WO2015111686A1 - 培地組成物 - Google Patents

培地組成物 Download PDF

Info

Publication number
WO2015111686A1
WO2015111686A1 PCT/JP2015/051787 JP2015051787W WO2015111686A1 WO 2015111686 A1 WO2015111686 A1 WO 2015111686A1 JP 2015051787 W JP2015051787 W JP 2015051787W WO 2015111686 A1 WO2015111686 A1 WO 2015111686A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
medium
medium composition
culture
cell
Prior art date
Application number
PCT/JP2015/051787
Other languages
English (en)
French (fr)
Inventor
林 寿人
美沙代 戸村
康一郎 猿橋
泰斗 西野
武久 岩間
達朗 金木
彩子 大谷
Original Assignee
日産化学工業株式会社
国立大学法人京都大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to KR1020227020583A priority Critical patent/KR102539240B1/ko
Priority to JP2015559123A priority patent/JP6536411B2/ja
Priority to KR1020167022919A priority patent/KR102232289B1/ko
Priority to US15/113,762 priority patent/US10487308B2/en
Application filed by 日産化学工業株式会社, 国立大学法人京都大学 filed Critical 日産化学工業株式会社
Priority to CN201580005644.2A priority patent/CN105934511B/zh
Priority to EP15740159.7A priority patent/EP3098300B1/en
Priority to SG11201606056RA priority patent/SG11201606056RA/en
Priority to CA2937801A priority patent/CA2937801C/en
Priority to KR1020217008352A priority patent/KR102359148B1/ko
Priority to KR1020227003406A priority patent/KR102411750B1/ko
Publication of WO2015111686A1 publication Critical patent/WO2015111686A1/ja
Priority to IL246877A priority patent/IL246877B/en
Priority to HK17105192.6A priority patent/HK1231509A1/zh
Priority to US16/662,944 priority patent/US20200095542A1/en
Priority to US18/446,136 priority patent/US20230383245A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N1/00Preservation of bodies of humans or animals, or parts thereof
    • A01N1/02Preservation of living parts
    • A01N1/0205Chemical aspects
    • A01N1/021Preservation or perfusion media, liquids, solids or gases used in the preservation of cells, tissue, organs or bodily fluids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/0068General culture methods using substrates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M25/00Means for supporting, enclosing or fixing the microorganisms, e.g. immunocoatings
    • C12M25/16Particles; Beads; Granular material; Encapsulation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2509/00Methods for the dissociation of cells, e.g. specific use of enzymes
    • C12N2509/10Mechanical dissociation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2513/003D culture
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/70Polysaccharides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/70Polysaccharides
    • C12N2533/72Chitin, chitosan
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/70Polysaccharides
    • C12N2533/78Cellulose
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2535/00Supports or coatings for cell culture characterised by topography

Definitions

  • the present invention relates to a medium composition for culturing animal and plant cells and / or tissues, particularly in a three-dimensional or floating state, using nanofibers such as polysaccharides having improved dispersibility in water, and uses thereof. .
  • organ culture and tissue culture are used to proliferating, differentiating or maintaining cells isolated from organs and tissues in vitro.
  • cell culture is a technique for proliferating, differentiating or maintaining isolated cells in a culture medium in vitro, and is indispensable for detailed analysis of the functions and structures of various organs, tissues, and cells in vivo. ing.
  • cells and / or tissues cultured by this technique are organs lost due to evaluation of efficacy and toxicity of chemical substances, pharmaceuticals, etc., mass production of useful substances such as enzymes, cell growth factors, antibodies, and diseases and defects. It is used in various fields, such as regenerative medicine that supplements tissues and cells, plant breed improvement, and creation of genetically modified crops.
  • Suspension cells are cells that do not require a scaffold for growth / proliferation
  • adherent cells are cells that require a scaffold for growth / proliferation, but most cells that make up living organisms are the latter adherent cells.
  • Known culture methods for adherent cells include monolayer culture, dispersion culture, embedding culture, microcarrier culture, and sphere culture.
  • Monolayer culture is a method of culturing target cells in a single layer using a culture vessel made of glass or a synthetic polymer material with various surface treatments, or an auxiliary cell called a feeder cell as a scaffold.
  • a culture vessel made of glass or a synthetic polymer material with various surface treatments, or an auxiliary cell called a feeder cell as a scaffold.
  • various kinds of surface treatments plasma treatment, corona treatment, etc.
  • cell adhesion factors such as collagen, fibronectin, polylysine
  • a culture method using a culture vessel having a shape or a property has been developed.
  • the two-dimensional culture environment is completely different from the in vivo environment, so that the specific functions of cells in vivo cannot be maintained for a long period of time.
  • Non-patent Document 1 Problems such as inability to reconstruct a simple tissue or being unsuitable for mass culture of cells because the number of cells per fixed area is limited. Further, in the method of culturing target cells on feeder cells, separation of the feeder cells from the target cells may be a problem (Non-patent Document 1).
  • the culture solution is continuously stirred to inhibit the adhesion of the cells to the culture container.
  • This is a method of culturing adherent cells in a floating state.
  • adherent cells cultured by this method cannot adhere to the scaffold, they cannot be applied to cells that require adherence to the scaffold for cell proliferation.
  • the original cell function cannot be exhibited by being always crushed by a shearing force, a large number of cells having the function cannot be cultured (Non-patent Document 2).
  • Embedded culture is a method in which cells are embedded and fixed in a solid or semi-solid gel substrate such as agar, methylcellulose, collagen gel, gelatin, fibrin, agarose, alginate, etc., and cultured.
  • a solid or semi-solid gel substrate such as agar, methylcellulose, collagen gel, gelatin, fibrin, agarose, alginate, etc.
  • This method allows cells to be cultured three-dimensionally in a form close to that of the living body, and the gel base material itself may promote cell proliferation and differentiation. It is possible to culture cells at high density while maintaining the function of the cells (Patent Documents 2 and 3).
  • Non-Patent Document 3 a method in which microcapsules having a size of 100 to 300 ⁇ m are prepared in a state where cells are embedded in these gel substrates, and the cells are cultured in an aqueous medium while the microcapsules are dispersed.
  • the gel base material does not transmit visible light, the cultured cells cannot be observed over time.
  • the medium and microcapsules containing the gel base material have high viscosity, and thus the cells are collected from the medium. Therefore, there are problems such as complicated treatment such as enzyme treatment (for example, collagenase treatment in the case of collagen gel) and the operation of damaging the cells, and difficult medium exchange necessary for long-term culture. is doing.
  • microcarrier culture cells are grown in a monolayer on the surface of microparticles slightly heavier than water (hereinafter also referred to as microcarriers), and the microparticles are stirred in a culture container such as a flask to culture in a floating state. Is to do.
  • the microcarrier used in the method is a spherical particle having a diameter of 100 to 300 ⁇ m, a surface area of 3000 to 6000 cm 2 / g, and a specific gravity of 1.03 to 1.05, and is composed of a material such as dextran, gelatin, alginic acid or polystyrene. ing.
  • a charged group such as collagen, gelatin, or dimethylaminoethyl can also be added to the surface of the microcarrier so that cells can easily adhere to the surface. Since this method can greatly increase the culture area, it has been applied to mass culture of cells (Patent Documents 7 and 8). However, it is difficult to adhere the target cells almost uniformly with all the microcarriers, and the cells are detached from the microcarriers due to the shearing force during stirring, and the cells are damaged. (Non-patent document 9).
  • the sphere culture is a method in which a target cell forms an agglomerate consisting of several tens to several hundreds (hereinafter also referred to as a sphere), and then the agglomerate is cultured in a medium by standing or shaking. is there.
  • the sphere has a high cell density, cell-cell interaction and cell structure that are close to the in vivo environment, and can be cultured while maintaining cell function for a longer period of time than single-layer culture or dispersion culture.
  • Non-Patent Documents 10 and 11 Is known (Non-Patent Documents 10 and 11).
  • the size of the sphere is too large, it becomes difficult to supply nutrients inside the sphere and discharge waste products, and thus it is not possible to form a large sphere.
  • spheres need to be cultured in a dispersed state on the bottom surface of the culture vessel, it is difficult to increase the number of spheres per fixed volume, which is not suitable for mass culture.
  • spheres can be produced by hanging drop culture, cell non-adherent surface culture, microwell culture, rotation culture, cell scaffold culture, agglomeration by centrifugal force, ultrasonic wave, electric field or magnetic field. These methods are known to be difficult to operate, difficult to collect spheres, difficult to control the size and mass production, unknown effects on cells, special specialized containers and equipment are required, etc. (Patent Document 9).
  • Non-patent Document 12 a method of suspending and culturing plant cells and tissues in a liquid medium is known (Non-patent Document 12). In order to achieve their good growth, it is important to supply sufficient oxygen, maintain a uniform mixed state, and prevent cell damage.
  • the supply of oxygen to the culture medium and the suspension of cells and tissues may be performed by a combination of aeration and mechanical agitation or only by aeration.
  • the latter may cause poor growth, while the latter has less shear of cells and tissues, but it may be difficult to maintain a uniform mixed state in high-density culture, There are problems such as sedimentation and reduction in growth efficiency.
  • the object of the present invention is to solve the above-mentioned problems of the prior art, a medium composition for cultivating animal and plant cells and / or tissues, particularly in a three-dimensional or floating state, an animal and plant cell and a plant and animal cell using the medium composition, and Another object is to provide a tissue culture method.
  • the present inventors have mixed nanofibers composed of polysaccharides such as cellulose and chitin into a liquid medium, so that the viscosity of the liquid medium is not substantially increased, so that animal and plant cells and / or tissues It has been found that suspension culture can be performed in a stationary state, and that the cell proliferation activity is enhanced by culturing using this medium composition. Moreover, not only water-insoluble polysaccharides such as cellulose but also water-soluble polysaccharides such as deacylated gellan gum form fiber-like structures in the liquid medium, which substantially increases the viscosity of the liquid medium.
  • the present invention is as follows:
  • a medium composition capable of culturing cells or tissues in a suspended state comprising nanofibers.
  • the medium composition according to [1] wherein cells or tissues can be collected after replacement of the medium composition at the time of culturing and after completion of the culturing.
  • the medium composition according to [1] which does not require any of temperature change, chemical treatment, enzyme treatment, and shearing force when cells or tissues are collected.
  • the average fiber diameter of the nanofiber is 0.001 to 1.00 ⁇ m, and the ratio (L / D) of the average fiber length (L) to the average fiber diameter (D) is 2 to 500.
  • the medium composition [6] The medium composition according to [1], wherein the nanofiber is composed of a polymer compound.
  • the polymer compound is a polysaccharide.
  • the polysaccharide is Any water-insoluble polysaccharide selected from the group consisting of cellulose, chitin and chitosan; or hyaluronic acid, gellan gum, deacylated gellan gum, rhamzan gum, diyutan gum, xanthan gum, carrageenan, xanthan gum, hexuronic acid, fucoidan, pectin [7] a water-soluble polysaccharide selected from the group consisting of pectic acid, pectinic acid, heparan sulfate, heparin, heparitin sulfate, kerato sulfate, chondroitin sulfate, dermatan sulfate, rhamnan sulfate, alginic acid and salts thereof Medium composition.
  • a cell or tissue culture comprising the medium composition according to any one of [1] to [13] and a cell or tissue.
  • a method for culturing a cell or tissue comprising culturing the cell or tissue in the medium composition according to any one of [1] to [13].
  • a method for recovering a cell or tissue comprising separating the cell or tissue from the culture according to [14].
  • a method for producing a sphere comprising culturing adherent cells in the medium composition of any one of [1] to [13].
  • [20] A method for producing a medium composition, comprising mixing the medium additive of [19] and a medium.
  • a method for producing the composition [22] A method for preserving a cell or tissue, comprising preserving the cell or tissue in the medium composition according to any one of [1] to [13].
  • [23] A method for transporting cells or tissues, comprising transporting cells or tissues in the medium composition according to any one of [1] to [13].
  • a method for proliferating a cell or tissue comprising culturing the cell or tissue in the medium composition according to any one of [1] to [13].
  • a method for subculturing adherent cells comprising the following steps: (1) Suspension culture of adherent cells in the medium composition according to any one of [1] to [13]; and (2) Step (i) without detaching the cells from the culture vessel
  • a fresh medium composition according to any one of [1] to [13] is added to the culture containing adherent cells obtained by the suspension culture of (1), or (ii) fresh [1]
  • all or part of the culture containing adherent cells obtained by the suspension culture in the step (1) is added to the medium composition according to any one of [13] to [13].
  • a method for growing adherent cells comprising subjecting adherent cells to suspension culture in a medium composition containing chitin nanofibers while attached to the chitin nanofibers.
  • the content of chitin nanofibers in the medium composition is 0.0001% (weight / volume) or more and 0.1% (weight / volume) or less.
  • the present invention provides a medium composition containing nanofibers, particularly nanofibers composed of polysaccharides.
  • the cells and / or tissues can be cultured in a floating state without operations such as shaking and rotation that are likely to cause cell or tissue damage or loss of function.
  • the culture medium composition can be easily replaced during culture, and the cultured cells and / or tissues can be easily recovered.
  • the culture method can be applied to cells and / or tissues collected from animal bodies or plants, and target cells and / or tissues can be prepared in large quantities without impairing their functions.
  • the cells and / or tissues obtained by the culturing method are organs lost due to the evaluation of the efficacy and toxicity of chemical substances, pharmaceuticals, etc., mass production of useful substances such as enzymes, cell growth factors, antibodies, and diseases and defects. It can be used when performing regenerative medicine for supplementing tissues and cells.
  • the cells or tissues can be maintained in an environment close to the living body, and therefore, it is useful for the preservation and transportation of cells and tissues.
  • the original function of the cell may be reduced due to the separation of the cell from the plate due to vibration during transport.
  • the nanofibers form a three-dimensional network, and the cells support the cells, so that the cells can be held in a floating state. Therefore, damage to the cells due to peeling from the plate due to vibration during transportation is prevented.
  • the cells can be avoided and preserved and transported while maintaining the original function of the cells.
  • the spheres of HepG2 cells When spheres of HepG2 cells were cultured with a medium composition, the spheres are uniformly dispersed and can be cultured in a floating state. When spheres of HeLa cells were cultured with a medium composition, the spheres are uniformly dispersed and can be cultured in a floating state. When spheres of HeLa cells are cultured with a medium composition and this sphere is observed with a microscope, it is a diagram showing that association between the spheres is suppressed as compared with an existing medium. It is a figure which shows that a HepG2 cell can proliferate on a microcarrier, when the microcarrier which made the HepG2 cell adhere with a culture medium composition was cultured.
  • the scanning electron micrograph of the DAG containing medium composition of Example 4 is shown.
  • the scanning electron micrograph of the Car containing medium composition of Example 5 is shown. Dry at room temperature.
  • the scanning electron micrograph of the Car containing medium composition of Example 5 is shown. Dry at 110 ° C.
  • the scanning electron micrograph of the Xan containing medium composition of the comparative example 3 is shown.
  • the scanning electron micrograph of the DU containing medium composition of the comparative example 4 is shown.
  • distribution state of a sphere after carrying out the suspension culture of the sphere of HepG2 cell for 6 days in the MNC containing medium composition of Example 1 is shown.
  • the MNC concentrations are 0.01, 0.03, 0.05, 0.07 and 0.1 w / v%.
  • the observation result of the dispersion state of a sphere after carrying out suspension culture of the sphere of HepG2 cell for 6 days in the PNC containing medium composition of Example 2 is shown. From the left, the PNC concentrations are 0.01, 0.03, 0.05, 0.07 and 0.1 w / v%.
  • the observation result of the dispersion state of a sphere after carrying out suspension culture of the sphere of HepG2 cell for 6 days in the CT containing medium composition of Example 3 is shown. From the left, the CT concentrations are 0.01, 0.03, 0.05, 0.07 and 0.1 w / v%.
  • the observation result of the dispersion state of a sphere after carrying out suspension culture of the sphere of HepG2 cell for 6 days in the DAG containing medium composition of Example 4 is shown. From the left, the DAG concentrations are 0.01, 0.03, 0.05, 0.07 and 0.1 w / v%.
  • cultivation of the sphere of HepG2 cell for 6 days in the Car containing medium composition of Example 5 is shown. From the left, the Car concentrations are 0.01, 0.03, 0.05, 0.07 and 0.1 w / v%.
  • the observation result of the dispersion state of a sphere after carrying out suspension culture of the sphere of HepG2 cell for 6 days in the Xan containing medium composition of Example 5 is shown. From the left, the Xan concentrations are 0.01, 0.03, 0.05, 0.07 and 0.1 w / v%.
  • the observation result of the dispersion state of a sphere after carrying out 6-day suspension culture of the sphere of HepG2 cell in the DU containing medium composition of the comparative example 4 is shown. From the left, DU concentrations are 0.01, 0.03, 0.05, 0.07 and 0.1 w / v%.
  • MCF7 cells are shown in RLU values on day 6 after suspension culture was started in the medium compositions of Example 1 'and Comparative Example 5'. MCF7 cells start to float in the medium composition of Example 2 'and 3' and show RLU values on day 6. MCF7 cells are shown in RLU values on day 6 after suspension culture was started in the medium compositions of Example 4 'and Example 5'.
  • MCF7 cells start to float in the medium compositions of Comparative Examples 3 'and 4' and show RLU values on day 6.
  • the ALU cells show the RLU value on the 6th day after the suspension culture was started in the medium compositions of Example 1 'and Comparative Example 5'.
  • ALU cells are shown in RLU values on day 6 after suspension culture was started in the medium compositions of Examples 2 'and 3'.
  • the ALU cells show the RLU value on the 6th day after the suspension culture was started in the medium compositions of Example 4 'and Example 5'.
  • the ALU cells show the RLU value on the 6th day after the suspension culture was started in the medium compositions of Comparative Examples 3 'and 4'.
  • the cell in the present invention is the most basic unit constituting an animal or a plant, and has a cytoplasm and various organelles inside the cell membrane as its elements.
  • the nucleus containing DNA may or may not be contained inside the cell.
  • the animal-derived cells in the present invention include germ cells such as sperm and eggs, somatic cells constituting the living body, stem cells, progenitor cells, cancer cells separated from the living body, separated from the living body, and acquired immortalizing ability.
  • Cells that are stably maintained outside the body (cell lines), cells that have been isolated from the living body and have been artificially modified, cells that have been isolated from the living body and have been artificially exchanged nuclei, and the like.
  • somatic cells constituting a living body include, but are not limited to, fibroblasts, bone marrow cells, B lymphocytes, T lymphocytes, neutrophils, erythrocytes, platelets, macrophages, monocytes, bones Cells, bone marrow cells, pericytes, dendritic cells, keratinocytes, adipocytes, mesenchymal cells, epithelial cells, epidermal cells, endothelial cells, vascular endothelial cells, hepatocytes, chondrocytes, cumulus cells, nervous system cells, Glial cells, neurons, oligodendrocytes, microglia, astrocytes, heart cells, esophageal cells, muscle cells (eg, smooth or skeletal muscle cells), pancreatic beta cells, melanocytes, hematopoietic progenitor cells, and single Nuclear cells and the like are included.
  • the somatic cells are, for example, skin, kidney, spleen, adrenal gland, liver, lung, ovary, pancreas, uterus, stomach, colon, small intestine, large intestine, spleen, bladder, prostate, testis, thymus, muscle, connective tissue, bone, cartilage , Cells taken from any tissue such as vascular tissue, blood, heart, eye, brain or nerve tissue.
  • a stem cell is a cell that has the ability to replicate itself and to differentiate into cells of other multiple lineages.
  • ES cells embryonic stem cells
  • iPS cells induced pluripotent stem cells
  • neural stem cells hematopoietic stem cells
  • mesenchymal stem cells hepatic stem cells
  • pancreatic stem cells muscle stem cells
  • germ stem cells germ stem cells
  • intestinal stem cells cancer stem cells
  • Hair follicle stem cells are included.
  • a progenitor cell is a cell that is in the process of being differentiated from the stem cell into a specific somatic cell or germ cell.
  • Cancer cells are cells that have been derived from somatic cells and have acquired unlimited proliferative capacity.
  • a cell line is a cell that has acquired infinite proliferation ability by artificial manipulation in vitro.
  • Examples thereof include, but are not limited to, CHO (Chinese hamster ovary cell line), HCT116. , Huh7, HEK293 (human embryonic kidney cells), HeLa (human uterine cancer cell line), HepG2 (human liver cancer cell line), UT7 / TPO (human leukemia cell line), MDCK, MDBK, BHK, C-33A, HT- 29, AE-1, 3D9, Ns0 / 1, Jurkat, NIH3T3, PC12, S2, Sf9, Sf21, High Five (registered trademark), Vero, and the like.
  • the plant-derived cells in the present invention include cells separated from each tissue of the plant body, and also include protoplasts obtained by artificially removing cell walls from the cells.
  • the tissue in the present invention is a unit of a structure in which cells having several different properties and functions are gathered in a certain manner.
  • animal tissues include epithelial tissue, connective tissue, muscle tissue, nerves. Includes organizations.
  • plant tissues include meristem tissue, epidermal tissue, anabolic tissue, mesophyll tissue, passage tissue, mechanical tissue, soft tissue, dedifferentiated cell mass (callus), and the like.
  • the cells and / or tissues to be cultured can be arbitrarily selected from the cells and / or tissues described above and cultured.
  • Cells and / or tissues can be collected directly from animals or plants.
  • the cells and / or tissues may be collected after being induced from an animal or plant, grown or transformed by a specific treatment. At this time, the processing may be performed in vivo or in vitro. Examples of animals include fish, amphibians, reptiles, birds, pan-crustaceans, hexapods, mammals and the like.
  • mammals include, but are not limited to, rat, mouse, rabbit, guinea pig, squirrel, hamster, vole, platypus, dolphin, whale, dog, cat, goat, cow, horse, sheep, pig, elephant Common marmoset, squirrel monkey, rhesus monkey, chimpanzee and human.
  • the plant is not particularly limited as long as the collected cells and / or tissues can be subjected to liquid culture.
  • plants that produce crude drugs eg, saponins, alkaloids, berberine, scoporin, plant sterols, etc.
  • crude drugs eg, saponins, alkaloids, berberine, scoporin, plant sterols, etc.
  • plants that produce crude drugs eg, saponins, alkaloids, berberine, scoporin, plant sterols, etc.
  • Plant eg, blueberry, safflower, saffron, saffron, etc.
  • that produces the body eg, anthocyanin, safflower pigment, akane pigment, saffron pigment, flavone, etc.
  • a plant that produces the drug substance eg, but not limited to them.
  • floating cells and / or tissues refers to a state in which cells and / or tissues do not adhere to a culture container (non-adhered). Furthermore, in the present invention, when the cells and / or tissues are allowed to grow, differentiate or maintain, the cells and / or tissues are not subjected to external pressure or vibration with respect to the liquid medium composition or shaking or rotation operation in the composition. A state where the tissue is uniformly dispersed in the liquid medium composition and is in a floating state is called “floating stationary”, and culturing cells and / or tissues in the state is “floating stationary culture”. That's it.
  • the period during which it can be floated in “floating standing” is at least 5 minutes or more, preferably 1 hour or more, 24 hours or more, 48 hours or more, 6 days or more, 21 days or more, but is kept floating. As long as it is not limited to these periods.
  • the medium composition of the present invention is capable of allowing cells and / or tissues to float in suspension at least at one point in the temperature range (eg, 0 to 40 ° C.) where cells and tissues can be maintained and cultured. is there.
  • the medium composition of the present invention is capable of allowing cells and / or tissues to float in suspension, preferably at at least one point in the temperature range of 25 to 37 ° C, and most preferably at 37 ° C.
  • Whether or not floating standing is possible is determined by, for example, uniformly dispersing polystyrene beads (Size 500-600 ⁇ m, manufactured by Polysciences Inc.) in the medium composition to be evaluated, and standing at 25 ° C., at least 5 It can be evaluated by observing whether the floating state of the cell is maintained for a minute or longer (preferably 24 hours or longer, 48 hours or longer).
  • the culture medium composition of the present invention is a composition containing nanofibers and a culture medium in which cells or tissues can be suspended and cultured (preferably floating stationary culture).
  • the medium composition is preferably a composition capable of recovering cells or tissues after replacement of the medium composition at the time of culture and completion of the culture, and more preferably, at the time of recovering cells or tissues,
  • the composition does not require any temperature change, chemical treatment, enzyme treatment, or shearing force.
  • Nanofiber The nanofiber contained in the medium composition of the present invention exhibits an effect of uniformly floating cells and / or tissues in a liquid medium. More specifically, low-molecular compounds and high-molecular compounds are assembled and self-assembled to form nanofibers in a liquid medium through covalent bonds, ionic bonds, electrostatic interactions, hydrophobic interactions, van der Waals forces, etc. Examples of the nanofibers contained in the medium composition of the present invention include nanofibers obtained by refining a relatively large fiber structure made of a polymer compound by high-pressure treatment or the like. Although not bound by theory, in the medium composition of the present invention, the nanofibers form a three-dimensional network, which supports the cells and tissues, thereby maintaining the floating state of the cells and tissues.
  • nanofiber means a fiber having an average fiber diameter (D) of 0.001 to 1.00 ⁇ m.
  • the average fiber diameter of the nanofiber used in the present invention is preferably 0.005 to 0.50 ⁇ m, more preferably 0.01 to 0.05 ⁇ m, and still more preferably 0.01 to 0.02 ⁇ m. If the average fiber diameter is less than 0.001 ⁇ m, the floating effect may not be obtained because the nanofibers are too fine, and there is a possibility that the characteristics of the medium composition containing the nanofibers cannot be improved.
  • the aspect ratio (L / D) of the nanofiber used in the present invention is obtained from the average fiber length / average fiber diameter, and is usually 2 to 500, preferably 5 to 300, more preferably 10 to 250. . If the aspect ratio is less than 2, the dispersibility in the medium composition may be lacking, and the floating action may not be sufficiently obtained. If it exceeds 500, it means that the fiber length becomes extremely large, and there is a possibility that the passage operation such as medium replacement may be hindered by increasing the viscosity of the composition. In addition, the medium composition is difficult to transmit visible light, leading to a decrease in transparency, making it difficult to observe cultured cells over time and hindering cell evaluation using absorption, fluorescence, luminescence, etc. there is a possibility.
  • the average fiber diameter (D) of the nanofibers was determined as follows. First, the collodion support membrane manufactured by Oken Shoji Co., Ltd. was hydrophilized with an ion cleaner (JIC-410) manufactured by JEOL Ltd. for 3 minutes, and several nanofiber dispersions to be evaluated (diluted with ultrapure water) were used. The solution was dropped and dried at room temperature. This was observed with a transmission electron microscope (TEM, H-8000) (10,000 times) manufactured by Hitachi, Ltd. at an accelerating voltage of 200 kV. Using the obtained images, the number of samples: 200 to 250 The fiber diameter of each nanofiber was measured, and the number average value was defined as the average fiber diameter (D).
  • TEM transmission electron microscope
  • the average fiber length (L) was determined as follows.
  • the nanofiber dispersion for evaluation was diluted with pure water to 100 ppm, and the nanofibers were uniformly dispersed using an ultrasonic cleaner. This nanofiber dispersion was cast on a silicon wafer whose surface was hydrophilized in advance using concentrated sulfuric acid, and dried at 110 ° C. for 1 hour to prepare a sample. Using the images of the obtained sample observed with a scanning electron microscope (SEM, JSM-7400F) (2,000 times) manufactured by JEOL Ltd., the number of specimens: 150 to 250 nanofibers one by one The fiber length of the book was measured, and the number average value was defined as the average fiber length (L).
  • the nanofibers used in the present invention are mixed with a liquid medium, the nanofibers are uniformly dispersed in the liquid while maintaining the primary fiber diameter, and the cells and / or tissues without substantially increasing the viscosity of the liquid. Is substantially retained and has the effect of preventing its sedimentation.
  • the fact that the viscosity of the liquid is not substantially increased means that the viscosity of the liquid does not exceed 8 mPa ⁇ s.
  • the viscosity of the liquid (that is, the viscosity of the medium composition produced by the production method of the present invention) is 8 mPa ⁇ s or less, preferably 4 mPa ⁇ s or less, more preferably 2 mPa ⁇ s or less. It is.
  • the nanofibers when the nanofibers are dispersed in a liquid medium, the nanofibers have an effect of uniformly floating (preferably floating and standing) cells and / or tissues without substantially increasing the viscosity of the liquid.
  • the chemical structure, molecular weight, physical properties, etc. of the nanofiber are not limited.
  • the viscosity of the liquid containing nanofibers can be measured, for example, by the method described in Examples described later. Specifically, it can be evaluated using tuning fork vibration type viscosity measurement (SV-1A, A & D Company Ltd.) under 25 ° C. conditions.
  • Examples of the raw material constituting the nanofiber are not particularly limited, and examples thereof include a low molecular compound and a high molecular compound.
  • Preferable specific examples of the low molecular weight compound used in the present invention are not particularly limited.
  • amino acid derivatives such as L-isoleucine derivatives, L-valine derivatives, L-lysine derivatives, trans-1,2- Cyclohexanediamine derivatives such as diaminocyclohexanediamide derivatives, 5-aminoisophthalic acid derivatives, R-12-hydroxystearic acid, 1,3,5-benzenetricarboximide, cis-1,3,5-cyclohexanetricarboxamide, 2 , 4-dibenzylidene-D-sorbitol, N-lauroyl-L-glutamic acid- ⁇ , ⁇ -bis-n-butyramide, calcium dehydroabietic acid, and the like.
  • Preferred specific examples of the polymer compound used in the present invention are not particularly limited, and examples thereof include polysaccharides and polypeptides.
  • Polysaccharide means a sugar polymer in which 10 or more monosaccharides (for example, triose, tetrose, pentose, hexose, heptose, etc.) are polymerized.
  • Polysaccharides include water-insoluble polysaccharides and water-soluble polysaccharides.
  • water-insoluble polysaccharides include, but are not limited to, celluloses such as cellulose and hemicellulose; and chitins such as chitin and chitosan.
  • water-soluble polysaccharide examples include acidic polysaccharides having an anionic functional group.
  • the acidic polysaccharide having an anionic functional group is not particularly limited.
  • a polysaccharide having a uronic acid eg, glucuronic acid, iduronic acid, galacturonic acid, mannuronic acid
  • examples thereof include polysaccharides having phosphoric acid, or polysaccharides having both structures.
  • hyaluronic acid gellan gum, deacylated gellan gum (DAG), rhamzan gum, diyutan gum, xanthan gum, carrageenan, xanthan gum, hexuronic acid, fucoidan, pectin, pectinic acid, pectinic acid, heparan sulfate, heparin, heparitin
  • examples thereof include those composed of one or more kinds from the group consisting of sulfuric acid, keratosulfuric acid, chondroitin sulfate, dermatan sulfate, rhamnan sulfate, alginic acid, and salts thereof.
  • Salts mentioned here include alkali metal salts such as lithium, sodium and potassium; alkaline earth metal salts such as calcium, barium and magnesium; salts such as aluminum, zinc, copper and iron; ammonium salts; tetraethylammonium and tetrabutyl Quaternary ammonium salts such as ammonium, methyltributylammonium, cetyltrimethylammonium, benzylmethylhexyldecylammonium, choline; organic amines such as pyridine, triethylamine, diisopropylamine, ethanolamine, diolamine, tromethamine, meglumine, procaine, chloroprocaine Salts: salts with amino acids such as glycine, alanine, valine and the like.
  • polypeptides examples include polypeptides that constitute fibers in a living body. Specific examples include, but are not limited to, collagen, elastin, myosin, keratin, amyloid, fibroin, actin, tubulin and the like.
  • the raw materials constituting the nanofibers used in the present invention are not only naturally-derived substances, but also substances produced by microorganisms, substances produced by genetic engineering, or artificially synthesized using enzymes and chemical reactions. Substances are also included.
  • the raw material constituting the nanofiber used in the present invention is preferably a naturally-derived substance (that is, a substance extracted from nature) or a substance obtained by modifying this by chemical reaction or enzymatic reaction.
  • the polysaccharide is a water-insoluble polysaccharide.
  • Preferred water-insoluble polysaccharides include cellulose; chitin such as chitin and chitosan. Considering the point that the viscosity of the medium composition can be lowered and the ease of cell or tissue recovery, cellulose and chitin are most preferable.
  • Cellulose is a natural polymer compound in which D-glucopyranose, which is a 6-membered ring of glucose, is linked by ⁇ -1,4 glucoside.
  • raw materials include cellulose derived from plants such as wood, bamboo, hemp, jute, kenaf, cotton, crops and food residues, or microorganisms such as bacterial cellulose, shiogusa (cladophora), gray plant (glaucocystis), valonia, squirt cellulose, etc.
  • Production or animal production cellulose can be used.
  • Plant-derived cellulose is a bundle of very thin fibers called microfibrils, and forms a higher-order structure step by step with fibrils, lamellae, and fiber cells.
  • Bacterial cellulose has a fine network structure in which the microfibrils of cellulose secreted from fungal cells have the same thickness.
  • high-purity cellulose raw materials such as cotton and bacterial cellulose can be used as raw materials, but other plant-derived cellulose and the like are preferably isolated and purified.
  • the cellulose suitably used in the present invention is cotton cellulose, bacterial cellulose, kraft pulp cellulose, microcrystalline cellulose or the like.
  • kraft pulp cellulose is preferably used because it has a high floating action.
  • Chitin is one or more carbohydrates selected from the group consisting of chitin and chitosan.
  • the main sugar units constituting chitin and chitosan are N-acetylglucosamine and glucosamine, respectively.
  • chitin and glucosamine have a high N-acetylglucosamine content and are hardly soluble in acidic aqueous solutions.
  • a substance having a high content and soluble in an acidic aqueous solution is regarded as chitosan.
  • the ratio of N-acetylglucosamine in the constituent sugars is called 50% or more of chitin, and less than 50% is called chitosan.
  • the proportion of N-acetylglucosamine in the saccharide units constituting chitin is preferably 80% or more, more preferably 90% or more, still more preferably 98% or more, and most preferably 100%.
  • chitin As a raw material for chitin, for example, many biological resources such as shrimp, crab, insect, shellfish, mushroom can be used.
  • the chitin used in the present invention may be a chitin having an ⁇ -type crystal structure such as chitin derived from crab shell or shrimp shell, or a chitin having a ⁇ -type crystal structure such as chitin derived from squid shell.
  • Crab and shrimp shells are often treated as industrial waste and are preferred as raw materials because they are readily available and effective.
  • deproteinization and decalcification are necessary to remove proteins and ash contained as impurities. A process is required. Therefore, in the present invention, it is preferable to use purified chitin that has already been subjected to dematrixing. Purified chitin is commercially available.
  • the polysaccharide is a water-soluble polysaccharide.
  • Preferred water-soluble polysaccharides include deacylated gellan gum and carrageenan. From the viewpoint of achieving a high floating action, deacylated gellan gum is most preferable.
  • Deacylated gellan gum is a linear high chain composed of four sugar molecules: 1-3 linked glucose, 1-4 bonded glucuronic acid, 1-4 bonded glucose and 1-4 bonded rhamnose. It is a molecular polysaccharide.
  • R1 and R2 are both hydrogen atoms, and n is a polysaccharide represented by an integer of 2 or more.
  • R1 may contain a glyceryl group and R2 may contain an acetyl group
  • the content of acetyl group and glyceryl group is preferably 10% or less, more preferably 1% or less.
  • the produced microorganisms are cultured in a fermentation medium, and the mucosa produced outside the cells is recovered by a conventional purification method, followed by drying, pulverization, and the like to obtain a powder.
  • deacylated gellan gum cultivates microorganisms that produce gellan gum in a fermentation medium, and recovers mucosa produced outside the cells.
  • the mucous membrane may be recovered after being subjected to alkali treatment to deacylate the glyceryl group and the acetyl group bonded to the 1-3 bonded glucose residue.
  • Purification of the deacylated gellan gum from the recovered mucosa is, for example, liquid-liquid extraction, fractional precipitation, crystallization, various ion exchange chromatography, gel filtration chromatography using Sephadex LH-20, activated carbon, etc. , Adsorption / desorption treatment of active substances by silica gel etc. or thin layer chromatography, or high performance liquid chromatography using reverse phase column, etc. alone or in any order and repeated can do.
  • gellan gum producing microorganisms include, but are not limited to, Sphingomonas erodea and microorganisms modified from the genes of the microorganisms.
  • deacylated gellan gum commercially available products such as “KELCOGEL (registered trademark of CPE Kelco) CG-LA” manufactured by Sanki Co., Ltd., “Kelcogel (CPP) manufactured by Saneigen FFI Co., Ltd. ⁇ Registered trademark of Kelco) ”or the like.
  • the weight average molecular weight of the polymer compound used in the present invention is preferably 1,000 to 50,000,000, more preferably 10,000 to 20,000,000, still more preferably 100,000 to 10,000. , 000.
  • the molecular weight can be estimated from polyethylene glycol by gel permeation chromatography (GPC), or pullulan conversion, aqueous solution viscosity, and the like.
  • a plurality of (preferably two) polymer compounds may be used in combination.
  • the type of combination of the polymer compounds may form nanofibers in the medium composition or be dispersed as nanofibers, and float cells and / or tissues without substantially increasing the viscosity of the liquid medium (preferably
  • the combination includes at least cellulose, chitin, collagen, or deacylated gellan gum, although it is not particularly limited as long as it can be allowed to float).
  • suitable polymer compound combinations include cellulose, chitin, collagen, or deacylated gellan gum; and other polymer compounds (e.g., xanthan gum, alginic acid, carrageenan, diutan gum, methylcellulose, locust bean gum or Their salts).
  • the culture medium composition of the present invention contains nanofibers prepared from the above-mentioned raw materials.
  • the nanofibers are prepared by using water-insoluble polymer compounds (for example, water-insoluble polysaccharides such as cellulose and chitin) as raw materials and water-soluble polymer compounds (for example, deacylated gellan gum). Of water-soluble polysaccharides).
  • the nanofiber raw material is a water-insoluble polymer compound (for example, a water-insoluble polysaccharide such as cellulose or chitin)
  • the nanofiber is usually obtained by pulverizing the raw material.
  • a strong shearing force such as a high-pressure homogenizer, a grinder (stone mill), or a medium agitation mill such as a bead mill can be obtained in order to reduce the fiber diameter and fiber length, which will be described later, to meet the purpose of the present invention. Is preferred.
  • the raw material is pulverized by injecting and colliding the dispersion liquid in which the raw material is dispersed from a pair of nozzles at a high pressure, for example, Starburst System (manufactured by Sugino Machine Co., Ltd.). It can be carried out by using a high-pressure crusher) or Nano perenniala (a high-pressure crusher from Yoshida Kikai Kogyo Co., Ltd.).
  • the degree of refinement and homogenization depends on the pressure fed to the ultra-high pressure chamber of the high-pressure homogenizer and the number of times it passes through the ultra-high pressure chamber (number of treatments). And the concentration of the raw material in the aqueous dispersion.
  • the pumping pressure (treatment pressure) is usually 50 to 250 MPa, preferably 150 to 245 MPa. When the pumping pressure is less than 50 MPa, the nanofibers are not sufficiently refined, and there is a possibility that the effect expected by the refinement cannot be obtained.
  • the concentration of the raw material in the aqueous dispersion during the micronization treatment is 0.1% by mass to 30% by mass, preferably 1% by mass to 10% by mass.
  • concentration of the raw material in the aqueous dispersion is less than 0.1% by mass, the productivity is low, and when the concentration is higher than 30% by mass, the pulverization efficiency is low and desired nanofibers cannot be obtained.
  • concentration of the raw material in the aqueous dispersion There are no particular restrictions on the number of times of refinement (pulverization) treatment, and it depends on the concentration of the raw material in the aqueous dispersion. Although it is sufficiently fined in about 100 times, it is required about 10 to 1000 times at 1 to 10% by mass. Moreover, in the case of a high concentration exceeding 30% by mass, it is impractical from an industrial point of view because the number of treatments of several thousand times or more is required and the viscosity is increased to the point of hindering handling. .
  • the nanofiber raw material uses a water-soluble polymer compound (for example, a water-soluble polysaccharide such as deacylated gellan gum)
  • a water-soluble polymer compound for example, a water-soluble polysaccharide such as deacylated gellan gum
  • the substance passes through the metal cation in the medium.
  • Assembling and forming nanofibers in the medium which builds a three-dimensional network, results in the formation of nanofibers that can be suspended and cultured in cells or tissues.
  • the concentration of nanofibers in the medium composition of the present invention should be appropriately set so that cells and / or tissues can be suspended (preferably allowed to stand still) without substantially increasing the viscosity of the medium.
  • 0.0001% to 1.0% (weight / volume) for example 0.0005% to 1.0% (weight / volume), preferably 0.001% to 0.5% ( Weight / volume), more preferably 0.005% to 0.1% (weight / volume), and even more preferably 0.005% to 0.05% (weight / volume).
  • cellulose nanofiber it is usually 0.0001% to 1.0% (weight / volume), for example 0.0005% to 1.0% (weight / volume), preferably 0.001% to 0.5%.
  • the lower limit value of the concentration in the medium is preferably 0.01% (weight / volume) from the viewpoint of floating action expression and enabling floating stationary culture. ), 0.015% (weight / volume) or more, 0.02% (weight / volume) or more, 0.025% (weight / volume) or more, or 0.03% (weight / volume) or more.
  • the upper limit of the concentration in the medium is preferably 0.1% (weight / volume) or less, or 0.04% (weight) from the viewpoint of not substantially increasing the viscosity of the medium. / Capacity) or less.
  • the lower limit value of the concentration in the medium is preferably 0.01% (weight / volume) or more, 0.03% (weight / volume) or more, or 0 from the viewpoint of the floating action. 0.05% (weight / volume) or more. From the viewpoint of enabling floating stationary culture, the lower limit value of the microcrystalline cellulose nanofiber concentration in the medium is preferably 0.03% (weight / volume) or more, or 0.05% (weight / volume) or more.
  • the upper limit of the concentration in the medium is preferably 0.1% (weight / volume) or less.
  • the concentration in the medium usually 0.0001% to 1.0% (weight / volume), for example 0.0005% to 1.0% (weight / volume), preferably 0.001% to 0.5% ( Weight / volume), more preferably 0.01% to 0.1% (weight / volume), most preferably 0.03% to 0.07% (weight / volume).
  • the lower limit value of the chitin nanofiber concentration in the medium is preferably 0.0001% (weight / volume) or more, 0.0003% (weight / volume) or more, 0.0005% (weight / volume).
  • the lower limit value of chitin nanofibers in the medium is preferably 0.03% (weight / volume) or more.
  • the upper limit value of the chitin nanofiber concentration in the medium is preferably 0.1% (weight / volume) or less.
  • the viscosity of the medium composition is not substantially increased if the concentration is usually 0.1% (weight / volume) or less.
  • carrageenan 0.0005% to 1.0% (weight / volume), preferably 0.001% to 0.5% (weight / volume), more preferably 0.01% to 0.1% (weight).
  • the lower limit value of the carrageenan concentration in the medium is preferably 0.01% or more.
  • the upper limit value of the carrageenan concentration in the medium is preferably 0.1% (weight / volume) or less. From the viewpoint of not substantially increasing the viscosity of the medium, it is also preferable that the upper limit value of carrageenan is 0.04% (weight / volume) or less.
  • deacylated gellan gum usually 0.001% to 1.0% (weight / volume), for example 0.005% to 1.0% (weight / volume), preferably 0.003% to 0.5.
  • the lower limit value of the deacylated gellan gum concentration in the medium is preferably 0.005% (weight / volume) or more, or 0.01% or more.
  • the lower limit of the deacylated gellan gum concentration in the medium is preferably 0.01% (weight / volume) or more.
  • the upper limit value of the deacylated gellan gum concentration in the medium is 0.05% (weight / volume) or less. From the viewpoint of not substantially increasing the viscosity of the medium, it is also preferable that the upper limit value of the deacylated gellan gum is 0.04 (weight / volume) or less.
  • a plurality of (preferably two) polysaccharides can be used in combination.
  • the concentration of the polysaccharide can be appropriately set within a range in which cells and / or tissues can be floated uniformly (preferably allowed to stand still) without substantially increasing the viscosity of the liquid medium.
  • the concentration of nanofibers is 0.005 to 0.1% (weight / volume), preferably 0.01 to 0.07% (weight / volume).
  • the polysaccharide concentration include 0.005 to 0.4% (weight / volume), preferably 0.1 to 0.4% (weight / volume). The following are examples of specific combinations of concentration ranges.
  • Cellulose or chitin nanofibers 0.005 to 0.1% (preferably 0.01 to 0.07%) (weight / volume)
  • Polysaccharide xanthan gum 0.1-0.4% (weight / volume)
  • Sodium alginate 0.1 to 0.4% (weight / volume) (preferably 0.0001 to 0.4% (weight / volume))
  • Locust bean gum 0.1-0.4% (weight / volume)
  • Methyl cellulose 0.1 to 0.4% (weight / volume) (preferably 0.2 to 0.4% (weight / volume))
  • Carrageenan 0.05-0.1% (weight / volume)
  • Valtan gum 0.05-0.1% (weight / volume)
  • Native gellan gum 0.0001-0.4% (weight / volume)
  • Concentration (%) Nanofiber weight (g) / medium composition volume (ml) ⁇ 100
  • the medium composition of the present invention contains a metal cation, such as a divalent metal cation (calcium ion, magnesium ion, zinc ion, iron ion, copper ion, etc.), preferably calcium ion.
  • a metal cation such as a divalent metal cation (calcium ion, magnesium ion, zinc ion, iron ion, copper ion, etc.), preferably calcium ion.
  • the nanofiber contained in the medium composition of the present invention is composed of a water-soluble polymer compound (for example, a water-soluble polysaccharide such as deacylated gellan gum)
  • the medium composition of the present invention is It preferably contains a metal cation.
  • the water-soluble polymer compound for example, a water-soluble polysaccharide such as deacylated gellan gum
  • the metal cation aggregates via the metal cation to form nanofibers in the medium composition. This is because the construction of a three-dimensional network results in the formation of nanofibers that can be cultured with cells or tissues suspended.
  • Examples of the medium contained in the medium composition of the present invention include Dulbecco's Modified Eagles' Medium (DMEM), Ham F12 medium (Ham's Nutrient Mixture F12), DMEM / F12 medium, McCoy 5A medium (McCoy's 5A medium), Eagle MEM medium (Eggles's Minimum Essential Medium; EMEM), ⁇ MEM medium (alpha Modified Eagles'Mimum Medium medium, EM medium, 16M medium medium) Iskov's Modified Dulbecco's medium (Iscove's Modified Dulbecco 'Medium; IMDM), MCDB131 medium, William medium E, IPL41 medium, Fischer's medium, StemPro34 (manufactured by Invitrogen), X-VIVO 10 (manufactured by Cambridge), X-VIVO 15 (manufactured by Kenbrex), HPGM (Kierix), StemSpan H3000 (Stem Cell Technology), StemSpan SF
  • Plant growth regulators such as auxins and, if necessary, cytokinins, in a basic medium such as a medium, or a modified medium in which these medium components are modified to optimum concentrations (for example, halving the ammonia nitrogen concentration)
  • a medium to which (plant hormone) is added at an appropriate concentration is mentioned as a medium.
  • These media can be further supplemented with a casein degrading enzyme, corn steep liquor, vitamins and the like as necessary.
  • auxins examples include 3-indoleacetic acid (IAA), 3-indolebutyric acid (IBA), 1-naphthaleneacetic acid (NAA), 2,4-dichlorophenoxyacetic acid (2,4-D), and the like. , But not limited to them.
  • Auxins can be added to the medium, for example, at a concentration of about 0.1 to about 10 ppm.
  • cytokinins include, but are not limited to, kinetin, benzyladenine (BA), zeatin and the like. Cytokinins can be added to the medium, for example, at a concentration of about 0.1 to about 10 ppm.
  • the components added to the culture medium of animal-derived cells and / or tissues include fetal calf serum, human serum, horse serum, insulin, transferrin, lactoferrin, cholesterol, ethanolamine, sodium selenite, monothioglycerol, 2- Examples include mercaptoethanol, bovine serum albumin, sodium pyruvate, polyethylene glycol, various vitamins, various amino acids, agar, agarose, collagen, methylcellulose, various cytokines, various hormones, various growth factors, various extracellular matrices, and various cell adhesion molecules. It is done.
  • cytokines added to the medium include interleukin-1 (IL-1), interleukin-2 (IL-2), interleukin-3 (IL-3), interleukin-4 (IL-4), Interleukin-5 (IL-5), interleukin-6 (IL-6), interleukin-7 (IL-7), interleukin-8 (IL-8), interleukin-9 (IL-9), Interleukin-10 (IL-10), interleukin-11 (IL-11), interleukin-12 (IL-12), interleukin-13 (IL-13), interleukin-14 (IL-14), Interleukin-15 (IL-15), Interleukin-18 (IL-18), Interleukin-21 (IL-21), Interferon - ⁇ (IFN- ⁇ ), interferon- ⁇ (IFN- ⁇ ), interferon- ⁇ (IFN- ⁇ ), granulocyte colony stimulating factor (G-CSF), monocyte colony stimulating factor (M-CSF), granule Sphere-macrophage colony stimulating factor (GM-CSF), stem cell factor (SCF), f
  • Hormones added to the medium include melatonin, serotonin, thyroxine, triiodothyronine, epinephrine, norepinephrine, dopamine, anti-Muellerian hormone, adiponectin, corticotropin, angiotensinogen and angiotensin, antidiuretic hormone, atrium Natriuretic peptide, calcitonin, cholecystokinin, corticotropin releasing hormone, erythropoietin, follicle stimulating hormone, gastrin, ghrelin, glucagon, gonadotropin releasing hormone, growth hormone releasing hormone, human chorionic gonadotropin, human placental lactogen, growth hormone , Inhibin, insulin, insulin-like growth factor, leptin, luteinizing hormone, melanocyte stimulating hormone, oxytocin, parathyroid hormone , Prolactin, secretin, somatostatin,
  • Growth factors added to the medium include transforming growth factor- ⁇ (TGF- ⁇ ), transforming growth factor- ⁇ (TGF- ⁇ ), macrophage inflammatory protein-1 ⁇ (MIP-1 ⁇ ), epidermal growth factor ( EGF), fibroblast growth factor-1, 2, 3, 4, 5, 6, 7, 8, or 9 (FGF-1, 2, 3, 4, 5, 6, 7, 8, 9), nerve Cell growth factor (NGF) hepatocyte growth factor (HGF), leukemia inhibitory factor (LIF), protease nexin I, protease nexin II, platelet derived growth factor (PDGF), cholinergic differentiation factor (CDF), chemokine, Notch ligand (such as Delta1), Wnt protein, angiopoietin-like protein 2, 3, 5 or 7 (Angpt2, 3, 5, 7), insulin-like growth factor (IGF) , Insulin-like growth factor binding protein (IGFBP), but such pleiotrophin (Pleiotrophin), and the like, but is not limited to these.
  • TGF- ⁇
  • cytokines and growth factors obtained by artificially modifying the amino acid sequences of these cytokines and growth factors by gene recombination techniques can also be added.
  • examples thereof include IL-6 / soluble IL-6 receptor complex or Hyper IL-6 (a fusion protein of IL-6 and soluble IL-6 receptor).
  • Examples of various extracellular matrices and various cell adhesion molecules include collagen I to XIX, fibronectin, vitronectin, laminin-1 to 12, nitogen, tenascin, thrombospondin, von Willebrand factor, osteopontin, fibrinogen, Various elastins, various proteoglycans, various cadherins, desmocollins, desmogleins, various integrins, E-selectin, P-selectin, L-selectin, immunoglobulin superfamily, matrigel, poly-D-lysine, poly-L-lysine, chitin, Examples include chitosan, sepharose, hyaluronic acid, alginic acid gel, various hydrogels, and cut fragments thereof.
  • antibiotics added to the medium include sulfa drugs, penicillin, pheneticillin, methicillin, oxacillin, cloxacillin, dicloxacillin, flucloxacillin, nafcillin, ampicillin, penicillin, amoxicillin, cyclacillin, carbenicillin, ticarcillin, piperacillin, piperacillin, Mecuzurocillin, mecillinam, andinocillin, cephalosporin and its derivatives, oxophosphoric acid, amifloxacin, temafloxacin, nalidixic acid, pyromido acid, ciprofloxane, sinoxacin, norfloxacin, perfloxacin, rosoxacin, ofloxacin, enoxacin, pipexamic acid, sulbactam acid, sulbactam acid, sulbactam acid, sulbactam acid , ⁇ -bromopenicill
  • the medium composition of the present invention can be produced by mixing with the medium used for the preparation.
  • the present invention also provides a method for producing such a medium composition of the present invention.
  • the nanofiber shape can be combined with formulated solids such as powders, tablets, pills, capsules, granules, liquids such as dispersions in appropriate physiological aqueous solvents, or substrates or single bodies. It can be in a state of being let go.
  • Additives for formulation include antiseptics such as p-hydroxybenzoates; excipients such as lactose, glucose, sucrose, and mannitol; lubricants such as magnesium stearate and talc; polyvinyl Examples include binders such as alcohol, hydroxypropyl cellulose, and gelatin; surfactants such as fatty acid esters; and plasticizers such as glycerin.
  • the sterilization method is not particularly limited, and examples thereof include radiation sterilization, ethylene oxide gas sterilization, autoclave sterilization, and filter sterilization.
  • the medium composition of the present invention is prepared by mixing a dispersion of the nanofibers in a physiological aqueous solvent and a liquid medium.
  • the dispersion may be sterilized (autoclave, gamma ray sterilization, etc.).
  • the dispersion and a liquid medium (aqueous medium solution) prepared by dissolving a powder medium in water may be mixed before sterilization. Sterilization of the dispersion and liquid medium may be performed separately before mixing.
  • aqueous solvents include, but are not limited to water, dimethyl sulfoxide (DMSO) and the like.
  • DMSO dimethyl sulfoxide
  • An appropriate buffer or salt may be contained in the aqueous solvent.
  • the nanofiber dispersion is useful as a medium additive for preparing the medium composition of the present invention.
  • the present invention also provides such a medium additive.
  • the mixing ratio of the nanofiber dispersion liquid medium is usually 1:99 to 99: 1, preferably 10:90 to 90:10, more preferably 20:80 to 80:20. is there.
  • the nanofiber is composed of a water-soluble polymer compound (for example, a water-soluble polysaccharide such as deacylated gellan gum)
  • a water-soluble polysaccharide such as deacylated gellan gum
  • the medium composition of the present invention may be produced by mixing a polymer compound (for example, a water-soluble polysaccharide such as deacylated gellan gum) and a medium to form nanofibers in the medium.
  • the polymer compound may be in the form of a powder, tablet, pill, capsule, granulated solid such as a granule, a liquid such as a solution or suspension dissolved in a suitable solvent and a solubilizer, or a substrate. Or in a state of being bound to a carrier.
  • Additives when formulated include preservatives such as p-hydroxybenzoates; excipients such as lactose, glucose, sucrose, and mannitol; lubricants such as magnesium stearate and talc; polyvinyl Examples include binders such as alcohol, hydroxypropyl cellulose, and gelatin; surfactants such as fatty acid esters; and plasticizers such as glycerin. These additives are not limited to those described above, and can be freely selected as long as those skilled in the art can use them. Further, the polymer compound may be sterilized as necessary.
  • the sterilization method is not particularly limited, and examples thereof include radiation sterilization, ethylene oxide gas sterilization, autoclave sterilization, and filter sterilization.
  • an aqueous solution of a water-soluble polymer compound for example, a water-soluble polysaccharide such as deacylated gellan gum
  • medium additive 2 a water-soluble polysaccharide such as deacylated gellan gum
  • the aqueous solution can be obtained by dissolving a solid (eg, powder) of a water-soluble polymer compound in a physiological aqueous solvent.
  • aqueous solvents include, but are not limited to water, dimethyl sulfoxide (DMSO) and the like.
  • DMSO dimethyl sulfoxide
  • an appropriate buffer or salt may be contained in the aqueous solvent.
  • the aqueous solvent may or may not contain a divalent metal cation, but in a preferred embodiment it does not contain a divalent metal cation.
  • a water-soluble polymer compound for example, a water-soluble polysaccharide such as deacylated gellan gum
  • a water-soluble polymer compound in the aqueous solution can be cultured by suspending cells or tissues. This is because it is difficult to form and can be stably stored in a state dissolved in water.
  • an additive that enhances the effect of the nanofiber or lowers the concentration when used can be further added.
  • one or more polysaccharides such as guar gum, tamarind gum, propylene glycol alginate, locust bean gum, gum arabic, tara gum, tamarind gum, and methylcellulose can be mixed.
  • the production method of the medium composition of the present invention is exemplified, but the present invention is not limited thereto.
  • sterilization for example, autoclave sterilization at 121 ° C. for 20 minutes
  • the sterilized nanofiber dispersion is added to the medium and mixed to be uniform with the medium.
  • the method for mixing the aqueous solution and the medium is not particularly limited, and examples thereof include manual mixing such as pipetting, and mixing using equipment such as a magnetic stirrer, mechanical stirrer, homomixer, and homogenizer.
  • cellulose nanofibers when preparing a medium composition using cellulose nanofibers, 0.0001% to 5.0% (weight / volume), preferably 0.001% to 1.0% (weight / volume), more preferably Add cellulose nanofibers to ion-exchanged water or ultrapure water so as to be 0.01% to 0.6% (weight / volume). Then, after stirring at room temperature until the whole becomes uniform, sterilization (for example, autoclave sterilization at 121 ° C. for 20 minutes) is performed.
  • sterilization for example, autoclave sterilization at 121 ° C. for 20 minutes
  • this aqueous solution is added to the medium so as to have a desired final concentration (for example, a 0.6% aqueous solution when the final concentration is 0.03%: The ratio of the medium is 1:20), and the medium is mixed uniformly.
  • a liquid medium such as DMEM medium is pipetted into the aqueous solution so as to have a desired final concentration (for example, when the final concentration is 0.03%, a 0.6% aqueous solution: medium ratio is 1:20). Mix evenly by pipetting.
  • the method for mixing the aqueous dispersion and the medium is not particularly limited, and examples thereof include manual mixing such as pipetting, and mixing using equipment such as a magnetic stirrer, mechanical stirrer, homomixer, and homogenizer.
  • the present invention relates to a culture method for growing cells or tissues using the medium composition of the present invention; a method for recovering the obtained cells or tissues by, for example, filtration, centrifugation or magnetic separation; the medium composition of the present invention.
  • a method for producing a sphere using the above is also provided.
  • the nanofiber used in the present invention has an effect of suspending the cell and / or tissue in a liquid containing the nanofiber (preferably an effect of suspending and standing) when the cell and / or tissue is cultured in vitro. Is shown. Due to the floating effect, it is possible to increase the number of cells and / or tissues per fixed volume as compared with monolayer culture. In addition, when a conventional suspension culture method is accompanied by a rotation or shaking operation, a shearing force acts on the cells and / or tissues, so that the proliferation rate and recovery rate of the cells and / or tissues are low, or the function of the cells is impaired.
  • the medium composition containing the nanofibers of the present invention cells and / or tissues can be uniformly dispersed without performing operations such as shaking. And / or tissue can be obtained easily and in large quantities without loss of cell function.
  • cells and / or tissues are suspended in a medium containing a conventional gel substrate, it may be difficult to observe or collect the cells and / or tissues, or the function may be impaired during the collection.
  • the medium composition containing the nanofiber of the present invention cells and / or tissues can be suspended and cultured and observed and recovered without impairing their functions.
  • the medium containing the conventional gel base material has a high viscosity and it may be difficult to exchange the medium.
  • the medium composition containing the nanofiber of the present invention has a low viscosity, a pipette, a pump, etc. The medium can be easily changed by using.
  • the human-derived cells and / or tissues cultured by the method of the present invention can be transplanted for therapeutic purposes to patients with diseases or disorders.
  • the type of disease or disorder to be treated, the pretreatment method, and the cell transplantation method are appropriately selected by the parties.
  • the engraftment of the transplanted cells to the recipient, recovery from the disease or disorder, the presence or absence of side effects associated with the transplant, and the effect of treatment can be appropriately examined and judged by a general method in transplantation treatment.
  • the medium composition of the present invention can be used as a cell research reagent.
  • the medium composition of the present invention analyze the number and type of cells, changes in cell surface differentiation markers, and expressed genes when cells coculture with the desired factors.
  • the medium composition of the present invention not only can the number of cells to be analyzed be efficiently amplified, but also the cells can be efficiently recovered.
  • the culture conditions, culture apparatus, medium type, nanofiber type, nanofiber content, additive type, additive content, culture period, culture temperature, etc. for elucidating the target factor are as follows. It is appropriately selected by a party from the scope described in the specification.
  • RNA ribonucleic acid
  • RT-PCR Northern blotting, RT-PCR, or the like.
  • a cell surface differentiation marker can be detected by ELISA or flow cytometry using a specific antibody, and the effect on differentiation and proliferation by a target factor can be observed.
  • the culture method of the present invention is a method of growing cells and / or tissues or a method of promoting cell and / or tissue proliferation As excellent.
  • the cells and / or tissues are cultured using the culture medium composition of the present invention, the cells and / or tissues do not adhere to the culture container and are not unevenly distributed only on the bottom surface of the culture container, and are spread in three dimensions. To disperse and promote proliferation.
  • chitin nanofibers are used as nanofibers, the cells adhere to the chitin nanofibers and use them as a scaffold to proliferate strongly.
  • the proliferated cells, cell clusters (spheres, etc.) and / or tissues It becomes the state which continues on a nanofiber like a tuft.
  • This growth promoting effect can be achieved if the medium composition contains a sufficient concentration of nanofibers to float cells and / or tissues (ie, avoid adhesion of cells and tissues to the culture vessel).
  • floating stationary that is, cells and / or tissues are evenly dispersed and floating in the liquid medium composition without external pressure, vibration, shaking, rotating operation, etc. It is not essential that it be possible.
  • a concentration lower than 0.03% (weight / volume) that enables stable suspension stationary culture if 0.01% (weight / volume) or more is sufficient for expression of floating action.
  • the proliferation promoting effect is exhibited.
  • deacylated gellan gum if it is 0.005% (weight / volume) or more sufficient for floating action expression, a concentration (below 0.01% (weight / volume) that enables stable suspension stationary culture ( Even if it is 0.009% (weight / volume) or less, 0.008% (weight / volume) or less), the proliferation promoting effect is exhibited.
  • chitin nanofibers are particularly excellent in promoting cell proliferation.
  • both floating cells and adherent cells can be used.
  • Adherent cells are cells that require a scaffold for growth and proliferation.
  • a floating cell is a cell which does not require a scaffold for growth and proliferation.
  • adherent cells are preferably used.
  • adherent cells when adherent cells are used, the adherent cells do not adhere to the bottom surface of the culture vessel, are not unevenly distributed only on the bottom surface of the culture vessel, and are dispersed with a three-dimensional spread and adhere to the nanofibers. It grows in a state or sphere state.
  • the cells adhere to the chitin nanofibers and use them as a scaffold to proliferate strongly.
  • the proliferated cells and cell clusters (spheres, etc.) It becomes the state which continues on a nanofiber. Therefore, suspension culture of adherent cells becomes possible.
  • adherent cells can be cultured at a higher density than when cultured in a state of being adhered to the bottom surface of the culture vessel.
  • the adherent cells can be suspended in culture. Therefore, after the adherent cells are suspended by the culture method of the present invention, the fresh culture medium of the present invention is not required without the operation of detaching the cells from the culture vessel.
  • Adherent cells can be passaged by simply adding the composition to the culture after culturing, or by adding all or part of the cultivated culture to a fresh medium composition of the present invention. is there.
  • the present invention also provides a method for subculturing such adherent cells. Therefore, by using the subculture method of the present invention, the adherent cells can be subcultured without performing the detachment operation of the cells from the culture vessel.
  • the culture scale of adherent cells can be expanded without performing the cell peeling operation from the culture vessel.
  • the operation for detaching cells from the culture container include treatment with a chelating agent (eg, EDTA) and / or a proteolytic enzyme (eg, trypsin, collagenase).
  • the subculture method of the present invention is used for subculture of adherent cells that are highly sensitive to cell detachment from a culture vessel (for example, adherent cells whose viability is reduced by the detachment operation, and adherent cells whose characteristics are easily changed by the detachment operation). It is advantageous for culture.
  • Adherent cells that are highly sensitive to cell detachment from culture vessels include human pluripotent stem cells; human progenitor cells; primary cells prepared from tissues such as hepatocytes, kidney cells, chondrocytes, vascular cells, and adipocytes; Examples include, but are not limited to, biopharmaceutical (protein for pharmaceutical use) production cells such as MDCK cells, HEK293 cells, and CHO cells.
  • the culture method of the present invention is useful by in vitro cell culture.
  • the useful substance can be obtained by subjecting cells producing the useful substance to suspension culture in the medium composition of the present invention and isolating the useful substance from the culture.
  • Useful substances include antibodies, enzymes (such as urokinase), hormones (such as insulin), cytokines (such as interferon, interleukin, tumor necrosis factor, colony stimulating factor, growth factor), vaccine antigens, and other physiologically active substances (proteins) , Peptides, etc.), but is not limited to these.
  • Non-transformed cells such as skin cells, chondrocytes, hepatocytes, pancreatic cells, and kidney cells, and genes that encode useful substances and genes involved in biosynthesis of useful substances were introduced into cells that produce useful substances.
  • Transformed cells are included.
  • the cells that produce useful substances may be adherent cells or floating cells, but are preferably adherent cells.
  • the cell that produces the useful substance is preferably a cell that secretes the useful substance out of the cell.
  • Specific examples of cells that produce useful substances include HEK293, CHO-K1, BHK-21, MDCK, Vero, HepG2, into which genes encoding useful substances and genes involved in the biosynthesis of useful substances are introduced. Examples thereof include, but are not limited to, MCF-7.
  • Cells used for the production of useful substances such as recombinant proteins are well known to those skilled in the art, and these cells can be used in the method of the present invention.
  • the fresh culture medium composition of the present invention is added to the culture after culturing using the above-described subculture method of the present invention without detaching the cells from the culture vessel.
  • all or a part of the culture after culturing may be added to a fresh medium composition of the present invention.
  • the medium composition of the present invention is not substantially increased in viscosity by the addition of nanofibers, and the cells are in the medium.
  • cells can be removed by a simple method such as centrifugation or filtration.
  • nanofibers in the medium composition can also be removed by a simple method such as centrifugation or filtration.
  • Methods for isolating useful substances from cultures are well known to those skilled in the art, such as chromatography (eg, chromatography such as ion exchange chromatography, hydrophobic chromatography, affinity chromatography, reverse phase chromatography, etc.)
  • chromatography eg, chromatography such as ion exchange chromatography, hydrophobic chromatography, affinity chromatography, reverse phase chromatography, etc.
  • a biochemical separation and purification method of a physiologically active substance can be applied.
  • petri dishes, flasks, plastic bags, Teflon (registered trademark) bags, dishes, petri dishes, tissue cultures generally used for cell culture are used. It is possible to culture using culture equipment such as a dish, multi-dish, microplate, microwell plate, multiplate, multiwell plate, chamber slide, tube, tray, culture bag, and roller bottle.
  • the material of these culture equipment is not particularly limited, and examples thereof include glass, polyvinyl chloride, cellulosic polymer, polystyrene, polymethyl methacrylate, polycarbonate, polysulfone, polyurethane, polyester, polyamide, polystyrene, polypropylene, and the like.
  • these culture devices may be coated with an extracellular matrix or cell adhesion molecule in advance.
  • coating materials include collagen I to XIX, fibronectin, vitronectin, laminin-1 to 12, nitogen, tenascin, thrombospondin, von Willebrand factor, osteopontin, fibrinogen, various elastins, various proteoglycans, Various cadherins, desmocollin, desmoglein, various integrins, E-selectin, P-selectin, L-selectin, immunoglobulin, hyaluronic acid, superfamily, matrigel, poly-D-lysine, poly-L-lysine, chitin, chitosan, Examples include sepharose, alginate gel, hydrogel, and fragments of these fragments.
  • coating materials those obtained by artificially modifying the amino acid sequence by a gene recombination technique can also be used.
  • attachment with respect to the culture apparatus of a cell and / or a tissue can also be used.
  • examples of such a coating material include, but are not limited to, silicon, poly (2-hydroxymethyl methacrylate), poly (2-methacryloyloxyethyl phosphorylcholine), and the like.
  • Cell and / or tissue culture is performed under automatic control of cell seeding, medium exchange, cell image acquisition, and cultured cell collection under mechanical control, and controlling pH, temperature, oxygen concentration, etc. However, it can also be performed by a bioreactor capable of high-density culture or an automatic culture apparatus. There are fed-batch culture, continuous culture, and perfusion culture as methods for supplying a new medium in the middle of culture using these devices and supplying the required substances to cells and / or tissues without excess or deficiency. Can also be used in the culture method of the present invention.
  • the form and state of cells and / or tissues cultured by the method of the present invention can be arbitrarily selected by those skilled in the art. Specific preferred examples thereof include, but are not limited to, cells and / or tissues dispersed alone in a medium composition, cells and / or tissues adhered on a carrier surface, cells and / or Or a state in which the tissue is embedded inside the carrier, a state in which a plurality of cells gather to form a cell mass (sphere), or a state in which two or more cells gather to form a cell mass (sphere), etc.
  • a state in which cells and / or tissues are adhered on the surface of the carrier a state in which cells and / or tissues are embedded in the inside of the carrier, a state in which a plurality of cells are aggregated to form a cell mass (sphere), or 2 A state in which cells of a kind or more gather to form a cell mass (sphere), more preferably a state in which cells and / or tissues adhere to the carrier surface, a plurality of cells gather to form a cell mass (sphere) Or It can be mentioned state two or more of the cells to form a cell mass (spheres) collectively.
  • the state in which cell clusters (spheres) are formed is because cell-cell interactions and cell structures close to the in vivo environment have been reconstructed and can be cultured while maintaining cell function for a long time.
  • the cells can be collected relatively easily, the most preferable state of culturing by the method of the present invention can be mentioned.
  • Examples of the carrier for supporting cells and / or tissues on the surface include microcarriers, glass beads, ceramic beads and the like composed of various polymers.
  • Examples of the polymer include vinyl resin, urethane resin, epoxy resin, polystyrene, polymethyl methacrylate polyester, polyamide, polyimide, silicone resin, phenol resin, melamine resin, urea resin, aniline resin, ionomer resin, polycarbonate, collagen, Dextran, gelatin, cellulose, alginates and mixtures thereof can be used.
  • the carrier may be coated with a compound that enhances cell adhesion or enhances the release of substances from the cell.
  • coating materials include poly (monostearoylglyceride succinic acid), poly-D, L-lactide-co-glycolide, sodium hyaluronate, n-isopropylacrylamide, collagen I to XIX, fibronectin, vitronectin, laminin -1 to 12, nitogen, tenascin, thrombospondin, von Willebrand factor, osteopontin, fibrinogen, various elastins, various proteoglycans, various cadherins, desmocollin, desmogleins, various integrins, E-selectin, P-selectin , L-selectin, immunoglobulin superfamily, matrigel, poly-D-lysine, poly-L-lysine, chitin, chitosan, sepharose, argi Acid gel, various hydrogels, and the like In addition, these cleavage fragments.
  • two or more kinds of coating materials may be combined.
  • one type of polysaccharide such as guar gum, tamarind gum, locust bean gum, gum arabic, tara gum, tamarind gum, methylcellulose, etc. is used for the medium used for culturing the carrier carrying the cells and / or tissues on the surface.
  • the above can be mixed.
  • the carrier may contain a magnetic material such as ferrite.
  • the carrier has a diameter of several tens of ⁇ m to several hundreds of ⁇ m, more preferably 100 ⁇ m to 200 ⁇ m, and its specific gravity is preferably close to 1, more preferably 0.9 to 1.2, particularly preferably about 1.0. is there.
  • Examples of the carrier include, but are not limited to, Cytodex 1 (registered trademark), Cytodex 3 (registered trademark), Cytoline 1 (registered trademark), Cytoline 2 (registered trademark), Cytopore 1 (registered trademark), and Cytopore 2 (registered trademark).
  • (Trademark) aboveve, GE Healthcare Life Sciences), Biosilon (registered trademark) (NUNC), Cultipher-G (registered trademark), Cultispher-S (registered trademark) (above, Thermo SCIENTIFIC), HILLEXCT (registered trademark) -COATED (registered trademark), HILLEX II (registered trademark) (SoloHill Engineering) and the like.
  • the carrier may be sterilized as necessary.
  • the sterilization method is not particularly limited, and examples thereof include radiation sterilization, ethylene oxide gas sterilization, autoclave sterilization, and dry heat sterilization.
  • the method for culturing animal cells using the carrier is not particularly limited, and a culture method using a normal fluidized bed type culture tank or a packed bed type culture tank can be used.
  • the carrier on which the cells and / or tissues are supported on the surface can be uniformly dispersed without using a medium such as shaking by using the medium composition containing the nanofiber of the present invention.
  • the target cells and / or tissues can be cultured without loss of cell function.
  • the cells and / or tissues cultured by this method can be collected by centrifuging or filtering while being supported on a carrier after culturing.
  • the liquid medium used may be added, followed by centrifugation or filtration.
  • the gravitational acceleration (G) at the time of centrifugation is 100 to 400 G
  • the pore size of the filter used for the filtration treatment is 10 ⁇ m to 100 ⁇ m, but is not limited thereto.
  • the carrier cultured by magnetic force can be collected.
  • Cells and / or tissues cultured by this method can be recovered by peeling from the carrier using various chelating agents, heat treatments and enzymes.
  • materials composed of various polymers can be selected as the carrier.
  • polymers include collagen, gelatin, alginate, chitosan, agarose, polyglycolic acid, polylactic acid, fibrin adhesive, polylactic acid / polyglycolic acid copolymer, proteoglycan, glucosaminoglycan, polyurethane Sponges such as foam, DseA-3D (registered trademark), poly N-substituted acrylamide derivatives, poly N-substituted methacrylamide derivatives and copolymers thereof, polyvinyl methyl ether, polypropylene oxide, polyethylene oxide, polyvinyl alcohol partially acetylated products, etc.
  • Temperature-sensitive polymer polyacrylamide, polyvinyl alcohol, methylcellulose, nitrocellulose, cellulose butyrate, polyethylene oxide, poly (2-hydroxyethylmethacr . late) / polycaprolactone etc. hydrogel and the like. It is also possible to produce a carrier for embedding cells using two or more of these polymers. Furthermore, the carrier may have a physiologically active substance in addition to these polymers. Examples of this physiologically active substance include cell growth factor, differentiation-inducing factor, cell adhesion factor, antibody, enzyme, cytokine, hormone, lectin, or extracellular matrix, and a plurality of these can be contained. .
  • a thickener such as guar gum, tamarind gum, propylene glycol alginate, locust bean gum, gum arabic, tara gum, methylcellulose, etc. is used for the medium used for culturing the carrier in which the cells and / or tissues are embedded. More than one species can be mixed.
  • the method for embedding cells and / or tissues in these carriers is not particularly limited.
  • a mixture of cells and the polymer is sucked into a syringe and dropped into a medium through an injection needle of about 25G to 19G.
  • a method such as dropping into a medium using a micropipette may be used.
  • the size of the bead-shaped carrier formed here is determined by the shape of the tip of the instrument used when dropping the cell and the polymer mixed solution, and is preferably several tens of ⁇ m to several thousand ⁇ m, more preferably 100 ⁇ m to 2000 ⁇ m.
  • the number of cells that can be cultured on the bead-shaped carrier is not particularly limited, but may be freely selected according to the bead size.
  • a bead-shaped carrier having a diameter of about 2000 ⁇ m
  • up to 5 million cells can be embedded in a bead-shaped carrier of this size.
  • the cells may be dispersed one by one in the carrier or may form a cell mass in which a plurality of cells are aggregated.
  • the carrier in which the cells and / or tissues are embedded can be uniformly dispersed without performing an operation such as stirring by using the medium composition containing the nanofiber of the present invention.
  • Cells and / or tissues can be cultured without loss of cell function. Cells and / or tissues cultured by this method can be collected by centrifuging or filtering in a state of being embedded in a carrier after culturing.
  • the liquid medium used may be added, followed by centrifugation or filtration.
  • the gravitational acceleration (G) at the time of centrifugation is 100 to 400 G
  • the pore size of the filter used for the filtration treatment is 10 ⁇ m to 100 ⁇ m, but is not limited thereto.
  • Cells and / or tissues cultured by this method can be dispersed and recovered by decomposing the carrier using treatments with various chelating agents, heat, enzymes, and the like.
  • the method for forming cell aggregates (spheres) is not particularly limited and can be appropriately selected by those skilled in the art. Examples thereof include a method using a container having a cell non-adhesive surface, a hanging drop method, a swivel culture method, a three-dimensional scaffold method, a centrifugation method, a method using aggregation by an electric field or a magnetic field, and the like.
  • the target cells can be cultured in a culture container subjected to a surface treatment that inhibits cell adhesion to form spheres.
  • this non-cell-adhesive culture vessel When using this non-cell-adhesive culture vessel, first, after collecting the target cells, the cell suspension is prepared, seeded in the culture vessel, and cultured. When cultured for about a week, cells spontaneously form spheres.
  • a surface of a commonly used culture vessel such as a petri dish or the like coated with a substance that inhibits cell adhesion can be used. Examples of such substances include agarose, agar, poly-HEMA (poly- (2-hydroxy-ethyl methacrylate)) 2-methacryloyloxyethyl phosphorylcholine and a copolymer of other monomers (for example, butyl methacrylate), and the like.
  • HEMA poly- (2-hydroxy-ethyl methacrylate
  • 2-methacryloyloxyethyl phosphorylcholine and a copolymer of other monomers (for example, butyl methacrylate), and the like.
  • NATURE BIOTECHNOLOGY VOL. 28, NO. 4, APRIL 2010, 361-366, NATURE PROTOCOLS, VOL. 6, NO. 5, 2011, 689-700, NATURE PROTOCOLS, VOL. 6, NO. 5, 2011, 572-579, Stem Cell Research, 7, 2011, 97-111, Stem Cell Rev and Rep, 6, 2010, 248-259, and the like can also be used.
  • a component that accelerates the formation of the spheres or promotes the maintenance thereof can be contained in the medium used in the culture for forming the spheres.
  • components having such effects include dimethyl sulfoxide, superoxide dismutase, ceruloplasmin, catalase, peroxidase, L-ascorbic acid, L-ascorbic acid phosphate ester, tocopherol, flavonoids, uric acid, bilirubin, selenium-containing selenium
  • ROCK inhibitors such as compounds, transferrin, unsaturated fatty acids, albumin, theophylline, forskolin, glucagon, dibutylyl cAMP, Y27632, Fasudil (HA1077), H-1152, and Wf-536.
  • selenium-containing compound examples include sodium selenite, sodium selenate, dimethyl selenide, hydrogen selenide, selenomethionine, Se-methylselenocysteine, selenocystathionine, selenocysteine, selenohomocysteine, adenosine-5′-phosphoselenic acid, Se-adenosylselenomethionine is mentioned.
  • a plurality of dents having the same diameter as the target cell aggregate can be introduced on the cell non-adherent culture vessel to be used.
  • the shape of the recess is preferably a hemisphere or a cone.
  • spheres can be formed based on a support having cell adhesiveness.
  • a support examples include collagen, polyrotaxane, polylactic acid (PLA), polylactic acid glycolic acid copolymer (PLGA), and hydrogel.
  • spheres can be formed by co-culture with feeder cells.
  • the feeder cells for promoting sphere formation any adhesive cells can be used, but feeder cells suitable for various cells are preferable.
  • the feeder cells include COS-1 cells and vascular endothelial cells as suitable cell types.
  • a sphere can also be formed using the culture composition containing the nanofiber of the present invention.
  • the nanofibers may be added to the medium used for sphere formation so that the concentration of the nanofibers is a concentration that enables suspension culture of cells (preferably suspension stationary culture).
  • the concentration of the nanofiber is usually 0.0001% to 1.0% (weight / volume), for example 0.0005% to 1.0% (weight / volume), preferably 0.001% to 0.00. 3% (weight / volume), more preferably 0.005% to 0.1% (weight / volume), still more preferably 0.01% to 0.05% (weight / volume).
  • the fiber may be added to the medium used for sphere formation.
  • the spheres are prepared by uniformly dispersing target cells in a medium containing the nanofibers and allowing them to stand for 3 to 10 days for culturing.
  • the spheres prepared here can be collected by centrifugation or filtration.
  • the gravitational acceleration (G) at the time of centrifugation is 100 to 400 G
  • the pore size of the filter used for the filtration treatment is 10 ⁇ m to 100 ⁇ m, but is not limited thereto.
  • spheres cultured by a magnetic force can be collected using magnetic fine particles coated on the surface with an antibody that specifically binds to a target cell. Examples of such magnetic fine particles include Dynabead (manufactured by Veritas), MACS microbead (manufactured by Miltenyi Biotech), BioMag (manufactured by Technochemical).
  • the size of the sphere varies depending on the cell type and the culture period, and is not particularly limited. Have. Such spheres can retain their proliferative ability for 10 days or more, preferably 13 days or more, and more preferably 30 days or more by continuing static culture as they are. Proliferation ability can be maintained indefinitely by performing mechanical division or by further unicellularization and aggregation.
  • the culture vessel used for culturing the sphere is not particularly limited as long as it can generally cultivate animal cells. For example, flasks, dishes, petri dishes, tissue culture dishes, multi dishes, microplates, microplates Well plates, multi-plates, multi-well plates, chamber slides, petri dishes, tubes, trays, culture bags, roller bottles and the like can be mentioned.
  • the medium used for static culture of spheres can contain a cell adhesion factor.
  • a cell adhesion factor examples thereof include matrigel, collagen gel, gelatin, poly-L-lysine, poly-D-lysine, laminin, and fibronectin. Can be mentioned. These cell adhesion factors can be added in combination of two or more.
  • thickeners such as guar gum, tamarind gum, propylene glycol alginate, locust bean gum, gum arabic, tara gum, and methylcellulose can be further mixed with the medium used for sphere culture.
  • the spheres statically cultured by this method can be collected by centrifuging or filtering after the culture.
  • the liquid medium used may be added, followed by centrifugation or filtration.
  • the gravitational acceleration (G) at the time of centrifugation is 100 to 400 G
  • the pore size of the filter used for the filtration treatment is 10 ⁇ m to 100 ⁇ m, but is not limited thereto.
  • spheres cultured by a magnetic force can be collected using magnetic fine particles coated on the surface with an antibody that specifically binds to a target cell.
  • Magnetic fine particles examples include Dynabead (manufactured by Veritas), MACS microbead (manufactured by Miltenyi Biotech), BioMag (manufactured by Technochemical).
  • Dynabead manufactured by Veritas
  • MACS microbead manufactured by Miltenyi Biotech
  • BioMag manufactured by Technochemical
  • the collected spheres can be further dispersed as a single cell by using various treatments such as chelating agents, heat, filters and enzymes.
  • callus that is an undifferentiated plant cell mass can be cultured.
  • Callus induction can be performed by a known method for each plant species to be used.
  • the surface of some tissues of differentiated plant bodies eg, roots, stems, leaf sections, seeds, growth points, embryos, pollen, etc.
  • 70% alcohol or 1% sodium hypochlorite After sterilizing with a solution or the like, a tissue piece of an appropriate size (for example, a root slice of about 1 to about 5 mm square) is cut out with a scalpel or the like, and the tissue piece is obtained by aseptic operation using a clean bench or the like.
  • the callus induced here may be immediately subjected to liquid culture for mass growth, or may be maintained as a seed strain by subculturing in a subculture medium.
  • the subculture may be performed using either a liquid medium or a solid medium.
  • the amount of plant cell mass to be inoculated when starting static culture using the medium composition of the present invention is the growth rate of target cells, culture mode (batch culture, fed-batch culture, continuous culture, etc.), culture
  • the wet weight of the cell mass with respect to the medium composition of the present invention is 4 to 8 (weight / volume (w / v))%.
  • the medium composition of the present invention is inoculated at 5 to 7 (w / v)%.
  • the particle size of the plant cell mass during the culture is 3 mm to 40 mm, preferably 3 mm to 20 mm, more preferably 5 mm to 15 mm.
  • particle diameter means, for example, the diameter when the plant cell mass is spherical, the major diameter when the plant cell mass is elliptical, and the maximum length that can be taken in other shapes as well. To do.
  • the temperature for culturing cells and / or tissues is usually 25 to 39 ° C., preferably 33 to 39 ° C. for animal cells.
  • the CO 2 concentration is usually 4 to 10% by volume in the culture atmosphere, and preferably 4 to 6% by volume.
  • the culture period is usually 3 to 35 days, but may be set freely according to the purpose of the culture.
  • the culture temperature of the plant cell is usually 20 to 30 ° C. If light is required, it may be cultured under an illuminance condition of an illuminance of 2000 to 8000 lux.
  • the culture period is usually 3 to 70 days, but may be set freely according to the purpose of the culture.
  • separately prepared cells and / or tissues may be added to the culture composition of the present invention and mixed so as to be uniformly dispersed.
  • the mixing method in that case is not particularly limited, and examples thereof include manual mixing such as pipetting, and mixing using equipment such as a stirrer, a vortex mixer, a microplate mixer, and a shaker.
  • the culture solution may be allowed to stand, or the culture solution may be rotated, shaken or stirred as necessary.
  • the number of rotations and frequency may be appropriately set according to the purpose of those skilled in the art.
  • the cells and / or tissues are separated from the medium composition by centrifugation or filtration, and then the new medium composition is added to the cells. And / or may be added to the tissue.
  • cells and / or tissues may be appropriately concentrated by performing centrifugation or filtration treatment, and then a new medium composition may be added to the concentrated solution.
  • the gravitational acceleration (G) at the time of centrifugation is 100 to 400 G
  • the pore size of the filter used for the filtration treatment is 10 ⁇ m to 100 ⁇ m, but is not limited thereto.
  • cultured cells and / or tissues can be separated by magnetic force using magnetic fine particles coated on the surface with an antibody that specifically binds to the target cells.
  • magnetic fine particles include Dynabead (manufactured by Veritas), MACS microbead (manufactured by Miltenyi Biotech), BioMag (manufactured by Technochemical).
  • Exchange of these medium compositions can also be performed by a bioreactor or an automatic culture apparatus that can be executed in a closed environment under mechanical control.
  • the present invention also provides a preservation method and a transport method for preserving cells or tissues using the medium composition of the present invention.
  • a preservation method and a transport method for preserving cells or tissues using the medium composition of the present invention.
  • cells or tissues can be stored or transported in a floating state (preferably in a floating stationary state).
  • Examples of cells and tissues to be stored or transported include those described above as cells and tissues that can be used for culture using the medium composition of the present invention.
  • the medium composition of the present invention used for storage or transportation may contain various components that have a cell life-prolonging effect when cells or tissues are stored in a non-frozen state.
  • the components include saccharides (excluding polysaccharides) (eg, monosaccharides and disaccharides), antioxidants (eg, SOD, vitamin E or glutathione), hydrophilic polymers (eg, polyvinylpyrrolidone), chelating agents (Eg, EDTA), sugar alcohol (eg, mannitol, sorbitol), glycerol and the like.
  • desired cells or tissues are dispersed in the medium composition of the present invention and placed in a sealable container.
  • the container include, but are not limited to, a flask, a plastic bag, a Teflon (registered trademark) bag, a tube, and a culture bag.
  • the container containing the dispersion of cells and tissues in the medium composition of the present invention is preferably sealed. .
  • the temperature during storage or transportation is not particularly limited as long as the survival of cells or tissues is maintained, but is usually 37 ° C. or lower. Lower temperatures can avoid loss of cell or tissue viability during storage or transport, but usually exceed the melting point of the media composition of the present invention so that the cells or tissue do not freeze.
  • Store or transport at temperature Accordingly, the temperature during storage or transportation is usually maintained at ⁇ 5 to 42 ° C., preferably 1 to 37 ° C., more preferably 4 to 32 ° C., and still more preferably 18 to 30 ° C.
  • the temperature during the preservation or transportation is a temperature at which the medium composition of the present invention enables suspension of the cells or tissues. It is preferable.
  • the temperature at which cells or tissues can be allowed to float and float can be appropriately set according to the type of raw material constituting the nanofiber.
  • carrageenan (preferably, ⁇ -carrageenan) is used as a raw material constituting the nanofiber contained in the medium composition of the present invention used in the storage or transport method of the present invention.
  • the medium composition of the present invention containing nanofibers composed of carrageenan has a floating action at 25 ° C. or lower, whereas it loses the floating action at 37 ° C., so at 25 ° C. or lower (preferably 0 to 25 ° C.).
  • the desired cells or tissues are stored or transported in a stationary state, and after the storage or transport is completed, the temperature is set to 37 ° C. or higher (for example, 37 to 40 ° C., preferably 37 ° C.), thereby Cells or tissues can be easily recovered by precipitating the cells or tissues.
  • the period of storage or transportation is not particularly limited as long as the cells or tissues can be maintained in a viable state in the medium composition of the present invention, but usually 1 hour or longer and within 10 days, preferably 1 to 8 days, Preferably 1 to 3 days.
  • the cells or tissues are preferably maintained in a floating stationary state in the medium composition of the present invention.
  • cells and tissues can be held in a floating state, so that the cells and tissues are damaged due to separation from the plate due to vibration during transportation, and aggregation of cells and tissues contacted by sedimentation.
  • cells and tissues can be stored and transported while maintaining their original functions.
  • the viscosity of the medium composition was measured for 5 minutes at 37 rpm using an E-type viscometer (manufactured by Toki Sangyo Co., Ltd., Viscometer TVE-22L, standard rotor 1 ° 34 ′ ⁇ R24). .
  • each of the deacylated gellan gum-containing medium prepared above was added to a 1.5 mL Eppendorf tube, and 10 ⁇ L of HeLa cell sphere suspension was further added.
  • the cell mass was dispersed by tapping, incubated at 37 ° C., and the dispersed state of the cells after 1 hour was visually observed.
  • methylcellulose-containing medium 100 mL of DMEM / F-12 medium (Aldrich) was placed in a 200 mL eggplant flask and 0.1 g of methylcellulose (M0387, Aldrich) was added. The mixture was stirred while cooling in an ice bath to dissolve methylcellulose. Using this solution, a medium composition was prepared by adding an aqueous methylcellulose solution so that the final concentrations were 0.1, 0.3, 0.6, and 1.0% (w / v).
  • the suspension composition and viscosity measurement of HeLa cell spheres were also performed on the medium composition prepared above in the same manner as the deacylated gellan gum-containing medium. However, the viscosity of 1.0% (w / v) methylcellulose was measured at 50 rpm from the measurement range of the apparatus.
  • Reference Test Example 1 Cell proliferation test when single cells are dispersed Ultra-pure deacylated gellan gum (KELCOGEL CG-LA, manufactured by Sanki Co., Ltd.) to 0.3% (w / v) After suspending in water (Milli-Q water), it was dissolved by stirring while heating at 90 ° C., and this aqueous solution was autoclaved at 121 ° C. for 20 minutes. Using this solution, deacylation at a final concentration of 0.015% (w / v) was performed in IMDM medium (Gibco) containing 10% (v / v) fetal bovine serum and 10 ng / mL thrombopoietin (WAKO).
  • IMDM medium Gibco
  • a medium composition supplemented with modified gellan gum was prepared. Subsequently, the human leukemia cell line UT7 / TPO was seeded in a medium composition to which the above-mentioned deacylated gellan gum was added so as to be 20000 cells / mL, and then 1 in each well of a 6-well flat bottom microplate (Corning). It dispensed so that it might become 5 mL per well. Similarly, the human cervical cancer cell line HeLa (DS Pharma Biomedical) was added to EMEM medium (WAKO) containing 10% (v / v) fetal bovine serum to 20000 cells / mL.
  • HeLa DS Pharma Biomedical
  • UT7 / TPO cells and HeLa cells can be uniformly cultured in a floating state by using the above-mentioned medium composition and proliferate with the medium composition.
  • Table 4 shows the numbers of UT7 / TPO cells and HeLa cells after 3 days of suspension static culture.
  • Reference Test Example 2 Cell proliferation test when cell line-derived spheres were cultured Human hepatoma cell line HepG2 (DS Pharma Biomedical) was added to DMEM medium (WAKO) containing 10% (v / v) fetal bovine serum. The suspension was suspended at 250,000 / mL, and 10 mL of this suspension was seeded on EZ SPHERE (Asahi Glass Co., Ltd.), followed by culturing in a CO 2 incubator (5% CO 2 ) for 7 days. Similarly, a human cervical cancer cell line HeLa (DS Pharma Biomedical) is suspended in EMEM medium (WAKO) containing 10% (v / v) fetal bovine serum so as to be 250,000 cells / mL.
  • DMEM medium WAKO
  • a sphere suspension was prepared using a medium composition in which 0.015% (w / v) deacylated gellan gum (KELCOGEL CG-LA, manufactured by Sanki Co., Ltd.) was added to the above medium. It moved to the flat bottom tube (made by BM apparatus company).
  • the medium composition to which 0.015% (w / v) deacylated gellan gum was added was first prepared by adding 0.3% (w / v) deacylated gellan gum (KELCOGEL CG-LA, manufactured by Sanki Co., Ltd.). ) And then suspended in ultrapure water (Milli-Q water) and dissolved by stirring while heating at 90 ° C., and this aqueous solution was autoclaved at 121 ° C. for 20 minutes, and then diluted 1/20 In 10% (v / v) fetal bovine serum in DMEM medium.
  • the cells were collected by centrifugation (200 G, 5 minutes). After adding the same amount of trypan blue stain (manufactured by Invitrogen) to a portion of 2 mL of the cell suspension obtained here, live cells and dead cells were obtained using a hemocytometer (manufactured by Elma Sales Co., Ltd.). The number of cells was measured.
  • the spheres of HepG2 cells and HeLa cells can be cultured in a floating state by using the above-mentioned medium composition, and it was confirmed that the cells proliferate efficiently with the medium composition.
  • the medium composition has a lower proportion of dead cells when cells are grown than the existing medium, and has an excellent effect of promoting cell growth.
  • the spheres cultured in the existing medium had settled on the bottom surface of the culture vessel. Furthermore, when the shape of the cultured spheres was observed with an optical microscope, sphere-to-sphere association was not observed in the medium composition, whereas sphere-to-sphere association was observed in the existing medium.
  • Table 5 shows the relative cell numbers when the number of cells when cultured in a medium not containing deacylated gellan gum is 1.
  • Table 6 shows the relative dead cell rate when the dead cell rate (number of dead cells / live cell number) when cultivated in a medium not containing deacylated gellan gum is 1.
  • cultivating the sphere of HepG2 cell and HeLa cell with this culture medium composition is shown in FIG.1 and FIG.2, respectively.
  • the shape of the sphere of cultured HeLa cells is shown in FIG.
  • Reference Test Example 3 Cell Proliferation Test when Cell Line Adhered to Microcarrier is Cultured Microcarrier Cytodex (registered trademark) 1 (manufactured by GE Healthcare Life Sciences) is suspended in PBS at 0.02 g / mL. After turbidity and standing overnight, the supernatant was discarded and the microcarriers were washed twice with fresh PBS. Thereafter, the suspension was again suspended with PBS to 0.02 g / mL, and autoclaved at 121 ° C. for 20 minutes.
  • Microcarrier Cytodex registered trademark
  • the microcarrier was washed twice with 70% ethanol and three times with PBS, and then 0.02 g / mL in DMEM medium (WAKO) containing 10% (v / v) fetal bovine serum. And suspended.
  • DMEM medium containing 10% (v / v) fetal bovine serum
  • 20 mL of DMEM medium containing 10% (v / v) fetal bovine serum
  • Cytodex® 1 and 4000000 HepG2 cells was prepared.
  • the solution was cultured in a beaker previously treated with a silicon coating agent (manufactured by Asahi Techno Glass) at 37 ° C. for 6 hours with stirring (100 rpm) with a stirrer.
  • the microcarriers to which the cells adhered were washed twice with DMEM medium containing 10% (v / v) fetal bovine serum and suspended in 3 mL of the same medium.
  • trypsin-EDTA ethylenediaminetetraacetic acid
  • WAKO trypsin-EDTA
  • DMEM medium containing 10% (v / v) fetal bovine serum was added, and then the microcarrier was removed using a cell strainer (manufactured by BD Falcon) having a mesh size of 70 ⁇ m. Cells were collected from the filtrate obtained here by centrifugation (200 G, 5 minutes).
  • FIG. 4 shows the adhesion state of HepG2 cells when microcarrier culture was performed for 3 days using a medium composition containing the structure of the specific compound.
  • Reference Test Example 4 Cell suspension test using cell line-derived spheres Xanthan gum (KELTROL CG, manufactured by Sanki Co., Ltd.) in ultrapure water (Milli-Q water) to a concentration of 1% (w / v) After suspending, it was dissolved by stirring while heating at 90 ° C. Using this aqueous solution, a DMEM / F-12 medium composition having final concentrations of 0.1, 0.15, 0.2% (w / v) for xanthan gum was prepared.
  • a sphere of HeLa cells was prepared using the same method as in Reference Test Example 2. After adding several tens of spheres to 1 mL of the medium prepared above, the sphere cells were allowed to stand for 1 hour at 37 ° C. The floating state of was observed visually. As a result, it was confirmed that the spheres of HeLa cells were maintained in a floating state in all the medium compositions. Furthermore, after adding an equal volume of medium to the cell suspension, it was confirmed that the spheres of HeLa cells settled and collected by centrifugation (300 to 400 G, 5 minutes). FIG. 5 shows the floating state when HeLa cell spheres were cultured in the medium composition. Tables 7 and 8 show the viscosities measured by the same method as in Analysis Example 1.
  • Reference Test Example 5 Cell floating test using filter-filtered medium composition Using the same method as Reference Test Example 2, 0.015% deacylated gellan gum (KELCOGEL CG-LA, manufactured by Sanki Co., Ltd.) A DMEM / F-12 medium composition containing was prepared. Subsequently, 1 mL of this medium composition was 70 ⁇ m, 40 ⁇ m filter (BD Falcon), 30 ⁇ m, 20 ⁇ m filter (Aswan), 10 ⁇ m filter (Partec), 5 ⁇ m, 1.2 ⁇ m, 0.45 ⁇ m, Each was filtered using a 0.2 ⁇ m filter (manufactured by Sartorius Stedim Japan).
  • Reference Test Example 6 Sphere Formation Test Using the same method as in Reference Test Example 2, 0.01% deacylated gellan gum (KELCOGEL CG-LA, manufactured by Sanki Co., Ltd.) and 10% (v / v) fetal bovine A composition of EMEM medium (manufactured by WAKO) containing serum was prepared. Subsequently, HeLa cells were added to a concentration of 1000 cells / mL, and then dispensed into a 24-well plate (Corning). The plate was subjected to floating stationary culture at 37 ° C. for 9 days, and the formation of spheres was confirmed with a microscope.
  • KELCOGEL CG-LA manufactured by Sanki Co., Ltd.
  • sphere cells were precipitated by centrifugation at 300 G for 5 minutes, washed once with 5 mL of PBS, 100 ⁇ L of trypsin-EDTA (ethylenediaminetetraacetic acid) solution (manufactured by WAKO) was added, and the mixture was incubated at 37 ° C. for 5 minutes. Keep warm. 100 ⁇ L of EMEM medium containing 10% (v / v) fetal bovine serum was added to 100 ⁇ L of the cell suspension obtained here, and trypan blue staining solution (Invitro) was added to a part of the cell suspension. After the same amount was added, the number of viable cells was measured with a hemocytometer (manufactured by Elma Sales Co., Ltd.). As a result, it was confirmed that the number of HeLa cells increased to 170000 cells / mL.
  • the spheres of HeLa cells formed with the medium composition are shown in FIG.
  • Reference Test Example 7 Observation of structure with optical microscope Deacylated gellan gum (KELCOGEL CG-LA, manufactured by Sanki Co., Ltd.) was suspended in pure water so as to be 0.4% (w / v), The mixture was heated and stirred at 90 ° C. to dissolve. Add 95 mL of double-concentrated DMEM / F-12 medium (Aldrich) to a 300 mL tall beaker, add 5 mL of deacylated gellan gum aqueous solution while stirring with a magnetic stirrer at room temperature, and continue stirring for 5 minutes. A medium composition having a final deacylated gellan gum concentration of 0.02% was prepared. Further, the medium composition was stirred for 5 minutes with a homomixer (3000 rpm). The prepared medium composition was observed with an optical microscope (KEYENCE Corporation, BIOREVO BZ-9000). The observed structure is shown in FIG.
  • Reference Test Example 8 Preparation by mixing superheating of powder medium and DAG 20 mg of deacylated gellan gum (KELCOGEL CG-LA, manufactured by Sanki Co., Ltd.) and 1.58 g of DMEM / F-12 medium (produced by Life Technologies) Into an Erlenmeyer flask, 100 mL of pure water was poured. The mixture was autoclaved at 121 ° C. for 20 minutes to prepare a DMEM / F-12 medium composition having a deacylated gellan gum concentration of 0.02%. Dextran beads Cytodex 1 (Size 200 ⁇ m, manufactured by GE Healthcare Life Sciences) were added to the prepared medium, and the dispersion state of the beads was visually confirmed. The floating dispersion state was evaluated as ⁇ , the partial sedimentation / dispersion state as ⁇ , and the sedimentation state as ⁇ . The results are shown in Table 9.
  • Reference Test Example 9 Preparation of Medium Composition Mixed with Polysaccharide After suspending xanthan gum (KELTROL CG, manufactured by Sanki Co., Ltd.) in pure water to a concentration of 0.5% (w / v), It melt
  • KELTROL CG xanthan gum
  • aqueous sodium hydrogen carbonate solution was added, the final concentration was 0.01, 0.02% (w / v) deacylated gellan gum and the final concentration was 0.1, 0.2, DMEM / F-12 media compositions containing 0.3, 0.4% (w / v) other polysaccharides were prepared.
  • the powder of methylcellulose cP400, product made from WAKO Co., Ltd. was added.
  • Polystyrene beads (Size 500-600 ⁇ m, manufactured by Polysciences Inc.) were added to the medium prepared above, and the dispersion state of the beads was visually confirmed. The floating dispersion state was evaluated as ⁇ , the partial sedimentation / dispersion state as ⁇ , and the sedimentation state as ⁇ . The results are shown in Table 10.
  • Reference Test Example 10 Viscosity Measurement of Medium Composition Mixed with Polysaccharide
  • deacylation with final concentrations of 0.005 and 0.01% (w / v) A DMEM / F-12 medium containing gellan gum and other polysaccharides was prepared.
  • the final concentration of polysaccharide is xanthan gum, sodium alginate, locust bean gum 0.1% (w / v), methylcellulose 0.2% (w / v), ⁇ -carrageenan and diyutan gum 0.05% (w / V).
  • Tables 11 to 16 show the state of each medium composition and the viscosities measured by the same method as in Analysis Example 1.
  • Reference Test Example 11 Preparation of Medium Composition with Changed Divalent Metal Cation Concentration Method of Reference Test Example 8 using DMEM / F-12 (D9785, manufactured by Aldrich) not containing calcium chloride, magnesium sulfate, or magnesium chloride
  • DMEM / F-12 medium composition containing 0.02% (w / v) deacylated gellan gum was prepared.
  • a DMEM / F-12 medium composition to which calcium chloride, magnesium sulfate, or magnesium chloride was added was prepared so that the final concentration would be the prescribed amount of the DMEM / F-12 medium.
  • the final concentrations of the DMEM / F-12 medium were 0.116 g / L calcium chloride, 0.049 g / L magnesium sulfate, and 0.061 g / L magnesium chloride, respectively.
  • Dextran beads Cytodex 1 (manufactured by GE Healthcare Life Sciences) was added to the prepared medium composition, and the dispersion of the beads was visually confirmed after 2 days. The floating dispersion state was evaluated as ⁇ , the partial sedimentation / dispersion state as ⁇ , and the sedimentation state as ⁇ . The results are shown in Table 17.
  • Reference Test Example 12 Preparation of medium composition after post-addition of divalent metal cation 0.1% (w / v) deacylated gellan gum solution and 5-fold concentration DMEM / F-12 medium (calcium chloride, magnesium sulfate, Magnesium chloride free, D9785, manufactured by Aldrich), calcium chloride 1167 mg, magnesium sulfate 489 mg, magnesium chloride 287 mg was dissolved in 300 mL of pure water to prepare a salt solution. A 200 ml tall beaker was charged with a deacylated gellan gum aqueous solution and pure water, and the solution was stirred at 200 rpm using a squid type stirring blade.
  • Reference Test Example 13 Preparation of various medium compositions A 0.1% (w / v) deacylated gellan gum solution and a high concentration medium solution were prepared. As the medium solution of high concentration, 10 times concentration of MEM (M0268, manufactured by Aldrich), RPMI-1640 (R6504, manufactured by Aldrich) and 5 times concentration of DMEM (medium for high pressure sterilization, manufactured by Nissui) were prepared. A 0.1% (w / v) deacylated gellan gum solution, each high-concentration medium, and pure water for concentration adjustment were mixed and heated at 80 ° C. for 30 minutes.
  • MEM M0268, manufactured by Aldrich
  • RPMI-1640 R6504, manufactured by Aldrich
  • DMEM medium for high pressure sterilization, manufactured by Nissui
  • Reference Test Example 14 Measurement of Particle Size Distribution of Medium Composition Containing Deacylated Gellan Gum
  • a DMEM / F-12 medium composition containing 0.038% (w / v) deacylated gellan gum was prepared. did.
  • the medium was prepared by stirring for 1 minute at 3000 rpm and 6000 rpm using a homomixer.
  • the particle size distribution of the medium composition was measured using Multisizer 4 (precise particle size distribution measuring apparatus based on the Coulter principle) manufactured by Beckman Coulter, Inc., and the median diameter (d50) of the volume-based particle size distribution was determined. The results are shown in Table 22.
  • Reference Test Example 15 In a 100 mL test tube made of phosphorylated glass of deacylated gellan gum, 1 g of deacylated gellan gum and 40 mL of pure water were weighed and heated at 100 ° C. for 30 minutes to prepare a suspension. To this suspension, 1 g of an aqueous phosphoric acid solution (85%) was added and heated to reflux for 5 hours. Thereafter, while stirring for 12 hours, the white suspension obtained by allowing to cool to room temperature was poured into 99% ethanol (500 mL). The resulting fluffy white solid was collected by filtration and dried to obtain a light brown solid (0.4 g) as a phosphoric oxide of deacylated gellan gum.
  • Reference Test Example 16 Preparation of medium composition containing phosphorylated deacylated gellan gum Arbitrary amount of phosphorylated deacylated gellan gum (30 mg) and 1.56 g of DMEM / F-12 medium (Life Technologies) In a 200 mL Erlenmeyer flask, 100 mL of pure water was poured. The mixture was autoclaved at 121 ° C. for 20 minutes to prepare a DMEM / F-12 medium composition having a deacylated gellan gum concentration of 0.03%. Dextran beads Cytodex 1 (manufactured by GE Healthcare Bioscience) was added to the prepared medium, and the dispersion state of the beads was visually confirmed. At 0.03% (w / v) phosphorylated deacylated gellan gum concentration, a dispersed state of the beads was observed.
  • Reference Test Example 17 Preparation of Medium Composition Containing Deacylated Gellan Gum
  • Deacylated gellan gum aqueous solution and medium solution were mixed at a ratio shown in the table below and mixed to give a deacylated gellan gum concentration of 0.02%
  • the dispersion state of polystyrene beads (Size 500-600 ⁇ m, manufactured by Polysciences Inc.) when the DMEM / F-12 medium composition was prepared was evaluated. The results are shown in Tables 23 and 24. By leaving it to stand for 1 day or longer, styrene beads were dispersed under all conditions.
  • Reference Test Example 18 Preparation of medium composition using filter Deacylated gellan gum (KELCOGEL CG-LA, manufactured by Sanki Co., Ltd.) has a final concentration of 0.02 or 0.04% (w / v). After being suspended in ultrapure water (Milli-Q water), it was dissolved by heating at 90 ° C. for 30 minutes or at 121 ° C. for 20 minutes. Further, 100 mL of the aqueous solution was filtered through a polyethersulfone membrane filter (Corning) having a pore size of 0.22 ⁇ m.
  • KELCOGEL CG-LA filter Deacylated gellan gum
  • DMEM / F-12 medium Sigma-Aldrich
  • a mild mixer SI-24, manufactured by Taitec
  • Medium compositions containing 0.01 or 0.015% (w / v) deacylated gellan gum were prepared (eg, 0.02% (w / v) deacylated gellan gum aqueous solution and double concentration).
  • 25 mL each of DMEM / F-12 medium was mixed to prepare 50 mL of a 0.01% (w / v) deacylated gellan gum medium composition).
  • a sphere of HepG2 cells was prepared using the same method as in Reference Test Example 2, and several tens of spheres were added to 1 mL of the medium prepared above, and then allowed to stand at 37 ° C. for 1 hour and 1
  • the floating state of the sphere cells after the night was visually observed.
  • the cell suspension was centrifuged (500 G, 5 minutes), so that the spheres of HepG2 cells settled and the cells could be recovered in all medium compositions. .
  • Table 25 shows the results of evaluation where the suspended dispersion state was evaluated as ⁇ , the partial sedimentation / dispersion state as ⁇ , and the sedimentation state as x.
  • Reference Test Example 19 Cell proliferation test when cell line-derived spheres were cultured Human embryonic kidney cell line HEK293 (manufactured by DS Pharma Biomedical) was added to EMEM medium (WAKO) containing 10% (v / v) fetal bovine serum. The product was suspended at 250,000 / mL, and 10 mL of this suspension was seeded on EZ SPHERE (Asahi Glass Co., Ltd.), followed by culturing in a CO 2 incubator (5% CO 2 ) for 2 days.
  • EMEM medium WAKO
  • EZ SPHERE Asahi Glass Co., Ltd.
  • the medium composition to which 0.015% (w / v) deacylated gellan gum was added was first prepared by adding 0.3% (w / v) deacylated gellan gum (KELCOGEL CG-LA, manufactured by Sanki Co., Ltd.). ) And then suspended in ultrapure water (Milli-Q water) and dissolved by stirring while heating at 90 ° C., and this aqueous solution was autoclaved at 121 ° C. for 20 minutes, and then diluted 1/20 To 10% (v / v) fetal bovine serum in EMEM medium.
  • KELCOGEL CG-LA deacylated gellan gum
  • the spheres of HEK293 cells can be cultured in a floating state by using the medium composition, and the cells proliferated efficiently with the medium composition.
  • the medium composition had a small proportion of dead cells when cells were grown as compared with a medium composition not containing deacylated gellan gum, and had an excellent effect of promoting cell growth.
  • the spheres cultured in the existing medium had settled on the bottom surface of the culture vessel.
  • Table 26 shows the relative number of cells when the number of cells when cultured in a medium not containing deacylated gellan gum is 1.
  • Table 27 shows the relative dead cell rate when the dead cell rate (number of dead cells / live cell number) when culturing in a medium not containing deacylated gellan gum is 1.
  • Reference Test Example 20 Cell proliferation test when insect cells were cultured Deacylated gellan gum (KELCOGEL CG-LA, manufactured by Sanki Co., Ltd.) was added to ultrapure water (Milli) so as to be 0.3% (w / v). -Q water) and then dissolved by stirring while heating at 90 ° C., and the aqueous solution was autoclaved at 121 ° C. for 20 minutes. Using this solution, a medium composition was prepared by adding deacylated gellan gum at a final concentration of 0.015% (w / v) to Sf-900 (registered trademark) III SFM medium (manufactured by Gibco).
  • Sf-900 registered trademark
  • Spodoptera frugiperda-derived Sf9 cells (manufactured by Gibco) were seeded in a medium composition to which the above-mentioned deacylated gellan gum was added so as to be 100000 cells / mL, and then a 24-well flat-bottom microplate (manufactured by Corning). The wells were dispensed at 1 mL per well. These cell suspensions were statically cultured at 25 ° C. for 5 days in an incubator.
  • Sf9 cells can be uniformly cultured in a floating state by using the medium composition, and proliferate with the medium composition. Furthermore, it was confirmed that the medium composition had an excellent effect of promoting cell growth when cells were grown as compared with a medium composition not containing deacylated gellan gum. Table 28 shows the number of Sf9 cells after 5 days of suspension static culture.
  • Reference Test Example 21 Cell proliferation test when culturing CD34 positive cells Deacylated gellan gum (KELCOGEL CG-LA, manufactured by Sanki Co., Ltd.) ultrapure water (0.3% (w / v)) After being suspended in Milli-Q water), it was dissolved by stirring while heating at 90 ° C., and the aqueous solution was autoclaved at 121 ° C. for 20 minutes.
  • Deacylated gellan gum KELCOGEL CG-LA, manufactured by Sanki Co., Ltd.
  • ultrapure water 0.3% (w / v)
  • a StemSpan SFEM medium manufactured by StemCell Technologies
  • human umbilical cord blood-derived CD34 positive cells (manufactured by Lonza) were seeded in a medium composition to which the above-mentioned deacylated gellan gum was added so as to be 10,000 cells / mL, and then a 24-well flat bottom microplate (Corning). Were dispensed at 1 mL per well. These cell suspensions were statically cultured at 37 ° C. for 7 days in a CO 2 incubator (5% CO 2 ).
  • CD34-positive cells can be uniformly cultured in a floating state by using the medium composition and proliferate on the medium composition. Furthermore, it was confirmed that the medium composition has a cell growth promoting effect equivalent to or higher than that of an existing medium not containing deacylated gellan gum. In addition, it was confirmed that the cells settled by centrifugation and can be collected. Table 29 shows the relative number of cells grown from CD34-positive cells after 7 days of floating stationary culture, assuming that the number of cells when cultured in a medium not containing deacylated gellan gum is 1.
  • Reference Test Example 22 Sphere Formation Test Using the same method as in Reference Test Example 2, 0.015% deacylated gellan gum (KELCOGEL CG-LA, manufactured by Sanki Co., Ltd.) and 10% (v / v) fetal bovine A composition of DMEM medium (manufactured by WAKO) containing serum was prepared. Subsequently, HepG2 cells were added to a cell concentration of 15000 cells / mL, and then 1 mL was dispensed into a 24-well plate (Corning). The plate was subjected to floating stationary culture at 37 ° C. for 7 days, and the formation of spheres was confirmed with a microscope.
  • KELCOGEL CG-LA manufactured by Sanki Co., Ltd.
  • the sphere cells were precipitated by centrifugation at 400 G for 5 minutes, washed once with 5 mL of PBS, 100 ⁇ L of trypsin-EDTA (ethylenediaminetetraacetic acid) solution (manufactured by WAKO) was added, and the mixture was incubated at 37 ° C. for 5 minutes. Keep warm. 100 ⁇ L of DMEM medium containing 10% (v / v) fetal bovine serum was added to 100 ⁇ L of the cell suspension obtained here, and trypan blue staining solution (Invitro) was added to a part of the cell suspension.
  • trypsin-EDTA ethylenediaminetetraacetic acid
  • HepG2 cells formed spheres with the medium composition and the number of cells increased to 80800 cells / mL.
  • the sphere of HepG2 cells formed with the medium composition is shown in FIG.
  • Reference Test Example 23 Cell suspension test using cell line-derived spheres Pure tang water (KELKO-CRETE DG, manufactured by Sanki Co., Ltd.) with ultrapure water (0.3% (w / v)) After being suspended in Milli-Q water), it was dissolved by stirring while heating at 90 ° C. Using this aqueous solution, a DMEM / F-12 medium composition having a final concentration of 0.1% (w / v) was obtained for diutang gum.
  • an aqueous solution containing 0.5% (w / v) native gellan gum (Kelcogel HT, manufactured by San-Ei Gen FFI Co., Ltd.) is prepared by heating at 90 ° C., and this aqueous solution is used.
  • a DMEM / F-12 medium (manufactured by Sigma) composition containing 0.05, 0.1% (w / v) native gellan gum was prepared.
  • a sphere of HeLa cells was prepared using the same method as in Reference Test Example 2. After adding several tens of spheres to 1 mL of the medium prepared above, the sphere cells were allowed to stand for 1 hour at 37 ° C. The floating state of was observed visually. As a result, it was confirmed that the spheres of HeLa cells were maintained in a floating state in all the medium compositions. Furthermore, it was confirmed that the spheres of HeLa cells were settled by centrifuging (200 G, 5 minutes) the cell suspension containing 0.1% (w / v) of ditan gum, and the cells could be recovered.
  • Reference Test Example 24 Cell floating test 1 using magnetic beads having cell adhesion ability Dispense 500 ⁇ L of a suspension solution of GEM (registered trademark, Global Eukaryotic Microcarrier, manufactured by GL Science Co., Ltd.) coated with laminin or fibronectin into a 1.5 mL capacity micro test tube (Eppendorf), and use a magnetic stand (TA4899N12). GAM was collected from the GEM suspension using a Tamagawa Seiki Co., Ltd., and the solvent was removed. Further, the GEM was washed twice with 500 ⁇ L of DMEM medium (manufactured by WAKO) containing 10% (v / v) fetal bovine serum, and then suspended in 500 ⁇ L of the same medium.
  • GEM registered trademark, Global Eukaryotic Microcarrier, manufactured by GL Science Co., Ltd.
  • This suspension was dispensed at 50 ⁇ L per well onto Sumilon Celtite Plate 24F (Sumitomo Bakelite Co., Ltd.), which is a low cell adhesion plate. Subsequently, separately prepared HepG2 cells were added to 250,000 cells / mL, and the final volume was 500 ⁇ L / well in the same medium. After the cell suspension was manually stirred, the plate was left overnight in a CO 2 incubator (5% CO 2 ). After confirming the adhesion of the cells on the GEM with a microscope, the cell suspension is transferred to a 1.5 mL micro test tube (Eppendorf), and the cell attachment GEM is accumulated using the above magnetic stand. Qing was removed.
  • Sumilon Celtite Plate 24F Suditomo Bakelite Co., Ltd.
  • DMEM medium WAKO containing 0.015% deacylated gellan gum (KELCOGEL CG-LA, manufactured by Sanki Co., Ltd.) and 10% (v / v) fetal calf serum (Commercially available) was prepared. 1 mL each of the above medium composition or the same medium without deacylated gellan gum was added to the HepG2 cell-attached GEM (laminin or fibronectin coating) prepared above, suspended, and then transferred to Sumilon Celtite Plate 24F. .
  • the plate was allowed to stand in a CO 2 incubator (5% CO 2 ) for 6 days, and then the cell culture solution was transferred to a 1.5 mL micro test tube (Eppendorf) and placed on the magnet stand.
  • the cell adhesion GEM was accumulated while gently pipetting, and the supernatant was removed.
  • the GEM was washed once with 1 mL of PBS, 200 ⁇ L of trypsin-EDTA (ethylenediaminetetraacetic acid) solution (manufactured by WAKO) was added, and the mixture was kept at 37 ° C. for 10 minutes.
  • trypsin-EDTA ethylenediaminetetraacetic acid
  • DMEM medium containing 10% (v / v) fetal bovine serum was added to 200 ⁇ L of the cell suspension obtained here, and trypan blue staining solution (Invitro) was added to a part of the cell suspension. After the same amount was added, the number of viable cells was measured with a hemocytometer (manufactured by Elma Sales Co., Ltd.).
  • GEM to which HepG2 cells were adhered could be cultured in a floating state by using the medium composition, and it was confirmed that the cells proliferated efficiently with the medium composition. Moreover, it was confirmed that the medium composition has an excellent effect of promoting cell growth as compared with an existing medium that does not contain deacylated gellan gum. Further, it was confirmed that HepG2 cell adhesion GEM can be accumulated from the medium composition by using magnetic force, and that HepG2 cells can be recovered from the GEM. Table 30 shows the number of cells when HepG2 cells were cultured on GEM for 6 days in a medium containing or not containing deacylated gellan gum. Further, FIG. 9 shows a floating state when laminin-coated GEM to which HepG2 cells are attached is cultured with the medium composition.
  • Reference Test Example 25 Cell floating test 2 using magnetic beads having cell adhesion ability Similar to Reference Test Example 24, GEM (registered trademark, Global Eucalyotic Microcarrier, manufactured by GL Science Co., Ltd.) coated with fibronectin was suspended in MF-Medium (registered trademark) mesenchymal stem cell growth medium (manufactured by Toyobo Co., Ltd.). It became cloudy. This suspension was dispensed at 50 ⁇ L per well onto Sumilon Celtite Plate 24F (Sumitomo Bakelite Co., Ltd.), which is a low cell adhesion plate.
  • GEM registered trademark, Global Eucalyotic Microcarrier, manufactured by GL Science Co., Ltd.
  • MF-Medium registered trademark mesenchymal stem cell growth medium
  • mesenchymal stem cells derived from human bone marrow (manufactured by Cell Applications) were added to 250,000 cells / mL, and this plate was allowed to stand overnight in a CO 2 incubator (5 GEM with mesenchymal stem cells adhered thereto was prepared by standing in% CO 2 ).
  • MF-Medium registered trademark mesenchymal stem cell growth medium (Toyobo) containing 0.015% deacylated gellan gum (KELCOGEL CG-LA, manufactured by Sanki Co., Ltd.) using the same method as in Reference Test Example 2. (Commercially available) was prepared. 1 mL each of the above medium composition or the same medium without deacylated gellan gum was added to the mesenchymal stem cell adhesion GEM (fibronectin coating) prepared above, suspended, and then transferred to Sumilon Celtite Plate 24F. .
  • GEM fibronectin coating
  • the plate was allowed to stand in a CO 2 incubator (5% CO 2 ) for 4 days, and then the cell culture solution was transferred to a 1.5 mL capacity micro test tube (Eppendorf) on the magnetic stand.
  • the cell adhesion GEM was accumulated while gently pipetting, and the supernatant was removed.
  • the GEM was washed once with 1 mL of PBS, 200 ⁇ L of trypsin-EDTA (ethylenediaminetetraacetic acid) solution (manufactured by WAKO) was added, and the mixture was kept at 37 ° C. for 10 minutes.
  • trypsin-EDTA ethylenediaminetetraacetic acid
  • DMEM medium containing 10% (v / v) fetal bovine serum was added to 200 ⁇ L of the cell suspension obtained here, and trypan blue staining solution (Invitro) was added to a part of the cell suspension. After the same amount was added, the number of viable cells was measured with a hemocytometer (manufactured by Elma Sales Co., Ltd.).
  • GEM to which mesenchymal stem cells were adhered could be cultured in a floating state by using the medium composition, and it was confirmed that the cells proliferated efficiently with the medium composition. Moreover, it was confirmed that the medium composition has an excellent effect of promoting cell growth as compared with an existing medium that does not contain deacylated gellan gum. It was also confirmed that mesenchymal stem cell-adhered GEM can be accumulated from the medium composition by using magnetic force, and that mesenchymal stem cells can be recovered from the GEM. Table 31 shows the number of cells when mesenchymal stem cells were cultured on GEM for 4 days in a medium containing or not containing deacylated gellan gum.
  • Reference Test Example 26 Cell suspension test using alginate beads The following tests were carried out according to the method of a three-dimensional alginate culture kit manufactured by PG Research. Separately prepared HepG2 cells are added to 2.5 mL of sodium alginate solution (PG Research Co., Ltd.) so as to be 400,000 cells / mL, and further human recombinant laminin 511 (Veritas Co., Ltd.) is added to 5 ⁇ g / mL. And cell suspension was prepared.
  • the cell suspension was collected with a 5 mL syringe (manufactured by Terumo Corporation) equipped with a sonde, and then a 22G injection needle (manufactured by Terumo Corporation) was attached to the syringe. Subsequently, 10 drops of this cell suspension was added to each well of a 24-well flat bottom microplate (manufactured by PG Research) to which 2 mL of an aqueous calcium chloride solution (manufactured by PG Research) was added. After standing at room temperature for 10 minutes and confirming the formation of alginate beads, the calcium chloride solution was removed, 2 mL of PBS was added, and the mixture was allowed to stand at room temperature for 15 minutes.
  • DMEM medium manufactured by WAKO
  • 10% (v / v) fetal bovine serum was added and allowed to stand at room temperature for 15 minutes.
  • 0.03% deacylated gellan gum KELCOGEL CG-LA, manufactured by Sanki Co., Ltd.
  • 10% (v / v) fetal bovine prepared using the same method as in Reference Test Example 2
  • 1 mL each of a medium composition of serum-containing DMEM medium (manufactured by WAKO) or the same medium without deacylated gellan gum is added to each well and left in a CO 2 incubator (5% CO 2 ) for 8 days. Cultured. The medium was exchanged on the fourth day of culture.
  • DMEM medium containing 10% (v / v) fetal bovine serum was added to 200 ⁇ L of the cell suspension obtained here, and trypan blue staining solution (Invitro) was added to a part of the cell suspension. After the same amount was added, the number of viable cells was measured with a hemocytometer (manufactured by Elma Sales Co., Ltd.).
  • the alginate beads embedded with HepG2 cells can be cultured in a floating state by using the medium composition, and it was confirmed that the cells proliferate efficiently with the medium composition. Moreover, it was confirmed that the medium composition has an excellent effect of promoting cell growth as compared with an existing medium that does not contain deacylated gellan gum.
  • Table 32 shows the number of cells when HepG2 cells were cultured in alginate beads in a medium containing or not containing deacylated gellan gum for 8 days.
  • FIG. 10 shows a floating state when the alginate beads embedded with HepG2 cells are cultured with the medium composition.
  • Reference Test Example 27 Cell Floating Test Using Collagen Gel Capsule
  • A Tissue Culture Collagen Cellmatrix (registered trademark) Type IA (Cell Matrix, Nitta Gelatin Co., Ltd.)
  • B 10-fold Concentration DMEM / F- 12 medium (manufactured by Aldrich)
  • human recombinant laminin 511 (manufactured by Veritas Co., Ltd.) was added so as to be 5 ⁇ g / mL to prepare a collagen mixed solution 500 ⁇ L.
  • HepG2 cells separately prepared for this mixed solution are added to 200000 cells / mL, and the total amount is added using a 1.5 mL syringe (manufactured by Terumo Corporation) equipped with a 25G injection needle (manufactured by Terumo Corporation). It was collected.
  • PBS 25mL was added with respect to the culture solution containing a collagen gel capsule, the collagen gel capsule was settled by the centrifugation process for 400 G and 5 minutes, and the supernatant liquid was removed. Again, 25 mL of PBS was added and centrifuged, and the supernatant was removed so that the remaining amount was 5 mL. After adding 20 ⁇ L of 1% (W / V) collagenase L (Nitta Gelatin Co., Ltd.) to this solution, the mixture was shaken at 37 ° C. for 2 hours. After confirming the dissolution of the collagen gel, 10 mL of PBS was added, the cells were sedimented by centrifugation at 400 G for 5 minutes, and the supernatant was removed.
  • W / V 1% (W / V) collagenase L
  • trypsin-EDTA ethylenediaminetetraacetic acid
  • WAKO trypsin-EDTA
  • 4 mL of DMEM medium containing 10% (v / v) fetal bovine serum was added to the cell suspension obtained here, the cells were precipitated by centrifugation at 400 G for 5 minutes, and the supernatant was removed.
  • the obtained cells were suspended in 2 mL of the same medium, and the same amount of trypan blue staining solution (manufactured by Invitrogen) was added to a part of the cells, followed by a hemocytometer (manufactured by Elma Sales Co., Ltd.). The number of viable cells was measured.
  • collagen gel capsules embedded with HepG2 cells can be cultured in a floating state by using the medium composition, and it was confirmed that cells proliferate efficiently with the medium composition. Moreover, it was confirmed that the medium composition has an excellent effect of promoting cell growth as compared with an existing medium that does not contain deacylated gellan gum.
  • Table 33 shows the number of cells when HepG2 cells were cultured in a collagen gel capsule for 5 days in a medium containing or not containing deacylated gellan gum. Further, FIG. 11 shows a floating state when a collagen gel capsule in which HepG2 cells are embedded is cultured with the medium composition.
  • Reference Test Example 28 Sphere Recovery Test Using Filter Using the same method as Reference Test Example 2, 0.015% deacylated gellan gum (KELCOGEL CG-LA, manufactured by Sanki Co., Ltd.) and 10% (v / V) A composition of DMEM medium (manufactured by WAKO) containing fetal bovine serum was prepared. As a control, the same medium without deacylated gellan gum was prepared. A sphere of HepG2 cells was prepared using the same method as in Reference Test Example 2, and the spheres were added to 1 mL of the medium prepared above so that the number of cells was 86,000 cells, respectively, and then allowed to stand at 37 ° C. for 1 hour. Then, the floating state of the sphere cells was visually observed.
  • the cell suspension was added onto a cell strainer (manufactured by Becton Dickinson) having a mesh size of 40 ⁇ m, and the spheres were captured on the filter. Subsequently, 10 mL of PBS was poured from the back of the filter to collect the spheres in a 15 mL tube, and the spheres were sedimented by centrifugation at 300 G for 5 minutes. After removing the supernatant, 500 ⁇ L of trypsin-EDTA (ethylenediaminetetraacetic acid) solution (manufactured by WAKO) was added to the sphere, and the mixture was kept at 37 ° C. for 5 minutes.
  • trypsin-EDTA ethylenediaminetetraacetic acid
  • Reference test example 29 Cell suspension test of spheres using a mixture of various polysaccharides Using the same method as in reference test example 9, xanthan gum (KELTROL CG, manufactured by Sanki Co., Ltd.), sodium alginate (duck alginate NSPM, Food Chemifa), locust bean gum (GENUGUM RL-200-J, manufactured by Sanki Co., Ltd.), methylcellulose (cP400, manufactured by WAKO Co., Ltd.), ⁇ -carrageenan (GENUGEL WR-80-J, manufactured by Sanki Co., Ltd.) ), Pectin (GENU pectin LM-102AS, manufactured by Sanki Co., Ltd.) or deyutan gum (KELCO CRETE DG-F, manufactured by Sanki Co., Ltd.) and deacylated gellan gum (KELCOGEL CG-LA, manufactured by Sanki Co., Ltd.) DMEM / F-12 medium set mixed with The composition was prepared.
  • a sphere of HepG2 cells was prepared using the same method as in Reference Test Example 2, and several tens of spheres were added to 1 mL of the medium prepared above, and then allowed to stand at 37 ° C. for 1 hour and 1 The floating state of the sphere cells after the night was visually observed. As a result, it was confirmed that the spheres of HepG2 cells were maintained in a floating state in all the medium compositions. Furthermore, after adding 2 times volume of the medium, the cell suspension was centrifuged (500 G, 5 minutes), so that the spheres of HepG2 cells settled and the cells could be recovered in all medium compositions. .
  • Table 35 and Table 36 show the results of evaluation where the floating dispersion state was evaluated as ⁇ , the partial sedimentation / dispersion state as ⁇ , and the sedimentation state as x. In the table, “-” indicates not implemented.
  • Reference Test Example 30 Floating culture test of rice-derived plant callus 50 matured rice seeds (purchased from Koto Agricultural Cooperative Association) selected from salt water selection were transferred to 50 mL polystyrene tubes (BD Falcon) and sterilized water. After washing with 50 mL, the mixture was stirred for 1 minute in 30 mL of 70% ethanol water. After removing ethanol water, 30 mL of Kitchen Hiter (manufactured by Kao Corporation) was added and stirred for 1 hour. After removing the kitchen hitter, it was washed 4 times with 50 mL of sterile water.
  • the seeds sterilized here were 2 ⁇ g / mL 2,4-dichlorophenoxyacetic acid (manufactured by Sigma-Aldrich) and Murashige-Skoog basic medium (M9274, manufactured by Sigma-Aldrich) containing agar 1.5 mL / well (24 It was placed on a well flat bottom microplate (Corning). The cells were cultured for 3 weeks in the dark at 30 ° C. for 16 hours / 8 hours, and cream-colored calli (1-2 mm) grown on the seed scutellum were collected.
  • Deacylated gellan gum (KELCOGEL CG-LA, manufactured by Sanki Co., Ltd.) is suspended in ultrapure water (Milli-Q water) so as to be 0.3% (w / v), and then heated at 90 ° C. The aqueous solution was autoclaved at 121 ° C. for 20 minutes. Using this solution, a final concentration of 0.03% (w / w) was added to Murashige-Skoog basal medium (M9274, manufactured by Sigma-Aldrich) containing 2 ⁇ g / mL 2,4-dichlorophenoxyacetic acid (manufactured by Sigma-Aldrich).
  • M9274 Murashige-Skoog basal medium
  • a medium composition to which the deacylated gellan gum of v) was added was prepared.
  • 15 calli prepared as described above were added to 10 mL of the present medium composition / flat bottom tube (manufactured by BM Instruments) and cultured with shaking at 25 ° C. for 7 days.
  • FIG. 12 shows the floating state when rice-derived callus is cultured with the medium composition.
  • the average fiber diameter (D) of the nanofibers was determined as follows. First, the collodion support membrane manufactured by Oken Shoji Co., Ltd. was hydrophilized with an ion cleaner (JIC-410) manufactured by JEOL Ltd. for 3 minutes, and the nanofiber dispersion liquid prepared in Production Examples 1 to 3 (into ultrapure water A few drops were diluted and dried at room temperature. This was observed with a transmission electron microscope (TEM, H-8000) (10,000 times) manufactured by Hitachi, Ltd. at an accelerating voltage of 200 kV.
  • TEM, H-8000 transmission electron microscope
  • the number of samples 200 to 250
  • the fiber diameter of each nanofiber was measured, and the number average value was defined as the average fiber diameter (D).
  • the average fiber length (L) diluted the nanofiber dispersion liquid produced in the manufacture example so that it might be set to 100 ppm with a pure water, and dispersed the nanofiber uniformly using the ultrasonic cleaner.
  • This nanofiber dispersion was cast on a silicon wafer whose surface was hydrophilized in advance using concentrated sulfuric acid, and dried at 110 ° C. for 1 hour to prepare a sample.
  • Example 1 to Example 4 Using the nanofiber dispersion liquid and the deacylated gellan gum aqueous solution prepared in Production Example 1 to Production Example 3, the medium composition described in Table 41 below was prepared. First, sterilized water was added to the cellulose nanofibers MNC, PNC and chitin nanofibers prepared in Production Examples 1 to 3, respectively, and diluted to 1% (w / v) aqueous dispersions. On the other hand, 99 parts by volume of sterilized water is added to 1 part by mass of deacylated gellan gum (KELCOGEL CG-LA, manufactured by Sanki Co., Ltd .: DAG), and the mixture is dissolved and sterilized by autoclaving at 121 ° C. for 20 minutes.
  • deacylated gellan gum KELCOGEL CG-LA, manufactured by Sanki Co., Ltd .: DAG
  • acylated gellan gum 1% (w / v) aqueous solution was prepared.
  • One volume part of the aforementioned 1% (w / v) dispersion or aqueous solution was placed in a 50 mL conical tube, 49 parts by volume of sterilized water was added, and pipetted until uniform.
  • 50 parts by volume of DMEM (high glucose, manufactured by Aldrich, including a predetermined amount of sodium hydrogen carbonate) sterilized by filtration with a 0.22 ⁇ m filter was added thereto, mixed by pipetting, and the nanofiber concentration was 0
  • a 0.01% (w / v) medium composition was prepared.
  • a medium composition was prepared by adding the nanofiber dispersion or the deacylated gellan gum aqueous solution so that the final concentration was 0.01 to 0.1% (w / v).
  • Example 5 and Comparative Examples 2 to 5 ⁇ -carrageenan (GENUGEL WR-80-J, manufactured by Sanki Co., Ltd .: Car) (Example 5), locust bean gum (GENUGUM RL-200-J, manufactured by Sanki Co., Ltd .: LBG) (Comparative Example 2), Xanthan gum (KELTROL CG, manufactured by Sanki Co., Ltd .: Xan) (Comparative Example 3),
  • Valtan gum KELCO CRETE DG-F, manufactured by Sanki Co., Ltd .: DU) (Comparative Example 4), Nalginate (Duck Alginic Acid NSPM, Food Chemifa Co., Ltd .: Alg) (Comparative Example 5) 99 parts by mass of sterilized water was added to 1 part by mass, and autoclaved at 121 ° C.
  • the polysaccharide solution prepared as described above was added to the final concentration of 0.03, 0.05, 0.07, 0.1% (w / v) by the same operation as in Examples 1 to 4.
  • a prepared medium composition was prepared.
  • Example 5 Although the bead floating action was observed at room temperature, the beads settled when heated to 37 ° C., and no floating action was obtained under the cell culture conditions. In Comparative Examples 2 to 5, the beads completely settled to the bottom surface.
  • Test Example 3 Floating action evaluation 2
  • the floating effects in the low concentration region (0.01 to 0.04% (w / v)) of the medium compositions of Examples 2, 4, and 5 and Comparative Example 2 were evaluated in detail.
  • Polystyrene beads were added and allowed to stand for 2 days, and then the dispersed state of the beads was visually confirmed.
  • the floating dispersion state was evaluated as ⁇ , and the sedimentation state was evaluated as ⁇ .
  • the bead floating rate was calculated based on the height of the floating region in the 10 mL conical tube. The results are shown in Table 42.
  • PNC had a concentration of 0.015% (w / v) or higher, and the medium composition of Example 4 exhibited a floating action at a concentration of 0.015% (w / v) or higher.
  • the floating action was improved stepwise as the concentration increased.
  • the medium composition of Example 5 was 0.02% or more and exhibited a floating action at 25 ° C., but immediately lost the floating action and precipitated at 37 ° C. (*). For the other media, the same results were obtained at 37 ° C and 25 ° C.
  • Example 1 to 4 the medium composition was in a floating state after 6 days of culture.
  • the medium compositions of Example 5 and Comparative Examples 3 to 5 all the spheres were settled, and the spheres were further aggregated.
  • Example 1 By adding sterilized water to the cellulose nanofibers MNC, PNC and chitin nanofibers prepared in Production Examples 1 to 3, 1% (w / v) aqueous dispersions were prepared. On the other hand, 99 parts by volume of sterilized water is added to 1 part by mass of deacylated gellan gum (KELCOGEL CG-LA, manufactured by Sanki Co., Ltd .: DAG), and dissolved and sterilized by autoclaving at 121 ° C. for 20 minutes. % (W / v) aqueous solution was prepared.
  • deacylated gellan gum KELCOGEL CG-LA, manufactured by Sanki Co., Ltd .: DAG
  • Example 5 ′ and Comparative Examples 3 ′ to 5 ′ ⁇ -carrageenan (GENUGEL WR-80-J, manufactured by Sanki Co., Ltd .: Car), xanthan gum (KELTROL CG, manufactured by Sanki Co., Ltd .: Xan), diyutan gum (KELCO CRETE DG-F, manufactured by Sanki Co., Ltd.): DU), Na alginate (Duck alginate NSPM, manufactured by Food Chemifa Co., Ltd .: Alg) 99 parts by volume of sterilized water was added to 1 part by mass, and the mixture was dissolved and sterilized by autoclaving at 121 ° C. for 20 minutes.
  • a polysaccharide aqueous solution was prepared. For each of the polysaccharide aqueous solutions prepared as described above, a final concentration of 0.01%, 0% was added to DMEM medium (manufactured by Nissui Pharmaceutical Co., Ltd.) containing 10% (v / v) fetal bovine serum in the same manner as in Examples 5 to 8. The polysaccharide aqueous solution was added so that it might become 0.03%, 0.06%, and 0.1% (w / v), and the culture medium composition was prepared.
  • DMEM medium manufactured by Nissui Pharmaceutical Co., Ltd.
  • the plate was cultured in a CO 2 incubator (37 ° C., 5% CO 2 ) for a maximum of 6 days.
  • 150 ⁇ L of ATP reagent CellTiter-Glo TM Luminescent Cell Viability Assay, Promega
  • FlexStation 3 Luminescence intensity (RLU value) was measured by Molecular Devices, and the number of viable cells was measured by subtracting the luminescence value of the medium alone.
  • the medium composition containing PNC, MNC, and nanochitin can be cultured in a uniformly dispersed state without excessively increasing the size of cell aggregates, and can proliferate efficiently.
  • the RLU values (ATP measurement, luminescence intensity) after 2 days and 6 days of static culture of MCF7 cells are shown in Tables 44 to 47, the RLU values after 6 days are shown in FIGS. 30 to 33, and the results of A375 cells are shown. 48 to Table 51, and RLU values after 6 days are shown in FIGS.
  • FIG. 38 shows the results of the MCF7 cells and FIG. 39 shows the results of the A375 cells in the observation of the aggregates cultured for 2 days.
  • Mouse preadipocyte cell line 3T3-L1 (manufactured by ATCC) was seeded on a 10 cm polystyrene dish using DMEM medium containing 10% FBS, and cultured in an incubator set at 5% CO 2 and 37 ° C. With 3T3-L1 cells confluent, the medium is removed by aspiration, FBS is removed with D-PBS (Wako Pure Chemical Industries), and 1 ml of a solution containing 0.25% Trypsin and 1 mM EDTA (Wako Pure Chemical Industries, Ltd.) was added to the polystyrene dish.
  • FBS-containing DMEM medium 10% by volume FBS-containing DMEM medium was added to recover the cells from the petri dish and transferred to a centrifuge tube. After centrifugation at 300 ⁇ g, the supernatant was removed.
  • a cell suspension of about 100 ⁇ 10 4 cells / mL 100 ⁇ L of the cell suspension was added to a 1.5 mL microtube, and the cell suspension was prepared beforehand so as to contain 10% (v / v) FBS.
  • a cell suspension was prepared by adding 100 ⁇ L each of the medium compositions of Examples 1 to 2, Example 4 to Example 5, Comparative Example 3 and Comparative Example 5 and pipetting.
  • the cell suspension was stored in a sealed state at room temperature for 10 days, and a part of the cell suspension after 3 days and 10 days was diluted 1/10 with DMEM medium containing 10% FBS, and diluted cell suspension.
  • 100 ⁇ L of ATP reagent CellTiter-Glo TM Luminescent Cell Viability Assay, manufactured by Promega
  • 100 ⁇ L of ATP reagent CellTiter-Glo TM Luminescent Cell Viability Assay, manufactured by Promega
  • RLU value emission intensity
  • FlexStation 3 Molecular Devices
  • each cell viability of the negative control or the medium composition of Comparative Example 3 and Comparative Example 5 was significantly reduced in ATP value after storage at room temperature for 3 to 10 days, whereas Examples 1 and 2 And in the culture medium composition of Example 4, the fall of the ATP value was suppressed and the cytoprotective effect was shown.
  • the results for the number of viable cells are shown in Table 52.
  • Example 2 previously prepared to contain 10% (v / v) FBS by adding 25 ⁇ L of cell suspension to a 1.5 mL microtube as a cell suspension of about 5 ⁇ 10 6 cells / mL A cell suspension was prepared by adding 25 ⁇ L of the medium composition of Example 4 and pipetting.
  • a portion of the cell suspension after storage for 1 day at room temperature in a sealed state was diluted 1/10 with F12 medium containing 10% FBS, and 100 ⁇ L of the diluted cell suspension was added to 100 ⁇ L of ATP reagent (CellTiter-Glo TM Luminescent). Cell Viability Assay (Promega) was added and suspended. After allowing to stand at room temperature for about 10 minutes, the luminescence intensity (RLU value) was measured with FlexStation 3 (Molecular Devices), and the luminescence value of the medium alone was measured. The number of viable cells was measured by subtracting. As a negative control, a medium-only sample containing no polysaccharide was used.
  • each cell viability in the negative control decreased ATP value when stored at room temperature for 1 day, whereas the medium compositions of Example 2 and Example 4 showed the ATP value at the seeding level. The protective effect was shown.
  • the results of viable cell count are shown in Table 53.
  • Mouse preadipocyte cell line 3T3-L1 (manufactured by ATCC) was seeded on a 10 cm polystyrene dish using DMEM medium containing 10% FBS, and cultured in an incubator set at 5% CO 2 and 37 ° C. While 3T3-L1 cells are 40% confluent, the medium is removed by aspiration, FBS is removed with D-PBS (Wako Pure Chemical Industries), and 1 ml of a solution containing 0.25% Trypsin and 1 mM EDTA (Wako Pure Chemical Industries, Ltd.) was added to the polystyrene dish.
  • FBS-containing DMEM medium 10% by volume FBS-containing DMEM medium was added to recover the cells from the petri dish and transferred to a centrifuge tube. After centrifugation at 300 ⁇ g, the supernatant was removed.
  • a cell suspension of about 100 ⁇ 10 4 cells / mL 100 ⁇ L of the cell suspension was added to a 1.5 mL microtube, and the cell suspension was prepared beforehand so as to contain 10% (v / v) FBS.
  • a cell suspension was prepared by adding 100 ⁇ L of medium compositions having different polysaccharide concentrations in Example 2, Example 4 and Comparative Example 5 and pipetting them.
  • the cell suspension was stored in a sealed state at room temperature for 8 days, and a part of the cell suspension after 0 days, 5 days, and 8 days had been diluted by 1/5 with 10% FBS-containing DMEM medium for dilution.
  • 100 ⁇ L of ATP reagent CellTiter-Glo TM Luminescent Cell Viability Assay, Promega
  • ATP reagent CellTiter-Glo TM Luminescent Cell Viability Assay, Promega
  • RLU value luminescence intensity at FlexStation 3 (Molecular Devices)
  • each cell viability of the negative control or the medium composition of Comparative Example 5 was significantly reduced in the ATP value when stored at room temperature for 5 to 8 days, whereas the medium compositions of Example 2 and Example 4 Then, the fall of ATP value was suppressed and the cytoprotective effect was shown.
  • the results of viable cell count are shown in Table 54.
  • the canine kidney tubular epithelial cell line MDCK (manufactured by DS Pharma Biomedical Co., Ltd.) was cultured for one day in a medium from which serum was removed (starvation treatment), and the above-mentioned deacylated gellan gum was adjusted to 100000 cells / mL. After seeding the added medium composition, it was dispensed into wells of a 96-well flat bottom ultra-low adhesion surface microplate (Corning, # 3474) at a volume of 100 ⁇ L per well. Each plate was cultured in a CO 2 incubator (37 ° C., 5% CO 2 ) in a stationary state and continued for 15 days.
  • a CO 2 incubator 37 ° C., 5% CO 2
  • Table 55 shows the RLU values (ATP measurement, luminescence intensity) in each culture.
  • monkey kidney epithelial cell line Vero (manufactured by DS Pharma Biomedical Co., Ltd.) cultured for one day in a medium from which serum was removed was added with the above-mentioned deacylated gellan gum to 100000 cells / mL.
  • the well was dispensed into wells of a 96-well flat bottom ultra-low adhesion surface microplate (Corning, # 3474) at 100 ⁇ L per well. Each plate was cultured in a CO 2 incubator (37 ° C., 5% CO 2 ) in a stationary state and continued for 15 days.
  • Table 56 shows the RLU values (ATP measurement, luminescence intensity) in each culture.
  • Serum-free medium KBM220 medium (manufactured by Kojin Bio Inc.) with final concentrations of 0.01% (w / v), 0.03%, and 0.1% cellulose nanofiber added to the serum-free medium KBM220 medium Final concentration 0.015 (w / v), 0.03%, 0.1% chitin nanofiber added medium composition, serum-free medium KBM220 medium (manufactured by Kojin Bio), final concentration 0.005% (W / v), 0.015%, 0.03%, 0.06%, 0.1% medium composition added with deacylated gellan gum, and non-added medium composition containing no base material did.
  • the canine kidney tubular epithelial cell line MDCK (manufactured by DS Pharma Biomedical Co., Ltd.) cultured for one day in a medium from which serum was removed (starvation treatment) After seeding the added medium composition, it was dispensed into wells of a 96-well flat bottom ultra-low adhesion surface microplate (Corning, # 3474) at a volume of 100 ⁇ L per well. Each plate was cultured in a CO 2 incubator (37 ° C., 5% CO 2 ) in a stationary state and continued for 14 days.
  • a CO 2 incubator 37 ° C., 5% CO 2
  • the canine kidney tubular epithelial cell line MDCK (manufactured by DS Pharma Biomedical), which was cultured overnight in a medium from which serum was removed (starvation treatment), was mixed with the above-mentioned deacylated gellan gum or 100000 cells / mL.
  • the medium composition to which chitin nanofibers were added it was dispensed to a well of a 96-well flat bottom ultra-low adhesion surface microplate (Corning Corp., # 3474) at a volume of 100 ⁇ L per well. Each plate was cultured in a CO 2 incubator (37 ° C., 5% CO 2 ) in a stationary state and continued for 14 days.
  • chitin nanofibers showed a growth promoting effect at a concentration of 0.0001% or more, and particularly high effects at a concentration of 0.001% or more.
  • Table 58 shows the RLU values (ATP measurement, luminescence intensity) in each culture.
  • the flask was dispensed into 125 ml of Erlenmeyer flask (Corning, # 431405) so that 30 ml per flask.
  • the flask was cultured in a stationary state in a CO 2 incubator (37 ° C., 5% CO 2 ) and continued for 6 days.
  • 100 ⁇ L was dispensed at three points, and 100 ⁇ L of ATP reagent (CellTiter-Glo TM Luminescent Cell Viability Assay, manufactured by Promega) was added and suspended in each.
  • the luminescence intensity (RLU value) was measured with FlexStation 3 (manufactured by Molecular Devices), and the number of viable cells was measured by subtracting the luminescence placement of the medium alone.
  • Subculture In order to confirm the effect on subculture, examination was performed using a cell suspension obtained by culturing MDCK cells for 6 days in a medium containing 0.01% chitin nanofibers. 3 ml of cell suspension and 27 ml of non-added medium composition were mixed to make chitin nanofiber concentration 0.001%, 3 ml of cell suspension and 0.01% (w / v) final concentration. A cell suspension in which 27 ml of a medium composition containing chitin nanofibers was mixed to make the chitin nanofiber concentration 0.01% was dispensed into 125 ml Erlenmeyer flasks.
  • the flask was cultured in a stationary state in a CO 2 incubator (37 ° C., 5% CO 2 ) and continued for 14 days. After suspending the culture solution on days 0, 7, and 14 with a pipette, 100 ⁇ L was dispensed in three points, and 100 ⁇ L of ATP reagent (CellTiter-Glo TM Luminescent Cell Viability Assay, Promega) was added to each and suspended. After allowing to stand at room temperature for about 10 minutes, measure the luminescence intensity (RLU value) with FlexStation 3 (Molecular Devices), subtract the luminescence value of the medium alone, and measure the number of viable cells as the average value of three points did.
  • ATP reagent CellTiter-Glo TM Luminescent Cell Viability Assay, Promega
  • Serum-free medium KBM220 medium (manufactured by Kojin Bio) or Cosmedium 012 medium (manufactured by Cosmo Bio) having a final concentration of 0.001% (w / v) and 0.01% chitin nanofibers, no medium composition
  • the canine kidney tubular epithelial cell line MDCK (manufactured by DS Pharma Biomedical), which was cultured overnight in a medium from which serum was removed (starvation treatment), was mixed with the above-mentioned deacylated gellan gum or 100000 cells / mL.
  • the medium composition to which chitin nanofibers were added it was dispensed to a well of a 96-well flat bottom ultra-low adhesion surface microplate (Corning Corp., # 3474) at a volume of 100 ⁇ L per well. Each plate was cultured in a stationary state in a CO 2 incubator (37 ° C., 5% CO 2 ) and continued for 12 days.
  • ATP reagent CellTiter-Glo TM Luminescent Cell Viability Assay, manufactured by Promega
  • FlexStation 3 Molecular The luminescence intensity (RLU value) was measured by Devices, and the number of viable cells was measured by subtracting the luminescence value of the medium alone as an average value of three points.
  • chitin nanofibers showed a high proliferation ability even under conditions using Cosmedium 012 medium at a concentration of 0.001% or more.
  • Microscopic observation of the cell state on the 4th day revealed that cell aggregates (spheres) were only dispersed under medium conditions using deacylated gellan gum, but spheres and cells were observed under medium conditions using chitin nanofibers. It was observed that the grapes were growing in a bunch of grapes.
  • Table 61 shows RLU values (ATP measurement, luminescence intensity) in the culture using KBM220 medium
  • Table 62 shows RLU values (ATP measurement, luminescence intensity) in the culture using Cosmedium012. The result of microscopic observation of 4-day culture is shown in FIG.
  • Each of the prepared aqueous solutions was autoclaved at 121 ° C. for 20 minutes.
  • Medium supplemented with serum-free medium KBM220 medium manufactured by Kojin Bio Inc.
  • serum-free medium KBM220 medium manufactured by Kojin Bio Inc.
  • a canine kidney tubular epithelial cell line MDCK (manufactured by DS Pharma Biomedical Co., Ltd.) cultured for one day in a medium from which serum was removed (starvation treatment) was mixed with the above-mentioned deacylated gellan gum to 100000 cells / mL, After seeding on a medium composition to which chitosan nanofibers or chitin nanofibers were added, it was dispensed into wells of a 96-well flat bottom ultra-low adhesion surface microplate (Corning, # 3474) at 100 ⁇ L per well.
  • MDCK manufactured by DS Pharma Biomedical Co., Ltd.
  • Each plate was cultured in a stationary state in a CO 2 incubator (37 ° C., 5% CO 2 ) and continued for 12 days. After adding and suspending 100 ⁇ L of ATP reagent (CellTiter-Glo TM Luminescent Cell Viability Assay, manufactured by Promega) to the culture solution on day 7 and 11, FlexStation 3 (Molecular Devices, Inc.) was allowed to stand at room temperature for about 10 minutes. Luminescence intensity (RLU value) was measured, and the number of viable cells was measured by subtracting the luminescence value of the medium alone as an average value of three points.
  • ATP reagent CellTiter-Glo TM Luminescent Cell Viability Assay, manufactured by Promega
  • Mouse preadipocyte cell line 3T3-L1 (manufactured by ATCC) was seeded on a 10 cm polystyrene dish using DMEM medium containing 10% FBS, and cultured in an incubator set at 5% CO 2 and 37 ° C. With 3T3-L1 cells confluent, the medium is removed by aspiration, FBS is removed with D-PBS (Wako Pure Chemical Industries), and 1 ml of a solution containing 0.25% Trypsin and 1 mM EDTA (Wako Pure Chemical Industries, Ltd.) was added to the polystyrene dish.
  • a part of the cell suspension was diluted with DMEM medium containing 10% FBS, and about 10 ⁇ 10 4 based on the seeding concentration before storage for 7 days.
  • a cell / mL cell suspension was prepared. 100 ⁇ L each of cell suspension is seeded on 96-well multiplate (Corning), and 100 ⁇ L of ATP reagent (CellTiter-Glo TM Luminescent Cell Viability Assay, Promega) is added on the day of seeding, 1 day and 2 days later.
  • the number of viable cells (RLU value) of the negative control on the day of re-seeding after 7 days storage or the medium composition of Comparative Example 5 (RLU value) was significantly lower than that of the medium compositions of Examples 2 to 4. It became.
  • the number of viable cells (RLU value) one day after the reseeding increased in each of Examples 2 and 4 compared to the day of reseeding, and the cells after storage also maintained proliferative properties.
  • the results of the viable cell count are shown in Table 65.
  • the medium composition according to the present invention exhibits an excellent cell and / or tissue floating effect, and is extremely useful when culturing large amounts of animal and plant-derived cells and / or tissues while maintaining their functions.
  • cells and / or tissues cultured by the method of the present invention are lost due to evaluation of drug efficacy and toxicity of chemical substances, pharmaceuticals, etc., mass production of useful substances such as enzymes, cell growth factors, and antibodies, diseases and defects. It is extremely useful in the field of regenerative medicine for supplementing organs, tissues and cells.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Sustainable Development (AREA)
  • Immunology (AREA)
  • Dentistry (AREA)
  • Environmental Sciences (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

 本発明は、ナノファイバーを液体培地へ添加し、当該ナノファイバーが当該溶液中にて均一に分散し、当該溶液の粘度を実質的に高めること無く細胞及び/又は組織を実質的に保持することで、その沈降を防ぐ効果を有する培地組成物を用いて、細胞及び/又は組織を浮遊状態にて培養させることを特徴とする細胞及び/又は組織の培養方法を提供する。

Description

培地組成物
 本発明は、水への分散性を高めた多糖類等のナノファイバーを用いて、動植物細胞及び/又は組織を、特に三次元或いは浮遊状態にて培養するための培地組成物、及びその用途に関する。
 近年、動物や植物体内で異なった役割を果たしている様々な器官、組織、及び細胞を生体外にて増殖或いは維持させるための技術が発展してきている。これらの器官、組織を生体外にて増殖或いは維持することは、それぞれ器官培養、組織培養と呼ばれており、器官、組織から分離された細胞を生体外にて増殖、分化或いは維持することは細胞培養と呼ばれている。細胞培養は、分離した細胞を培地中で生体外にて増殖、分化或いは維持する技術であり、生体内の各種器官、組織、細胞の機能及び構造を詳細に解析するために不可欠なものとなっている。また、当該技術により培養された細胞及び/又は組織は、化学物質、医薬品等の薬効及び毒性評価や、酵素、細胞増殖因子、抗体等の有用物質の大量生産、疾患や欠損により失われた器官、組織、細胞を補う再生医療、植物の品種改良、遺伝子組み換え作物の作成等様々な分野で利用されている。
 動物由来の細胞は、その性状から浮遊細胞と接着細胞に大きく2分される。浮遊細胞は、生育・増殖に足場を必要としない細胞であり、接着細胞は、生育・増殖に足場を必要とする細胞であるが、生体を構成する大部分の細胞は後者の接着細胞である。接着細胞の培養方法としては、単層培養、分散培養、包埋培養、マイクロキャリア培養、及びスフェア培養等が知られている。
 単層培養は、ガラス或いは種々の表面処理を行った合成高分子材料から成る培養容器や、フィーダー細胞と呼ばれる補助的な細胞を足場として目的の細胞を単層状に培養する方法であり、最も一般的に普及している。例えば、ポリスチレンに対して種々の表面処理(プラズマ処理、コロナ処理等)を施したもの、コラーゲン、フィブロネクチン、ポリリジンなどの細胞接着因子をコーティングしたもの、或いはフィーダー細胞を予め播種したもの等、種々の形状又は性状の培養容器を用いた培養方法が開発されている。しかしながら、単層培養は、その二次元的培養環境が生体内での環境と全く異なるために細胞が生体内で有している特異的な機能を長期間維持することができない、生体内と同様な組織を再構築する事ができない、一定面積当たりの細胞数が制限されるため細胞の大量培養には向かない、等が問題となっている(特許文献1)。また、フィーダー細胞上にて目的の細胞を培養する方法は、フィーダー細胞と目的の細胞との分離が問題となる場合がある(非特許文献1)。
 分散培養は、培地中に細胞を播いた後、細胞の付着を阻害する表面処理を施した培養容器中にて、その培養液を撹拌し続けることにより細胞の培養容器への接着を阻害し、浮遊状態で接着細胞を培養する方法である。しかしながら、当該方法で培養される接着細胞は足場への接着ができないため、細胞増殖のために足場への接着を必須とする細胞には応用できない。また、せん断力で常時破砕されることにより本来の細胞機能を発揮できないため、機能を有する細胞を大量に培養することができない場合がある(非特許文献2)。
 包埋培養は、寒天、メチルセルロース、コラーゲンゲル、ゼラチン、フィブリン、アガロース、アルギン酸塩等の固形或いは半固体のゲル基材の中に細胞を埋め込み、固定させて培養する方法である。当該方法は、細胞を生体内に近い形で三次元的に培養することを可能とし、ゲル基材そのものが細胞の増殖や分化を促進する場合もあるため単層培養や分散培養と比較して、細胞の機能を維持したまま細胞を高密度に培養することが可能である(特許文献2、3)。更に、これらのゲル基材に細胞を埋め込んだ状態で大きさ100~300μmのマイクロカプセルを作成し、当該マイクロカプセルを分散させながら水溶液培地で細胞を培養する方法も開発されている(非特許文献3)。しかしながら、これらの方法は、ゲル基材が可視光を透過しない場合は培養細胞の継時的な観察ができない、ゲル基材を含む培地やマイクロカプセルは粘度が高いため当該培地中から細胞を回収するために酵素処理(例えば、コラーゲンゲルの場合はコラゲナーゼ処理)等の煩雑かつ細胞に障害を与える操作を必要とする、長期間培養する際に必要な培地交換が困難である等の問題を有している。近年、熱やせん断力などの処理によりゲル基材から細胞回収が可能となる技術が開発されているが、熱やせん断力等は細胞機能に悪影響を与えることがある上に、当該ゲル基材の生体に対する安全性については未だ明らかにはなっていない(特許文献4、5、非特許文献4、5、6、7)。また、小さくカットした果実や野菜等の粒状食品を均一に分散、浮遊させ、その沈殿や浮上を防ぐためのゾル状食品が食品分野にて開発されているが、当該ゾル状食品は分散させた粒状食品を回収することは考慮しておらず、細胞や組織を浮遊状態で培養できるかどうかの検討もなされていない(特許文献6)。水溶液中のジェランがカルシウムイオンの作用によりゲル化し、微細構造を形成することが知られている(非特許文献8)。
 マイクロキャリア培養は、水よりも僅かに重い微粒子(以下、マイクロキャリアともいう)の表面上に細胞を単層に増殖させ、当該微粒子をフラスコ等の培養容器内で撹拌し、浮遊状態での培養を行うものである。通常、当該方法で用いるマイクロキャリアは、直径100~300μm、表面積3000~6000cm/g、比重1.03~1.05の球状粒子であり、デキストラン、ゼラチン、アルギン酸あるいはポリスチレン等の素材により構成されている。マイクロキャリアの表面には細胞が付着しやすいように、コラーゲン、ゼラチンまたはジメチルアミノエチル等の荷電基を付与することもできる。当該方法は、培養面積を極めて増大させることが可能になるため、細胞の大量培養に応用されている(特許文献7、8)。しかしながら、全てのマイクロキャリアで目的とする細胞をほぼ均一に付着させることは困難であり、また、撹拌中のせん断力により細胞がマイクロキャリアから脱離する、細胞が障害を受ける等が問題となっている(非特許文献9)。
 スフェア培養は、目的の細胞が、数十~数百個から成る凝集塊(以下、スフェアともいう)を形成させた後、当該凝集塊を培地中で静置或いは振とうして培養する方法である。スフェアは、細胞密度が高く、生体内環境に近い細胞-細胞間相互作用及び細胞構造体が再構築されており、単層培養、分散培養法よりも細胞機能を長期的に維持したまま培養できることが知られている(非特許文献10、11)。しかしながら、スフェア培養は、スフェアのサイズが大きすぎる場合、スフェア内部の栄養分の供給と老廃物の排出が困難となるため、大きなスフェアを形成させることができない。また、形成したスフェアは培養容器の底面において分散状態で培養する必要があるため、一定体積あたりのスフェア数を増やすことが困難であり、大量培養には向かない。さらに、スフェアの作成方法としては、懸滴培養、細胞非接着表面での培養、マイクロウェル内での培養、回転培養、細胞の足場を利用した培養、遠心力や超音波、電場・磁場による凝集などが知られているが、これらの方法は操作が煩雑、スフェアの回収が困難、サイズの制御と大量生産が困難、細胞に対する影響が不明、特殊な専用容器や装置が必要である等が問題となっている(特許文献9)。
 一方、植物に関しても細胞、細胞壁を除去したプロトプラストあるいは植物の葉、茎、根、成長点、種子、胚、花粉などの器官、組織、カルスを無菌の状態で培養して増やすことができる。このような植物の組織や細胞の培養技術を用いて、植物の品種改良や有用物質生産も可能となっている。植物の細胞や組織を短期間で大量に増殖させるための手法として、植物細胞や組織を液体培地で懸濁培養する方法が知られている(非特許文献12)。それらの良好な増殖を達成するためには、十分な酸素の供給と均一な混合状態の維持、さらに細胞の破損を防ぐ等が重要である。培養液への酸素の供給と細胞や組織の懸濁は、通気と機械的攪拌とを組み合わせて行なわれる場合と、通気のみにより行なわれる場合とがあるが、前者は、攪拌による細胞や組織の破損が原因で増殖不良を招く場合があり、一方、後者は細胞や組織のせん断は少ないが、高密度培養では均一な混合状態を維持することが困難となる場合があるため、細胞や組織が沈降して増殖効率が低下する等の問題がある。
特開2001-128660号公報 特開昭62-171680号公報 特開昭63-209581号公報 特開2009-29967号公報 特開2005-60570号公報 特開平8-23893号公報 特開2004-236553号公報 国際公開第2010/059775号 特開2012-65555号公報
Klimanskayaら,Lancet 2005,365:1636-1641 Kingら,Curr Opin Chem Biol. 2007,11:394-398. Muruaら,J.of Controlled Release2008,132:76-83. Mendes, Chemical Society Reviews 2008,37:2512-2529 Moonら,Chemical Society Reviews2012,41:4860-4883 Pekら,Nature Nanotechnol. 2008,3:671-675 Liuら,Soft Matter 2011,7:5430-5436 Perez-Camposら,Food Hydrocolloids 2012,28:291-300 Leungら,Tissue Engineering 2011,17:165-172 Stahlら,Biochem.Biophys.Res.Comm. 2004,322:684-692 Linら,Biotechnol J. 2008,3:1172-1184 Weathersら,Appl Microbiol Biotechnol 2010,85:1339-1351
 本発明の目的は、上記の従来技術の問題を解決し、動植物細胞及び/又は組織を、特に三次元或いは浮遊状態にて培養するための培地組成物と当該培地組成物を用いた動植物細胞及び/又は組織の培養方法を提供することにある。
 本発明者らは鋭意検討の結果、セルロースやキチン等の多糖類からなるナノファイバーを液体培地中に混合することにより、該液体培地の粘度を実質的に高めることなく、動植物細胞及び/又は組織を静置した状態で浮遊培養し得ること、この培地組成物を用いて培養することにより細胞の増殖活性が亢進することを見出した。また、セルロース等の非水溶性の多糖類のみならず、脱アシル化ジェランガム等の水溶性の多糖類も、液体培地中で、ファイバー状の構造体を形成し、これが液体培地の粘度を実質的に高めることなく、動植物細胞及び/又は組織を静置した状態で浮遊培養することを可能にすることを見出した。更に、これらの培地組成物から、培養した細胞及び/又は組織を容易に回収することができることも見出した。以上の知見に基づき、更に検討を加えることにより、本発明を完成させるに至った。
 すなわち、本発明は下記のとおりである:
[1]細胞または組織を浮遊させて培養できる培地組成物であって、ナノファイバーを含有することを特徴とする、培地組成物。
[2]培養時の培地組成物の交換処理及び培養終了後において細胞または組織の回収が可能である[1]の培地組成物。
[3]細胞または組織の回収の際に、温度変化、化学処理、酵素処理、せん断力のいずれも必要としない[1]の培地組成物。
[4]粘度が、8mPa・s以下であることを特徴とする[1]の培地組成物。
[5]前記ナノファイバーの平均繊維径が0.001~1.00μm、平均繊維径(D)に対する平均繊維長(L)の比(L/D)が2~500であることを特徴とする[1]の培地組成物。
[6]前記ナノファイバーが高分子化合物から構成されることを特徴とする[1]の培地組成物。
[7]前記高分子化合物が、多糖類であることを特徴とする[6]の培地組成物。
[8]前記多糖類が、
セルロース、キチン及びキトサンからなる群から選択されるいずれかの非水溶性多糖類;又は
ヒアルロン酸、ジェランガム、脱アシル化ジェランガム、ラムザンガム、ダイユータンガム、キサンタンガム、カラギーナン、ザンタンガム、ヘキスロン酸、フコイダン、ペクチン、ペクチン酸、ペクチニン酸、ヘパラン硫酸、ヘパリン、ヘパリチン硫酸、ケラト硫酸、コンドロイチン硫酸、デルマタン硫酸、ラムナン硫酸、アルギン酸及びそれらの塩からなる群から選択される水溶性多糖類
を含む、[7]の培地組成物。
[9]前記多糖類が、セルロース又はキチンを含む、[8]の培地組成物。
[10]前記ナノファイバーが、粉砕により得られたものであることを特徴とする[9]に記載の培地組成物。
[11]細胞培養用である、[1]乃至[10]のいずれかに記載の培地組成物。
[12]前記細胞が、接着細胞または浮遊細胞であることを特徴とする[11]の培地組成物。
[13]前記接着細胞が、スフェアであることを特徴とする[12]の培地組成物。
[14][1]乃至[13]のいずれかに記載の培地組成物と、細胞又は組織とを含む、細胞又は組織培養物。
[15][1]乃至[13]のいずれかに記載の培地組成物中で細胞または組織を培養することを特徴とする、細胞又は組織の培養方法。
[16][14]の培養物から細胞または組織を分離することを特徴とする、細胞又は組織の回収方法。
[17]前記分離が、遠心分離で行われることを特徴とする[16]の回収方法。
[18][1]乃至[13]のいずれかの培地組成物中で接着細胞を培養することを特徴とするスフェアの製造方法。
[19][1]乃至[13]のいずれかの培地組成物を調製するための培地添加剤であって、当該ナノファイバー又は当該ナノファイバーを構成する水溶性高分子化合物を含むことを特徴とする培地添加剤。
[20][19]の培地添加剤と培地を混合することを特徴とする培地組成物の製造方法。
[21][1]乃至[13]のいずれかの培地組成物の製造方法であって、当該ナノファイバー又は当該ナノファイバーを構成する水溶性高分子化合物と培地を混合することを特徴とする培地組成物の製造方法。
[22][1]乃至[13]のいずれかに記載の培地組成物中で細胞または組織を保存することを特徴とする、細胞又は組織の保存方法。
[23][1]乃至[13]のいずれかに記載の培地組成物中で細胞または組織を輸送することを特徴とする、細胞又は組織の輸送方法。
[24][1]乃至[13]のいずれかに記載の培地組成物中で細胞または組織を培養することを特徴とする、細胞又は組織の増殖方法。
[25]以下の工程を含む、接着細胞の継代培養方法:
(1)[1]乃至[13]のいずれかに記載の培地組成物中で接着細胞を浮遊培養すること;及び
(2)培養容器からの細胞の剥離操作を行うことなく、(i)工程(1)の浮遊培養により得られた接着細胞を含む培養物に、新鮮な[1]乃至[13]のいずれかに記載の培地組成物を添加するか、或いは(ii)新鮮な[1]乃至[13]のいずれかに記載の培地組成物へ、工程(1)の浮遊培養により得られた接着細胞を含む培養物の全部又は一部を添加すること。
[26]キチンナノファイバーを含有する培地組成物中で接着細胞を該キチンナノファイバーに付着した状態で浮遊培養することを含む、接着細胞の増殖方法。
[27]培地組成物中のキチンナノファイバーの含有量が、0.0001%(重量/容量)以上、0.1%(重量/容量)以下である、[26]記載の方法。
 本発明は、ナノファイバー、特に多糖類からなるナノファイバーを含む培地組成物を提供する。当該培地組成物を用いると、細胞や組織の障害や機能喪失を引き起こすリスクのある振とうや回転等の操作を伴わずに細胞及び/又は組織を浮遊状態にて培養することができる。更に、当該培地組成物を用いると、培養の際、容易に培地を交換することができる上に、培養した細胞及び/又は組織を容易に回収することもできる。当該培養方法を、動物生体或いは植物体から採取した細胞及び/又は組織に適用し、目的の細胞及び/又は組織をその機能を損なうことなく大量に調製することができる。そして、当該培養方法で得られる細胞及び/又は組織は、化学物質、医薬品等の薬効及び毒性評価や、酵素、細胞増殖因子、抗体等の有用物質の大量生産、疾患や欠損により失われた器官、組織、細胞を補う再生医療等を実施する際に利用することができる。
 また、本発明の培地組成物を用いると、細胞または組織を生体内に近い環境に維持できるため、細胞や組織の保存および輸送に有用である。例えば、プレート上で細胞を接着培養し、これをそのまま輸送する場合、輸送中の振動により、細胞がプレートから剥離する等して、細胞が有する本来の機能が低下する場合があったが、本発明の培地組成物は、ナノファイバーが三次元のネットワークを形成し、これが細胞を支えることにより、細胞を浮遊した状態で保持できるため、輸送中の振動によるプレートからの剥離等による細胞のダメージを回避し、細胞の本来の機能を維持した状態で細胞を保存および輸送することができる。
培地組成物でHepG2細胞のスフェアを培養したところ、スフェアが均一に分散され、かつ浮遊状態にて培養できることを示す図である。 培地組成物でHeLa細胞のスフェアを培養したところ、スフェアが均一に分散され、かつ浮遊状態にて培養できることを示す図である。 培地組成物でHeLa細胞のスフェアを培養し、本スフェアを顕微鏡観察したところ、既存の培地に比べてスフェア同士の会合が抑えられることを示す図である。 培地組成物でHepG2細胞を付着させたマイクロキャリアを培養したところ、HepG2細胞がマイクロキャリア上で増殖できることを示す図である。 培地組成物にHeLa細胞のスフェアを添加した際に、スフェアが均一に分散され、かつ浮遊状態にあることを示す図である。 培地組成物によりHeLa細胞のスフェアが形成されることを示す図である。 構造体の一態様であるフィルムを示す図である。培地組成物に対する脱アシル化ジェランガムの濃度は、0.02%(重量/容量)。 培地組成物によりHepG2細胞のスフェアが形成されることを示す図である。 HepG2細胞を付着させたラミニンコートGEMを培地組成物で培養した際の浮遊状態を示す図である。 HepG2細胞を包埋したアルギン酸ビーズを培地組成物で培養した際の浮遊状態を示す図である。 HepG2細胞を包埋したコラーゲンゲルカプセルを培地組成物で培養した際の浮遊状態を示す図である。 培地組成物でイネ由来カルスを培養した際の浮遊状態を示す図である。 25℃における各培地組成物の粘度を示す。 実施例1のMNC含有培地組成物の走査型電子顕微鏡写真を示す。 実施例2のPNC含有培地組成物の走査型電子顕微鏡写真を示す。 実施例3のCT含有培地組成物の走査型電子顕微鏡写真を示す。 実施例4のDAG含有培地組成物の走査型電子顕微鏡写真を示す。 実施例5のCar含有培地組成物の走査型電子顕微鏡写真を示す。室温にて乾燥。 実施例5のCar含有培地組成物の走査型電子顕微鏡写真を示す。110℃にて乾燥。 比較例3のXan含有培地組成物の走査型電子顕微鏡写真を示す。 比較例4のDU含有培地組成物の走査型電子顕微鏡写真を示す。 実施例1のMNC含有培地組成物中で、HepG2細胞のスフェアを6日間浮遊培養した後における、スフェアの分散状態の観察結果を示す。左から、MNC濃度が、0.01、0.03、0.05、0.07及び0.1w/v%である。 実施例2のPNC含有培地組成物中で、HepG2細胞のスフェアを6日間浮遊培養した後における、スフェアの分散状態の観察結果を示す。左から、PNC濃度が、0.01、0.03、0.05、0.07及び0.1w/v%である。 実施例3のCT含有培地組成物中で、HepG2細胞のスフェアを6日間浮遊培養した後における、スフェアの分散状態の観察結果を示す。左から、CT濃度が、0.01、0.03、0.05、0.07及び0.1w/v%である。 実施例4のDAG含有培地組成物中で、HepG2細胞のスフェアを6日間浮遊培養した後における、スフェアの分散状態の観察結果を示す。左から、DAG濃度が、0.01、0.03、0.05、0.07及び0.1w/v%である。 実施例5のCar含有培地組成物中で、HepG2細胞のスフェアを6日間浮遊培養した後における、スフェアの分散状態の観察結果を示す。左から、Car濃度が、0.01、0.03、0.05、0.07及び0.1w/v%である。 実施例5のXan含有培地組成物中で、HepG2細胞のスフェアを6日間浮遊培養した後における、スフェアの分散状態の観察結果を示す。左から、Xan濃度が、0.01、0.03、0.05、0.07及び0.1w/v%である。 比較例4のDU含有培地組成物中で、HepG2細胞のスフェアを6日間浮遊培養した後における、スフェアの分散状態の観察結果を示す。左から、DU濃度が、0.01、0.03、0.05、0.07及び0.1w/v%である。 比較例5のAlg含有培地組成物中で、HepG2細胞のスフェアを6日間浮遊培養した後における、スフェアの分散状態の観察結果を示す。左から、Alg濃度が、0.01、0.03、0.05、0.07及び0.1w/v%である。 MCF7細胞を、実施例1’及び比較例5’の培地組成物中で浮遊培養を開始して6日目におけるRLU値を示す。 MCF7細胞を、実施例2’及び3’の培地組成物中で浮遊培養を開始して6日目におけるRLU値を示す。 MCF7細胞を、実施例4’及び実施例5’の培地組成物中で浮遊培養を開始して6日目におけるRLU値を示す。 MCF7細胞を、比較例3’及び4’の培地組成物中で浮遊培養を開始して6日目におけるRLU値を示す。 A375細胞を、実施例1’及び比較例5’の培地組成物中で浮遊培養を開始して6日目におけるRLU値を示す。 A375細胞を、実施例2’及び3’の培地組成物中で浮遊培養を開始して6日目におけるRLU値を示す。 A375細胞を、実施例4’及び実施例5’の培地組成物中で浮遊培養を開始して6日目におけるRLU値を示す。 A375細胞を、比較例3’及び4’の培地組成物中で浮遊培養を開始して6日目におけるRLU値を示す。 浮遊培養開始2日目における、各培地組成物中におけるMCF7細胞の分散状態を顕微鏡観察した結果である。 浮遊培養開始2日目における、各培地組成物中におけるA375細胞の分散状態を顕微鏡観察した結果である。 浮遊培養開始4日目における、各培地組成物中におけるMDCK細胞の分散状態を顕微鏡観察した結果である。
 以下、更に詳細に本発明を説明する。
 本明細書において用いる用語につき、以下の通り定義する。
 本発明における細胞とは、動物或いは植物を構成する最も基本的な単位であり、その要素として細胞膜の内部に細胞質と各種の細胞小器官をもつものである。この際、DNAを内包する核は、細胞内部に含まれても含まれなくてもよい。例えば、本発明における動物由来の細胞には、***や卵子などの生殖細胞、生体を構成する体細胞、幹細胞、前駆細胞、生体から分離された癌細胞、生体から分離され不死化能を獲得して体外で安定して維持される細胞(細胞株)、生体から分離され人為的に遺伝子改変が成された細胞、生体から分離され人為的に核が交換された細胞等が含まれる。生体を構成する体細胞の例としては、以下に限定されるものではないが、繊維芽細胞、骨髄細胞、Bリンパ球、Tリンパ球、好中球、赤血球、血小板、マクロファージ、単球、骨細胞、骨髄細胞、周皮細胞、樹枝状細胞、ケラチノサイト、脂肪細胞、間葉細胞、上皮細胞、表皮細胞、内皮細胞、血管内皮細胞、肝実質細胞、軟骨細胞、卵丘細胞、神経系細胞、グリア細胞、ニューロン、オリゴデンドロサイト、マイクログリア、星状膠細胞、心臓細胞、食道細胞、筋肉細胞(たとえば、平滑筋細胞または骨格筋細胞)、膵臓ベータ細胞、メラニン細胞、造血前駆細胞、及び単核細胞等が含まれる。当該体細胞は、例えば皮膚、腎臓、脾臓、副腎、肝臓、肺、卵巣、膵臓、子宮、胃、結腸、小腸、大腸、脾臓、膀胱、前立腺、精巣、胸腺、筋肉、結合組織、骨、軟骨、血管組織、血液、心臓、眼、脳または神経組織などの任意の組織から採取される細胞が含まれる。幹細胞とは、自分自身を複製する能力と他の複数系統の細胞に分化する能力を兼ね備えた細胞であり、その例としては、以下に限定されるものではないが、胚性幹細胞(ES細胞)、胚性腫瘍細胞、胚性生殖幹細胞、人工多能性幹細胞(iPS細胞)、神経幹細胞、造血幹細胞、間葉系幹細胞、肝幹細胞、膵幹細胞、筋幹細胞、生殖幹細胞、腸幹細胞、癌幹細胞、毛包幹細胞などが含まれる。前駆細胞とは、前記幹細胞から特定の体細胞や生殖細胞に分化する途中の段階にある細胞である。癌細胞とは、体細胞から派生して無限の増殖能を獲得した細胞である。細胞株とは、生体外での人為的な操作により無限の増殖能を獲得した細胞であり、その例としては、以下に限定されるものではないが、CHO(チャイニーズハムスター卵巣細胞株)、HCT116、Huh7、HEK293(ヒト胎児腎細胞)、HeLa(ヒト子宮癌細胞株)、HepG2(ヒト肝癌細胞株)、UT7/TPO(ヒト白血病細胞株)、MDCK、MDBK、BHK、C-33A、HT-29、AE-1、3D9、Ns0/1、Jurkat、NIH3T3、PC12、S2、Sf9、Sf21、High Five(登録商標)、Vero等が含まれる。
 本発明における植物由来の細胞には、植物体の各組織から分離した細胞が含まれ、当該細胞から細胞壁を人為的に除いたプロトプラストも含まれる。
 本発明における組織とは、何種類かの異なった性質や機能を有する細胞が一定の様式で集合した構造の単位であり、動物の組織の例としては、上皮組織、結合組織、筋組織、神経組織等が含まれる。植物の組織の例としては、***組織、表皮組織、同化組織、葉肉組織、通道組織、機械組織、柔組織、脱分化した細胞塊(カルス)等が含まれる。
 細胞及び/又は組織を培養するに際し、培養する細胞及び/又は組織は、前記に記載した細胞及び/又は組織から任意に選択して培養することができる。細胞及び/又は組織は、動物或いは植物体より直接採取することができる。細胞及び/又は組織は、特定の処理を施すことにより動物或いは植物体から誘導させたり、成長させたり、または形質転換させた後に採取してもよい。この際、当該処理は生体内であっても生体外であってもよい。動物としては、例えば魚類、両生類、爬虫類、鳥類、汎甲殻類、六脚類、哺乳類等が挙げられる。哺乳動物の例としては、限定されるものではないが、ラット、マウス、ウサギ、モルモット、リス、ハムスター、ハタネズミ、カモノハシ、イルカ、クジラ、イヌ、ネコ、ヤギ、ウシ、ウマ、ヒツジ、ブタ、ゾウ、コモンマーモセット、リスザル、アカゲザル、チンパンジーおよびヒトが挙げられる。植物としては、採取した細胞及び/又は組織が液体培養可能なものであれば、特に限定はない。例えば、生薬類(例えば、サポニン、アルカロイド類、ベルベリン、スコポリン、植物ステロール等)を生産する植物(例えば、薬用人参、ニチニチソウ、ヒヨス、オウレン、ベラドンナ等)や、化粧品・食品原料となる色素や多糖体(例えば、アントシアニン、ベニバナ色素、アカネ色素、サフラン色素、フラボン類等)を生産する植物(例えば、ブルーベリー、紅花、セイヨウアカネ、サフラン等)、或いは医薬品原体を生産する植物などがあげられるが、それらに限定されない。
 本発明において、細胞及び/又は組織の浮遊とは、培養容器に対して細胞及び/又は組織が接着しない状態(非接着)であることをいう。さらに、本発明において、細胞及び/又は組織を増殖、分化或いは維持させる際、液体培地組成物に対する外部からの圧力や振動或いは当該組成物中での振とう、回転操作等を伴わずに細胞及び/又は組織が当該液体培地組成物中で均一に分散し尚且つ浮遊状態にある状態を「浮遊静置」といい、当該状態で細胞及び/又は組織を培養することを「浮遊静置培養」という。「浮遊静置」において浮遊させることのできる期間としては、少なくとも5分以上、好ましくは、1時間以上、24時間以上、48時間以上、6日以上、21日以上であるが、浮遊状態を保つ限りこれらの期間に限定されない。
 好ましい態様において、本発明の培地組成物は、細胞や組織の維持や培養が可能な温度範囲(例えば、0~40℃)の少なくとも1点において、細胞及び/又は組織の浮遊静置が可能である。本発明の培地組成物は、好ましくは25~37℃の温度範囲の少なくとも1点において、最も好ましくは37℃において、細胞及び/又は組織の浮遊静置が可能である。
 浮遊静置が可能か否かは、例えば、ポリスチレンビーズ(Size 500-600μm、Polysciences Inc.製)を、評価対象の培地組成物中に均一に分散させ、25℃にて静置し、少なくとも5分以上(好ましくは、24時間以上、48時間以上)、当該細胞の浮遊状態が維持されるか否かを観察することにより、評価することができる。
 本発明の培地組成物は、細胞または組織を浮遊させて培養できる(好ましくは浮遊静置培養できる)ナノファイバーと培地を含有する組成物である。
 当該培地組成物は、好ましくは、培養時の培地組成物の交換処理及び培養終了後において細胞または組織の回収が可能である組成物であり、より好ましくは、細胞または組織の回収の際に、温度変化、化学処理、酵素処理、せん断力のいずれも必要としない組成物である。
[ナノファイバー]
 本発明の培地組成物中に含まれるナノファイバーは、液体培地中で、細胞及び/又は組織を均一に浮遊させる効果を示すものである。より詳細には、低分子化合物や高分子化合物が共有結合やイオン結合、静電相互作用や疎水性相互作用、ファンデルワールス力などを介して集合及び自己組織化し液体培地中でナノファイバーを形成したもの、あるいは、高分子化合物からなる比較的大きな繊維構造体を高圧処理などにより微細化することにより得られたナノファイバー等が、本発明の培地組成物中に含まれるナノファイバーとして挙げられる。理論には拘束されないが、本発明の培地組成物においては、ナノファイバーが三次元のネットワークを形成し、これが細胞や組織を支えることにより、細胞や組織の浮遊状態が維持される。
 本明細書において、ナノファイバーとは、平均繊維径(D)が、0.001乃至1.00μmの繊維をいう。本発明に用いるナノファイバーの平均繊維径は、好ましくは、0.005乃至0.50μm、より好ましくは0.01乃至0.05μm、更に好ましくは0.01乃至0.02μmである。平均繊維径が0.001μm未満であると、ナノファイバーが微細すぎることにより浮遊効果が得られない恐れがあり、それを含有する培地組成物の特性の改善につながらない可能性がある。
 本発明に用いるナノファイバーのアスペクト比(L/D)は、平均繊維長/平均繊維径より得られ、通常2~500であり、好ましくは5~300であり、より好ましくは10~250である。アスペクト比が2未満の場合には、培地組成物中での分散性に欠け、浮遊作用が充分に得られない恐れがある。500を超える場合には、繊維長が極めて大きくなることを意味することから、当該組成物の粘度を上昇させることにより培地交換など継代操作に支障をきたす恐れがある。また、培地組成物が可視光を透過しづらくなることから透明性の低下につながり、培養細胞の経時的な観察が困難となることや吸光・蛍光・発光などを用いた細胞評価に支障をきたす可能性がある。
 尚、本明細書中、ナノファイバーの平均繊維径(D)は以下のようにして求めた。まず応研商事(株)製コロジオン支持膜を日本電子(株)製イオンクリーナ(JIC-410)で3分間親水化処理を施し、評価対象のナノファイバー分散液(超純水にて希釈)を数滴滴下し、室温乾燥した。これを(株)日立製作所製透過型電子顕微鏡(TEM、H-8000)(10,000倍)にて加速電圧200kVで観察し、得られた画像を用いて、標本数:200~250本のナノファイバーについて一本一本の繊維径を計測し、その数平均値を平均繊維径(D)とした。
 また、平均繊維長(L)は、以下のようにして求めた。評価対象ナノファイバー分散液を純水により100ppmとなるように希釈し、超音波洗浄機を用いてナノファイバーを均一に分散させた。このナノファイバー分散液を予め濃硫酸を用いて表面を親水化処理したシリコンウェハー上へキャストし、110℃にて1時間乾燥させて試料とした。得られた試料の日本電子(株)製走査型電子顕微鏡(SEM、JSM-7400F)(2,000倍)で観察した画像を用いて、標本数:150~250本のナノファイバーについて一本一本の繊維長を計測し、その数平均値を平均繊維長(L)とした。
 本発明に用いるナノファイバーは、液体培地と混合した際、一次繊維径を保ちながら当該ナノファイバーが当該液体中で均一に分散し、当該液体の粘度を実質的に高めること無く細胞及び/又は組織を実質的に保持し、その沈降を防ぐ効果を有する。液体の粘度を実質的に高めないとは、液体の粘度が8mPa・sを上回らないことを意味する。この際の当該液体の粘度(すなわち、本発明の製造方法により製造される培地組成物の粘度)は、8mPa・s以下であり、好ましくは4mPa・s以下であり、より好ましくは2mPa・s以下である。さらに、当該ナノファイバーを液体培地中に分散させた際、当該液体の粘度を実質的に高めること無く細胞及び/又は組織を均一に浮遊させる(好ましくは浮遊静置させる)効果を示すものであれば、ナノファイバーの化学構造、分子量、物性等は何ら制限されない。
 ナノファイバーを含む液体の粘度は、例えば後述の実施例に記載の方法で測定することができる。具体的には、25℃条件下で音叉振動式粘度測定(SV-1A、A&D Company Ltd.)を用いて評価することができる。
 ナノファイバーを構成する原料の例としては、特に制限されるものではないが、低分子化合物や高分子化合物が挙げられる。
 本発明に用いる低分子化合物の好ましい具体例としては、特に制限されるものではないが、例えば、L-イソロイシン誘導体やL-バリン誘導体、L-リシン誘導体などのアミノ酸誘導体、trans-1,2-ジアミノシクロヘキサンジアミド誘導体等のシクロヘキサンジアミン誘導体、5-アミノイソフタル酸誘導体、R-12-ヒドロキシステアリン酸、1,3,5-ベンゼントリカルボキサイミド、cis-1,3,5-シクロヘキサントリカルボキサミド、2,4-ジベンジリデン-D-ソルビトール、N-ラウロイル-L-グルタミン酸-α,γ-ビス-n-ブチルアミド、デヒドロアビエチン酸カルシウム等の低分子ゲル化剤を挙げることができる。
 本発明に用いる高分子化合物の好ましい具体例としては、特に制限されるものではないが、例えば多糖類、ポリペプチド等が挙げられる。
 多糖類とは、単糖類(例えば、トリオース、テトロース、ペントース、ヘキソース、ヘプトース等)が10個以上重合した糖重合体を意味する。多糖類には、非水溶性多糖類及び水溶性多糖類が包含される。
 非水溶性多糖類としては、セルロース、ヘミセルロース等のセルロース類;キチン、キトサン等のキチン質等が挙げられるが、これらに限定されない。
 水溶性多糖類としては、アニオン性の官能基を有する酸性多糖類が挙げられる。アニオン性の官能基を有する酸性多糖類としては、特に制限されないが、例えば、構造中にウロン酸(例えば、グルクロン酸、イズロン酸、ガラクツロン酸、マンヌロン酸)を有する多糖類;構造中に硫酸又はリン酸を有する多糖類、或いはその両方の構造を持つ多糖類等が挙げられる。より具体的には、ヒアルロン酸、ジェランガム、脱アシル化ジェランガム(DAG)、ラムザンガム、ダイユータンガム、キサンタンガム、カラギーナン、ザンタンガム、ヘキスロン酸、フコイダン、ペクチン、ペクチン酸、ペクチニン酸、ヘパラン硫酸、ヘパリン、ヘパリチン硫酸、ケラト硫酸、コンドロイチン硫酸、デルマタン硫酸、ラムナン硫酸、アルギン酸及びそれらの塩からなる群より1種又は2種以上から構成されるものが例示される。
 ここでいう塩としては、リチウム、ナトリウム、カリウムといったアルカリ金属の塩;カルシウム、バリウム、マグネシウムといったアルカリ土類金属の塩;アルミニウム、亜鉛、銅、鉄等の塩;アンモニウム塩;テトラエチルアンモニウム、テトラブチルアンモニウム、メチルトリブチルアンモニウム、セチルトリメチルアンモニウム、ベンジルメチルヘキシルデシルアンモニウム、コリン等の四級アンモニウム塩;ピリジン、トリエチルアミン、ジイソプロピルアミン、エタノールアミン、ジオラミン、トロメタミン、メグルミン、プロカイン、クロロプロカイン等の有機アミンとの塩;グリシン、アラニン、バリン等のアミノ酸との塩等が挙げられる。
 ポリペプチドとしては、生体において繊維を構成するポリペプチドが挙げられる。具体的には、コラーゲン、エラスチン、ミオシン、ケラチン、アミロイド、フィブロイン、アクチン、チューブリン等が挙げられるが、これらに限定されない。
 本発明に用いるナノファイバーを構成する原料としては、天然由来の物質のみならず、微生物により産生された物質、遺伝子工学的に産生された物質、或いは酵素や化学反応を用いて人工的に合成された物質も含まれる。本発明に用いるナノファイバーを構成する原料は、好ましくは天然由来の物質(即ち、天然より抽出された物質)、又はこれを化学反応又は酵素反応により修飾することにより得られた物質である。
 一態様において、多糖類は非水溶性多糖類である。好ましい非水溶性多糖類としては、セルロース;キチン、キトサン等のキチン質が挙げられる。培地組成物の粘度を低くできる点と細胞または組織の回収のしやすさの点を考慮すると、セルロース及びキチンが最も好ましい。
 セルロースとは、ブドウ糖の6員環であるD-グルコピラノースがβ-1、4グルコシド結合した天然高分子化合物である。原料としては、例えば、木材、竹、麻、ジュート、ケナフ、コットン、農作物・食物残渣など植物由来のセルロース、又はバクテリアセルロース、シオグサ(クラドフォラ)、灰色植物(グラウコキスチス)、バロニア、ホヤセルロースなど、微生物産生若しくは動物産生のセルロースを使用することができる。植物由来のセルロースはミクロフィブリルと呼ばれる非常に細い繊維がさらに束になりフィブリル、ラメラ、繊維細胞と段階的に高次構造を形成している。また、バクテリアセルロースは菌細胞から分泌されたセルロースのミクロフィブリルが、そのままの太さで微細な網目構造を形成している。
 本発明において、コットンやバクテリアセルロースなど高純度のセルロース原料は原料のまま用いる事ができるが、これ以外の植物由来のセルロースなどは、単離・精製したものを用いる事が好ましい。本発明において好適に用いられるセルロースは、コットンセルロース、バクテリアセルロース、クラフトパルプセルロース、微結晶セルロース等である。特に、高い浮遊作用を有することから、クラフトパルプセルロースが好適に用いられる。
 キチン質とは、キチン及びキトサンからなる群より選ばれる1以上の糖質をいう。キチン及びキトサンを構成する主要な糖単位は、それぞれ、N-アセチルグルコサミン及びグルコサミンであり、一般的に、N-アセチルグルコサミンの含有量が多く酸性水溶液に対し難溶性であるものがキチン、グルコサミンの含有量が多く酸性水溶液に対し可溶性であるものがキトサンとされる。本明細書においては、便宜上、構成糖に占めるN-アセチルグルコサミンの割合が50%以上のものをキチン、50%未満のものをキトサンと呼ぶ。高い浮遊作用を達成する観点から、キチンを構成する糖単位に占めるN-アセチルグルコサミンの割合が高いほど好ましい。キチンを構成する糖単位に占めるN-アセチルグルコサミンの割合は、好ましくは80%以上、より好ましくは90%以上、更に好ましくは98%以上、最も好ましくは100%である。
 キチンの原料としては、例えば、エビ、カニ、昆虫、貝、キノコなど、多くの生物資源を用いることができる。本発明に用いるキチンは、カニ殻やエビ殻由来のキチンなどのα型の結晶構造を有するキチンであってもよく、イカの甲由来のキチンなどのβ型の結晶構造を有するキチンであってもよい。カニやエビの外殻は産業廃棄物として扱われることが多く、入手容易でしかも有効利用の観点から原料として好ましいが、不純物として含まれるタンパク質や灰分等の除去のために脱タンパク工程および脱灰工程が必要となる。そこで、本発明においては、既に脱マトリクス処理が施された精製キチンを用いることが好ましい。精製キチンは、市販されている。
 一態様において、多糖類は水溶性多糖類である。好ましい水溶性多糖類としては、脱アシル化ジェランガム、カラギーナン等が挙げられる。高い浮遊作用を達成する観点から、脱アシル化ジェランガムが最も好ましい。
 脱アシル化ジェランガムとは、1-3結合したグルコース、1-4結合したグルクロン酸、1-4結合したグルコース及び1―4結合したラムノースの4分子の糖を構成単位とする直鎖状の高分子多糖類であり、以下の一般式(I)において、R1、R2が共に水素原子であり、nは2以上の整数で表わされる多糖類である。ただし、R1がグリセリル基を、R2がアセチル基を含んでいてもよいが、アセチル基及びグリセリル基の含有量は、好ましくは10%以下であり、より好ましくは1%以下である。
Figure JPOXMLDOC01-appb-C000001
 ジェランガムの製造方法としては、発酵培地で生産微生物を培養し、菌体外に生産された粘膜物を通常の精製方法にて回収し、乾燥、粉砕等の工程後、粉末状にすればよい。また、脱アシル化ジェランガムは、発酵培地でジェランガムを生産する微生物を培養し、菌体外に生産された粘膜物を回収する。この際、粘膜物にアルカリ処理を施し、1-3結合したグルコース残基に結合したグリセリル基とアセチル基を脱アシル化した後に回収すればよい。回収された粘膜物からの脱アシル化ジェランガムの精製は、例えば、液-液抽出、分別沈澱、結晶化、各種のイオン交換クロマトグラフィー、セファデックスLH-20等を用いたゲル濾過クロマトグラフィー、活性炭、シリカゲル等による吸着クロマトグラフィーもしくは薄層クロマトグラフィーによる活性物質の吸脱着処理、あるいは逆相カラムを用いた高速液体クロマトグラフィー等を単独あるいは任意の順序に組み合わせ、また反復して用いることにより、実施することができる。ジェランガムの生産微生物の例としては、これに限定されるものではないが、スフィンゴモナス・エロディア(Sphingomonas elodea)及び当該微生物の遺伝子を改変した微生物が挙げられる。
 そして、脱アシル化ジェランガムの場合、市販のもの、例えば、三晶株式会社製「KELCOGEL(シーピー・ケルコ社の登録商標)CG-LA」、三栄源エフ・エフ・アイ株式会社製「ケルコゲル(シーピー・ケルコ社の登録商標)」等を使用することができる。
 本発明に用いる高分子化合物の重量平均分子量は、好ましくは1,000乃至50,000,000であり、より好ましくは10,000乃至20,000,000、更に好ましくは100,000乃至10,000,000である。例えば、当該分子量は、ゲル浸透クロマトグラフィー(GPC)によるポリエチレングリコール、またはプルラン換算や水溶液の粘度等から見積もることができる。
 本発明においては、上記高分子化合物を複数種(好ましくは2種)組み合わせて使用することができる。高分子化合物の組み合わせの種類は、培地組成物中でナノファイバーを形成し、或いはナノファイバーとして分散し、当該液体培地の粘度を実質的に高めること無く細胞及び/又は組織を浮遊させる(好ましくは浮遊静置させる)ことのできるものあれば特に限定されないが、好ましくは、当該組合せは少なくともセルロース、キチン、コラーゲン、又は脱アシル化ジェランガムを含む。即ち、好適な高分子化合物の組合せには、セルロース、キチン、コラーゲン、又は脱アシル化ジェランガム;及びそれ以外の高分子化合物(例、キサンタンガム、アルギン酸、カラギーナン、ダイユータンガム、メチルセルロース、ローカストビーンガム又はそれらの塩)が含まれる。
[ナノファイバーの調製]
 本発明の培地組成物は、上述の原料から調製されたナノファイバーを含む。ナノファイバーの調製方法は、原料として非水溶性の高分子化合物(例えば、セルロース、キチン等の非水溶性多糖類)を用いた場合と、水溶性の高分子化合物(例えば、脱アシル化ジェランガム等の水溶性多糖類)を用いた場合とで異なる。
 ナノファイバーの原料が非水溶性の高分子化合物(例えば、セルロース、キチン等の非水溶性多糖類)である場合、通常は、当該原料を粉砕することにより、ナノファイバーを得る。粉砕方法は限定されないが、本発明の目的に合う後述する繊維径・繊維長にまで微細化するには、高圧ホモジナイザー、グラインダー(石臼)、あるいはビーズミルなどの媒体撹拌ミルといった、強いせん断力が得られる方法が好ましい。
 これらの中でも高圧ホモジナイザーを用いて微細化することが好ましく、例えば特開2005-270891号公報や特許第5232976号に開示されるような湿式粉砕法を用いて微細化(粉砕化)することが望ましい。具体的には、原料を分散させた分散液を、一対のノズルから高圧でそれぞれ噴射して衝突させることにより、原料を粉砕するものであって、例えばスターバーストシステム((株)スギノマシン製の高圧粉砕装置)やナノヴェイタ(吉田機械興業(株)の高圧粉砕装置)を用いることにより実施できる。
 前述の高圧ホモジナイザーを用いて原料を微細化(粉砕化)する際、微細化や均質化の程度は、高圧ホモジナイザーの超高圧チャンバーへ圧送する圧力と、超高圧チャンバーに通過させる回数(処理回数)、及び水分散液中の原料の濃度に依存することとなる。圧送圧力(処理圧力)は、通常、50~250MPaであり、好ましくは150~245MPaである。圧送圧力が50MPa未満の場合には、ナノファイバーの微細化が不充分となり、微細化により期待される効果が得られない恐れがある。
 また、微細化処理時の水分散液中の原料の濃度は0.1質量%~30質量%、好ましくは1質量%~10質量%である。水分散液中の原料の濃度が0.1質量%未満だと生産性が低く、30質量%より高い濃度だと粉砕効率が低く、所望のナノファイバーが得られない。微細化(粉砕化)の処理回数は、特に限定されず、前記水分散液中の原料の濃度にもよるが、原料の濃度が0.1~1質量%の場合には処理回数は10~100回程度で充分に微細化されるが、1~10質量%では10~1000回程度必要となる。また、30質量%を超える高濃度な場合は、数千回以上の処理回数が必要となることや、取扱いに支障をきたす程度まで高粘度化が進むため、工業的観点から非現実的である。
 ナノファイバーの原料が水溶性の高分子化合物(例えば、脱アシル化ジェランガム等の水溶性多糖類)を用いた場合、当該物質を培地中に添加すると、当該物質が培地中の金属カチオンを介して集合し、培地中でナノファイバーを形成し、これが三次元ネットワークを構築することにより、結果として、細胞または組織を浮遊させて培養できるナノファイバーが形成される。
 本発明の培地組成物中におけるナノファイバーの濃度は、培地の粘度を実質的に高めること無く細胞及び/又は組織を浮遊させる(好ましくは浮遊静置させる)ことのできるように、適宜設定することができるが、通常は、0.0001%乃至1.0%(重量/容量)、例えば0.0005%乃至1.0%(重量/容量)、好ましくは0.001%乃至0.5%(重量/容量)、より好ましくは0.005%乃至0.1%(重量/容量)、さらに好ましくは0.005%乃至0.05%(重量/容量)の範囲内である。
 例えば、セルロースナノファイバーの場合、通常0.0001%乃至1.0%(重量/容量)、例えば0.0005%乃至1.0%(重量/容量)、好ましくは0.001%乃至0.5%(重量/容量)、より好ましくは0.01%乃至0.1%(重量/容量)、更に好ましくは、0.01%乃至0.05%(重量/容量)培地中に添加すれば良い。
 セルロースナノファイバーのうちパルプセルロースナノファイバーの場合、培地中の濃度の下限値は、浮遊作用発現の観点及び、浮遊静置培養を可能にする観点から、好ましくは、0.01%(重量/容量)以上、0.015%(重量/容量)以上、0.02%(重量/容量)以上、0.025%(重量/容量)以上、又は、0.03%(重量/容量)以上である。また、パルプセルロースナノファイバーの場合、培地中の濃度の上限値は、培地の粘度を実質的に高めない観点から、好ましくは0.1%(重量/容量)以下、又は0.04%(重量/容量)以下である。
 微結晶セルロースナノファイバーの場合、培地中の濃度の下限値は、浮遊作用発現の観点から、好ましくは0.01%(重量/容量)以上、0.03%(重量/容量)以上、又は0.05%(重量/容量)以上である。浮遊静置培養を可能にする観点からは、培地中の微結晶セルロースナノファイバー濃度の下限値は、好ましくは0.03%(重量/容量)以上、又は0.05%(重量/容量)以上である。また、微結晶セルロースナノファイバーの場合、培地中の濃度の上限値は、好ましくは、0.1%(重量/容量)以下である。
 キチンナノファイバーの場合、通常0.0001%乃至1.0%(重量/容量)、例えば0.0005%乃至1.0%(重量/容量)、好ましくは 0.001%乃至0.5%(重量/容量)、より好ましくは0.01%乃至0.1%(重量/容量)、最も好ましくは、0.03%乃至0.07%(重量/容量)培地中に添加すれば良い。浮遊作用発現の観点から、培地中のキチンナノファイバー濃度の下限値は、好ましくは0.0001%(重量/容量)以上、0.0003%(重量/容量)以上、0.0005%(重量/容量)以上、又は0.001%(重量/容量)以上である。浮遊静置培養を可能にする観点からは、培地中のキチンナノファイバーの下限値は、好ましくは0.03%(重量/容量)以上である。培地中のキチンナノファイバー濃度の上限値は、好ましくは、0.1%(重量/容量)以下である。
 セルロースナノファイバー、キチンナノファイバー等の非水溶性のナノファイバーについては、通常、0.1%(重量/容量)以下の濃度であれば、培地組成物の粘度を実質的に高めることはない。
 カラギーナンの場合、0.0005%乃至1.0%(重量/容量)、好ましくは 0.001%乃至0.5%(重量/容量)、より好ましくは0.01%乃至0.1%(重量/容量)、最も好ましくは、0.02%乃至0.1%(重量/容量)培地中に添加すれば良い。浮遊作用発現の観点及び、浮遊静置培養を可能にする観点から、培地中のカラギーナン濃度の下限値は、好ましくは、0.01%以上である。培地中のカラギーナン濃度の上限値は、好ましくは、0.1%(重量/容量)以下である。培地の粘度を実質的に高めない観点から、カラギーナンの上限値を、0.04%(重量/容量)以下とすることもまた好ましい。
 脱アシル化ジェランガムの場合、通常0.001%乃至1.0%(重量/容量)、例えば、0.005%乃至1.0%(重量/容量)、好ましくは0.003%乃至0.5%(重量/容量)、より好ましくは0.01%乃至0.1%(重量/容量)、更に好ましくは0.01乃至0.05%(重量/容量)、最も好ましくは、0.01%乃至0.02%(重量/容量)培地中に添加すれば良い。浮遊作用発現の観点から、培地中の脱アシル化ジェランガム濃度の下限値は、好ましくは0.005%(重量/容量)以上、又は0.01%以上である。浮遊静置培養を可能にする観点から、培地中の脱アシル化ジェランガム濃度の下限値は、好ましくは0.01%(重量/容量)以上である。培地の粘度を実質的に高めない観点から、培地中の脱アシル化ジェランガム濃度の上限値は、0.05%(重量/容量)以下である。培地の粘度を実質的に高めない観点から、脱アシル化ジェランガムの上限値を、0.04(重量/容量)%以下とすることもまた好ましい。
[多糖類の併用]
 上記ナノファイバーに加えて、多糖類を複数種(好ましくは2種)組み合わせて使用することもできる。多糖類の濃度は、当該液体培地の粘度を実質的に高めること無く細胞及び/又は組織を均一に浮遊させる(好ましくは浮遊静置させる)ことのできる範囲で、適宜設定することができる。例えば、ナノファイバーと多糖類との組合せを用いる場合、ナノファイバーの濃度としては0.005~0.1%(重量/容量)、好ましくは0.01~0.07%(重量/容量)が例示され、多糖類の濃度としては、0.005~0.4%(重量/容量)、好ましくは0.1~0.4%(重量/容量)が例示される。具体的な濃度範囲の組合せとしては、以下が例示される。
セルロースまたはキチンナノファイバー:0.005~0.1%(好ましくは0.01~0.07%)(重量/容量)
多糖類
キサンタンガム:0.1~0.4%(重量/容量)
アルギン酸ナトリウム:0.1~0.4%(重量/容量)(好ましくは0.0001~0.4%(重量/容量))
ローカストビーンガム:0.1~0.4%(重量/容量)
メチルセルロース:0.1~0.4%(重量/容量)(好ましくは0.2~0.4%(重量/容量))
カラギーナン:0.05~0.1%(重量/容量)
ダイユータンガム:0.05~0.1%(重量/容量)
ネイティブジェランガム:0.0001~0.4%(重量/容量)
 なお該濃度は、以下の式で算出できる。
 濃度(%)=ナノファイバーの重量(g)/培地組成物の容量(ml)×100
[金属カチオン]
 一態様において、本発明の培地組成物には、金属カチオン、例えば2価の金属カチオン(カルシウムイオン、マグネシウムイオン、亜鉛イオン、鉄イオンおよび銅イオン等)、好ましくはカルシウムイオンを含有する。特に、本発明の培地組成物に含まれるナノファイバーが、水溶性の高分子化合物(例えば、脱アシル化ジェランガム等の水溶性多糖類)から構成されているとき、本発明の培地組成物は上記金属カチオンを含むことが好ましい。金属カチオンが含まれることにより、当該水溶性の高分子化合物(例えば、脱アシル化ジェランガム等の水溶性多糖類)が金属カチオンを介して集合し、培地組成物中でナノファイバーを形成し、これが三次元ネットワークを構築することにより、結果として、細胞または組織を浮遊させて培養できるナノファイバーが形成されるからである。
[培地]
 本発明の培地組成物中に含まれる培地としては、例えばダルベッコ改変イーグル培地(Dulbecco’s Modified Eagles’s Medium;DMEM)、ハムF12培地(Ham’s Nutrient Mixture F12)、DMEM/F12培地、マッコイ5A培地(McCoy’s 5A medium)、イーグルMEM培地(Eagles’s Minimum Essential Medium;EMEM)、αMEM培地(alpha Modified Eagles’s Minimum Essential Medium;αMEM)、MEM培地(Minimum Essential Medium)、RPMI1640培地、イスコフ改変ダルベッコ培地(Iscove’s Modified Dulbecco’s Medium;IMDM)、MCDB131培地、ウィリアム培地E、IPL41培地、Fischer’s培地、StemPro34(インビトロジェン社製)、X-VIVO 10(ケンブレックス社製)、X-VIVO 15(ケンブレックス社製)、HPGM(ケンブレックス社製)、StemSpan H3000(ステムセルテクノロジー社製)、StemSpanSFEM(ステムセルテクノロジー社製)、StemlineII(シグマアルドリッチ社製)、QBSF-60(クオリティバイオロジカル社製)、StemProhESCSFM(インビトロジェン社製)、mTeSR1或いは2培地(ステムセルテクノロジー社製)、Sf-900II(インビトロジェン社製)、Opti-Pro(インビトロジェン社製)、などが挙げられる。
 細胞及び/又は組織が植物由来である場合、植物組織培養に通常用いられるムラシゲ・スクーグ(MS)培地、リンズマイヤー・スクーグ(LS)培地、ホワイト培地、ガンボーグB5培地、ニッチェ培地、ヘラー培地、モーレル培地等の基本培地、或いは、これら培地成分を至適濃度に修正した修正培地(例えば、アンモニア態窒素濃度を半分にする等)に、オーキシン類及び必要に応じてサイトカイニン類等の植物生長調節物質(植物ホルモン)を適当な濃度で添加した培地が培地として挙げられる。これらの培地には、必要に応じて、カゼイン分解酵素、コーンスティープリカー、ビタミン類等をさらに補充することができる。オーキシン類としては、例えば、3-インドール酢酸(IAA)、3-インドール酪酸(IBA)、1-ナフタレン酢酸(NAA)、2,4-ジクロロフェノキシ酢酸(2,4-D)等が挙げられるが、それらに限定されない。オーキシン類は、例えば、約0.1~約10ppmの濃度で培地に添加され得る。サイトカイニン類としては、例えば、カイネチン、ベンジルアデニン(BA)、ゼアチン等が挙げられるが、それらに限定されない。サイトカイニン類は、例えば、約0.1~約10ppmの濃度で培地に添加され得る。
 上記の培地には、ナトリウム、カリウム、カルシウム、マグネシウム、リン、塩素、各種アミノ酸、各種ビタミン、抗生物質、血清、脂肪酸、糖などを当業者は目的に応じて自由に添加してもよい。動物由来の細胞及び/又は組織培養の際には、当業者は目的に応じてその他の化学成分あるいは生体成分を一種類以上組み合わせて添加することもできる。動物由来の細胞及び/又は組織の培地に添加される成分としては、ウシ胎児血清、ヒト血清、ウマ血清、インシュリン、トランスフェリン、ラクトフェリン、コレステロール、エタノールアミン、亜セレン酸ナトリウム、モノチオグリセロール、2-メルカプトエタノール、ウシ血清アルブミン、ピルビン酸ナトリウム、ポリエチレングリコール、各種ビタミン、各種アミノ酸、寒天、アガロース、コラーゲン、メチルセルロース、各種サイトカイン、各種ホルモン、各種増殖因子、各種細胞外マトリックスや各種細胞接着分子などが挙げられる。培地に添加されるサイトカインとしては、例えばインターロイキン-1(IL-1)、インターロイキン-2(IL-2)、インターロイキン-3(IL-3)、インターロイキン-4(IL-4)、インターロイキン-5(IL-5)、インターロイキン-6(IL-6)、インターロイキン-7(IL-7)、インターロイキン-8(IL-8)、インターロイキン-9(IL-9)、インターロイキン-10(IL-10)、インターロイキン-11(IL-11)、インターロイキン-12(IL-12)、インターロイキン-13(IL-13)、インターロイキン-14(IL-14)、インターロイキン-15(IL-15)、インターロイキン-18(IL-18)、インターロイキン-21(IL-21)、インターフェロン-α(IFN-α)、インターフェロン-β(IFN-β)、インターフェロン-γ(IFN-γ)、顆粒球コロニー刺激因子(G-CSF)、単球コロニー刺激因子(M-CSF)、顆粒球-マクロファージコロニー刺激因子(GM-CSF)、幹細胞因子(SCF)、flk2/flt3リガンド(FL)、白血病細胞阻害因子(LIF)、オンコスタチンM(OM)、エリスロポエチン(EPO)、トロンボポエチン(TPO)などが挙げられるが、これらに限られるわけではない。
 培地に添加されるホルモンとしては、メラトニン、セロトニン、チロキシン、トリヨードチロニン、エピネフリン、ノルエピネフリン、ドーパミン、抗ミュラー管ホルモン、アディポネクチン、副腎皮質刺激ホルモン、アンギオテンシノゲン及びアンギオテンシン、抗利尿ホルモン、心房ナトリウム利尿性ペプチド、カルシトニン、コレシストキニン、コルチコトロピン放出ホルモン、エリスロポイエチン、卵胞刺激ホルモン、ガストリン、グレリン、グルカゴン、ゴナドトロピン放出ホルモン、成長ホルモン放出ホルモン、ヒト絨毛性ゴナドトロピン、ヒト胎盤性ラクトーゲン、成長ホルモン、インヒビン、インスリン、インスリン様成長因子、レプチン、黄体形成ホルモン、メラニン細胞刺激ホルモン、オキシトシン、副甲状腺ホルモン、プロラクチン、セクレチン、ソマトスタチン、トロンボポイエチン、甲状腺刺激ホルモン、チロトロピン放出ホルモン、コルチゾール、アルドステロン、テストステロン、デヒドロエピアンドロステロン、アンドロステンジオン、ジヒドロテストステロン、エストラジオール、エストロン、エストリオール、プロゲステロン、カルシトリオール、カルシジオール、プロスタグランジン、ロイコトリエン、プロスタサイクリン、トロンボキサン、プロラクチン放出ホルモン、リポトロピン、脳ナトリウム利尿ペプチド、神経ペプチドY、ヒスタミン、エンドセリン、膵臓ポリペプチド、レニン、及びエンケファリンが挙げられるが、これらに限られるわけではない。
 培地に添加される増殖因子としては、トランスフォーミング成長因子-α(TGF-α)、トランスフォーミング成長因子-β(TGF-β)、マクロファージ炎症蛋白質-1α(MIP-1α)、上皮細胞増殖因子(EGF)、繊維芽細胞増殖因子-1、2、3、4、5、6、7、8、又は9(FGF-1、2、3、4、5、6、7、8、9)、神経細胞増殖因子(NGF)肝細胞増殖因子(HGF)、白血病阻止因子(LIF)、プロテアーゼネキシンI、プロテアーゼネキシンII、血小板由来成長因子(PDGF)、コリン作動性分化因子(CDF)、ケモカイン、Notchリガンド(Delta1など)、Wnt蛋白質、アンジオポエチン様蛋白質2、3、5または7(Angpt2、3、5、7)、インスリン様成長因子(IGF)、インスリン様成長因子結合蛋白質(IGFBP)、プレイオトロフィン(Pleiotrophin)などが挙げられるが、これらに限られるわけではない。
 また、遺伝子組替え技術によりこれらのサイトカインや増殖因子のアミノ酸配列を人為的に改変させたものも添加させることもできる。その例としては、IL-6/可溶性IL-6受容体複合体あるいはHyper IL-6(IL-6と可溶性IL-6受容体との融合タンパク質)などが挙げられる。
 各種細胞外マトリックスや各種細胞接着分子の例としては、コラーゲンI乃至XIX、フィブロネクチン、ビトロネクチン、ラミニン-1乃至12、ニトジェン、テネイシン、トロンボスポンジン,フォンビルブランド(von Willebrand)因子、オステオポンチン、フィブリノーゲン、各種エラスチン、各種プロテオグリカン、各種カドヘリン、デスモコリン、デスモグレイン、各種インテグリン、E-セレクチン、P-セレクチン、L-セレクチン、免疫グロブリンスーパーファミリー、マトリゲル、ポリ-D-リジン、ポリ-L-リジン、キチン、キトサン、セファロース、ヒアルロン酸、アルギン酸ゲル、各種ハイドロゲル、さらにこれらの切断断片などが挙げられる。
 培地に添加される抗生物質の例としては、サルファ製剤、ペニシリン、フェネチシリン、メチシリン、オキサシリン、クロキサシリン、ジクロキサシリン、フルクロキサシリン、ナフシリン、アンピシリン、ペニシリン、アモキシシリン、シクラシリン、カルベニシリン、チカルシリン、ピペラシリン、アズロシリン、メクズロシリン、メシリナム、アンジノシリン、セファロスポリン及びその誘導体、オキソリン酸、アミフロキサシン、テマフロキサシン、ナリジクス酸、ピロミド酸、シプロフロキサン、シノキサシン、ノルフロキサシン、パーフロキサシン、ロザキサシン、オフロキサシン、エノキサシン、ピペミド酸、スルバクタム、クラブリン酸、β-ブロモペニシラン酸、β-クロロペニシラン酸、6-アセチルメチレン-ペニシラン酸、セフォキサゾール、スルタンピシリン、アディノシリン及びスルバクタムのホルムアルデヒド・フードラートエステル、タゾバクタム、アズトレオナム、スルファゼチン、イソスルファゼチン、ノルカディシン、m-カルボキシフェニル、フェニルアセトアミドホスホン酸メチル、クロルテトラサイクリン、オキシテトラサイクリン、テトラサイクリン、デメクロサイクリン、ドキシサイクリン、メタサイクリン、並びにミノサイクリンが挙げられる。
[培地組成物の製造方法]
 上記ナノファイバーを、液体培地の粘度を実質的に高めること無く細胞及び/又は組織を均一に浮遊させる(好ましくは浮遊静置させる)ことのできる濃度となるように、細胞及び/又は組織を培養する際に用いられる培地と混合することにより、上記本発明の培地組成物を製造することができる。本発明は、かかる本発明の培地組成物の製造方法をも提供する。
 当該ナノファイバーの形状は、粉末、錠剤、丸剤、カプセル剤、顆粒剤のような製剤化された固体、適切な生理的な水性溶媒中の分散液のような液体、又は基板や単体に結合させた状態であり得る。製剤化される際の添加物としては、p-ヒドロキシ安息香酸エステル類等の防腐剤;乳糖、ブドウ糖、ショ糖、マンニット等の賦形剤;ステアリン酸マグネシウム、タルク等の滑沢剤;ポリビニルアルコール、ヒドロキシプロピルセルロース、ゼラチン等の結合剤;脂肪酸エステル等の界面活性剤;グリセリン等の可塑剤等が挙げられる。これらの添加物は上記のものに限定されることはなく、当業者が利用可能であれば自由に選択することができる。滅菌方法は特に制限はなく、例えば、放射線滅菌、エチレンオキサイドガス滅菌、オートクレーブ滅菌、フィルター滅菌等が挙げられる。
 好ましい態様において、上記ナノファイバーの生理的な水性溶媒中の分散液と、液体培地とを混合することにより、本発明の培地組成物を調製する。該分散液は、滅菌(オートクレーブ、ガンマ線滅菌等)されていてもよい。あるいは、該分散液と、粉末培地を水に溶かして調製した液体培地(培地の水溶液)とを混合した後に、滅菌して使用してもよい。該分散液と液体培地の滅菌は、混合する前に、別々に行ってもよい。水性溶媒の例としては、水、ジメチルスルホキシド(DMSO)などが挙げられるが、これらに限られるわけではない。水性溶媒としては、水が好ましい。水性溶媒中には、適切な緩衝剤や塩が含まれていてもよい。上記ナノファイバーの分散液は、本発明の培地組成物を調製するための培地添加剤として有用である。本発明は、かかる培地添加剤をも提供する。
 混合比率は、ナノファイバーの分散液:液体培地(培地の水溶液)が、通常1:99~99:1、好ましくは10:90~90:10、より好ましくは、20:80~80:20である。
 尚、ナノファイバーが、水溶性の高分子化合物(例えば、脱アシル化ジェランガム等の水溶性多糖類)から構成されている場合には、当該ナノファイバーと培地とを混合する代わりに、当該水溶性の高分子化合物(例えば、脱アシル化ジェランガム等の水溶性多糖類)と培地とを混合して、当該培地中でナノファイバーを形成させることにより、本発明の培地組成物を製造してもよい。当該高分子化合物の形状は、粉末、錠剤、丸剤、カプセル剤、顆粒剤のような製剤化された固体、適切な溶媒並びに溶解剤で溶解した溶液あるいは懸濁液のような液体、又は基板や担体に結合させた状態であり得る。製剤化される際の添加物としては、p-ヒドロキシ安息香酸エステル類等の防腐剤;乳糖、ブドウ糖、ショ糖、マンニット等の賦形剤;ステアリン酸マグネシウム、タルク等の滑沢剤;ポリビニルアルコール、ヒドロキシプロピルセルロース、ゼラチン等の結合剤;脂肪酸エステル等の界面活性剤;グリセリン等の可塑剤等が挙げられる。これらの添加物は上記のものに限定されることはなく、当業者が利用可能であれば自由に選択することができる。
 また、上記高分子化合物は、必要に応じて滅菌処理を施してもよい。滅菌方法は特に制限はなく、例えば、放射線滅菌、エチレンオキサイドガス滅菌、オートクレーブ滅菌、フィルター滅菌等が挙げられる。
 好ましい態様において、水溶性の高分子化合物(例えば、脱アシル化ジェランガム等の水溶性多糖類)の水溶液(これを、培地添加剤2とする。)が、本発明の製造方法に用いられる。当該水溶液は、水溶性の高分子化合物の固体(例、粉末)を、生理的な水性溶媒に溶解することにより、得ることができる。水性溶媒の例としては、水、ジメチルスルホキシド(DMSO)などが挙げられるが、これらに限られるわけではない。水性溶媒としては、水が好ましい。
 水性溶媒中には、適切な緩衝剤や塩が含まれていてもよい。該水性溶媒には、2価金属カチオンが含まれていてもいなくてもよいが、好ましい態様において、2価金属カチオンが含まれない。水性溶媒中に2価金属カチオンを含まない場合、該水溶液中で水溶性の高分子化合物(例えば、脱アシル化ジェランガム等の水溶性多糖類)は、細胞または組織を浮遊させて培養できるナノファイバーを形成し難く、水に溶解した状態で安定して保存することが可能だからである。
 上記培地添加剤には、ナノファイバーの効果を高めたり、使用する際の濃度を下げたりするような添加物を更に添加することもできる。この様な添加剤の例として、グァーガム、タマリンドガム、アルギン酸プロピレングリコールエステル、ローカストビーンガム、アラビアガム、タラガム、タマリンドガム、メチルセルロース等の多糖類を1種以上混合することができる。
 本発明の培地組成物の製造方法を例示するが、本発明はこれによって限定されるものではない。ナノファイバーをイオン交換水あるいは超純水に添加する。そして、全体が均一な状態に分散されるまで室温にて撹拌した後、滅菌(例えば、121℃にて20分でのオートクレーブ滅菌)を行う。静置培養に使用する任意の培地を撹拌(例えば、ホモミキサー等)しながら、当該培地に前記滅菌後のナノファイバー分散液を添加し、当該培地と均一になるように混合する。本水溶液と培地の混合方法は特に制限はなく、例えばピペッティング等の手動での混合、マグネチックスターラーやメカニカルスターラー、ホモミキサー、ホモジナイザー等の機器を用いた混合が挙げられる。
 例えば、セルロースナノファイバーを用いて培地組成物を調製する場合、0.0001%乃至5.0%(重量/容量)、好ましくは0.001%乃至1.0%(重量/容量)、より好ましくは0.01%乃至0.6%(重量/容量)となるようにイオン交換水あるいは超純水にセルロースナノファイバーを添加する。そして、全体が均一な状態になるまで室温にて撹拌した後、滅菌(例えば、121℃にて20分でのオートクレーブ滅菌)を行う。例えばDMEM培地等の液体培地をホモミキサー等で攪拌しながら、当該培地に本水溶液を所望の最終濃度となるように添加し(例えば終濃度が0.03%の場合は0.6%水溶液:培地の比率は1:20)、均一に混合させる。または、DMEM培地等の液体培地を本水溶液に所望の最終濃度となるようにピペットで添加し(例えば終濃度が0.03%の場合は0.6%水溶液:培地の比率は1:20)、ピペッティングで均一に混合させる。本水分散液と培地の混合方法は特に制限はなく、例えばピペッティング等の手動での混合、マグネチックスターラーやメカニカルスターラー、ホモミキサー、ホモジナイザー等の機器を用いた混合が挙げられる。
[培養方法]
 本発明は、上記本発明の培地組成物を用いて、細胞又は組織を増殖させる培養方法;得られる細胞又は組織を、例えばろ過、遠心又は磁性分離により、回収する方法;本発明の培地組成物を用いて、スフェアを製造する方法をも提供するものである。
 本発明で用いるナノファイバーは、細胞及び/又は組織を生体外で培養した時に、当該細胞及び/又は組織を、当該ナノファイバーを含有する液体中で浮遊させる効果(好ましくは浮遊静置させる効果)を示すものである。当該浮遊効果により、単層培養に比べて、一定体積あたりの細胞及び/又は組織を増やして培養することが可能である。また、従来の浮遊培養方法において回転や振とう操作を伴う場合、細胞及び/又は組織に対するせん断力が働くため、細胞及び/又は組織の増殖率や回収率が低い、或いは細胞の機能が損なわれてしまう場合があるが、本発明のナノファイバーを含有する培地組成物を用いることにより振とう等の操作を行わずに細胞及び/又は組織を均一に分散することができるため、目的とする細胞及び/又は組織を細胞機能の損失無く容易かつ大量に取得することができる。また、従来のゲル基材を含む培地において細胞及び/又は組織を浮遊培養する際、細胞及び/又は組織の観察や回収が困難であったり、回収の際にその機能を損なったりする場合があるが、本発明のナノファイバーを含有する培地組成物を用いることにより、細胞及び/又は組織を浮遊培養し、その機能を損なうこと無く観察し、回収することができる。また、従来のゲル基材を含む培地は、粘度が高く培地の交換が困難である場合があるが、本発明のナノファイバーを含有する培地組成物は、低粘度であるためピペットやポンプ等を用いて容易に培地を交換することができる。
 本発明の方法により培養されたヒト由来の細胞及び/又は組織は、疾患や障害を有する患者に対し治療目的にて移植することができる。この際、治療の対象とする疾患や障害の種類、前処置方法並びに細胞移植方法は、当事者により適宜選択される。移植された細胞のレシピエントへの生着と疾患や障害からの回復や、移植に伴う副作用の有無、治療の効果は、移植治療における一般的な方法により適宜検査され、判断することができる。
 さらに、細胞及び/又は組織が効率よく増殖されるため、本発明の培地組成物は細胞の研究用試薬として用いることができる。例えば、細胞や組織の分化や増殖を調節する因子を解明する際、細胞と目的の因子を共存させて培養した時の細胞の数や種類、細胞表面分化マーカーや発現遺伝子の変化を解析するが、この際に本発明の培地組成物を用いることにより解析対象となる細胞の数を効率よく増幅できるだけでなく、効率よく回収することができる。目的とする因子を解明する際の培養条件、培養装置、培地の種類、本発明ナノファイバーの種類、ナノファイバーの含量、添加物の種類、添加物の含量、培養期間、培養温度などは、本明細書に記載した範囲から当事者により適宜選択される。培養により増殖或いは出現した細胞は、当該分野にて標準的な顕微鏡を用いて観察することができる。この際、培養した細胞について特異的抗体を用いて染色してもよい。目的の因子により変化した発現遺伝子は、培養した細胞からRNA(リボ核酸)を抽出しノーザンブロッティング法、RT-PCR法などによって検出することができる。また、細胞表面分化マーカーは、特異的抗体を用いてELISAやフローサイトメトリーにより検出し、目的の因子による分化や増殖に対する効果を観察することができる。
 また、本発明の培地組成物を用いると、細胞及び/又は組織が効率よく増殖されるため、本発明の培養方法は、細胞及び/又は組織の増殖方法又は細胞及び/又は組織の増殖促進方法として優れている。本発明の培地組成物を用いて、細胞及び/又は組織を培養すると、細胞及び/又は組織は、培養容器に接着せずに、培養容器の底面のみに偏在せずに、三次元的な広がりをもって分散し、増殖が促進される。特に、ナノファイバーとしてキチンナノファイバーを用いると、細胞がキチンナノファイバーに付着し、そこを足場として強力に増殖し、その結果、増殖した細胞、細胞塊(スフェア等)及び/又は組織が、ぶどうの房状にナノファイバー上に連なる状態となる。この増殖促進効果には、細胞及び/又は組織を浮遊させる(即ち、細胞や組織の培養容器への接着を回避する)のに十分な濃度のナノファイバーが培地組成物中に含まれていればよく、浮遊静置(即ち、外部からの圧力、振動、振とう、回転操作等を伴わずに細胞及び/又は組織が液体培地組成物中で均一に分散し尚且つ浮遊状態にあること)が可能であることは必須ではない。例えば、キチンナノファイバーの場合、浮遊作用発現に十分な0.0001%(重量/容量)以上の濃度であれば、安定した浮遊静置培養を可能にする0.03%(重量/容量)を下回る濃度(例、0.025%(重量/容量)以下、0.02%(重量/容量)以下)であっても、増殖促進効果が奏される。微結晶セルロースナノファイバーの場合、浮遊作用発現に十分な0.01%(重量/容量)以上であれば、安定した浮遊静置培養を可能にする0.03%(重量/容量)を下回る濃度(例、0.025%(重量/容量)以下、0.02%(重量/容量)以下)であっても、増殖促進効果が奏される。脱アシル化ジェランガムの場合、浮遊作用発現に十分な0.005%(重量/容量)以上であれば、安定した浮遊静置培養を可能にする0.01%(重量/容量)を下回る濃度(例、0.009%(重量/容量)以下、0.008%(重量/容量)以下)であっても、増殖促進効果が奏される。
 ナノファイバーの中でも、とりわけキチンナノファイバーは、細胞増殖促進効果に優れている。
 本発明の培養方法においては、浮遊細胞及び接着細胞のいずれの細胞も用いることができる。接着細胞は、生育・増殖に足場を必要とする細胞である。浮遊細胞は、生育・増殖に足場を必要としない細胞である。本発明の培養方法においては、好ましくは接着細胞が用いられる。本発明の方法において、接着細胞を用いると、接着細胞が培養容器の底面に接着せずに、培養容器の底面のみに偏在せずに、三次元的な広がりをもって分散し、ナノファイバーに付着した状態、或いはスフェアの状態で増殖する。特に、ナノファイバーとしてキチンナノファイバーを用いると、細胞がキチンナノファイバーに付着し、そこを足場として強力に増殖し、その結果、増殖した細胞や細胞塊(スフェア等)が、ぶどうの房状にナノファイバー上に連なる状態となる。そのため、接着細胞の浮遊培養が可能となる。また、その結果、培養容器の底面へ接着させた状態で培養した場合よりも、接着細胞の増殖が促進される。また、培養容器の底面へ接着させた状態で培養した場合よりも、高い密度で接着細胞を培養することができる。
 本発明の培養方法においては、接着細胞の浮遊培養が可能なので、本発明の培養方法により接着細胞を浮遊培養した後、培養容器からの細胞の剥離操作を要することなく、新鮮な本発明の培地組成物を培養後の培養物に単に添加するか、新鮮な本発明の培地組成物へ、培養後の培養物の全部又は一部を添加することのみで接着細胞を継代することが可能である。本発明は、このような接着細胞の継代培養方法をも提供する。従って、本発明の継代培養方法を用いることにより、接着細胞を、培養容器からの細胞の剥離操作を行うことなく、継代培養することができる。また、本発明の継代培養方法を用いることにより、培養容器からの細胞の剥離操作を行うことなく、接着細胞の培養スケールを拡大することができる。培養容器からの細胞の剥離操作としては、キレート剤(例、EDTA)及び/又はタンパク質分解酵素(例、トリプシン、コラゲナーゼ)による処理が挙げられる。本発明の継代培養方法は、培養容器からの細胞の剥離操作に感受性が高い接着細胞(例えば、剥離操作により生存性が低下する接着細胞、剥離操作により形質が変わりやすい接着細胞)の継代培養に有利である。培養容器からの細胞の剥離操作に感受性が高い接着細胞としては、ヒト多能性幹細胞;ヒト前駆細胞;肝細胞、腎細胞、軟骨細胞、血管細胞および脂肪細胞などの組織から調製する初代細胞;MDCK細胞、HEK293細胞およびCHO細胞などの生物医薬品(医薬品用タンパク質)の生産細胞等が挙げられるが、これらに限定されない。
 本発明の培地組成物を用いると、高い密度で接着細胞を培養することができ、また細胞及び/又は組織を効率よく増殖することが可能なので、本発明の培養方法は、インビトロ細胞培養による有用物質の生産に有用である。有用物質を産生する細胞を、本発明の培地組成物中で浮遊培養に付し、培養物中から、有用物質を単離することにより、当該有用物質を得ることが出来る。有用物質としては、抗体、酵素(ウロキナーゼ等)、ホルモン(インシュリン等)、サイトカイン(インターフェロン、インターロイキン、腫瘍壊死因子、コロニー刺激因子、成長因子等)、ワクチンの抗原、その他の生理活性物質(タンパク質、ペプチド等)を挙げることができるが、これらに限定されない。有用物質を産生する細胞には、皮膚細胞、軟骨細胞、肝細胞、膵臓細胞、腎細胞等の非形質転換細胞や、有用物質をコードする遺伝子や有用物質の生合成に関与する遺伝子を導入した形質転換細胞が含まれる。有用物質を産生する細胞は、接着細胞であっても浮遊細胞であってもよいが、好ましくは接着細胞である。有用物質を産生する細胞は、好適には、有用物質を細胞外へ分泌する細胞である。有用物質を産生する細胞としては、具体的には、有用物質をコードする遺伝子や有用物質の生合成に関与する遺伝子を導入した、HEK293,CHO-K1、BHK-21、MDCK、Vero、HepG2、MCF-7等を挙げることができるが、これらに限定されない。組み換えタンパク質等の有用物質の生産に使用される細胞は当業者に周知であり、これらの細胞を本発明の方法において用いることが出来る。培養スケールの拡大に際しては、上記本発明の継代培養方法を用いて、培養容器からの細胞の剥離操作を行うことなく、新鮮な本発明の培地組成物を培養後の培養物に添加するか、新鮮な本発明の培地組成物へ、培養後の培養物の全部又は一部を添加してもよい。有用物質を培養物から単離するにあたり、培養物から細胞を除く必要があるが、本発明の培地組成物は、ナノファイバーの添加により実質的に粘度が高められておらず、また細胞が培地組成物中に浮遊しているので、遠心分離やろ過処理等の簡便な方法で細胞を除去することができる。また、培地組成物中のナノファイバーも、遠心分離やろ過処理等の簡便な方法で除去することができる。有用物質を培養物から単離する方法は、当業者に周知であり、例えばクロマトグラフィー(例、イオン交換クロマトグラフィー、疎水性クロマトグラフィー、アフィニティークロマトグラフィー、逆相クロマトグラフィー等のクロマトグラフィー)等の、生理活性物質の生化学的な分離精製方法を適用可能である。
 本発明の培養方法を用いて細胞及び/又は組織を培養する際には、細胞の培養に一般的に用いられるシャーレ、フラスコ、プラスチックバック、テフロン(登録商標)バック、ディッシュ、ペトリデッシュ、組織培養用ディッシュ、マルチディッシュ、マイクロプレート、マイクロウエルプレート、マルチプレート、マルチウエルプレート、チャンバースライド、チューブ、トレイ、培養バック、ローラーボトル等の培養器材を用いて培養することが可能である。これらの培養器材の材質は特に制限されないが、例えば、ガラス、ポリ塩化ビニル、セルロース系ポリマー、ポリスチレン、ポリメチルメタクリレート、ポリカーボネート、ポリスルホン、ポリウレタン、ポリエステル、ポリアミド、ポリスチレン、ポリプロピレン等のプラスチック等が挙げられる。また、これらのプラスチックに対して種々の表面処理(例えば、プラズマ処理、コロナ処理等)を施してもよい。更に、これらの培養器材に対しては、予め細胞外マトリックスや細胞接着分子などをコーティングしてもよい。このようなコーティング材料としては、コラーゲンI乃至XIX、フィブロネクチン、ビトロネクチン、ラミニン-1乃至12、ニトジェン、テネイシン,トロンボスポンジン,フォンビルブランド(von Willebrand)因子、オステオポンチン、フィブリノーゲン、各種エラスチン、各種プロテオグリカン、各種カドヘリン、デスモコリン、デスモグレイン、各種インテグリン、E-セレクチン、P-セレクチン、L-セレクチン、免疫グロブリン、ヒアルロン酸、スーパーファミリー、マトリゲル、ポリ-D-リジン、ポリ-L-リジン、キチン、キトサン、セファロース、アルギン酸ゲル、ハイドロゲル、さらにこれらの切断断片などが挙げられる。これらのコーティング材料は、遺伝子組換え技術によりアミノ酸配列を人為的に改変させたものも使用することできる。また、細胞及び/又は組織の培養器材に対する接着を阻害するためのコーティング材料を用いることもできる。このようなコーティング材料としては、シリコン、ポリ(2-ヒドロキシメチルメタクリレート)、ポリ(2-メタクリロイルオキシエチルホスホリルコリン)等が挙げられるが、これらに限られるわけではない。
 細胞及び/又は組織の培養は、機械的な制御下のもと閉鎖環境下で細胞播種、培地交換、細胞画像取得、培養細胞回収を自動で実行し、pH、温度、酸素濃度などを制御しながら、高密度での培養が可能なバイオリアクターや自動培養装置によって行うこともできる。これらの装置を用いて培養の途中に新しい培地を補給し、要求する物質を過不足なく細胞及び/又は組織に供給する手法として、流加培養、連続培養及び灌流培養があるが、いずれの手法も本発明の培養方法に用いることができる。
 本発明の方法で培養する細胞及び/又は組織の形態や状態は、当業者が任意に選択することができる。その好ましい具体例としては、特に制限されるものではないが、細胞及び/又は組織が単独で培地組成物中に分散した状態、細胞及び/又は組織が担体表面上に接着した状態、細胞及び/又は組織が担体内部に包埋した状態、複数個の細胞が集合し細胞塊(スフェア)を形成した状態、或いは2種以上の細胞が集合して細胞塊(スフェア)を形成した状態等が、より好ましくは細胞及び/又は組織が担体表面上に接着した状態、細胞及び/又は組織が担体内部に包埋した状態、複数個の細胞が集合し細胞塊(スフェア)を形成した状態、或いは2種以上の細胞が集合して細胞塊(スフェア)を形成した状態が、さらに好ましくは細胞及び/又は組織が担体表面上に接着した状態、複数個の細胞が集合し細胞塊(スフェア)を形成した状態、或いは2種以上の細胞が集合して細胞塊(スフェア)を形成した状態が挙げられる。これらの状態の内、細胞塊(スフェア)を形成した状態は、生体内環境に近い細胞-細胞間相互作用及び細胞構造体が再構築されており、細胞機能を長期的に維持したまま培養でき、また細胞の回収が比較的容易であるため、本発明の方法で培養する最も好ましい状態として挙げることができる。
 細胞及び/又は組織を表面上に担持させる担体としては、種々の高分子から構成されたマイクロキャリアやガラスビーズ、セラミックスビーズ等が挙げられる。当該高分子の例としては、ビニル樹脂、ウレタン樹脂、エポキシ樹脂、ポリスチレン、ポリメチルメタクリレートポリエステル、ポリアミド、ポリイミド、シリコン樹脂、フェノール樹脂、メラミン樹脂、ユリア樹脂、アニリン樹脂、アイオノマー樹脂、ポリカーボネート、コラーゲン、デキストラン、ゼラチン、セルロース、アルギン酸塩及びこれらの混合物等が使用できる。当該担体は、細胞の接着を高める、或いは細胞からの物質の放出を高める化合物でコートされてもよい。この様なコーティング材料の例としては、ポリ(モノステアロイルグリセリドコハク酸)、ポリ-D,L-ラクチド-co-グリコリド、ヒアルロン酸ナトリウム、n-イソプロピルアクリルアミド、コラーゲンI乃至XIX、フィブロネクチン、ビトロネクチン、ラミニン-1乃至12、ニトジェン、テネイシン、トロンボスポンジン、フォンビルブランド(von Willebrand)因子、オステオポンチン、フィブリノーゲン、各種エラスチン、各種プロテオグリカン、各種カドヘリン、デスモコリン、デスモグレイン、各種インテグリン、E-セレクチン、P-セレクチン、L-セレクチン、免疫グロブリンスーパーファミリー、マトリゲル、ポリ-D-リジン、ポリ-L-リジン、キチン、キトサン、セファロース、アルギン酸ゲル、各種ハイドロゲル、さらにこれらの切断断片などが挙げられる。この際、2種以上のコーティング材料を組みわせても良い。また更に、細胞及び/又は組織を表面上に担持した担体の培養に用いられる培地に対して、グァーガム、タマリンドガム、ローカストビーンガム、アラビアガム、タラガム、タマリンドガム、メチルセルロース等の多糖類を1種以上混合することができる。また、当該担体は、磁性体材料、例えばフェライトを含有していてもよい。当該担体の直径は数10μmから数100μm、より好ましくは100μmから200μmであり、その比重は、1に近いことが好ましく、より好ましくは0.9~1.2、特に好ましくは約1.0である。当該担体の例としては、これに限られるものではないが、Cytodex1(登録商標)、Cytodex 3(登録商標)、Cytoline1(登録商標)、Cytoline2(登録商標)、Cytopore1(登録商標)、Cytopore2(登録商標)、(以上、GE Healthcare Life Sciences)、Biosilon(登録商標)(NUNC)、Cultispher-G(登録商標)、Cultispher-S(登録商標)(以上、Thermo SCIENTIFIC)、HILLEXCT(登録商標)、ProNectinF-COATED(登録商標)、及びHILLEXII(登録商標)(SoloHill Engineering)等が挙げられる。当該担体は、必要に応じて滅菌処理を施してもよい。滅菌方法は特に制限はなく、例えば、放射線滅菌、エチレンオキサイドガス滅菌、オートクレーブ滅菌及び乾熱滅菌等が挙げられる。当該担体を用いて動物細胞を培養する方法としては特に制限はなく、通常の流動層型培養槽又は充填層型培養槽を用いる培養方法等を用いることができる。この際、細胞及び/又は組織を表面上に担持させた担体は、本発明のナノファイバーを含有する培地組成物を用いることにより振とう等の操作を行わずに均一に分散することができるため、目的とする細胞及び/又は組織を細胞機能の損失無く培養することができる。本法により培養された細胞及び/又は組織は、培養後に担体に担持させたまま遠心やろ過処理を行うことにより、回収することができる。この際、用いた液体培地を加えた後、遠心やろ過処理を行ってもよい。例えば、遠心する際の重力加速度(G)は100乃至400Gであり、ろ過処理をする際に用いるフィルターの細孔の大きさは10μm乃至100μmであるが、これらに制限されることは無い。また、担体中にフェライト等の磁性を有する材料を内包させておけば、磁力により培養した担体を回収することができる。本法により培養された細胞及び/又は組織は、各種キレート剤、熱処理や酵素を用いて担体から剥離することにより回収することができる。
 細胞及び/又は組織を担体内部に包埋する際、種々の高分子から構成された材料を当該担体として選択することができる。この様な高分子の例としては、コラーゲン、ゼラチン、アルギン酸塩、キトサン、アガロース、ポリグリコール酸、ポリ乳酸、フィブリン接着剤、ポリ乳酸・ポリグリコール酸共重合体、プロテオグリカン、グルコサミノグリカン、ポリウレタンフォーム等のスポンジ、DseA―3D(登録商標)、ポリN-置換アクリルアミド誘導体、ポリN-置換メタアクリルアミド誘導体およびこれらの共重合体、ポリビニルメチルエーテル、ポリプロピレンオキサイド、ポリエチレンオキサイド、ポリビニルアルコール部分酢化物等の温度感受性高分子、ポリアクリルアミド、ポリビニルアルコール、メチルセルロース、ニトロセルロース、セルロースブチレート、ポリエチレンオキシド、poly(2-hydroxyethylmethacrylate)/polycaprolactone等のハイドロゲルが挙げられる。また、これらの高分子を2種以上用いて細胞を包埋するための担体を作製することも可能である。更に、当該担体には、これらの高分子以外に生理活性物質を有していても良い。この生理活性物質の例としては、細胞増殖因子、分化誘導因子、細胞接着因子、抗体、酵素、サイトカイン、ホルモン、レクチン、又は細胞外マトリックス等が挙げられ、これらを複数含有させることも可能である。また更に、細胞及び/又は組織を包埋した担体の培養に用いられる培地に対して、グァーガム、タマリンドガム、アルギン酸プロピレングリコールエステル、ローカストビーンガム、アラビアガム、タラガム、メチルセルロース等の増粘剤を1種以上混合することができる。
 これらの担体に細胞及び/又は組織を包埋させる方法は特に制限されないが、例えば、細胞と前記高分子の混液をシリンジに吸引し、25G~19G程度の注射針を介して培地中に滴下する、あるいはマイクロピペットを用いて培地中に滴下するなどの方法を用いても良い。ここで形成されるビーズ状担体のサイズは、細胞と前記高分子混合液を滴下する際に用いる器具先端の形状により決定され、好ましくは数10μmから数1000μm、より好ましくは100μmから2000μmである。ビーズ状担体で培養できる細胞数は特に制限されないが、このビーズサイズに合わせて自由に選択すれば良い。例えば、直径約2000μmのビーズ状担体の場合、500万個までの細胞をこのサイズのビーズ状担体中に包埋することができる。また、細胞は担体内にて一つずつ分散していても、複数個の細胞が集合した細胞塊を形成していても良い。この際、細胞及び/又は組織を包埋させた担体は、本発明のナノファイバーを含有する培地組成物を用いることにより撹拌等の操作を行わずに均一に分散することができるため、目的とする細胞及び/又は組織を細胞機能の損失無く培養することができる。本法により培養された細胞及び/又は組織は、培養後に担体に包埋した状態で遠心やろ過処理を行うことにより、回収することができる。この際、用いた液体培地を加えた後、遠心やろ過処理を行ってもよい。例えば、遠心する際の重力加速度(G)は100乃至400Gであり、ろ過処理をする際に用いるフィルターの細孔の大きさは10μm乃至100μmであるが、これらに制限されることは無い。本法により培養された細胞及び/又は組織は、各種キレート剤、熱や酵素等の処理を用いて担体を分解することにより分散させ、回収することができる。
 細胞凝集塊(スフェア)を形成させる方法は、特に制限は無く、当業者が適宜選択することができる。その例としては、細胞非接着表面を有する容器を用いた方法、ハンギングドロップ法、旋回培養法、3次元スキャフォールド法、遠心法、電場や磁場による凝集を用いた方法等が挙げられる。例えば、細胞非接着表面を有する容器を用いた方法については、目的の細胞を、細胞接着を阻害する表面処理を施した培養容器中にて培養し、スフェアを形成させることができる。この細胞非接着性培養容器を使用する場合は、まず、目的の細胞を採取した後にその細胞浮遊液を調製し、当該培養容器中に播種して培養を行なう。一週間ほど培養を続けると、細胞は自発的にスフェアを形成する。このとき用いる細胞非接着性表面としては、一般に用いられるシャーレなどの培養容器の表面に、細胞接着を阻害する物質をコートしたものなどを用いることができる。このような物質としては、アガロース、寒天、ポリ-HEMA(ポリ-(2-ハイドロキシ-エチルメタクリレート))2-メタクリロイルオキシエチルホスホリルコリンと他のモノマー(例えばブチルメタクリレート等)との共重合体などが挙げられるが、細胞毒性がなければ、これらに限定されるものではない。
 また、細胞凝集塊(スフェア)を形成させる方法として、NATURE BIOTECHNOLOGY,VOL.28,NO.4,APRIL 2010,361-366、NATURE PROTOCOLS,VOL.6,NO.5,2011,689-700、NATURE PROTOCOLS,VOL.6,NO.5,2011,572-579、Stem Cell Research,7,2011,97-111、Stem Cell Rev and Rep,6,2010,248-259等に記載された方法を用いることもできる。
 また、スフェアを形成させる培養の際に用いる培地中に、スフェアの形成を早める、或いはその維持を促進する成分を含有させることもできる。このような効果を有する成分の例としては、ジメチルスルホキシド、スーパーオキシドジムスターゼ、セルロプラスミン、カタラーゼ、ペルオキシダーゼ、L-アスコルビン酸、L-アスコルビン酸リン酸エステル、トコフェロール、フラボノイド、尿酸、ビリルビン、含セレン化合物、トランスフェリン、不飽和脂肪酸、アルブミン、テオフィリン、フォルスコリン、グルカゴン、ヂブチルリルcAMP、Y27632、Fasudil(HA1077)、H-1152、Wf-536等のROCK阻害剤などを挙げることができる。含セレン化合物としては、亜セレン酸ナトリウム、セレン酸ナトリウム、ジメチルセレニド、セレン化水素、セレノメチオニン、Se― メチルセレノシステイン、セレノシスタチオニン、セレノシステイン、セレノホモシステイン、アデノシン-5’-ホスホセレン酸、Se―アデノシルセレノメチオニンが挙げられる。また、目的とするサイズの均一な細胞凝集塊を得るためには、使用する細胞非付着性培養容器上に、目的とする細胞凝集塊と同一径の複数の凹みを導入することもできる。これらの凹みが互いに接しているか、あるいは目的とする細胞凝集塊の直径の範囲内であれば、細胞を播種した際、播種した細胞は凹みと凹みの間で細胞凝集塊を形成することなく、確実に凹みの中でその容積に応じた大きさの細胞凝集塊を形成し、均一サイズの細胞凝集塊集団を得ることができる。この際の凹みの形状としては半球または円錐上が好ましい。
 あるいは、細胞接着性を有する支持体を基にスフェアを形成させることもできる。この様な支持体の例としては、コラーゲン、ポリロタキサン、ポリ乳酸(PLA)、ポリ乳酸グリコール酸共重合体(PLGA)、ハイドロゲル等を挙げることができる。
 また、フィーダー細胞と共培養することにより、スフェアを形成させることもできる。スフェア形成を促進させるためのフィーダー細胞としては、如何なる接着性細胞でも用いることが可能であるが、好適には各種細胞に応じたフィーダー細胞が望ましい。限定されるものではないが、例えば肝臓や軟骨由来の細胞のスフェアを形成させる場合、そのフィーダー細胞の例としてはCOS-1細胞や血管内皮細胞が好適な細胞種として挙げられる。
 さらに、本発明のナノファイバーを含有する培養組成物を用いてスフェアを形成させることもできる。その際、当該ナノファイバーの濃度が、細胞の浮遊培養(好ましくは浮遊静置培養)を可能とする濃度となるように、当該ナノファイバーをスフェア形成の際に用いる培地中に添加すれば良い。例えば、当該ナノファイバーの濃度が、通常0.0001%乃至1.0%(重量/容量)、例えば0.0005%乃至1.0%(重量/容量)、好ましくは0.001%乃至0.3%(重量/容量)、より好ましくは0.005%乃至0.1%(重量/容量)、さらに好ましくは0.01%乃至0.05%(重量/容量)となるように、当該ナノファイバーをスフェア形成の際に用いる培地中に添加すれば良い。スフェアは、当該ナノファイバーを含む培地中に目的とする細胞を均一に分散させ、3日間乃至10日間静置して培養することにより調製される。ここで調製されたスフェアは、遠心やろ過処理を行うことにより、回収することができる。例えば、遠心する際の重力加速度(G)は100乃至400Gであり、ろ過処理をする際に用いるフィルターの細孔の大きさは10μm乃至100μmであるが、これらに制限されることは無い。また、目的とする細胞に特異的に結合する抗体を表面上にコーティングした磁性微粒子を用いて、磁力により培養したスフェアを回収することができる。この様な磁性微粒子の例としては、ダイナビーズ(ヴェリタス社製)、MACSマイクロビーズ(ミルテニーバイオテク社製)、BioMag(テクノケミカル社製)等が挙げられる。
 スフェアの大きさは、細胞種及び培養期間によって異なり特に限定されないが、球形状或いは楕円球形状であるとした際には20μm乃至1000μm、好ましくは40μm乃至500μm、より好ましくは50μm乃至300μmの直径を有する。
 このようなスフェアは、そのまま静置培養を続けることでも10日以上、好ましくは13日以上、さらに好ましくは30日以上の期間において増殖能を保持し得るが、さらに静置培養中に定期的に機械的分割を行うことで、またはさらに単細胞化処理と凝集を行うことで、実質的に無期限に増殖能を保持し得る。
 スフェアの培養に用いられる培養容器は、一般的に動物細胞の培養が可能なものであれば特に限定されないが、例えば、フラスコ、ディッシュ、ペトリデッシュ、組織培養用ディッシュ、マルチディッシュ、マイクロプレート、マイクロウエルプレート、マルチプレート、マルチウエルプレート、チャンバースライド、シャーレ、チューブ、トレイ、培養バック、ローラーボトル等が挙げられる。
 スフェアの静置培養に用いられる培地は、細胞接着因子を含むことが可能であり、その例としては、マトリゲル、コラーゲンゲル、ゼラチン、ポリ-L-リジン、ポリ-D-リジン、ラミニン、フィブロネクチンが挙げられる。これらの細胞接着因子は、2種類以上を組み合わせて添加することもできる。また更に、スフェアの培養に用いられる培地に対してグァーガム、タマリンドガム、アルギン酸プロピレングリコールエステル、ローカストビーンガム、アラビアガム、タラガム、メチルセルロース等の増粘剤を更に混合することができる。
 本発明のナノファイバーを含有する培地組成物を用いることにより、振とう等の操作を行わずに均一に培養液中に分散することができるため、目的とする細胞及び/又は組織を細胞機能の損失無くスフェアとして培養することができる。本法により静置培養されたスフェアは、培養後に遠心やろ過処理を行うことにより、回収することができる。この際、用いた液体培地を加えた後、遠心やろ過処理を行ってもよい。例えば、遠心する際の重力加速度(G)は100乃至400Gであり、ろ過処理をする際に用いるフィルターの細孔の大きさは10μm乃至100μmであるが、これらに制限されることは無い。また、目的とする細胞に特異的に結合する抗体を表面上にコーティングした磁性微粒子を用いて、磁力により培養したスフェアを回収することができる。この様な磁性微粒子の例としては、ダイナビーズ(ヴェリタス社製)、MACSマイクロビーズ(ミルテニーバイオテク社製)、BioMag(テクノケミカル社製)等が挙げられる。回収されたスフェアは、更に各種キレート剤、熱、フィルターや酵素等の処理を用いて解すことにより単一な細胞として分散させることができる。
 植物由来の細胞及び/又は組織を静置培養する際の方法として、分化していない植物細胞塊であるカルスを培養することができる。カルスの誘導は、使用する植物種についてそれぞれ公知の方法により行うことができる。例えば、分化した植物体の一部の組織(例えば、根、茎、葉の切片、種子、生長点、胚、花粉等)表面を、必要に応じて70%アルコールや1%次亜塩素酸ナトリウム溶液等を用いて滅菌した後、メス等を用いて適当な大きさの組織片(例えば、約1~約5mm角の根切片)を切り出し、クリーンベンチ等を用いた無菌操作により、当該組織片を予め滅菌したカルス誘導培地に播種して適当な条件下で無菌培養する。ここで誘導されたカルスは、すぐに大量増殖のために液体培養に付されてもよいし、あるいは継代用培地で継代培養することにより種株として維持することもできる。継代培養は、液体培地及び固形培地のいずれを用いて行ってもよい。
 本発明の培地組成物を用いて静置培養を開始する際に接種される植物細胞塊の量は、目的の細胞の増殖速度、培養様式(回分培養、流加培養、連続培養等)、培養期間などに応じて変動するが、例えば、カルス等の植物細胞塊を培養する場合、本発明の培地組成物に対する細胞塊の湿重量が4~8(重量/容積(w/v))%、好ましくは5~7(w/v)%となるように本発明の培地組成物に接種される。培養の際の植物細胞塊の粒径は3mm乃至40mm、好ましくは3mm乃至20mm、より好ましくは5mm乃至15mmである。ここで「粒径」とは、例えば植物細胞塊が球形である場合はその直径を意味し、楕円球形である場合にはその長径を意味し、その他の形状においても同様にとり得る最大長を意味する。
 細胞及び/又は組織を培養する際の温度は、動物細胞であれば通常25乃至39℃、好ましくは33乃至39℃である。CO濃度は、通常、培養の雰囲気中、4乃至10体積%であり、4乃至6体積%が好ましい。培養期間は通常3乃至35日間であるが、培養の目的に合わせて自由に設定すればよい。植物細胞の培養温度は、通常20乃至30℃であり、光が必要であれば照度2000~8000ルクスの照度条件下にて培養すればよい。培養期間は通常3乃至70日間であるが、培養の目的に合わせて自由に設定すればよい。
 本発明の方法で細胞及び/又は組織を培養する際には、本発明の培養組成物に対して別途調製した細胞及び/又は組織を添加し、均一に分散される様に混合すればよい。その際の混合方法は特に制限はなく、例えばピペッティング等の手動での混合、スターラー、ヴォルテックスミキサー、マイクロプレートミキサー、振とう機等の機器を用いた混合が挙げられる。混合後は培養液を静置状態にしてもよいし、必要に応じて培養液を回転、振とう或いは撹拌してもよい。その回転数と頻度は、当業者の目的に合わせて適宜設定すればよい。また、静置培養の期間において培地組成物の交換が必要となった際には、遠心やろ過処理を行うことにより細胞及び/又は組織と培地組成物を分離した後、新しい培地組成物を細胞及び/又は組織に添加すればよい。或いは、遠心やろ過処理を行うことにより細胞及び/又は組織を適宜濃縮した後、新しい培地組成物をこの濃縮液に添加すればよい。例えば、遠心する際の重力加速度(G)は100乃至400Gであり、ろ過処理をする際に用いるフィルターの細孔の大きさは10μm乃至100μmであるが、これらに制限されることは無い。また、目的とする細胞に特異的に結合する抗体を表面上にコーティングした磁性微粒子を用いて、磁力により培養した細胞及び/又は組織を分離することができる。この様な磁性微粒子の例としては、ダイナビーズ(ヴェリタス社製)、MACSマイクロビーズ(ミルテニーバイオテク社製)、BioMag(テクノケミカル社製)等が挙げられる。これらの培地組成物の交換は、機械的な制御下のもと閉鎖環境下で実行が可能なバイオリアクターや自動培養装置によって行うこともできる。
[細胞又は組織の保存又は輸送方法]
 また、本発明は、上記本発明の培地組成物を用いた、細胞または組織を保存する保存方法および輸送方法を提供する。本発明の保存又は輸送方法においては、本発明の培地組成物を用いることにより、細胞や組織を浮遊状態で(好ましくは、浮遊静置状態で)、保存又は輸送することができる。
 保存又は輸送の対象となる細胞及び組織としては、本発明の培地組成物を用いた培養に用いることができる細胞や組織として上述したものを挙げることが出来る。
 保存又は輸送に用いる本発明の培地組成物には、上述の組成に加えて、細胞や組織の非凍結状態での保存の際に、細胞延命効果がある各種成分が含まれていてもよい。該成分としては、糖類(但し、多糖類を除く)(例、単糖類、二糖類)、抗酸化剤(例、SOD、ビタミンEまたはグルタチオン)、親水性ポリマー(例、ポリビニルピロリドン)、キレート剤(例、EDTA)、糖アルコール(例、マンニトール、ソルビトール)、グリセロール等を挙げることが出来る。
 本発明の保存又は輸送方法においては、所望の細胞又は組織を、本発明の培地組成物中に分散した上で、密封可能な容器中に入れる。該容器としては、フラスコ、プラスチックバック、テフロン(登録商標)バック、チューブ、培養バック等を挙げることが出来るが、これらに限定されない。保存又は輸送中に、内容物の漏れや外界からの細菌等のコンタミネーションを回避するため、細胞や組織の本発明の培地組成物中の分散物を入れた容器は、好適には密封される。
 保存又は輸送中の温度は、細胞又は組織の生存が維持される限り特に限定されないが、通常は、37℃以下である。温度が低い方が、保存又は輸送中の細胞又は組織の生存性の低下を回避することができるが、細胞又は組織が凍結してしまわないよう、通常、本発明の培地組成物の融点を上回る温度で保存又は輸送する。従って、保存又は輸送中の温度は、通常-5~42℃、好ましくは1~37℃、より好ましくは4~32℃、更に好ましくは18~30℃で維持される。
 浮遊静置状態での、細胞又は組織の保存又は輸送を可能とするため、保存又は輸送中の温度は、本発明の培地組成物が、細胞又は組織の浮遊静置を可能とする温度であることが好ましい。細胞又は組織の浮遊静置を可能とする温度は、ナノファイバーを構成する原料の種類に応じて適宜設定することができる。
 一態様において、本発明の保存又は輸送方法において用いる、本発明の培地組成物中に含有されるナノファイバーを構成する原料として、カラギーナン(好ましくは、κ-カラギーナン)が用いられる。カラギーナンから構成されたナノファイバーを含有する本発明の培地組成物は、25℃以下において浮遊作用を有する一方、37℃では浮遊作用を失うため、25℃以下(好ましくは0~25℃)にて、所望の細胞又は組織を浮遊静置状態で保存又は輸送し、保存又は輸送の完了後、温度を37℃以上(例えば、37~40℃、好ましくは37℃)とすることにより、浮遊していた細胞又は組織を沈降させることにより、容易に細胞又は組織を回収することができる。
 保存又は輸送の期間は、本発明の培地組成物中で細胞又は組織を生存状態のまま維持できる範囲内で特に限定されないが、通常1時間以上、10日以内、好ましくは1~8日、より好ましくは1~3日である。保存又は輸送期間中、細胞又は組織は本発明の培地組成物中で浮遊静置状態が維持されることが好ましい。
 本発明の保存又は輸送方法を用いると、細胞や組織を浮遊した状態で保持できるため、輸送中の振動によるプレートからの剥離や、沈降により接触した細胞や組織同士の凝集による細胞や組織のダメージを回避し、本来の機能を維持した状態で細胞や組織を保存および輸送することができる。
 以下に本発明の培地組成物の実施例を具体的に述べることで、本発明をさらに詳しく説明する。以下の実施例に示す材料、使用量、割合、処理内容及び処理手順は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す具体例に解釈されるべきものではない。
 参考例1 高温加熱処理した脱アシル化ジェランガムを含む培地の粘度測定及び細胞浮遊試験
 脱アシル化ジェランガム含有培地の調製及び粘度測定
 脱アシル化ジェランガム(KELCOGEL CG-LA、三晶株式会社製)を0.4%(w/v)となるように純水に懸濁させた後、90℃にて加熱攪拌し溶解させた。本水溶液を攪拌しながら室温まで放冷し、121℃で20分オートクレーブ滅菌した。300mLトールビーカーに2倍濃度のDMEM/F-12培地(Aldrich社製)50mLと滅菌水47.5mLを入れ、室温でホモミキサー(3000rpm)で攪拌しながら脱アシル化ジェランガム水溶液2.5mLを添加し、そのまま1分攪拌を続けることで脱アシル化ジェランガム終濃度0.01%培地組成物を調製した。同様に終濃度が0.02、0.03、0.05%(w/v)となるよう脱アシル化ジェランガム水溶液を添加した培地組成物を調製した。本培地組成物の粘度は37℃条件下でE型粘度計(東機産業株式会社製、Viscometer TVE-22L、標準ロータ1°34’×R24)を用いて、回転数100rpmで5分間測定した。
 脱アシル化ジェランガム含有培地の細胞浮遊試験
 ヒト子宮頸癌細胞株HeLa(DSファーマバイオメディカル社製)を、10%(v/v)胎児ウシ血清を含むEMEM培地(WAKO社製)に250000個/mLとなるように懸濁し、本懸濁液10mLをEZ SPHERE(旭硝子社製)に播種した後、COインキュベーター(5%CO)内で3日間培養した。ここで得られたスフェア(直径100~200μm)の懸濁液10mLを遠心処理(200G、5分間)してスフェアを沈降させ、上清を除くことによりスフェア懸濁液1.0mLを調製した。引き続き、上記で調製した脱アシル化ジェランガム含有培地を1.5mLエッペンドルフチューブに1.0mLずつ入れ、更にHeLa細胞スフェア懸濁液10μLを加えた。タッピングにより細胞塊を分散させ、37℃でインキュベートし、1時間後の細胞の分散状態を目視にて観察した。
Figure JPOXMLDOC01-appb-T000002
 参考比較例 メチルセルロース、コラーゲン含有培地の調製
 メチルセルロース含有培地の調製
 200mLナスフラスコにDMEM/F-12培地(Aldrich社製)100mLを入れ、メチルセルロース(M0387、Aldrich社製)0.1gを加えた。氷浴にて冷却しながら攪拌し、メチルセルロースを溶解させた。本溶液を用いて終濃度が0.1、0.3、0.6、1.0%(w/v)となるようメチルセルロース水溶液を添加した培地組成物を調製した。
 コラーゲン含有培地の調製
 0.3%セルマトリックスタイプI-A(新田ゼラチン社製)6.5mLに10倍濃度のDMEM/F-12培地(Aldrich社製)1mL、再構成用緩衝液(新田ゼラチン社製)1mL及び純水1.5mLを入れ、氷中にて撹拌しながら0.2%のコラーゲン含有培地を調製した。同様に、終濃度が0.01、0.05、0.1、0.2%(w/v)となるようコラーゲンを添加した培地組成物を調製した。
 上記で調製した培地組成物についても脱アシル化ジェランガム含有培地と同様にHeLa細胞スフェアの浮遊試験および粘度測定を実施した。ただし、1.0%(w/v)メチルセルロースの粘度は、装置の測定範囲より50rpmにて測定した。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 参考試験例
 以下の参考試験例では、COインキュベーターにおけるCOの濃度(%)は、雰囲気中のCOの体積%で示した。また、PBSはリン酸緩衝生理食塩水(シグマアルドリッチジャパン社製)を意味し、FBSは牛胎児血清(Biological Industries社製)を意味する。また、(w/v)は、1体積あたりの重量を表わす。
 参考試験例1:単一の細胞を分散させた際の細胞増殖試験
 脱アシル化ジェランガム(KELCOGEL CG-LA、三晶株式会社製)を0.3%(w/v)となるように超純水(Milli-Q水)に懸濁した後、90℃にて加熱しながらの撹拌により溶解し、本水溶液を121℃で20分オートクレーブ滅菌した。本溶液を用いて10%(v/v)胎児ウシ血清及び10ng/mLのトロンボポエチン(WAKO社製)を含むIMDM培地(ギブコ社製)に終濃度0.015%(w/v)の脱アシル化ジェランガムを添加した培地組成物を調製した。引き続き、ヒト白血病細胞株UT7/TPOを、20000細胞/mLとなるように上記の脱アシル化ジェランガムを添加した培地組成物に播種した後、6ウェル平底マイクロプレート(コーニング社製)のウェルに1ウェル当たり5mLとなるように分注した。同様に、ヒト子宮頸癌細胞株HeLa(DSファーマバイオメディカル社製)を、20000細胞/mLとなるように10%(v/v)胎児ウシ血清を含むEMEM培地(WAKO社製)に0.015%(w/v)の脱アシル化ジェランガム(KELCOGEL CG-LA、三晶株式会社製)を添加した培地組成物に播種した後、6ウェル平底マイクロプレート(コーニング社製)のウェルに1ウェル当たり5mLとなるように分注した。これらの細胞懸濁液をCOインキュベーター(5%CO)内にて3日間静置状態で培養した。その後、培養液の一部を回収し、トリパンブルー染色液(インヴィトロジェン社製)を同量添加した後、血球計算盤(エルマ販売株式会社製)にて生細胞の数を測定した。
 その結果、UT7/TPO細胞及びHeLa細胞は、上記培地組成物を用いることにより浮遊状態にて均一に培養することが可能であり、当該培地組成物で増殖することが確認された。浮遊静置培養3日間後のUT7/TPO細胞及びHeLa細胞の細胞数を表4に示す。
Figure JPOXMLDOC01-appb-T000005
 参考試験例2:細胞株由来スフェアを培養した際の細胞増殖試験
 ヒト肝癌細胞株HepG2(DSファーマバイオメディカル社製)を、10%(v/v)胎児ウシ血清を含むDMEM培地(WAKO社製)に250000個/mLとなるように懸濁し、本懸濁液10mLをEZ SPHERE(旭硝子社製)に播種した後、COインキュベーター(5%CO)内で7日間培養した。同様に、ヒト子宮頸癌細胞株HeLa(DSファーマバイオメディカル社製)を、10%(v/v)胎児ウシ血清を含むEMEM培地(WAKO社製)に250000個/mLとなるように懸濁し、本懸濁液10mLをEZ SPHERE(旭硝子社製)に播種した後、COインキュベーター(5%CO)内で7日間培養した。ここで得られたそれぞれの細胞株のスフェア(直径100~200μm)の懸濁液2.5mLを遠心処理(200G、5分間)してスフェアを沈降させ上清を除いた。引き続き、本スフェア(約800個)に上記培地10mLを添加して懸濁した後、平底チューブ(BM機器社製)に移した。同様に、上記培地に0.015%(w/v)の脱アシル化ジェランガム(KELCOGEL CG-LA、三晶株式会社製)を添加した培地組成物を用いてスフェアの懸濁液を作成し、平底チューブ(BM機器社製)に移した。なお、0.015%(w/v)の脱アシル化ジェランガムを添加した培地組成物は、まず脱アシル化ジェランガム(KELCOGEL CG-LA、三晶株式会社製)を0.3%(w/v)となるように超純水(Milli-Q水)に懸濁した後、90℃にて加熱しながらの撹拌により溶解し、本水溶液を121℃で20分オートクレーブ滅菌した後、1/20希釈で10%(v/v)胎児ウシ血清を含むDMEM培地に添加することにより調製した。
 37℃で3日間、COインキュベーター(5%CO)内で上記スフェア懸濁液を静置培養した後、2倍容量の培地を添加して遠心処理(200G、5分間)を行うことによりスフェアを沈降させ、上清を除いた。ここで、スフェアの一部を分取し、光学顕微鏡(OLYMPUS社製、CK30-F100)にてその形状を観察した。引き続き、回収したスフェアをPBS10mLにて1回洗浄した後、1mLのトリプシン-EDTA(エチレンジアミン四酢酸)溶液(WAKO社製)を添加し、37℃で5分間保温した。上記培地を9mL添加した後、遠心処理(200G、5分間)により細胞を回収した。ここで得られた細胞懸濁液2mLの一部に対してトリパンブルー染色液(インヴィトロジェン社製)を同量添加した後、血球計算盤(エルマ販売株式会社製)にて生細胞及び死細胞の数を測定した。
 その結果、HepG2細胞及びHeLa細胞のスフェアは上記培地組成物を用いることにより浮遊状態にて培養することが可能であり、当該培地組成物で効率良く細胞が増殖することが確認された。しかも、該培地組成物は、既存の培地と比べて細胞を増殖させた際に死細胞の割合が少なく、細胞増殖の促進効果が優れていることが確認された。この際、既存の培地で培養したスフェアは培養容器の底面に沈降していた。更に、培養したスフェアの形状を光学顕微鏡にて観察したところ、該培地組成物ではスフェア同士の会合が見られないのに対し、既存の培地ではスフェア同士の会合が観察された。
 HepG2細胞及びHeLa細胞に関して、脱アシル化ジェランガムを含まない培地にて培養した際の細胞数を1としたときの相対的細胞数を表5に示す。また、脱アシル化ジェランガムを含まない培地で培養した際の死細胞率(死細胞数/生細胞数)を1としたときの相対的死細胞率を表6に示す。また、HepG2細胞及びHeLa細胞のスフェアを該培地組成物で培養した際の浮遊状態を図1及び図2にそれぞれ示す。さらに、培養したHeLa細胞のスフェアの形状を図3に示す。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 参考試験例3:マイクロキャリア上に付着した細胞株を培養した際の細胞増殖試験
 マイクロキャリアCytodex(登録商標) 1(GE Healthcare Life Sciences社製)をPBSに0.02g/mLとなるように懸濁し1晩静置後、上清を捨てて新たなPBSで本マイクロキャリアを2回洗浄した。その後、再度PBSで0.02g/mLとなるように懸濁し、121℃、20分間オートクレーブ滅菌した。引き続き、本マイクロキャリアを70%エタノールにて2回、PBSにて3回洗浄した後、10%(v/v)胎児ウシ血清を含むDMEM培地(WAKO社製)にて0.02g/mLとなるように懸濁した。本マイクロキャリア懸濁液を用いて、120mgのCytodex(登録商標)1及び4000000個のHepG2細胞を含むDMEM培地(10%(v/v)胎児ウシ血清含有)20mLを調製し、本細胞懸濁液を予めシリコンコーティング剤(旭テクノグラス社製)で処理したビーカー中にて37℃、6時間、スターラーで撹拌(100rpm)しながら培養した。ここで、HepG2細胞がマイクロキャリアに接着していることを顕微鏡にて確認した。引き続き、細胞が接着したマイクロキャリアを10%(v/v)胎児ウシ血清を含むDMEM培地にて2回洗浄し、同培地3mLにて懸濁した。
 10%(v/v)胎児ウシ血清を含むDMEM培地20mL或いは本培地に0.015%(w/v)の脱アシル化ジェランガム(KELCOGEL CG-LA、三晶株式会社製)を添加した培地組成物に、上記のマイクロキャリア懸濁液300μLをそれぞれ添加し、3日間、37℃にて培養した。この際、脱アシル化ジェランガムを含まない培養液は、スターラーで撹拌(100rpm)しながら培養した。培養後は、顕微鏡にてマイクロキャリア上の細胞の付着状態を確認した後、遠心処理(200G、5分間)でマイクロキャリアを沈降させた。PBS10mLで本マイクロキャリアを洗浄した後、1mLのトリプシン-EDTA(エチレンジアミン四酢酸)溶液(WAKO社製)を添加し、37℃で5分間保温した。更に、10%(v/v)胎児ウシ血清を含むDMEM培地を9mL添加した後、メッシュサイズ70μmのセルストレーナー(BDファルコン社製)を用いてマイクロキャリアを除去した。ここで得られたろ液から遠心処理(200G、5分)により細胞を回収した。本細胞を500μLの培地に懸濁し、その一部に対してトリパンブルー染色液(インヴィトロジェン社製)を同量添加した後、血球計算盤(エルマ販売株式会社製)にて生細胞の数を測定した。その結果、脱アシル化ジェランガムを含まない培養液は123,000個の細胞を含んでいたが、脱アシル化ジェランガムを含む培養液は1,320,000個の細胞を含んでいた。上記のとおり、該特定化合物の構造体を含む培地組成物は、マイクロキャリアを用いて細胞培養を実施しても、既存の培地と比べて細胞増殖の促進効果が優れていることが確認された。該特定化合物の構造体を含む培地組成物を用いてマイクロキャリア培養を3日間実施した際の、HepG2細胞の付着状態を図4に示す。
 参考試験例4:細胞株由来スフェアを用いた細胞浮遊試験
 キサンタンガム(KELTROL CG、三晶株式会社製)を1%(w/v)の濃度となるように超純水(Milli-Q水)に懸濁した後、90℃にて加熱しながらの撹拌により溶解した。本水溶液を用いて、キサンタンガムについて終濃度が0.1、0.15、0.2%(w/v)であるDMEM/F-12培地組成物を調製した。また、0.2%(w/v)のκ-カラギーナン(GENUGEL WR-80-J、三晶株式会社製)及び0.2%(w/v)のローカストビーンガム(GENUGUM RL-200-J、三晶株式会社製)を含む水溶液を90℃にて加熱することにより調製し、本水溶液を用いて0.03、0.04、0.05%(w/v)のκ-カラギーナンとローカストビーンガムを含むDMEM/F-12培地(シグマ社製)組成物を調製した。
 参考試験例2と同様の方法を用いてHeLa細胞のスフェアを作成し、上記で調製した培地1mLにそれぞれ数10個のスフェアを添加した後、1時間37℃にて静置して、スフェア細胞の浮遊状態を目視にて観察した。その結果、HeLa細胞のスフェアは、上記の培地組成物全てにおいて浮遊状態にて維持されることを確認した。更に、本細胞懸濁液に等量の培地を添加した後、遠心処理(300乃至400G、5分)によりHeLa細胞のスフェアが沈降し、回収できることを確認した。HeLa細胞のスフェアを該培地組成物にて培養した際の浮遊状態を図5にそれぞれ示す。また、分析例1と同様の方法で測定した粘度を表7、8に示す。
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
 参考試験例5:フィルターろ過した培地組成物を用いた細胞浮遊試験
 参考試験例2と同様の方法を用いて0.015%の脱アシル化ジェランガム(KELCOGEL CG-LA、三晶株式会社製)を含有するDMEM/F-12培地組成物を調製した。引き続き、本培地組成物1mLを70μm、40μmのフィルター(BDファルコン社製)、30μm、20μmのフィルター(アズワン社製)、10μmのフィルター(Partec社製)、5μm、1.2μm、0.45μm、0.2μmのフィルター(ザルトリウス・ステディム・ジャパン社製)を用いてそれぞれろ過した。参考試験例2と同様の方法を用いて作成したHepG2細胞のスフェアを、上記のろ液に対して約数十個添加した後、1時間37℃にて静置して、スフェア細胞の浮遊状態を目視にて観察した。その結果、HepG2細胞のスフェアは、10μm以上のフィルターを透過した培地組成物においては浮遊状態にて維持されるが、5μm以下のフィルターを透過した培地組成物においては沈殿することを確認した。更に、ここで浮遊状態にあるHepG2細胞のスフェアは、室温にて300G、5分間の遠心処理、或いは等量の培地を加えた後室温にて200G、5分間の遠心処理を施すことにより沈降し、回収できることを確認した。
 参考試験例6:スフェア形成試験
 参考試験例2と同様の方法を用いて0.01%の脱アシル化ジェランガム(KELCOGEL CG-LA、三晶株式会社製)及び10%(v/v)胎児ウシ血清を含有するEMEM培地(WAKO社製)の組成物を調製した。引き続き、HeLa細胞を、1000個/mLの濃度になるように添加した後、24ウェルプレート(コーニング社製)に分注した。本プレートを9日間、37℃にて浮遊静置培養した後、スフェアの形成を顕微鏡にて確認した。更に、300G、5分間の遠心処理によりスフェア細胞を沈降させ、PBS5mLにて1回洗浄した後、100μLのトリプシン-EDTA(エチレンジアミン四酢酸)溶液(WAKO社製)を添加し、37℃で5分間保温した。ここで得られた細胞懸濁液100μLに対して10%(v/v)胎児ウシ血清を含むEMEM培地を100μL添加し、その一部の細胞懸濁液に対してトリパンブルー染色液(インヴィトロジェン社製)を同量添加した後、血球計算盤(エルマ販売株式会社製)にて生細胞の数を測定した。その結果、170000個/mLまでHeLa細胞が増えていることが確認された。該培地組成物にて形成したHeLa細胞のスフェアを図6に示す。
 参考試験例7:構造体の光学顕微鏡観察
 脱アシル化ジェランガム(KELCOGEL CG-LA、三晶株式会社製)を0.4%(w/v)となるように純水に懸濁させた後、90℃にて加熱攪拌し溶解させた。300mLトールビーカーに2倍濃度のDMEM/F-12培地(Aldrich社製)95mLを入れ、室温でマグネチックスターラーにて攪拌しながら脱アシル化ジェランガム水溶液5mLを添加し、そのまま5分攪拌を続けることで脱アシル化ジェランガム終濃度0.02%培地組成物を調製した。さらに当培地組成物をホモミキサー(3000rpm)により5分間攪拌した。調製した培地組成物を光学顕微鏡(KEYENCE社、BIOREVO BZ-9000)により観察した。観察された構造体を図7に示す。
 参考試験例8:粉培地とDAGの混合過熱による調製
 脱アシル化ジェランガム(KELCOGEL CG-LA、三晶株式会社製)20mgと、DMEM/F-12培地(Life Technologies社製)1.58gを200mL三角フラスコに入れ、純水100mLを注いだ。121℃で20分オートクレーブ滅菌し、脱アシル化ジェランガム濃度が0.02%であるDMEM/F-12培地組成物を調製した。調製した培地に、デキストランビーズCytodex1(Size 200μm、GE Healthcare Life Sciences社製)を添加し、ビーズの分散状態を目視にて確認した。浮遊分散状態を○、一部沈降/分散状態を△、沈降状態を×として評価した。結果を表9に示す。
Figure JPOXMLDOC01-appb-T000010
 参考試験例9:多糖類を混合した培地組成物の調製
 キサンタンガム(KELTROL CG、三晶株式会社製)を0.5%(w/v)の濃度となるように純水に懸濁した後、90℃にて加熱しながらの撹拌により溶解した。同様にアルギン酸ナトリウム(ダックアルギン酸NSPM、フードケミファ社製)、ローカストビーンガム(GENUGUM RL-200-J、三晶株式会社製)、κ-カラギーナン(GENUGEL WR-80-J、三晶株式会社製)、ダイユータンガム(KELCO CRETE DG-F、三晶株式会社製)について、0.5%(w/v)の水溶液を作製した。
 本水溶液と0.2もしくは0.1%(w/v)脱アシル化ジェランガム溶液と10倍濃度のDMEM/F-12培地を混合し、80℃で30分過熱した。室温まで放冷した後、7.5%炭酸水素ナトリウム水溶液を添加し、終濃度0.01、0.02%(w/v)の脱アシル化ジェランガムと終濃度0.1、0.2、0.3、0.4%(w/v)の他の多糖を含有するDMEM/F-12培地組成物を調製した。また、脱アシル化ジェランガムを含む培地を前記同様に調製した後、メチルセルロース(cP400、WAKO株式会社製)の粉末を添加した。氷浴にて攪拌し、メチルセルロースを溶解させ、終濃度0.01、0.02%(w/v)の脱アシル化ジェランガムと終濃度0.1、0.2、0.3、0.4%(w/v)の他のメチルセルロースを含有するDMEM/F-12培地組成物を調製した。
 上記にて調製した培地に、ポリスチレンビーズ(Size 500-600μm、Polysciences Inc.製)を添加し、ビーズの分散状態を目視にて確認した。浮遊分散状態を○、一部沈降/分散状態を△、沈降状態を×として評価した。結果を表10に示す。
Figure JPOXMLDOC01-appb-T000011
 参考試験例10:多糖類を混合した培地組成物の粘度測定
 参考試験例9の多糖混合系と同様の方法で、終濃度が0.005、0.01%(w/v)の脱アシル化ジェランガムと他の多糖を含むDMEM/F-12培地を調製した。多糖は最終濃度がキサンタンガム、アルギン酸ナトリウム、ローカストビーンガムは0.1%(w/v)、メチルセルロースは0.2%(w/v)、κ-カラギーナンとダイユータンガムは0.05%(w/v)となるように調製した。それぞれの培地組成物の状態と分析例1と同様の方法で測定した粘度を表11~16に示す。
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
 参考試験例11:2価金属カチオン濃度を変更した培地組成物の調製
 塩化カルシウム、硫酸マグネシウム、塩化マグネシウムを含まないDMEM/F-12(D9785、Aldrich製)を使用し、参考試験例8の方法と同様に0.02%(w/v)の脱アシル化ジェランガムを含むDMEM/F-12培地組成物を調製した。また、終濃度がDMEM/F-12培地の規定量になるよう、塩化カルシウムまたは硫酸マグネシウム、塩化マグネシウムを添加したDMEM/F-12培地組成物を調製した。DMEM/F-12培地の規定組成より、それぞれの終濃度は塩化カルシウム0.116g/L、硫酸マグネシウム0.049g/L、塩化マグネシウム0.061g/Lとした。
 調製した培地組成物にデキストランビーズCytodex1(GE Healthcare Life Sciences社製)を加え、2日後にビーズの分散を目視にて確認した。浮遊分散状態を○、一部沈降/分散状態を△、沈降状態を×として評価した。結果を表17に示す。
Figure JPOXMLDOC01-appb-T000018
 参考試験例12:2価金属カチオンを後添加した培地組成物の調製
 0.1%(w/v)脱アシル化ジェランガム溶液と5倍濃度のDMEM/F-12培地(塩化カルシウム、硫酸マグネシウム、塩化マグネシウム不含、D9785、Aldrich製)、塩化カルシウム1167mg、硫酸マグネシウム489mg、塩化マグネシウム287mgを純水300mLに溶解させた塩溶液を調製した。200mLのトールビーカーに脱アシル化ジェランガム水溶液と純水を入れ、イカリ型攪拌羽を用いて200rpmで溶液を攪拌した。培地液と水を混合したA液を添加し、そのまま10分攪拌した。次いで塩溶液を添加、さらに7.5%炭酸水素ナトリウム水溶液を1.6mL添加し、終濃度0.02%の脱アシル化ジェランガムを含むDMEM/F-12培地組成物を調製した。それぞれの液の混合量を表に示す。調製4時間後に、6本の培地組成物について、ポリスチレンビーズとCytodex1の分散評価を行なった。結果を表18、19に示す。
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
 参考試験例13:各種培地組成物の調製
 0.1%(w/v)脱アシル化ジェランガム溶液と高濃度の培地液を調製した。高濃度の培地液は10倍濃度のMEM(M0268、Aldrich製)、RPMI-1640(R6504、Aldrich製)と5倍濃度のDMEM(高圧滅菌対応培地、ニッスイ製)を調製した。0.1%(w/v)脱アシル化ジェランガム溶液と各高濃度培地、濃度調整用の純水を混合し、80℃で30分過熱した。室温まで放冷した後、7.5%炭酸水素ナトリウム水溶液を添加し、終濃度0.01、0.02、0.03%(w/v)の脱アシル化ジェランガム含有する培地組成物をそれぞれ調製した。
 調製した6本の培地組成物について、ポリスチレンビーズとデキストランビーズCytodex1の浮遊分散状態を○、一部沈降/分散状態を△、沈降状態を×として評価した。結果を表20、21に示す。
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
 参考試験例14:脱アシル化ジェランガムを含む培地組成物の粒度分布測定
 参考例1に倣い、0.038%(w/v)の脱アシル化ジェランガムを含むDMEM/F-12培地組成物を調製した。培地はホモミキサーを用いて3000rpmと6000rpmにて1分攪拌し調製した。本培地組成物の粒度分布について、ベックマンコールター(株)製Multisizer4(コールター原理による精密粒度分布測定装置)を用いて測定し、体積基準粒度分布のメジアン径(d50)を求めた。結果を表22に示す。
Figure JPOXMLDOC01-appb-T000023
 参考試験例15:脱アシル化ジェランガムのリン酸化
 ガラス製の100mL試験管に、脱アシル化ジェランガム1gと、純水40mLを秤りとり、100℃で30分加熱し、懸濁液を調製した。この懸濁液に、リン酸水溶液(85%)1gを添加し、5時間加熱還流した。その後、12時間撹拌しながら、室温まで放冷することで得た白色懸濁液を、99%エタノール(500mL)に注いだ。生じた綿状の白色固体を、ろ取後、乾燥させることで、脱アシル化ジェランガムのリン酸化物として、淡褐色固体(0.4g)を得た。リン酸基が導入されたことは、フーリエ変換赤外分光分析(株式会社島津製作所製、IR-Prestage21)によって確認した(1700cm-1;P-OH、1296cm-1、1265cm-1;P=O)。淡褐色固体をマイクロ波加熱分解装置(ETHOS TC, マイルストーンゼネラル製)によって分解した後に、誘導結合プラズマ発光分光分析装置(ICP-OES) (SPS 5520, SIIナノテクノロジー社製)によってリン原子の含有率を測定した結果、3.5wt%(n=2)であった。
 参考試験例16:リン酸化した脱アシル化ジェランガムを含む培地組成物の調製
 任意量のリン酸化した脱アシル化ジェランガム(30mg)と、DMEM/F-12培地(ライフテクノロジーズ社製)1.56gを200mL三角フラスコに入れ、純水100mLを注いだ。121℃で20分オートクレーブ滅菌し、脱アシル化ジェランガム濃度が0.03%であるDMEM/F-12培地組成物を調製した。調製した培地に、デキストランビーズCytodex1(GEヘルスケアバイオサイエンス社製)を添加し、ビーズの分散状態を目視にて確認した。0.03%(w/v)のリン酸化した脱アシル化ジェランガム濃度において、ビーズの分散状態が認められた。
 参考試験例17:脱アシル化ジェランガムを含む培地組成物の調製
 脱アシル化ジェランガム水溶液と培地溶液とを下表に示す割合で添加することで混合して、脱アシル化ジェランガム濃度が0.02%であるDMEM/F-12培地組成物を調製したときのポリスチレンビーズ(Size 500-600μm、Polysciences Inc.製)の分散状態を評価した。結果を表23、24に示す。1日以上静置することで、全ての条件で、スチレンビーズが分散した。
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000025
 参考試験例18:フィルターを用いた培地組成物の調製
 脱アシル化ジェランガム(KELCOGEL CG-LA、三晶株式会社製)を最終濃度が0.02或いは0.04%(w/v)となるように超純水(Milli-Q水)に懸濁した後、90℃にて30分間或いは121℃にて20分間加熱することにより溶解した。更に、本水溶液100mLを孔径が0.22μmのポリエーテルスルホン製メンブレンフィルター(コーニング社製)にてろ過した。引き続き、本ろ液を2乃至4倍濃度のDMEM/F-12培地(シグマ・アルドリッチ社製)と混合した後、マイルドミキサー(SI-24、タイテック社製)にて1時間振とうし、最終濃度0.01或いは0.015%(w/v)の脱アシル化ジェランガムを含む培地組成物をそれぞれ調製した(例えば、0.02%(w/v)脱アシル化ジェランガム水溶液と2倍濃度のDMEM/F-12培地を25mLずつ混合し、0.01%(w/v)の脱アシル化ジェランガム培地組成物を50mL調製した)。参考試験例2と同様の方法を用いてHepG2細胞のスフェアを作成し、上記で調製した培地1mLにそれぞれ数10個のスフェアを添加した後、37℃にて静置して、1時間及び1晩後のスフェア細胞の浮遊状態を目視にて観察した。その結果、HepG2細胞のスフェアは、上記の培地組成物全てにおいて浮遊状態にて維持されることを確認した。更に、2倍容量の培地を添加した後、本細胞懸濁液を遠心処理(500G、5分)することによりHepG2細胞のスフェアが沈降し、細胞が回収できることを全ての培地組成物において確認した。1晩後のスフェアの分散状態を目視にて確認した際、浮遊分散状態を○、一部沈降/分散状態を△、沈降状態を×として評価した結果を表25に示す。
Figure JPOXMLDOC01-appb-T000026
 参考試験例19:細胞株由来スフェアを培養した際の細胞増殖試験
 ヒト胎児腎細胞株HEK293(DSファーマバイオメディカル社製)を、10%(v/v)胎児ウシ血清を含むEMEM培地(WAKO社製)に250000個/mLとなるように懸濁し、本懸濁液10mLをEZ SPHERE(旭硝子社製)に播種した後、COインキュベーター(5%CO)内で2日間培養した。ここで得られたHEK293細胞のスフェア(直径100~200μm)の懸濁液10mLを遠心処理(200G、5分間)してスフェアを沈降させ上清を除いた後、1mLに懸濁した。引き続き、本スフェア懸濁液200μL(細胞数は約200000個)に上記培地10mLを添加して懸濁した後、平底チューブ(BM機器社製)に移した。同様に、上記培地に0.015%(w/v)の脱アシル化ジェランガム(KELCOGEL CG-LA、三晶株式会社製)を添加した培地組成物を用いてスフェアの懸濁液を作成し、平底チューブ(BM機器社製)に移した。なお、0.015%(w/v)の脱アシル化ジェランガムを添加した培地組成物は、まず脱アシル化ジェランガム(KELCOGEL CG-LA、三晶株式会社製)を0.3%(w/v)となるように超純水(Milli-Q水)に懸濁した後、90℃にて加熱しながらの撹拌により溶解し、本水溶液を121℃で20分オートクレーブ滅菌した後、1/20希釈で10%(v/v)胎児ウシ血清を含むEMEM培地に添加することにより調製した。
 37℃で5日間、COインキュベーター(5%CO)内で上記スフェア懸濁液を静置培養した後、2倍容量の培地を添加して遠心処理(500G、5分間)を行うことによりスフェアを沈降させ、上清を除いた。引き続き、回収したスフェアをPBS10mLにて1回洗浄した後、1mLのトリプシン-EDTA(エチレンジアミン四酢酸)溶液(WAKO社製)を添加し、37℃で5分間保温した。上記培地を9mL添加した後、遠心処理(500G、5分間)により細胞を回収した。ここで得られた細胞懸濁液2mLの一部に対してトリパンブルー染色液(インヴィトロジェン社製)を同量添加した後、血球計算盤(エルマ販売株式会社製)にて生細胞及び死細胞の数を測定した。なお、対照として脱アシル化ジェランガムを含まない培地組成物を作成し、同様の実験を行った。
 その結果、HEK293細胞のスフェアは該培地組成物を用いることにより浮遊状態にて培養することが可能であり、当該培地組成物で効率良く細胞が増殖することが確認された。しかも、該培地組成物は、脱アシル化ジェランガムを含まない培地組成物と比べて細胞を増殖させた際に死細胞の割合が少なく、細胞増殖の促進効果が優れていることが確認された。この際、既存の培地で培養したスフェアは培養容器の底面に沈降していた。
 HEK293細胞に関して、脱アシル化ジェランガムを含まない培地にて培養した際の細胞数を1としたときの相対的細胞数を表26に示す。また、脱アシル化ジェランガムを含まない培地で培養した際の死細胞率(死細胞数/生細胞数)を1としたときの相対的死細胞率を表27に示す。
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000028
 参考試験例20:昆虫細胞を培養した際の細胞増殖試験
 脱アシル化ジェランガム(KELCOGEL CG-LA、三晶株式会社製)を0.3%(w/v)となるように超純水(Milli-Q水)に懸濁した後、90℃にて加熱しながらの撹拌により溶解し、本水溶液を121℃で20分オートクレーブ滅菌した。本溶液を用いてSf-900(登録商標)IIISFM培地(ギブコ社製)に終濃度0.015%(w/v)の脱アシル化ジェランガムを添加した培地組成物を調製した。引き続き、Spodoptera frugiperda由来のSf9細胞(ギブコ社製)を、100000細胞/mLとなるように上記の脱アシル化ジェランガムを添加した培地組成物に播種した後、24ウェル平底マイクロプレート(コーニング社製)のウェルに1ウェル当たり1mLとなるように分注した。これらの細胞懸濁液をインキュベーター内にて25℃で5日間静置培養した。その後、培養液の一部を回収し、トリパンブルー染色液(インヴィトロジェン社製)を同量添加した後、血球計算盤(エルマ販売株式会社製)にて生細胞の数を測定した。なお、対照として脱アシル化ジェランガムを含まない培地組成物を作成し、同様の実験を行った。
 その結果、Sf9細胞は、該培地組成物を用いることにより浮遊状態にて均一に培養することが可能であり、当該培地組成物で増殖することが確認された。更に、該培地組成物は、脱アシル化ジェランガムを含まない培地組成物と比べて細胞を増殖させた際に細胞増殖の促進効果が優れていることが確認された。浮遊静置培養5日間後のSf9細胞の細胞数を表28に示す。
Figure JPOXMLDOC01-appb-T000029
 参考試験例21:CD34陽性細胞を培養した際の細胞増殖試験
 脱アシル化ジェランガム(KELCOGEL CG-LA、三晶株式会社製)を0.3%(w/v)となるように超純水(Milli-Q水)に懸濁した後、90℃にて加熱しながらの撹拌により溶解し、本水溶液を121℃で20分オートクレーブ滅菌した。本溶液を用いてStemSpan SFEM培地(StemCell Technologies社製)に終濃度0.015%(w/v)の脱アシル化ジェランガム、20ng/mLのトロンボポエチン(WAKO社製)及び100ng/mLの幹細胞因子(SCF、WAKO社製)を添加した培地組成物を調製した。引き続き、ヒト臍帯血由来のCD34陽性細胞(ロンザ社製)を、10000細胞/mLとなるように上記の脱アシル化ジェランガムを添加した培地組成物に播種した後、24ウェル平底マイクロプレート(コーニング社製)のウェルに1ウェル当たり1mLとなるように分注した。これらの細胞懸濁液を37℃で7日間、COインキュベーター(5%CO)内で静置培養した。その後、培養液の一部を回収し、トリパンブルー染色液(インヴィトロジェン社製)を同量添加した後、血球計算盤(エルマ販売株式会社製)にて生細胞の数を測定した。また、残りの培養液に3倍容量の培地を添加して遠心処理(500G、5分間)を行うことにより全ての細胞を沈降させた。なお、対照として脱アシル化ジェランガムを含まない培地組成物を作成し、同様の実験を行った。
 その結果、CD34陽性細胞は、該培地組成物を用いることにより浮遊状態にて均一に培養することが可能であり、当該培地組成物で増殖することが確認された。更に、該培地組成物は、脱アシル化ジェランガムを含まない既存の培地と比べて同等以上の細胞増殖促進効果を有することが確認された。また、遠心処理により細胞が沈降し、細胞が回収できることを確認した。脱アシル化ジェランガムを含まない培地にて培養した際の細胞数を1としたときの、浮遊静置培養7日間後におけるCD34陽性細胞から増殖した細胞の相対的細胞数を表29に示す。
Figure JPOXMLDOC01-appb-T000030
 参考試験例22:スフェア形成試験
 参考試験例2と同様の方法を用いて0.015%の脱アシル化ジェランガム(KELCOGEL CG-LA、三晶株式会社製)及び10%(v/v)胎児ウシ血清を含有するDMEM培地(WAKO社製)の組成物を調製した。引き続き、HepG2細胞を、15000個/mLの細胞濃度になるように添加した後、24ウェルプレート(コーニング社製)に1mL分注した。本プレートを7日間、37℃にて浮遊静置培養した後、スフェアの形成を顕微鏡にて確認した。更に、400G、5分間の遠心処理によりスフェア細胞を沈降させ、PBS5mLにて1回洗浄した後、100μLのトリプシン-EDTA(エチレンジアミン四酢酸)溶液(WAKO社製)を添加し、37℃で5分間保温した。ここで得られた細胞懸濁液100μLに対して10%(v/v)胎児ウシ血清を含むDMEM培地を100μL添加し、その一部の細胞懸濁液に対してトリパンブルー染色液(インヴィトロジェン社製)を同量添加した後、血球計算盤(エルマ販売株式会社製)にて生細胞の数を測定した。その結果、HepG2細胞は、該培地組成物にてスフェアを形成し、また細胞数も80800個/mLまでが増えていることが確認された。該培地組成物にて形成したHepG2細胞のスフェアを図8に示す。
 参考試験例23:細胞株由来スフェアを用いた細胞浮遊試験
 ダイユータンガム(KELKO-CRETE DG、三晶株式会社製)を0.3%(w/v)の濃度となるように超純水(Milli-Q水)に懸濁した後、90℃にて加熱しながらの撹拌により溶解した。本水溶液を用いて、ダイユータンガムについて終濃度が0.1%(w/v)であるDMEM/F-12培地組成物を調製した。また、0.5%(w/v)のネイティブ型ジェランガム(ケルコゲル HT、三栄源エフ・エフ・アイ株式会社製)を含む水溶液を90℃にて加熱することにより調製し、本水溶液を用いて0.05、0.1%(w/v)のネイティブ型ジェランガムを含むDMEM/F-12培地(シグマ社製)組成物を調製した。
 参考試験例2と同様の方法を用いてHeLa細胞のスフェアを作成し、上記で調製した培地1mLにそれぞれ数10個のスフェアを添加した後、1時間37℃にて静置して、スフェア細胞の浮遊状態を目視にて観察した。その結果、HeLa細胞のスフェアは、上記の培地組成物全てにおいて浮遊状態にて維持されることを確認した。更に、0.1%(w/v)のダイユータンガムを含む本細胞懸濁液を遠心処理(200G、5分)することによりHeLa細胞のスフェアが沈降し、細胞が回収できることを確認した。
 参考試験例24:細胞接着能を有する磁気ビーズを用いた細胞浮遊試験1
 ラミニン或いはフィブロネクチンにてコーティングしたGEM(登録商標、Global Eukaryotic Microcarrier、ジーエルサイエンス株式会社製)懸濁溶液を500μLずつ1.5mL容量のマイクロテストチューブ(エッペンドルフ社製)に分注し、磁石スタンド(TA4899N12、多摩川精機株式会社製)を使用して上記GEM懸濁溶液からGEMを集積させて溶媒を除去した。更に、10%(v/v)胎児ウシ血清を含有するDMEM培地(WAKO社製)500μLによりGEMを2回洗浄した後、同上培地500μLに懸濁した。本懸濁液を細胞低接着プレートであるスミロンセルタイトプレート24F(住友ベークライト株式会社製)に1ウェルあたり50μL分注した。引き続き、別途調製したHepG2細胞を250000細胞/mLとなる様に添加し、同上培地にて最終容量を500μL/ウェルとした。本細胞懸濁液を手動にて撹拌した後、本プレートを一晩、COインキュベーター(5%CO)内で静置した。GEM上での細胞の接着を顕微鏡にて確認した後、細胞懸濁液を1.5mL容量のマイクロテストチューブ(エッペンドルフ社製)に移し、上記磁石スタンドを用いて細胞付着GEMを集積させて上清を除去した。
 参考試験例2と同様の方法を用いて0.015%の脱アシル化ジェランガム(KELCOGEL CG-LA、三晶株式会社製)及び10%(v/v)胎児ウシ血清を含有するDMEM培地(WAKO社製)の組成物を調製した。本培地組成物或いは脱アシル化ジェランガムを含まない同上培地それぞれ1mLを上記にて調製したHepG2細胞付着GEM(ラミニン或いはフィブロネクチンコーティング)に添加し、懸濁させた後、スミロンセルタイトプレート24Fに移した。引き続き、本プレートを6日間、COインキュベーター(5%CO)内で静置した後、細胞培養液を1.5mL容量のマイクロテストチューブ(エッペンドルフ社製)に移し、上記磁石スタンド上にて緩やかにピペッティングしながら細胞付着GEMを集積させて上清を除去した。本GEMをPBS1mLにて1回洗浄し、200μLのトリプシン-EDTA(エチレンジアミン四酢酸)溶液(WAKO社製)を添加し、37℃で10分間保温した。ここで得られた細胞懸濁液200μLに対して10%(v/v)胎児ウシ血清を含むDMEM培地を800μL添加し、その一部の細胞懸濁液に対してトリパンブルー染色液(インヴィトロジェン社製)を同量添加した後、血球計算盤(エルマ販売株式会社製)にて生細胞の数を測定した。
 その結果、HepG2細胞を接着させたGEMは該培地組成物を用いることにより浮遊状態にて培養することが可能であり、当該培地組成物で効率良く細胞が増殖することが確認された。しかも、該培地組成物は、脱アシル化ジェランガムを含まない既存の培地と比べて、細胞増殖の促進効果が優れていることが確認された。また、磁力を用いることにより該培地組成物からHepG2細胞付着GEMを集積させることが可能であり、更に本GEMからHepG2細胞が回収できることを確認した。
 脱アシル化ジェランガム含有或いは非含有培地にてHepG2細胞をGEM上で6日間培養した際の細胞数を表30に示す。また、HepG2細胞を付着させたラミニンコートGEMを該培地組成物で培養した際の浮遊状態を図9に示す。
Figure JPOXMLDOC01-appb-T000031
 参考試験例25:細胞接着能を有する磁気ビーズを用いた細胞浮遊試験2
 参考試験例24と同様に、フィブロネクチンにてコーティングしたGEM(登録商標、Global Eukaryotic Microcarrier、ジーエルサイエンス株式会社製)をMF-Medium(登録商標)間葉系幹細胞増殖培地(東洋紡株式会社製)に懸濁した。本懸濁液を細胞低接着プレートであるスミロンセルタイトプレート24F(住友ベークライト株式会社製)に1ウェルあたり50μL分注した。引き続き、別途調製したヒト骨髄由来の間葉系幹細胞(Cell Applications社製)を250000細胞/mLとなる様に添加し、参考試験例24と同様に、本プレートを一晩、COインキュベーター(5%CO)内で静置させて間葉系幹細胞が接着したGEMを調製した。
 参考試験例2と同様の方法を用いて0.015%の脱アシル化ジェランガム(KELCOGEL CG-LA、三晶株式会社製)を含有するMF-Medium(登録商標)間葉系幹細胞増殖培地(東洋紡株式会社製)の組成物を調製した。本培地組成物或いは脱アシル化ジェランガムを含まない同上培地それぞれ1mLを上記にて調製した間葉系幹細胞付着GEM(フィブロネクチンコーティング)に添加し、懸濁させた後、スミロンセルタイトプレート24Fに移した。引き続き、本プレートを4日間、COインキュベーター(5%CO)内で静置した後、細胞培養液を1.5mL容量のマイクロテストチューブ(エッペンドルフ社製)に移し、上記磁石スタンド上にて緩やかにピペッティングしながら細胞付着GEMを集積させて上清を除去した。本GEMをPBS1mLにて1回洗浄し、200μLのトリプシン-EDTA(エチレンジアミン四酢酸)溶液(WAKO社製)を添加し、37℃で10分間保温した。ここで得られた細胞懸濁液200μLに対して10%(v/v)胎児ウシ血清を含むDMEM培地を800μL添加し、その一部の細胞懸濁液に対してトリパンブルー染色液(インヴィトロジェン社製)を同量添加した後、血球計算盤(エルマ販売株式会社製)にて生細胞の数を測定した。
 その結果、間葉系幹細胞を接着させたGEMは該培地組成物を用いることにより浮遊状態にて培養することが可能であり、当該培地組成物で効率良く細胞が増殖することが確認された。しかも、該培地組成物は、脱アシル化ジェランガムを含まない既存の培地と比べて、細胞増殖の促進効果が優れていることが確認された。また、磁力を用いることにより該培地組成物から間葉系幹細胞付着GEMを集積させることが可能であり、更に本GEMから間葉系幹細胞が回収できることを確認した。
 脱アシル化ジェランガム含有或いは非含有培地にて間葉系幹細胞をGEM上で4日間培養した際の細胞数を表31に示す。
Figure JPOXMLDOC01-appb-T000032
 参考試験例26:アルギン酸ビーズを用いた細胞浮遊試験
 以下の試験は、株式会社PGリサーチ製アルギン酸三次元培養キットの方法に準じて実施した。別途調製したHepG2細胞を400000細胞/mLとなる様にアルギン酸ナトリウム溶液(株式会社PGリサーチ製)2.5mLに添加し、更にヒト組み換えラミニン511(株式会社ベリタス製)を5μg/mLとなる様に添加し、細胞懸濁液を調製した。本細胞懸濁液についてゾンデを装着した5mLシリンジ(テルモ株式会社製)で回収した後、本シリンジに22G注射針(テルモ株式会社製)を装着した。引き続き、塩化カルシウム水溶液(株式会社PGリサーチ製)が2mLずつ添加してある24ウェル平底マイクロプレート(株式会社PGリサーチ製)のウェルに対して、本細胞懸濁液を10滴ずつ添加した。10分間、室温にて静置してからアルギン酸ビーズの形成を確認した後、塩化カルシウム溶液を除去し、PBS2mLを添加して室温で15分静置した。更に、PBSを除去した後、10%(v/v)胎児ウシ血清を含むDMEM培地(WAKO社製)2mLを添加し室温で15分静置した。培地を除去した後、参考試験例2と同様の方法を用いて調製した0.03%の脱アシル化ジェランガム(KELCOGEL CG-LA、三晶株式会社製)及び10%(v/v)胎児ウシ血清を含有するDMEM培地(WAKO社製)の培地組成物或いは脱アシル化ジェランガムを含まない同上培地それぞれ1mLを各ウェルに添加し、8日間、COインキュベーター(5%CO)内で静置培養した。なお、培地交換は、培養4日目に実施した。
 培養したアルギン酸ビーズを1mL容量のチップを用いて1.5mL容量のマイクロテストチューブ(エッペンドルフ社製)に移した後、クエン酸ナトリウム溶液(株式会社PGリサーチ製)1mLを各チューブに添加し、室温15分間攪拌してアルギン酸ビーズを溶解させた。引き続き、300G、3分間の遠心処理により細胞を沈降させ、上清を除去した。本細胞に対して200μLのトリプシン-EDTA(エチレンジアミン四酢酸)溶液(WAKO社製)を添加し、37℃で5分間保温した。ここで得られた細胞懸濁液200μLに対して10%(v/v)胎児ウシ血清を含むDMEM培地を800μL添加し、その一部の細胞懸濁液に対してトリパンブルー染色液(インヴィトロジェン社製)を同量添加した後、血球計算盤(エルマ販売株式会社製)にて生細胞の数を測定した。
 その結果、HepG2細胞を包埋したアルギン酸ビーズは該培地組成物を用いることにより浮遊状態にて培養することが可能であり、当該培地組成物で効率良く細胞が増殖することが確認された。しかも、該培地組成物は、脱アシル化ジェランガムを含まない既存の培地と比べて、細胞増殖の促進効果が優れていることが確認された。
 脱アシル化ジェランガム含有或いは非含有培地にてHepG2細胞をアルギン酸ビーズ内で8日間培養した際の細胞数を表32に示す。また、HepG2細胞を包埋したアルギン酸ビーズを該培地組成物で培養した際の浮遊状態を図10に示す。
Figure JPOXMLDOC01-appb-T000033
 参考試験例27:コラーゲンゲルカプセルを用いた細胞浮遊試験
 A:組織培養用コラーゲンCellmatrix(登録商標)TypeI‐A(セルマトリックス、新田ゼラチン株式会社製)、B:10倍濃度のDMEM/F-12培地(Aldrich社製)、C:再構成用緩衝液(0.05N水酸化ナトリウム溶液100mLに炭酸水素ナトリウム2.2g、HEPES(4‐(2‐hydroxyethyl)‐1‐piperazineethanesulfonic acid))4.77gを加えてろ過滅菌したもの)のそれぞれを氷中にて冷却しながらA:B:C=8:1:1となるように混合した。更に、ヒト組み換えラミニン511(株式会社ベリタス製)を5μg/mLとなる様に添加し、コラーゲン混合溶液500μLを調製した。本混合溶液に対して別途調製したHepG2細胞を200000細胞/mLとなる様に添加し、25G注射針(テルモ株式会社製)を装着した1.5mLシリンジ(テルモ株式会社製)を用いて全量を回収した。引き続き、37℃にて予め保温した10%(v/v)胎児ウシ血清を含有するDMEM培地(WAKO社製)10mLを添加した平底チューブ(BM機器社製)に対して、上記シリンジを用いて1滴ずつ細胞懸濁液を滴下した。37℃水浴中にて10分間保温して、直径2mm程度の不定形なコラーゲンゲルカプセルの形成を確認した後、参考試験例2と同様の方法にて最終濃度0.04%となるように脱アシル化ジェランガム(KELCOGEL CG-LA、三晶株式会社製)を添加し、軽く撹拌して上記カプセルを浮遊させた。引き続き、5日間、COインキュベーター(5%CO)内で本チューブを静置培養した。
 コラーゲンゲルカプセルを含む培養液に対してPBS25mLを添加し、400G、5分間の遠心処理によりコラーゲンゲルカプセルを沈降させ、上清を除去した。再度、PBS25mLを加えて遠心処理を行い、残量が5mLとなるように上清を除去した。本液に対して1%(W/V)のコラゲナーゼL(新田ゼラチン株式会社製)20μLを添加した後、37℃にて2時間振とうした。コラーゲンゲルの溶解を確認した後、PBS10mLを加え、400G、5分間の遠心処理により細胞を沈降させ、上清を除去した。本細胞に対して1mLのトリプシン-EDTA(エチレンジアミン四酢酸)溶液(WAKO社製)を添加し、37℃で5分間保温した。ここで得られた細胞懸濁液に対して10%(v/v)胎児ウシ血清を含むDMEM培地を4mL添加し、400G、5分間の遠心処理により細胞を沈降させ、上清を除去した。得られた細胞を2mLの同上培地にて懸濁し、その一部に対してトリパンブルー染色液(インヴィトロジェン社製)を同量添加した後、血球計算盤(エルマ販売株式会社製)にて生細胞の数を測定した。
 その結果、HepG2細胞を包埋したコラーゲンゲルカプセルは該培地組成物を用いることにより浮遊状態にて培養することが可能であり、当該培地組成物で効率良く細胞が増殖することが確認された。しかも、該培地組成物は、脱アシル化ジェランガムを含まない既存の培地と比べて、細胞増殖の促進効果が優れていることが確認された。
 脱アシル化ジェランガム含有或いは非含有培地にてHepG2細胞をコラーゲンゲルカプセル内で5日間培養した際の細胞数を表33に示す。また、HepG2細胞を包埋したコラーゲンゲルカプセルを該培地組成物で培養した際の浮遊状態を図11に示す。
Figure JPOXMLDOC01-appb-T000034
 参考試験例28:フィルターを用いたスフェアの回収試験
 参考試験例2と同様の方法を用いて0.015%の脱アシル化ジェランガム(KELCOGEL CG-LA、三晶株式会社製)及び10%(v/v)胎児ウシ血清を含有するDMEM培地(WAKO社製)の組成物を調製した。また、対照として脱アシル化ジェランガムを含まない同上培地を調製した。参考試験例2と同様の方法を用いてHepG2細胞のスフェアを作成し、上記で調製した培地1mLにそれぞれ86000個の細胞数となるようにスフェアを添加した後、1時間37℃にて静置して、スフェア細胞の浮遊状態を目視にて観察した。更に、メッシュサイズが40μmのセルストレーナー(ベクトン・ディッキンソン社製)上に本細胞懸濁液を添加し、スフェアをフィルター上に捕捉した。引き続き、フィルターの裏面からPBS10mLを流し込むことによりスフェアを15mLチューブに回収し、300G、5分間の遠心処理によりスフェアを沈降させた。上清を除去した後、スフェアに対して500μLのトリプシン-EDTA(エチレンジアミン四酢酸)溶液(WAKO社製)を添加し、37℃で5分間保温した。ここで得られた細胞懸濁液に対して10%(v/v)胎児ウシ血清を含むDMEM培地を1mL添加し、その一部に対してトリパンブルー染色液(インヴィトロジェン社製)を同量添加した後、血球計算盤(エルマ販売株式会社製)にて生細胞の数を測定した。その結果、HepG2細胞のスフェアは、上記の培地組成物において浮遊状態にて維持されることを確認した。更に、0.015%の脱アシル化ジェランガムを含む本スフェア懸濁液をフィルター処理することにより、HepG2細胞のスフェアを、脱アシル化ジェランガムを含まない培地と同等の回収率にて細胞が回収できることを確認した。脱アシル化ジェランガムを含まない培地を用いてフィルターにて回収されたHepG2細胞数を1としたときの、脱アシル化ジェランガムを含む培地から回収された相対的細胞数を表34に示す。
Figure JPOXMLDOC01-appb-T000035
 参考試験例29:各種多糖類の混合剤を用いたスフェアの細胞浮遊試験
 参考試験例9と同様の方法を用いて、キサンタンガム(KELTROL CG、三晶株式会社製)、アルギン酸ナトリウム(ダックアルギン酸NSPM、フードケミファ社製)、ローカストビーンガム(GENUGUM RL-200-J、三晶株式会社製)、メチルセルロース(cP400、WAKO株式会社製)、κ-カラギーナン(GENUGEL WR-80-J、三晶株式会社製)、ペクチン(GENU pectin LM-102AS、三晶株式会社製)或いはダイユータンガム(KELCO CRETE DG-F、三晶株式会社製)と脱アシル化ジェランガム(KELCOGEL CG-LA、三晶株式会社製)を組み合わせて混合したDMEM/F-12培地組成物を調製した。参考試験例2と同様の方法を用いてHepG2細胞のスフェアを作成し、上記で調製した培地1mLにそれぞれ数10個のスフェアを添加した後、37℃にて静置して、1時間及び1晩後のスフェア細胞の浮遊状態を目視にて観察した。その結果、HepG2細胞のスフェアは、上記の培地組成物全てにおいて浮遊状態にて維持されることを確認した。更に、2倍容量の培地を添加した後、本細胞懸濁液を遠心処理(500G、5分)することによりHepG2細胞のスフェアが沈降し、細胞が回収できることを全ての培地組成物において確認した。1晩後のスフェアの分散状態を目視にて確認した際、浮遊分散状態を○、一部沈降/分散状態を△、沈降状態を×として評価した結果を表35及び表36に示す。なお、表中の-は未実施を示す。
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000037
 ビーズと細胞の分散性比較1
 上記(比較例)にて調製した脱アシル化ジェランガム含有培地とメチルセルロース含有培地について、デキストランビーズCytodex(登録商標) 1(GE Healthcare Life Sciences社製)とHeLa細胞スフェアの分散状態を比較した。結果を表(表37及び38)に示す。Cytodex1とHeLa細胞スフェアの分散状態はよく相関していることから、Cytodex1を細胞スフェアモデルとして使用することができる。
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-T000039
 ビーズと細胞の分散性比較2
 参考試験例9にて調製した多糖および脱アシル化ジェランガム含有培地について、ポリスチレンビーズ(Size 500-600μm、Polysciences Inc.製)とHepG2細胞スフェアの分散状態を比較した。浮遊分散状態を○、一部沈降/分散状態を△、沈降状態を×として評価した。結果を表(表39)に示す。ポリスチレンビーズとHepG2細胞スフェアの分散状態はよく相関していることから、ポリスチレンビーズを細胞スフェアモデルとして使用することができる。
Figure JPOXMLDOC01-appb-T000040
 参考試験例30:イネ由来植物カルスの浮遊培養試験
 塩水選にて精選されたイネ日本晴の完熟種子(湖東農業協同組合より購入)50粒を50mLポリスチレンチューブ(BDファルコン社製)に移し、滅菌水50mLにて洗浄した後、70%エタノール水30mL中にて1分間撹拌した。エタノール水を除去した後、キッチンハイター(花王株式会社製)30mLを添加し、1時間撹拌した。キッチンハイターを除去した後、滅菌水50mLにて4回洗浄した。ここで滅菌した種子を、2μg/mLの2,4-ジクロロフェノキシ酢酸(シグマ・アルドリッチ社製)及び寒天を含むムラシゲ・スクーグ基礎培地(M9274、シグマ・アルドリッチ社製)1.5mL/ウェル(24ウェル平底マイクロプレート(コーニング社製))上に置床した。30℃、16時間暗所/8時間暗所の条件にて3週間培養し、種子の胚盤上で増殖したクリーム色のカルス(1~2mm)を採取した。
 脱アシル化ジェランガム(KELCOGEL CG-LA、三晶株式会社製)を0.3%(w/v)となるように超純水(Milli-Q水)に懸濁した後、90℃にて加熱しながらの撹拌により溶解し、本水溶液を121℃で20分オートクレーブ滅菌した。本溶液を用いて、2μg/mLの2,4-ジクロロフェノキシ酢酸(シグマ・アルドリッチ社製)を含むムラシゲ・スクーグ基礎培地(M9274、シグマ・アルドリッチ社製)に終濃度0.03%(w/v)の脱アシル化ジェランガムを添加した培地組成物を調製した。上記にて調製したカルス15個を本培地組成物10mL/平底チューブ(BM機器社製)に添加し、7日間、25℃にて振とう培養を行った。その結果、イネ由来カルスは当該培地組成物を用いることにより浮遊状態にて培養することが可能であり、当該培地組成物にてカルスが維持されることが確認された。イネ由来カルスを該培地組成物で培養した際の浮遊状態を図12に示す。
[製造例1:結晶セルロース由来セルロースナノファイバーの製造]
 市販の結晶セルロース(旭化成ケミカルズ株式会社製 PH-101)4質量部に純水396質量部を加え分散させた後、(株)スギノマシン製高圧粉砕装置(スターバーストシステム)を用いて、220MPaにて100回粉砕処理を行い、結晶セルロース由来のセルロースナノファイバーの水分散液(MNC)を得た。得られた分散液をシャーレに測りとり、110℃にて1時間乾燥を行い、水分を除去して残渣の量を測定し、濃度を測定した。その結果、水中のセルロース濃度(固形分濃度)は、1.0質量%であった。この水分散液を121℃、20分間オートクレーブ処理し、滅菌した。
[製造例2:パルプ由来セルロースナノファイバーの製造]
 市販のクラフトパルプ(王子エフテックス株式会社製LBKP、固形分89質量%)5質量部に純水145質量部を加えて分散させた後、増幸産業株式会社製石臼式粉砕装置(マスコロイダー)を用いて、1500rpmにて9回粉砕処理を行い、パルプスラリーを作製した。前記パルプスラリーを株式会社スギノマシン社製高圧粉砕装置(スターバーストシステム)用いて、220MPaにて300回処理することにより、ナノセルロースの水分散液(PNC)を得た。得られた分散液をシャーレに測りとり、110℃にて1時間乾燥を行い、水分を除去して残渣の量を測定し、濃度を測定した。その結果、水中のセルロース濃度(固形分濃度)は、1.6質量%であった。この水分散液を121℃、20分間オートクレーブ処理し、滅菌した。
[製造例3:キチンナノファイバーの製造]
 市販のキチン粉末(甲陽ケミカル株式会社製)20質量部に純水980質量部を加えて分散させた後、(株)スギノマシン製高圧粉砕装置(スターバーストシステム)を用いて、245MPaにて200回粉砕処理を行い、キチンナノファイバーの水分散液(CT)を得た。得られた分散液をシャーレに測りとり、110℃にて1時間乾燥を行い、水分を除去して残渣の量を測定し、濃度を測定した。その結果、水中のキチン濃度(固形分濃度)は、2.0質量%であった。この水分散液を121℃、20分間オートクレーブ処理し、滅菌した。
[試験例1:平均繊維径D及び平均繊維長Lの測定]
 ナノファイバーの平均繊維径(D)は以下のようにして求めた。まず応研商事(株)製コロジオン支持膜を日本電子(株)製イオンクリーナ(JIC-410)で3分間親水化処理を施し、製造例1~3において作製したナノファイバー分散液(超純水にて希釈)を数滴滴下し、室温乾燥した。これを(株)日立製作所製透過型電子顕微鏡(TEM、H-8000)(10,000倍)にて加速電圧200kVで観察し、得られた画像を用いて、標本数:200~250本のナノファイバーについて一本一本の繊維径を計測し、その数平均値を平均繊維径(D)とした。
 また、平均繊維長(L)は、製造例において作製したナノファイバー分散液を純水により100ppmとなるように希釈し、超音波洗浄機を用いてナノファイバーを均一に分散させた。このナノファイバー分散液を予め濃硫酸を用いて表面を親水化処理したシリコンウェハー上へキャストし、110℃にて1時間乾燥させて試料とした。得られた試料の日本電子(株)製走査型電子顕微鏡(SEM、JSM-7400F)(2,000倍)で観察した画像を用いて、標本数:150~250本のナノファイバーについて一本一本の繊維長を計測し、その数平均値を平均繊維長(L)とした。
 製造例1乃至製造例3で得られたナノファイバーの平均繊維径D及び平均繊維長Lを求め、これらの値よりアスペクト比L/Dを求めた。得られた結果を表40に示す。
Figure JPOXMLDOC01-appb-T000041
[実施例1乃至実施例4]
 前述の製造例1乃至製造例3で調製したナノファイバー分散液および脱アシル化ジェランガム水溶液を用いて、下記表41に記載の培地組成物を調製した。
 まず、製造例1乃至製造例3で調製したセルロースナノファイバーMNC、PNC及びキチンナノファイバーへ滅菌水を加えることで、それぞれ1%(w/v)水分散液へと希釈した。一方で、脱アシル化ジェランガム(KELCOGEL CG-LA、三晶株式会社製:DAG)1質量部へ99体積部の滅菌水を加え、121℃、20分間オートクレーブ処理することによって溶解および滅菌させ、脱アシル化ジェランガム1%(w/v)水溶液を調製した。
 前述の1%(w/v)分散液または水溶液1体積部を50mLコニカルチューブにとり、49体積部の滅菌水を加えて、均一となるまでピペッティングした。ここへ0.22μmフィルターにより滅菌ろ過した2倍濃度のDMEM(high glucose、Aldrich社製、所定量の炭酸水素ナトリウムを含む)を50体積部添加し、ピペッティングにより混合し、ナノファイバー濃度が0.01%(w/v)の培地組成物を調整した。
 同様に最終濃度が0.01~0.1%(w/v)の所望の濃度となるようナノファイバー分散液または脱アシル化ジェランガム水溶液を添加した培地組成物を調製した。
[実施例5及び比較例2乃至比較例5]
 κ‐カラギーナン(GENUGEL WR-80-J、三晶株式会社製:Car)(実施例5)、ローカストビーンガム(GENUGUM RL-200-J、三晶株式会社製:LBG)(比較例2)、キサンタンガム(KELTROL CG、三晶株式会社製:Xan)(比較例3)、ダイユータンガム(KELCO CRETE DG-F、三晶株式会社製:DU)(比較例4)、アルギン酸Na(ダックアルギン酸NSPM、フードケミファ社製:Alg)(比較例5)1質量部へ99質量部の滅菌水を加え、121℃、20分間オートクレーブ処理することによって、溶解および滅菌させた。
 前述により調製した多糖溶液について、実施例1乃至4と同様な操作により、最終濃度が0.03、0.05、0.07、0.1%(w/v)となるよう多糖溶液を添加した培地組成物を調製した。
[試験例2:浮遊作用の評価1]
 実施例1~5及び比較例2~5の培地組成物に、ポリスチレンビーズ(Polysciences Inc.社製、200-300μm)を添加し、ボルテックス撹拌により培地組成物中にビーズが均一に分散したのを確認した後、室温(25℃)において一日間静置し、ビーズの分散状態を目視にて確認した。培地組成物中で均一にビーズが浮遊した状態を◎、一部上清を生じた状態を○、沈降状態を×として評価した。結果を表41に示す。
 その結果、実施例1乃至実施例4の培地組成物では、ビーズを浮遊させる作用を示した。また、実施例5では室温ではビーズの浮遊作用が見られたものの、37℃に加温することによってビーズが沈降し、細胞培養条件では浮遊作用は得られなかった。比較例2乃至比較例5ではビーズは完全に底面へ沈降した。
Figure JPOXMLDOC01-appb-T000042
 *実施例5のκ-カラギーナン(Car)は、25℃において浮遊作用が見られたものの、細胞培養条件と同等の37℃では、即座に浮遊作用を失い、沈降した。その他の培地については、37℃及び25℃において、同一の結果が得られた。
[試験例3:浮遊作用の評価2]
 試験例2と同様に、実施例2、4及び5並びに比較例2の培地組成物について、低濃度領域(0.01~0.04%(w/v))における浮遊作用を詳細に評価した。ポリスチレンビーズを添加し、2日間静置後、ビーズの分散状態を目視にて確認した。浮遊分散状態を○、沈降状態を×として評価した。一部沈降/分散状態については、10mLコニカルチューブ内における浮遊領域の高さに基づきビーズ浮遊率を算出した。結果を表42に示す。
Figure JPOXMLDOC01-appb-T000043
 ※はビーズ浮遊率を示す。PNCは0.015%(w/v)以上の濃度で、実施例4の培地組成物は0.015%(w/v)以上の濃度で、浮遊作用を示した。実施例2の培地組成物は、濃度増加に伴って、段階的に浮遊作用が向上した。実施例5の培地組成物は、0.02%以上で、25℃において浮遊作用を示したものの、37℃では、即座に浮遊作用を失い、沈降した(*)。その他の培地については、37℃及び25℃において、同一の結果が得られた。
[試験例4:培地組成物の粘度]
 実施例1~5及び比較例2~5の培地組成物の粘度を、25℃条件下で音叉振動式粘度測定(SV-1A、A&D Company Ltd.)を用いて評価した。結果を図13に示す。この結果、本発明の培地組成物は、ナノファイバーまたは増粘性多糖の含有量が極めて少ないため、一般的な培地の粘度と比較して、顕著な粘度増加は見られないとする結果が得られた。試験例2の結果との比較から、粘度と浮遊作用との間に相関は認められなかった。
[試験例5:培地組成物の走査型電子顕微鏡観察]
 実施例1乃至5、比較例3乃至4において調製した培地組成物を予め濃硫酸を用いて表面を親水化処理したシリコンウェハー上へキャストし、110℃(比較例1のみ室温)にて1時間乾燥させた後、純水によりかけ洗いし余分な塩分等を除去した後、再度110℃1時間乾燥させた状態で試料とした。前述の試料を日本電子(株)製走査型電子顕微鏡(SEM、JSM-7400F、10,000倍)を用いて観察した。実施例1乃至4および比較例3乃至4の培地組成物の観察結果を図14乃至21へと示した。
 観察の結果、実施例1乃至4および室温で乾燥させた実施例5では、ファイバーが多数観察されたのに対し、110℃で乾燥させた実施例5および比較例3乃至4では、ファイバーは全く観察されなかった。なお、観察画像中に多数観察される球状物体は、培地中の塩成分が析出したものである。この結果から、培地組成物中に含まれるファイバー構造が浮遊作用に寄与している可能性が示唆された。
[試験例7:スフェアの浮遊作用]
 ヒト肝癌細胞株HepG2(DSファーマバイオメディカル社製)を、10%(v/v)胎児ウシ血清を含むDMEM培地(WAKO社製)に50000個/mLとなるように懸濁し、前記懸濁液10mLをEZ SPHERE(旭硝子社製)に播種した後、COインキュベーター(5%CO)内で2日間培養した。ここで得られたスフェアの懸濁液80mLを遠心処理(800rpm、5分間)してスフェアを沈降させ、上清を除くことによりスフェア懸濁液4.5mLを調製した。引き続き、実施例1乃至4および比較例1、比較例3乃至5の培地組成物を15mLコニカルチューブに10mLずつ入れ、更にHepG2細胞のスフェア懸濁液100μLを加えた。ピペッティングによりスフェアを分散させ、37℃で5日間インキュベートし、培地組成物中におけるスフェアの分散状態を目視にて観察した。培地組成物中で均一にスフェアが浮遊した状態を◎、上清を生じた状態を○、沈降状態を×として評価した。実施例1乃至5、比較例3乃至5の培地組成物の観察結果を表43および図22乃至29へ示した。
 この結果、実施例1乃至実施例4では培地組成物中にては6日間培養の後も浮遊状態であった。一方で実施例5および比較例3乃至比較例5の培地組成物では、全てのスフェアは沈降しており、更にスフェア同士が凝集していた。
Figure JPOXMLDOC01-appb-T000044
[実施例1’乃至実施例4’]
 製造例1乃至製造例3で調製したセルロースナノファイバーMNC、PNC及びキチンナノファイバーへ滅菌水を加えることで、それぞれ1%(w/v)水分散液を調製した。一方で、脱アシル化ジェランガム(KELCOGEL CG-LA、三晶株式会社製:DAG)1質量部へ99体積部の滅菌水を加え、121℃、20分間オートクレーブ処理することによって溶解および滅菌させ、1%(w/v)水溶液を調製した。前述にて調製した1%(w/v)ファイバー分散液または脱アシル化ジェランガム水溶液を用いて、終濃度が0.01%、0.03%、0.06%及び0.1%(w/v)となるように10%(v/v)胎児ウシ血清を含むDMEM培地(日水製薬社製、high-glucose)に添加し、培地組成物を調製した。
[実施例5’、及び比較例3’乃至比較例5’]
 κ‐カラギーナン(GENUGEL WR-80-J、三晶株式会社製:Car)、キサンタンガム(KELTROL CG、三晶株式会社製:Xan)、ダイユータンガム(KELCO CRETE DG-F、三晶株式会社製:DU)、アルギン酸Na(ダックアルギン酸NSPM、フードケミファ社製:Alg)1質量部へ99体積部の滅菌水を加え、121℃、20分間オートクレーブ処理することによって溶解および滅菌させ、それぞれ1%(w/v)多糖水溶液を調製した。前述により調製した各多糖水溶液について、実施例5乃至8と同様な操作により、10%(v/v)胎児ウシ血清を含むDMEM培地(日水製薬社製)へ終濃度0.01%、0.03%、0.06%及び0.1%(w/v)となるように多糖水溶液を添加し、培地組成物を調製した。
[試験例8:細胞増殖試験]
 ヒト乳癌細胞株MCF-7(DSファーマバイオメディカル社製)及びヒトメラノーマ細胞株A375(ATCC製)を、33333細胞/mLとなるように実施例1’乃至実施例5’および比較例3’乃至比較例5’にて調製した培地組成物に播種した後、96ウェル平底超低接着表面マイクロプレート(コーニング社製、#3474)のウェルに1ウェル当たり150μLになるように分注した。なお、陰性対照としてナノファイバーまたは多糖を含まない同上培地にMCF7細胞或いはA375細胞を懸濁したものを分注した。引き続き、本プレートをCOインキュベーター(37℃、5%CO)内にて最大6日間静置状態で培養した。2日間及び6日間培養後の培養液に対して、ATP試薬150μL(CellTiter-GloTM Luminescent Cell Viability Assay, Promega社製)を添加し懸濁させ、約10分間室温で静置した後、FlexStation3(Molecular Devices社製)にて発光強度(RLU値)を測定し、培地のみの発光値を差し引くことで生細胞の数を測定した。
 その結果、PNC、MNC、ナノキチンを含む当該培地組成物で細胞凝集塊の大きさが過剰になることなく、均一に分散された状態にて培養することが可能であり、効率的に増殖することが確認された。一方、アルギン酸ナトリウムを含む当該培地組成物では、増殖促進を認めなかった。MCF7細胞の静置培養2日間および6日間後のRLU値(ATP測定、発光強度)を表44乃至表47、および6日間後のRLU値を図30乃至図33に、A375細胞の結果を表48乃至表51、および6日間後のRLU値を図34乃至図37に示す。2日間培養の凝集塊の顕微鏡観察において、MCF7細胞の結果を図38に、A375細胞の結果を図39に示す。
Figure JPOXMLDOC01-appb-T000045
Figure JPOXMLDOC01-appb-T000046
Figure JPOXMLDOC01-appb-T000047
Figure JPOXMLDOC01-appb-T000048
Figure JPOXMLDOC01-appb-T000049
Figure JPOXMLDOC01-appb-T000050
Figure JPOXMLDOC01-appb-T000051
Figure JPOXMLDOC01-appb-T000052
[試験例9:3T3-L1細胞を用いた保存試験]
 マウス前駆脂肪細胞株3T3-L1(ATCC社製)を、10%FBS含有DMEM培地を用いて10cmポリスチレンシャーレ上に播種し、5%CO、37℃に設定したインキュベーター内で培養した。3T3-L1細胞がコンフルエントになった状態で、培地を吸引除去し、D-PBS(和光純薬社製)でFBSを取り除き、0.25%Trypsin及び1mMEDTA含有液1ml(和光純薬社製)を上記ポリスチレンシャーレに添加した。細胞の剥離を確認した後、10体積%FBS含有DMEM培地を添加してシャーレから細胞を回収し、遠心分離管に移した。300×gで遠心分離をした後、上清を取り除いた。約100×10細胞/mLの細胞懸濁液として、1.5mLマイクロチューブに100μLの細胞懸濁液を添加し、10%(v/v)FBSを含むように予め調製しておいた実施例1乃至実施例2、実施例4乃至実施例5、比較例3および比較例5の培地組成物を100μLずつ添加し、ピペッティングすることにより細胞懸濁液を作製した。
 密閉状態で室温下にて10日間静置状態で保存し、3日、10日間経過後の細胞懸濁液の一部を10%FBS含有DMEM培地で1/10希釈し、希釈した細胞懸濁液100μLにATP試薬100μL(CellTiter-GloTM Luminescent Cell Viability Assay, Promega社製)を添加し懸濁させ、15分間室温で静置した後、FlexStation3(Molecular Devices社製)にて発光強度(RLU値)を測定し、培地のみの発光値を差し引くことで生細胞の数を測定した。陰性対照は多糖を含まない培地のみのサンプルとした。
 その結果、陰性対照または比較例3および比較例5の培地組成物の各細胞生存率は、3乃至10日間の室温保存でATP値が顕著に低下したのに対し、実施例1乃至実施例2および実施例4の培地組成物では、ATP値の低下が抑えられており細胞保護効果を示した。生細胞数の結果を表52に示す。
Figure JPOXMLDOC01-appb-T000053
[試験例10:CHO-K1細胞を用いた保存試験]
 チャイニーズハムスター卵巣株CHO-K1-hIFNβ細胞(北九州高等専門学校、川原教授より譲渡)を、10%FBS含有F12培地を用いて10cmポリスチレンシャーレ上に播種し、5%CO、37℃に設定したインキュベーター内で培養した。CHO-K1-hIFNβ細胞がコンフルエントになった状態で、培地を吸引除去し、D-PBS(和光純薬社製)でFBSを取り除き、0.25%Trypsin及び1mMEDTA含有液1ml(和光純薬社製)を上記ポリスチレンシャーレに添加した。細胞の剥離を確認した後、10%FBS含有F12培地を添加してシャーレから細胞を回収し、遠心分離管に移した。300Xgで遠心分離をした後、上清を取り除いた。約5x10細胞/mLの細胞懸濁液として、1.5mLマイクロチューブに25μLの細胞懸濁液を添加し、10%(v/v)FBSを含むように予め調製しておいた実施例2、実施例4の培地組成物を25μLずつ添加し、ピペッティングすることにより細胞懸濁液を作製した。密閉状態で室温下にて1日間保存後の細胞懸濁液の一部を10%FBS含有F12培地で1/10希釈し、希釈した細胞懸濁液100μLにATP試薬100μL(CellTiter-GloTM Luminescent Cell Viability Assay, Promega社製)を添加し懸濁させ、約10分間室温で静置した後、FlexStation3(Molecular Devices社製)にて発光強度(RLU値)を測定し、培地のみの発光値を差し引くことで生細胞の数を測定した。陰性対照は多糖を含まない培地のみのサンプルとした。
 その結果、陰性対照での各細胞生存率は、1日間室温で保存するとATP値が低下したのに対し実施例2および実施例4の培地組成物では、播種時レベルのATP値を示し、細胞保護効果を示した。生細胞数の結果を表53に示す。
Figure JPOXMLDOC01-appb-T000054
[試験例11:3T3-L1細胞を用いた保存試験、多糖類の濃度変更]
 マウス前駆脂肪細胞株3T3-L1(ATCC社製)を、10%FBS含有DMEM培地を用いて10cmポリスチレンシャーレ上に播種し、5%CO、37℃に設定したインキュベーター内で培養した。3T3-L1細胞が40%コンフルエントになった状態で、培地を吸引除去し、D-PBS(和光純薬社製)でFBSを取り除き、0.25%Trypsin及び1mMEDTA含有液1ml(和光純薬社製)を上記ポリスチレンシャーレに添加した。細胞の剥離を確認した後、10体積%FBS含有DMEM培地を添加してシャーレから細胞を回収し、遠心分離管に移した。300×gで遠心分離をした後、上清を取り除いた。約100×10細胞/mLの細胞懸濁液として、1.5mLマイクロチューブに100μLの細胞懸濁液を添加し、10%(v/v)FBSを含むように予め調製しておいた実施例2及び実施例4、比較例5の多糖類の濃度の異なる培地組成物を100μLずつ添加し、ピペッティングすることにより細胞懸濁液を作製した。
 密閉状態で室温下にて8日間静置状態で保存し、0日、5日、8日間経過後の細胞懸濁液の一部を10%FBS含有DMEM培地で1/5希釈し、希釈した細胞懸濁液100μLにATP試薬100μL(CellTiter-GloTM Luminescent Cell Viability Assay, Promega社製)を添加し懸濁させ、15分間室温で静置した後、FlexStation3(Molecular Devices社製)にて発光強度(RLU値)を測定し、培地のみの発光値を差し引くことで生細胞の数を測定した。陰性対照は多糖を含まない培地のみのサンプルとした。
 その結果、陰性対照または比較例5の培地組成物の各細胞生存率は、5乃至8日間の室温保存でATP値が顕著に低下したのに対し、実施例2および実施例4の培地組成物では、ATP値の低下が抑えられており細胞保護効果を示した。生細胞数の結果を表54に示す。
Figure JPOXMLDOC01-appb-T000055
[試験例12:MDCK細胞の細胞生存作用に対する効果]
 脱アシル化ジェランガム(KELCOGEL CG-LA、三晶株式会社製)を0.3%(w/v)となるように超純水(Milli-Q水)に懸濁した後、90℃にて加熱しながらの撹拌により溶解し、本水溶液を121℃で20分オートクレーブ滅菌した。本溶液を用いて10%(v/v)胎児ウシ血清を含むEMEM培地(和光純薬社製)に終濃度0.005%(w/v)および0.015%の脱アシル化ジェランガム添加した培地組成物あるいは脱アシル化ジェランガムを含まない未添加培地組成物を調製した。引き続き、血清を除去した培地で1昼夜培養した(スタベーション処理)イヌ腎臓尿細管上皮細胞株MDCK(DSファーマバイオメディカル社製)を、100000細胞/mLとなるように上記の脱アシル化ジェランガムを添加した培地組成物に播種した後、96ウェル平底超低接着表面マイクロプレート(コーニング社製、#3474)のウェルに1ウェル当たり100μLになるように分注した。各プレートはCOインキュベーター(37℃、5%CO)内にて静置状態で培養し、15日間継続した。2、6、9、12、15日目の培養液に対してATP試薬100μL(CellTiter-GloTM Luminescent Cell Viability Assay, Promega社製)を添加し懸濁させ、約10分間室温で静置した後、FlexStation3(Molecular Devices社製)にて発光強度(RLU値)を測定し、培地のみの発光値を差し引くことで生細胞の数を測定した。
 その結果、本発明の培地組成物を用いてMDCK細胞を低接着プレート上で培養すると、生細胞数の減少を抑えることが明らかとなった。各培養でのRLU値(ATP測定、発光強度)を表55に示す。
Figure JPOXMLDOC01-appb-T000056
[試験例13:Vero細胞の細胞生存作用に対する効果]
 脱アシル化ジェランガム(KELCOGEL CG-LA、三晶株式会社製)を0.3%(w/v)となるように超純水(Milli-Q水)に懸濁した後、90℃にて加熱しながらの撹拌により溶解し、本水溶液を121℃で20分オートクレーブ滅菌した。本溶液を用いて5%(v/v)胎児ウシ血清を含むEmedium199培地(シグマ社製)に終濃度0.005%(w/v)および0.015%の脱アシル化ジェランガム添加した培地組成物あるいは脱アシル化ジェランガムを含まない未添加培地組成物を調製した。引き続き、血清を除去した培地で1昼夜培養した(スタベーション処理)サル腎臓上皮細胞株Vero(DSファーマバイオメディカル社製)を、100000細胞/mLとなるように上記の脱アシル化ジェランガムを添加した培地組成物に播種した後、96ウェル平底超低接着表面マイクロプレート(コーニング社製、#3474)のウェルに1ウェル当たり100μLになるように分注した。各プレートはCOインキュベーター(37℃、5%CO)内にて静置状態で培養し、15日間継続した。2、6、9、12、15日目の培養液に対してATP試薬100μL(CellTiter-GloTM Luminescent Cell Viability Assay, Promega社製)を添加し懸濁させ、約10分間室温で静置した後、FlexStation3(Molecular Devices社製)にて発光強度(RLU値)を測定し、培地のみの発光値を差し引くことで生細胞の数を測定した。
 その結果、本発明の培地組成物を用いてVero細胞を低接着プレート上で培養すると、生細胞数の減少を抑えることが明らかとなった。各培養でのRLU値(ATP測定、発光強度)を表56に示す。
Figure JPOXMLDOC01-appb-T000057
[試験例14:MDCK細胞増殖作用に対する各基材の効果]
 製造例2で調製したセルロースナノファイバー(PNC)、キチンナノファイバー(バイオマスナノファイバー BiNFi-S(ビンフィス) 2質量%、株式会社スギノマシン)および脱アシル化ジェランガム(KELCOGEL CG-LA、三晶株式会社製)を1%(w/v)となるように超純水(Milli-Q水)に懸濁した後、90℃にて加熱しながらの撹拌により溶解し、本水溶液を121℃で20分オートクレーブ滅菌した。無血清培地KBM220培地(コージンバイオ社製)に終濃度0.01%(w/v), 0.03%, 0.1%のセルロースナノファイバーを添加した培地組成物、無血清培地KBM220培地に終濃度0.01%(w/v), 0.03%, 0.1%のキチンナノファイバーを添加した培地組成物、無血清培地KBM220培地(コージンバイオ社製)に終濃度0.005%(w/v), 0.015%, 0.03%, 0.06%, 0.1%の脱アシル化ジェランガム添加した培地組成物、そして上記基材を含まない未添加培地組成物を調製した。引き続き、血清を除去した培地で1昼夜培養した(スタベーション処理)イヌ腎臓尿細管上皮細胞株MDCK(DSファーマバイオメディカル社製)を、100000細胞/mLとなるように上記のそれぞれの基材を添加した培地組成物に播種した後、96ウェル平底超低接着表面マイクロプレート(コーニング社製、#3474)のウェルに1ウェル当たり100μLになるように分注した。各プレートはCOインキュベーター(37℃、5%CO)内にて静置状態で培養し、14日間継続した。3、7、10、14日目の培養液に対してATP試薬100μL(CellTiter-GloTM Luminescent Cell Viability Assay, Promega社製)を添加し懸濁させ、約10分間室温で静置した後、FlexStation3(Molecular Devices社製)にて発光強度(RLU値)を測定し、培地のみの発光値を差し引くことで生細胞の数を測定した。
 その結果、本発明の培地組成物である脱アシル化ジェランガム、ナノセルロースファイバーPNC、そしてキチンナノファイバーを用いてMDCK細胞を低接着プレート上で培養すると、すべての基材添加でMDCK細胞の増殖促進作用が認められた。その中でキチンナノファイバーが最も強い効果を示した。各培養でのRLU値(ATP測定、発光強度)を表57に示す。
Figure JPOXMLDOC01-appb-T000058
[試験例15:MDCK増殖作用に対するキチンナノファイバーの効果]
 製造例1で調製したセルロースナノファイバー(PNC)、キチンナノファイバー(バイオマスナノファイバー BiNFi-S(ビンフィス) 2質量%、株式会社スギノマシン)および脱アシル化ジェランガム(KELCOGEL CG-LA、三晶株式会社製)を1%(w/v)となるように超純水(Milli-Q水)に懸濁した後、90℃にて加熱しながらの撹拌により溶解し、本水溶液を121℃で20分オートクレーブ滅菌した。無血清培地KBM220培地に終濃度0.0001%(w/v), 0.0003%, 0.001%, 0.003%, 0.01%, 0.02%, 0.03%のキチンナノファイバーを添加した培地組成物、無血清培地KBM220培地(コージンバイオ社製)に終濃度0.005%(w/v), 0.015%, 0.03%の脱アシル化ジェランガム添加した培地組成物、そして上記基材を含まない未添加培地組成物を調製した。引き続き、血清を除去した培地で1昼夜培養した(スタベーション処理)イヌ腎臓尿細管上皮細胞株MDCK(DSファーマバイオメディカル社製)を、100000細胞/mLとなるように上記の脱アシル化ジェランガムあるいはキチンナノファイバーを添加した培地組成物に播種した後、96ウェル平底超低接着表面マイクロプレート(コーニング社製、#3474)のウェルに1ウェル当たり100μLになるように分注した。各プレートはCOインキュベーター(37℃、5%CO)内にて静置状態で培養し、14日間継続した。5、9、12、15日目の培養液に対してATP試薬100μL(CellTiter-GloTM Luminescent Cell Viability Assay, Promega社製)を添加し懸濁させ、約10分間室温で静置した後、FlexStation3(Molecular Devices社製)にて発光強度(RLU値)を測定し、培地のみの発光値を差し引き3点の平均値として生細胞の数を測定した。
 その結果、本発明の培地組成物である脱アシル化ジェランガムおよびキチンナノファイバーを用いてMDCK細胞を低接着プレート上で培養すると、両方の基材添加でMDCK細胞の増殖促進作用が認められた。その中でキチンナノファイバーは0.0001%以上の濃度で増殖促進効果を示し、特に0.001%以上で高い効果を示した。各培養でのRLU値(ATP測定、発光強度)を表58に示す。
Figure JPOXMLDOC01-appb-T000059
[試験例16:MDCK細胞増殖作用に対するキチンナノファイバーの効果]
初回培養;
 製造例2で調製したセルロースナノファイバー(PNC)、キチンナノファイバー(バイオマスナノファイバー BiNFi-S(ビンフィス) 2質量%、株式会社スギノマシン)を1%(w/v)となるように超純水(Milli-Q水)に懸濁した後、90℃にて加熱しながらの撹拌により溶解し、本水溶液を121℃で20分オートクレーブ滅菌した。無血清培地KBM220培地に終濃度0.01%(w/v)のキチンナノファイバーを添加した培地組成物、無血清培地KBM220培地(コージンバイオ社製)およびキチンナノファイバーを含まない未添加培地組成物を調製した。引き続き、血清を除去した培地で1昼夜培養した(スタベーション処理)イヌ腎臓尿細管上皮細胞株MDCK(DSファーマバイオメディカル社製)を、75000細胞/mLとなるように上記のキチンナノファイバーを添加した培地組成物に播種した後、三角フラスコ125ml(コーニング社製、#431405)に1フラスコ当たり30mLになるように分注した。フラスコはCOインキュベーター(37℃、5%CO)内にて静置状態で培養し、6日間継続した。0、6日目の培養液をピペットで懸濁した後に100μLを3点分注し、それぞれにATP試薬100μL(CellTiter-GloTM Luminescent Cell Viability Assay, Promega社製)を添加し懸濁させ、約10分間室温で静置した後、FlexStation3(Molecular Devices社製)にて発光強度(RLU値)を測定し、培地のみの発光置を差し引くことで生細胞の数を測定した。
継代培養;
 継代培養に対する効果を確認するために、0.01%キチンナノファイバーを含む培地でMDCK細胞を6日間培養した細胞懸濁液を用いて検討した。細胞懸濁液3mlと未添加培地組成物27mlを混合しキチンナノファイバー濃度を0.001%にした細胞懸濁液と、細胞懸濁液3mlと終濃度0.01%(w/v)のキチンナノファイバーを添加した培地組成物27mlを混合しキチンナノファイバー濃度を0.01%にした細胞懸濁液を、それぞれ三角フラスコ125mlに分注した。フラスコはCOインキュベーター(37℃、5%CO)内にて静置状態で培養し、14日間継続した。0、7、14日目の培養液をピペットで懸濁した後に100μLを3点ずつ分注し、それぞれにATP試薬100μL(CellTiter-GloTM Luminescent Cell Viability Assay, Promega社製)を添加し懸濁させ、約10分間室温で静置した後、FlexStation3(Molecular Devices社製)にて発光強度(RLU値)を測定し、培地のみの発光値を差し引き3点の平均値として生細胞の数を測定した。
 その結果、本発明の培地組成物であるキチンナノファイバーを用いてMDCK細胞を三角フラスコ上で培養すると、MDCK細胞の増殖促進作用が認められた。さらにキチンナノファイバーを含有する培地を継ぎ足すと、MDCK細胞の増殖が認められ、トリプシンなどの処理無しに簡便に継代培養が出来ることが明らかとなった。初回培養でのRLU値(ATP測定、発光強度)を表59に、継代培養でのRLU値(ATP測定、発光強度)を表60に示す。
Figure JPOXMLDOC01-appb-T000060
Figure JPOXMLDOC01-appb-T000061
[試験例17:各培地におけるキチンナノファイバーのMDCK細胞の増殖促進作用の比較]
 製造例1で調製したセルロースナノファイバー(PNC)、キチンナノファイバー(バイオマスナノファイバー BiNFi-S(ビンフィス) 2質量%、株式会社スギノマシン)および脱アシル化ジェランガム(KELCOGEL CG-LA、三晶株式会社製)を1%(w/v)となるように超純水(Milli-Q水)に懸濁した後、90℃にて加熱しながらの撹拌により溶解し、本水溶液を121℃で20分オートクレーブ滅菌した。無血清培地KBM220培地(コージンバイオ社製)あるいはCosmedium 012培地(コスモバイオ社製)に終濃度0.001%(w/v)、0.01%のキチンナノファイバーを添加した培地組成物、無血清培地KBM220培地あるいはCosmedium 012培地に終濃度0.015%(w/v)、 0.03%の脱アシル化ジェランガム添加した培地組成物、そして上記基材を含まない未添加培地組成物を調製した。引き続き、血清を除去した培地で1昼夜培養した(スタベーション処理)イヌ腎臓尿細管上皮細胞株MDCK(DSファーマバイオメディカル社製)を、100000細胞/mLとなるように上記の脱アシル化ジェランガムあるいはキチンナノファイバーを添加した培地組成物に播種した後、96ウェル平底超低接着表面マイクロプレート(コーニング社製、#3474)のウェルに1ウェル当たり100μLになるように分注した。各プレートはCOインキュベーター(37℃、5%CO)内にて静置状態で培養し、12日間継続した。4、8、12日目の培養液に対してATP試薬100μL(CellTiter-GloTM Luminescent Cell Viability Assay, Promega社製)を添加し懸濁させ、約10分間室温で静置した後、FlexStation3(Molecular Devices社製)にて発光強度(RLU値)を測定し、培地のみの発光値を差し引き3点の平均値として生細胞の数を測定した。
 その結果、本発明の培地組成物である脱アシル化ジェランガムおよびキチンナノファイバーを用いてMDCK細胞を低接着プレート上で培養すると、両方の基材添加でMDCK細胞の増殖促進作用が認められた。その中でキチンナノファイバーは0.001%の濃度以上でCosmedium012培地を用いた条件でも高い増殖能を示した。4日目の細胞状態について顕微鏡観察したところ、脱アシル化ジェランガムを用いた培地条件では細胞凝集塊(スフェア)が分散しているだけであるが、キチンナノファイバーを用いた培地条件ではスフェアおよび細胞がぶどうの房状に増殖している様子が観察された。KBM220培地を用いた培養でのRLU値(ATP測定、発光強度)を表61に、Cosmedium012培地を用いた培養でのRLU値(ATP測定、発光強度)を表62に示す。4日間培養の顕微鏡観察の結果を図40に示す。
Figure JPOXMLDOC01-appb-T000062
Figure JPOXMLDOC01-appb-T000063

 
[試験例18:キトサンナノファイバーとキチンナノファイバーのMDCK細胞増殖作用の比較]
 キトサンナノファイバー(バイオマスナノファイバー BiNFi-S、1質量%、株式会社スギノマシン)とキチンナノファイバー(バイオマスナノファイバー BiNFi-S(ビンフィス) 2質量%、株式会社スギノマシン)及び、参考例1と同様にして脱アシル化ジェランガム(KELCOGEL CG-LA、三晶株式会社製)を1%(w/v)となるように超純水(Milli-Q水)に懸濁した後に90℃にて撹拌しながら調製した水溶液をそれぞれ121℃で20分オートクレーブ滅菌した。無血清培地KBM220培地(コージンバイオ社製)に終濃度0.001%(w/v)、0.003%、0.01%、0.03%のキトサンナノファーバーあるいはキチンナノファイバーを添加した培地組成物、無血清培地KBM220培地に終濃度0.015%(w/v)、0.03%の脱アシル化ジェランガム添加した培地組成物、そして上記基材を含まない未添加培地組成物を調製した。引き続き、血清を除去した培地で1昼夜培養した(スタベーション処理)イヌ腎臓尿細管上皮細胞株MDCK(DSファーマバイオメディカル社製)を、100000細胞/mLとなるように上記の脱アシル化ジェランガム、キトサンナノファイバーあるいはキチンナノファイバーを添加した培地組成物に播種した後、96ウェル平底超低接着表面マイクロプレート(コーニング社製、#3474)のウェルに1ウェル当たり100μLになるように分注した。各プレートはCOインキュベーター(37℃、5%CO)内にて静置状態で培養し、12日間継続した。7、11日目の培養液に対してATP試薬100μL(CellTiter-GloTM Luminescent Cell Viability Assay, Promega社製)を添加し懸濁させ、約10分間室温で静置した後、FlexStation3(Molecular Devices社製)にて発光強度(RLU値)を測定し、培地のみの発光値を差し引き3点の平均値として生細胞の数を測定した。
 その結果、本発明の培地組成物であるキトサンナノファイバーおよびキチンナノファイバーを用いてMDCK細胞を低接着プレート上で培養すると、脱アシル化ジェランガムよりも高い増殖促進作用が認められた。またキチンナノファイバーは0.001%の濃度の条件でも高い増殖能を示したが、キトサンナノファイバーは0.01%の濃度から高い増殖能を示していた。RLU値(ATP測定、発光強度)を表63に示す。
Figure JPOXMLDOC01-appb-T000064
 
[試験例19:新鮮カニクイザル初代肝細胞保存試験]
 製造例2で調製したセルロースナノファイバー(PNC)及び、実施例5と同様にしてκ‐カラギーナン(GENUGEL WR-80-J、三晶株式会社製:Car)1質量%(w/v)水溶液を作製して使用した。10%FBS含有Williams’E培地(ライフテクノロジー社製)に終濃度0.03%(w/v)、0.1%のPNCあるいはカラギーナンを添加した培地組成物、そして上記基材を含まない未添加培地組成物を調製した。引き続き、新鮮カニクイザル初代肝細胞(株式会社イナリサーチ社製)を、2,500,000細胞/mLとなるように上記のPNCあるいはカラギーナンを添加した培地組成物に混合した後、細胞凍結用Cryogenic vial(サーモサイエンティフィック社製)に分注した。なお、基材を含まない同上培地にカニクイザル初代肝細胞を懸濁したものを分注した。上記の操作は2ロット実施した。引き続き、本チューブを冷蔵(約4℃)にて2日間静置状態で輸送した。2日間冷蔵条件下で輸送した後の、細胞懸濁液に対してトリパンブルー試薬(ライフテクノロジー社製)を用いて、懸濁液中の細胞生存率を測定した。
 その結果、本発明の培地組成物であるPNCを用いて新鮮サル初代肝細胞を冷蔵下で輸送すると、未添加条件よりも高い生存率を示した。一方、カラギーナンにはそのような作用を認めなかった。生存率を表10に示す。
Figure JPOXMLDOC01-appb-T000065
 
[試験例20:再播種後の増殖性評価]
 マウス前駆脂肪細胞株3T3-L1(ATCC社製)を、10%FBS含有DMEM培地を用いて10cmポリスチレンシャーレ上に播種し、5%CO、37℃に設定したインキュベーター内で培養した。3T3-L1細胞がコンフルエントになった状態で、培地を吸引除去し、D-PBS(和光純薬社製)でFBSを取り除き、0.25%Trypsin及び1mMEDTA含有液1ml(和光純薬社製)を上記ポリスチレンシャーレに添加した。細胞の剥離を確認した後、10体積%FBS含有DMEM培地を添加してシャーレから細胞を回収し、遠心分離管に移した。300×gで遠心分離をした後、上清を取り除いた。約200×10細胞/mLの細胞懸濁液として、1.5mLマイクロチューブに150μLの細胞懸濁液を添加し、10%(v/v)FBSを含むように予め調製しておいた実施例2(PNC濃度0.06%)乃至実施例4(DAG濃度0.03%)、比較例5(Alg濃度0.03%)の培地組成物および陰性対照として10体積%FBS含有DMEM培地を150μLずつ添加し、ピペッティングすることにより細胞懸濁液(約100×10細胞/mL)を作製した。
 密閉状態で室温下にて7日間静置状態で保存した後、細胞懸濁液の一部を10%FBS含有DMEM培地で希釈し、7日間保存前の播種濃度を基準として約10×10細胞/mLの細胞懸濁液を調製した。96穴マルチプレート(コーニング社製)へ100μLずつ細胞懸濁液を播種し、播種当日、1日後および2日後にATP試薬100μL(CellTiter-GloTM Luminescent Cell Viability Assay, Promega社製)を添加して15分間室温で静置した後、FlexStation3(Molecular Devices社製)にて発光強度(RLU値)を測定(n=5)し、培地のみの発光値を差し引くことで生細胞の数を測定した。
 その結果、7日間保存後の再播種当日の陰性対照または比較例5の培地組成物の生細胞数(RLU値)は、実施例2乃至実施例4の培地組成物と比較して著しく低い結果となった。再播種一日後の生細胞数(RLU値)は実施例2及び実施例4それぞれ再播種当日と比較して増加しており、保存後の細胞も増殖性を保持していた。生細胞数の結果を表65に示す。
Figure JPOXMLDOC01-appb-T000066
 
 本発明に係る培地組成物は、優れた細胞及び/又は組織浮遊効果を示し、動植物由来の細胞及び/又は組織をその機能を維持しながら大量に培養する際に極めて有用である。また、本発明の方法により培養された細胞及び/又は組織は、化学物質、医薬品等の薬効及び毒性評価や、酵素、細胞増殖因子、抗体等の有用物質の大量生産、疾患や欠損により失われた器官、組織、細胞を補う再生医療等の分野において極めて有用である。
 ここで述べられた特許および特許出願明細書を含む全ての刊行物に記載された内容は、ここに引用されたことによって、その全てが明示されたと同程度に本明細書に組み込まれるものである。
 本出願は日本で出願された特願2014-010842(出願日:2014年1月23日)、特願2014-123772(出願日:2014年6月16日)、特願2014-174574(出願日:2014年8月28日)、及び特願2014-217761(出願日:2014年10月24日)を基礎としており、その内容は本明細書に全て包含されるものである。

Claims (27)

  1.  細胞または組織を浮遊させて培養できる培地組成物であって、ナノファイバーを含有することを特徴とする、培地組成物。
  2.  培養時の培地組成物の交換処理及び培養終了後において細胞または組織の回収が可能である請求項1に記載の培地組成物。
  3.  細胞または組織の回収の際に、温度変化、化学処理、酵素処理、せん断力のいずれも必要としない請求項1に記載の培地組成物。
  4.  粘度が、8mPa・s以下であることを特徴とする請求項1に記載の培地組成物。
  5.  前記ナノファイバーの平均繊維径が0.001~1.00μm、平均繊維径(D)に対する平均繊維長(L)の比(L/D)が2~500であることを特徴とする請求項1に記載の培地組成物。
  6.  前記ナノファイバーが高分子化合物から構成されることを特徴とする請求項1に記載の培地組成物。
  7.  前記高分子化合物が、多糖類であることを特徴とする請求項6に記載の培地組成物。
  8.  前記多糖類が、
    セルロース、キチン及びキトサンからなる群から選択されるいずれかの非水溶性多糖類;又は
    ヒアルロン酸、ジェランガム、脱アシル化ジェランガム、ラムザンガム、ダイユータンガム、キサンタンガム、カラギーナン、ザンタンガム、ヘキスロン酸、フコイダン、ペクチン、ペクチン酸、ペクチニン酸、ヘパラン硫酸、ヘパリン、ヘパリチン硫酸、ケラト硫酸、コンドロイチン硫酸、デルマタン硫酸、ラムナン硫酸、アルギン酸及びそれらの塩からなる群から選択される水溶性多糖類
    を含む、請求項7に記載の培地組成物。
  9.  前記多糖類が、セルロース又はキチンを含む、請求項8に記載の培地組成物。
  10.  前記ナノファイバーが、粉砕により得られたものであることを特徴とする請求項9に記載の培地組成物。
  11.  細胞培養用である、請求項1乃至10のいずれか1項に記載の培地組成物。
  12.  前記細胞が、接着細胞または浮遊細胞であることを特徴とする請求項11に記載の培地組成物。
  13.  前記接着細胞が、スフェアであることを特徴とする請求項12に記載の培地組成物。
  14.  請求項1乃至13のいずれか1項に記載の培地組成物と、細胞又は組織とを含む、細胞又は組織培養物。
  15.  請求項1乃至13のいずれか1項に記載の培地組成物中で細胞または組織を培養することを特徴とする、細胞又は組織の培養方法。
  16.  請求項14に記載の培養物から細胞または組織を分離することを特徴とする、細胞又は組織の回収方法。
  17.  前記分離が、遠心分離で行われることを特徴とする請求項16に記載の回収方法。
  18.  請求項1乃至13のいずれか1項に記載の培地組成物中で接着細胞を培養することを特徴とするスフェアの製造方法。
  19.  請求項1乃至13のいずれか1項に記載の培地組成物を調製するための培地添加剤であって、当該ナノファイバー又は当該ナノファイバーを構成する水溶性高分子化合物を含むことを特徴とする培地添加剤。
  20.  請求項19に記載の培地添加剤と培地を混合することを特徴とする培地組成物の製造方法。
  21.  請求項1乃至13のいずれか1項に記載の培地組成物の製造方法であって、当該ナノファイバー又は当該ナノファイバーを構成する水溶性高分子化合物と培地を混合することを特徴とする培地組成物の製造方法。
  22.  請求項1乃至13のいずれか1項に記載の培地組成物中で細胞または組織を保存することを特徴とする、細胞又は組織の保存方法。
  23.  請求項1乃至13のいずれか1項に記載の培地組成物中で細胞または組織を輸送することを特徴とする、細胞又は組織の輸送方法。
  24.  請求項1乃至13のいずれか1項に記載の培地組成物中で細胞または組織を培養することを特徴とする、細胞又は組織の増殖方法。
  25.  以下の工程を含む、接着細胞の継代培養方法:
    (1)請求項1乃至13のいずれか1項に記載の培地組成物中で接着細胞を浮遊培養すること;及び
    (2)培養容器からの細胞の剥離操作を行うことなく、(i)工程(1)の浮遊培養により得られた接着細胞を含む培養物に、新鮮な請求項1乃至13のいずれか1項に記載の培地組成物を添加するか、或いは(ii)新鮮な請求項1乃至13のいずれか1項に記載の培地組成物へ、工程(1)の浮遊培養により得られた接着細胞を含む培養物の全部又は一部を添加すること。
  26.  キチンナノファイバーを含有する培地組成物中で接着細胞を該キチンナノファイバーに付着した状態で浮遊培養することを含む、接着細胞の増殖方法。
  27.  培地組成物中のキチンナノファイバーの含有量が、0.0001%(重量/容量)以上、0.1%(重量/容量)以下である、請求項26記載の方法。
PCT/JP2015/051787 2014-01-23 2015-01-23 培地組成物 WO2015111686A1 (ja)

Priority Applications (14)

Application Number Priority Date Filing Date Title
EP15740159.7A EP3098300B1 (en) 2014-01-23 2015-01-23 Culture medium composition
KR1020167022919A KR102232289B1 (ko) 2014-01-23 2015-01-23 배양 배지 조성물
US15/113,762 US10487308B2 (en) 2014-01-23 2015-01-23 Culture medium composition
CA2937801A CA2937801C (en) 2014-01-23 2015-01-23 Liquid culture medium composition comprising dispersed chitin or chitosan nanofibers
CN201580005644.2A CN105934511B (zh) 2014-01-23 2015-01-23 培养基组合物
JP2015559123A JP6536411B2 (ja) 2014-01-23 2015-01-23 培地組成物
SG11201606056RA SG11201606056RA (en) 2014-01-23 2015-01-23 Culture medium composition
KR1020227020583A KR102539240B1 (ko) 2014-01-23 2015-01-23 배양 배지 조성물
KR1020217008352A KR102359148B1 (ko) 2014-01-23 2015-01-23 배양 배지 조성물
KR1020227003406A KR102411750B1 (ko) 2014-01-23 2015-01-23 배양 배지 조성물
IL246877A IL246877B (en) 2014-01-23 2016-07-21 Culture medium preparation
HK17105192.6A HK1231509A1 (zh) 2014-01-23 2017-05-22 培養基組合物
US16/662,944 US20200095542A1 (en) 2014-01-23 2019-10-24 Culture medium composition
US18/446,136 US20230383245A1 (en) 2014-01-23 2023-08-08 Culture medium composition

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2014-010842 2014-01-23
JP2014010842 2014-01-23
JP2014-123772 2014-06-16
JP2014123772 2014-06-16
JP2014174574 2014-08-28
JP2014-174574 2014-08-28
JP2014-217761 2014-10-24
JP2014217761 2014-10-24

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/113,762 A-371-Of-International US10487308B2 (en) 2014-01-23 2015-01-23 Culture medium composition
US16/662,944 Division US20200095542A1 (en) 2014-01-23 2019-10-24 Culture medium composition

Publications (1)

Publication Number Publication Date
WO2015111686A1 true WO2015111686A1 (ja) 2015-07-30

Family

ID=53681484

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/051787 WO2015111686A1 (ja) 2014-01-23 2015-01-23 培地組成物

Country Status (11)

Country Link
US (3) US10487308B2 (ja)
EP (1) EP3098300B1 (ja)
JP (5) JP6536411B2 (ja)
KR (4) KR102232289B1 (ja)
CN (2) CN105934511B (ja)
CA (1) CA2937801C (ja)
HK (1) HK1231509A1 (ja)
IL (1) IL246877B (ja)
SG (2) SG11201606056RA (ja)
TW (2) TWI719697B (ja)
WO (1) WO2015111686A1 (ja)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106011071A (zh) * 2016-08-09 2016-10-12 海南海医药物安全性评价研究有限责任公司 一种原代肿瘤细胞培养组合物及其应用
CN106222236A (zh) * 2016-07-27 2016-12-14 郑州点石生物技术有限公司 血液中微生物检测试剂及其制备方法
WO2017082220A1 (ja) * 2015-11-10 2017-05-18 国立大学法人京都大学 ラミニンフラグメント含有培地を用いる細胞培養方法
WO2017154952A1 (ja) * 2016-03-09 2017-09-14 日産化学工業株式会社 細胞回収が容易な浮遊培養用培地組成物、及び細胞回収方法
WO2017175751A1 (ja) * 2016-04-04 2017-10-12 日産化学工業株式会社 タンパク質産生方法
WO2017200039A1 (ja) * 2016-05-19 2017-11-23 富士フイルム株式会社 細胞培養方法、培地及び培地キット
WO2017199737A1 (ja) * 2016-05-16 2017-11-23 富士フイルム株式会社 培養細胞の回収方法および培養細胞分散液
WO2018061847A1 (ja) * 2016-09-30 2018-04-05 富士フイルム株式会社 培地評価方法、培地、及び培養方法
WO2018182016A1 (ja) 2017-03-30 2018-10-04 日産化学株式会社 ナノファイバーを用いた細胞培養
WO2019049985A1 (ja) * 2017-09-08 2019-03-14 日産化学株式会社 細胞保存材料
JP2019156869A (ja) * 2018-03-07 2019-09-19 東洋製罐グループホールディングス株式会社 容器入り有機ナノファイバー分散体及びその製造方法
WO2020045620A1 (ja) 2018-08-31 2020-03-05 日産化学株式会社 接着性細胞の浮遊培養用培地組成物
WO2020054755A1 (ja) 2018-09-11 2020-03-19 日産化学株式会社 分離デバイスおよびそれを用いて分離対象物を分離する方法
JP2020536632A (ja) * 2017-10-05 2020-12-17 ザ・ジョンズ・ホプキンス・ユニバーシティ 移植可能なバイオリアクター、ならびにその作製方法および使用方法
WO2021002448A1 (ja) 2019-07-04 2021-01-07 日産化学株式会社 接着性細胞を浮遊培養するための培地組成物の製造方法
WO2021177344A1 (ja) * 2020-03-05 2021-09-10 積水メディカル株式会社 細胞含有液用保存容器及び保存液
WO2022045201A1 (ja) * 2020-08-27 2022-03-03 株式会社カネカ 接着性細胞を組織から効率的に製造する方法
US11286454B2 (en) 2015-08-31 2022-03-29 I Peace, Inc. Pluripotent stem cell manufacturing system and method for producing induced pluripotent stem cells
KR20220092862A (ko) 2019-10-31 2022-07-04 다이이치 고교 세이야쿠 가부시키가이샤 부유배양용 배지 첨가제, 배지 조성물 및 배양 방법
WO2022210659A1 (ja) * 2021-03-31 2022-10-06 昭和電工マテリアルズ株式会社 培養物の製造方法及び細胞回収方法
WO2022260149A1 (ja) * 2021-06-11 2022-12-15 国立大学法人京都大学 低温管理された細胞凝集塊及び細胞凝集塊の維持方法
USD982175S1 (en) 2021-03-05 2023-03-28 Nissan Chemical Corporation Floating material capture device
USD982173S1 (en) 2020-07-27 2023-03-28 Nissan Chemical Corporation Cell aggregate capture device
WO2023063417A1 (ja) * 2021-10-15 2023-04-20 日産化学株式会社 撹拌を伴う接着性細胞の浮遊培養方法
WO2023063418A1 (ja) * 2021-10-15 2023-04-20 日産化学株式会社 接着性細胞のスフェアのサイズ及び/又は個数の制御方法
WO2023176931A1 (ja) * 2022-03-16 2023-09-21 公益財団法人京都大学iPS細胞研究財団 体細胞から多能性幹細胞を製造する方法、それを用いて製造した分化細胞、およびそれらを製造するための浮遊培養装置

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105543163A (zh) * 2016-01-30 2016-05-04 马忠仁 一种用于全悬浮培养mdck细胞的无血清培养基
JP7058410B2 (ja) 2017-10-03 2022-04-22 国立大学法人東海国立大学機構 繊維長測定用プレパラートの製造方法、繊維長測定用分散液の調製方法、繊維長測定方法、繊維長測定用プレパラート、繊維長測定装置、および繊維長測定装置の制御プログラム
CN108998441A (zh) * 2018-08-02 2018-12-14 南方医科大学深圳医院 一种三维肿瘤球培养基添加剂、培养基以及三维肿瘤球培养方法
TW202020135A (zh) * 2018-08-06 2020-06-01 日商日產化學股份有限公司 細胞培養系統及使用該系統之細胞團的製造方法
WO2020036180A1 (ja) * 2018-08-17 2020-02-20 国立大学法人大阪大学 粒子の分配方法
CN109628377A (zh) * 2019-01-02 2019-04-16 贵州省人民医院 一种小鼠原代肝细胞灌注式分离及离体培养方法
JP7428866B2 (ja) * 2019-06-20 2024-02-07 シンフォニアテクノロジー株式会社 細胞回収方法及び細胞培養装置
JP7410491B2 (ja) 2019-10-31 2024-01-10 国立大学法人東京工業大学 浮遊培養用培地添加剤、培地組成物及び培養方法
JP2023510271A (ja) * 2020-01-13 2023-03-13 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア 移植用組織の保存方法
KR102347035B1 (ko) * 2020-03-04 2022-01-04 주식회사 바이나리 전해수를 포함하는 생체조직 투명화 키트, 이를 이용한 생체조직의 투명화 방법 및 3차원 이미지화를 위한 면역염색 방법
CN111567403B (zh) * 2020-06-22 2022-12-23 河南省农业科学院 一种含甲壳素的植物组织培养用添加剂、含添加剂的培养基或栽培基质及其制备方法
CN111661933B (zh) * 2020-06-30 2022-08-16 武汉合缘绿色生物股份有限公司 一种用于调节水体营养及预防病害的生物制剂及其制备方法
CN112538513B (zh) * 2020-12-11 2022-12-06 湖南美柏生物医药有限公司 细胞外基质mb生物蛋白及其制备试剂盒与方法
CN112980689A (zh) * 2021-02-08 2021-06-18 湖南美柏生物医药有限公司 一种贴壁细胞的培养装置、2.5d蜂箱式培养体系及方法
CN113564104A (zh) * 2021-07-02 2021-10-29 深圳韦拓生物科技有限公司 一种人***体外成熟液及其制备方法和应用
CN115074322B (zh) * 2022-07-01 2024-01-26 江南大学 一种高效获取多种生物活性功能因子的鼻黏膜外胚层间充质干细胞三维培养方法
WO2024030482A1 (en) * 2022-08-02 2024-02-08 Lundquist Institute For Biomedical Innovation At Harbor-Ucla Medical Center Preparation and use of functional human tissues

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62171680A (ja) 1986-01-25 1987-07-28 Nitta Zerachin Kk 動物細胞培養法
JPS63209581A (ja) 1987-02-26 1988-08-31 Snow Brand Milk Prod Co Ltd 付着依存性動物正常細胞の包埋培養法
JPH0823893A (ja) 1994-07-14 1996-01-30 Sanei Gen F F I Inc 粒状食品入りゾル状食品の製造法
JP2001128660A (ja) 1999-08-25 2001-05-15 Toyobo Co Ltd 血管網類似構造体を有する細胞培養用モジュール
JP2004236553A (ja) 2003-02-05 2004-08-26 Hitachi Ltd マイクロキャリア並びにこれを使用した細胞培養装置及び細胞培養方法
JP2005060570A (ja) 2003-08-14 2005-03-10 Mebiol Kk 熱可逆ハイドロゲル形成性組成物
JP2005270891A (ja) 2004-03-26 2005-10-06 Tetsuo Kondo 多糖類の湿式粉砕方法
WO2006109367A1 (ja) * 2005-04-05 2006-10-19 Obihiro University Of Agriculture And Veterinary Medicine 細胞遊離法、細胞遊離液、細胞培養法、細胞培養液、細胞液、細胞液製剤、細胞定着法及び細胞定着液
US20070207540A1 (en) * 2006-03-02 2007-09-06 Osaka University Method of producing three-dimensional tissue and method of producing extracellular matrix used in the same
JP2007319074A (ja) * 2006-05-31 2007-12-13 Kyushu Univ ナノファイバーを含む新規スキャフォールドおよびその用途
JP2009029967A (ja) 2007-07-27 2009-02-12 Univ Kansai 温度応答性を有する生分解性ポリマー及びその製造方法
WO2010059775A1 (en) 2008-11-20 2010-05-27 Centocor Ortho Biotech Inc. Pluripotent stem cell culture on micro-carriers
JP2012065555A (ja) 2010-09-21 2012-04-05 Tokyo Univ Of Agriculture & Technology スフェロイド作製装置およびスフェロイド作製方法
JP2012231743A (ja) * 2011-05-02 2012-11-29 National Institute For Materials Science 短繊維足場材料、短繊維−細胞複合凝集塊作製方法及び短繊維−細胞複合凝集塊
JP5232976B2 (ja) 2009-02-18 2013-07-10 愛知県 バイオマス粉砕方法及びバイオマス粉砕装置並びに糖類製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6872311B2 (en) * 2002-01-31 2005-03-29 Koslow Technologies Corporation Nanofiber filter media
US8679809B2 (en) * 2006-05-19 2014-03-25 The University Of Hong Kong Cell-matrix microspheres, methods for preparation and applications
US20090297579A1 (en) * 2006-06-01 2009-12-03 Massachusetts Institute Of Technology Control of Cells and Cell Multipotentiality in Three Dimensional Matrices
EP2254608B1 (en) * 2008-02-07 2016-05-04 Shahar Cohen Compartmental extract compositions for tissue engineering
CN101603064B (zh) * 2009-05-27 2012-07-18 上海交通大学 一种由卫矛醇制备d-塔格糖以及l-塔格糖的方法
ES2897598T3 (es) * 2009-11-27 2022-03-01 Stempeutics Res Pvt Ltd Métodos de preparación de células madre mesenquimales, composiciones y kit de las mismas
FI123988B (fi) * 2010-10-27 2014-01-31 Upm Kymmene Corp Soluviljelymateriaali
EP3702442A1 (en) * 2011-12-22 2020-09-02 Life Technologies Corporation Cell culture media and methods
AU2013240972A1 (en) 2012-03-30 2014-10-30 Ajinomoto Co., Inc. Culture medium for proliferating stem cell, which contains sulfated compound
US10781417B2 (en) * 2012-12-11 2020-09-22 Pall Technology Uk Limited System and method for detachment of cells in fixed bed reactors

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62171680A (ja) 1986-01-25 1987-07-28 Nitta Zerachin Kk 動物細胞培養法
JPS63209581A (ja) 1987-02-26 1988-08-31 Snow Brand Milk Prod Co Ltd 付着依存性動物正常細胞の包埋培養法
JPH0823893A (ja) 1994-07-14 1996-01-30 Sanei Gen F F I Inc 粒状食品入りゾル状食品の製造法
JP2001128660A (ja) 1999-08-25 2001-05-15 Toyobo Co Ltd 血管網類似構造体を有する細胞培養用モジュール
JP2004236553A (ja) 2003-02-05 2004-08-26 Hitachi Ltd マイクロキャリア並びにこれを使用した細胞培養装置及び細胞培養方法
JP2005060570A (ja) 2003-08-14 2005-03-10 Mebiol Kk 熱可逆ハイドロゲル形成性組成物
JP2005270891A (ja) 2004-03-26 2005-10-06 Tetsuo Kondo 多糖類の湿式粉砕方法
WO2006109367A1 (ja) * 2005-04-05 2006-10-19 Obihiro University Of Agriculture And Veterinary Medicine 細胞遊離法、細胞遊離液、細胞培養法、細胞培養液、細胞液、細胞液製剤、細胞定着法及び細胞定着液
US20070207540A1 (en) * 2006-03-02 2007-09-06 Osaka University Method of producing three-dimensional tissue and method of producing extracellular matrix used in the same
JP2007319074A (ja) * 2006-05-31 2007-12-13 Kyushu Univ ナノファイバーを含む新規スキャフォールドおよびその用途
JP2009029967A (ja) 2007-07-27 2009-02-12 Univ Kansai 温度応答性を有する生分解性ポリマー及びその製造方法
WO2010059775A1 (en) 2008-11-20 2010-05-27 Centocor Ortho Biotech Inc. Pluripotent stem cell culture on micro-carriers
JP5232976B2 (ja) 2009-02-18 2013-07-10 愛知県 バイオマス粉砕方法及びバイオマス粉砕装置並びに糖類製造方法
JP2012065555A (ja) 2010-09-21 2012-04-05 Tokyo Univ Of Agriculture & Technology スフェロイド作製装置およびスフェロイド作製方法
JP2012231743A (ja) * 2011-05-02 2012-11-29 National Institute For Materials Science 短繊維足場材料、短繊維−細胞複合凝集塊作製方法及び短繊維−細胞複合凝集塊

Non-Patent Citations (23)

* Cited by examiner, † Cited by third party
Title
CHEN SHENG-HAN ET AL.: "A three-dimensional dual-layer nano/microfibrous structure of electrospun chitosan/poly(d,l-lactide) membrane for the improvement of cytocompatibility", J. MEMBR. SCI., vol. 450, 15 January 2014 (2014-01-15), pages 224 - 234, XP055214706 *
DE SILVA D. AWANTHI ET AL.: "Mechanical Characteristics of Swollen Gellan Gum Hydrogels", J. APPL. POLYM. SCI., vol. 130, 2013, pages 3374 - 3383, XP055214708 *
HASSANZADEH PEGAH ET AL.: "Chitin nanofiber micropatterned flexible substrates for tissue engineering", J. MATER. CHEM., vol. 1, no. 34, 2013, pages 4217 - 4224, XP055214698 *
HUSSAIN ALI ET AL.: "Functional 3-D Cardiac Co-Culture Model Using Bioactive Chitosan Nanofiber Scaffolds", BIOTECHNOL. BIOENG., vol. 110, 2013, pages 637 - 647, XP055214701 *
KING ET AL., CURR OPIN CHEM BIOL., vol. 11, 2007, pages 394 - 398
KLIMANSKAYA ET AL., LANCET, vol. 365, 2005, pages 1636 - 1641
LEUNG ET AL., TISSUE ENGINEERING, vol. 17, 2011, pages 165 - 172
LIN ET AL., BIOTECHNOL J., vol. 3, 2008, pages 1172 - 1184
LIU ET AL., SOFT MATTER, vol. 7, 2011, pages 5430 - 5436
LIU HUANHUAN ET AL.: "The promotion of bone regeneration by nanofibrous hydroxyapatite/ chitosan scaffolds by effects on integrin- BMP/Smad signaling pathway in BMSCs", BIOMATERIALS, vol. 34, no. 18, 2013, pages 4404 - 4417, XP028526268 *
MENDES, CHEMICAL SOCIETY REVIEWS, vol. 37, 2008, pages 2512 - 2529
MOON ET AL., CHEMICAL SOCIETY REVIEWS, vol. 41, 2012, pages 4860 - 4883
MULLER D. ET AL.: "Neuronal cells' behavior on polypyrrole coated bacterial nanocellulose three-dimensional (3D) scaffolds", J. BIOMATER. SCI. POLYM. ED., vol. 24, no. 11, 2013, pages 1368 - 1377, XP055214700 *
MURUA ET AL., J. OF CONTROLLED RELEASE, vol. 132, 2008, pages 76 - 83
NATURE BIOTECHNOLOGY, vol. 28, no. 4, April 2010 (2010-04-01), pages 361 - 366
NATURE PROTOCOLS, vol. 6, no. 5, 2011, pages 572 - 579
NATURE PROTOCOLS, vol. 6, no. 5, 2011, pages 689 - 700
PEK ET AL., NATURE NANOTECHNOL, vol. 3, 2008, pages 671 - 675
PEREZ-CAMPOS ET AL., FOOD HYDROCOLLOIDS, vol. 28, 2012, pages 291 - 300
STAHL ET AL., BIOCHEM. BIOPHYS. RES. COMM., vol. 322, 2004, pages 684 - 692
STEM CELL RESEARCH, vol. 7, 2011, pages 97 - 111
STEM CELL REV AND REP, vol. 6, 2010, pages 248 - 259
WEATHERS ET AL., APPL MICROBIOL BIOTECHNOL, vol. 85, 2010, pages 1339 - 1351

Cited By (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11286454B2 (en) 2015-08-31 2022-03-29 I Peace, Inc. Pluripotent stem cell manufacturing system and method for producing induced pluripotent stem cells
CN108350417A (zh) * 2015-11-10 2018-07-31 国立大学法人京都大学 使用含有层粘连蛋白片段的培养基的细胞培养方法
WO2017082220A1 (ja) * 2015-11-10 2017-05-18 国立大学法人京都大学 ラミニンフラグメント含有培地を用いる細胞培養方法
JP2017085963A (ja) * 2015-11-10 2017-05-25 国立大学法人京都大学 ラミニンフラグメント含有培地を用いる細胞培養方法
US11505785B2 (en) 2015-11-10 2022-11-22 Kyoto University Cell culture method using laminin fragment-containing medium
CN108350417B (zh) * 2015-11-10 2023-04-11 国立大学法人京都大学 使用含有层粘连蛋白片段的培养基的细胞培养方法
WO2017154952A1 (ja) * 2016-03-09 2017-09-14 日産化学工業株式会社 細胞回収が容易な浮遊培養用培地組成物、及び細胞回収方法
US11261422B2 (en) 2016-03-09 2022-03-01 Nissan Chemical Corporation Culture medium composition for suspension culture allowing easy cell recovery, and cell recovery method
JP2021192643A (ja) * 2016-03-09 2021-12-23 日産化学株式会社 細胞回収が容易な浮遊培養用培地組成物、及び細胞回収方法
KR20210124525A (ko) * 2016-03-09 2021-10-14 닛산 가가쿠 가부시키가이샤 세포 회수가 용이한 부유 배양용 배양 배지 조성물 및 세포 회수 방법
KR102436388B1 (ko) * 2016-03-09 2022-08-25 닛산 가가쿠 가부시키가이샤 세포 회수가 용이한 부유 배양용 배양 배지 조성물 및 세포 회수 방법
CN109072181A (zh) * 2016-03-09 2018-12-21 日产化学株式会社 容易回收细胞的悬浮培养用培养基组合物和细胞回收方法
JPWO2017154952A1 (ja) * 2016-03-09 2019-01-10 日産化学株式会社 細胞回収が容易な浮遊培養用培地組成物、及び細胞回収方法
JP7264198B2 (ja) 2016-03-09 2023-04-25 日産化学株式会社 細胞回収が容易な浮遊培養用培地組成物、及び細胞回収方法
EP3434782A4 (en) * 2016-04-04 2019-03-20 Nissan Chemical Corporation PROCESS FOR PRODUCING PROTEINS
WO2017175751A1 (ja) * 2016-04-04 2017-10-12 日産化学工業株式会社 タンパク質産生方法
JPWO2017175751A1 (ja) * 2016-04-04 2019-02-14 日産化学株式会社 タンパク質産生方法
CN109219661A (zh) * 2016-04-04 2019-01-15 日产化学株式会社 蛋白质生产方法
JPWO2017199737A1 (ja) * 2016-05-16 2019-03-07 富士フイルム株式会社 培養細胞の回収方法および培養細胞分散液
WO2017199737A1 (ja) * 2016-05-16 2017-11-23 富士フイルム株式会社 培養細胞の回収方法および培養細胞分散液
WO2017200039A1 (ja) * 2016-05-19 2017-11-23 富士フイルム株式会社 細胞培養方法、培地及び培地キット
JPWO2017200039A1 (ja) * 2016-05-19 2019-03-22 富士フイルム株式会社 細胞培養方法、培地及び培地キット
CN106222236A (zh) * 2016-07-27 2016-12-14 郑州点石生物技术有限公司 血液中微生物检测试剂及其制备方法
CN106011071A (zh) * 2016-08-09 2016-10-12 海南海医药物安全性评价研究有限责任公司 一种原代肿瘤细胞培养组合物及其应用
CN106011071B (zh) * 2016-08-09 2019-03-01 海南海医药物安全性评价研究有限责任公司 一种原代肿瘤细胞培养组合物及其应用
US11435276B2 (en) 2016-09-30 2022-09-06 Fujifilm Corporation Medium evaluation method, medium, and culture method
WO2018061847A1 (ja) * 2016-09-30 2018-04-05 富士フイルム株式会社 培地評価方法、培地、及び培養方法
JPWO2018061847A1 (ja) * 2016-09-30 2019-08-29 富士フイルム株式会社 培地評価方法、培地、及び培養方法
KR20230086796A (ko) 2017-03-30 2023-06-15 닛산 가가쿠 가부시키가이샤 나노섬유를 이용한 세포 배양
JPWO2018182016A1 (ja) * 2017-03-30 2020-02-06 日産化学株式会社 ナノファイバーを用いた細胞培養
KR20190137119A (ko) 2017-03-30 2019-12-10 닛산 가가쿠 가부시키가이샤 나노섬유를 이용한 세포 배양
WO2018182016A1 (ja) 2017-03-30 2018-10-04 日産化学株式会社 ナノファイバーを用いた細胞培養
KR20220003137A (ko) 2017-03-30 2022-01-07 닛산 가가쿠 가부시키가이샤 나노섬유를 이용한 세포 배양
JPWO2019049985A1 (ja) * 2017-09-08 2020-10-15 日産化学株式会社 細胞保存材料
US11252954B2 (en) 2017-09-08 2022-02-22 Nissan Chemical Corporation Method for preserving a cell material in an unfrozen state
WO2019049985A1 (ja) * 2017-09-08 2019-03-14 日産化学株式会社 細胞保存材料
JP2020536632A (ja) * 2017-10-05 2020-12-17 ザ・ジョンズ・ホプキンス・ユニバーシティ 移植可能なバイオリアクター、ならびにその作製方法および使用方法
JP7275474B2 (ja) 2018-03-07 2023-05-18 東洋製罐グループホールディングス株式会社 容器入り有機ナノファイバー分散体及びその製造方法
JP2019156869A (ja) * 2018-03-07 2019-09-19 東洋製罐グループホールディングス株式会社 容器入り有機ナノファイバー分散体及びその製造方法
JPWO2020045620A1 (ja) * 2018-08-31 2021-08-12 日産化学株式会社 接着性細胞の浮遊培養用培地組成物
JP7415928B2 (ja) 2018-08-31 2024-01-17 日産化学株式会社 接着性細胞の浮遊培養用培地組成物
JP2022162142A (ja) * 2018-08-31 2022-10-21 日産化学株式会社 接着性細胞の浮遊培養用培地組成物
WO2020045620A1 (ja) 2018-08-31 2020-03-05 日産化学株式会社 接着性細胞の浮遊培養用培地組成物
JP7283621B2 (ja) 2018-08-31 2023-05-30 日産化学株式会社 接着性細胞の浮遊培養用培地組成物
WO2020054755A1 (ja) 2018-09-11 2020-03-19 日産化学株式会社 分離デバイスおよびそれを用いて分離対象物を分離する方法
KR20220038364A (ko) 2019-07-04 2022-03-28 닛산 가가쿠 가부시키가이샤 접착성 세포를 부유 배양하기 위한 배지 조성물의 제조 방법
WO2021002448A1 (ja) 2019-07-04 2021-01-07 日産化学株式会社 接着性細胞を浮遊培養するための培地組成物の製造方法
KR20220092862A (ko) 2019-10-31 2022-07-04 다이이치 고교 세이야쿠 가부시키가이샤 부유배양용 배지 첨가제, 배지 조성물 및 배양 방법
WO2021177344A1 (ja) * 2020-03-05 2021-09-10 積水メディカル株式会社 細胞含有液用保存容器及び保存液
USD982173S1 (en) 2020-07-27 2023-03-28 Nissan Chemical Corporation Cell aggregate capture device
WO2022045201A1 (ja) * 2020-08-27 2022-03-03 株式会社カネカ 接着性細胞を組織から効率的に製造する方法
USD982175S1 (en) 2021-03-05 2023-03-28 Nissan Chemical Corporation Floating material capture device
WO2022210659A1 (ja) * 2021-03-31 2022-10-06 昭和電工マテリアルズ株式会社 培養物の製造方法及び細胞回収方法
WO2022260149A1 (ja) * 2021-06-11 2022-12-15 国立大学法人京都大学 低温管理された細胞凝集塊及び細胞凝集塊の維持方法
WO2023063417A1 (ja) * 2021-10-15 2023-04-20 日産化学株式会社 撹拌を伴う接着性細胞の浮遊培養方法
WO2023063418A1 (ja) * 2021-10-15 2023-04-20 日産化学株式会社 接着性細胞のスフェアのサイズ及び/又は個数の制御方法
WO2023176931A1 (ja) * 2022-03-16 2023-09-21 公益財団法人京都大学iPS細胞研究財団 体細胞から多能性幹細胞を製造する方法、それを用いて製造した分化細胞、およびそれらを製造するための浮遊培養装置

Also Published As

Publication number Publication date
KR20220020418A (ko) 2022-02-18
JP6741122B2 (ja) 2020-08-19
TWI719697B (zh) 2021-02-21
CA2937801C (en) 2023-04-04
CN112662611A (zh) 2021-04-16
JP2023063498A (ja) 2023-05-09
JPWO2015111686A1 (ja) 2017-03-23
US20200095542A1 (en) 2020-03-26
KR20210034121A (ko) 2021-03-29
KR102232289B1 (ko) 2021-03-26
JP7248166B2 (ja) 2023-03-29
US20170009201A1 (en) 2017-01-12
TWI675101B (zh) 2019-10-21
KR20160117496A (ko) 2016-10-10
KR102539240B1 (ko) 2023-06-01
JP7036165B2 (ja) 2022-03-15
SG11201606056RA (en) 2016-08-30
SG10201806217UA (en) 2018-08-30
US20230383245A1 (en) 2023-11-30
TW201615829A (zh) 2016-05-01
EP3098300B1 (en) 2020-06-24
KR20220088523A (ko) 2022-06-27
CA2937801A1 (en) 2015-07-30
US10487308B2 (en) 2019-11-26
JP2020171327A (ja) 2020-10-22
CN105934511B (zh) 2021-01-22
EP3098300A4 (en) 2017-07-12
HK1231509A1 (zh) 2017-12-22
IL246877B (en) 2021-12-01
JP2019141107A (ja) 2019-08-29
JP6536411B2 (ja) 2019-07-03
JP2022066359A (ja) 2022-04-28
KR102411750B1 (ko) 2022-06-22
KR102359148B1 (ko) 2022-02-08
TW202006135A (zh) 2020-02-01
CN105934511A (zh) 2016-09-07
IL246877A0 (en) 2016-08-31
EP3098300A1 (en) 2016-11-30

Similar Documents

Publication Publication Date Title
JP7248166B2 (ja) 培地組成物
JP6879517B2 (ja) 培地組成物及び当該組成物を用いた細胞又は組織の培養方法
JP6668756B2 (ja) 培地組成物の製造方法
WO2018182016A1 (ja) ナノファイバーを用いた細胞培養
JP6642439B2 (ja) 細胞回収に関する方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15740159

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 246877

Country of ref document: IL

ENP Entry into the national phase

Ref document number: 2015559123

Country of ref document: JP

Kind code of ref document: A

Ref document number: 2937801

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 15113762

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015740159

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015740159

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20167022919

Country of ref document: KR

Kind code of ref document: A