WO2015109862A1 - 电源转换器 - Google Patents

电源转换器 Download PDF

Info

Publication number
WO2015109862A1
WO2015109862A1 PCT/CN2014/087249 CN2014087249W WO2015109862A1 WO 2015109862 A1 WO2015109862 A1 WO 2015109862A1 CN 2014087249 W CN2014087249 W CN 2014087249W WO 2015109862 A1 WO2015109862 A1 WO 2015109862A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
signal
voltage
circuit
resonant
Prior art date
Application number
PCT/CN2014/087249
Other languages
English (en)
French (fr)
Inventor
刘旭君
叶立明
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP14879835.8A priority Critical patent/EP3079248A4/en
Publication of WO2015109862A1 publication Critical patent/WO2015109862A1/zh
Priority to US15/213,745 priority patent/US20160329817A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33573Full-bridge at primary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/01Resonant DC/DC converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0025Arrangements for modifying reference values, feedback values or error values in the control loop of a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • H02M1/0058Transistor switching losses by employing soft switching techniques, i.e. commutation of transistors when applied voltage is zero or when current flow is zero
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present invention relates to the field of power supplies, and more particularly to a power converter.
  • the power converter is an essential component. As the power conversion frequency of the power converter is getting higher and higher, the conversion efficiency is also increasing.
  • power converters include various resonant topologies to reduce power converter losses during power conversion.
  • LLC topology is a common resonant topology.
  • the LLC topology resonates through the resonant inductor and the resonant capacitor, and implements a Zero Current Switch (ZCS) and a Zero Current Switch (ZVS) to greatly improve the conversion efficiency of the power converter.
  • ZCS Zero Current Switch
  • ZVS Zero Current Switch
  • various components in the power converter often have errors in manufacturing, especially resonant inductors, which have large errors. The errors of the components are accumulated such that the resonant inductor and the resonant capacitor are not always maintained in a resonant state, resulting in a low conversion efficiency of the power converter.
  • a power converter is provided with high conversion efficiency.
  • a power converter includes:
  • a power input circuit for generating a first alternating voltage and outputting the first alternating current voltage
  • a transformer configured to convert the first alternating current voltage into a second alternating current voltage, where a voltage value of the second alternating current voltage is not equal to a voltage value of the first alternating current voltage
  • a power output circuit configured to convert the second alternating current voltage into an output voltage, and output the output voltage, wherein the output voltage is an alternating current voltage that is not equal to the second alternating current voltage or the output voltage is a DC voltage;
  • a resonant circuit for resonating when a frequency of the first alternating voltage output by the power input circuit is equal to a resonant frequency of the resonant circuit to achieve zero current switching or pairing of the power input circuit Zero voltage switch of the transformer;
  • a correction circuit configured to sense the first alternating voltage to obtain a detection signal, and detect the detection Measuring a magnitude of the ringing signal in the signal, and sending a control signal to the power input circuit according to the magnitude of the ringing signal to adjust a frequency of the first alternating current voltage output by the power input circuit to be equal to a resonant frequency of the resonant circuit Or the frequency of the first alternating voltage output by the power input circuit and the resonant frequency of the resonant circuit are within a range of plus or minus ten percent to adjust the magnitude of the ringing signal to a minimum value.
  • the resonant circuit includes a resonant inductor, and the correcting circuit includes:
  • a signal detecting circuit configured to sense a voltage signal across the resonant inductor to obtain the detection signal, the detection signal comprising a sine wave signal and the ringing signal;
  • a high-pass filter circuit for filtering a sine wave signal in the detection signal, through the ringing signal
  • a rectifying circuit configured to rectify the ringing signal after passing through the high-pass filter circuit into a direct current pulse signal
  • a low pass filter circuit for converting the DC pulse signal into a DC signal
  • a control circuit configured to send a control signal to the power input circuit according to the size of the DC signal, to adjust a frequency of the first AC voltage output by the power input circuit, so that the first AC voltage output by the input circuit
  • the frequency is equal to the resonant frequency of the resonant circuit or the deviation of the operating frequency of the power input circuit from the resonant frequency of the resonant circuit is within plus or minus ten percent.
  • the signal detecting circuit and the resonant inductor form a sensing transformer, and the resonant inductor is a primary coil of the sensing transformer,
  • the signal detection circuit is the secondary coil of the sensing transformer.
  • the high-pass filter circuit includes a first capacitor and a first resistor, and one end of the secondary coil of the sensing transformer is connected to the first And a capacitance and the first resistance to the other end of the secondary coil of the sensing transformer.
  • the rectifier circuit includes a second capacitor, a third capacitor, a first diode, and a second diode, and the second capacitor ends Connecting a node between the secondary coil of the sensing transformer and the first resistor, and connecting the other end to a negative pole of the first diode; and connecting one end of the third capacitor to a secondary coil of the sensing transformer a node between the first resistor and the other end being grounded; the anode of the first diode is connected to the first resistor and the ground a node between the first capacitors, a cathode of the second diode is connected to a node between the first resistor and the first capacitor, and a cathode of the second diode is grounded.
  • the low-pass filter circuit includes a second resistor and a fourth capacitor, and the second resistor is connected at one end to a cathode of the first diode The other end of the second resistor is connected to the fourth capacitor to ground.
  • the power converter further includes a third resistor, the third resistor is grounded at one end, and the second resistor is coupled to the second resistor The node between the fourth capacitors.
  • the power input circuit includes a plurality of switch units, the plurality of switch units respectively receiving a switch signal, and controlling the switch signal Converting a raw DC voltage into a first AC voltage, and the control circuit adjusts a duty ratio or a frequency of the switching signal by the control signal to adjust an operating frequency of the power input circuit, thereby adjusting the The frequency of the first alternating voltage.
  • the control circuit adjusts a frequency of the first alternating current voltage output by the power input circuit, so that the first alternating current voltage output by the input circuit
  • the adjustment method of the frequency equal to the resonant frequency of the resonant circuit or the frequency of the first alternating current voltage output by the power input circuit and the resonant frequency of the resonant circuit is within plus or minus ten percent:
  • the initial frequency is decreased by a second preset frequency increment
  • the ninth possible implementation manner if the difference between the DC signal obtained when the frequency is increased by the first preset frequency increment and the DC signal obtained by the initial frequency is less than zero, Returning to continue to increase the current frequency by a first preset frequency increment, and repeatedly performing the process of increasing the current frequency by a first preset frequency increment until the ringing signal becomes larger, the ringing signal becomes The frequency before the big is the resonant frequency.
  • a tenth possible implementation manner if the frequency is decreased by the second preset frequency increment, the difference between the DC signal obtained at the second predetermined frequency increment and the DC signal obtained at the initial frequency is less than zero, Returning to perform the process of reducing the current frequency by a second preset frequency increment, and repeating the process of reducing the current frequency by a second preset frequency increment until the ringing signal becomes larger, and the ringing signal is increased before the ringing signal is increased.
  • the frequency is the resonant frequency.
  • a power converter in which a correction circuit is provided, the correction circuit sensing a magnitude of a ringing signal in a first alternating voltage flowing through the resonant circuit in the power converter, and according to ringing
  • the magnitude of the signal adjusts the frequency of the first alternating voltage such that the frequency of the first alternating voltage is equal to the resonant frequency of the resonant circuit, or the difference between the frequency of the first alternating voltage and the resonant frequency of the resonant circuit is within a range. That is, the resonant circuit is maintained in a resonant state.
  • the magnitude of the ringing signal reaches a minimum value, and since the resonant circuit is maintained in a resonant state, zero voltage switching of the power input circuit and zero current switching to the transformer are realized. Therefore, the conversion efficiency of the power converter is improved.
  • FIG. 1 is a schematic diagram showing the circuit structure of a power converter according to a preferred embodiment of the present invention
  • FIG. 2 is a circuit diagram of a preferred embodiment of the power input circuit shown in FIG. 1;
  • FIG. 3 is a waveform diagram of a voltage signal including a ringing signal according to the present invention.
  • FIG. 4 is a schematic diagram of a control method for controlling a power input circuit of a control circuit according to the present invention
  • FIG. 5 is a waveform diagram of a ringing signal size and a period of a first alternating current voltage output by a power input circuit according to the present invention, and a conversion efficiency of the power converter and a first alternating current voltage output by the power input circuit A schematic diagram of the waveform of the cycle.
  • FIG. 1 is a circuit diagram of a power converter according to a preferred embodiment of the present invention.
  • the power converter 100 includes a power input circuit 110, a transformer 120, a power output circuit 130, a resonant circuit 140, and a correction circuit 150.
  • the power input circuit 110 is configured to generate a first alternating voltage and output the first alternating voltage.
  • the transformer 120 is configured to convert the first alternating current voltage into a second alternating current voltage.
  • the power output circuit 130 is configured to convert the second alternating current voltage into an output voltage, and output the output voltage.
  • the output voltage may be a direct current voltage or an alternating voltage whose voltage value is not equal to the voltage value of the second alternating current voltage.
  • the resonant circuit 140 includes a resonant capacitor Cr and a resonant inductor Lr. The resonant inductor Lr is connected in series with the resonant capacitor Cr.
  • the correction circuit 150 is configured to sense the first alternating voltage to obtain a detection signal, and detect a size of a ringing signal in the detection signal, and send a control signal to the power input according to the size of the ringing signal.
  • the circuit 110 is configured to adjust a frequency at which the first AC voltage is output by the power input circuit 110 to be equal to a resonant frequency of the resonant circuit 140 or a frequency of a first alternating current voltage output by the power input circuit 110 at the resonant circuit 140 Near the resonant frequency, the size of the ringing signal is adjusted to a minimum value.
  • the frequency of the first alternating voltage output by the power input circuit 110 and the resonant frequency of the resonant circuit 140 may be within a range of plus or minus ten percent. The following is an example of adjusting the frequency of the first alternating current voltage output by the power input circuit 110 to be equal to the resonant frequency of the resonant circuit 140.
  • the detection signal may be a current signal or a voltage signal.
  • the detecting circuit 150 is configured to sense a voltage signal across the resonant inductor Lr, the resonant inductor Lr The voltage signals at both ends are the detection signals.
  • the power input circuit 110 includes a first output terminal 110a and a second output terminal 110b, and outputs the first AC voltage from the first output terminal 110a and the second output terminal 110b.
  • the power input circuit 110 includes a DC source 111 and a plurality of switching units.
  • the DC source 111 includes a positive electrode and a negative electrode, and the negative electrode of the DC source 111 is grounded to generate a raw DC voltage.
  • the plurality of switching units respectively receive a switching signal, and convert the original DC voltage into a first alternating voltage under the control of the switching signal.
  • the power input circuit 110 can be a power converter circuit or a high frequency switching power conversion circuit.
  • the power input circuit 110 is a high frequency switching power conversion circuit including four N-channel metal oxide semiconductor field effect transistors (NMOSFETs) as a switching unit. .
  • NMOSFETs N-channel metal oxide semiconductor field effect transistors
  • the four NMOSFETs are respectively named as a first switching unit Q1, a second switching unit Q2, a third switching unit Q3, and a fourth switching unit Q4.
  • the first switching unit Q1, the second switching unit Q2, the third switching unit Q3, and the fourth switching unit Q4 respectively include a gate g, a source s and a drain d.
  • the gates g of the first switching unit Q1, the second switching unit Q2, the third switching unit Q3, and the fourth switching unit Q4 are respectively configured to receive a switching signal, and in the switching signal Controlling the opening or closing between the source s and the drain d of each switching unit under control. When the source s and the drain d are turned on, the switching unit is turned off; when the source s and the drain d are closed, the switching unit is turned on.
  • the drain d of the first switching unit Q1 is connected to the anode of the DC source 111, and the source s of the first switching unit Q1 is connected to the first output terminal 110a.
  • the drain d of the second switching unit Q2 is connected to the first output terminal 110a, and the source s of the second switching unit Q2 is grounded.
  • the drain d of the third switching unit Q3 is connected to the anode of the DC source 111, and the source s of the third switching unit Q3 is connected to the second output terminal 110b.
  • the drain d of the fourth switching unit Q4 is connected to the second output terminal 110b, and the source s of the fourth switching unit Q4 is grounded.
  • the first switching unit Q1, the second switching unit Q2, the third switching unit Q3, and the fourth switching unit Q4 are periodically turned on and off, the first output terminal 110a and the The second output terminal 110b is periodically connected to the anode of the DC source 111 and the ground. Therefore, a high frequency AC voltage is formed between the first output terminal 110a and the second output terminal 110b.
  • the frequency alternating current voltage is the first alternating current Pressure.
  • the transformer 120 includes a primary coil L1 and a secondary coil L2.
  • One end of the primary coil L1 is connected to the resonant circuit 140 to the first output end 110a, and the other end of the primary coil L1 is connected to the second output end 110b.
  • the primary coil L1 is for receiving the first alternating voltage
  • the transformer 120 is for converting the first alternating voltage to the second alternating voltage
  • the secondary coil L2 is for using the second AC voltage output. It can be understood that the relationship between the magnitude of the second alternating voltage and the magnitude of the first alternating voltage is proportional to the ratio between the number of turns of the secondary coil L2 and the number of turns of the primary coil L1. In direct proportion.
  • the transformer 120 is a step-up transformer; when the ratio between the number of turns of the secondary coil L2 and the number of turns of the primary coil L1 is less than one, the magnitude of the second alternating voltage is smaller than the first alternating voltage
  • the size, that is, the transformer 120 is a step-down transformer.
  • the power output circuit 130 is connected to the secondary coil L2 of the transformer 120 for outputting an output voltage according to the second alternating voltage. Specifically, the power output circuit 130 receives the second alternating voltage, converts the second alternating current voltage into a first voltage, and outputs the first voltage. It can be understood that the first voltage of the output may be an alternating current voltage or a direct current voltage.
  • the resonant circuit 140 includes a resonant capacitor Cr and a resonant inductor Lr. One end of the resonant inductor Lr is connected to the first output end 110a, and the other end of the resonant inductor Lr is connected to the resonant capacitor Cr to one end of the primary coil L1 of the transformer 120.
  • the resonant circuit 140 resonates.
  • the current in the switching unit changes according to a standard sinusoidal law, that is, the current in the switching unit is a standard sine wave.
  • the switching unit When the current whose waveform is a sine wave resonates to zero, the switching unit is turned off, thereby implementing a Zero Current Switch (ZCS). Meanwhile, when the resonance circuit 140 resonates, the voltage of the primary coil L1 of the transformer 120 changes according to a standard sinusoidal law, that is, the voltage of the primary coil L1 is a standard sine wave. When the voltage of the sinusoidal wave resonates to zero, the transformer 120 is turned off, thereby implementing a Zero Voltage Switch (ZVS).
  • ZCS Zero Current Switch
  • the correction circuit 150 includes a signal detection circuit 151, a high-pass filter circuit 152, a rectifier circuit 153, a low-pass filter circuit 154, and a control circuit 155.
  • the signal detecting circuit 151 is configured to sense a voltage signal across the resonant inductor Lr to obtain the detection signal.
  • the signal detecting circuit 151 and the resonant inductor Lr form one sensing transformer.
  • the sensing transformer is represented by T2
  • the resonant inductor Lr is the primary coil of the sensing transformer T2
  • the signal detecting circuit 151 is the secondary coil L3 of the sensing transformer T2. Since the resonant inductor Lr and the signal detecting circuit 151 form a sensing transformer T2, a voltage signal across the resonant inductor Lr can be coupled from both ends of the resonant inductor Lr due to the coupling action of the sensing transformer T2.
  • the signal detecting circuit 151 Please refer to FIG.
  • the voltage signal includes a sine wave signal I and a ringing signal II.
  • the ringing signal II is generated by the resonance of the resonant inductor Lr and the junction capacitance in the switching unit in the power input circuit 110.
  • the resonant circuit 140 resonates.
  • the amplitude of the ringing signal II is the smallest, and the conversion efficiency of the power converter 110 is the largest. Therefore, by detecting the amplitude of the ringing signal II, it is known whether the power converter 100 is operating in an optimum operating state.
  • the high pass filter circuit 152 is configured to filter out the sine wave signal I in the voltage signal and pass the ring signal II.
  • the high pass filter circuit 152 includes a first capacitor C0 and a first resistor R1.
  • the first capacitor C0 is connected in series with the first capacitor R1 and then connected to both ends of the secondary coil L3 of the sensing transformer T2.
  • one end of the secondary coil L3 of the sensing transformer T2 connects the first capacitor C0 and the first resistor R1 to the other end of the secondary coil L3 of the sensing transformer T2.
  • the rectifier circuit 153 is configured to rectify the ringing signal II after passing through the high-pass filter circuit 152 into a direct current pulse signal.
  • the rectifier circuit 153 includes a second capacitor C1, a third capacitor C2, a first diode D1, and a second diode D2.
  • One end of the second capacitor C1 is connected to a node between the secondary coil L3 of the sensing transformer T2 and the first resistor R1, and the other end of the second capacitor C1 is connected to the first diode D1.
  • negative electrode One end of the third capacitor C2 is connected to a node between the secondary coil L3 of the sensing transformer T2 and the first resistor R1, the third The other end of the capacitor C2 is grounded.
  • the anode of the first diode D1 is connected to a node between the first resistor R1 and the first capacitor C0.
  • the cathode of the second diode D2 is connected to a node between the first resistor R1 and the first capacitor C0, and the anode of the second diode D2 is grounded.
  • the first diode D1 and the second diode D2 are both unidirectional. When the voltage of the positive pole of the first diode D1 is greater than the voltage of the anode of the first diode D1, the first diode D1 is turned on; when the voltage of the anode of the first diode D1 is less than When the voltage of the first diode D1 is negative, the first diode D1 is turned off.
  • the second diode D2 When the voltage of the positive electrode of the second diode D2 is greater than the voltage of the negative electrode of the second diode D2, the second diode D2 is turned on; when the voltage of the positive electrode of the second diode D2 is less than When the voltage of the second diode D2 is negative, the second diode D2 is turned off.
  • the low pass filter circuit 154 is configured to convert the DC pulse signal into a DC signal. After the DC pulse signal passes through the low pass filter circuit 154, the waveform will become more gradual.
  • the low pass filter circuit 154 includes a second resistor R2 and a fourth capacitor C3. One end of the second resistor R2 is connected to the negative pole of the first diode D1, and the other end of the second resistor R2 is connected to the fourth capacitor C3 to the ground.
  • the control circuit 155 is configured to send a control signal to the power input circuit 110 according to the size of the DC signal to adjust a frequency of the first AC voltage output by the power input circuit 110.
  • the magnitude of the DC signal represents a magnitude of the amplitude of the ringing signal II, and when the DC signal is large, it indicates that the amplitude of the ringing signal II included in the voltage signal is large; When the DC signal is small, it indicates that the amplitude of the ringing signal II included in the voltage signal is small. Therefore, the size of the DC signal can be used as a basis for the control circuit 155 to adjust the frequency of the first AC voltage output by the input circuit 110.
  • the control circuit 155 can adjust the duty ratio or frequency of the switch signal by controlling the control signal to adjust the frequency of the first AC voltage output by the power input circuit 110, so that the power input circuit 110 outputs
  • the frequency of the first alternating voltage is equal to the resonant frequency of the resonant circuit 140 to cause the resonant circuit 140 to resonate.
  • FIG. 4 is a schematic diagram of a control method for controlling a power input circuit of a control circuit according to the present invention.
  • the magnitude of the first preset frequency increment may be selected as needed to satisfy a frequency at which the first alternating voltage can be adjusted as quickly as possible equal to the resonant frequency.
  • Step S204 If the difference between the DC signal obtained when the frequency of the first AC voltage increases by the first preset frequency increment and the frequency of the first AC voltage is the initial frequency is less than zero, the process returns to step S201; In step S201, until the ringing signal becomes larger, the frequency of the first alternating voltage before the ringing signal becomes larger is equal to the resonant frequency. If the difference between the DC signal obtained when the frequency of the first AC voltage increases by the first preset frequency increment and the frequency of the first AC voltage does not increase by the first preset frequency increment is greater than zero, Step S204 is performed.
  • the first AC voltage is The magnitude of the DC signal obtained when the frequency is increased by the first preset frequency increment is smaller than the magnitude of the DC signal obtained when the frequency of the first AC voltage is the initial frequency. That is, when the frequency of the first alternating voltage is increased by the first preset frequency increment, the amplitude of the ringing signal obtained when the amplitude of the ringing signal is smaller than the frequency of the first alternating voltage is the initial frequency. Then, it is indicated that increasing the frequency of the first alternating current voltage to the initial frequency at this time can reduce the amplitude of the ringing signal.
  • the frequency of the first AC voltage is indicated.
  • the magnitude of the DC signal obtained when the first preset frequency increment is increased is greater than the magnitude of the DC signal obtained when the frequency of the first AC voltage is the initial frequency. That is, when the frequency of the first alternating voltage increases by the first preset frequency increment, the amplitude of the ringing signal obtained when the amplitude of the ringing signal is greater than the frequency of the first alternating voltage is the initial frequency. Then, it indicates that increasing the initial frequency of the first alternating current voltage at this time cannot reduce the amplitude of the ringing signal, but increases the amplitude of the ringing signal.
  • S204 Decrease an initial frequency of the first alternating current voltage by a second preset frequency increment. It can be understood that the size of the second preset frequency increment can be selected as needed to satisfy that the frequency of the first alternating voltage can be adjusted as soon as possible equal to the resonant frequency.
  • step S204 If the difference between the DC signal obtained when the frequency of the first AC voltage decreases by the second preset frequency increment and the frequency of the first AC voltage is the initial frequency is less than zero, then return to step S204; In step S204, until the ringing signal becomes larger, the frequency of the first alternating voltage before the ringing signal becomes larger is equal to the resonant frequency. If the difference between the DC signal obtained when the frequency of the first AC voltage is decreased by the second preset frequency increment and the DC signal obtained by the frequency of the first AC voltage is greater than zero, step S207 is performed.
  • the first AC is illustrated.
  • the magnitude of the DC signal obtained when the frequency of the voltage is decreased by the second predetermined frequency increment is smaller than the magnitude of the DC signal obtained when the frequency of the first alternating voltage is the initial frequency. That is, the amplitude of the ringing signal obtained when the frequency of the first alternating voltage is decreased by the second predetermined frequency increment is smaller than the amplitude of the ringing signal obtained when the frequency of the first alternating voltage is the initial operating frequency.
  • the frequency of the first AC voltage is indicated.
  • the magnitude of the DC signal obtained when the second preset frequency increment is decreased is greater than the magnitude of the DC signal obtained when the frequency of the first AC voltage is the initial frequency. That is, the amplitude of the ringing signal obtained when the frequency of the first alternating voltage is increased by the second predetermined frequency increment is greater than the amplitude of the ringing signal obtained when the frequency of the first alternating voltage is the initial frequency.
  • the second preset frequency increment may be equal to the first preset frequency increment or may not be equal to the first preset frequency increment.
  • the magnitude relationship between the first preset frequency increment and the second preset frequency increment may be set as needed to satisfy that the frequency of the first alternating voltage can be adjusted as soon as possible equal to the resonant frequency.
  • the initial frequency of the first alternating current voltage is increased by a first preset frequency increment, and if the frequency of the first alternating current voltage is increased by the first preset frequency increment, the direct current signal is obtained.
  • the frequency of the AC voltage is the initial frequency
  • the difference between the DC signals obtained by the initial frequency is greater than zero
  • the initial frequency of the first AC voltage is decreased by the second preset frequency increment, if the frequency of the first AC voltage is decreased by the second pre- Assume
  • the difference between the DC signal obtained in the frequency increment and the DC signal obtained when the frequency of the first AC voltage is the initial frequency is greater than zero.
  • the current frequency of the first alternating voltage increases whether the first preset frequency increment is increased or the second preset frequency increment is decreased, and the amplitude of the obtained ringing signal becomes larger, so that the current
  • the frequency of the first alternating voltage is equal to the resonant frequency because the amplitude of the ringing signal is the smallest when the frequency of the current first alternating voltage is equal to the resonant frequency.
  • the power converter 100 further includes a third resistor R3.
  • One end of the third resistor R3 is grounded, and the other end is connected to a node between the second resistor R2 and the fourth capacitor C3.
  • the present invention is described by taking the correction circuit 150 detecting the voltage signal across the resonant inductor Lr as an example, the present invention is not limited to detecting the voltage signal across the resonant inductor Lr.
  • the correction circuit 150 can also sense a voltage signal or a current signal of the first alternating voltage.
  • the voltage signal or current signal of the first alternating voltage is referred to as a detection signal. That is, the correction circuit 150 senses a voltage signal or a current signal of the first alternating voltage to obtain a detection signal.
  • the correction circuit 150 detects the magnitude of the ringing signal in the detection signal, and sends a control signal to the power input circuit 110 according to the magnitude of the ringing signal in the detection signal to adjust the output of the power input circuit 110.
  • the frequency of an alternating voltage is equal to the resonant frequency of the resonant circuit 140.
  • the correction circuit 150 adjusts the frequency of the first alternating current voltage output by the power input circuit 110 to be equal to the resonant frequency of the resonant circuit 140
  • the first alternating current voltage output by the power input circuit 110 can be adjusted.
  • the frequency is equal to the resonant frequency of the resonant circuit 140.
  • the power input circuit can also be adjusted when the frequency of the first alternating current voltage output by the power input circuit 110 is equal to the resonant frequency of the resonant circuit 140 and is not easily adjusted due to an error in manufacturing or the like.
  • the frequency of the first alternating voltage output by 110 is substantially equal to the resonant frequency of the resonant circuit 140.
  • FIG. 5 is the first alternating current output of the ringing signal size and the power input circuit of the present invention.
  • Waveform 1 in Fig. 5 is the waveform of the ringing signal - the waveform of the duty cycle of the first alternating voltage output from the power input circuit.
  • Waveform 2 in Fig. 5 is a waveform of a duty cycle of the first alternating current voltage outputted by the power input circuit of the power converter 10.
  • the duty cycle of the first alternating voltage is the reciprocal of the frequency of the first alternating voltage.
  • the power converter provided by the present invention, by providing a correction circuit 150 in the power converter 100, the correction circuit 150 senses the first alternating voltage of the resonant circuit 140 in the power converter to obtain a detection signal, and detects the Detecting a magnitude of the ringing signal in the signal, adjusting a frequency of the first alternating voltage according to the magnitude of the ringing signal, such that a frequency of the output first alternating voltage of the power input circuit 110 is equal to a resonance of the resonant circuit 140
  • the frequency, or the difference between the frequency of the first alternating voltage output by the power input circuit 110 and the resonant frequency of the resonant circuit 140 is within a range. Therefore, the resonant circuit 140 is maintained in a resonant state. At this time, the magnitude of the ringing signal reaches a minimum value, thereby achieving zero voltage switching of the power input circuit 110 and zero current switching to the transformer 120, thereby achieving an improvement.
  • the technical effect of the conversion efficiency of the power converter 100 by

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

一种电源转换器,其包括:功率输入电路,产生并输出第一交流电压;变压器,将第一交流电压变换成第二交流电压;功率输出电路,将第二交流电压变换为一输出电压,并将所述输出电压输出;谐振电路,当第一交流电压的频率等于谐振电路的谐振频率时发生谐振,以实现对功率输入电路的零电流开关或对变压器的零电压开关;及校正电路,感测第一交流电压以得到一检测信号,并检测所述检测信号中振铃信号的大小,根据振铃信号的大小发出控制信号至功率输入电路,以调整第一交流电压的频率等于谐振电路的谐振频率或在谐振频率附近,以调整振铃信号的大小达到一极小值。所述电源转换器能够提高电源转换器的转换效率。

Description

电源转换器 技术领域
本发明涉及电源领域,尤其涉及一种电源转换器。
背景技术
在电源转换技术中,电源转换器是必不可少的元件。由于电源转换器的功率转换频率越来越高,对转换效率的要求也越来越高。通常情况下,电源转换器中包括各种谐振拓扑结构,以减小电源转换器在功率转换时的损耗。其中,LLC拓扑是一种常见的谐振拓扑结构。LLC拓扑通过谐振电感和谐振电容产生谐振,而实现零电流开关(Zero Current Switch,ZCS)和零电压开关(Zero Current Switch,ZVS)从而大幅提高电源转换器的转换效率。然而,电源转换器中的各种元件在制造时往往存在误差,尤其是谐振电感,误差较大。各元件的误差累计起来,使得所述谐振电感及所述谐振电容不能一直保持在谐振状态,从而导致所述电源转换器的转换效率较低。
发明内容
提供一种电源转换器,具有较高的转换效率。
一方面,提供了一种电源转换器。所述电源转换器包括:
功率输入电路,用于产生第一交流电压,并将所述第一交流电压输出;
变压器,用于将所述第一交流电压变换成第二交流电压,所述第二交流电压的电压值不等于所述第一交流电压的电压值;
功率输出电路,用于将所述第二交流电压变换为一输出电压,并将所述输出电压输出,所述输出电压为一不等于所述第二交流电压的交流电压或所述输出电压为一直流电压;
谐振电路,所述谐振电路用于当所述功率输入电路输出的第一交流电压的频率等于所述谐振电路的谐振频率时发生谐振,以实现对所述功率输入电路的零电流开关或对所述变压器的零电压开关;及
校正电路,用于感测所述第一交流电压以得到一检测信号,并检测所述检 测信号中振铃信号的大小,根据所述振铃信号的大小发出控制信号至所述功率输入电路,以调整所述功率输入电路输出的第一交流电压的频率等于所述谐振电路的谐振频率或使所述功率输入电路输出的第一交流电压的频率与所述谐振电路的谐振频率的偏差在正负百分之十的范围内,以调整所述振铃信号的大小达到极小值。
在第一种可能的实现方式中,所述谐振电路包括谐振电感,所述校正电路包括:
信号检测电路,用于感测所述谐振电感两端的电压信号以得到所述检测信号,所述检测信号包括正弦波信号及所述振铃信号;
高通滤波电路,用于滤除所述检测信号中的正弦波信号,通过所述振铃信号;
整流电路,用于将经过所述高通滤波电路之后的所述振铃信号整流为一直流脉冲信号;
低通滤波电路,用于将所述直流脉冲信号转化为一直流信号;及
控制电路,用于根据所述直流信号的大小发出控制信号至所述功率输入电路,以调整所述功率输入电路输出的第一交流电压的频率,以使所述输入电路输出的第一交流电压的频率等于所述谐振电路的谐振频率或使所述功率输入电路的工作频率与所述谐振电路的谐振频率的偏差在正负百分之十的范围内。
结合第一种可能的实现方式,在第二种可能的实现方式中,所述信号检测电路及所谐振电感构成一感测变压器,所述谐振电感为所述感测变压器的初级线圈,所述信号检测电路为所述感测变压器的次级线圈。
结合第第二种可能的实现方式,在第三种可能的实现方式中,所述高通滤波电路包括第一电容及第一电阻,所述感测变压器的次级线圈的一端连接所述第一电容及所述第一电阻至所述感测变压器的次级线圈的另一端。
结合第三种可能实现的方式,在第四种可能的实现方式中,所述整流电路包括第二电容、第三电容、第一二极管及第二二极管,所述第二电容一端连接所述感测变压器的次级线圈与所述第一电阻之间的节点,另一端连接所述第一二极管的负极;所述第三电容一端连接所述感测变压器的次级线圈与所述第一电阻之间的节点,另一端接地;所述第一二极管的正极连接所述第一电阻与所 述第一电容之间的节点,所述第二二极管的负极连接所述第一电阻与所述第一电容之间的节点,所述第二二极管的正极接地。
结合第四种可能实现的方式,在第五种可能实现的方式中,所述低通滤波电路包括第二电阻及第四电容,所述第二电阻一端连接所述第一二极管的负极,所述第二电阻的另一端连接所述第四电容至地。
结合第五种可能实现的方式,在第六种可能实现的方式中,所述电源转换器还包括一第三电阻,所述第三电阻一端接地,另一端连接所述第二电阻与所述第四电容之间的节点。
结合第一种可能实现的方式,在第七种可能实现的方式中,所述功率输入电路包括多个开关单元,所述多个开关单元分别接收一开关信号,并在所述开关信号的控制下将一原始直流电压转换为一第一交流电压,所述控制电路通过所述控制信号调整所述开关信号的占空比或频率,以调整所述功率输入电路的工作频率,进而调整所述第一交流电压的频率。
结合第一种可能实现的方式,在第八种可能实现的方式中,所述控制电路调整所述功率输入电路输出的第一交流电压的频率,以使所述输入电路输出的第一交流电压的频率等于所述谐振电路的谐振频率或使所述功率输入电路输出的第一交流电压的频率与所述谐振电路的谐振频率的偏差在正负百分之十的范围内的调整方法为:
将第一交流电压的初始频率增大一第一预设频率增量;
检测直流信号的大小;
比较初始频率增大第一预设频率增量时得到的直流信号与初始频率时得到的直流信号的差值;
若频率增大第一预设频率增量时得到的直流信号与初始频率时得到的直流信号的差值大于零,将初始频率减小一第二预设频率增量;
检测直流信号的大小;
比较频率减小第二预设频率增量时得到的直流信号与初始频率时得到的直流信号的差值;
若频率减小第二预设频率增量时得到的直流信号与初始频率时得到的直流信号的差值大于零,则判断初始频率等于谐振频率。
结合第八种可能实现的方式,在第九种可能实现的方式中,若频率增大第一预设频率增量时得到的直流信号与初始频率时得到的直流信号的差值小于零,则返回执行将当前的频率继续增大一第一预设频率增量,重复执行将当前的频率增大一第一预设频率增量过程,直至所述振铃信号变大,则振铃信号变大之前的频率为谐振频率。
结合第九种可能实现的方式中,在第十种可能实现的方式中,若频率减小第二预设频率增量时得到的直流信号与初始频率时得到的直流信号的差值小于零,则返回执行将当前的频率减小一第二预设频率增量,重复执行将当前的频率减小一第二预设频率增量过程,直至振铃信号变大,则振铃信号增大之前的频率为谐振频率。
根据各实现方式提供的电源转换器,在所述电源转换器中设置校正电路,校正电路感测电源转换器中流经所述谐振电路的第一交流电压中振铃信号的大小,并根据振铃信号的大小调整第一交流电压的频率,以使第一交流电压的频率与谐振电路的谐振频率相等,或第一交流电压的频率与谐振电路的谐振频率的差值在一范围内。即,使得谐振电路保持在谐振状态,此时,振铃信号的大小达到极小值,由于谐振电路保持在谐振状态,从而实现了对功率输入电路的零电压开关及对变压器的零电流开关,因此提高了电源转换器的转换效率。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明一较佳实施方式的电源转换器的电路结构示意图;。
图2为图1所示的功率输入电路的一较佳实施方式的电路图;
图3为本发明包含有振铃信号的电压信号的波形图;
图4为本发明控制电路控制功率输入电路的控制方法示意图;
图5为本发明振铃信号大小与功率输入电路输出的第一交流电压的周期的波形示意图,及电源转换器的转换效率与功率输入电路输出的第一交流电压 的周期的波形示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参阅图1,其为本发明一较佳实施方式的电源转换器的电路结构示意图。所述电源转换器100包括功率输入电路110、变压器120、功率输出电路130、谐振电路140及校正电路150。
所述功率输入电路110用于产生第一交流电压,并将所述第一交流电压输出。所述变压器120用于将所述第一交流电压变换为第二交流电压。所述功率输出电路130用于将所述第二交流电压变换为一输出电压,并将所述输出电压输出。所述输出电压可以为直流电压也可为一电压值不等于所述第二交流电压的电压值的交流电压。所述谐振电路140包括谐振电容Cr及谐振电感Lr。所述谐振电感Lr与所述谐振电容Cr串联,当所述功率输入电路110输出的第一交流电压的频率等于所述谐振电路140的谐振频率时,所述谐振电路140发生谐振,以实现对所述功率输入电路110的零电流开关或者对所述变压器120的零电压开关。所述校正电路150用于感测所述第一交流电压以得到一检测信号,并检测所述检测信号中振铃信号的大小,根据所述振铃信号的大小发出控制信号至所述功率输入电路110,以调整所述功率输入电路110输出第一交流电压的频率等于所述谐振电路140的谐振频率或使所述功率输入电路110输出的第一交流电压的频率在所述谐振电路140的谐振频率附近,以调整所述振铃信号的大小达到极小值。举例而言,可使所述功率输入电路110输出的第一交流电压的频率与所述谐振电路140的谐振频率的偏差在正负百分之十的范围内。下面以调整所述功率输入电路110输出的第一交流电压的频率等于所述谐振电路140的谐振频率为例进行说明。
所述检测信号可以为电流信号,也可以为电压信号。在本实施方式中,所述检测电路150用于感测所述谐振电感Lr两端的电压信号,所述谐振电感Lr 两端的电压信号为所述检测信号。
所述功率输入电路110包括第一输出端110a及第二输出端110b,并将所述第一交流电压从所述第一输出端110a及所述第二输出端110b输出。
请一并参阅图2,其为图1所示的功率输入电路的一较佳实施方式的电路图。所述功率输入电路110包括直流源111及多个开关单元。所直流源111包括一正极及一负极,所述直流源111的负极接地,用于产生一原始直流电压。所述多个开关单元分别收一开关信号,并在所述开关信号的控制下将所述原始直流电压转换为第一交流电压。所述功率输入电路110可以为电源转换器电路或者为高频开关电源转换电路。在本实施方式中,所述功率输入电路110为高频开关电源转换电路,其包括四个N沟道金属氧化物半导体场效应晶体管(n-channel metal oxide semiconductor field effect transistor,NMOSFET)作为开关单元。为方便描述,所述四个NMOSFET分别命名为第一开关单元Q1、第二开关单元Q2、第三开关单元Q3及第四开关单元Q4。所述第一开关单元Q1、所述第二开关单元Q2、所述第三开关单元Q3及所述第四开关单元Q4分别包括栅极g、源极s及漏极d。所述第一开关单元Q1、所述第二开关单元Q2、所述第三开关单元Q3及所述第四开关单元Q4的栅极g分别用于接收一开关信号,并在所述开关信号的控制下控制各个开关单元的所述源极s及所述漏极d之间的开启或者关闭。当所述源极s及所述漏极d之间开启时,所述开关单元截止;当所述源极s及所述漏极d之间闭合时,所述开关单元导通。
所述第一开关单元Q1的漏极d连接所述直流源111的正极,所述第一开关单元Q1的源极s连接所述第一输出端110a。所述第二开关单元Q2的漏极d连接所述第一输出端110a,所述第二开关单元Q2的源极s接地。所述第三开关单元Q3的漏极d连接所述直流源111的正极,所述第三开关单元Q3的源极s连接所述第二输出端110b。所述第四开关单元Q4的漏极d连接所述第二输出端110b,所述第四开关单元Q4的源极s接地。所述第一开关单元Q1、所述第二开关单元Q2、所述第三开关单元Q3及所述第四开关单元Q4周期性地导通和关断,所述第一输出端110a及所述第二输出端110b被周期性地轮流连接到所述直流源111的正极和地,因此,所述第一输出端110a及所述第二输出端110b之间形成高频交流电压,所述高频交流电压即为所述第一交流电 压。
请再次参阅图1,所述变压器120包括初级线圈L1及次级线圈L2。所述初级线圈L1的一端连接所述谐振电路140至所述第一输出端110a,所述初级线圈L1的另一端连接所述第二输出端110b。所述初级线圈L1用于接收所述第一交流电压,所述变压器120用于将所述第一交流电压转换为所述第二交流电压,所述次级线圈L2用于将所述第二交流电压输出。可以理解地,所述第二交流电压的大小与所述第一交流电压的大小之间的关系与所述次级线圈L2的线圈圈数与所述初级线圈L1的线圈圈数之间的比例成正比。当所述次级线圈L2的线圈圈数与所述初级线圈L1的线圈圈数之间的比例大于一时,所述第二交流电压的大小大于所述第一交流电压的大小,即,所述变压器120为升压变压器;当所述次级线圈L2的线圈圈数与所述初级线圈L1的线圈圈数之间的比例小于一时,所述第二交流电压的大小小于所述第一交流电压的大小,即,所述变压器120为降压变压器。
所述功率输出电路130与所述变压器120的所述次级线圈L2相连,用于根据所述第二交流电压输出一输出电压。具体地,所述功率输出电路130接收所述第二交流电压,将所述第二交流电压转换为第一电压,并将所述第一电压输出。可以理解地,所述输出的第一电压可以为一交流电压,也可为一直流电压。
所述谐振电路140包括谐振电容Cr及谐振电感Lr。所述谐振电感Lr的一端连接所述第一输出端110a,所述谐振电感Lr的另一端连接所述谐振电容Cr至所述变压器120的初级线圈L1的一端。当所述谐振电路140的谐振频率等于所述功率输入电路110的工作频率时,所述谐振电路140发生谐振。当所述谐振电路140发生谐振时,所述开关单元中的电流按照标准的正弦规律变化,即,所述开关单元中的电流为标准的正弦波。当波形为正弦波的电流谐振到零时,令开关单元关断,从而实现了零电流开关(Zero Current Switch,ZCS)。同时,当所述谐振电路140发生谐振时,所述变压器120的所述初级线圈L1的电压按照标准的正弦规律变化,即,所述初级线圈L1的电压为标准的正弦波。当波形为正弦波的电压谐振到零时,所述变压器120关断,从而实现了零电压开关(Zero Voltage Switch,ZVS)。
所述校正电路150包括信号检测电路151、高通滤波电路152、整流电路153、低通滤波电路154及控制电路155。
所述信号检测电路151用于感测所述谐振电感Lr两端的电压信号以得到所述检测信号。
具体地,在本实施方式中,所述信号检测电路151及所述谐振电感Lr形成一个感测变压器。在此,所述感测变压器用T2表示,所述谐振电感Lr为所述感测变压器T2的初级线圈,所述信号检测电路151为所述感测变压器T2的次级线圈L3。由于所述谐振电感Lr与所述信号检测电路151形成一个感测变压器T2,所述谐振电感Lr两端的电压信号可以由于所述感测变压器T2的耦合作用从所述谐振电感Lr两端耦合到所述信号检测电路151中。请参阅图3,其为本发明包含有振铃信号II的电压信号的波形图。由图3可见,所述电压信号中包括正弦波信号I及振铃信号II。其中,所述振铃信号II是由于所述谐振电感Lr与所述功率输入电路110中的开关单元中的结电容谐振产生的。当所述谐振电路140的谐振频率等于所述功率输入电路110的工作频率时,所述谐振电路140发生谐振。此时,所述振铃信号II的振幅最小,所述电源转换器110的转换效率最大。因此,检测所述振铃信号II的振幅即可知道所述电源转换器100是否工作在最佳工作状态。
请再次参阅图1,所述高通滤波电路152用于滤除所述电压信号中的正弦波信号I,通过所述振铃信号II。所述高通滤波电路152包括第一电容C0及第一电阻R1。所述第一电容C0与所述第一电容R1串联之后连接在所述感测变压器T2的次级线圈L3的两端。换句话说,所述感测变压器T2的次级线圈L3的一端连接所述第一电容C0及所述第一电阻R1至所述感测变压器T2的次级线圈L3的另一端。
所述整流电路153用于将经过所述高通滤波电路152之后的所述振铃信号II整流为一直流脉冲信号。具体地,所述整流电路153包括第二电容C1、第三电容C2、第一二极管D1及第二二极管D2。所述第二电容C1一端连接所述感测变压器T2的次级线圈L3与所述第一电阻R1之间的节点,所述第二电容C1的另一端连接所述第一二极管D1的负极。所述第三电容C2的一端连接所述感测变压器T2的次级线圈L3与所述第一电阻R1之间的节点,所述第三 电容C2的另一端接地。所述第一二极管D1的正极连接所述第一电阻R1与所述第一电容C0之间的节点。所述第二二极管D2的负极连接所述第一电阻R1与所述第一电容C0之间的节点,所述第二二极管D2的正极接地。所述第一二极管D1及所述第二二极管D2均为单向导通的。当所述第一二极管D1正极的电压大于所述第一二极管D1负极的电压时,所述第一二极管D1导通;当所述第一二极管D1正极的电压小于所述第一二极管D1负极的电压时,所述第一二极管D1截止。当所述第二二极管D2正极的电压大于所述第二二极管D2负极的电压时,所述第二二极管D2导通;当所述第二二极管D2正极的电压小于所述第二二极管D2负极的电压时,所述第二二极管D2截止。
所述低通滤波电路154用于将所述直流脉冲信号转化为一直流信号。所述直流脉冲信号经过所述低通滤波电路154之后,其波形将变得更加平缓。具体地,所述低通滤波电路154包括第二电阻R2及第四电容C3。所述第二电阻R2一端连接所述第一二极管D1的负极,所述第二电阻R2的另一端连接所述第四电容C3至地。
所述控制电路155用于根据所述直流信号的大小发出控制信号至所述功率输入电路110,以调整所述功率输入电路110输出的第一交流电压的频率。具体地,所述直流信号的大小表征所述振铃信号II的幅值大小,当所述直流信号较大时,说明所述电压信号中包括的振铃信号II幅值较大;当所述直流信号较小时,说明所述电压信号中包括的振铃信号II幅值较小。因此,所述直流信号的大小可以作为所述控制电路155调整所述输入电路110输出的第一交流电压的频率的依据。
所述控制电路155可以通过控制所述控制信号调整所述开关信号的占空比或者频率,以调整所述功率输入电路110输出的第一交流电压的频率,以使所述功率输入电路110输出的第一交流电压的频率等于所述谐振电路140的谐振频率,以使所述谐振电路140发生谐振。
在一较佳实施方式中,所述控制电路155发出控制信号调整所述功率输入电路110输出的第一交流电压的频率的过程具体描述如下。请参阅图4,其为本发明控制电路控制功率输入电路的控制方法示意图。
S201,将第一交流电压的初始频率增大一第一预设频率增量。可以理解地, 所述第一预设频率增量的大小可以根据需要进行选择,以满足能够尽快地调整第一交流电压的频率等于谐振频率。
S202,检测直流信号的大小。
S203,比较频率增大第一预设频率增量时得到的直流信号与初始频率时得到的直流信号的差值。
若第一交流电压的频率增大第一预设频率增量时得到的直流信号与第一交流电压的频率为初始频率时得到的直流信号的差值小于零,则返回步骤S201;重复执行所述步骤S201,直至振铃信号变大,则振铃信号变大之前的第一交流电压的频率等于谐振频率。若第一交流电压的频率增大第一预设频率增量时得到的直流信号与第一交流电压的频率未增大第一预设频率增量时得到的直流信号的差值大于零,则执行步骤S204。
具体地,若第一交流电压的频率增大第一预设频率增量时得到的直流信号与第一交流电压为初始频率时得到的直流信号的差值小于零,则说明第一交流电压的频率增大第一预设频率增量时得到的直流信号的大小小于第一交流电压的频率为初始频率时得到的直流信号的大小。即,第一交流电压的频率增大第一预设频率增量时得到振铃信号的幅值小于第一交流电压的频率为初始频率时得到的振铃信号的幅值。则,表明此时增大第一交流电压的频率为初始频率能够减小振铃信号的幅值。若第一交流电压的频率增大第一预设频率增量时得到的直流信号与第一交流电压的频率为初始频率时得到的直流信号的差值大于零,则说明第一交流电压的频率增大第一预设频率增量时得到的直流信号的大小大于第一交流电压的频率为初始频率时得到的直流信号的大小。即,第一交流电压的频率增大第一预设频率增量时得到振铃信号的幅值大于第一交流电压的频率为初始频率时得到的振铃信号的幅值。则,表明此时增大第一交流电压的初始频率不能减小振铃信号的幅值,反而增大振铃信号的幅值。
S204,将第一交流电压的初始频率减小一第二预设频率增量。可以理解地,所述第二预设频率增量的大小可以根据需要进行选择,以满足能够尽快地调整第一交流电压的频率等于谐振频率。
S205,检测直流信号的大小。
S206,比较第一交流电压的频率减小第二预设频率增量时得到的直流信号 与第一交流电压的频率为初始频率时得到的直流信号的差值。
若第一交流电压的频率减小第二预设频率增量时得到的直流信号与第一交流电压的频率为初始频率时得到的直流信号的差值小于零,则返回步骤S204;重复执行所述步骤S204,直至所述振铃信号变大,则振铃信号变大之前的第一交流电压的频率等于谐振频率。若第一交流电压的频率减小第二预设频率增量时得到的直流信号与第一交流电压的频率为初始频率时得到的直流信号的差值大于零,则执行步骤S207。
具体地,若第一交流电压的频率减小第二预设频率增量时得到的直流信号与第一交流电压的频率为初始频率时得到的直流信号的差值小于零,则说明第一交流电压的频率减小第二预设频率增量时得到的直流信号的大小小于第一交流电压的频率为初始频率时得到的直流信号的大小。即,第一交流电压的频率减小第二预设频率增量时得到的振铃信号的幅值小于第一交流电压的频率为初始工作频率时得到的振铃信号的幅值。则,表明此时减小第一交流电压的初始频率能够减小振铃信号的幅值。若第一交流电压的频率减小第二预设频率增量时得到的直流信号与第一交流电压的频率为初始频率时得到的直流信号的差值大于零,则说明第一交流电压的频率减小第二预设频率增量时得到的直流信号的大小大于第一交流电压的频率为初始频率时得到的直流信号的大小。即,第一交流电压的频率增大第二预设频率增量时得到的振铃信号的幅值大于第一交流电压的频率为初始频率时得到的振铃信号的幅值。则,表明此时减小第一交流电压的初始频率不能够减小振铃信号的幅值,反而增大振铃信号的幅值。可以理解地,所述第二预设频率增量可以等于所述第一预设频率增量,也可不等于所述第一预设频率增量。所述第一预设频率增量与所述第二预设频率增量的大小关系可以根据需要进行设置,以满足能够尽快地调整第一交流电压的频率等于谐振频率。
S207,判断当前的第一交流电压的频率等于谐振频率。
具体地,结合前述步骤来看,将第一交流电压的初始频率增大第一预设频率增量,若第一交流电压的频率增大第一预设频率增量时得到的直流信号与第一交流电压的频率为初始频率时得到的直流信号的差值大于零,则将第一交流电压的初始频率减小第二预设频率增量,若第一交流电压的频率减小第二预设 频率增量时得到的直流信号与第一交流电压的频率为初始频率时得到的直流信号的差值大于零。则表明,当前的第一交流电压的频率无论增大第一预设频率增量,还是减小第二预设频率增量,得到的振铃信号的幅值都变大,则可认为当前的第一交流电压的频率等于谐振频率,因为,当前的第一交流电压的频率等于谐振频率时,振铃信号的幅值最小。
请再次参阅图1,所述电源转换器100还包括第三电阻R3,所述第三电阻R3一端接地,另一端连接所述第二电阻R2与所述第四电容C3之间的节点。
虽然本发明以所述校正电路150检测所述谐振电感Lr两端的电压信号为例进行说明,然,本发明并不局限于检测所述谐振电感Lr两端的电压信号。在其他实施方式中,所述校正电路150也可感测所述第一交流电压的电压信号或电流信号。为方便描述,所述第一交流电压的电压信号或电流信号称为检测信号。即所述校正电路150感测所述第一交流电压的电压信号或者电流信号,以得到一检测信号。所述校正电路150检测所述检测信号中振铃信号的大小,根据所述检测信号中振铃信号的大小发出控制信号至所述功率输入电路110,以调整所述功率输入电路110输出的第一交流电压的频率等于所述谐振电路140的谐振频率。
可以理解地,当所述校正电路150调整所述功率输入电路110输出的第一交流电压的频率等于所述谐振电路140的谐振频率时,可调整所述功率输入电路110输出的第一交流电压的频率等于所述谐振电路140的谐振频率。由于实际电子元件在制造时的误差等原因,当调整所述功率输入电路110输出的第一交流电压的频率等于所述谐振电路140的谐振频率不容易调整时,也可调整所述功率输入电路110输出的第一交流电压的频率基本等于所述谐振电路140的谐振频率。换句话说,可调整所述功率输入电路110输出的第一交流电压的频率在所述谐振电路140的谐振频率附近。当所述功率输入电路110的输出的第一交流电压的频率与所述谐振电路140的谐振频率之间差值的绝对值小于等于一预设值时,可认为所述功率输入电路110输出的第一交流电压的频率基本等于所述谐振电路140的谐振频率。此时,所述电源转换器10的转换效率较高。
请参阅图5,其为本发明振铃信号大小与功率输入电路输出的第一交流电 压的工作周期的波形示意图,及电源转换器的转换效率与功率输入电路输出的第一交流电压的工作周期的波形示意图。图5中波形①为振铃信号的大小—功率输入电路输出的第一交流电压的工作周期的波形曲线。图5中的波形②为所述电源转换器10的转换效率—功率输入电路输出的第一交流电压的工作周期的波形曲线。在此,第一交流电压的工作周期为第一交流电压的频率的倒数。在图5中,由波形①可见,当振铃信号的大小在极小值附近时,波形②所示的电源转换器10的转换效率则在极大值附近,即此时电源转换器10的转换效率最大。
本发明提供的电源转换器,通过在所述电源转换器100中设置校正电路150,校正电路150感测电源转换器中谐振电路140的第一交流电压以得到一检测信号,并检测出所述检测信号中的振铃信号的大小,根据所述振铃信号的大小调整第一交流电压的频率,以使所述功率输入电路110的输出第一交流电压的频率等于所述谐振电路140的谐振频率,或使所述功率输入电路110输出的第一交流电压的频率与谐振电路140的谐振频率的差值在一范围内。从而使得所述谐振电路140保持在谐振状态,此时,振铃信号的大小达到极小值,从而实现了对功率输入电路110的零电压开关及对变压器120的零电流开关,从而达到了提高所述电源转换器100的转换效率的技术效果。
以上所揭露的仅为本发明一种较佳实施例而已,当然不能以此来限定本发明之权利范围,本领域普通技术人员可以理解实现上述实施例的全部或部分流程,并依本发明权利要求所作的等同变化,仍属于发明所涵盖的范围。

Claims (11)

  1. 一种电源转换器,其特征在于,所述电源转换器包括:
    功率输入电路,用于产生第一交流电压,并将所述第一交流电压输出;
    变压器,用于将所述第一交流电压变换成第二交流电压,所述第二交流电压的电压值不等于所述第一交流电压的电压值;
    功率输出电路,用于将所述第二交流电压变换为一输出电压,并将所述输出电压输出,所述输出电压为一电压值不等于所述第二交流电压的电压值的交流电压或所述输出电压为一直流电压;
    谐振电路,所述谐振电路用于当所述功率输入电路输出的第一交流电压的频率等于所述谐振电路的谐振频率时发生谐振,以实现对所述功率输入电路的零电流开关或对所述变压器的零电压开关;及
    校正电路,用于感测所述第一交流电压以得到一检测信号,并检测所述检测信号中振铃信号的大小,根据所述振铃信号的大小发出控制信号至所述功率输入电路,以调整所述功率输入电路输出的第一交流电压的频率等于所述谐振电路的谐振频率或使所述功率输入电路输出的第一交流电压的频率与所述谐振电路的谐振频率的偏差在正负百分之十的范围内,以调整所述振铃信号的大小达到一极小值。
  2. 如权利要求1所述的电源转换器,其特征在于,所述谐振电路包括谐振电感,所述校正电路包括:
    信号检测电路,用于感测所述谐振电感两端的电压信号以得到所述检测信号,所述检测信号包括正弦波信号及所述振铃信号;
    高通滤波电路,用于滤除所述检测信号中的正弦波信号,通过所述振铃信号;
    整流电路,用于将经过所述高通滤波电路之后的所述振铃信号整流为一直流脉冲信号;
    低通滤波电路,用于将所述直流脉冲信号转化为一直流信号;及
    控制电路,用于根据所述直流信号的大小发出控制信号至所述功率输入电 路,以调整所述功率输入电路输出的第一交流电压的频率,以使所述输入电路输出的第一交流电压的频率等于所述谐振电路的谐振频率或使所述功率输入电路的工作频率与所述谐振电路的谐振频率的偏差在正负百分之十的范围内。
  3. 如权利要求2所述的电源转换器,其特征在于,所述信号检测电路及所谐振电感构成一感测变压器,所述谐振电感为所述感测变压器的初级线圈,所述信号检测电路为所述感测变压器的次级线圈。
  4. 如权利要求3所述的电源转换器,其特征在于,所述高通滤波电路包括第一电容及第一电阻,所述感测变压器的次级线圈的一端连接所述第一电容及所述第一电阻至所述感测变压器的次级线圈的另一端。
  5. 如权利要求4所述的电源转换器,其特征在于,所述整流电路包括第二电容、第三电容、第一二极管及第二二极管,所述第二电容一端连接所述感测变压器的次级线圈与所述第一电阻之间的节点,另一端连接所述第一二极管的负极;所述第三电容一端连接所述感测变压器的次级线圈与所述第一电阻之间的节点,另一端接地;所述第一二极管的正极连接所述第一电阻与所述第一电容之间的节点,所述第二二极管的负极连接所述第一电阻与所述第一电容之间的节点,所述第二二极管的正极接地。
  6. 如权利要求5所述的电源转换器,其特征在于,所述低通滤波电路包括第二电阻及第四电容,所述第二电阻一端连接所述第一二极管的负极,所述第二电阻的另一端连接所述第四电容至地。
  7. 如权利要求6所述的电源转换器,其特征在于,所述电源转换器还包括一第三电阻,所述第三电阻一端接地,另一端连接所述第二电阻与所述第四电容之间的节点。
  8. 如权利要求2所述的电源转换器,其特征在于,所述功率输入电路包 括多个开关单元,所述多个开关单元分别接收一开关信号,并在所述开关信号的控制下将一原始直流电压转换为一第一交流电压,所述控制电路通过所述控制信号调整所述开关信号的占空比或频率,以调整所述功率输入电路的工作频率,进而调整所述第一交流电压的频率。
  9. 如权利要求2所述的电源转换器,其特征在于,所述控制电路调整所述功率输入电路输出的第一交流电压的频率,以使所述输入电路输出的第一交流电压的频率等于所述谐振电路的谐振频率或使所述功率输入电路输出的第一交流电压的频率在以所述谐振电路的谐振频率正负百分之十的范围内的调整方法为:
    将第一交流电压的初始频率增大一第一预设频率增量;
    检测直流信号的大小;
    比较频率增大第一预设频率增量时得到的直流信号与初始频率时得到的直流信号的差值;
    若频率增大第一预设频率增量时得到的直流信号与初始频率时得到的直流信号的差值大于零,将初始频率减小一第二预设频率增量;
    检测直流信号的大小;
    比较频率减小第二预设频率增量时得到的直流信号与初始频率时得到的直流信号的差值;
    若频率减小第二预设频率增量时得到的直流信号与初始频率时得到的直流信号的差值大于零,则判定初始频率等于谐振频率。
  10. 如权利要求2所述的电源转换器,其特征在于,若频率增大第一预设频率增量时得到的直流信号与初始频率时得到的直流信号的差值小于零,则返回执行将当前的频率继续增大一第一预设频率增量,重复执行将当前的频率增大一第一预设频率增量过程,直至所述振铃信号变大,则振铃信号变大之前的频率为谐振频率。
  11. 如权利要求2所述的电源转换器,其特征在于,若频率减小第二预设 频率增量时得到的直流信号与初始频率时得到的直流信号的差值小于零,则返回执行将当前的频率继续减小一第二预设频率增量,重复执行将当前的频率减小一第二预设频率增量过程,直至振铃信号变大,则振铃信号增大之前的频率为谐振频率。
PCT/CN2014/087249 2014-01-21 2014-09-24 电源转换器 WO2015109862A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP14879835.8A EP3079248A4 (en) 2014-01-21 2014-09-24 Power supply converter
US15/213,745 US20160329817A1 (en) 2014-01-21 2016-07-19 Power supply converter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410027491.9 2014-01-21
CN201410027491.9A CN104795984B (zh) 2014-01-21 2014-01-21 电源转换器

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/213,745 Continuation US20160329817A1 (en) 2014-01-21 2016-07-19 Power supply converter

Publications (1)

Publication Number Publication Date
WO2015109862A1 true WO2015109862A1 (zh) 2015-07-30

Family

ID=53560576

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/087249 WO2015109862A1 (zh) 2014-01-21 2014-09-24 电源转换器

Country Status (4)

Country Link
US (1) US20160329817A1 (zh)
EP (1) EP3079248A4 (zh)
CN (1) CN104795984B (zh)
WO (1) WO2015109862A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105553286B (zh) * 2015-12-21 2018-07-31 一诺仪器(中国)有限公司 自适应低噪声dcdc隔离电源
CN110811317B (zh) * 2018-08-07 2021-05-25 佛山市顺德区美的电热电器制造有限公司 烹饪器具及其控制装置、控制方法
CN110811312B (zh) * 2018-08-07 2021-07-20 佛山市顺德区美的电热电器制造有限公司 烹饪器具及其控制装置、控制方法
EP3629463A1 (de) * 2018-09-27 2020-04-01 Siemens Aktiengesellschaft Resonanter gleichspannungssteller
US11258368B2 (en) * 2020-06-10 2022-02-22 Monolithic Power Systems, Inc. Resonant converter circuit with switching frequency control based on input voltage
CN113733536A (zh) * 2021-09-08 2021-12-03 南通三信塑胶装备科技股份有限公司 一种电晕机谐振频率自动调试方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090034298A1 (en) * 2007-07-30 2009-02-05 Champion Microelectronic Corporation Control Method And Apparatus Of Resonant Type DC/DC Converter With Low Power Loss At Light Load And Standby
CN102170231A (zh) * 2011-04-22 2011-08-31 广州金升阳科技有限公司 一种基于压电变压器的电源变换器
CN103190064A (zh) * 2010-10-28 2013-07-03 易达威锐有限公司 用于控制串联谐振dc/dc转换器的方法
CN103339843A (zh) * 2011-01-26 2013-10-02 株式会社村田制作所 开关电源装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6118225A (en) * 1994-08-22 2000-09-12 U.S. Philips Corporation High frequency discharge lamp operating circuit with resonant power factor correction circuit
JP2005151608A (ja) * 2003-11-11 2005-06-09 Hitachi Ltd 共振型コンバータ及びその制御方法
JP4462262B2 (ja) * 2006-02-15 2010-05-12 ソニー株式会社 スイッチング電源回路
PL2122813T3 (pl) * 2007-01-17 2013-08-30 Osram Gmbh Układ połączeń i sposób zwiększenia bezpieczeństwa zasilacza impulsowego
US8897039B2 (en) * 2007-06-12 2014-11-25 Bcd Semiconductor Manufacturing Limited Method and system for pulse frequency modulated switching mode power supplies
KR100975925B1 (ko) * 2008-07-25 2010-08-13 삼성전기주식회사 어댑터 전원장치
US8288954B2 (en) * 2008-12-07 2012-10-16 Cirrus Logic, Inc. Primary-side based control of secondary-side current for a transformer
CN101719726B (zh) * 2009-12-04 2011-10-26 重庆大学 非接触能量信号同步传输的方法及其装置
TW201134073A (en) * 2010-03-22 2011-10-01 Skynet Electronic Co Ltd Series resonant converter with overload delay and short circuit protection mechanism
CN201750352U (zh) * 2010-06-18 2011-02-16 武汉市通益电气有限公司 提高llc谐振电路工作效率的控制电路
US8964422B2 (en) * 2011-11-16 2015-02-24 Dialog Semiconductor Inc. EMI frequency spreading method for switching power converter
US9190898B2 (en) * 2012-07-06 2015-11-17 Power Systems Technologies, Ltd Controller for a power converter and method of operating the same
CN102983747A (zh) * 2012-12-04 2013-03-20 大连海事大学 一种全桥组合软开关直流变换器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090034298A1 (en) * 2007-07-30 2009-02-05 Champion Microelectronic Corporation Control Method And Apparatus Of Resonant Type DC/DC Converter With Low Power Loss At Light Load And Standby
CN103190064A (zh) * 2010-10-28 2013-07-03 易达威锐有限公司 用于控制串联谐振dc/dc转换器的方法
CN103339843A (zh) * 2011-01-26 2013-10-02 株式会社村田制作所 开关电源装置
CN102170231A (zh) * 2011-04-22 2011-08-31 广州金升阳科技有限公司 一种基于压电变压器的电源变换器

Also Published As

Publication number Publication date
EP3079248A1 (en) 2016-10-12
US20160329817A1 (en) 2016-11-10
CN104795984A (zh) 2015-07-22
CN104795984B (zh) 2017-09-26
EP3079248A4 (en) 2017-01-11

Similar Documents

Publication Publication Date Title
WO2015109862A1 (zh) 电源转换器
TWI650926B (zh) 具主動箝位之返馳式電源轉換電路及其中之轉換控制電路與控制方法
US10079545B2 (en) Current resonant type DC voltage converter, control integrated circuit, and current resonant type DC voltage conversion method
US10298136B2 (en) Flyback converter, control circuit and control method therefor
JP5690654B2 (ja) 直流電源装置
US8699240B2 (en) Charge-mode control device for a resonant converter
JP2016533704A (ja) 高効率共振変換器のための装置および方法
TWI439021B (zh) 應用於無橋式交換電路之開關控制電路以及控制方法、電源轉換器以及電源控制方法
US9698671B2 (en) Single-stage AC-to-DC converter with variable duty cycle
TW201810908A (zh) 高轉換效率之同步降壓直流-直流轉換器
JP2014060895A (ja) 電源装置
JP2015139258A (ja) スイッチング電源装置
JP2016192889A (ja) 電力変換装置
TW202110053A (zh) 功率轉換器電路中電子開關驅動方法及功率轉換器電路
Zhao et al. Output capacitance effect on the voltage gain in the high step-up series resonant converter
JP2016178800A (ja) スイッチング電源装置
JP2016054626A (ja) スイッチング電源装置
JP5510846B2 (ja) 共振型dcdcコンバータ
TW201521336A (zh) 應用於電源轉換器的控制電路及其操作方法
JP6147423B2 (ja) 電源装置の回路
JP5937597B2 (ja) スイッチング電源装置
TWI523392B (zh) 諧振變換器及其控制方法
TWI586092B (zh) 單級交流至直流轉換器
JP5954256B2 (ja) 制御方法
US20190267901A1 (en) Forward Mode Soft Switching Resonant Converter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14879835

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014879835

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014879835

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE