moving direction of the handler, and a pinion gear attached to a rotating shaft of the motor, which meshes with the rack gear and rotates on the rack gear as the motor rotates. A pinion gear that moves is configured to move the handler together with the motor by the rotation of the motor, and the rack gear is made of resin. The length of the resin rack gear changes depending on the environment such as temperature and humidity, and the gear pitch may change over time. In that case, even if the driving amount of the motor for driving the handler is the same, the moving distance of the handler changes before and after the rack gear length changes, and the handler can be accurately moved to a predetermined position. Disappear. Since the transportation device of the present invention includes the calibration means, the motor needs to be driven to each stop position after the rack gear length is changed by executing the calibration after the rack gear length is changed. The amount can be determined, and the movement of the handler can be controlled in consideration of the change in the length of the rack gear. Therefore, the rack gear can be made of resin. By using the resin rack gear, the cost can be suppressed.
 ハンドラ位置検知手段の一例は、発光素子と受光素子が互いに対向配置された状態でハンドラに一体として取り付けられた光センサと、ハンドラの位置を検知すべき位置に設けられ、受光素子に入射する発光素子からの光を遮る遮光部又は受光素子に発光素子からの光を入射させるスリットと、を備え、ハンドラとともに移動する光センサが遮光部又はスリットを検知することによりハンドラがその遮光部又はスリットが設けられている位置にきたことを検知するものである。1つの光センサでハンドラ位置検知手段を実現することができるので、コストを抑制することができる。 An example of the handler position detection means is a light sensor that is integrally attached to the handler in a state where the light emitting element and the light receiving element are arranged opposite to each other, and a light emission that is provided at a position where the position of the handler should be detected and is incident on the light receiving element A light-blocking part that blocks light from the element or a slit that allows light from the light-emitting element to enter the light-receiving element, and the light sensor that moves together with the handler detects the light-blocking part or the slit so that the handler It detects that it came to the position provided. Since the handler position detecting means can be realized by one optical sensor, the cost can be suppressed.
 本発明にかかる自動分析システムは、本発明の輸送装置を利用したものである。すなわち、本発明の自動分析システムは、互いに隣接する2つの自動分析装置とそれらの自動分析装置に間において検体容器を保持した検体ラックを輸送する本発明の輸送装置を備えたものである。自動分析装置のそれぞれは、検体ラックを搬送するベルトコンベア、検体容器から検体を採取して分析を行なう採取分析部及びベルトコンベア上の検体ラックを保持して採取分析部へ導入する検体導入機構を独自に備えており、輸送装置は、一方の自動分析装置のベルトコンベアの終端部を輸送開始位置、他方の自動分析装置のベルトコンベアの始端部を輸送終了位置とし、輸送開始位置に到達した検体ラックをハンドラで保持して輸送終了位置まで輸送して配置するように構成されている。 The automatic analysis system according to the present invention uses the transport device of the present invention. That is, the automatic analysis system of the present invention includes two automatic analyzers adjacent to each other and the transport apparatus of the present invention for transporting a sample rack holding a sample container between the automatic analyzers. Each of the automatic analyzers has a belt conveyor that transports the sample rack, a sampling analysis unit that samples and analyzes the sample from the sample container, and a sample introduction mechanism that holds the sample rack on the belt conveyor and introduces it to the sampling analysis unit. The transport device has a sample that has reached the transport start position with the end of the belt conveyor of one automatic analyzer as the transport start position and the start of the belt conveyor of the other auto analyzer as the transport end position. The rack is held by the handler and is transported to the transport end position and arranged.
 本発明の輸送装置は、輸送対象物を保持する移動式のハンドラを第1停止位置と第2停止位置の間で移動させることによって輸送対象物を輸送するように構成されており、ハンドラを駆動するハンドラ駆動機構のモータの制御は、予め実行されたキャリブレーションの結果に基づいて行なわれるように構成されているので、位置センサの信号に基づいたモータの駆動制御を行なうことなく、ハンドラを高速かつ正確に所定の位置へ移動させることができ、輸送対象物の輸送を効率よく実行することができる。キャリブレーションを実行するように構成されたキャリブレーション手段を備えているため、ハンドラを第1停止位置や第2停止位置へ移動させるためのモータの正確な必要駆動量を割り出すことができ、ハンドラの移動制御の精度を維持することができる。 The transport device of the present invention is configured to transport a transport object by moving a mobile handler holding the transport object between a first stop position and a second stop position, and drives the handler. Since the control of the motor of the handler driving mechanism is performed based on the result of calibration executed in advance, the handler can be operated at high speed without performing motor driving control based on the signal of the position sensor. And it can be moved to a predetermined position correctly, and transportation of a transportation subject can be performed efficiently. Since the calibration means configured to execute the calibration is provided, it is possible to determine the exact required driving amount of the motor for moving the handler to the first stop position or the second stop position. The accuracy of the movement control can be maintained.
 本発明の自動分析システムは、本発明の輸送装置によって2つの自動分析装置の一方から他方へ検体ラックを輸送するように構成されているので、互いに独立した自動分析装置間において検体ラックの移動が自動的に効率よく行なわれるようになり、分析のスループットが向上する。 Since the automatic analyzer system of the present invention is configured to transport the sample rack from one of the two automatic analyzers to the other by the transport apparatus of the present invention, the sample rack can be moved between the automatic analyzers independent of each other. The analysis is automatically and efficiently performed, and the analysis throughput is improved.
自動分析システムの一実施例を示す斜視図である。It is a perspective view which shows one Example of an automatic analysis system. 同実施例の構成を概略的に示す平面図であるIt is a top view which shows the structure of the Example roughly 同実施例における輸送装置の斜視図である。It is a perspective view of the transport apparatus in the same Example. 同輸送装置の搬送機構の一例を示す平面図である。It is a top view which shows an example of the conveyance mechanism of the transport apparatus. 同搬送機構の側面図である。It is a side view of the transport mechanism. 同搬送機構の斜め上方向から見た分解斜視図である。It is the disassembled perspective view seen from diagonally upward direction of the conveyance mechanism. 同搬送機構の斜め下方向から見た分解斜視図である。It is the disassembled perspective view seen from the diagonally downward direction of the conveyance mechanism. ストッパが上昇した状態の側面断面図である。It is side surface sectional drawing of the state which the stopper raised. ストッパが下降した状態の側面断面図である。It is side surface sectional drawing of the state which the stopper fell. 基台の上面の板を取り外した同搬送機構の斜め上方向から見た斜視図である。It is the perspective view seen from the diagonally upper direction of the conveyance mechanism which removed the board of the upper surface of the base. ハンドラの第1停止位置を示す平面図である。It is a top view which shows the 1st stop position of a handler. ハンドラの第2停止位置を示す平面図である。It is a top view which shows the 2nd stop position of a handler. ハンドラの第3停止位置を示す平面図である。It is a top view which shows the 3rd stop position of a handler. ハンドラの第4停止位置を示す平面図である。It is a top view which shows the 4th stop position of a handler. 自動分析システム全体の制御系統を概略的に示すブロック図である。It is a block diagram which shows roughly the control system of the whole automatic analysis system. 輸送装置内の制御系統を概略的に示すブロック図である。It is a block diagram which shows roughly the control system in a transport apparatus. ~ 同輸送装置の輸送動作をプロセスごとに示す平面図である。It is a top view which shows the transport operation | movement of the transport apparatus for every process. 輸送装置の動作の一連の流れを示すフローチャートである。It is a flowchart which shows a series of flows of operation | movement of a transport apparatus. キャリブレーション動作の一例を示すフローチャートである。It is a flowchart which shows an example of a calibration operation | movement. キャリブレーション動作の他の例を示すフローチャートである。It is a flowchart which shows the other example of calibration operation | movement. 輸送装置の輸送動作の一例を示すフローチャートである。It is a flowchart which shows an example of the transport operation | movement of a transport apparatus.
 図1及び図2を用いて自動分析システムの一実施例について説明する。 An embodiment of the automatic analysis system will be described with reference to FIGS.
 この自動分析システム1は、2つの自動分析装置2a,2bと輸送装置12により構成されている。自動分析装置2a,2bは水平面内の一方向であるX方向に並んで配置され、両自動分析装置2a,2bのそれぞれの搬送部6aと6bの間が輸送装置12によって連結されている。この自動分析システム1では、前段側の自動分析装置2aにおいてサンプリングの終了した検体が輸送装置12を介して後段側の自動分析装置2bに導入され、後段側の自動分析装置2bにおいてもその検体のサンプリングと分析がなされる。 The automatic analysis system 1 includes two automatic analyzers 2a and 2b and a transport device 12. The automatic analyzers 2a and 2b are arranged side by side in the X direction, which is one direction in the horizontal plane, and the transport units 12 are connected between the respective transport portions 6a and 6b of the automatic analyzers 2a and 2b. In this automatic analysis system 1, a sample that has been sampled in the front-stage automatic analyzer 2a is introduced into the rear-stage automatic analyzer 2b via the transport device 12, and the sample is also detected in the rear-stage automatic analyzer 2b. Sampling and analysis are done.
 前段側の自動分析装置2aは、採取分析部4a、搬送部6a及び検体導入機構18aを備えている。搬送部6aは検体容器を保持した検体ラック20をX方向の一方側(図1及び図2において左側)へ搬送するベルトコンベア7aを備えている。ベルトコンベア7aの周囲はカバーで覆われている。搬送部6aの始端側(図1及び図2において右側)に検体ラック配置部8aが設けられ、終端側(同図において左側)に検体ラック回収部10aが設けられている。検体ラック配置部8aと検体ラック回収部10aのカバーは開閉可能であり、分析者が検体ラック配置部8aのカバーを開けて検体ラックをベルトコンベア7a上に配置したり、検体ラック回収部10aのカバーを開けてサンプリングの終了した検体ラックを取り出したりすることができる。 The front-stage automatic analyzer 2a includes a collection analysis unit 4a, a transport unit 6a, and a sample introduction mechanism 18a. The transport unit 6a includes a belt conveyor 7a that transports the sample rack 20 holding the sample containers to one side in the X direction (left side in FIGS. 1 and 2). The periphery of the belt conveyor 7a is covered with a cover. A sample rack arrangement unit 8a is provided on the start end side (right side in FIGS. 1 and 2) of the transport unit 6a, and a sample rack collection unit 10a is provided on the end side (left side in FIG. 1). The covers of the sample rack arranging unit 8a and the sample rack collecting unit 10a can be opened and closed, and an analyst opens the cover of the sample rack arranging unit 8a and arranges the sample rack on the belt conveyor 7a. The sample rack that has been sampled can be taken out by opening the cover.
 検体導入機構18aは水平面内においてX方向と直交するY方向へ移動し、ベルトコンベア7a上の検体ラック20を保持して採取分析部4a側へ導入したり、サンプリングの終了した検体ラック20をベルトコンベア7a上に配置したりするものである。搬送部6aの検体ラック配置部8aと検体ラック回収部10aの間に検体ラック導入部9aが設けられており、検体導入機構18aは検体ラック導入部9aからベルトコンベア7a上のサンプリング前検体ラック20を採取分析部4a内に移送したり,サンプリング後の検体ラック20をベルトコンベア7a上に戻したりするようになっている。 The sample introduction mechanism 18a moves in the Y direction perpendicular to the X direction in the horizontal plane, holds the sample rack 20 on the belt conveyor 7a and introduces it to the collection analysis unit 4a side, or the sample rack 20 that has been sampled is belted. It is arranged on the conveyor 7a. A sample rack introduction section 9a is provided between the sample rack placement section 8a and the sample rack collection section 10a of the transport section 6a, and the sample introduction mechanism 18a is connected to the sample rack 20 before sampling on the belt conveyor 7a from the sample rack introduction section 9a. The sample rack 20 is transferred to the collection analysis unit 4a, or the sample rack 20 after sampling is returned to the belt conveyor 7a.
 採取分析部4aは、検体導入機構18aにより移送された検体容器から検体を採取するための吸入プローブなどを有する検体採取機構(図示は省略)のほか、検体ラック収容部24a、試薬収容部22a及び測定部26aを備えている。検体ラック収容部24aには、検体導入機構18aによってベルトコンベア7a上から移送された検体ラック20が複数収容される。検体ラック収容部24aはターンテーブルになっていて、検体ラック20上の検体容器を、吸入プローブが検体を採取するときの所定位置に配置する。試薬収容部22aには種々の試薬を収容した試薬容器が配置されている。測定部26aには、吸入プローブによって採取された検体と試薬を混合する容器が複数個設けられており、容器内の反応を光学的に測定するように構成されている。かかる構成により、採取分析部4aでは、検体ラック20が検体導入機構18aによって検体ラック収容部24aに収容され、その検体ラック20に保持されている検体容器が所定位置に配置され、吸入プローブによって検体が採取される。採取された検体は測定部26aに設けられた容器に注入され、分析項目に応じた試薬が添加された後、検体と試薬の反応が吸光度や蛍光強度など光学的に測定される。 The collection analysis unit 4a includes a sample collection unit (not shown) having an inhalation probe for collecting a sample from the sample container transferred by the sample introduction mechanism 18a, a sample rack storage unit 24a, a reagent storage unit 22a, and A measurement unit 26a is provided. A plurality of sample racks 20 transferred from the belt conveyor 7a by the sample introduction mechanism 18a are accommodated in the sample rack accommodating portion 24a. The sample rack accommodating portion 24a is a turntable, and the sample container on the sample rack 20 is arranged at a predetermined position when the inhalation probe collects the sample. Reagent containers containing various reagents are arranged in the reagent storage unit 22a. The measurement unit 26a is provided with a plurality of containers for mixing the sample collected by the inhalation probe and the reagent, and is configured to optically measure the reaction in the container. With this configuration, in the collection analysis unit 4a, the sample rack 20 is stored in the sample rack storage unit 24a by the sample introduction mechanism 18a, the sample container held in the sample rack 20 is disposed at a predetermined position, and the sample is collected by the inhalation probe. Is collected. The collected specimen is injected into a container provided in the measuring unit 26a, and after a reagent corresponding to the analysis item is added, the reaction between the specimen and the reagent is optically measured such as absorbance and fluorescence intensity.
 後段側の自動分析装置2bは前段側の自動分析装置2aと同じ構成を有する。自動分析装置2bの搬送部6bに設けられたベルトコンベア7bの始端と前段側のベルトコンベア7aの終端とは輸送装置12によって連結されている。 The latter-stage automatic analyzer 2b has the same configuration as the former-stage automatic analyzer 2a. The starting end of the belt conveyor 7b provided in the transport unit 6b of the automatic analyzer 2b and the end of the preceding belt conveyor 7a are connected by the transport device 12.
 輸送装置12は、前段側のベルトコンベア7aの終端を輸送開始位置、後段側のベルトコンベア7bの始端を輸送終了位置とし、ベルトコンベア7aの始端において輸送対象物である検体ラック20を保持してベルトコンベア7bの始端に配置する装置である。輸送装置12は搬送機構100(図4から図7を参照)とその搬送機構100を覆う開閉式の遮蔽カバー14を備えている。搬送機構100については後述する。 The transport device 12 uses the end of the front belt conveyor 7a as the transport start position and the start end of the rear belt conveyor 7b as the transport end position, and holds the sample rack 20 as a transport object at the start end of the belt conveyor 7a. It is an apparatus arranged at the starting end of the belt conveyor 7b. The transport device 12 includes a transport mechanism 100 (see FIGS. 4 to 7) and an openable / closable shielding cover 14 that covers the transport mechanism 100. The transport mechanism 100 will be described later.
 図3に示されているように、輸送装置12の筐体の遮蔽カバー14の開閉部分に、マイクロスイッチ30が設けられている。マイクロスイッチ30は遮蔽カバー14側に設けられたピン28と接触することによってオン/オフが切り換えられるものである。遮蔽カバー14が閉じられるとピン28がマイクロスイッチ30をオンの状態にし、遮蔽カバー14が開かれるとマイクロスイッチ30がオフの状態となる。輸送装置12の搬送機構100は遮蔽カバー14が閉じられてマイクロスイッチ30がオンになっているときにのみ動作し、遮蔽カバー14が開かれてマイクロスイッチ30がオフになっているときはその動作を停止するように構成されている。 As shown in FIG. 3, a micro switch 30 is provided at the opening / closing portion of the shielding cover 14 of the casing of the transport device 12. The microswitch 30 is switched on / off by contacting a pin 28 provided on the shielding cover 14 side. When the shielding cover 14 is closed, the pin 28 turns the microswitch 30 on, and when the shielding cover 14 is opened, the microswitch 30 is turned off. The transport mechanism 100 of the transport device 12 operates only when the shielding cover 14 is closed and the microswitch 30 is turned on, and operates when the shielding cover 14 is opened and the microswitch 30 is turned off. Is configured to stop.
 搬送機構100について図4から図7を用いて説明する。 The transport mechanism 100 will be described with reference to FIGS.
 搬送機構100は、基台118と2つの腕部材104及び106からなるハンドラを備えている。基台118の上面102は水平面となっている(以下、水平面102と記す。)。水平面102のX方向における一端側(図4において右側)が輸送開始位置103aであり、他端側(図4において左側)が搬送完了位置103bである。この輸送開始位置103aにベルトコンベア7aの終端がくるように自動分析装置2aが配置され、輸送終了位置103bにベルトコンベア7bの始端がくるように自動分析装置2bが配置されている。水平面102の高さは両端に配置されるベルトコンベア7a,7bの搬送面とほぼ同じ高さになっている。 The transport mechanism 100 includes a handler including a base 118 and two arm members 104 and 106. The upper surface 102 of the base 118 is a horizontal plane (hereinafter referred to as the horizontal plane 102). One end side (right side in FIG. 4) of the horizontal plane 102 in the X direction is the transport start position 103a, and the other end side (left side in FIG. 4) is the transfer completion position 103b. The automatic analyzer 2a is arranged so that the end of the belt conveyor 7a comes to the transport start position 103a, and the automatic analyzer 2b is arranged so that the start of the belt conveyor 7b comes to the transport end position 103b. The height of the horizontal plane 102 is substantially the same as the conveying surfaces of the belt conveyors 7a and 7b arranged at both ends.
 ハンドラを構成する腕部材104と腕部材106はX方向に延び、水平面102上の両側縁部において対向して配置されている。腕部材104と腕部材106は水平面102の側縁部においてX方向とY方向へ駆動される。腕部材104と腕部材106は、X方向に対しては同時に同方向へ連動して移動し、Y方向に対して水平面102を中心として対称な方向へ連動して移動する。腕部材104と腕部材106を駆動する機構(ハンドラ駆動機構)は基台118の内部に収容されている。ハンドラ駆動機構については後述する。 The arm member 104 and the arm member 106 constituting the handler extend in the X direction, and are arranged to face each other at both side edges on the horizontal plane 102. The arm member 104 and the arm member 106 are driven in the X direction and the Y direction at the side edge of the horizontal plane 102. The arm member 104 and the arm member 106 move simultaneously in the same direction in the X direction and move in a symmetrical direction around the horizontal plane 102 with respect to the Y direction. A mechanism (handler driving mechanism) for driving the arm member 104 and the arm member 106 is accommodated in the base 118. The handler driving mechanism will be described later.
 腕部材104は、輸送開始位置103a側端部に突起104aを備え、輸送終了位置103b側端部に突起104bを備えている。突起104aと突起104bは検体ラックの腕部材104側側面に設けられた凹部(図示は省略)に嵌め込まれて検体ラックと係合するものである。腕部材104のY方向への移動は、突起104a,104bが検体ラックの凹部に嵌め込まれる位置と検体ラック自体に接触しない位置との間で行なわれる。 The arm member 104 includes a protrusion 104a at an end portion on the transportation start position 103a side, and a protrusion 104b at an end portion on the transportation end position 103b side. The protrusions 104a and 104b are fitted into recesses (not shown) provided on the side surface of the sample rack on the arm member 104 side so as to be engaged with the sample rack. The movement of the arm member 104 in the Y direction is performed between a position where the protrusions 104a and 104b are fitted in the concave portion of the sample rack and a position where the arm member 104 does not contact the sample rack itself.
 腕部材106は、輸送開始位置103a側端部に突起106aを備え、輸送終了位置103b側に突起106bを備えている。突起106aと突起106bは検体ラックの後背面と係合するものである。腕部材106のY方向への移動は、突起106a,106bが検体ラックの背面に係合する位置と突起106a,106bが検体ラックに接触しない位置との間で行なわれる。 The arm member 106 includes a protrusion 106a at an end portion on the transport start position 103a side, and a protrusion 106b on the transport end position 103b side. The protrusion 106a and the protrusion 106b are engaged with the rear rear surface of the sample rack. The movement of the arm member 106 in the Y direction is performed between a position where the protrusions 106a and 106b engage with the back surface of the sample rack and a position where the protrusions 106a and 106b do not contact the sample rack.
 腕部材104と106で構成されるハンドラは、輸送開始位置103a側と輸送終了位置103b側の2箇所に、検体ラックを保持するための保持部を備えている。輸送開始位置103a側の保持部は腕部材104の突起104aと腕部材106の突起106aで構成され、輸送終了位置103b側の保持部は腕部材104の突起104bと腕部材106の突起106bで構成される。 The handler composed of the arm members 104 and 106 includes holding portions for holding the sample racks at two locations on the transport start position 103a side and the transport end position 103b side. The holding portion on the transport start position 103a side is constituted by the projection 104a of the arm member 104 and the projection 106a of the arm member 106, and the holding portion on the transport end position 103b side is constituted by the projection 104b of the arm member 104 and the projection 106b of the arm member 106. Is done.
 以下において、腕部材104と腕部材106をまとめて「ハンドラ104,106」、ハンドラ104,106の輸送開始位置103a側の保持部を「第1保持部104a,106a」、輸送終了位置103b側の保持部を「第2保持部104b,106b」と称する。 Hereinafter, the arm member 104 and the arm member 106 are collectively referred to as “ handlers 104, 106”, the holding portions on the transportation start position 103a side of the handlers 104, 106 are referred to as “ first holding portions 104a, 106a”, and the transportation end position 103b side. The holding unit is referred to as “ second holding unit 104b, 106b”.
 第1保持部104a,106aは、腕部材104と106の輸送開始位置103a側の端部で検体ラックを両側から挟み込むことによって、検体ラックの一方側の側面の凹部に突起104aを嵌め込むとともに検体ラックの反対側後背面を突起106aで支持する。第2保持部104b,106bは、腕部材104と6の輸送開始位置103b側の端部で検体ラックを両側から挟み込むことによって、検体ラックの一側面の凹部に突起104bを嵌め込むとともに検体ラックの反対側後背面を突起106bで支持する。ハンドラ104,106は、検体ラックを保持した状態でX方向へ移動し、検体ラックを水平面102上でスライドさせて輸送する。水平面102の腕部材106側の側縁部には、水平面102上をスライドする検体ラックの側面に設けられた溝に嵌め込まれて検体ラックの転倒を防止するガイドレール108が設けられている。 The first holding portions 104a and 106a insert the protrusion 104a into the concave portion on one side surface of the sample rack by sandwiching the sample rack from both sides at the ends of the arm members 104 and 106 on the transport start position 103a side. The rear rear surface on the opposite side of the rack is supported by the protrusion 106a. The second holding portions 104b and 106b are configured to fit the projection 104b into the concave portion on one side of the sample rack and sandwich the sample rack at both ends of the arm members 104 and 6 on the transport start position 103b side, The opposite rear rear surface is supported by the protrusion 106b. The handlers 104 and 106 move in the X direction while holding the sample rack, and transport the sample rack by sliding it on the horizontal plane 102. A guide rail 108 that is fitted in a groove provided on a side surface of the sample rack that slides on the horizontal surface 102 and prevents the sample rack from falling is provided on the side edge of the horizontal surface 102 on the arm member 106 side.
 輸送開始位置103aの側方には、輸送開始位置103aへの検体ラックの到達を検知する開始センサ110が設けられている。輸送終了位置103bの側方には、輸送終了位置103bへの検体ラックの到達を検知する終了センサ112が設けられている。輸送開始位置103aの近傍にストッパ114が設けられている。 A start sensor 110 for detecting the arrival of the sample rack at the transport start position 103a is provided on the side of the transport start position 103a. An end sensor 112 for detecting the arrival of the sample rack at the transport end position 103b is provided on the side of the transport end position 103b. A stopper 114 is provided in the vicinity of the transport start position 103a.
 開始センサ110と終了センサ112は、例えば反射型光学センサによって構成することができる。反射型光学センサとは、発光部と受光部が一体として構成され、発光部からの光の検知対象物による反射光を受光部で検知するものである。また、開始センサ110と終了センサ112を透過型光学センサにより構成してもよい。透過型光学センサとは、受光部と発光部が別体として構成され互いに対向して配置されたものであり、発光部から受光部への投光の検知対象物による遮光を検知するものである。 The start sensor 110 and the end sensor 112 can be constituted by, for example, a reflective optical sensor. In the reflection type optical sensor, a light emitting unit and a light receiving unit are integrally formed, and light reflected from a detection target of light from the light emitting unit is detected by the light receiving unit. In addition, the start sensor 110 and the end sensor 112 may be configured by a transmissive optical sensor. The transmissive optical sensor is configured such that the light receiving unit and the light emitting unit are configured as separate bodies and arranged to face each other, and detects light blocking by a detection target of light projection from the light emitting unit to the light receiving unit. .
 基台118の側部に回路基板116が設けられている。回路基板116はハンドラ104,106の動作を制御する制御部(以下、制御部116とも記す)をなしている。開始センサ110及び終了センサ112は配線を介して回路基板116に接続されている。開始センサ110及び終了センサ112の信号は回路基板116に取り込まれ、ハンドラ104,106による検体ラックの輸送動作の開始や検体ラックの輸送エラーの有無の判定に利用される。 A circuit board 116 is provided on the side of the base 118. The circuit board 116 forms a control unit (hereinafter also referred to as the control unit 116) that controls the operation of the handlers 104 and 106. The start sensor 110 and the end sensor 112 are connected to the circuit board 116 via wiring. The signals of the start sensor 110 and the end sensor 112 are taken into the circuit board 116 and used for the start of the sample rack transport operation by the handlers 104 and 106 and the determination of the presence or absence of the sample rack transport error.
 なお、図5及び図7では、配線や回路基板116に搭載されているモジュールの図示を省略している。図6では回路基板116に搭載されているモジュールの一部は図示しているが、配線の図示を省略している。 In FIGS. 5 and 7, illustration of wiring and modules mounted on the circuit board 116 are omitted. In FIG. 6, some of the modules mounted on the circuit board 116 are shown, but the wiring is not shown.
 ストッパ114について図8A及び図8Bを用いて説明する。 The stopper 114 will be described with reference to FIGS. 8A and 8B.
 ストッパ114は途中で略直角に屈折した部材である。ストッパ114の基端部は水平面102の輸送開始位置103a(図8A及び図8B中の検体ラック20の位置が輸送開始位置103aである)側端部の下方に設けられた保持部材125に保持され、先端部が輸送開始位置103a側を向いている。ストッパ114の先端部は、ベルトコンベア7aのプーリ130の搬送機構側の端部を越えてベルトコンベア7a上へ延び、輸送開始位置103aで検体ラック20に干渉して検体ラック20をベルトコンベア7a上で停止させる干渉部をなしている。 The stopper 114 is a member refracted at a substantially right angle on the way. The base end of the stopper 114 is held by a holding member 125 provided below the side end of the transport start position 103a of the horizontal plane 102 (the position of the sample rack 20 in FIGS. 8A and 8B is the transport start position 103a). The tip portion faces the transport start position 103a. The front end of the stopper 114 extends over the belt conveyor 7a beyond the end of the pulley 130 of the belt conveyor 7a, and interferes with the sample rack 20 at the transport start position 103a so that the sample rack 20 is placed on the belt conveyor 7a. Interfering part to stop at.
 ストッパ114の基端を保持している保持部材125は鉛直方向への移動が可能であり、それによってストッパ114も上下動を行ない、ストッパ114の高さによって検体ラック20の停止と解除を行なう。ストッパ114は、先端部が水平面102よりも上方へ持ち上がった状態(図8Aの状態)となったときに検体ラック20に干渉して検体ラック20を輸送開始位置103aで停止させ、先端部が水平面102と同じ高さ又は水平面102の下方へ下降した状態(図8Bの状態)となったときに検体ラック20の停止を解除する。 The holding member 125 holding the base end of the stopper 114 can be moved in the vertical direction, so that the stopper 114 also moves up and down, and the sample rack 20 is stopped and released depending on the height of the stopper 114. The stopper 114 interferes with the sample rack 20 when the tip end is lifted above the horizontal plane 102 (the state shown in FIG. 8A), stops the sample rack 20 at the transport start position 103a, and the tip end is horizontal. The stop of the sample rack 20 is released when it becomes the same height as 102 or a state where it is lowered below the horizontal plane 102 (state shown in FIG. 8B).
 基台118の輸送開始位置103a側の端部で水平面102の下方に、Y方向へ延びた固定軸120が取り付けられており、保持部材125と固定軸120がバネ128によって連結されている。バネ128は保持部材125を上昇させる方向に弾性力を作用させるように、自然長よりも延びた状態で保持部材125と固定軸120を連結している。 A fixed shaft 120 extending in the Y direction is attached below the horizontal plane 102 at the end of the base 118 on the transport start position 103a side, and the holding member 125 and the fixed shaft 120 are connected by a spring 128. The spring 128 connects the holding member 125 and the fixed shaft 120 in a state of extending beyond the natural length so as to apply an elastic force in the direction in which the holding member 125 is raised.
 後述するハンドラ駆動ユニット132に、断面が円形の突起126が設けられている。突起126はハンドラ104,106とともにX方向へ移動する。保持部材125の側部に連動部材127の一端が連結されている。連動部材127は基台118の内部においてX方向へ延びるように配置されたレール状の部材であり、その上面127aが突起126に常に接している。連動部材127の上面127aは直線部分と保持部材125側へ行くにしたがって上昇する滑らかな斜面部分を有し、突起126の水平移動に連動部材127の上面127aが追従することで、保持部材125が上下動する。 A handler driving unit 132 described later is provided with a protrusion 126 having a circular cross section. The protrusion 126 moves in the X direction together with the handlers 104 and 106. One end of the interlocking member 127 is connected to the side portion of the holding member 125. The interlocking member 127 is a rail-like member arranged so as to extend in the X direction inside the base 118, and its upper surface 127 a is always in contact with the protrusion 126. The upper surface 127a of the interlocking member 127 has a straight portion and a smooth slope portion that rises toward the holding member 125 side, and the upper surface 127a of the interlocking member 127 follows the horizontal movement of the protrusion 126, whereby the holding member 125 is Move up and down.
 ハンドラ104,106の第1保持部104a,106aが輸送開始位置103aよりも輸送終了位置103b側にあるときには、ストッパ114が水平面102よりも上方へ持ち上がった状態(図8Aの状態)となり、第1保持部104a,106aが輸送開始位置にきたときにストッパ114が水平面102と同じ高さ又は水平面102の下方へ下降した状態(図8Bの状態)となるように、連動部材127の上面127aの形状が調整されている。 When the first holding portions 104a and 106a of the handlers 104 and 106 are located closer to the transport end position 103b than the transport start position 103a, the stopper 114 is lifted upward from the horizontal plane 102 (the state shown in FIG. 8A). The shape of the upper surface 127a of the interlocking member 127 so that the stopper 114 is in the same height as the horizontal surface 102 or in a state where the stopper 114 is lowered below the horizontal surface 102 (the state in FIG. 8B) when the holding portions 104a and 106a reach the transport start position. Has been adjusted.
 ハンドラ104,106を駆動するハンドラ駆動機構について図9を用いて説明する。 A handler driving mechanism for driving the handlers 104 and 106 will be described with reference to FIG.
 ハンドラ104,106をX方向及びY方向へ駆動するためのハンドラ駆動機構は、ハンドラ駆動ユニット132と樹脂製(例えば、MONO CAST ナイロン)のラックギア146によって構成されている。ハンドラ駆動機構の構成のうちハンドラ104,106以外の部分は、基台118の上面102よりも下方に配置されている。 The handler driving mechanism for driving the handlers 104 and 106 in the X direction and the Y direction includes a handler driving unit 132 and a rack gear 146 made of resin (for example, MONO CAST nylon). Of the configuration of the handler driving mechanism, portions other than the handlers 104 and 106 are disposed below the upper surface 102 of the base 118.
 ハンドラ駆動ユニット132は、X方向へ延びるようにして基台118側に固定されたラックギア146上に配置されている。ハンドラ駆動ユニット132はシャーシ134を有する。シャーシ134にはモータ136、138が搭載されているとともに、腕部材104を保持するハンドラ駆動板140及び腕部材106を保持するハンドラ駆動板142がそれぞれ独立して水平に取り付けられている。シャーシ134に搭載されたモータ136の駆動軸にはピニオンギア136aが装着されており、ピニオンギア136aはラックギア146のギア面と噛合している。これにより、モータ136が駆動されることによって、ハンドラ駆動ユニット132自身がラックギア146に沿ってX方向へ移動し、それによってハンドラ104,106がX方向へ移動する。以下、モータ136をX方向駆動モータと記す。X方向駆動モータ136はステッピングモータである。 The handler drive unit 132 is disposed on a rack gear 146 fixed to the base 118 side so as to extend in the X direction. The handler driving unit 132 has a chassis 134. Motors 136 and 138 are mounted on the chassis 134, and a handler drive plate 140 for holding the arm member 104 and a handler drive plate 142 for holding the arm member 106 are independently attached horizontally. A pinion gear 136 a is attached to the drive shaft of the motor 136 mounted on the chassis 134, and the pinion gear 136 a meshes with the gear surface of the rack gear 146. Thus, when the motor 136 is driven, the handler driving unit 132 itself moves in the X direction along the rack gear 146, and thereby the handlers 104 and 106 move in the X direction. Hereinafter, the motor 136 is referred to as an X direction drive motor. The X direction drive motor 136 is a stepping motor.
 シャーシ134に搭載されているもう一つのモータ138の駆動軸にもピニオンギア138aが装着されている。モータ138はピニオンギア138aを水平面内方向で回転させるように配置されている。ハンドラ駆動板140のY方向に延びた側面の一部に、ピニオンギア138aと噛合するギア部140aが設けられている。ハンドラ駆動板142のY方向に延びた側面の一部に、ピニオンギア138aと噛合するギア部142aが設けられている。ハンドラ駆動板140のギア部140aとハンドラ駆動板142のギア部142aは、ピニオンギア138aを挟んで互いに対向するように配置されている。これにより、モータ138が回転すると、ハンドラ駆動板140と142はY方向において互いに反対の方向へ移動させられ、ハンドラ104,106がY方向へ駆動される。以下、モータ138をY方向駆動モータと記す。Y方向駆動モータ138はステッピングモータである。 A pinion gear 138 a is also mounted on the drive shaft of another motor 138 mounted on the chassis 134. The motor 138 is arranged to rotate the pinion gear 138a in the horizontal plane direction. A gear portion 140a that meshes with the pinion gear 138a is provided on a part of the side surface of the handler drive plate 140 that extends in the Y direction. A gear portion 142a that meshes with the pinion gear 138a is provided on a part of the side surface of the handler drive plate 142 that extends in the Y direction. The gear portion 140a of the handler drive plate 140 and the gear portion 142a of the handler drive plate 142 are arranged to face each other with the pinion gear 138a interposed therebetween. Thus, when the motor 138 rotates, the handler drive plates 140 and 142 are moved in directions opposite to each other in the Y direction, and the handlers 104 and 106 are driven in the Y direction. Hereinafter, the motor 138 is referred to as a Y-direction drive motor. The Y direction drive motor 138 is a stepping motor.
 ハンドラ駆動ユニット132のシャーシ134の腕部材106側下部に位置センサ144が取り付けられている。位置センサ144は、例えば発光素子と受光素子を備えた光センサからなるものである。基台118の内側側面に、位置センサ144の発光素子と受光素子との間に挿入されるように配置された遮光プレート148が取り付けられている。遮光プレート148は位置センサ144の移動範囲を網羅するようにX方向に延び、遮光プレート148の複数の位置に、位置センサ144の発光素子からの光を透過させて受光素子に入射させるスリット148aが設けられている。位置センサ144はハンドラ駆動ユニット132とともにX方向へ移動し、遮光プレート148のスリット148aを、発光素子からの光が受光素子で検知されるか否かにより検知する。 A position sensor 144 is attached to the lower part of the handler drive unit 132 on the arm member 106 side of the chassis 134. The position sensor 144 is composed of, for example, an optical sensor including a light emitting element and a light receiving element. A light shielding plate 148 is attached to the inner side surface of the base 118 so as to be inserted between the light emitting element and the light receiving element of the position sensor 144. The light shielding plate 148 extends in the X direction so as to cover the movement range of the position sensor 144, and slits 148 a that transmit light from the light emitting elements of the position sensor 144 and enter the light receiving elements at a plurality of positions of the light shielding plate 148. Is provided. The position sensor 144 moves in the X direction together with the handler driving unit 132, and detects the slit 148a of the light shielding plate 148 depending on whether light from the light emitting element is detected by the light receiving element.
 位置センサ144及び遮光プレート148は、ハンドラ位置検知手段を構成するものである。このハンドラ位置検知手段は、検知したい箇所にスリット148aを設けることによって位置センサ144がオフの状態からオンの状態に切り換わる位置を検知するように構成されているが、逆に、検知したい箇所に発光素子から受光素子への光を遮光する遮光部を配置しておき、位置センサ144がその遮光部によってオンの状態からオフの状態に切り換わる位置を検知するように構成されていてもよい。 The position sensor 144 and the light shielding plate 148 constitute a handler position detecting means. The handler position detecting means is configured to detect a position where the position sensor 144 switches from an off state to an on state by providing a slit 148a at a position to be detected. A light-shielding part that shields light from the light-emitting element to the light-receiving element may be arranged, and the position sensor 144 may be configured to detect a position where the light-shielding part switches from the on state to the off state.
 遮光プレート148のスリット148aは、後述するキャリブレーションの際に、検体ラックの輸送動作でハンドラ104,106が停止するべき位置を位置センサ144によって検知するためのものである。輸送動作でハンドラ104,106が配置されるべき位置としては、輸送開始位置103aの検体ラックを第1保持部104a,106aで保持するための位置(第1停止位置、図10A参照)、第1保持部104a,106aで保持した検体ラックを水平面102上に載置するための位置(第3停止位置、図10C参照)、水平面102上に載置した検体ラックを第2保持部104b,106bで保持するための位置(第4停止位置、図10D参照)、及び第2保持部104b,106bで保持した検体ラックを輸送終了位置103bに配置するための位置(第2停止位置、図10B参照)がある。 The slit 148a of the light-shielding plate 148 is for detecting, by the position sensor 144, the position where the handlers 104 and 106 should be stopped by the transport operation of the sample rack during the calibration described later. The positions at which the handlers 104 and 106 are to be arranged in the transport operation include a position for holding the sample rack at the transport start position 103a by the first holders 104a and 106a (first stop position, see FIG. 10A), first A position for placing the sample rack held by the holding units 104a and 106a on the horizontal plane 102 (third stop position, see FIG. 10C), and the sample rack placed on the horizontal plane 102 by the second holding units 104b and 106b. Position for holding (fourth stop position, see FIG. 10D) and position for placing the sample rack held by the second holders 104b and 106b at the transport end position 103b (second stop position, see FIG. 10B) There is.
 スリット148aは、ハンドラ104,106が第1停止位置、第2停止位置及び第3停止位置にきたときに位置センサ144によって検知されるように3箇所に設けられている。この実施例では、第2停止位置(図10B参照)がキャリブレーションの原点位置、第3停止位置が輸送動作前の待機位置を兼ねるように設定されている。スリット148aには一定の幅があるため、この実施例では、位置センサ144(発光素子からの光の光軸)がX方向におけるスリット148aの中央の位置にあるときに、ハンドラ104,106が各停止位置に配置されるように設定されている。 The slits 148a are provided at three locations so that the position sensors 144 detect the handlers 104 and 106 when they reach the first stop position, the second stop position, and the third stop position. In this embodiment, the second stop position (see FIG. 10B) is set to be the calibration origin position, and the third stop position is also set to the standby position before the transport operation. Since the slit 148a has a certain width, in this embodiment, when the position sensor 144 (the optical axis of light from the light emitting element) is at the center position of the slit 148a in the X direction, It is set to be placed at the stop position.
 次に、この自動分析システム1全体の制御系統について図11のブロック図を用いて説明する。 Next, the control system of the entire automatic analysis system 1 will be described with reference to the block diagram of FIG.
 前段側自動分析装置2aには採取分析部4a、搬送部6a及び検体導入機構18aの動作を制御する制御部32aが設けられ、後段側自動分析装置2bには採取分析部4b、搬送部6b及び検体導入機構18bの動作を制御する制御部32bが設けられている。輸送装置12には搬送機構100の動作を制御する制御部116が設けられている。 The front-side automatic analyzer 2a is provided with a control unit 32a that controls the operation of the collection and analysis unit 4a, the transport unit 6a, and the sample introduction mechanism 18a. The rear-side automatic analyzer 2b includes the collection and analysis unit 4b, the transport unit 6b, and A control unit 32b that controls the operation of the sample introduction mechanism 18b is provided. The transport device 12 is provided with a control unit 116 that controls the operation of the transport mechanism 100.
 制御部32a,32b及び116はそれぞれ演算制御装置34と接続されている。前段側自動分析装置2aの採取分析部4aで得られた測定データや後段側自動分析装置2bの採取分析部4bで得られた測定データは制御部32aを介して演算制御装置34に取り込まれ、演算制御装置34において検体中の成分の同定や定量が行なわれる。演算制御装置34は例えばパーソナルコンピュータ(PC)により実現される。 The control units 32a, 32b, and 116 are connected to the arithmetic control device 34, respectively. The measurement data obtained by the collection analysis unit 4a of the front-side automatic analyzer 2a and the measurement data obtained by the collection analysis unit 4b of the rear-side automatic analysis device 2b are taken into the arithmetic control device 34 via the control unit 32a. The arithmetic and control unit 34 identifies and quantifies the components in the specimen. The arithmetic and control unit 34 is realized by a personal computer (PC), for example.
 自動分析装置2a、2bの動作と輸送装置12の動作は連動している。マイクロスイッチ30、開始センサ110及び終了センサ112の検知信号は制御部116に取り込まれ、搬送機構100の動作制御に用いられる。開始センサ110の検知信号は、制御部116及び演算制御装置34を介して前段側自動分析装置2aの制御部32aにも取り込まれるようになっており、搬送部6a(ベルトコンベア7a)の動作制御に使用される。 The operation of the automatic analyzers 2a and 2b and the operation of the transport device 12 are linked. Detection signals from the micro switch 30, the start sensor 110, and the end sensor 112 are taken into the control unit 116 and used for operation control of the transport mechanism 100. The detection signal of the start sensor 110 is also taken into the control unit 32a of the upstream automatic analyzer 2a via the control unit 116 and the arithmetic control device 34, and the operation control of the transport unit 6a (belt conveyor 7a) is performed. Used for.
 輸送装置12の制御部116は、輸送動作実行手段152、キャリブレーション手段154及びキャリブレーション結果記憶部156を備えている。各手段152及び154は、制御部116内に格納されたプログラムとそのプログラムを実行するマイクロコンピュータなどの演算装置によって実現されるものである。キャリブレーション結果記憶部156は制御部116内に設けられた記憶装置の一領域により実現されるものである。 The control unit 116 of the transport apparatus 12 includes a transport operation execution unit 152, a calibration unit 154, and a calibration result storage unit 156. Each means 152 and 154 is realized by a program stored in the control unit 116 and an arithmetic device such as a microcomputer that executes the program. The calibration result storage unit 156 is realized by an area of a storage device provided in the control unit 116.
 輸送動作実行手段152は、開始センサ110からの検知信号に基づき、輸送開始位置103a(図4参照)に検体ラックが到達したときに、所定の輸送動作を実行するように構成されたものである。輸送動作の際、ハンドラ104,106を第1停止位置から第4停止位置の各位置へ移動させる。このときのX方向駆動モータ136(図9参照)の制御は、位置センサ144(図9参照)の検知信号に基づいて行なうことはなく、キャリブレーション結果記憶部156に記憶されているキャリブレーション結果に基づいて行なうように構成されている。輸送動作については、図17を用いて後述する。 The transport operation execution means 152 is configured to execute a predetermined transport operation when the sample rack reaches the transport start position 103a (see FIG. 4) based on the detection signal from the start sensor 110. . During the transportation operation, the handlers 104 and 106 are moved from the first stop position to the fourth stop position. The control of the X direction drive motor 136 (see FIG. 9) at this time is not performed based on the detection signal of the position sensor 144 (see FIG. 9), but the calibration result stored in the calibration result storage unit 156. It is comprised based on. The transportation operation will be described later with reference to FIG.
 キャリブレーション手段154は、ハンドラ104,106の移動制御を正しく行なうためのキャリブレーションを実行するように構成されている。キャリブレーションとは、ハンドラ駆動ユニット132(図9参照)に取り付けられた位置センサ144(図9参照)がスリット148a(図9参照)を検知したときのX方向駆動モータ136(図9参照)の駆動量をカウントすることによって、ハンドラ104,106を第1停止位置から第4停止位置までの各停止位置に正確に移動させるために必要なX方向駆動モータ136(図9参照)の駆動量(必要駆動量という)を割り出す動作をいう。この実施例では、輸送装置12が起動されたときに、キャリブレーションが自動的に実行されるように設定されている。なお、キャリブレーションは分析者がキャリブレーションの実行を選択した場合にも実行することができる。キャリブレーションで得られた各停止位置への必要駆動量は、キャリブレーション結果としてキャリブレーション結果記憶部154に記憶される。 The calibration means 154 is configured to execute calibration for correctly performing the movement control of the handlers 104 and 106. Calibration refers to the X-direction drive motor 136 (see FIG. 9) when the position sensor 144 (see FIG. 9) attached to the handler drive unit 132 (see FIG. 9) detects the slit 148a (see FIG. 9). By counting the drive amount, the drive amount (see FIG. 9) of the X-direction drive motor 136 (see FIG. 9) necessary to accurately move the handlers 104 and 106 to the respective stop positions from the first stop position to the fourth stop position. This is an operation for determining the required drive amount. In this embodiment, it is set so that calibration is automatically executed when the transport device 12 is activated. Note that calibration can also be performed when the analyst selects to perform calibration. The required drive amount to each stop position obtained by calibration is stored in the calibration result storage unit 154 as a calibration result.
 輸送装置12内の制御系統について図12のブロック図を用いて説明する。 The control system in the transport device 12 will be described with reference to the block diagram of FIG.
 搬送機構100を制御する制御部116はマイクロコンピュータ116a、モータドライバ116b及び記憶装置116cを備えている。輸送動作実行手段152及びキャリブレーション手段154(図14参照)は、記憶装置116cに格納されているプログラムとそのプログラムを実行するマイクロコンピュータ116aによって実現されている。キャリブレーション結果記憶部156(図11参照)は、記憶装置116cに設けられた一記憶領域によって実現されている。 The control unit 116 that controls the transport mechanism 100 includes a microcomputer 116a, a motor driver 116b, and a storage device 116c. The transport operation execution means 152 and the calibration means 154 (see FIG. 14) are realized by a program stored in the storage device 116c and a microcomputer 116a that executes the program. The calibration result storage unit 156 (see FIG. 11) is realized by one storage area provided in the storage device 116c.
 マイクロコンピュータ116aは、記憶装置116cに格納されている情報に基づき、マイクロスイッチ30、開始センサ110、終了センサ112及び位置センサ144からの信号を用いて種々の処理を実行する。マイクロコンピュータ116aはそれらの情報及び信号に基づいた制御信号をモータドライバ116bに対して送信する。モータドライバ116bはマイクロコンピュータ116aからの制御信号に応じたパルス数の電流をハンドラ駆動ユニット132のX方向駆動モータ136とY方向駆動モータ138に与えて駆動する。X方向駆動モータ136とY方向駆動モータ138は、モータドライバ116bから与えられたパルス数に応じたステップ数だけ回転する。 The microcomputer 116a executes various processes using signals from the microswitch 30, the start sensor 110, the end sensor 112, and the position sensor 144 based on the information stored in the storage device 116c. The microcomputer 116a transmits a control signal based on the information and signals to the motor driver 116b. The motor driver 116b drives the X direction drive motor 136 and the Y direction drive motor 138 of the handler drive unit 132 with a current having the number of pulses corresponding to the control signal from the microcomputer 116a. The X direction drive motor 136 and the Y direction drive motor 138 rotate by the number of steps corresponding to the number of pulses given from the motor driver 116b.
 キャリブレーションの際、モータドライバ116bはX方向駆動モータ136に与えたパルス数(モータ136のステップ数)をカウントしており、マイクロコンピュータ116aはそのカウント数に基づいて各停止位置への必要駆動量(必要ステップ数)を割り出す。割り出された必要駆動量は記憶装置116cに記憶される。輸送動作の際、マイクロコンピュータ116aは記憶装置116cに記憶された必要駆動量に基づいてモータドライバ116bに制御信号を送信する。 At the time of calibration, the motor driver 116b counts the number of pulses applied to the X-direction drive motor 136 (the number of steps of the motor 136), and the microcomputer 116a calculates the necessary drive amount to each stop position based on the count number. Determine the number of required steps. The calculated necessary drive amount is stored in the storage device 116c. During the transportation operation, the microcomputer 116a transmits a control signal to the motor driver 116b based on the required drive amount stored in the storage device 116c.
 この輸送装置12の起動後の動作の一連の流れについて図14を用いて説明する。 A series of operations after the start-up of the transport device 12 will be described with reference to FIG.
 輸送装置12を起動すると、キャリブレーションが自動的に実行される。キャリブレーションが終了した後、そのキャリブレーション結果に基づいてハンドラ104,106を待機位置(第3停止位置)に移動させ、輸送開始位置103a(図4参照)に検体ラックが到達するまで待機させる。開始センサ110によって検体ラックが検知されると、その検体ラックを輸送終了位置103bへ輸送する輸送動作が実行される。輸送動作中におけるハンドラ104,106の移動制御は、キャリブレーションにより得られた各停止位置へのX方向駆動モータ136の必要駆動量に基づいて行なわれる。輸送動作が終了すると、ハンドラ104,106を待機位置に戻し、次の検体ラックが開始センサ110によって検知されるまで待機させる。 When the transport device 12 is activated, calibration is automatically executed. After the calibration is completed, the handlers 104 and 106 are moved to the standby position (third stop position) based on the calibration result, and are kept waiting until the sample rack reaches the transport start position 103a (see FIG. 4). When the sample rack is detected by the start sensor 110, a transport operation for transporting the sample rack to the transport end position 103b is executed. The movement control of the handlers 104 and 106 during the transport operation is performed based on the required drive amount of the X-direction drive motor 136 to each stop position obtained by calibration. When the transport operation is finished, the handlers 104 and 106 are returned to the standby position, and are kept on standby until the next sample rack is detected by the start sensor 110.
 次に、キャリブレーションのプロセスの一例を、図9、図10A~図10D、図11とともに図15のフローチャートを用いて説明する。 Next, an example of the calibration process will be described with reference to the flowchart of FIG. 15 together with FIG. 9, FIG. 10A to FIG. 10D, and FIG.
 ハンドラ104,106を第1停止位置から第4停止位置(それぞれ図10A~図10Dの位置)へ移動させるために必要なX方向駆動モータ136の駆動量(ステップ数)は、デフォルト値として制御部116の所定の記憶領域に格納されている。温度や湿度などの環境によるラックギア146の長さの変化などに起因して、X方向駆動モータ136をデフォルト値で駆動してもハンドラ104,106を各停止位置へ正確に移動させることができないことがある。そこで、キャリブレーションにより、ハンドラ104,106を各停止位置へ正確に移動させるためのX方向駆動モータ136の駆動量を割り出す。 The drive amount (number of steps) of the X-direction drive motor 136 required to move the handlers 104 and 106 from the first stop position to the fourth stop position (the positions shown in FIGS. 10A to 10D, respectively) 116 is stored in a predetermined storage area 116. Due to changes in the length of the rack gear 146 due to an environment such as temperature and humidity, the handlers 104 and 106 cannot be accurately moved to each stop position even if the X-direction drive motor 136 is driven at the default value. There is. Therefore, the drive amount of the X-direction drive motor 136 for accurately moving the handlers 104 and 106 to each stop position is determined by calibration.
 キャリブレーションが開始されると、まず、デフォルト値を用いてハンドラ104,106を原点位置である第2停止位置(図10Bの位置)側へ移動させ、その近傍においてハンドラ駆動ユニット132をX方向へ前進又は後進させることにより、第2停止位置用のスリット148aが検知される範囲を割り出す。そして、第2停止位置用のスリット148aが検知される範囲のうちX方向における中央の位置を原点位置として検知する。 When calibration is started, first, the handlers 104 and 106 are moved to the second stop position (position of FIG. 10B), which is the origin position, using the default value, and in the vicinity thereof, the handler drive unit 132 is moved in the X direction. By moving forward or backward, the range in which the slit 148a for the second stop position is detected is determined. Then, the center position in the X direction is detected as the origin position in the range where the second stop position slit 148a is detected.
 デフォルト値を用いてハンドラ104,106を第1停止位置(図10Aの位置)側へ移動させ、その近傍においてハンドラ駆動ユニット132をX方向へ前進又は後進させることにより、第1停止位置用のスリット148aが検知される範囲を割り出す。そして、第1停止位置用のスリット148aが検知される範囲のうちX方向における中央の位置を第1停止位置として割り出す。このとき、原点位置を始点として、第1停止位置が割り出されるまでのX方向駆動モータ136のステップ数をカウントしておき、そのステップ数を第1停止位置への必要駆動量としてキャリブレーション結果記憶部156に記憶させる。 By moving the handlers 104 and 106 to the first stop position (position of FIG. 10A) using the default value and moving the handler drive unit 132 forward or backward in the X direction in the vicinity thereof, a slit for the first stop position The range in which 148a is detected is determined. Then, the central position in the X direction in the range where the slit 148a for the first stop position is detected is determined as the first stop position. At this time, starting from the origin position, the number of steps of the X-direction drive motor 136 until the first stop position is determined is counted, and the number of steps is used as the required drive amount to the first stop position, and the calibration result. The data is stored in the storage unit 156.
 原点位置(第2停止位置)から第1停止位置までの距離は設計値として決まっており、その情報が制御部116内の所定の記憶領域に格納されている。その情報と上記のキャリブレーションで割り出された第1停止位置への必要駆動量を用いて、X方向駆動モータ136の1ステップ当たりのハンドラ104,106の移動量を単位移動量として算出し、キャリブレーション結果記憶部156に記憶させる。 The distance from the origin position (second stop position) to the first stop position is determined as a design value, and the information is stored in a predetermined storage area in the control unit 116. Using the information and the necessary driving amount to the first stop position determined by the above calibration, the moving amount of the handlers 104 and 106 per step of the X direction driving motor 136 is calculated as a unit moving amount. The data is stored in the calibration result storage unit 156.
 デフォルト値を用いてハンドラ104,106を第3停止位置(図10Cの位置)側へ移動させ、その近傍においてハンドラ駆動ユニット132をX方向へ前進又は後進させることにより、第3停止位置用のスリット148aが検知される範囲を割り出す。そして、第3停止位置用のスリット148aが検知される範囲のうちX方向における中央の位置を第3停止位置として割り出す。第3停止位置が割り出されるまでのX方向駆動モータ136のステップ数をカウントしておき、そのステップ数を第3停止位置への必要駆動量としてキャリブレーション結果記憶部156に記憶させる。 By moving the handlers 104, 106 to the third stop position (position of FIG. 10C) using the default value and moving the handler drive unit 132 forward or backward in the X direction in the vicinity thereof, a slit for the third stop position The range in which 148a is detected is determined. Then, the central position in the X direction in the range where the slit 148a for the third stop position is detected is determined as the third stop position. The number of steps of the X-direction drive motor 136 until the third stop position is determined is counted, and the number of steps is stored in the calibration result storage unit 156 as a required drive amount to the third stop position.
 次に第4停止位置(図10Dの位置)へのハンドラ駆動ユニット132の必要駆動量を求める。第3停止位置から第4停止位置へハンドラ104,106を移動させるために必要なX方向駆動モータ136の駆動量(ステップ数)は、第3停止位置と第4停止位置との間の距離と単位移動量を用いて計算により求めることができる。第3停止位置と第4停止位置との間の距離は、ハンドラ104,106の第1保持部104a,106aと第2保持部104b,106bとの間の距離と同じであり、第1保持部104a,106aと第2保持部104b,106bとの間の距離は設計値として制御部116内の所定の記憶領域に格納されている。これらの情報を用いて第4停止位置への必要駆動量を計算により求め、キャリブレーション結果記憶部156に記憶させる。 Next, the required drive amount of the handler drive unit 132 to the fourth stop position (position in FIG. 10D) is obtained. The amount of driving (number of steps) of the X-direction drive motor 136 required to move the handlers 104 and 106 from the third stop position to the fourth stop position is the distance between the third stop position and the fourth stop position. It can be obtained by calculation using the unit movement amount. The distance between the third stop position and the fourth stop position is the same as the distance between the first holding portions 104a and 106a and the second holding portions 104b and 106b of the handlers 104 and 106, and the first holding portion The distance between 104a, 106a and the second holding unit 104b, 106b is stored in a predetermined storage area in the control unit 116 as a design value. Using these pieces of information, the necessary drive amount to the fourth stop position is obtained by calculation and stored in the calibration result storage unit 156.
 以上のプロセスにより、第1停止位置から第4停止位置への必要駆動量がすべて割り出されて、キャリブレーション結果記憶部156に記憶される。キャリブレーションが終了すると、検体ラックの輸送動作が逐次実行されるが、その輸送動作の際に上記キャリブレーションで得られた必要駆動量を用いてX方向駆動モータ136の制御が行なわれ、ハンドラ104,106が各停止位置に正確に移動させられる。 Through the above process, all necessary drive amounts from the first stop position to the fourth stop position are determined and stored in the calibration result storage unit 156. When the calibration is completed, the transport operation of the sample rack is sequentially performed. The X-direction drive motor 136 is controlled using the necessary drive amount obtained by the calibration during the transport operation, and the handler 104 is operated. 106 are accurately moved to the respective stop positions.
 なお、図16のフローチャートに示されているように、第3停止位置と第4停止位置への必要駆動量を計算によって求めるようにしてもよい。図16の例は、単位移動量を算出するプロセスまでは図15の例と同じプロセスであるが、その後の第3停止位置への必要駆動量の割出しも計算によって行なうようになっている。第1停止位置と第3停止位置との間の位置関係は設計値として決まっているため、その設計値と単位移動量を用いて第3停止位置への必要駆動量を計算により求めることができる。第3停止位置へのX方向駆動モータ136の必要駆動量が求まれば、第4停止位置へのX方向駆動モータ136の必要駆動量も計算により求めることができる。このように、第3停止位置へのX方向駆動モータ136の必要駆動量も計算で求めるようにすることで、キャリブレーションにおいてハンドラを実際に第3停止位置へ移動させるプロセスが不要となり、キャリブレーションに要する時間の短縮を図ることができる。この場合、第3停止位置用のスリット148aは不要となる。 In addition, as shown in the flowchart of FIG. 16, the required drive amount to the third stop position and the fourth stop position may be obtained by calculation. The example of FIG. 16 is the same process as the example of FIG. 15 until the process of calculating the unit movement amount, but the calculation of the necessary drive amount to the third stop position after that is also performed by calculation. Since the positional relationship between the first stop position and the third stop position is determined as a design value, the required drive amount to the third stop position can be obtained by calculation using the design value and the unit movement amount. . If the required drive amount of the X-direction drive motor 136 to the third stop position is obtained, the required drive amount of the X-direction drive motor 136 to the fourth stop position can also be obtained by calculation. Thus, by calculating the required drive amount of the X-direction drive motor 136 to the third stop position, the process of actually moving the handler to the third stop position in the calibration becomes unnecessary, and the calibration Can be shortened. In this case, the slit 148a for the third stop position is not necessary.
 逆に、第4停止位置用のスリット148aも設けておき、キャリブレーションにおいてハンドラ104,106を第4停止位置へ移動させてそのときのX方向駆動モータ136のステップ数をカウントすることで、第4停止位置への必要駆動量を割り出すようにしてもよい。かかるキャリブレーションでは、第1停止位置から第4停止位置までのすべての停止位置へハンドラ104,106を移動させるプロセスを経るため、キャリブレーションに要する時間が長くなるが、第4停止位置への必要駆動量を計算で求める場合に比べてキャリブレーションの精度を高めることができる。 Conversely, a slit 148a for the fourth stop position is also provided, the handlers 104 and 106 are moved to the fourth stop position in the calibration, and the number of steps of the X-direction drive motor 136 at that time is counted. You may make it calculate the required drive amount to 4 stop positions. In such calibration, since the process of moving the handlers 104 and 106 to all stop positions from the first stop position to the fourth stop position is performed, the time required for calibration becomes longer, but the need for the fourth stop position is required. Compared with the case where the drive amount is obtained by calculation, the accuracy of calibration can be increased.
 次に、輸送装置12の輸送動作のプロセスの一例を、図13A~図13Hのプロセスごとの平面図と図17のフローチャートを用いて説明する。 Next, an example of the process of the transport operation of the transport apparatus 12 will be described with reference to the plan views for each process of FIGS.
 前段側自動分析装置2aで処理の終了した検体容器20aを保持した検体ラック20は、ベルトコンベア7aによってその終端側へ搬送され、輸送装置12のストッパ114により輸送開始位置103aとして設定されたベルトコンベア7aの終端部近傍の位置で停止させられる。 The sample rack 20 holding the sample container 20a that has been processed by the front-side automatic analyzer 2a is transported to the end side by the belt conveyor 7a, and the belt conveyor set as the transport start position 103a by the stopper 114 of the transport device 12 7a is stopped at a position near the end portion.
 輸送装置12は、ベルトコンベア7aの終端(輸送開始位置)に検体ラックが到達するまでは、ハンドラ104,106を待機位置(第3停止位置)で待機させており(図13A参照)、ベルトコンベア7aの終端に検体ラック20が到達して開始センサ110が検体ラック20を検知すると、ハンドラ104,106を第1停止位置へ移動させ(図13B参照)、第1保持部104a,106aでその検体ラック20を保持する(図13C参照)。 The transport device 12 waits the handlers 104 and 106 at the standby position (third stop position) until the sample rack reaches the end (transport start position) of the belt conveyor 7a (see FIG. 13A). When the sample rack 20 reaches the end of 7a and the start sensor 110 detects the sample rack 20, the handlers 104 and 106 are moved to the first stop position (see FIG. 13B), and the first holding units 104a and 106a move the sample. The rack 20 is held (see FIG. 13C).
 検体ラック20を保持したハンドラ104,106を第3停止位置へ移動させ(図13D参照)、水平面102上に検体ラック20を一時的に載置する(図13E参照)。ハンドラ104,106を第4停止位置へ移動させ(図13F参照)、第2保持部104b,106bで検体ラック20を保持する(図13G参照)。その後、ハンドラ104,106を第2停止位置へ移動させ、輸送終了位置であるベルトコンベア7bの始端部に検体ラック20を配置する(図13H参照)。このとき、検体ラック20が終了センサ112によって検知され、検体ラック20の輸送の完了が検知される。その後、ハンドラ104,106を待機位置である第3停止位置に移動させ、次の検体ラック20がベルトコンベア7の終端部に到達するまで待機させる。 The handlers 104 and 106 holding the sample rack 20 are moved to the third stop position (see FIG. 13D), and the sample rack 20 is temporarily placed on the horizontal plane 102 (see FIG. 13E). The handlers 104 and 106 are moved to the fourth stop position (see FIG. 13F), and the sample rack 20 is held by the second holding units 104b and 106b (see FIG. 13G). Thereafter, the handlers 104 and 106 are moved to the second stop position, and the sample rack 20 is disposed at the start end of the belt conveyor 7b, which is the transport end position (see FIG. 13H). At this time, the sample rack 20 is detected by the end sensor 112, and the completion of transport of the sample rack 20 is detected. Thereafter, the handlers 104 and 106 are moved to the third stop position, which is the standby position, and wait until the next sample rack 20 reaches the end of the belt conveyor 7.
   1   自動分析システム
   2a   前段側自動分析装置
   2b   後段側自動分析装置
   4a,4b   採取分析部
   6a,6b   搬送部
   7a,7b   ベルトコンベア
   8a,8b   検体ラック配置部
   9a,9b   検体ラック導入部
   10a,10b   検体ラック回収部
   12   輸送装置
   14   遮蔽カバー
   18a,18b   検体導入機構
   20   検体ラック
   20a   検体容器
   22a,22b   試薬収容部
   24a,24b   検体ラック収容部
   26a,26b   測定部
   28   ピン(マイクロスイッチ用)
   30   マイクロスイッチ
   32a,32b   制御部
   34   演算制御装置
   100   搬送機構
   102   水平面
   103a   輸送開始位置
   103b   搬送完了位置
   104,106   腕部材(ハンドラ)
   104a,104b,106a,106b   突起(保持部)
   108   ガイドレール
   110   開始センサ
   112   終了センサ
   114   ストッパ
   116   回路基板(制御部)
   116a   マイクロコンピュータ
   116b   モータドライバ
   116c   記憶装置
   118   筐体
   120   固定軸
   125   保持部材
   126   突起
   127   連動部材
   127   連動部材上面
   128   バネ
   130   プーリ
   132   ハンドラ駆動ユニット
   134   シャーシ
   136   X方向駆動モータ
   136a,138a   ピニオンギア
   138   Y方向駆動モータ
   140,142   ハンドラ駆動プレート
   140a,142a   ギア部
   144   位置センサ
   146   ラックギア
   148   遮光プレート
   148a   スリット
   152   輸送動作実行手段
   154   キャリブレーション手段
   156   キャリブレーション結果記憶部
DESCRIPTION OF SYMBOLS 1 Automatic analysis system 2a The front | former stage automatic analyzer 2b The back | latter stage automatic analyzer 4a, 4b Sampling analysis part 6a, 6b Conveyance part 7a, 7b Belt conveyor 8a, 8b Specimen rack arrangement | positioning part 9a, 9b Specimen rack introduction part 10a, 10b Specimen Rack collection unit 12 Transport device 14 Shielding cover 18a, 18b Sample introduction mechanism 20 Sample rack 20a Sample container 22a, 22b Reagent storage unit 24a, 24b Sample rack storage unit 26a, 26b Measurement unit 28 pin (for micro switch)
30 Microswitch 32a, 32b Control unit 34 Arithmetic control device 100 Transport mechanism 102 Horizontal surface 103a Transport start position 103b Transport completion position 104, 106 Arm member (handler)
104a, 104b, 106a, 106b Protrusion (holding part)
108 Guide rail 110 Start sensor 112 End sensor 114 Stopper 116 Circuit board (control unit)
116a Microcomputer 116b Motor driver 116c Storage device 118 Housing 120 Fixed shaft 125 Holding member 126 Projection 127 Interlocking member 127 Interlocking member upper surface 128 Spring 130 Pulley 132 Handler drive unit 134 Chassis 136 X direction drive motor 136a, 138a Pinion gear 138 Y direction Drive motors 140 and 142 Handler drive plates 140a and 142a Gear unit 144 Position sensor 146 Rack gear 148 Light-shielding plate 148a Slit 152 Transport operation execution unit 154 Calibration unit 156 Calibration result storage unit

Claims (8)

  1.  互いに離れた2つの位置の一方を輸送開始位置、他方を輸送終了位置とし、前記輸送開始位置と前記輸送終了位置との間に配置され、前記輸送開始位置にある輸送対象物を保持し前記輸送終了位置にその輸送対象物を配置するための保持部を備えたハンドラと、
     モータ及び該モータの動力を前記ハンドラに伝達して前記ハンドラを前記輸送開始位置と前記輸送終了位置との間で移動させる動力伝達機構を有するハンドラ駆動機構と、
     前記ハンドラが、該ハンドラの移動範囲内に設定された所定の原点位置、前記輸送開始位置の輸送対象物を保持するための位置である第1停止位置、及び前記輸送終了位置に輸送対象物を配置するための位置である第2停止位置にきたことを検知するように構成されたハンドラ位置検知手段と、
     前記原点位置を始点として、前記ハンドラ位置検知手段からの検知信号に基づいて前記ハンドラを前記第1停止位置及び前記第2停止位置へ移動させ、そのときの前記モータの駆動量を各停止位置への必要駆動量として割り出すキャリブレーションを実行するように構成されたキャリブレーション手段と、
     直近の前記キャリブレーションにより割り出された各停止位置への前記必要駆動量をキャリブレーション結果として記憶するキャリブレーション結果記憶部と、
     前記キャリブレーション結果記憶部に記憶されている前記キャリブレーション結果に基づいて、前記ハンドラを前記第1停止位置に移動させて前記輸送開始位置にある輸送対象物を保持させた後、前記ハンドラを前記第2停止位置へ移動させて前記輸送終了位置にその輸送対象物を配置させる輸送動作を、前記ハンドラ駆動機構を制御することにより実行するように構成された輸送動作実行手段と、を備えている輸送装置。
    One of two positions separated from each other is a transport start position and the other is a transport end position. The transport target is located between the transport start position and the transport end position and holds a transport object at the transport start position. A handler having a holding part for placing the transport object at an end position;
    A handler driving mechanism having a motor and a power transmission mechanism for transmitting the power of the motor to the handler and moving the handler between the transport start position and the transport end position;
    The handler places a transport object at a predetermined origin position set within the movement range of the handler, a first stop position that is a position for holding the transport object at the transport start position, and the transport end position. Handler position detection means configured to detect that the second stop position, which is a position for placement, has been reached;
    Starting from the origin position, the handler is moved to the first stop position and the second stop position based on a detection signal from the handler position detection means, and the driving amount of the motor at that time is moved to each stop position. Calibration means configured to perform calibration to determine the required drive amount of
    A calibration result storage unit that stores the required drive amount to each stop position determined by the most recent calibration as a calibration result;
    Based on the calibration result stored in the calibration result storage unit, the handler is moved to the first stop position to hold the transport object at the transport start position, and then the handler is moved to the first stop position. A transport operation executing means configured to execute a transport operation of moving to a second stop position and placing the transport object at the transport end position by controlling the handler drive mechanism; Transport equipment.
  2.  前記原点位置は、前記第1停止位置又は前記第2停止位置のいずれか一方の位置に設定されている請求項1に記載の輸送装置。 The transportation device according to claim 1, wherein the origin position is set to one of the first stop position and the second stop position.
  3.  前記輸送開始位置と前記輸送終了位置との間に輸送対象物を載置可能な水平面が設けられており、
     前記ハンドラは前記輸送開始位置側と前記輸送終了位置側の2箇所に前記輸送対象物を保持するための保持部を備え、前記輸送開始位置側の保持部は、前記ハンドラが前記第1停止位置にきたときに前記輸送開始位置の輸送対象物を保持できる位置に配置されるように設けられ、前記輸送終了位置側の保持部は、前記ハンドラが前記第2停止位置にきたときに前記輸送終了位置へ保持した輸送対象物を配置できる位置に配置されるように設けられており、
     前記輸送動作実行手段は、前記輸送動作として、前記ハンドラを前記第1停止位置に移動させて前記輸送開始位置の輸送対象物を前記輸送開始位置側の保持部で保持し、その輸送対象物を前記水平面上に載置するための位置である第3停止位置に前記ハンドラを移動させてその輸送対象物を前記水平面上に載置し、前記輸送終了位置側の保持部で前記水平面上に載置された輸送対象物を保持するための位置である第4停止位置に前記ハンドラを移動させてその輸送対象物を前記輸送終了位置側の保持部で保持し、その後、前記第2停止位置に移動して輸送対象物を前記輸送終了位置側の保持部で前記輸送終了位置に配置する動作を、前記ハンドラ駆動機構を制御することにより実行するように構成されており、
     前記キャリブレーション手段は、前記キャリブレーションにおいて、前記第3停止位置への必要駆動量及び前記第4停止位置への必要駆動量も割り出すように構成されている請求項1又は2に記載の輸送装置。
    A horizontal plane on which a transport object can be placed is provided between the transport start position and the transport end position;
    The handler includes a holding portion for holding the transport object at two locations on the transport start position side and the transport end position side, and the handler on the transport start position side has the handler at the first stop position. The holding part on the transport end position side is provided so as to be disposed at a position where the transport object at the transport start position can be held when the handler comes to the transport stop position. It is provided to be placed at a position where the transported object held at the position can be placed,
    The transportation operation execution means moves the handler to the first stop position as the transportation operation, holds the transportation object at the transportation start position by the holding part on the transportation start position side, and moves the transportation object. The handler is moved to a third stop position, which is a position for placing on the horizontal plane, the transport object is placed on the horizontal plane, and placed on the horizontal plane by the holding portion on the transport end position side. The handler is moved to the fourth stop position, which is a position for holding the placed transport object, and the transport object is held by the holding portion on the transport end position side, and then moved to the second stop position. The operation of moving and placing the object to be transported at the transport end position side by the holding unit on the transport end position side is configured to execute by controlling the handler driving mechanism,
    3. The transport device according to claim 1, wherein the calibration unit is configured to calculate a necessary drive amount to the third stop position and a necessary drive amount to the fourth stop position in the calibration. .
  4.  前記キャリブレーション手段は、前記第1停止位置への前記必要駆動量又は前記第2停止位置への前記必要駆動量のいずれか一方の必要駆動量に基づいて、前記モータの単位駆動量当たりの前記ハンドラの移動量を単位移動量として算出し、その単位移動量を用いて、少なくとも前記第3停止位置への必要駆動量又は前記第4停止位置への必要駆動量を計算により求めるように構成されている請求項3に記載の輸送装置。 The calibration means is configured to calculate the per unit drive amount of the motor based on the required drive amount of either the required drive amount to the first stop position or the required drive amount to the second stop position. The movement amount of the handler is calculated as a unit movement amount, and at least the required drive amount to the third stop position or the required drive amount to the fourth stop position is calculated by using the unit movement amount. The transport device according to claim 3.
  5.  前記キャリブレーション手段は、当該輸送装置が起動状態になったときに前記キャリブレーションを自動的に実行するように構成されている請求項1から5のいずれか一項に記載の輸送装置。 The transport device according to any one of claims 1 to 5, wherein the calibration unit is configured to automatically execute the calibration when the transport device is activated.
  6.  前記動力伝達機構は、前記ハンドラの移動方向に沿って延びるように配置されたラックギア、及び前記モータの回転軸に取り付けられたピニオンギアであって前記ラックギアと噛み合いながら前記モータの回転に伴なって前記ラックギア上を移動するピニオンギアを備え、前記モータの回転により前記モータとともに前記ハンドラを移動させるように構成されており、
     前記ラックギアは樹脂により構成されている請求項1から5のいずれか一項に記載の輸送装置。
    The power transmission mechanism is a rack gear arranged so as to extend along the moving direction of the handler, and a pinion gear attached to a rotation shaft of the motor, and is engaged with the rack gear as the motor rotates. It comprises a pinion gear that moves on the rack gear, and is configured to move the handler together with the motor by the rotation of the motor,
    The transport device according to any one of claims 1 to 5, wherein the rack gear is made of resin.
  7.  前記ハンドラ位置検知手段は、発光素子と受光素子が互いに対向配置された状態で前記ハンドラに一体として取り付けられた光センサと、前記ハンドラがきたことを検知すべき位置に設けられ、前記受光素子に入射する前記発光素子からの光を遮る遮光部又は前記受光素子に前記発光素子からの光を入射させるスリットと、を備え、前記ハンドラとともに移動する前記光センサが前記遮光部又は前記スリットを検知することにより前記ハンドラがその遮光部又はスリットが設けられている位置にきたことを検知するものである請求項1から6のいずれか一項に記載の輸送装置。 The handler position detecting means is provided at a position to detect that the handler has come, an optical sensor attached integrally to the handler in a state where the light emitting element and the light receiving element are arranged opposite to each other, and the light receiving element A light-blocking part that blocks light from the light-emitting element that is incident or a slit that allows light from the light-emitting element to enter the light-receiving element, and the light sensor that moves with the handler detects the light-blocking part or the slit. The transport apparatus according to any one of claims 1 to 6, wherein the handler detects that the handler has come to a position where the light shielding portion or the slit is provided.
  8.  互いに隣接する2つの自動分析装置とそれらの自動分析装置に間において検体容器を保持した検体ラックを輸送する請求項1から7のいずれか一項に記載の輸送装置を備え、
     前記自動分析装置のそれぞれは、前記検体ラックを搬送するベルトコンベア、検体容器から検体を採取して分析を行なう採取分析部及び前記ベルトコンベア上の検体ラックを保持して前記採取分析部へ導入する検体導入機構を独自に備えており、
     前記輸送装置が、一方の自動分析装置のベルトコンベアの終端部を輸送開始位置、他方の自動分析装置のベルトコンベアの始端部を輸送終了位置とし、前記輸送開始位置に到達した検体ラックをハンドラで保持して前記輸送終了位置まで輸送して配置するように構成されている自動分析システム。
    The transport apparatus according to any one of claims 1 to 7, which transports two automatic analyzers adjacent to each other and a sample rack holding a sample container between the automatic analyzers.
    Each of the automatic analyzers holds a belt conveyor that conveys the sample rack, a collection and analysis unit that collects and analyzes a sample from a sample container, and a sample rack on the belt conveyor and introduces the sample rack to the collection and analysis unit It has its own sample introduction mechanism,
    The transport device uses the end of the belt conveyor of one automatic analyzer as the transport start position, the start of the belt conveyor of the other auto analyzer as the transport end position, and the sample rack that has reached the transport start position is handled by the handler. An automatic analysis system configured to be held and transported to the transport end position.
PCT/JP2014/053150 2014-02-12 2014-02-12 Transport apparatus and automatic analytical system provided with transport apparatus WO2015121919A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/053150 WO2015121919A1 (en) 2014-02-12 2014-02-12 Transport apparatus and automatic analytical system provided with transport apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/053150 WO2015121919A1 (en) 2014-02-12 2014-02-12 Transport apparatus and automatic analytical system provided with transport apparatus

Publications (1)

Publication Number Publication Date
WO2015121919A1 true WO2015121919A1 (en) 2015-08-20

Family

ID=53799689

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/053150 WO2015121919A1 (en) 2014-02-12 2014-02-12 Transport apparatus and automatic analytical system provided with transport apparatus

Country Status (1)

Country Link
WO (1) WO2015121919A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111413181A (en) * 2019-01-04 2020-07-14 船井电机株式会社 Digital distribution system and method for preparing and analyzing multiple samples in a microwell plate
WO2022044382A1 (en) * 2020-08-27 2022-03-03 株式会社日立ハイテク Sample rack transfer device and automatic analysis device using same
US11543422B2 (en) 2016-08-25 2023-01-03 Shimadzu Corporation Automatic analysis system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10111297A (en) * 1996-10-07 1998-04-28 Shimadzu Corp Auto-sampler
JP2001158523A (en) * 1999-12-02 2001-06-12 Kobe Steel Ltd Driving control method of wrapping driving means, and multi-strip-type conveying device
JP3187844U (en) * 2013-10-07 2013-12-19 株式会社島津製作所 Automatic analysis system connecting multiple analyzers

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10111297A (en) * 1996-10-07 1998-04-28 Shimadzu Corp Auto-sampler
JP2001158523A (en) * 1999-12-02 2001-06-12 Kobe Steel Ltd Driving control method of wrapping driving means, and multi-strip-type conveying device
JP3187844U (en) * 2013-10-07 2013-12-19 株式会社島津製作所 Automatic analysis system connecting multiple analyzers

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11543422B2 (en) 2016-08-25 2023-01-03 Shimadzu Corporation Automatic analysis system
CN111413181A (en) * 2019-01-04 2020-07-14 船井电机株式会社 Digital distribution system and method for preparing and analyzing multiple samples in a microwell plate
CN111413181B (en) * 2019-01-04 2024-02-13 船井电机株式会社 Digital distribution system and method for preparing and analyzing multiple samples in micro-well plate
WO2022044382A1 (en) * 2020-08-27 2022-03-03 株式会社日立ハイテク Sample rack transfer device and automatic analysis device using same
JP7350189B2 (en) 2020-08-27 2023-09-25 株式会社日立ハイテク Sample rack transfer device and automatic analysis device using it

Similar Documents

Publication Publication Date Title
US8698644B2 (en) Sample processing apparatus, sample container transporting apparatus, sample processing method and sample container transporting method
US9638709B2 (en) Analysis apparatus and analysis method
JP4906431B2 (en) Automatic analyzer
JP4829677B2 (en) Sample analyzer
CN107831324B (en) Automated diagnostic analyzer with rear accessible track system and related methods
EP2502675B1 (en) Container holder and container carrier
JP6653329B2 (en) Automatic analyzer and automatic analysis method
JP5850625B2 (en) Analysis apparatus and position confirmation method
JP5377866B2 (en) Sample analyzer
JP5244062B2 (en) Sample processing equipment
CN104335051B (en) Automatic analysing apparatus
WO2015121919A1 (en) Transport apparatus and automatic analytical system provided with transport apparatus
WO2015092844A1 (en) Liquid collection device and automated analyzer provided therewith
CN110749742A (en) POCT full-automatic chemiluminescence device based on active magnetic separation technology
WO2015138044A1 (en) Combined chemiluminescence and elisa automated sample reader
JPH0619321B2 (en) Absorbance measuring device for microplate
JP6065803B2 (en) Automatic analysis system connecting multiple analyzers
JP5999033B2 (en) Automatic analysis system connecting multiple analyzers
JP3187844U (en) Automatic analysis system connecting multiple analyzers
US20100152890A1 (en) Sample processing system, sample processing method, and computer program product
CN109283351B (en) Full-automatic blood coagulation analyzer
WO2015083236A1 (en) Automatic analysis system obtained by linking plurality of analysis devices
EP2598891B1 (en) System for the analysis of samples
CN211086330U (en) POCT full-automatic chemiluminescence device based on active magnetic separation technology
EP3206035A1 (en) Automatic analysis system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14882483

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14882483

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP