WO2015115235A1 - Conductive ink composition for ink jet - Google Patents

Conductive ink composition for ink jet Download PDF

Info

Publication number
WO2015115235A1
WO2015115235A1 PCT/JP2015/051262 JP2015051262W WO2015115235A1 WO 2015115235 A1 WO2015115235 A1 WO 2015115235A1 JP 2015051262 W JP2015051262 W JP 2015051262W WO 2015115235 A1 WO2015115235 A1 WO 2015115235A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
boiling point
ink composition
organic solvent
mass
Prior art date
Application number
PCT/JP2015/051262
Other languages
French (fr)
Japanese (ja)
Inventor
佑一 早田
悠史 本郷
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2015115235A1 publication Critical patent/WO2015115235A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/52Electrically conductive inks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/32Inkjet printing inks characterised by colouring agents
    • C09D11/322Pigment inks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/38Inkjet printing inks characterised by non-macromolecular additives other than solvents, pigments or dyes

Definitions

  • the present invention relates to a conductive ink composition for inkjet.
  • a dispersion of metal oxide particles is applied to the base material by a printing method, in particular, an ink jet printing method, and is heated and sintered to form a metal film or circuit board.
  • a printing method in particular, an ink jet printing method
  • Techniques for forming electrically conductive parts such as wiring and electrodes are known.
  • the above method is simple, energy-saving, and resource-saving, so it has great expectations in the fields of electronic equipment and electronic devices. Collecting.
  • Patent Document 1 discloses copper, silver, or indium high-valent compound, linear, branched or cyclic alcohol having 1 to 18 carbon atoms and a group VIII metal catalyst, A composition for producing a silver or indium metal film is disclosed.
  • the present invention provides a conductive ink composition for ink jet that exhibits high conductivity even at low-temperature sintering and can form a conductive film excellent in line width uniformity and excellent in continuous discharge stability. Is an issue.
  • the present inventor has learned that a desired effect can be obtained by using predetermined various solvents, and has completed the present invention. That is, the present inventors have found that the above problem can be solved by the following configuration.
  • a water-soluble organic solvent excluding an alcohol compound having a boiling point of 250 ° C. or higher
  • the water-soluble organic solvent contains a water-soluble organic solvent having a boiling point of 100 ° C. or higher and lower than 250 ° C.
  • a conductive ink composition for inkjet wherein the total mass of the water-soluble organic solvent and water having a boiling point of 100 ° C. or higher and lower than 250 ° C.
  • the inkjet according to (1) wherein the water-soluble organic solvent having a boiling point of 100 ° C. or higher and lower than 250 ° C. has at least one structure selected from the group consisting of an ether structure, a ketone structure and a heterocyclic structure in the molecule.
  • Conductive ink composition (3) The conductive ink composition for inkjet according to (1) or (2), wherein the alcohol compound having a boiling point of 250 ° C. or higher contains a trivalent or higher alkyl alcohol. (4) Ratio of the total mass of alcohol compounds having a boiling point of 250 ° C.
  • the conductive ink composition for inkjet according to any one of (1) to (3), wherein the mass) is 0.2 to 3.0.
  • the total mass of copper oxide particles having an average primary particle diameter of 100 nm or less is 20 mass% or less of the total mass of the conductive ink composition for inkjet, according to any one of (1) to (4) A conductive ink composition for inkjet. (6) Ratio of the total mass of alcohol compounds having a boiling point of 250 ° C.
  • the metal particles or salt containing at least one metal element selected from the group consisting of Group 8 to 11 elements of the periodic table is at least selected from the group consisting of Group 10 elements of the periodic table.
  • an ink-jet conductive ink composition having excellent continuous discharge stability, which can form a conductive film having high conductivity even at low-temperature sintering and having excellent line width uniformity. Can do.
  • the suitable aspect of the electrically conductive ink composition for inkjets of this invention is demonstrated in detail.
  • the numerical range described by “to” includes an upper limit value and a lower limit value.
  • the numerical range “10-20” includes “10” and “20”.
  • the boiling point is a boiling point under normal pressure (100 kPa).
  • a feature of the present invention is that at least one metal selected from the group consisting of copper oxide particles having an average primary particle diameter of 100 nm or less and Group 8 to 11 elements in the periodic table in the conductive ink composition for inkjet. It contains metal particles or salts containing elements, an alcohol compound having a boiling point of 250 ° C. or higher, a water-soluble organic solvent (excluding alcohol compounds having a boiling point of 250 ° C. or higher), and water.
  • the conductive ink composition for inkjet according to the present invention has a total mass of a water-soluble organic solvent having a boiling point of 100 ° C. or higher and lower than 250 ° C. and water (E), and the water-soluble organic solvent (D) and water (E).
  • a water-soluble organic solvent having a boiling point of 100 ° C. or higher and lower than 250 ° C. and water (E)
  • the water-soluble organic solvent (D) and water (E) By controlling the total mass to 80% by mass or more, excellent continuous discharge stability, high conductivity of the conductive film, and good line width uniformity could be obtained.
  • the conductive ink composition for inkjet according to the present invention includes copper oxide particles having an average primary particle diameter of 100 nm or less (hereinafter sometimes referred to as “copper oxide particles (A)”).
  • copper oxide particles (A) the copper oxide is reduced to metal copper by a sintering process described later, and constitutes a metal conductor in the conductive film.
  • the copper oxide is preferably copper (I) oxide, copper (II) oxide or a mixture thereof, more preferably copper (II) oxide because it is available at a low cost and is more stable in the air.
  • the “copper oxide” in the present invention is a compound that does not substantially contain copper that has not been oxidized. Specifically, in crystal analysis by X-ray diffraction, a peak derived from copper oxide is detected, and metallic copper. It refers to a compound for which no peak is detected.
  • substantially free of copper means that the copper content is 1% by mass or less based on the copper oxide particles.
  • the average primary particle diameter of the copper oxide particles (A) is not particularly limited as long as it is 100 nm or less, but is preferably 1 to 80 nm, and more preferably 10 to 50 nm. As the average primary particle size is smaller, copper oxide is more easily reduced, and a conductive film having high conductivity can be produced even when sintered at a lower sintering temperature. When the average primary particle size is 10 nm or more, better dispersion stability can be obtained.
  • the average primary particle diameter of the copper oxide particles (A) is the horizontal ferret diameter and vertical of 100 particles randomly selected from a scanning electron microscope (hereinafter sometimes referred to as “SEM”) image. The ferret diameter was measured, and the larger measured value among them was calculated as the primary particle diameter of the particles by arithmetic averaging. When the horizontal ferret diameter and the vertical ferret diameter are the same, any value may be used.
  • the ink-jet conductive ink composition of the present invention is a metal particle or salt containing at least one metal element selected from the group consisting of Group 8 to 11 elements of the periodic table (hereinafter referred to as “metal particle or salt (B)”. In some cases).
  • the Group 8-11 elements are iron (Fe), ruthenium (Ru), osmium (Os), cobalt (Co) in which stable isotopes exist among Groups 8-11 of the IUPAC periodic table. ), Rhodium (Rh), iridium (Ir), nickel (Ni), palladium (Pd), platinum (Pt), copper (Cu), silver (Ag), and gold (Au).
  • Group 9 elements and / or Group 10 elements are preferred, and Group 10 elements are more preferred.
  • rhodium, platinum, palladium or a combination of two or more of these elements is preferable, palladium, rhodium, platinum or a combination of two or more of these elements is preferable, palladium, platinum or these Is more preferable, and palladium is more preferable.
  • an element generated by reduction of metal ions containing the metal element or metal ions contained in the salt of the metal element The simple substance promotes the reduction of the copper oxide particles (A), promotes the sintering of the copper particles produced by reducing the copper oxide of the copper oxide particles (A), and is high at a lower sintering temperature.
  • a conductive film having conductivity can be manufactured.
  • Metal particles containing at least one metal element selected from the group consisting of elements 8 to 11 of the periodic table Metal particles containing at least one metal element selected from the group consisting of Group 8 to 11 elements of the periodic table (hereinafter sometimes referred to as “metal particles (B1)”) are iron, ruthenium, osmium, Metal particles containing one or more elements selected from cobalt, rhodium, iridium, nickel, palladium, platinum, copper, silver and gold.
  • the metal particles (B1) are metal particles containing a Group 8-11 element, preferably 85% by mass or more, more preferably 90% by mass or more, and further preferably 95% by mass or more.
  • the surfaces of the metal particles (B1) may be coated with a coating agent such as sodium polyacrylate or a protective colloid in order to prevent oxidation, aggregation and the like.
  • the average primary particle diameter of the metal particles (B1) is not particularly limited, but is preferably 1 to 50 nm, more preferably 1 to 10 nm, and further preferably 1 to 5 nm.
  • the average primary particle diameter of the metal particles (B1) is obtained by measuring the horizontal ferret diameter and the vertical ferret diameter of 100 particles randomly selected from the SEM image, and the larger measured value among them. As the primary particle diameter of the particles. When the horizontal ferret diameter and the vertical ferret diameter are the same, any value may be used.
  • metal salt (B2) is iron, ruthenium, osmium, cobalt, It is a salt (including a complex) containing one or more elements selected from rhodium, iridium, nickel, palladium, platinum, copper, silver and gold.
  • metal salt (B2) examples include palladium chloride (II), halide salts such as chloride such as potassium tetrachloroparadate; nitrates such as palladium nitrate; sulfates; carbonates; palladium acetate (II) Carboxylates such as acetate; ammine complexes; tetraammine nitrates such as tetraamminepalladium (II) nitrate and tetraammineplatinum (II) nitrate; metal carbonyl complexes such as triruthenium dodecacarbonyl (dodecacarbonyltriruthenium); di (acetyl Acetylacetonate salts such as acetonato) palladium; phosphine complexes such as tetrakis (triphenylphosphine) palladium, tetrakis (triphenylphosphine) platinum, dichloro [bis (1,
  • metal particles or salts containing at least one metal element selected from the group consisting of Group 10 elements of the periodic table are preferable, and palladium is included in that the conductivity of the formed conductive film is more excellent.
  • a salt (palladium salt) is more preferable.
  • Alcohol (C) acts as a reducing agent for reducing the copper oxide of the copper oxide particles (A) during the sintering treatment.
  • Alcohol (C) is not particularly limited as long as it has a boiling point of 250 ° C. or higher under normal pressure (100 kPa) and has one or more alcoholic hydroxy groups in one molecule. Moreover, alcohol (C) can be used individually by 1 type or in combination of 2 or more types.
  • Examples of the alcohol (C) include monovalent alkyl alcohols such as 1-icosanol (boiling point 372 ° C.) and 1-tetracosanol (boiling point 395 ° C.); 1,6-hexanediol (boiling point 250 ° C.), 1, Divalent alkyl alcohols such as 7-heptanediol (boiling point 259 ° C.); Trialkylene glycols such as triethylene glycol (boiling point 287 ° C.) and tripropylene glycol (boiling point 273 ° C.); Glycerin (propane-1,2,3- Triol) (boiling point 290 ° C.), trimethylolpropane (boiling point 250 ° C.
  • monovalent alkyl alcohols such as 1-icosanol (boiling point 372 ° C.) and 1-tetracosanol (boiling point 3
  • trivalent alkyl alcohols such as trimethylolethane (boiling point 250 ° C. or more); tetravalent alkyl alcohols such as erythritol (boiling point 329 ° C.); penta Pentahydric alcohols such as erythritol (boiling point 250 ° C. or higher); mannito Including hexavalent alkyl alcohol (boiling point 290 ° C.), and the like.
  • trivalent alkyl alcohols such as trimethylolethane (boiling point 250 ° C. or more); tetravalent alkyl alcohols such as erythritol (boiling point 329 ° C.); penta Pentahydric alcohols such as erythritol (boiling point 250 ° C. or higher); mannito Including hexavalent alkyl alcohol (boiling point 290 ° C.), and the like.
  • the alcohol (C) preferably contains a divalent or higher alkyl alcohol, more preferably contains a trivalent or higher alkyl alcohol, more preferably contains trimethylolpropane or trimethylolethane, and contains trimethylolpropane. It is particularly preferred. Trihydric or higher alkyl alcohol reduces CuO, and the resulting oxidative decomposition product has a boiling point higher than that of dihydric or lower alkyl alcohol and remains in the film, thereby causing further reduction reaction and high reducing power. It is estimated that a conductive film that functions as an agent and has high conductivity can be formed.
  • water-soluble organic solvent (hereinafter sometimes referred to as “water-soluble organic solvent (D)”) and water (hereinafter also referred to as “water (E)”) may be copper oxide particles (A), metal particles or salts. Used as a solvent or dispersion medium for (B) and alcohol (C). The water-soluble organic solvent (D) does not include the alcohol (C) described above.
  • the water-soluble organic solvent (D) contains a water-soluble organic solvent having a boiling point of 100 ° C. or higher and lower than 250 ° C. (hereinafter sometimes referred to as “water-soluble organic solvent (D2)”).
  • the water-soluble organic solvent (D) can be used alone or in combination of two or more.
  • the water-soluble organic solvent (D) is preferably a liquid at normal temperature and pressure.
  • the water-soluble organic solvent is an organic solvent that is compatible with water. More specifically, the water-soluble organic solvent is a solvent that is mixed with water at an arbitrary ratio to form a uniform system.
  • the water-soluble organic solvent (D2) is not particularly limited, but preferably has at least one structure selected from the group consisting of an ether structure, a ketone structure and a heterocyclic structure in the molecule. By containing such a water-soluble organic solvent, continuous discharge stability and line width uniformity are further improved.
  • organic solvents having an ether structure in the molecule include diethylene glycol (melting point ⁇ 10 ° C., boiling point 244 ° C.), dipropylene glycol (melting point ⁇ 40 ° C., boiling point 232 ° C.), 2- Methoxyethanol (melting point -85 ° C, boiling point 124 ° C), 3-methoxybutanol (melting point -85 ° C, boiling point 161 ° C), ethylene glycol monomethyl ether (melting point -85 ° C, boiling point 124 ° C), ethylene glycol monoethyl ether (melting point) -70 ° C, boiling point 135 ° C), ethylene glycol monobutyl ether (melting point -75 ° C, boiling point 171 ° C), diethylene glycol monomethyl ether (melting point -70 ° C, boiling point 194 ° C), diethylene glycol monoethyl ether (D2)
  • examples of the organic solvent having a ketone structure in the molecule include diethyl ketone (melting point ⁇ 42 ° C., boiling point 101 ° C.), methyl isobutyl ketone (melting point ⁇ 84 ° C., boiling point 116 ° C.), acetophenone. (Melting point 20.5 ° C, boiling point 202 ° C), isophorone (melting point -8 ° C, boiling point 215 ° C), cyclohexanone (melting point -16 ° C, boiling point 155 ° C), and the like.
  • organic solvents having a heterocyclic structure in the molecule include N-methylpyrrolidone (melting point ⁇ 24 ° C., boiling point 202 ° C.), 1,4-dioxane (melting point 11.8 ° C., Boiling point 101 ° C.), furfuryl alcohol (melting point ⁇ 29 ° C., boiling point 170 ° C.), tetrahydrofurfuryl alcohol (melting point ⁇ 80 ° C., boiling point 178 ° C.) and the like.
  • the water-soluble organic solvent (D2) may contain a water-soluble alcohol compound having a boiling point of 100 ° C. or higher and lower than 250 ° C., for example, butanol (boiling point 117 ° C.), 2-butanol (boiling point 100 ° C.), pentanol.
  • the water-soluble organic solvent (D) may contain a water-soluble organic solvent that does not correspond to the water-soluble organic solvent (D2) (hereinafter sometimes referred to as “water-soluble organic solvent (D3)”).
  • water-soluble organic solvent (D3) examples include water-soluble alcohols having a boiling point of less than 100 ° C., water-soluble ethers having a boiling point of less than 100 ° C., water-soluble esters having a boiling point of less than 100 ° C., and water-soluble ketones having a boiling point of less than 100 ° C. And the like.
  • water-soluble alcohols having a boiling point of less than 100 ° C. examples include methanol (boiling point 64.7 ° C.), ethanol (boiling point 78.4 ° C.), propanol (boiling point 97 ° C.), 2-propanol (boiling point 82.4 ° C.), And allyl alcohol (boiling point 97 ° C.).
  • ethyl ether (boiling point 34.6 ° C.), isopropyl ether (boiling point 68.4 ° C.), tetrahydrofuran (melting point ⁇ 108 ° C., boiling point 65.4 ° C.), 1, Examples include 3-dioxolane (boiling point 75 ° C.) and methyl tert-butyl ether (boiling point 55.3 ° C.). Examples of water-soluble esters having a boiling point of less than 100 ° C.
  • water-soluble ketones having a boiling point of less than 100 ° C. include acetone (boiling point 56.1 ° C.) and methyl ethyl ketone (boiling point 80 ° C.).
  • water The water (hereinafter sometimes referred to as “water (E)”) is preferably water having a purity level equal to or higher than that of ion-exchanged water, for example, reverse osmosis filtered water (RO water), milli-Q water, distilled water and the like.
  • RO water reverse osmosis filtered water
  • milli-Q water milli-Q water
  • distilled water distilled water
  • the conductive ink composition for inkjet contains other components. It may be.
  • the conductive ink composition for inkjet may contain a surfactant.
  • the surfactant plays a role of improving the dispersibility of the copper oxide particles.
  • the type of the surfactant is not particularly limited, and examples thereof include an anionic surfactant, a cationic surfactant, a nonionic surfactant, a fluorine surfactant, and an amphoteric surfactant. These surfactants can be used alone or in combination of two or more.
  • the content of the copper oxide particles (A) in the conductive ink composition for inkjet according to the present invention is not particularly limited, but the increase in the viscosity of the conductive ink composition for inkjet is suppressed, and the handleability is excellent. Therefore, the total mass of the copper oxide particles (A) is preferably 20% by mass or less, more preferably 15% by mass or less, based on the total mass of the conductive ink composition for inkjet. Although a minimum in particular is not restrict
  • the content of the metal particles or salt (B) in the ink-jet conductive ink composition of the present invention is not particularly limited, but is 0.5 to 10 with respect to 100 parts by mass of the copper oxide particles (A).
  • the amount is preferably part by mass, more preferably 1.0 to 5.0 parts by mass. Within this range, the copper oxide is sufficiently reduced during the sintering treatment, so that the conductivity is more excellent.
  • the content of the alcohol (C) in the conductive ink composition for inkjet according to the present invention is not particularly limited, but the mass ratio of the alcohol (C) to the copper oxide particles (A) (total alcohol (C)
  • the mass / the total mass of the copper oxide particles (A) is preferably 3.0 to 10.0, and more preferably 3.0 to 6.0. Within this range, the copper oxide is sufficiently reduced, so that the conductivity is more excellent.
  • the total content of the water-soluble organic solvent (D) and water (E) in the inkjet conductive ink composition of the present invention is not particularly limited, an increase in the viscosity of the inkjet conductive ink composition is suppressed.
  • the ratio of the total mass of the water-soluble organic solvent (D) and water (E) to the total mass of the conductive ink composition for inkjet is preferably 10 to 95% by mass, and the continuous ejection stability Further, from the viewpoint of more excellent line width uniformity, 20 to 85% by mass is more preferable.
  • the content of the water-soluble organic solvent (D2) and water (E) in the water-soluble organic solvent (D) and water (E) is such that the total mass of the water-soluble organic solvent (D2) and water (E) is water-soluble. 90% by mass or more, and more preferably 95% by mass or more, because it is 80% by mass or more of the total mass of the water-soluble organic solvent (D) and water (E) and the continuous discharge stability is more excellent. When it is less than 80% by mass, the continuous ejection stability or the line width uniformity is inferior.
  • the mass ratio of alcohol (C) to water-soluble organic solvent (D) and water (E) (total mass of alcohol (C) / (total mass of water-soluble organic solvent (D) + total mass of water (E)) ))
  • the mass ratio of the water-soluble organic solvent (D) to water (E) is not particularly limited, but continuous ejection In view of more excellent stability and line width uniformity, 1/2 to 10/1 is preferable, and 1/1 to 8/1 is more preferable.
  • the viscosity of the conductive ink composition for inkjet is preferably adjusted to a viscosity suitable for inkjet printing.
  • 1 to 50 cP is preferable, and 1 to 40 cP is more preferable.
  • the method for preparing the conductive ink composition for inkjet is not particularly limited, and a known method can be adopted.
  • copper oxide particles (A), metal particles or salt (B), alcohol (C), water-soluble organic solvent (D), water (E), and other components were added as desired.
  • the composition can be obtained by dispersing the components by a known means such as an ultrasonic method (for example, treatment with an ultrasonic homogenizer), a mixer method, a three-roll method, or a ball mill method.
  • the method for producing a conductive film on a substrate using the conductive ink composition for inkjet of the present invention comprises at least a coating film forming step and a sintering step. Furthermore, if desired, a drying step may be provided.
  • a coating-film formation process is a process of discharging the electrically conductive ink composition for inkjets of this invention on a base material by the inkjet method, and forming a coating film.
  • a coating film before being subjected to the sintering treatment in the sintering step is obtained. You may perform the drying process which dries the coating film provided on the base material before performing a sintering process.
  • a well-known thing can be used as a base material used at this process.
  • the material used for the substrate include resin, paper, glass, silicon-based semiconductor, compound semiconductor, metal oxide, metal nitride, wood, or a composite thereof. More specifically, low density polyethylene resin, high density polyethylene resin, ABS resin, acrylic resin, styrene resin, vinyl chloride resin, polyester resin (polyethylene terephthalate (PET), polytrimethylene terephthalate (PTT), polybutylene) Resin base materials such as terephthalate (PBT), polyethylene naphthalate (PEN), polybutylene naphthalate (PBN)), polyacetal resin, polysulfone resin, polyetherimide resin, polyetherketone resin, polyimide resin, cellulose derivative; Uncoated printing paper, finely coated printing paper, coated printing paper (art paper, coated paper), special printing paper, copy paper (PPC paper), unbleached wrapping paper (double kraft paper for heavy bags, bilateral Kraft paper), bleached wrapping
  • the ink jet method ejects a liquid in picoliter order corresponding to a recording signal (digital data) from a liquid ejection hole toward a base material, and a fine pattern can be formed by applying ink in a pattern shape.
  • the ink jet method used in this step is not particularly limited, a method in which an ink jet conductive ink composition is continuously ejected and controlled by an electric field, a method in which ink jet ink is intermittently ejected using a piezoelectric element, and an ink jet conductive method.
  • Various conventionally known methods such as a method of heating the ink composition and intermittently ejecting the ink composition using the foam can be employed.
  • drawing by the ink jet method may be performed by any conventionally known method such as a piezo ink jet method or a thermal ink jet method.
  • a drawing apparatus equipped with a heater or the like can be used.
  • inkjet heads various types of inkjet heads (ejection heads) such as a continuous type or an on-demand type piezo method, a thermal method, a solid method, and an electrostatic suction method can be used.
  • the ejection units (nozzles) of the inkjet head are not limited to a single row arrangement, and may be arranged in a plurality of rows or in a staggered pattern.
  • the conductive ink composition for inkjet is discharged to a place where the conductive film on the substrate is to be formed.
  • the conductive ink composition for inkjet may be applied to the entire surface of the substrate or may be applied in a desired pattern.
  • the amount of droplets ejected by the ink jet method is not particularly limited, but is preferably 0.8 to 45 pL, more preferably 0.8 to 20 pL in terms of more excellent line width uniformity of the conductive film or continuous ejection properties. preferable.
  • the coating amount of the ink-jet conductive ink composition on the substrate may be appropriately adjusted according to the desired film thickness of the conductive film, but usually the film thickness (thickness) of the coating film is preferably 10 nm to 1000 ⁇ m. 100 nm to 100 ⁇ m is more preferable, 100 nm to 10 ⁇ m is still more preferable, and 100 to 1000 nm is even more preferable.
  • This step is a step of performing drying treatment on the formed coating film and removing at least a part of the solvent contained in the conductive ink composition for inkjet. If desired, this step can be performed after the above-described coating film forming step and before the sintering step described later.
  • the drying treatment can be performed by heating using a hot air dryer or the like.
  • the drying temperature is preferably 50 ° C. or higher and lower than 150 ° C., more preferably 70 ° C. to 120 ° C.
  • the drying treatment may be performed in either a non-oxidizing atmosphere or an oxidizing atmosphere.
  • the non-oxidizing atmosphere include an inert gas atmosphere such as nitrogen and argon, and a reducing gas atmosphere such as hydrogen.
  • the oxidizing atmosphere include an air atmosphere and an oxygen atmosphere.
  • This step is a step in which a conductive film is formed by performing a heat treatment and / or a light irradiation treatment on the coating film formed on the substrate (or the dried coating film when the drying process is performed).
  • a heat treatment and / or a light irradiation treatment By performing the heat treatment and / or the light irradiation treatment, the copper oxide of the copper oxide particles (A) is reduced to produce metallic copper, and the reduction of the produced metallic copper particles is promoted to promote metal conduction.
  • a metal conductor is formed in the film.
  • the heating temperature is not particularly limited in that a conductive film having better conductivity can be formed in a short time, but the heating temperature is preferably 150 to 220 ° C, more preferably 160 to 200 ° C.
  • the heating time is preferably 5 to 120 minutes, more preferably 5 to 30 minutes.
  • the heating means is not particularly limited, and known heating means such as an oven and a hot plate can be used.
  • the conductive film can be formed by heat treatment at a relatively low temperature, and therefore, the process cost is low.
  • the light irradiation treatment can reduce and sinter to metallic copper by irradiating light on the portion to which the coating film is applied at room temperature for a short time, and heating for a long time.
  • the base material is not deteriorated by, and the adhesion of the conductive film to the base material becomes better.
  • the light source used in the light irradiation treatment is not particularly limited, and examples thereof include a mercury lamp, a metal halide lamp, a xenon lamp, a chemical lamp, and a carbon arc lamp.
  • Examples of radiation include electron beams, X-rays, ion beams, and far infrared rays.
  • g-line, i-line, deep-UV light, and high-density energy beam are used.
  • Specific examples of preferred embodiments include scanning exposure with an infrared laser, high-illuminance flash exposure such as a xenon discharge lamp, and infrared lamp exposure.
  • the light irradiation is preferably light irradiation with a flash lamp, and more preferably pulsed light irradiation with a flash lamp. Irradiation with high-energy pulsed light can concentrate and heat the surface of the portion to which the coating film has been applied in a very short time, so that the influence of heat on the substrate can be extremely reduced.
  • the irradiation energy of the pulse light is preferably 1 ⁇ 100J / cm 2, more preferably 1 ⁇ 30J / cm 2, preferably from 1 ⁇ sec ⁇ 100 m sec as a pulse width, and more preferably 10 ⁇ sec ⁇ 10 m sec.
  • the irradiation time of the pulsed light is preferably 1 to 100 milliseconds, more preferably 1 to 50 milliseconds, and further preferably 1 to 20 milliseconds.
  • grains act as a photothermal conversion substance which absorbs light and converts it into heat, and has played the role which transmits heat in a coating film.
  • the above heat treatment and light irradiation treatment may be performed alone or both may be performed simultaneously. Moreover, after performing one process, you may perform the other process further.
  • the heat treatment and the light irradiation treatment may be performed in either a non-oxidizing atmosphere or an oxidizing atmosphere.
  • the non-oxidizing atmosphere include an inert gas atmosphere such as nitrogen and argon, and a reducing gas atmosphere such as hydrogen.
  • the oxidizing atmosphere include an air atmosphere and an oxygen atmosphere.
  • a conductive film containing a metal conductor substantially made of metallic copper is produced.
  • the film thickness (thickness) of the conductive film is not particularly limited, and an optimum film thickness is appropriately selected according to the application used. For example, 10 to 1000 nm is preferable, 10 to 500 nm is more preferable, 20 to 200 nm is more preferable, and 50 to 150 nm is even more preferable from the viewpoint of organic thin film transistor electrode use.
  • the film thickness is a value (average value) obtained by measuring three or more thicknesses at arbitrary points on the conductive film and arithmetically averaging the values.
  • the conductive film may be provided on the entire surface of the base material or in a pattern.
  • the patterned conductive film is useful as a conductor wiring (wiring) such as a printed wiring board.
  • wiring conductor wiring
  • the above-mentioned ink-jet conductive ink composition was applied to a substrate in a pattern, and the above heat treatment and / or light irradiation treatment was performed, or the entire surface of the substrate was provided.
  • a method of etching the conductive film in a pattern may be used.
  • the etching method is not particularly limited, and a known subtractive method, semi-additive method, or the like can be employed.
  • an insulating layer (insulating resin layer, interlayer insulating film, solder resist) is further laminated on the surface of the patterned conductive film, and further wiring (metal) is formed on the surface. Pattern) may be formed.
  • the material of the insulating film is not particularly limited.
  • epoxy resin glass epoxy resin, aramid resin, crystalline polyolefin resin, amorphous polyolefin resin, fluorine-containing resin (polytetrafluoroethylene, perfluorinated polyimide, perfluorinated) Amorphous resin), polyimide resin, polyether sulfone resin, polyphenylene sulfide resin, polyether ether ketone resin, liquid crystal resin, and the like.
  • an epoxy resin, a polyimide resin, or a liquid crystal resin and more preferably an epoxy resin. Specific examples include ABF-GX13 manufactured by Ajinomoto Fine Techno Co., Ltd.
  • solder resist which is a kind of insulating layer material used for wiring protection, is described in detail in, for example, Japanese Patent Application Laid-Open No. 10-204150 and Japanese Patent Application Laid-Open No. 2003-222993. These materials can also be applied to the present invention if desired.
  • solder resist commercially available products may be used. Specific examples include PFR800 manufactured by Taiyo Ink Manufacturing Co., Ltd., PSR4000 (trade name), SR7200G manufactured by Hitachi Chemical Co., Ltd., and the like.
  • the base material (base material with a conductive film) having the conductive film obtained above can be used for various applications.
  • a printed wiring board, TFT, FPC, RFID, etc. are mentioned.
  • the ink-jet conductive ink composition of the present invention is suitable for thin film transistor (TFT) electrodes, particularly for organic TFT electrodes. In other words, it is preferably used to form at least one electrode selected from the group consisting of a source electrode, a drain electrode, and a gate electrode.
  • TFT thin film transistor
  • copper oxide particles having an average primary particle diameter of 100 nm or less are metal particles or salts containing at least one metal element selected from the group consisting of component A and Group 8 to 11 elements of the periodic table B component, an alcohol compound having a boiling point of 250 ° C. or higher, a C component, a water-soluble organic solvent (excluding an alcohol compound having a boiling point of 250 ° C. or higher) as a D component, and a liquid at room temperature and normal pressure among the D components;
  • a water-soluble organic solvent having a boiling point of 100 ° C. or higher and lower than 250 ° C. may be referred to as a D2 component, a D component that does not correspond to a D2 component may be referred to as a D3 component, and water as an E component.
  • Example 1 (1) Preparation of conductive ink composition for inkjet copper oxide particles (A component: NanoTek CuO, manufactured by CI Chemical; average primary particle size 48 nm) (45 parts by mass) and water (E component: 20 parts by mass) Were mixed and processed for 5 minutes with a rotation and revolution mixer (Awatori Nertaro ARE-310, manufactured by Shinky Corporation) to obtain copper oxide particles / water dispersion. Trimethylolpropane (TMP) (boiling point 250 ° C.
  • TMP Trimethylolpropane
  • composition 1 (C component: 225 parts by mass), palladium acetate (B component: 2 parts by mass), and tetrahydrofurfuryl acrylate ( THFA) (boiling point 178 ° C.) (component D2: 100 parts by mass) was added, and the mixture was treated for 5 minutes with an auto-revolution mixer (Awatori Nerita ARE-310, manufactured by Sinky Corporation) to obtain a conductive ink composition for inkjet. It was.
  • the obtained ink-jet conductive ink composition is designated as Composition 1.
  • the line width uniformity was evaluated. The evaluation results are shown in the “Line width uniformity” column of Table 1.
  • C Average of variation with respect to average value is 20% or more and less than 30%
  • D Average of variation with respect to average value 30% or more and less than 50%
  • E The average variation from the average value is 100% or more
  • Example 2 to 4 In Examples 2 to 4, as shown in Table 1, instead of THFA (boiling point 178 ° C.) (D2 component: 100 parts by mass), N-methylpyrrolidone (NMP) (boiling point 178 ° C.) (D2 component: 100 parts by mass), 2-methoxyethanol (boiling point 124 ° C.) (D2 component: 100 parts by mass), and acetophenone (boiling point 202 ° C.) (D2 component: 100 parts by mass).
  • NMP N-methylpyrrolidone
  • 2-methoxyethanol boiling point 124 ° C.
  • acetophenone (boiling point 202 ° C.) (D2 component: 100 parts by mass).
  • the conductive ink composition for inkjet was prepared, the conductive film (copper wiring) was produced, and the performance evaluation of the conductive ink composition for inkjet and the conductive film (copper wiring) was performed.
  • Example 5 and 6 In Examples 5 and 6, as shown in Table 1, instead of THFA (boiling point: 178 ° C.) (D2 component: 100 parts by mass), each of the molecules has an ether structure, a ketone structure, and a heterocyclic structure.
  • the composition was prepared, the electrically conductive film (copper wiring) was produced, and the performance evaluation of the inkjet conductive ink composition and the electrically conductive film (copper wiring) was performed.
  • Example 7 to 9 In Examples 7 to 9, as shown in Table 1, instead of THFA (boiling point 178 ° C.) (D2 component: 100 parts by mass), THFA (D2 component: 76 parts by mass) and acetone (boiling point 56 ° C.), respectively. (D3 component: 24 parts by mass), THFA (D2 component: 88 parts by mass) and acetone (D3 component: 12 parts by mass), THFA (D2 component: 88 parts by mass) and tetrahydrofuran (THF) (D3 component: boiling point 65 ° C. ) (12 parts by mass), in a solvent other than an alcohol compound having a boiling point of 250 ° C.
  • an inkjet conductive ink composition was prepared in the same manner as in Example 1, except that the inkjet conductive ink composition and conductive film (copper To produce a line), and evaluated the performance of the conductive film (copper wire).
  • Example 10 and 11 In Examples 10 and 11, as shown in Table 1, instead of palladium acetate (B component: 2 parts by mass), triruthenium dodecacarbonyl (Ru 3 (CO) 12 ) (B component: 2 parts by mass), respectively.
  • a conductive ink composition for inkjet was prepared in the same manner as in Example 1 except that tetraammineplatinum nitrate (II) (Pt (NH 3 ) 4 (NO 3 ) 2 ) (component B: 2 parts by mass) was used. Then, a conductive ink composition for inkjet and a conductive film (copper wiring) were prepared, and performance evaluation of the conductive film (copper wiring) was performed.
  • II tetraammineplatinum nitrate
  • a conductive ink composition for inkjet and a conductive film (copper wiring) were prepared, and performance evaluation of the conductive film (copper wiring) was performed.
  • Example 12 and 13 In Examples 12 and 13, as shown in Table 1, instead of TMP (boiling point 250 ° C. or higher) (C component: 225 parts by mass), trimethylolethane (boiling point 250 ° C. or higher) (C component: 225 mass), respectively. Part), 1,9-nonanediol (boiling point 288 ° C.) (component C: 225 parts by mass), and an inkjet conductive ink composition was prepared in the same manner as in Example 1 to obtain an inkjet conductive ink. A composition and a conductive film (copper wiring) were prepared, and the performance of the conductive film (copper wiring) was evaluated.
  • Example 14 to 18 In Examples 14 to 18, as shown in Table 1, water (E component: 20 parts by mass) and THFA (D2 component: 100 parts by mass) were used as water-soluble solvents other than alcohol compounds having a boiling point of 250 ° C. or higher. , Water (E component: 75 parts by mass) and THFA (D2 component: 600 parts by mass), water (E component: 100 parts by mass) and THFA (D2 component: 1000 parts by mass), water (E component: 200 parts by mass), respectively.
  • Part) and the mass ratio of the alcohol compound having a boiling point of 250 ° C. or higher to the water-soluble solvent other than the alcohol compound having a boiling point of 250 ° C. or higher the total mass of the alcohol compound having a boiling point of 250 ° C. or higher.
  • Example 1 except that the total mass of the water-soluble solvent other than the alcohol compound having a boiling point of 250 ° C. or higher was changed to 1/3, 1/5, 1/10, 3/1, 5/1, respectively.
  • a conductive ink composition for inkjet was prepared, a conductive ink composition for inkjet and a conductive film (copper wiring) were produced, and performance evaluation of the conductive film (copper wiring) was performed.
  • Comparative Example 1 an inkjet conductive ink composition was prepared in the same manner as in Example 1 except that palladium acetate (component B) was not used, and the inkjet conductive ink composition and conductive film (copper wiring). And the performance of the conductive film (copper wiring) was evaluated.
  • Comparative Example 2 In Comparative Example 2, an inkjet conductive ink was used in the same manner as in Example 1 except that acetone (boiling point 56 ° C.) (D3 component: 100 parts by mass) was used instead of THFA (D2 component: 100 parts by mass). A composition was prepared, a conductive ink composition for inkjet and a conductive film (copper wiring) were prepared, and performance evaluation of the conductive film (copper wiring) was performed.
  • Comparative Example 3 In Comparative Example 3, it was carried out except that THFA (D2 component: 60 parts by mass) and acetone (boiling point 56 ° C.) (D3 component: 40 parts by mass) were used instead of THFA (D2 component: 100 parts by mass).
  • a conductive ink composition for inkjet was prepared in the same manner as in Example 1, an inkjet conductive ink composition and a conductive film (copper wiring) were prepared, and performance evaluation of the conductive film (copper wiring) was performed.
  • Comparative Example 4 an inkjet conductive ink composition was prepared in the same manner as in Example 1 except that TMP (C component) was not used, and the inkjet conductive ink composition and conductive film (copper wiring) were prepared. It produced and the performance evaluation of the electrically conductive film (copper wiring) was performed.
  • TMP C component
  • Comparative Example 5 In Comparative Example 5, triruthenium dodecacarbonyl (B component: 3.8 parts by mass) was used instead of palladium acetate (B component: 2 parts by mass), TMP (C component) was not used, THFA Ink-jet conductivity in the same manner as in Example 1 except that THFA (D2 component: 1800 parts by mass) was used instead of (D2 component: 100 parts by mass) and that water (E component) was not used.
  • An ink composition was prepared, a conductive ink composition for inkjet and a conductive film (copper wiring) were prepared, and performance evaluation of the conductive film (copper wiring) was performed.
  • Example 13 When Examples 1 and 12 are compared with Example 13, it can be seen that when a trihydric alcohol is used as the alcohol (C), the conductivity of the obtained conductive film is further improved. (7) When Example 1 is compared with Comparative Example 5, when water (E) is not used, the water-soluble organic solvent (D) and the water-soluble organic solvent (D2) having a boiling point of 100 ° C. or more and less than 250 ° C. It can be seen that excellent continuous discharge stability, conductivity and line width uniformity cannot be obtained even when used.

Abstract

The present invention provides a conductive ink composition for an ink jet, said composition containing: copper oxide particles having an average primary particle size of 100 nm or less; metal particles, or salts thereof, including at least one metal element selected from the group consisting of group 8-11 elements in the periodic table; an alcohol compound having a boiling point of 250°C or higher; an aqueous organic solvent (excluding said alcohol compound having a boiling point of 250°C or higher); and water. The aqueous organic solvent contains an aqueous organic solvent having a boiling point equal to or higher than 100°C and lower than 250°C. The total mass of water and the aqueous organic solvent having a boiling point equal to or higher than 100°C and lower than 250°C is 80 mass% or more of the total mass of water and aqueous organic solvent.

Description

インクジェット用導電インク組成物Conductive ink composition for inkjet
 本発明は、インクジェット用導電インク組成物に関する。 The present invention relates to a conductive ink composition for inkjet.
 基材上に金属膜を形成する方法として、金属酸化物粒子の分散体を印刷法、殊にインクジェット印刷法により基材に塗布し、加熱処理して焼結させることによって金属膜や回路基板における配線、電極等の電気的導通部位を形成する技術が知られている。
 上記方法は、従来の高熱・真空プロセス(スパッタ)やめっき処理、リソグラフィーによる配線・電極作製法に比べて、簡便・省エネルギー・省資源であることから、電子機器分野、電子デバイス分野において大きな期待を集めている。
As a method of forming a metal film on a base material, a dispersion of metal oxide particles is applied to the base material by a printing method, in particular, an ink jet printing method, and is heated and sintered to form a metal film or circuit board. Techniques for forming electrically conductive parts such as wiring and electrodes are known.
Compared to conventional high-heat / vacuum processes (sputtering), plating, and lithography wiring / electrode manufacturing methods, the above method is simple, energy-saving, and resource-saving, so it has great expectations in the fields of electronic equipment and electronic devices. Collecting.
 一方、電子機器や電子デバイスの小型化、高機能化の要求に対応するため、配線や電極のより一層の微細化および高集積化が進んでいる。それに伴い、低温焼結でも高い導電性を示し、かつ、基材の上に線幅の均一性の高い導電膜(配線パターン)を形成することができる、連続吐出安定性に優れたインクジェット用導電インク組成物が求められている。 On the other hand, in order to meet the demands for miniaturization and higher functionality of electronic devices and electronic devices, further miniaturization and higher integration of wiring and electrodes are progressing. Along with this, conductive materials for ink jets exhibiting high conductivity even at low-temperature sintering, and capable of forming conductive films (wiring patterns) with high line width uniformity on the substrate, with excellent continuous discharge stability. There is a need for ink compositions.
 例えば、特許文献1には、銅、銀またはインジウムの高原子価化合物、直鎖、分岐または環状の炭素数1から18のアルコール類およびVIII族の金属触媒から成ることを特徴とする、銅、銀またはインジウムの金属膜製造用組成物が開示されている。 For example, Patent Document 1 discloses copper, silver, or indium high-valent compound, linear, branched or cyclic alcohol having 1 to 18 carbon atoms and a group VIII metal catalyst, A composition for producing a silver or indium metal film is disclosed.
特開2010-121206号公報JP 2010-121206 A
 本発明者らが特許文献1に記載された金属膜製造用組成物を用いて、インクジェット用導電インク組成物としての適性を検討したところ、連続吐出安定性、導電性および線幅均一性の少なくとも1つに関して、更なる改良の余地が残されていることを知見した。 When the present inventors examined the suitability as a conductive ink composition for inkjet using the composition for producing a metal film described in Patent Document 1, at least continuous discharge stability, conductivity, and line width uniformity were found. For one, we found that there was room for further improvement.
 そこで、本発明は、低温焼結でも高い導電性を示し、かつ、線幅均一性に優れた導電膜を形成することができる、連続吐出安定性に優れるインクジェット用導電インク組成物を提供することを課題とする。 Accordingly, the present invention provides a conductive ink composition for ink jet that exhibits high conductivity even at low-temperature sintering and can form a conductive film excellent in line width uniformity and excellent in continuous discharge stability. Is an issue.
 本発明者は、上記課題を解決すべく鋭意検討を重ねた結果、所定の各種溶媒を使用することにより、所望の効果が得られることを知得し、本発明を完成させるに至った。
 すなわち、以下の構成により、上記課題を解決できることを見出した。
As a result of intensive studies to solve the above problems, the present inventor has learned that a desired effect can be obtained by using predetermined various solvents, and has completed the present invention.
That is, the present inventors have found that the above problem can be solved by the following configuration.
(1)平均1次粒子径100nm以下の酸化銅粒子と、周期律表の第8~11族元素からなる群から選択される少なくとも1種の金属元素を含む金属粒子または塩と、沸点250℃以上のアルコール化合物と、水溶性有機溶媒(ただし、沸点250℃以上のアルコール化合物を除く)と、水とを含有し、
 水溶性有機溶媒は、沸点100℃以上250℃未満の水溶性有機溶媒を含有し、
 沸点100℃以上250℃未満の水溶性有機溶媒および水の合計質量が、水溶性有機溶媒および水の合計質量の80質量%以上である、インクジェット用導電インク組成物。
(2)沸点100℃以上250℃未満の水溶性有機溶媒が、分子内にエーテル構造、ケトン構造およびヘテロ環構造からなる群から選択される少なくとも1つの構造を有する、(1)に記載のインクジェット用導電インク組成物。
(3)沸点250℃以上のアルコール化合物が3価以上のアルキルアルコールを含有する、(1)または(2)に記載のインクジェット用導電インク組成物。
(4)沸点250℃以上のアルコール化合物の全質量の、水溶性有機溶媒および水の合計質量に対する比(沸点250℃以上のアルコール化合物の全質量/(水溶性有機溶媒の全質量+水の全質量))が、0.2~3.0である、(1)~(3)のいずれか1項に記載のインクジェット用導電インク組成物。
(5)平均1次粒子径100nm以下の酸化銅粒子の全質量がインクジェット用導電インク組成物の総質量の20質量%以下である、(1)~(4)のいずれか1項に記載のインクジェット用導電インク組成物。
(6)沸点250℃以上のアルコール化合物の全質量の、平均1次粒子径100nm以下の酸化銅粒子の全質量に対する比(沸点250℃以上のアルコール化合物の全質量/平均1次粒子径100nm以下の酸化銅粒子の全質量)が、3.0~10.0である、(1)~(6)のいずれか1項に記載のインクジェット用導電インク組成物。
(7)周期律表の第8~11族元素からなる群から選択される少なくとも1種の金属元素を含む金属粒子または塩が、周期律表の第10族元素からなる群から選択される少なくとも1種の金属元素を含む金属粒子または塩を含む、(1)~(6)のいずれか1項に記載のインクジェット用導電インク組成物。
(8)TFT電極の形成に用いられる、(1)~(7)のいずれか1項に記載のインクジェット用導電インク組成物。
(1) Copper oxide particles having an average primary particle diameter of 100 nm or less, metal particles or salts containing at least one metal element selected from the group consisting of Group 8 to 11 elements of the periodic table, and a boiling point of 250 ° C. Containing the above alcohol compound, a water-soluble organic solvent (excluding an alcohol compound having a boiling point of 250 ° C. or higher), and water,
The water-soluble organic solvent contains a water-soluble organic solvent having a boiling point of 100 ° C. or higher and lower than 250 ° C.,
A conductive ink composition for inkjet, wherein the total mass of the water-soluble organic solvent and water having a boiling point of 100 ° C. or higher and lower than 250 ° C. is 80% by mass or more of the total mass of the water-soluble organic solvent and water.
(2) The inkjet according to (1), wherein the water-soluble organic solvent having a boiling point of 100 ° C. or higher and lower than 250 ° C. has at least one structure selected from the group consisting of an ether structure, a ketone structure and a heterocyclic structure in the molecule. Conductive ink composition.
(3) The conductive ink composition for inkjet according to (1) or (2), wherein the alcohol compound having a boiling point of 250 ° C. or higher contains a trivalent or higher alkyl alcohol.
(4) Ratio of the total mass of alcohol compounds having a boiling point of 250 ° C. or higher to the total mass of the water-soluble organic solvent and water (total mass of alcohol compounds having a boiling point of 250 ° C. or higher / (total mass of water-soluble organic solvent + total water) The conductive ink composition for inkjet according to any one of (1) to (3), wherein the mass) is 0.2 to 3.0.
(5) The total mass of copper oxide particles having an average primary particle diameter of 100 nm or less is 20 mass% or less of the total mass of the conductive ink composition for inkjet, according to any one of (1) to (4) A conductive ink composition for inkjet.
(6) Ratio of the total mass of alcohol compounds having a boiling point of 250 ° C. or more to the total mass of copper oxide particles having an average primary particle size of 100 nm or less (total mass of alcohol compounds having a boiling point of 250 ° C. or more / average primary particle size of 100 nm or less) The conductive ink composition for inkjet according to any one of (1) to (6), wherein the total mass of the copper oxide particles is 3.0 to 10.0.
(7) The metal particles or salt containing at least one metal element selected from the group consisting of Group 8 to 11 elements of the periodic table is at least selected from the group consisting of Group 10 elements of the periodic table The conductive ink composition for inkjet according to any one of (1) to (6), comprising metal particles or a salt containing one kind of metal element.
(8) The conductive ink composition for inkjet according to any one of (1) to (7), which is used for forming a TFT electrode.
 本発明によれば、低温焼結でも高い導電性を示し、かつ、線幅均一性に優れた導電膜を形成することができる、連続吐出安定性に優れるインクジェット用導電インク組成物を提供することができる。 According to the present invention, there is provided an ink-jet conductive ink composition having excellent continuous discharge stability, which can form a conductive film having high conductivity even at low-temperature sintering and having excellent line width uniformity. Can do.
 以下に、本発明のインクジェット用導電インク組成物の好適態様について詳細に説明する。
 なお、本明細書において、「~」で記載される数値範囲は上限値および下限値を含むものとする。例えば、「10~20」という数値範囲は「10」および「20」を含む。
 また、沸点は常圧(100kPa)下での沸点である。
Below, the suitable aspect of the electrically conductive ink composition for inkjets of this invention is demonstrated in detail.
In the present specification, the numerical range described by “to” includes an upper limit value and a lower limit value. For example, the numerical range “10-20” includes “10” and “20”.
The boiling point is a boiling point under normal pressure (100 kPa).
 本発明の特徴は、インクジェット用導電インク組成物中に、平均1次粒子径100nm以下の酸化銅粒子と、周期律表の第8~11族元素からなる群から選択される少なくとも1種の金属元素を含む金属粒子または塩と、沸点250℃以上のアルコール化合物と、水溶性有機溶媒(ただし、沸点250℃以上のアルコール化合物は除く)と、水とを含有し、水溶性有機溶媒は、沸点100℃以上250℃未満の水溶性有機溶媒を含有し、沸点100℃以上250℃未満の水溶性有機溶媒および水の合計質量が水溶性有機溶媒および水の合計質量の80質量%以上である点にある。 A feature of the present invention is that at least one metal selected from the group consisting of copper oxide particles having an average primary particle diameter of 100 nm or less and Group 8 to 11 elements in the periodic table in the conductive ink composition for inkjet. It contains metal particles or salts containing elements, an alcohol compound having a boiling point of 250 ° C. or higher, a water-soluble organic solvent (excluding alcohol compounds having a boiling point of 250 ° C. or higher), and water. A water-soluble organic solvent having a temperature of 100 ° C. or higher and lower than 250 ° C., the total mass of the water-soluble organic solvent having a boiling point of 100 ° C. or higher and lower than 250 ° C. and water being 80% by mass or more of the total mass of the water-soluble organic solvent and water It is in.
 驚くべきことに、本発明のインクジェット用導電インク組成物は、沸点100℃以上250℃未満の水溶性有機溶媒および水(E)の合計質量を、水溶性有機溶媒(D)および水(E)の合計質量の80質量%以上とすることにより、優れた連続吐出安定性、導電膜の高い導電性および良好な線幅均一性を獲得することができた。 Surprisingly, the conductive ink composition for inkjet according to the present invention has a total mass of a water-soluble organic solvent having a boiling point of 100 ° C. or higher and lower than 250 ° C. and water (E), and the water-soluble organic solvent (D) and water (E). By controlling the total mass to 80% by mass or more, excellent continuous discharge stability, high conductivity of the conductive film, and good line width uniformity could be obtained.
[インクジェット用導電インク組成物]
 以下ではまず、本発明のインクジェット用導電インク組成物の各種成分について説明し、その後、導電膜の製造方法について詳述する。
[Conductive ink composition for inkjet]
Below, the various components of the electrically conductive ink composition for inkjet of this invention are demonstrated first, and the manufacturing method of an electrically conductive film is explained in full detail after that.
〈平均1次粒子径100nm以下の酸化銅粒子〉
 本発明のインクジェット用導電インク組成物は、平均1次粒子径100nm以下の酸化銅粒子(以下「酸化銅粒子(A)」という場合がある。)を含む。酸化銅粒子(A)は、後述する焼結処理によって酸化銅が金属銅に還元され、導電膜中の金属導体を構成する。
<Copper oxide particles with an average primary particle size of 100 nm or less>
The conductive ink composition for inkjet according to the present invention includes copper oxide particles having an average primary particle diameter of 100 nm or less (hereinafter sometimes referred to as “copper oxide particles (A)”). In the copper oxide particles (A), the copper oxide is reduced to metal copper by a sintering process described later, and constitutes a metal conductor in the conductive film.
 酸化銅は、酸化銅(I)、酸化銅(II)またはこれらの混合物が好ましく、安価に入手可能であること、空気中でより安定であることから酸化銅(II)がより好ましい。 The copper oxide is preferably copper (I) oxide, copper (II) oxide or a mixture thereof, more preferably copper (II) oxide because it is available at a low cost and is more stable in the air.
 本発明における「酸化銅」とは、酸化されていない銅を実質的に含まない化合物であり、具体的には、X線回折による結晶解析において、酸化銅由来のピークが検出され、かつ金属銅由来のピークが検出されない化合物のことを指す。銅を実質的に含まないとは、銅の含有量が酸化銅粒子に対して1質量%以下であることをいう。 The “copper oxide” in the present invention is a compound that does not substantially contain copper that has not been oxidized. Specifically, in crystal analysis by X-ray diffraction, a peak derived from copper oxide is detected, and metallic copper. It refers to a compound for which no peak is detected. The phrase “substantially free of copper” means that the copper content is 1% by mass or less based on the copper oxide particles.
 酸化銅粒子(A)の平均1次粒子径は、100nm以下であれば特に限定されないが、1~80nmが好ましく、10~50nmがより好ましい。平均1次粒子径が小さいほど酸化銅の還元がされやすく、より低い焼結温度で焼結した場合でも、高い導電性を有する導電膜を作製することができる。平均1次粒子径が10nm以上では、より良好な分散安定性が得られる。
 なお、酸化銅粒子(A)の平均1次粒子径は、走査型電子顕微鏡(以下「SEM」という場合がある。)像の中から無作為に選んだ100個の粒子の水平フェレ径および垂直フェレ径を測定し、それらのうちの大きい方の測定値をその粒子の1次粒子径として、算術平均して算出したものである。なお、水平フェレ径と垂直フェレ径の大きさが同じの場合は、いずれの値を使用してもよい。
The average primary particle diameter of the copper oxide particles (A) is not particularly limited as long as it is 100 nm or less, but is preferably 1 to 80 nm, and more preferably 10 to 50 nm. As the average primary particle size is smaller, copper oxide is more easily reduced, and a conductive film having high conductivity can be produced even when sintered at a lower sintering temperature. When the average primary particle size is 10 nm or more, better dispersion stability can be obtained.
The average primary particle diameter of the copper oxide particles (A) is the horizontal ferret diameter and vertical of 100 particles randomly selected from a scanning electron microscope (hereinafter sometimes referred to as “SEM”) image. The ferret diameter was measured, and the larger measured value among them was calculated as the primary particle diameter of the particles by arithmetic averaging. When the horizontal ferret diameter and the vertical ferret diameter are the same, any value may be used.
〈周期律表の第8~11族元素からなる群から選択される少なくとも1種の金属元素を含む金属粒子または塩〉
 本発明のインクジェット用導電インク組成物は、周期律表の第8~11族元素からなる群から選択される少なくとも1種の金属元素を含む金属粒子または塩(以下「金属粒子または塩(B)」という場合がある。)を含む。
<Metal particles or salts containing at least one metal element selected from the group consisting of Group 8 to 11 elements of the periodic table>
The ink-jet conductive ink composition of the present invention is a metal particle or salt containing at least one metal element selected from the group consisting of Group 8 to 11 elements of the periodic table (hereinafter referred to as “metal particle or salt (B)”. In some cases).
 本発明において、第8~11族元素とは、IUPAC周期表の第8~11族のうち、安定同位体が存在する、鉄(Fe)、ルテニウム(Ru)、オスミウム(Os)、コバルト(Co)、ロジウム(Rh)、イリジウム(Ir)、ニッケル(Ni)、パラジウム(Pd)、白金(Pt)、銅(Cu)、銀(Ag)、および金(Au)をいう。第8~11族元素のうちでは、第9族元素および/または第10族元素が好ましく、第10族元素がより好ましい。第8~11族元素としては、ロジウム、白金、パラジウムまたはこれらのうち2以上の元素の組合せが好ましく、パラジウム、ロジウム、白金またはこれらのうち2以上の元素の組合せが好ましく、パラジウム、白金またはこれらの組合せがより好ましく、パラジウムがさらに好ましい。 In the present invention, the Group 8-11 elements are iron (Fe), ruthenium (Ru), osmium (Os), cobalt (Co) in which stable isotopes exist among Groups 8-11 of the IUPAC periodic table. ), Rhodium (Rh), iridium (Ir), nickel (Ni), palladium (Pd), platinum (Pt), copper (Cu), silver (Ag), and gold (Au). Of the Group 8 to 11 elements, Group 9 elements and / or Group 10 elements are preferred, and Group 10 elements are more preferred. As the Group 8-11 element, rhodium, platinum, palladium or a combination of two or more of these elements is preferable, palladium, rhodium, platinum or a combination of two or more of these elements is preferable, palladium, platinum or these Is more preferable, and palladium is more preferable.
 本発明のインクジェット用導電インク組成物を用いて導電膜を作製する際の焼結処理において、上記金属元素を含む金属粒子、または上記金属元素の塩に含まれる金属イオンが還元されて生成する元素の単体は、酸化銅粒子(A)の還元を促進するとともに、酸化銅粒子(A)の酸化銅が還元されて生成した銅粒子同士の焼結を促進し、より低い焼結温度で、高い導電性を有する導電膜を作製することを可能とする。 In the sintering process when producing a conductive film using the conductive ink composition for inkjet of the present invention, an element generated by reduction of metal ions containing the metal element or metal ions contained in the salt of the metal element The simple substance promotes the reduction of the copper oxide particles (A), promotes the sintering of the copper particles produced by reducing the copper oxide of the copper oxide particles (A), and is high at a lower sintering temperature. A conductive film having conductivity can be manufactured.
(周期律表の第8~11族元素からなる群から選択される少なくとも1種の金属元素を含む金属粒子)
 周期律表の第8~11族元素からなる群から選択される少なくとも1種の金属元素を含む金属粒子(以下「金属粒子(B1)」という場合がある。)は、鉄、ルテニウム、オスミウム、コバルト、ロジウム、イリジウム、ニッケル、パラジウム、白金、銅、銀および金から選ばれる1または2種類以上の元素を含む金属粒子である。
 金属粒子(B1)は第8~11族元素を、好ましくは85質量%以上、より好ましくは90質量%以上、さらに好ましくは95質量%以上含む金属粒子である。
 金属粒子(B1)は、酸化、凝集等を防止するため、その表面がポリアクリル酸ナトリウム等のコーティング剤や保護コロイドなどで被覆されていてもよい。
 金属粒子(B1)の平均1次粒子径は、特に限定されないが、1~50nmが好ましく、1~10nmがより好ましく、1~5nmがさらに好ましい。
(Metal particles containing at least one metal element selected from the group consisting of elements 8 to 11 of the periodic table)
Metal particles containing at least one metal element selected from the group consisting of Group 8 to 11 elements of the periodic table (hereinafter sometimes referred to as “metal particles (B1)”) are iron, ruthenium, osmium, Metal particles containing one or more elements selected from cobalt, rhodium, iridium, nickel, palladium, platinum, copper, silver and gold.
The metal particles (B1) are metal particles containing a Group 8-11 element, preferably 85% by mass or more, more preferably 90% by mass or more, and further preferably 95% by mass or more.
The surfaces of the metal particles (B1) may be coated with a coating agent such as sodium polyacrylate or a protective colloid in order to prevent oxidation, aggregation and the like.
The average primary particle diameter of the metal particles (B1) is not particularly limited, but is preferably 1 to 50 nm, more preferably 1 to 10 nm, and further preferably 1 to 5 nm.
 なお、金属粒子(B1)の平均1次粒子径は、SEM像の中から無作為に選んだ100個の粒子の水平フェレ径および垂直フェレ径を測定し、それらのうちの大きい方の測定値をその粒子の1次粒子径として、算術平均して算出したものである。なお、水平フェレ径と垂直フェレ径の大きさが同じの場合は、いずれの値を使用してもよい。 In addition, the average primary particle diameter of the metal particles (B1) is obtained by measuring the horizontal ferret diameter and the vertical ferret diameter of 100 particles randomly selected from the SEM image, and the larger measured value among them. As the primary particle diameter of the particles. When the horizontal ferret diameter and the vertical ferret diameter are the same, any value may be used.
(周期律表の第8~11族元素からなる群から選択される少なくとも1種の金属元素の塩)
 周期律表の第8~11族元素からなる群から選択される少なくとも1種の金属元素の塩(以下「金属塩(B2)」という場合がある。)は、鉄、ルテニウム、オスミウム、コバルト、ロジウム、イリジウム、ニッケル、パラジウム、白金、銅、銀および金から選ばれる1または2種類以上の元素を含む塩(錯体を含む。)である。金属塩(B2)としては、塩化パラジウム(II)、カリウムテトラクロロパラデートのような塩化物等のハロゲン化物塩;硝酸パラジウム等の硝酸塩;硫酸塩;炭酸塩;酢酸パラジウム(II)のような酢酸塩等のカルボン酸塩;アンミン錯体;硝酸テトラアンミンパラジウム(II)、硝酸テトラアンミン白金(II)のような硝酸テトラアンミン錯体;トリルテニウムドデカカルボニル(ドデカカルボニル三ルテニウム)等の金属カルボニル錯体;ジ(アセチルアセトナト)パラジウム等のアセチルアセトナト塩;テトラキス(トリフェニルホスフィン)パラジウム、テトラキス(トリフェニルホスフィン)白金、ジクロロ[ビス(1,2-ジフェニルホスフィノ)エタン]ニッケル等のホスフィン錯体;ビス(1,5-シクロオクタジエン)白金、ビス(1,5-シクロオクタジエン)ニッケル等のジエン錯体;クロロ(π-アリル)パラジウム ダイマー等のπ-アリル錯体;ペンタキス(トリクロロスタナト)パラデート、ペンタキス(トリクロロスタナト)プラチネート等のトリクロロスタナト錯体;ジエチル(2,2’-ビピリジル)パラジウム等のビピリジル錯体;ジ(ベンザルアセトン)パラジウム、トリ(ベンザルアセトン)ジパラジウム等のベンザルアセトン錯体などが挙げられる。
 なかでも、形成される導電膜の導電性がより優れる点で、周期律表の第10族元素からなる群から選択される少なくとも1種の金属元素を含む金属粒子または塩が好ましく、パラジウムを含む塩(パラジウム塩)がより好ましい。
(Salt of at least one metal element selected from the group consisting of Group 8-11 elements of the Periodic Table)
The salt of at least one metal element selected from the group consisting of Group 8 to 11 elements of the periodic table (hereinafter sometimes referred to as “metal salt (B2)”) is iron, ruthenium, osmium, cobalt, It is a salt (including a complex) containing one or more elements selected from rhodium, iridium, nickel, palladium, platinum, copper, silver and gold. Examples of the metal salt (B2) include palladium chloride (II), halide salts such as chloride such as potassium tetrachloroparadate; nitrates such as palladium nitrate; sulfates; carbonates; palladium acetate (II) Carboxylates such as acetate; ammine complexes; tetraammine nitrates such as tetraamminepalladium (II) nitrate and tetraammineplatinum (II) nitrate; metal carbonyl complexes such as triruthenium dodecacarbonyl (dodecacarbonyltriruthenium); di (acetyl Acetylacetonate salts such as acetonato) palladium; phosphine complexes such as tetrakis (triphenylphosphine) palladium, tetrakis (triphenylphosphine) platinum, dichloro [bis (1,2-diphenylphosphino) ethane] nickel; bis (1 , 5-Cyclooctadiene) white Diene complexes such as bis (1,5-cyclooctadiene) nickel; π-allyl complexes such as chloro (π-allyl) palladium dimer; trichloro such as pentakis (trichlorostanato) paradate, pentakis (trichlorostanato) platinate Examples include stanato complexes; bipyridyl complexes such as diethyl (2,2′-bipyridyl) palladium; and benzalacetone complexes such as di (benzalacetone) palladium and tri (benzalacetone) dipalladium.
Among them, metal particles or salts containing at least one metal element selected from the group consisting of Group 10 elements of the periodic table are preferable, and palladium is included in that the conductivity of the formed conductive film is more excellent. A salt (palladium salt) is more preferable.
〈沸点250℃以上のアルコール化合物〉
 沸点250℃以上のアルコール化合物(以下「アルコール(C)」という場合がある。)は、焼結処理の際に酸化銅粒子(A)の酸化銅を還元するための還元剤として作用する。
<Alcohol compound having a boiling point of 250 ° C. or higher>
An alcohol compound having a boiling point of 250 ° C. or higher (hereinafter sometimes referred to as “alcohol (C)”) acts as a reducing agent for reducing the copper oxide of the copper oxide particles (A) during the sintering treatment.
 アルコール(C)は、常圧(100kPa)下の沸点が250℃以上で、1分子中にアルコール性ヒドロキシ基を1個以上有する化合物であれば特に限定されない。また、アルコール(C)は、1種類を単独で、または2種類以上を組み合わせて使用することができる。 Alcohol (C) is not particularly limited as long as it has a boiling point of 250 ° C. or higher under normal pressure (100 kPa) and has one or more alcoholic hydroxy groups in one molecule. Moreover, alcohol (C) can be used individually by 1 type or in combination of 2 or more types.
 アルコール(C)としては、例えば、1-イコサノール(沸点372℃)、1-テトラコサノール(沸点395℃)等の1価のアルキルアルコール;1,6-ヘキサンジオール(沸点250℃)、1,7-ヘプタンジオール(沸点259℃)等の2価のアルキルアルコール;トリエチレングリコール(沸点287℃)、トリプロピレングリコール(沸点273℃)等のトリアルキレングリコール;グリセリン(プロパン-1,2,3-トリオール)(沸点290℃)、トリメチロールプロパン(沸点250℃以上)、トリメチロールエタン(沸点250℃以上)等の3価のアルキルアルコール;エリトリトール(沸点329℃)等の4価のアルキルアルコール;ペンタエリトリトール(沸点250℃以上)等の5価アルコール;マンニトール(沸点290℃)等の6価のアルキルアルコールなどが挙げられる。 Examples of the alcohol (C) include monovalent alkyl alcohols such as 1-icosanol (boiling point 372 ° C.) and 1-tetracosanol (boiling point 395 ° C.); 1,6-hexanediol (boiling point 250 ° C.), 1, Divalent alkyl alcohols such as 7-heptanediol (boiling point 259 ° C.); Trialkylene glycols such as triethylene glycol (boiling point 287 ° C.) and tripropylene glycol (boiling point 273 ° C.); Glycerin (propane-1,2,3- Triol) (boiling point 290 ° C.), trimethylolpropane (boiling point 250 ° C. or more), trivalent alkyl alcohols such as trimethylolethane (boiling point 250 ° C. or more); tetravalent alkyl alcohols such as erythritol (boiling point 329 ° C.); penta Pentahydric alcohols such as erythritol (boiling point 250 ° C. or higher); mannito Including hexavalent alkyl alcohol (boiling point 290 ° C.), and the like.
 アルコール(C)は、2価以上のアルキルアルコールを含むことが好ましく、3価以上のアルキルアルコールを含むことがより好ましく、トリメチロールプロパンまたはトリメチロールエタンを含むことがさらに好ましく、トリメチロールプロパンを含むことが特に好ましい。3価以上のアルキルアルコールは、CuOを還元し、生成した酸化分解物の沸点が2価以下のアルキルアルコールより高く、膜中に残存することで、更なる還元反応を生じ、還元力の高い還元剤として機能し、導電性の高い導電膜が形成できると推定される。 The alcohol (C) preferably contains a divalent or higher alkyl alcohol, more preferably contains a trivalent or higher alkyl alcohol, more preferably contains trimethylolpropane or trimethylolethane, and contains trimethylolpropane. It is particularly preferred. Trihydric or higher alkyl alcohol reduces CuO, and the resulting oxidative decomposition product has a boiling point higher than that of dihydric or lower alkyl alcohol and remains in the film, thereby causing further reduction reaction and high reducing power. It is estimated that a conductive film that functions as an agent and has high conductivity can be formed.
〈水溶性有機溶媒、水〉
 水溶性有機溶媒(以下「水溶性有機溶媒(D)」という場合がある。)および水(以下「水(E)」という場合がある。)は、酸化銅粒子(A)、金属粒子または塩(B)およびアルコール(C)の溶媒または分散媒として用いられる。なお、水溶性有機溶媒(D)には、上述したアルコール(C)は含まれない。
<Water-soluble organic solvent, water>
The water-soluble organic solvent (hereinafter sometimes referred to as “water-soluble organic solvent (D)”) and water (hereinafter also referred to as “water (E)”) may be copper oxide particles (A), metal particles or salts. Used as a solvent or dispersion medium for (B) and alcohol (C). The water-soluble organic solvent (D) does not include the alcohol (C) described above.
《水溶性有機溶媒(D)》
 水溶性有機溶媒(D)は、沸点100℃以上250℃未満の水溶性有機溶媒(以下「水溶性有機溶媒(D2)」という場合がある。)を含有する。水溶性有機溶媒(D)は1種類を単独で、または2種類以上を組み合わせて用いることができる。なお、水溶性有機溶媒(D)は、常温常圧下で液体であることが好ましい。
 なお、水溶性有機溶媒とは、水と相溶性を示す有機溶媒であり、より具体的には、水と任意の割合で混合して、均一の系を形成する溶媒である。
<< Water-soluble organic solvent (D) >>
The water-soluble organic solvent (D) contains a water-soluble organic solvent having a boiling point of 100 ° C. or higher and lower than 250 ° C. (hereinafter sometimes referred to as “water-soluble organic solvent (D2)”). The water-soluble organic solvent (D) can be used alone or in combination of two or more. The water-soluble organic solvent (D) is preferably a liquid at normal temperature and pressure.
The water-soluble organic solvent is an organic solvent that is compatible with water. More specifically, the water-soluble organic solvent is a solvent that is mixed with water at an arbitrary ratio to form a uniform system.
 水溶性有機溶媒(D2)は、特に限定されるものではないが、分子内にエーテル構造、ケトン構造およびヘテロ環構造からなる群から選択される少なくとも1つの構造を有することが好ましい。このような水溶性有機溶媒を含有することにより、連続吐出安定性および線幅均一性がより優れたものとなる。 The water-soluble organic solvent (D2) is not particularly limited, but preferably has at least one structure selected from the group consisting of an ether structure, a ketone structure and a heterocyclic structure in the molecule. By containing such a water-soluble organic solvent, continuous discharge stability and line width uniformity are further improved.
 水溶性有機溶媒(D2)のうち、分子内にエーテル構造を有する有機溶媒としては、ジエチレングリコール(融点-10℃、沸点244℃)、ジプロピレングリコール(融点-40℃、沸点232℃)、2-メトキシエタノール(融点-85℃、沸点124℃)、3-メトキシブタノール(融点-85℃、沸点161℃)、エチレングリコールモノメチルエーテル(融点-85℃、沸点124℃)、エチレングリコールモノエチルエーテル(融点-70℃、沸点135℃)、エチレングリコールモノブチルエーテル(融点-75℃、沸点171℃)、ジエチレングリコールモノメチルエーテル(融点-70℃、沸点194℃)、ジエチレングリコールモノエチルエーテル(融点-80℃、沸点202℃)、ジエチレングリコールモノブチルエーテル(融点-68℃、沸点230℃)、1,4-ジオキサン(融点11.8℃、沸点101℃)、フルフリルアルコール(融点-29℃、沸点170℃)、テトラヒドロフルフリルアルコール(融点-80℃、沸点178℃)等が挙げられる。 Among the water-soluble organic solvents (D2), organic solvents having an ether structure in the molecule include diethylene glycol (melting point −10 ° C., boiling point 244 ° C.), dipropylene glycol (melting point −40 ° C., boiling point 232 ° C.), 2- Methoxyethanol (melting point -85 ° C, boiling point 124 ° C), 3-methoxybutanol (melting point -85 ° C, boiling point 161 ° C), ethylene glycol monomethyl ether (melting point -85 ° C, boiling point 124 ° C), ethylene glycol monoethyl ether (melting point) -70 ° C, boiling point 135 ° C), ethylene glycol monobutyl ether (melting point -75 ° C, boiling point 171 ° C), diethylene glycol monomethyl ether (melting point -70 ° C, boiling point 194 ° C), diethylene glycol monoethyl ether (melting point -80 ° C, boiling point 202) ° C), diethylene glycol monobutyl ether Ter (melting point -68 ° C, boiling point 230 ° C), 1,4-dioxane (melting point 11.8 ° C, boiling point 101 ° C), furfuryl alcohol (melting point -29 ° C, boiling point 170 ° C), tetrahydrofurfuryl alcohol (melting point- 80 ° C., boiling point 178 ° C.).
 水溶性有機溶媒(D2)のうち、分子内にケトン構造を有する有機溶媒としては、ジエチルケトン(融点-42℃、沸点101℃)、メチルイソブチルケトン(融点-84℃、沸点116℃)、アセトフェノン(融点20.5℃、沸点202℃)、イソホロン(融点-8℃、沸点215℃)、シクロヘキサノン(融点-16℃、沸点155℃)等が挙げられる。 Among the water-soluble organic solvents (D2), examples of the organic solvent having a ketone structure in the molecule include diethyl ketone (melting point −42 ° C., boiling point 101 ° C.), methyl isobutyl ketone (melting point −84 ° C., boiling point 116 ° C.), acetophenone. (Melting point 20.5 ° C, boiling point 202 ° C), isophorone (melting point -8 ° C, boiling point 215 ° C), cyclohexanone (melting point -16 ° C, boiling point 155 ° C), and the like.
 水溶性有機溶媒(D2)のうち、分子内にヘテロ環構造を有する有機溶媒としては、N-メチルピロリドン(融点-24℃、沸点202℃)、1,4-ジオキサン(融点11.8℃、沸点101℃)、フルフリルアルコール(融点-29℃、沸点170℃)、テトラヒドロフルフリルアルコール(融点-80℃、沸点178℃)等が挙げられる。 Among the water-soluble organic solvents (D2), organic solvents having a heterocyclic structure in the molecule include N-methylpyrrolidone (melting point −24 ° C., boiling point 202 ° C.), 1,4-dioxane (melting point 11.8 ° C., Boiling point 101 ° C.), furfuryl alcohol (melting point −29 ° C., boiling point 170 ° C.), tetrahydrofurfuryl alcohol (melting point −80 ° C., boiling point 178 ° C.) and the like.
 また、水溶性有機溶媒(D2)として、沸点100℃以上250℃未満の水溶性アルコール化合物を含有してもよく、例えば、ブタノール(沸点117℃)、2-ブタノール(沸点100℃)、ペンタノール(沸点138℃)、2-ペンタノール(沸点118℃)、3-ペンタノール(沸点114℃)、シクロペンタノール(沸点140.9℃)、1-ヘキサノール(沸点157℃)、2-ヘキサノール(沸点139℃)、3-ヘキサノール(沸点134.4℃)、シクロヘキサノール(沸点161℃)、2-フェネチルアルコール(沸点219℃)、エチレングリコールモノメチルエーテル(融点-85℃、沸点124℃)、エチレングリコールモノエチルエーテル(融点-70℃、沸点135℃)、エチレングリコールモノブチルエーテル(融点-75℃、沸点171℃)、ジエチレングリコールモノメチルエーテル(融点-70℃、沸点194℃)、ジエチレングリコールモノエチルエーテル(融点-80℃、沸点202℃)、ジエチレングリコールモノブチルエーテル(融点-68℃、沸点230℃)、1,4-ジオキサン(融点11.8℃、沸点101℃)、フルフリルアルコール(融点-29℃、沸点170℃)、テトラヒドロフルフリルアルコール(融点-80℃、沸点178℃)等の1価のアルコール;エチレングリコール(沸点198℃)、プロピレングリコール(1,2-プロパンジオール)(沸点186℃)、1,3-プロパンジオール(沸点188.2℃)、1,2-ブタンジオール(沸点193℃)、1,3-ブタンジオール(沸点203℃)、1,4-ブタンジオール(沸点228℃)、2,3-ブタンジオール(沸点183℃)、1,5-ペンタンジオール(沸点242℃)等の2価のアルコールなどが挙げられる。 Further, the water-soluble organic solvent (D2) may contain a water-soluble alcohol compound having a boiling point of 100 ° C. or higher and lower than 250 ° C., for example, butanol (boiling point 117 ° C.), 2-butanol (boiling point 100 ° C.), pentanol. (Boiling point 138 ° C), 2-pentanol (boiling point 118 ° C), 3-pentanol (boiling point 114 ° C), cyclopentanol (boiling point 140.9 ° C), 1-hexanol (boiling point 157 ° C), 2-hexanol ( Boiling point 139 ° C), 3-hexanol (boiling point 134.4 ° C), cyclohexanol (boiling point 161 ° C), 2-phenethyl alcohol (boiling point 219 ° C), ethylene glycol monomethyl ether (melting point -85 ° C, boiling point 124 ° C), ethylene Glycol monoethyl ether (melting point -70 ° C, boiling point 135 ° C), ethylene glycol monobutyl ether (Melting point -75 ° C, boiling point 171 ° C), diethylene glycol monomethyl ether (melting point -70 ° C, boiling point 194 ° C), diethylene glycol monoethyl ether (melting point -80 ° C, boiling point 202 ° C), diethylene glycol monobutyl ether (melting point -68 ° C, Boiling point 230 ° C.), 1,4-dioxane (melting point 11.8 ° C., boiling point 101 ° C.), furfuryl alcohol (melting point −29 ° C., boiling point 170 ° C.), tetrahydrofurfuryl alcohol (melting point −80 ° C., boiling point 178 ° C.) Monohydric alcohols such as ethylene glycol (boiling point 198 ° C.), propylene glycol (1,2-propanediol) (boiling point 186 ° C.), 1,3-propanediol (boiling point 188.2 ° C.), 1,2-butane Diol (boiling point 193 ° C), 1,3-butanediol (boiling point 203 ° C), 1,4-butane Diol (boiling point 228 ° C.), 2,3-butanediol (boiling point 183 ° C.), such as a dihydric alcohol such as 1,5-pentanediol (boiling point 242 ° C.) and the like.
 水溶性有機溶媒(D)は、水溶性有機溶媒(D2)に該当しない水溶性有機溶媒(以下「水溶性有機溶媒(D3)」という場合がある。)を含有してもよい。
 水溶性有機溶媒(D3)としては、例えば、沸点100℃未満の水溶性アルコール類、沸点100℃未満の水溶性エーテル類、沸点100℃未満の水溶性エステル類、沸点100℃未満の水溶性ケトン類などが挙げられる。
The water-soluble organic solvent (D) may contain a water-soluble organic solvent that does not correspond to the water-soluble organic solvent (D2) (hereinafter sometimes referred to as “water-soluble organic solvent (D3)”).
Examples of the water-soluble organic solvent (D3) include water-soluble alcohols having a boiling point of less than 100 ° C., water-soluble ethers having a boiling point of less than 100 ° C., water-soluble esters having a boiling point of less than 100 ° C., and water-soluble ketones having a boiling point of less than 100 ° C. And the like.
 沸点100℃未満の水溶性アルコール類としては、例えば、メタノール(沸点64.7℃)、エタノール(沸点78.4℃)、プロパノール(沸点97℃)、2-プロパノール(沸点82.4℃)、アリルアルコール(沸点97℃)等が挙げられる。
 沸点100℃未満の水溶性エーテル類としては、例えば、エチルエーテル(沸点34.6℃)、イソプロピルエーテル(沸点68.4℃)、テトラヒドロフラン(融点-108℃、沸点65.4℃)、1,3-ジオキソラン(沸点75℃)、メチルtert-ブチルエーテル(沸点55.3℃)等が挙げられる。
 沸点100℃未満の水溶性エステル類としては、例えば、酢酸メチル(沸点56.9℃)、酢酸エチル(沸点77℃)、酢酸イソプロピル(沸点89℃)等が挙げられる。
 沸点100℃未満の水溶性ケトン類としては、アセトン(沸点56.1℃)、メチルエチルケトン(沸点80℃)等が挙げられる。
Examples of water-soluble alcohols having a boiling point of less than 100 ° C. include methanol (boiling point 64.7 ° C.), ethanol (boiling point 78.4 ° C.), propanol (boiling point 97 ° C.), 2-propanol (boiling point 82.4 ° C.), And allyl alcohol (boiling point 97 ° C.).
Examples of water-soluble ethers having a boiling point of less than 100 ° C. include ethyl ether (boiling point 34.6 ° C.), isopropyl ether (boiling point 68.4 ° C.), tetrahydrofuran (melting point −108 ° C., boiling point 65.4 ° C.), 1, Examples include 3-dioxolane (boiling point 75 ° C.) and methyl tert-butyl ether (boiling point 55.3 ° C.).
Examples of water-soluble esters having a boiling point of less than 100 ° C. include methyl acetate (boiling point 56.9 ° C.), ethyl acetate (boiling point 77 ° C.), isopropyl acetate (boiling point 89 ° C.), and the like.
Examples of water-soluble ketones having a boiling point of less than 100 ° C. include acetone (boiling point 56.1 ° C.) and methyl ethyl ketone (boiling point 80 ° C.).
《水》
 水(以下「水(E)」という場合がある。)は、イオン交換水以上のレベルの純度を有するもの、例えば、逆浸透ろ過水(RO水)、ミリQ水、蒸留水等が好ましい。
"water"
The water (hereinafter sometimes referred to as “water (E)”) is preferably water having a purity level equal to or higher than that of ion-exchanged water, for example, reverse osmosis filtered water (RO water), milli-Q water, distilled water and the like.
〈その他成分〉
 インクジェット用導電インク組成物には、酸化銅粒子(A)、金属粒子または塩(B)、アルコール(C)、水溶性有機溶媒(D)、および水(E)以外にも他の成分が含まれていてもよい。
<Other ingredients>
In addition to copper oxide particles (A), metal particles or salts (B), alcohol (C), water-soluble organic solvent (D), and water (E), the conductive ink composition for inkjet contains other components. It may be.
 例えば、インクジェット用導電インク組成物には、界面活性剤が含まれていてもよい。界面活性剤は、酸化銅粒子の分散性を向上させる役割を果たす。界面活性剤の種類は特に制限されず、アニオン系界面活性剤、カチオン系界面活性剤、ノニオン系界面活性剤、フッ素系界面活性剤、両性界面活性剤などが挙げられる。これら界面活性剤は、1種類を単独で、または2種類以上を混合して用いることができる。 For example, the conductive ink composition for inkjet may contain a surfactant. The surfactant plays a role of improving the dispersibility of the copper oxide particles. The type of the surfactant is not particularly limited, and examples thereof include an anionic surfactant, a cationic surfactant, a nonionic surfactant, a fluorine surfactant, and an amphoteric surfactant. These surfactants can be used alone or in combination of two or more.
 本発明のインクジェット用導電インク組成物中の酸化銅粒子(A)の含有量は、特に限定されるものではないが、インクジェット用導電インク組成物の粘度の上昇が抑制され、取扱い性により優れる点から、酸化銅粒子(A)の全質量がインクジェット用導電インク組成物の総質量の20質量%以下であることが好ましく、15質量%以下がより好ましい。下限は特に制限されないが、導電膜の厚みの制御がしやすい点で、3質量%以上が好ましい。 The content of the copper oxide particles (A) in the conductive ink composition for inkjet according to the present invention is not particularly limited, but the increase in the viscosity of the conductive ink composition for inkjet is suppressed, and the handleability is excellent. Therefore, the total mass of the copper oxide particles (A) is preferably 20% by mass or less, more preferably 15% by mass or less, based on the total mass of the conductive ink composition for inkjet. Although a minimum in particular is not restrict | limited, 3 mass% or more is preferable at the point which is easy to control the thickness of an electrically conductive film.
 本発明のインクジェット用導電インク組成物中の金属粒子または塩(B)の含有量は、特に限定されるものではないが、酸化銅粒子(A)100質量部に対して、0.5~10質量部であることが好ましく、1.0~5.0質量部であることがより好ましい。この範囲内であると、焼結処理の際に酸化銅の還元が十分に行われるため、導電性がより優れる。 The content of the metal particles or salt (B) in the ink-jet conductive ink composition of the present invention is not particularly limited, but is 0.5 to 10 with respect to 100 parts by mass of the copper oxide particles (A). The amount is preferably part by mass, more preferably 1.0 to 5.0 parts by mass. Within this range, the copper oxide is sufficiently reduced during the sintering treatment, so that the conductivity is more excellent.
 本発明のインクジェット用導電インク組成物中のアルコール(C)の含有量は、特に限定されるものではないが、アルコール(C)の酸化銅粒子(A)に対する質量比(アルコール(C)の全質量/酸化銅粒子(A)の全質量)が、3.0~10.0であることが好ましく、3.0~6.0であることがより好ましい。この範囲内であると、酸化銅の還元が十分に行われるため、導電性がより優れたものとなる。 The content of the alcohol (C) in the conductive ink composition for inkjet according to the present invention is not particularly limited, but the mass ratio of the alcohol (C) to the copper oxide particles (A) (total alcohol (C) The mass / the total mass of the copper oxide particles (A) is preferably 3.0 to 10.0, and more preferably 3.0 to 6.0. Within this range, the copper oxide is sufficiently reduced, so that the conductivity is more excellent.
 本発明のインクジェット用導電インク組成物中の水溶性有機溶媒(D)および水(E)の合計含有量は、特に限定されるものではないが、インクジェット用導電インク組成物の粘度の上昇が抑制され、取扱い性により優れる点から、インクジェット用導電インク組成物の総質量に対する水溶性有機溶媒(D)および水(E)の合計質量の割合が、10~95質量%が好ましく、連続吐出安定性および線幅均一性がより優れることから、20~85質量%がより好ましい。 Although the total content of the water-soluble organic solvent (D) and water (E) in the inkjet conductive ink composition of the present invention is not particularly limited, an increase in the viscosity of the inkjet conductive ink composition is suppressed. From the viewpoint of superior handling properties, the ratio of the total mass of the water-soluble organic solvent (D) and water (E) to the total mass of the conductive ink composition for inkjet is preferably 10 to 95% by mass, and the continuous ejection stability Further, from the viewpoint of more excellent line width uniformity, 20 to 85% by mass is more preferable.
 また、水溶性有機溶媒(D)および水(E)中の水溶性有機溶媒(D2)および水(E)の含有量は、水溶性有機溶媒(D2)および水(E)の合計質量が水溶性有機溶媒(D)および水(E)の合計質量の80質量%以上であり、連続吐出安定性がより優れることから、90質量%以上が好ましく、95質量%以上がより好ましい。
 80質量%未満の場合、連続吐出安定性または線幅均一性に劣る。
Further, the content of the water-soluble organic solvent (D2) and water (E) in the water-soluble organic solvent (D) and water (E) is such that the total mass of the water-soluble organic solvent (D2) and water (E) is water-soluble. 90% by mass or more, and more preferably 95% by mass or more, because it is 80% by mass or more of the total mass of the water-soluble organic solvent (D) and water (E) and the continuous discharge stability is more excellent.
When it is less than 80% by mass, the continuous ejection stability or the line width uniformity is inferior.
 また、アルコール(C)の水溶性有機溶媒(D)および水(E)に対する質量比(アルコール(C)の全質量/(水溶性有機溶媒(D)の全質量+水(E)の全質量))は、特に限定されるものではないが、連続吐出安定性および線幅均一性がより優れることから、0.1~5.0が好ましく、0.2~5.0がより好ましく、0.3~2.0がさらに好ましい。 The mass ratio of alcohol (C) to water-soluble organic solvent (D) and water (E) (total mass of alcohol (C) / (total mass of water-soluble organic solvent (D) + total mass of water (E)) )) Is not particularly limited, but is preferably 0.1 to 5.0, more preferably 0.2 to 5.0, because continuous discharge stability and line width uniformity are more excellent. .3 to 2.0 is more preferable.
 水溶性有機溶媒(D)と水(E)との質量比(水溶性有機溶媒(D)の全質量/水(E)の全質量))は、特に限定されるものではないが、連続吐出安定性および線幅均一性がより優れることから、1/2~10/1が好ましく、1/1~8/1がより好ましい。 The mass ratio of the water-soluble organic solvent (D) to water (E) (the total mass of the water-soluble organic solvent (D) / the total mass of water (E)) is not particularly limited, but continuous ejection In view of more excellent stability and line width uniformity, 1/2 to 10/1 is preferable, and 1/1 to 8/1 is more preferable.
 インクジェット用導電インク組成物の粘度は、インクジェット印刷に適するような粘度に調整させることが好ましい。インクジェット吐出を行う場合、1~50cPが好ましく、1~40cPがより好ましい。 The viscosity of the conductive ink composition for inkjet is preferably adjusted to a viscosity suitable for inkjet printing. When inkjet discharge is performed, 1 to 50 cP is preferable, and 1 to 40 cP is more preferable.
 インクジェット用導電インク組成物の調製方法は特に制限されず、公知の方法を採用できる。例えば、酸化銅粒子(A)と、金属粒子または塩(B)と、アルコール(C)と、水溶性有機溶媒(D)と、水(E)と、所望により、その他の成分とを添加した後、超音波法(例えば、超音波ホモジナイザーによる処理)、ミキサー法、3本ロール法、ボールミル法などの公知の手段により成分を分散させることによって、組成物を得ることができる。 The method for preparing the conductive ink composition for inkjet is not particularly limited, and a known method can be adopted. For example, copper oxide particles (A), metal particles or salt (B), alcohol (C), water-soluble organic solvent (D), water (E), and other components were added as desired. Thereafter, the composition can be obtained by dispersing the components by a known means such as an ultrasonic method (for example, treatment with an ultrasonic homogenizer), a mixer method, a three-roll method, or a ball mill method.
[導電膜の製造方法]
 本発明のインクジェット用導電インク組成物を用いて基材上に導電膜を製造する方法は、少なくとも塗膜形成工程と焼結工程とを備える。さらに、所望により、乾燥工程を備えていてもよい。
[Method for producing conductive film]
The method for producing a conductive film on a substrate using the conductive ink composition for inkjet of the present invention comprises at least a coating film forming step and a sintering step. Furthermore, if desired, a drying step may be provided.
〈塗膜形成工程〉
 塗膜形成工程は、本発明のインクジェット用導電インク組成物をインクジェット法にて基材上に吐出して塗膜を形成する工程である。本工程により、焼結工程において焼結処理が施される前の塗膜が得られる。焼結処理を施す前に基材上に付与した塗膜を乾燥する乾燥工程を行ってもよい。
<Coating film formation process>
A coating-film formation process is a process of discharging the electrically conductive ink composition for inkjets of this invention on a base material by the inkjet method, and forming a coating film. By this step, a coating film before being subjected to the sintering treatment in the sintering step is obtained. You may perform the drying process which dries the coating film provided on the base material before performing a sintering process.
 本工程で使用される基材としては、公知のものを用いることができる。基材に使用される材料としては、例えば、樹脂、紙、ガラス、シリコン系半導体、化合物半導体、金属酸化物、金属窒化物、木材、またはこれらの複合物が挙げられる。
 より具体的には、低密度ポリエチレン樹脂、高密度ポリエチレン樹脂、ABS樹脂、アクリル樹脂、スチレン樹脂、塩化ビニル樹脂、ポリエステル樹脂(ポリエチレンテレフタラート(PET)、ポリトリメチレンテレフタラート(PTT)、ポリブチレンテレフタラート(PBT)、ポリエチレンナフタラート(PEN)、ポリブチレンナフタラート(PBN)等)、ポリアセタール樹脂、ポリサルフォン樹脂、ポリエーテルイミド樹脂、ポリエーテルケトン樹脂、ポリイミド樹脂、セルロース誘導体等の樹脂基材;非塗工印刷用紙、微塗工印刷用紙、塗工印刷用紙(アート紙、コート紙)、特殊印刷用紙、コピー用紙(PPC用紙)、未晒包装紙(重袋用両更クラフト紙、両更クラフト紙)、晒包装紙(晒クラフト紙、純白ロール紙)、コートボール、チップボール、段ボール等の紙基材;ソーダガラス、ホウケイ酸ガラス、シリカガラス、石英ガラス等のガラス基材;アモルファスシリコン、ポリシリコン等のシリコン系半導体基材;CdS、CdTe、GaAs等の化合物半導体基材;銅板、鉄板、アルミ板等の金属基材;アルミナ、サファイア、ジルコニア、チタニア、酸化イットリウム、酸化インジウム、インジウム錫酸化物(ITO)、インジウム亜鉛酸化物(IZO)、ネサ(酸化錫)、アンチモンドープ酸化錫(ATO)、フッ素ドープ酸化錫(FTO)、酸化亜鉛、アルミドープ酸化亜鉛(AZO)、ガリウムドープ酸化亜鉛(GZO)、窒化アルミニウム基材、炭化ケイ素等のその他無機基材;紙-フェノール樹脂、紙-エポキシ樹脂、紙-ポリエステル樹脂等の紙-樹脂複合物、ガラス布-エポキシ樹脂(ガラスエポキシ樹脂)、ガラス布-ポリイミド系樹脂、ガラス布-フッ素樹脂等のガラス-樹脂複合物等の複合基材等が挙げられる。これらの中でも、ポリエステル樹脂基材、ポリエーテルイミド樹脂基材、紙基材、ガラス基材が好ましく使用される。
A well-known thing can be used as a base material used at this process. Examples of the material used for the substrate include resin, paper, glass, silicon-based semiconductor, compound semiconductor, metal oxide, metal nitride, wood, or a composite thereof.
More specifically, low density polyethylene resin, high density polyethylene resin, ABS resin, acrylic resin, styrene resin, vinyl chloride resin, polyester resin (polyethylene terephthalate (PET), polytrimethylene terephthalate (PTT), polybutylene) Resin base materials such as terephthalate (PBT), polyethylene naphthalate (PEN), polybutylene naphthalate (PBN)), polyacetal resin, polysulfone resin, polyetherimide resin, polyetherketone resin, polyimide resin, cellulose derivative; Uncoated printing paper, finely coated printing paper, coated printing paper (art paper, coated paper), special printing paper, copy paper (PPC paper), unbleached wrapping paper (double kraft paper for heavy bags, bilateral Kraft paper), bleached wrapping paper (bleached kraft paper, pure white roll paper), Paper substrates such as cartons, chip balls, and cardboard; glass substrates such as soda glass, borosilicate glass, silica glass, and quartz glass; silicon-based semiconductor substrates such as amorphous silicon and polysilicon; CdS, CdTe, GaAs, and the like Compound semiconductor substrate; metal substrate such as copper plate, iron plate, aluminum plate; alumina, sapphire, zirconia, titania, yttrium oxide, indium oxide, indium tin oxide (ITO), indium zinc oxide (IZO), Nesa (oxidation) Tin), antimony-doped tin oxide (ATO), fluorine-doped tin oxide (FTO), zinc oxide, aluminum-doped zinc oxide (AZO), gallium-doped zinc oxide (GZO), aluminum nitride base material, other inorganic groups such as silicon carbide Materials: Paper-phenol resin, paper-epoxy resin, paper-polyester tree Resin composites, glass cloth - - Paper equal epoxy resin (glass epoxy resin), glass cloth - polyimide resin, glass cloth - Glass and fluorine resin - composite groups of the resin composites like materials and the like. Among these, a polyester resin base material, a polyetherimide resin base material, a paper base material, and a glass base material are preferably used.
 インクジェット法は、液体吐出孔から記録信号(デジタルデータ)に応じたピコリットルオーダーの液体を基材に向けて吐出するものであり、パターン状にインクを付与して微細なパターンが形成可能である。
 本工程で使用されるインクジェット法は特に限定されず、インクジェット用導電インク組成物を連続的に噴射し電場によって制御する方法、圧電素子を用いて間欠的にインクジェットインクを噴射する方法、インクジェット用導電インク組成物を加熱してその発泡を利用して間欠的に噴射する方法等の、各種の従来公知の方法を採用できる。つまり、インクジェット法による描画は、ピエゾインクジェット方式や、熱インクジェット方式等、従来公知のいずれの方式によって行なってもよい。また、通常のインクジェット描画装置はもちろん、ヒーター等を搭載した描画装置なども使用できる。
The ink jet method ejects a liquid in picoliter order corresponding to a recording signal (digital data) from a liquid ejection hole toward a base material, and a fine pattern can be formed by applying ink in a pattern shape. .
The ink jet method used in this step is not particularly limited, a method in which an ink jet conductive ink composition is continuously ejected and controlled by an electric field, a method in which ink jet ink is intermittently ejected using a piezoelectric element, and an ink jet conductive method. Various conventionally known methods such as a method of heating the ink composition and intermittently ejecting the ink composition using the foam can be employed. That is, drawing by the ink jet method may be performed by any conventionally known method such as a piezo ink jet method or a thermal ink jet method. In addition to a normal inkjet drawing apparatus, a drawing apparatus equipped with a heater or the like can be used.
 使用されるインクジェットヘッドとしては、コンティニュアス型やオンデマンド型のピエゾ方式、サーマル方式、ソリッド方式、静電吸引方式等の種々の方式のインクジェットヘッド(吐出ヘッド)を用いることができる。また、インクジェットヘッドの吐出部(ノズル)は、単列配置に限定されず、複数列としても千鳥格子状に配置としてもよい。 As an inkjet head to be used, various types of inkjet heads (ejection heads) such as a continuous type or an on-demand type piezo method, a thermal method, a solid method, and an electrostatic suction method can be used. Further, the ejection units (nozzles) of the inkjet head are not limited to a single row arrangement, and may be arranged in a plurality of rows or in a staggered pattern.
 上記インクジェット方式により、インクジェット用導電インク組成物を基材上の導電膜を形成すべき場所に吐出する。このとき、インクジェット用導電インク組成物を基材の全面に付与してもよいし、所望のパターン状に付与してもよい。
 インクジェット法による吐出する液滴量は特に制限されないが、導電膜の線幅均一性がより優れる、または、連続吐出性により優れる点で、0.8~45pLが好ましく、0.8~20pLがより好ましい。
By the inkjet method, the conductive ink composition for inkjet is discharged to a place where the conductive film on the substrate is to be formed. At this time, the conductive ink composition for inkjet may be applied to the entire surface of the substrate or may be applied in a desired pattern.
The amount of droplets ejected by the ink jet method is not particularly limited, but is preferably 0.8 to 45 pL, more preferably 0.8 to 20 pL in terms of more excellent line width uniformity of the conductive film or continuous ejection properties. preferable.
 基材上へのインクジェット用導電インク組成物の塗布量としては、所望する導電膜の膜厚に応じて適宜調整すればよいが、通常、塗膜の膜厚(厚み)は10nm~1000μmが好ましく、100nm~100μmがより好ましく、100nm~10μmがさらに好ましく、100~1000nmがいっそう好ましい。 The coating amount of the ink-jet conductive ink composition on the substrate may be appropriately adjusted according to the desired film thickness of the conductive film, but usually the film thickness (thickness) of the coating film is preferably 10 nm to 1000 μm. 100 nm to 100 μm is more preferable, 100 nm to 10 μm is still more preferable, and 100 to 1000 nm is even more preferable.
〈乾燥工程〉
 本工程は、形成された塗膜に対して乾燥処理を行い、インクジェット用導電インク組成物に含まれる溶媒の少なくとも一部を除去する工程である。本工程は、所望により、前述した塗膜形成工程の後、かつ、後述する焼結工程の前に実施することができる。
<Drying process>
This step is a step of performing drying treatment on the formed coating film and removing at least a part of the solvent contained in the conductive ink composition for inkjet. If desired, this step can be performed after the above-described coating film forming step and before the sintering step described later.
 乾燥工程において、残存する溶媒を除去することにより、後述する焼結工程において、溶媒の気化膨張に起因する微小なクラックや空隙の発生を抑制することができ、得られる導電膜の導電性および導電膜と基材との密着性の点で好ましい。
 乾燥処理は、温風乾燥機などを用いて加熱することにより行うことができ、乾燥温度としては、50℃以上150℃未満が好ましく、70℃~120℃がより好ましい。本発明においては、乾燥処理は、非酸化的雰囲気および酸化的雰囲気のいずれで行われてもよい。非酸化的雰囲気としては、窒素、アルゴン等の不活性ガス雰囲気、水素等の還元性ガス雰囲気などが挙げられる。酸化的雰囲気としては、大気雰囲気、酸素雰囲気などが挙げられる。
By removing the remaining solvent in the drying step, the generation of minute cracks and voids due to the vaporization and expansion of the solvent can be suppressed in the sintering step described later. This is preferable in terms of adhesion between the film and the substrate.
The drying treatment can be performed by heating using a hot air dryer or the like. The drying temperature is preferably 50 ° C. or higher and lower than 150 ° C., more preferably 70 ° C. to 120 ° C. In the present invention, the drying treatment may be performed in either a non-oxidizing atmosphere or an oxidizing atmosphere. Examples of the non-oxidizing atmosphere include an inert gas atmosphere such as nitrogen and argon, and a reducing gas atmosphere such as hydrogen. Examples of the oxidizing atmosphere include an air atmosphere and an oxygen atmosphere.
〈焼結工程〉
 本工程は、基材上に形成した塗膜(乾燥工程を行った場合には乾燥した塗膜)に対して加熱処理および/または光照射処理を行い、導電膜を形成する工程である。
 加熱処理および/または光照射処理を行うことにより、酸化銅粒子(A)の酸化銅が還元されて金属銅が生成するとともに、還元されて生成した金属銅粒子の焼結が促進され、金属導電膜中に金属導体が形成される。
<Sintering process>
This step is a step in which a conductive film is formed by performing a heat treatment and / or a light irradiation treatment on the coating film formed on the substrate (or the dried coating film when the drying process is performed).
By performing the heat treatment and / or the light irradiation treatment, the copper oxide of the copper oxide particles (A) is reduced to produce metallic copper, and the reduction of the produced metallic copper particles is promoted to promote metal conduction. A metal conductor is formed in the film.
 加熱処理の条件は、短時間で、導電性により優れる導電膜を形成することができる点で、加熱温度は、特に限定されないが、150~220℃が好ましく、160~200℃がより好ましい。また、加熱時間は5~120分が好ましく、5~30分がより好ましい。
 なお、加熱手段は特に制限されず、オーブン、ホットプレート等公知の加熱手段を用いることができる。
 本発明では、比較的低温の加熱処理により導電膜の形成が可能であり、従って、プロセスコストが安いという利点を有する。
The heating temperature is not particularly limited in that a conductive film having better conductivity can be formed in a short time, but the heating temperature is preferably 150 to 220 ° C, more preferably 160 to 200 ° C. The heating time is preferably 5 to 120 minutes, more preferably 5 to 30 minutes.
The heating means is not particularly limited, and known heating means such as an oven and a hot plate can be used.
In the present invention, the conductive film can be formed by heat treatment at a relatively low temperature, and therefore, the process cost is low.
 光照射処理は、上述した加熱処理とは異なり、室温にて塗膜が付与された部分に対して光を短時間照射することで金属銅への還元および焼結が可能となり、長時間の加熱による基材の劣化が起こらず、導電膜の基材との密着性がより良好となる。
 光照射処理で使用される光源は特に制限されず、例えば、水銀灯、メタルハライドランプ、キセノンランプ、ケミカルランプ、カーボンアーク灯等がある。放射線としては、電子線、X線、イオンビーム、遠赤外線等がある。また、g線、i線、Deep-UV光、高密度エネルギービーム(レーザービーム)も使用される。
 具体的な態様としては、赤外線レーザーによる走査露光、キセノン放電灯などの高照度フラッシュ露光、赤外線ランプ露光などが好適に挙げられる。
 光照射は、フラッシュランプによる光照射が好ましく、フラッシュランプによるパルス光照射であることがより好ましい。高エネルギーのパルス光の照射は、塗膜を付与した部分の表面を、極めて短い時間で集中して加熱することができるため、基材への熱の影響を極めて小さくすることができる。
 パルス光の照射エネルギーとしては、1~100J/cm2が好ましく、1~30J/cm2がより好ましく、パルス幅としては1μ秒~100m秒が好ましく、10μ秒~10m秒がより好ましい。パルス光の照射時間は、1~100m秒が好ましく、1~50m秒がより好ましく、1~20m秒が更に好ましい。
 なお、光照射処理を実施した場合、酸化銅粒子が光を吸収し、熱に変換する光熱変換物質として働き、塗膜中に熱を伝達させる役割を果たしていると推測される。
Unlike the heat treatment described above, the light irradiation treatment can reduce and sinter to metallic copper by irradiating light on the portion to which the coating film is applied at room temperature for a short time, and heating for a long time. The base material is not deteriorated by, and the adhesion of the conductive film to the base material becomes better.
The light source used in the light irradiation treatment is not particularly limited, and examples thereof include a mercury lamp, a metal halide lamp, a xenon lamp, a chemical lamp, and a carbon arc lamp. Examples of radiation include electron beams, X-rays, ion beams, and far infrared rays. Also, g-line, i-line, deep-UV light, and high-density energy beam (laser beam) are used.
Specific examples of preferred embodiments include scanning exposure with an infrared laser, high-illuminance flash exposure such as a xenon discharge lamp, and infrared lamp exposure.
The light irradiation is preferably light irradiation with a flash lamp, and more preferably pulsed light irradiation with a flash lamp. Irradiation with high-energy pulsed light can concentrate and heat the surface of the portion to which the coating film has been applied in a very short time, so that the influence of heat on the substrate can be extremely reduced.
The irradiation energy of the pulse light is preferably 1 ~ 100J / cm 2, more preferably 1 ~ 30J / cm 2, preferably from 1μ sec ~ 100 m sec as a pulse width, and more preferably 10μ sec ~ 10 m sec. The irradiation time of the pulsed light is preferably 1 to 100 milliseconds, more preferably 1 to 50 milliseconds, and further preferably 1 to 20 milliseconds.
In addition, when a light irradiation process is implemented, it is estimated that the copper oxide particle | grains act as a photothermal conversion substance which absorbs light and converts it into heat, and has played the role which transmits heat in a coating film.
 上記加熱処理および光照射処理は、単独で実施してもよく、両者を同時に実施してもよい。また、一方の処理を施した後、さらに他方の処理を施してもよい。 The above heat treatment and light irradiation treatment may be performed alone or both may be performed simultaneously. Moreover, after performing one process, you may perform the other process further.
 本発明においては、加熱処理および光照射処理は、非酸化的雰囲気および酸化的雰囲気のいずれで行われてもよい。非酸化的雰囲気としては、窒素、アルゴン等の不活性ガス雰囲気、水素等の還元性ガス雰囲気などが挙げられる。酸化的雰囲気としては、大気雰囲気、酸素雰囲気などが挙げられる。 In the present invention, the heat treatment and the light irradiation treatment may be performed in either a non-oxidizing atmosphere or an oxidizing atmosphere. Examples of the non-oxidizing atmosphere include an inert gas atmosphere such as nitrogen and argon, and a reducing gas atmosphere such as hydrogen. Examples of the oxidizing atmosphere include an air atmosphere and an oxygen atmosphere.
[導電膜]
 本発明のインクジェット用導電インク組成物を用いて上述した導電膜の製造方法を実施することにより、実質的に金属銅からなる金属導体を含む導電膜が製造される。
 導電膜の膜厚(厚み)は特に制限されず、使用される用途に応じて適宜最適な膜厚が選択される。例えば、有機薄膜トランジスタ電極用途の点からは、10~1000nmが好ましく、10~500nmがより好ましく、20~200nmがさらに好ましく、50~150nmがいっそう好ましい。また、例えば、プリント配線基板用途の点からは、0.01~1000μmが好ましく、0.1~100μmがより好ましく、0.1~50μmがさらに好ましく、1~30μmがいっそう好ましい。
 なお、膜厚は、導電膜の任意の点における厚みを3箇所以上測定し、その値を算術平均して得られる値(平均値)である。
[Conductive film]
By carrying out the above-described method for producing a conductive film using the inkjet conductive ink composition of the present invention, a conductive film containing a metal conductor substantially made of metallic copper is produced.
The film thickness (thickness) of the conductive film is not particularly limited, and an optimum film thickness is appropriately selected according to the application used. For example, 10 to 1000 nm is preferable, 10 to 500 nm is more preferable, 20 to 200 nm is more preferable, and 50 to 150 nm is even more preferable from the viewpoint of organic thin film transistor electrode use. Further, for example, from the viewpoint of printed wiring board use, 0.01 to 1000 μm is preferable, 0.1 to 100 μm is more preferable, 0.1 to 50 μm is further preferable, and 1 to 30 μm is even more preferable.
The film thickness is a value (average value) obtained by measuring three or more thicknesses at arbitrary points on the conductive film and arithmetically averaging the values.
 導電膜は基材の全面、または、パターン状に設けられてもよい。パターン状の導電膜は、プリント配線基板などの導体配線(配線)として有用である。
 パターン状の導電膜を得る方法としては、上記インクジェット用導電インク組成物をパターン状に基材に付与して、上記加熱処理および/または光照射処理を行う方法や、基材全面に設けられた導電膜をパターン状にエッチングする方法などが挙げられる。
 エッチングの方法は特に制限されず、公知のサブトラクティブ法、セミアディティブ法などを採用できる。
The conductive film may be provided on the entire surface of the base material or in a pattern. The patterned conductive film is useful as a conductor wiring (wiring) such as a printed wiring board.
As a method for obtaining a patterned conductive film, the above-mentioned ink-jet conductive ink composition was applied to a substrate in a pattern, and the above heat treatment and / or light irradiation treatment was performed, or the entire surface of the substrate was provided. For example, a method of etching the conductive film in a pattern may be used.
The etching method is not particularly limited, and a known subtractive method, semi-additive method, or the like can be employed.
 パターン状の導電膜を多層配線基板として構成する場合、パターン状の導電膜の表面に、さらに絶縁層(絶縁樹脂層、層間絶縁膜、ソルダーレジスト)を積層して、その表面にさらなる配線(金属パターン)を形成してもよい。 When a patterned conductive film is configured as a multilayer wiring board, an insulating layer (insulating resin layer, interlayer insulating film, solder resist) is further laminated on the surface of the patterned conductive film, and further wiring (metal) is formed on the surface. Pattern) may be formed.
 絶縁膜の材料は特に制限されないが、例えば、エポキシ樹脂、ガラスエポキシ樹脂、アラミド樹脂、結晶性ポリオレフィン樹脂、非晶性ポリオレフィン樹脂、フッ素含有樹脂(ポリテトラフルオロエチレン、全フッ素化ポリイミド、全フッ素化アモルファス樹脂など)、ポリイミド樹脂、ポリエーテルスルフォン樹脂、ポリフェニレンサルファイド樹脂、ポリエーテルエーテルケトン樹脂、液晶樹脂など挙げられる。
 これらの中でも、密着性、寸法安定性、耐熱性、電気絶縁性等の観点から、エポキシ樹脂、ポリイミド樹脂、または液晶樹脂を含有するものであることが好ましく、より好ましくはエポキシ樹脂である。具体的には、味の素ファインテクノ(株)製、ABF-GX13などが挙げられる。
The material of the insulating film is not particularly limited. For example, epoxy resin, glass epoxy resin, aramid resin, crystalline polyolefin resin, amorphous polyolefin resin, fluorine-containing resin (polytetrafluoroethylene, perfluorinated polyimide, perfluorinated) Amorphous resin), polyimide resin, polyether sulfone resin, polyphenylene sulfide resin, polyether ether ketone resin, liquid crystal resin, and the like.
Among these, from the viewpoints of adhesion, dimensional stability, heat resistance, electrical insulation, and the like, it is preferable to contain an epoxy resin, a polyimide resin, or a liquid crystal resin, and more preferably an epoxy resin. Specific examples include ABF-GX13 manufactured by Ajinomoto Fine Techno Co., Ltd.
 また、配線保護のために用いられる絶縁層の材料の一種であるソルダーレジストについては、例えば、特開平10-204150号公報や、特開2003-222993号公報等に詳細に記載され、ここに記載の材料を所望により本発明にも適用することができる。ソルダーレジストは市販品を用いてもよく、具体的には、例えば、太陽インキ製造(株)製PFR800、PSR4000(商品名)、日立化成工業(株)製 SR7200G、などが挙げられる。 The solder resist, which is a kind of insulating layer material used for wiring protection, is described in detail in, for example, Japanese Patent Application Laid-Open No. 10-204150 and Japanese Patent Application Laid-Open No. 2003-222993. These materials can also be applied to the present invention if desired. As the solder resist, commercially available products may be used. Specific examples include PFR800 manufactured by Taiyo Ink Manufacturing Co., Ltd., PSR4000 (trade name), SR7200G manufactured by Hitachi Chemical Co., Ltd., and the like.
 上記で得られた導電膜を有する基材(導電膜付き基材)は、種々の用途に使用することができる。例えば、プリント配線基板、TFT、FPC、RFIDなどが挙げられる。 The base material (base material with a conductive film) having the conductive film obtained above can be used for various applications. For example, a printed wiring board, TFT, FPC, RFID, etc. are mentioned.
[TFT電極用]
 本発明のインクジェット用導電インク組成物は、薄膜トランジスタ(TFT)電極用、特に有機TFT電極用として好適である。つまり、ソース電極、ドレイン電極、および、ゲート電極からなる群から選択される少なくとも1つの電極を形成するために使用されることが好ましい。
[For TFT electrode]
The ink-jet conductive ink composition of the present invention is suitable for thin film transistor (TFT) electrodes, particularly for organic TFT electrodes. In other words, it is preferably used to form at least one electrode selected from the group consisting of a source electrode, a drain electrode, and a gate electrode.
 以下の実施例において、平均1次粒子径100nm以下の酸化銅粒子をA成分、周期律表の第8~11族元素からなる群から選択される少なくとも1種の金属元素を含む金属粒子または塩をB成分、沸点250℃以上のアルコール化合物をC成分、水溶性有機溶媒(ただし、沸点250℃以上のアルコール化合物を除く)をD成分、D成分のうち常温常圧下で液体であり、かつ、沸点100℃以上250℃未満の水溶性有機溶媒をD2成分、D成分のうちD2成分に該当しないものをD3成分、水をE成分、という場合がある。 In the following examples, copper oxide particles having an average primary particle diameter of 100 nm or less are metal particles or salts containing at least one metal element selected from the group consisting of component A and Group 8 to 11 elements of the periodic table B component, an alcohol compound having a boiling point of 250 ° C. or higher, a C component, a water-soluble organic solvent (excluding an alcohol compound having a boiling point of 250 ° C. or higher) as a D component, and a liquid at room temperature and normal pressure among the D components; A water-soluble organic solvent having a boiling point of 100 ° C. or higher and lower than 250 ° C. may be referred to as a D2 component, a D component that does not correspond to a D2 component may be referred to as a D3 component, and water as an E component.
[実施例1]
(1)インクジェット用導電インク組成物の調製
 酸化銅粒子(A成分:NanoTek CuO,シーアイ化学社製;平均1次粒子径 48nm)(45質量部)と、水(E成分:20質量部)とを混合し、自転公転ミキサー(あわとり練太郎ARE-310,シンキー社製)で5分間処理することで酸化銅粒子・水分散を得た。
 得られた酸化銅粒子・水分散液に、トリメチロールプロパン(TMP)(沸点250℃以上)(C成分:225質量部)、酢酸パラジウム(B成分:2質量部)、およびテトラヒドロフルフリルアクリレート(THFA)(沸点178℃)(D2成分:100質量部)を添加し、自転公転ミキサー(あわとり練太郎ARE-310,シンキー社製)で5分間処理することでインクジェット用導電インク組成物を得た。得られたインクジェット用導電インク組成物を組成物1とする。
[Example 1]
(1) Preparation of conductive ink composition for inkjet copper oxide particles (A component: NanoTek CuO, manufactured by CI Chemical; average primary particle size 48 nm) (45 parts by mass) and water (E component: 20 parts by mass) Were mixed and processed for 5 minutes with a rotation and revolution mixer (Awatori Nertaro ARE-310, manufactured by Shinky Corporation) to obtain copper oxide particles / water dispersion.
Trimethylolpropane (TMP) (boiling point 250 ° C. or higher) (C component: 225 parts by mass), palladium acetate (B component: 2 parts by mass), and tetrahydrofurfuryl acrylate ( THFA) (boiling point 178 ° C.) (component D2: 100 parts by mass) was added, and the mixture was treated for 5 minutes with an auto-revolution mixer (Awatori Nerita ARE-310, manufactured by Sinky Corporation) to obtain a conductive ink composition for inkjet. It was. The obtained ink-jet conductive ink composition is designated as Composition 1.
(2)導電膜の作製
 ポリエチレンナフタラート(PEN)基材(テオネックスQ65F/帝人デュポン社製)上に、インクジェット用導電インク組成物1を、1pL打滴が吐出可能なD128-DPNヘッド(128ノズル)設置の吐出装置を用い、ヘッドに、インクを充填し、駆動周波数2kHzで駆動できるよう、波形、電圧を調整して吐出を行った。なお、インクジェット用導電インク組成物1の液滴量は、10pLであった。
 着弾打滴の中心間距離が20μmになるよう、線長が5cmの配線50本の直線状配線パターンを500μm間隔で描画した。また、体積抵抗率評価用に、5cm×5cmのベタ画像を作製した。得られたパターンをN雰囲気下(グローブボックス中、100ppm以下の酸素濃度)180℃で60分間加熱するこことで、導電膜(銅配線)を形成した。
(2) Production of conductive film D128-DPN head (128 nozzles) capable of ejecting 1 pL droplets of conductive ink composition 1 for ink jet on polyethylene naphthalate (PEN) base material (Teonex Q65F / manufactured by Teijin DuPont) ) Using the installed ejection device, the head was filled with ink, and ejection was performed by adjusting the waveform and voltage so that the head could be driven at a driving frequency of 2 kHz. The droplet amount of the conductive ink composition 1 for inkjet was 10 pL.
A linear wiring pattern of 50 wirings having a line length of 5 cm was drawn at intervals of 500 μm so that the distance between the centers of the landing droplets was 20 μm. Moreover, a solid image of 5 cm × 5 cm was prepared for volume resistivity evaluation. In the pattern obtained under N 2 atmosphere (glovebox, 100 ppm or less of oxygen concentration) and wherein heating at 180 ° C. 60 minutes to form a conductive film (copper wire).
(3)インクジェット用導電インク組成物および導電膜(銅配線)の性能評価
 3.1)連続吐出安定性
 インクジェット用導電インク組成物を、打滴サイズ1pL、駆動周波数2kHzで30分間の連続吐出した。連続吐出後、不吐出になったノズル数(ノズルロス)をカウントし、以下の評価基準に基づいて連続吐出安定性の評価を行った。評価結果を表1の「連続吐出性」の欄に示す。
(評価基準)
 A:ノズルロス 0本
 B:ノズルロス 1~2本
 C:ノズルロス 3~5本
 D:ノズルロス 6~10本
 E:ノズルロス 11本以上
(3) Performance Evaluation of Inkjet Conductive Ink Composition and Conductive Film (Copper Wiring) 3.1) Continuous Discharge Stability The inkjet conductive ink composition was continuously discharged for 30 minutes at a droplet ejection size of 1 pL and a driving frequency of 2 kHz. . After continuous discharge, the number of nozzles that failed to discharge (nozzle loss) was counted, and continuous discharge stability was evaluated based on the following evaluation criteria. The evaluation results are shown in the column “Continuous Discharge” in Table 1.
(Evaluation criteria)
A: Nozzle loss 0 B: Nozzle loss 1-2 C: Nozzle loss 3-5 D: Nozzle loss 6-10 E: Nozzle loss 11 or more
 3.2)導電性
 得られた5cm×5cmの導電膜について、四探針法抵抗率計を用いて体積抵抗率を測定し、以下の評価基準に基づいて導電性の評価を行った。評価結果を表1の「導電性」の欄に示す。
(評価基準)
 A:体積抵抗率が10μΩ・cm未満
 B:体積抵抗率が10μΩ・cm以上50μΩ・cm未満
 C:体積抵抗率が50μΩ・cm以上100μΩ・cm未満
 D:体積抵抗率が100μΩ・cm以上1000μΩ・cm未満
 E:体積抵抗率が1000μΩ・cm以上
3.2) Conductivity The volume resistivity of the obtained 5 cm × 5 cm conductive film was measured using a four-probe resistivity meter, and the conductivity was evaluated based on the following evaluation criteria. The evaluation results are shown in the column “Conductivity” in Table 1.
(Evaluation criteria)
A: Volume resistivity is less than 10 μΩ · cm B: Volume resistivity is 10 μΩ · cm or more and less than 50 μΩ · cm C: Volume resistivity is 50 μΩ · cm or more and less than 100 μΩ · cm D: Volume resistivity is 100 μΩ · cm or more and 1000 μΩ · cm Less than cm E: Volume resistivity is 1000 μΩ · cm or more
 3.2)線幅均一性
 得られた50本の配線パターンのうち、中心部端から2.5cmの位置の線幅(配線の長さ方向の中心位置での線幅)を測定し、その平均値(線幅平均値Y)を求める。次に、50本の配線パターンの上記「中心端部から2.5cmの位置の線幅」と、線幅平均値Yとの差の絶対値(線幅のバラツキに該当)をそれぞれ算出し、それらを算術平均して、50本分の線幅のバラツキの平均値(バラツキ平均値X)を算出する。さらに、バラツキ平均値Xと線幅平均値Yとの比(=バラツキ平均値X/線幅平均値Y)を算出し、これを「平均値に対するバラツキの平均」として、以下の評価基準に基づいて線幅均一性の評価を行った。評価結果を表1の「線幅均一性」の欄に示す。
 A:平均値に対するバラツキの平均が10%未満
 B:平均値に対するバラツキの平均が10%以上20%未満
 C:平均値に対するバラツキの平均が20%以上30%未満
 D:平均値に対するバラツキの平均が30%以上50%未満
 E:平均値に対するバラツキの平均が100%以上
3.2) Line width uniformity Of the obtained 50 wiring patterns, the line width at a position 2.5 cm from the end of the central portion (the line width at the center position in the length direction of the wiring) was measured. An average value (line width average value Y) is obtained. Next, the absolute values (corresponding to variations in line width) of the difference between the above-mentioned “line width at a position 2.5 cm from the center end” of the 50 wiring patterns and the line width average value Y are respectively calculated. These are arithmetically averaged to calculate an average value (variation average value X) of 50 line width variations. Further, the ratio of the variation average value X and the line width average value Y (= variation average value X / line width average value Y) is calculated, and this is defined as “average of variation with respect to the average value” based on the following evaluation criteria. The line width uniformity was evaluated. The evaluation results are shown in the “Line width uniformity” column of Table 1.
A: Average of variation with respect to average value is less than 10% B: Average of variation with respect to average value is 10% or more and less than 20% C: Average of variation with respect to average value is 20% or more and less than 30% D: Average of variation with respect to average value 30% or more and less than 50% E: The average variation from the average value is 100% or more
[実施例2~4]
 実施例2~4では、表1に示すように、THFA(沸点178℃)(D2成分:100質量部)に代えて、それぞれ、N-メチルピロリドン(NMP)(沸点178℃)(D2成分:100質量部)、2-メトキシエタノール(沸点124℃)(D2成分:100質量部)、アセトフェノン(沸点202℃)(D2成分:100質量部)を使用した点を除き、実施例1と同様にしてインクジェット用導電インク組成物を調製し、導電膜(銅配線)を作製し、インクジェット用導電インク組成物および導電膜(銅配線)の性能評価を行った。
[Examples 2 to 4]
In Examples 2 to 4, as shown in Table 1, instead of THFA (boiling point 178 ° C.) (D2 component: 100 parts by mass), N-methylpyrrolidone (NMP) (boiling point 178 ° C.) (D2 component: 100 parts by mass), 2-methoxyethanol (boiling point 124 ° C.) (D2 component: 100 parts by mass), and acetophenone (boiling point 202 ° C.) (D2 component: 100 parts by mass). The conductive ink composition for inkjet was prepared, the conductive film (copper wiring) was produced, and the performance evaluation of the conductive ink composition for inkjet and the conductive film (copper wiring) was performed.
[実施例5、6]
 実施例5、6では、表1に示すように、THFA(沸点178℃)(D2成分:100質量部)に代えて、それぞれ、分子内にエーテル構造、ケトン構造およびヘテロ環構造のいずれも有しない、ブタノール(沸点117℃)(D2成分:100質量部)、エチレングリコール(沸点197℃)(D2成分:100質量部)を使用した点を除き、実施例1と同様にしてインクジェット用導電インク組成物を調製し、導電膜(銅配線)を作製し、インクジェット用導電インク組成物および導電膜(銅配線)の性能評価を行った。
[Examples 5 and 6]
In Examples 5 and 6, as shown in Table 1, instead of THFA (boiling point: 178 ° C.) (D2 component: 100 parts by mass), each of the molecules has an ether structure, a ketone structure, and a heterocyclic structure. No, but conductive ink for inkjet in the same manner as in Example 1 except that butanol (boiling point 117 ° C.) (D2 component: 100 parts by mass) and ethylene glycol (boiling point 197 ° C.) (D2 component: 100 parts by mass) were used. The composition was prepared, the electrically conductive film (copper wiring) was produced, and the performance evaluation of the inkjet conductive ink composition and the electrically conductive film (copper wiring) was performed.
[実施例7~9]
 実施例7~9では、表1に示すように、THFA(沸点178℃)(D2成分:100質量部)に代えて、それぞれ、THFA(D2成分:76質量部)およびアセトン(沸点56℃)(D3成分:24質量部)、THFA(D2成分:88質量部)およびアセトン(D3成分:12質量部)、THFA(D2成分:88質量部)およびテトラヒドロフラン(THF)(D3成分:沸点65℃)(12質量部)を使用し、沸点250℃以上のアルコール化合物以外の溶媒中、水および沸点100℃以上250℃未満の水溶性有機溶媒の割合を80質量%(実施例7)、90質量%(実施例8、9)に変更した点を除き、実施例1と同様にしてインクジェット用導電インク組成物を調製し、インクジェット用導電インク組成物および導電膜(銅配線)を作製し、導電膜(銅配線)の性能評価を行った。
[Examples 7 to 9]
In Examples 7 to 9, as shown in Table 1, instead of THFA (boiling point 178 ° C.) (D2 component: 100 parts by mass), THFA (D2 component: 76 parts by mass) and acetone (boiling point 56 ° C.), respectively. (D3 component: 24 parts by mass), THFA (D2 component: 88 parts by mass) and acetone (D3 component: 12 parts by mass), THFA (D2 component: 88 parts by mass) and tetrahydrofuran (THF) (D3 component: boiling point 65 ° C. ) (12 parts by mass), in a solvent other than an alcohol compound having a boiling point of 250 ° C. or higher, the proportion of water and a water-soluble organic solvent having a boiling point of 100 ° C. or higher and lower than 250 ° C. is 80% by mass (Example 7), 90% by mass % (Examples 8 and 9), an inkjet conductive ink composition was prepared in the same manner as in Example 1, except that the inkjet conductive ink composition and conductive film (copper To produce a line), and evaluated the performance of the conductive film (copper wire).
[実施例10、11]
 実施例10、11では、表1に示すように、酢酸パラジウム(B成分:2質量部)に代えて、それぞれ、トリルテニウムドデカカルボニル(Ru(CO)12)(B成分:2質量部)、硝酸テトラアンミン白金(II)(Pt(NH(NO)(B成分:2質量部)を使用した点を除き、実施例1と同様にしてインクジェット用導電インク組成物を調製し、インクジェット用導電インク組成物および導電膜(銅配線)を作製し、導電膜(銅配線)の性能評価を行った。
[Examples 10 and 11]
In Examples 10 and 11, as shown in Table 1, instead of palladium acetate (B component: 2 parts by mass), triruthenium dodecacarbonyl (Ru 3 (CO) 12 ) (B component: 2 parts by mass), respectively. A conductive ink composition for inkjet was prepared in the same manner as in Example 1 except that tetraammineplatinum nitrate (II) (Pt (NH 3 ) 4 (NO 3 ) 2 ) (component B: 2 parts by mass) was used. Then, a conductive ink composition for inkjet and a conductive film (copper wiring) were prepared, and performance evaluation of the conductive film (copper wiring) was performed.
[実施例12、13]
 実施例12、13では、表1に示すように、TMP(沸点250℃以上)(C成分:225質量部)に代えて、それぞれ、トリメチロールエタン(沸点250℃以上)(C成分:225質量部)、1,9-ノナンジオール(沸点288℃)(C成分:225質量部)を使用した点を除き、実施例1と同様にしてインクジェット用導電インク組成物を調製し、インクジェット用導電インク組成物および導電膜(銅配線)を作製し、導電膜(銅配線)の性能評価を行った。
[Examples 12 and 13]
In Examples 12 and 13, as shown in Table 1, instead of TMP (boiling point 250 ° C. or higher) (C component: 225 parts by mass), trimethylolethane (boiling point 250 ° C. or higher) (C component: 225 mass), respectively. Part), 1,9-nonanediol (boiling point 288 ° C.) (component C: 225 parts by mass), and an inkjet conductive ink composition was prepared in the same manner as in Example 1 to obtain an inkjet conductive ink. A composition and a conductive film (copper wiring) were prepared, and the performance of the conductive film (copper wiring) was evaluated.
[実施例14~18]
 実施例14~18では、表1に示すように、沸点250℃以上のアルコール化合物以外の水溶性溶媒として、水(E成分:20質量部)およびTHFA(D2成分:100質量部)に代えて、それぞれ、水(E成分:75質量部)およびTHFA(D2成分:600質量部)、水(E成分:100質量部)およびTHFA(D2成分:1000質量部)、水(E成分:200質量部)およびTHFA(D2成分:2000質量部)、水(E成分:15質量部)およびTHFA(D2成分:60質量部)、水(E成分:5質量部)およびTHFA(D2成分:40質量部)を使用し、沸点250℃以上のアルコール化合物の沸点250℃以上のアルコール化合物以外の水溶性溶媒に対する質量比(沸点250℃以上のアルコール化合物の全質量/沸点250℃以上のアルコール化合物以外の水溶性溶媒の全質量)を、それぞれ、1/3、1/5、1/10、3/1、5/1に変更した点を除き、実施例1と同様にしてインクジェット用導電インク組成物を調製し、インクジェット用導電インク組成物および導電膜(銅配線)を作製し、導電膜(銅配線)の性能評価を行った。
[Examples 14 to 18]
In Examples 14 to 18, as shown in Table 1, water (E component: 20 parts by mass) and THFA (D2 component: 100 parts by mass) were used as water-soluble solvents other than alcohol compounds having a boiling point of 250 ° C. or higher. , Water (E component: 75 parts by mass) and THFA (D2 component: 600 parts by mass), water (E component: 100 parts by mass) and THFA (D2 component: 1000 parts by mass), water (E component: 200 parts by mass), respectively. Part) and THFA (D2 component: 2000 parts by mass), water (E component: 15 parts by mass) and THFA (D2 component: 60 parts by mass), water (E component: 5 parts by mass) and THFA (D2 component: 40 parts by mass). Part) and the mass ratio of the alcohol compound having a boiling point of 250 ° C. or higher to the water-soluble solvent other than the alcohol compound having a boiling point of 250 ° C. or higher (the total mass of the alcohol compound having a boiling point of 250 ° C. or higher). Example 1 except that the total mass of the water-soluble solvent other than the alcohol compound having a boiling point of 250 ° C. or higher was changed to 1/3, 1/5, 1/10, 3/1, 5/1, respectively. Similarly, a conductive ink composition for inkjet was prepared, a conductive ink composition for inkjet and a conductive film (copper wiring) were produced, and performance evaluation of the conductive film (copper wiring) was performed.
[比較例1]
 比較例1では、酢酸パラジウム(B成分)を使用しなかった点を除き、実施例1と同様にしてインクジェット用導電インク組成物を調製し、インクジェット用導電インク組成物および導電膜(銅配線)を作製し、導電膜(銅配線)の性能評価を行った。
[Comparative Example 1]
In Comparative Example 1, an inkjet conductive ink composition was prepared in the same manner as in Example 1 except that palladium acetate (component B) was not used, and the inkjet conductive ink composition and conductive film (copper wiring). And the performance of the conductive film (copper wiring) was evaluated.
[比較例2]
 比較例2では、THFA(D2成分:100質量部)に代えて、アセトン(沸点56℃)(D3成分:100質量部)を使用した点を除き、実施例1と同様にしてインクジェット用導電インク組成物を調製し、インクジェット用導電インク組成物および導電膜(銅配線)を作製し、導電膜(銅配線)の性能評価を行った。
[Comparative Example 2]
In Comparative Example 2, an inkjet conductive ink was used in the same manner as in Example 1 except that acetone (boiling point 56 ° C.) (D3 component: 100 parts by mass) was used instead of THFA (D2 component: 100 parts by mass). A composition was prepared, a conductive ink composition for inkjet and a conductive film (copper wiring) were prepared, and performance evaluation of the conductive film (copper wiring) was performed.
[比較例3]
 比較例3では、THFA(D2成分:100質量部)に代えて、THFA(D2成分:60質量部)およびアセトン(沸点56℃)(D3成分:40質量部)を使用した点を除き、実施例1と同様にしてインクジェット用導電インク組成物を調製し、インクジェット用導電インク組成物および導電膜(銅配線)を作製し、導電膜(銅配線)の性能評価を行った。
[Comparative Example 3]
In Comparative Example 3, it was carried out except that THFA (D2 component: 60 parts by mass) and acetone (boiling point 56 ° C.) (D3 component: 40 parts by mass) were used instead of THFA (D2 component: 100 parts by mass). A conductive ink composition for inkjet was prepared in the same manner as in Example 1, an inkjet conductive ink composition and a conductive film (copper wiring) were prepared, and performance evaluation of the conductive film (copper wiring) was performed.
[比較例4]
 比較例4では、TMP(C成分)を使用しなかった点を除き、実施例1と同様にしてインクジェット用導電インク組成物を調製し、インクジェット用導電インク組成物および導電膜(銅配線)を作製し、導電膜(銅配線)の性能評価を行った。
[Comparative Example 4]
In Comparative Example 4, an inkjet conductive ink composition was prepared in the same manner as in Example 1 except that TMP (C component) was not used, and the inkjet conductive ink composition and conductive film (copper wiring) were prepared. It produced and the performance evaluation of the electrically conductive film (copper wiring) was performed.
[比較例5]
 比較例5では、酢酸パラジウム(B成分:2質量部)に代えてトリルテニウムドデカカルボニル(B成分:3.8質量部)を使用した点、TMP(C成分)を使用しなかった点、THFA(D2成分:100質量部)に代えてTHFA(D2成分:1800質量部)を使用した点、および水(E成分)を使用しなかった点を除き、実施例1と同様にしてインクジェット用導電インク組成物を調製し、インクジェット用導電インク組成物および導電膜(銅配線)を作製し、導電膜(銅配線)の性能評価を行った。
[Comparative Example 5]
In Comparative Example 5, triruthenium dodecacarbonyl (B component: 3.8 parts by mass) was used instead of palladium acetate (B component: 2 parts by mass), TMP (C component) was not used, THFA Ink-jet conductivity in the same manner as in Example 1 except that THFA (D2 component: 1800 parts by mass) was used instead of (D2 component: 100 parts by mass) and that water (E component) was not used. An ink composition was prepared, a conductive ink composition for inkjet and a conductive film (copper wiring) were prepared, and performance evaluation of the conductive film (copper wiring) was performed.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1中、「A」~「E」欄の数値は、質量部を表す。また、「-」はその成分を含有しないことを表す。 In Table 1, the numerical values in the “A” to “E” columns represent parts by mass. “-” Means that the component is not contained.
(1)実施例1、7~9と比較例2、3とを対比すると、水溶性有機溶媒(D2)および水(E)の合計質量が水溶性有機溶媒(D)および水(E)の合計質量の80質量%以上であると、連続吐出安定性と線幅均一性が優れることがわかる。
(2)実施例14~18を対比すると、比(アルコール(C)の全質量/(水溶性有機溶媒(D)の全質量+水(E)の全質量))が0.2~3.0(1/5~3/1)であると、連続吐出安定性および線幅均一性がさらに優れることがわかる。
(3)実施例1、10、11と、比較例1とを対比すると、酸化銅粒子(A)100質量部に対して、金属粒子または塩(B)を0.5~10質量部含有すると導電性がさらに優れることがわかる。
(4)実施例1、10および11を対比すると、金属粒子または塩(B)として、酢酸パラジウムが特に優れ、導電性および線幅均一性の向上に効果があることがわかる。
(5)実施例1~4と実施例5、6とを対比すると、水溶性有機溶媒(D2)として、分子内にエーテル構造、ケトン構造またはヘテロ環構造を有する化合物を使用すると、連続吐出安定性、導電性および線幅均一性がさらに優れることがわかる。
(6)実施例1、12と実施例13とを対比すると、アルコール(C)として3価アルコールを使用すると、得られる導電膜の導電性がさらに優れることがわかる。
(7)実施例1と比較例5とを対比すると、水(E)を使用しない場合には、水溶性有機溶媒(D)および沸点100℃以上250℃未満の水溶性有機溶媒(D2)を使用しても、優れた連続吐出安定性、導電性および線幅均一性は得られないことがわかる。
(1) When comparing Examples 1 and 7 to 9 with Comparative Examples 2 and 3, the total mass of the water-soluble organic solvent (D2) and water (E) is the same as that of the water-soluble organic solvent (D) and water (E). It turns out that it is excellent in continuous discharge stability and line width uniformity as it is 80 mass% or more of the total mass.
(2) Comparing Examples 14 to 18, the ratio (total mass of alcohol (C) / (total mass of water-soluble organic solvent (D) + total mass of water (E))) is 0.2 to 3. It can be seen that when it is 0 (1/5 to 3/1), continuous ejection stability and line width uniformity are further improved.
(3) When Examples 1, 10, and 11 are compared with Comparative Example 1, 0.5 to 10 parts by mass of metal particles or salt (B) is contained with respect to 100 parts by mass of copper oxide particles (A). It can be seen that the conductivity is further improved.
(4) When Examples 1, 10 and 11 are compared, it is found that palladium acetate is particularly excellent as the metal particles or salt (B), and is effective in improving conductivity and line width uniformity.
(5) Comparing Examples 1 to 4 with Examples 5 and 6, when a compound having an ether structure, a ketone structure or a heterocyclic structure in the molecule is used as the water-soluble organic solvent (D2), continuous discharge stability is achieved. It can be seen that the conductivity, conductivity, and line width uniformity are further improved.
(6) When Examples 1 and 12 are compared with Example 13, it can be seen that when a trihydric alcohol is used as the alcohol (C), the conductivity of the obtained conductive film is further improved.
(7) When Example 1 is compared with Comparative Example 5, when water (E) is not used, the water-soluble organic solvent (D) and the water-soluble organic solvent (D2) having a boiling point of 100 ° C. or more and less than 250 ° C. It can be seen that excellent continuous discharge stability, conductivity and line width uniformity cannot be obtained even when used.

Claims (8)

  1.  平均1次粒子径100nm以下の酸化銅粒子と、周期律表の第8~11族元素からなる群から選択される少なくとも1種の金属元素を含む金属粒子または塩と、沸点250℃以上のアルコール化合物と、水溶性有機溶媒(ただし、前記アルコール化合物を除く)と、水とを含有し、
     前記水溶性有機溶媒は、沸点100℃以上250℃未満の水溶性有機溶媒を含有し、
     前記沸点100℃以上250℃未満の水溶性有機溶媒および前記水の合計質量が、前記水溶性有機溶媒および前記水の合計質量の80質量%以上である、インクジェット用導電インク組成物。
    Copper oxide particles having an average primary particle size of 100 nm or less, metal particles or salts containing at least one metal element selected from the group consisting of Group 8 to 11 elements of the periodic table, and alcohol having a boiling point of 250 ° C. or higher A compound, a water-soluble organic solvent (excluding the alcohol compound), and water,
    The water-soluble organic solvent contains a water-soluble organic solvent having a boiling point of 100 ° C. or higher and lower than 250 ° C.,
    The conductive ink composition for inkjet, wherein the total mass of the water-soluble organic solvent having a boiling point of 100 ° C. or more and less than 250 ° C. and the water is 80% by mass or more of the total mass of the water-soluble organic solvent and the water.
  2.  前記沸点100℃以上250℃未満の水溶性有機溶媒が、分子内にエーテル構造、ケトン構造およびヘテロ環構造からなる群から選択される少なくとも1つの構造を有する、請求項1に記載のインクジェット用導電インク組成物。 2. The inkjet conductive material according to claim 1, wherein the water-soluble organic solvent having a boiling point of 100 ° C. or more and less than 250 ° C. has at least one structure selected from the group consisting of an ether structure, a ketone structure, and a heterocyclic structure in the molecule. Ink composition.
  3.  前記アルコール化合物が3価以上のアルキルアルコールを含有する、請求項1または2に記載のインクジェット用導電インク組成物。 The conductive ink composition for inkjet according to claim 1 or 2, wherein the alcohol compound contains a trihydric or higher alkyl alcohol.
  4.  前記アルコール化合物の全質量の、前記水溶性有機溶媒および前記水の合計質量に対する比(アルコール化合物の全質量/(水溶性有機溶媒の全質量+水の全質量))が、0.2~3.0である、請求項1~3のいずれか1項に記載のインクジェット用導電インク組成物。 The ratio of the total mass of the alcohol compound to the total mass of the water-soluble organic solvent and the water (total mass of alcohol compound / (total mass of water-soluble organic solvent + total mass of water)) is 0.2-3. The conductive ink composition for inkjet according to any one of claims 1 to 3, which is 0.0.
  5.  前記平均1次粒子径100nm以下の酸化銅粒子の全質量が前記インクジェット用導電インク組成物の総質量の20質量%以下である、請求項1~4のいずれか1項に記載のインクジェット用導電インク組成物。 The inkjet conductive material according to any one of claims 1 to 4, wherein a total mass of the copper oxide particles having an average primary particle diameter of 100 nm or less is 20 mass% or less of a total mass of the inkjet conductive ink composition. Ink composition.
  6.  前記沸点250℃以上のアルコール化合物の全質量の、前記平均1次粒子径100nm以下の酸化銅粒子の全質量に対する比(沸点250℃以上のアルコール化合物の全質量/平均1次粒子径100nm以下の酸化銅粒子の全質量)が、3.0~10.0である、請求項1~5のいずれか1項に記載のインクジェット用導電インク組成物。 Ratio of the total mass of the alcohol compound having a boiling point of 250 ° C. or more to the total mass of the copper oxide particles having an average primary particle size of 100 nm or less (total mass of alcohol compound having a boiling point of 250 ° C. or more / average primary particle size of 100 nm or less) The conductive ink composition for ink jet according to any one of claims 1 to 5, wherein a total mass) of the copper oxide particles is 3.0 to 10.0.
  7.  前記周期律表の第8~11族元素からなる群から選択される少なくとも1種の金属元素を含む金属粒子または塩が、周期律表の第10族元素からなる群から選択される少なくとも1種の金属元素を含む金属粒子または塩を含む、請求項1~6のいずれか1項に記載のインクジェット用導電インク組成物。 The metal particle or salt containing at least one metal element selected from the group consisting of Group 8 to 11 elements of the Periodic Table is at least one selected from the group consisting of Group 10 elements of the Periodic Table The conductive ink composition for inkjet according to any one of claims 1 to 6, comprising metal particles or a salt containing any of the above metal elements.
  8.  TFT電極の形成に用いられる、請求項1~7のいずれか1項に記載のインクジェット用導電インク組成物。 The conductive ink composition for inkjet according to any one of claims 1 to 7, which is used for forming a TFT electrode.
PCT/JP2015/051262 2014-01-30 2015-01-19 Conductive ink composition for ink jet WO2015115235A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014015556A JP6071913B2 (en) 2014-01-30 2014-01-30 Conductive ink composition for inkjet
JP2014-015556 2014-01-30

Publications (1)

Publication Number Publication Date
WO2015115235A1 true WO2015115235A1 (en) 2015-08-06

Family

ID=53756812

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/051262 WO2015115235A1 (en) 2014-01-30 2015-01-19 Conductive ink composition for ink jet

Country Status (2)

Country Link
JP (1) JP6071913B2 (en)
WO (1) WO2015115235A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112771130A (en) * 2018-09-25 2021-05-07 日产化学株式会社 Ink composition
CN114981370A (en) * 2020-01-17 2022-08-30 联合化学株式会社 Inkjet ink

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019167365A1 (en) * 2018-02-27 2019-09-06 富士フイルム株式会社 Conductive film-forming composition and conductive film production method
CN110862716A (en) * 2019-12-18 2020-03-06 九江纳维新材料科技有限公司 Graphene composite conductive ink and preparation method thereof
JP7464202B2 (en) 2022-01-19 2024-04-09 三菱マテリアル株式会社 Metallic ink, method for producing metallic ink, method for producing metallic layer, and metallic layer

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010121206A (en) * 2008-10-22 2010-06-03 Tosoh Corp Composition for producing metal film, method for producing the metal film, and method for producing metal powder
JP2011082145A (en) * 2009-09-11 2011-04-21 Toyobo Co Ltd Copper thin film and copper thin film laminate
JP2012207250A (en) * 2011-03-29 2012-10-25 Furukawa Electric Co Ltd:The Copper fine particle dispersion liquid, and method for producing copper fine particle sintered compact
JP2013069475A (en) * 2011-09-21 2013-04-18 Furukawa Electric Co Ltd:The Conductive paste, and conjugate obtained by burning conductive paste
JP2013077602A (en) * 2011-09-29 2013-04-25 Jsr Corp Composition, copper film and method for forming copper film
WO2013077448A1 (en) * 2011-11-24 2013-05-30 昭和電工株式会社 Conductive-pattern formation method and composition for forming conductive pattern via light exposure or microwave heating
WO2014156594A1 (en) * 2013-03-29 2014-10-02 富士フイルム株式会社 Composition for forming conductive film, and conductive film manufacturing method using same
WO2015005046A1 (en) * 2013-07-10 2015-01-15 富士フイルム株式会社 Composition for forming electrically conductive film, method for producing electrically conductive film, and electrically conductive film

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070144305A1 (en) * 2005-12-20 2007-06-28 Jablonski Gregory A Synthesis of Metallic Nanoparticle Dispersions
JP5727766B2 (en) * 2009-12-10 2015-06-03 理想科学工業株式会社 Conductive emulsion ink and method for forming conductive thin film using the same
JP2013206721A (en) * 2012-03-28 2013-10-07 Fujifilm Corp Liquid composition, metal film, conductor wiring, and method for manufacturing metal film

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010121206A (en) * 2008-10-22 2010-06-03 Tosoh Corp Composition for producing metal film, method for producing the metal film, and method for producing metal powder
JP2011082145A (en) * 2009-09-11 2011-04-21 Toyobo Co Ltd Copper thin film and copper thin film laminate
JP2012207250A (en) * 2011-03-29 2012-10-25 Furukawa Electric Co Ltd:The Copper fine particle dispersion liquid, and method for producing copper fine particle sintered compact
JP2013069475A (en) * 2011-09-21 2013-04-18 Furukawa Electric Co Ltd:The Conductive paste, and conjugate obtained by burning conductive paste
JP2013077602A (en) * 2011-09-29 2013-04-25 Jsr Corp Composition, copper film and method for forming copper film
WO2013077448A1 (en) * 2011-11-24 2013-05-30 昭和電工株式会社 Conductive-pattern formation method and composition for forming conductive pattern via light exposure or microwave heating
WO2014156594A1 (en) * 2013-03-29 2014-10-02 富士フイルム株式会社 Composition for forming conductive film, and conductive film manufacturing method using same
WO2015005046A1 (en) * 2013-07-10 2015-01-15 富士フイルム株式会社 Composition for forming electrically conductive film, method for producing electrically conductive film, and electrically conductive film

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112771130A (en) * 2018-09-25 2021-05-07 日产化学株式会社 Ink composition
CN112771130B (en) * 2018-09-25 2024-03-29 日产化学株式会社 Ink composition
CN114981370A (en) * 2020-01-17 2022-08-30 联合化学株式会社 Inkjet ink
CN114981370B (en) * 2020-01-17 2023-11-17 联合化学株式会社 inkjet ink

Also Published As

Publication number Publication date
JP6071913B2 (en) 2017-02-01
JP2015140418A (en) 2015-08-03

Similar Documents

Publication Publication Date Title
JP6071913B2 (en) Conductive ink composition for inkjet
TWI564352B (en) Liquid composition, metal copper film and conductor wiring, and method for producing metal copper film
WO2014087945A1 (en) Process for manufactuing conductive film and printed wiring board
TW201343810A (en) Liquid composition, metallic film and conductor wiring, and fabricating method of metallic film
JP2016058227A (en) Method for producing conductive film
TWI613682B (en) Composition for forming conductive film and method for producing conductive film
TW201412210A (en) Method for producing conductive layer, printed wiring board
WO2014156326A1 (en) Composition for forming conductive film, and conductive film manufacturing method using same
TW201444854A (en) Composition for forming conductive film and method of producing conductive film by using the same
TW201415489A (en) Composition for forming conductive film and method for producing conductive film
WO2014156345A1 (en) Composition for forming conductive films and method for producing conductive film using same
JP2014167872A (en) Method for producing conductive film, and wiring board
JP2015141752A (en) Conductive film-forming composition and method for producing conductive film
WO2016136409A1 (en) Composition for forming conductive film and method for producing conductive film
JP2015106523A (en) Composition for forming conductive film
JP6263630B2 (en) Conductive film forming composition and conductive film forming method
JP2019029340A (en) Production method of conductive pattern, and plasma treatment device
JP2015144089A (en) Method for producing conductive film
TW201503163A (en) Composition for electroconductive film formation and method of forming electroconductive film by using the same
JP2016050246A (en) Composition for forming conductive film
WO2016031426A1 (en) Method for manufacturing conductive film
JP6111587B2 (en) Method for manufacturing conductive substrate
WO2016031404A1 (en) Composition for electrically conductive film formation use, and method for producing electrically conductive film using same
JP2016051692A (en) Conductive film and manufacturing method of conductive film
JP2005336263A (en) Film-forming ink and method for forming film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15742778

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15742778

Country of ref document: EP

Kind code of ref document: A1